
Addenda to, and Errata in, the ABI for the Arm®
Architecture

2023Q3

Date of Issue: 6th October 2023

1 Preamble

1.1 Abstract
This document describes late additions (addenda) to the ABI for the Arm Architecture version 2.0, and errors (errata)
discovered in it after publication.

1.2 Keywords
Addenda to the ABI for the Arm Architecture, errata in the ABI for the Arm Architecture

1.3 Latest release and defects report
Please check Application Binary Interface for the Arm® Architecture for the latest release of this document.

Please report defects in this specification to the issue tracker page on GitHub.

2

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

https://github.com/ARM-software/abi-aa
https://github.com/ARM-software/abi-aa/issues

1.4 Licence
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866,
Mountain View, CA 94042, USA.

Grant of Patent License. Subject to the terms and conditions of this license (both the Public License and this Patent
License), each Licensor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and
otherwise transfer the Licensed Material, where such license applies only to those patent claims licensable by such
Licensor that are necessarily infringed by their contribution(s) alone or by combination of their contribution(s) with the
Licensed Material to which such contribution(s) was submitted. If You institute patent litigation against any entity
(including a cross-claim or counterclaim in a lawsuit) alleging that the Licensed Material or a contribution incorporated
within the Licensed Material constitutes direct or contributory patent infringement, then any licenses granted to You
under this license for that Licensed Material shall terminate as of the date such litigation is filed.

1.5 About the license
As identified more fully in the Licence section, this project is licensed under CC-BY-SA-4.0 along with an additional
patent license. The language in the additional patent license is largely identical to that in Apache-2.0 (specifically,
Section 3 of Apache-2.0 as reflected at https://www.apache.org/licenses/LICENSE-2.0) with two exceptions.

First, several changes were made related to the defined terms so as to reflect the fact that such defined terms need to
align with the terminology in CC-BY-SA-4.0 rather than Apache-2.0 (e.g., changing “Work” to “Licensed Material”).

Second, the defensive termination clause was changed such that the scope of defensive termination applies to “any
licenses granted to You” (rather than “any patent licenses granted to You”). This change is intended to help maintain a
healthy ecosystem by providing additional protection to the community against patent litigation claims.

1.6 Contributions
Contributions to this project are licensed under an inbound=outbound model such that any such contributions are
licensed by the contributor under the same terms as those in the Licence section.

1.7 Trademark notice
The text of and illustrations in this document are licensed by Arm under a Creative Commons Attribution–Share Alike
4.0 International license ("CC-BY-SA-4.0”), with an additional clause on patents. The Arm trademarks featured here
are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights
reserved. Please visit https://www.arm.com/company/policies/trademarks for more information about Arm’s
trademarks.

1.8 Copyright
Copyright (c) 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

3

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

http://creativecommons.org/licenses/by-sa/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://www.arm.com/company/policies/trademarks

Contents
1 Preamble 2

1.1 Abstract 2

1.2 Keywords 2

1.3 Latest release and defects report 2

1.4 Licence 3

1.5 About the license 3

1.6 Contributions 3

1.7 Trademark notice 3

1.8 Copyright 3

2 About this document 7

2.1 Change Control 7

2.1.1 Current Status and Anticipated Changes 7

2.1.2 Change history 7

2.2 References 9

2.3 Terms and abbreviations 10

3 ADDENDUM: Build Attributes 11

3.1 Introduction to build attributes 11

3.1.1 About build attributes and compatibility 11

3.1.2 The kinds of compatibility modeled by build attributes 12

3.1.3 The scope of build attributes 13

3.1.4 Build attributes and conformance to the ABI 13

3.1.5 Combining attribute values 14

3.2 Representing build attributes in ELF files 15

3.2.1 Encoding 15

3.2.2 Structure of an ELF attributes section 15

3.2.3 Formal syntax of an ELF attributes section 15

3.2.4 Formal syntax of a public (“aeabi”) attributes subsection 16

3.2.5 Conformance constraints 16

3.2.6 Coding extensibility and compatibility 17

3.3 Public ("aeabi") attribute tags 17

3.3.1 About public tags 17

3.3.2 Default values for public tags 17

3.3.3 Inheritance of public tag values 17

3.3.4 How this specification describes public attributes 18

3.3.5 Target-related attributes 18

3.3.6 Procedure call-related attributes 22

3.3.7 Miscellaneous attributes 25

4

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

3.4 Arm CPU names recognized by Arm Compiler 5.01 (armcc) 29

3.5 Attributes summary and history 29

4 ADDENDUM: Thread Local Storage 34

4.1 Introduction to thread local storage 34

4.2 Introduction to TLS addressing 34

4.3 Linux for Arm TLS addressing 34

4.3.1 Linux for Arm general dynamic model 35

4.3.2 Linux for Arm static (initial exec) model 37

5 Reserved Names 39

6 Errata and Minor Addenda 41

6.1 DWARF for the Arm Architecture 41

6.1.1 Clarifications 41

6.1.2 Errors fixed 41

6.1.3 Additions and omissions fixed 41

6.2 ELF for the Arm Architecture 41

6.2.1 Clarifications 41

6.2.2 Errors fixed 42

6.2.3 Additions and omissions fixed 42

6.3 Procedure Call Standard for the Arm Architecture 43

6.3.1 Clarifications 43

6.3.2 Errors fixed 44

6.3.3 Additions and omissions fixed 44

6.4 Base Platform ABI for the Arm Architecture 44

6.4.1 Clarifications 44

6.4.2 Errors fixed 45

6.5 C Library ABI for the Arm Architecture 45

6.5.1 Clarifications 45

6.5.2 Errors fixed 45

6.5.3 Additions and omissions fixed 45

6.6 C++ ABI for the Arm Architecture 46

6.6.1 Clarifications 46

6.6.2 Errors fixed 46

6.6.3 Additions and omissions fixed 46

6.7 Exception Handling ABI for the Arm Architecture 46

6.7.1 Clarifications 46

6.7.2 Errors fixed 47

6.7.3 Additions and omissions fixed 47

6.8 Run-time ABI for the Arm Architecture 48

6.8.1 Clarifications 48

5

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

6.8.2 Errors fixed and features withdrawn or deprecated 48

6.8.3 Additions and omissions fixed 48

6.9 ABI for the Arm Architecture - The Base Standard 49

6.9.1 Clarifications 49

6

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

2 About this document

2.1 Change Control

2.1.1 Current Status and Anticipated Changes
The following support level definitions are used by the Arm ABI specifications:

Release

Arm considers this specification to have enough implementations, which have received sufficient testing, to verify
that it is correct. The details of these criteria are dependent on the scale and complexity of the change over
previous versions: small, simple changes might only require one implementation, but more complex changes
require multiple independent implementations, which have been rigorously tested for cross-compatibility. Arm
anticipates that future changes to this specification will be limited to typographical corrections, clarifications and
compatible extensions.

Beta

Arm considers this specification to be complete, but existing implementations do not meet the requirements for
confidence in its release quality. Arm may need to make incompatible changes if issues emerge from its
implementation.

Alpha

The content of this specification is a draft, and Arm considers the likelihood of future incompatible changes to be
significant.

All content in this document is at the Release quality level.

2.1.2 Change history
If there is no entry in the change history table for a release, there are no changes to the content of the document for
that release.

Issue Date Change

v1.0 r2.0 24th March 2005 First public release.

v1.01 r2.01 4th July 2005 Added new Coding extensibility and compatibility. Noted
component errata omissions (ELF for the Arm Architecture, C
Library ABI for the Arm Architecture, and C++ ABI for the Arm
Architecture).

v1.02 7th October 2005 Added WMMX v2 architecture, TAG_CPU_unaligned_access
(Public ("aeabi") attribute tags); changed R_ARM_PC24 to
R_ARM_CALL (Linux for Arm general dynamic model); added
list of reserved name-space prefixes (Reserved Names); noted
errata and omissions (DWARF for the Arm Architecture,
Procedure Call Standard for the Arm Architecture, C Library ABI
for the Arm Architecture, Exception Handling ABI for the Arm
Architecture, and Run-time ABI for the Arm Architecture)

v1.03 r2.02 13th October 2005 Minor typographical fixes.

v1.04 r2.03 6th January 2006 Noted errata and omissions (aaelf32-clarifications,
aaelf32-additions-omissions, and cppabi32-clarifications).

7

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

Issue Date Change

v1.05 r2.04 8th May 2006 Added missing Tag_FP_arch value for VFPv3 (Target-related
attributes). Noted errata and omissions (aadwarf32-errors-fixed,
aaelf32-additions-omissions, aapcs32-clarifications,
clibabi32-errors-fixed, and cppabi32-clarifications).

v1.06 r2.05 18th January 2007 Major clarification of, and some compatible extension to,
ADDENDUM: Build Attributes.

v1.07 r2.06 23rd October 2007 Added: CPU_arch values for v6S-M and v6-M; and VFP_arch
value for VFPv3-D16; added Tag_nodefaults,
Tag_ABI_FP_16bit_format, and Tag_FP_HP_extension.
Rewrote ADDENDUM: Build Attributes. Noted errata and
omissions.

A 25th October 2007 Document renumbered (formerly GENC-005895 v1.07).

A 13th November 2007 Minor corrections to Errata and Minor Addenda

B r2.07 10th October 2008 Added architecture tags Tag_T2EE_use,
Tag_Virtualization_use, and Tag_MPextension_use; clarified
definitions of Tag_CPU_name and Tag_CPU_raw_name (The
target-related attributes); clarified tag value inheritance and
Tag_Nodefaults (Default values for public tags, Inheritance of
public tag values, No defaults tag).

C r2.08 4th November 2009 (The target-related attributes): added Tag_CPU_arch enum
value V7E-M =13; renamed Tag_VFP_arch to Tag_FP_arch,
added values for VFPv4; renamed Tag_VFP_HP_extension to
Tag_FP_HP_extension; added value to
Tag_Advanced_SIMD_arch for Neon with fused MAC; added
values to Tag_Virtualization_use describing use of the
virtualization extensions; recoded Tag_MPextension use to
catch potential user-mode faults; added Tag_DIV_use to
describe use of UDIV/SDIV in code for v7A. (The procedure
call-related attributes) clarified the role of R9 when used as a
TLS (Tag_ABI_PCS_R9_use = 2). Renamed and extended
Tag_ABI_align8_needed, Tag_ABI_align8_preserved to data
with extended 2n-byte alignment (for n in 4-12).

D r2.09 30th November 2012 Made section and symbol attributes deprecated and optional
(The kinds of compatibility modeled by build attributes, Formal
syntax of a public (“aeabi”) attributes subsection, Inheritance of
public tag values, No defaults tag). (Formal syntax of a public
(“aeabi”) attributes subsection) clarified section and symbol
numbers are ULEB128. (The target-related attributes) added
architecture v8 values to Tag_CPU_arch, Tag_FP_arch,
Tag_Advanced_SIMD_arch; clarified use of existing
Tag_Advanced_SIMD_arch and Tag_FP_HP_extension values;
clarified the meaning of Tag_DIV_use; deprecated
Tag_T2EE_use. (The procedure call-related attributes) fixed
typo in Tag_ABI_FP_exceptions; clarified use of
Tag_ABI_HardFP_use values and removed pointless DP-only
option; added enum value to Tag_ABI_VFP_args for code
compatible with both the base and VFP variants. (Secondary
compatibility tag clarified the format of
Tag_also_compatible_with data. Arm CPU names recognized
by Arm Compiler 5.01 (armcc)) updated list of recognised CPU
names.

8

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

Issue Date Change

E r2.10 24th November 2015 (The target-related attributes) added architecture v8.1 values to
Tag_Advanced_SIMD_arch.

F 2018Q4 21st December 2018 In The target-related attributes, deprecated values 1 and 2 of
Tag_THUMB_ISA_use, added value 3.
In The target-related attributes, deprecated
Tag_CPU_arch_profile for architecture version 8 onwards.
In The target-related attributes, defined build attributes for
Armv8-M, Armv8-R, Armv8.1-A, Armv8.2-A and Armv8.3-A.

G 2019Q4 30th January 2020 Added Tag_FramePointer_use: The procedure call-related
attributes, Table 1.

2020Q3 1st October 2020
• document released on Github

• new Licence: CC-BY-SA-4.0

• new sections on Contributions, Trademark notice, and
Copyright

• Table 1: added a missing table entry for
Tag_DSP_extension

2021Q1 12th April 2021 Add definitions for PACBTI-M related build attributes: The
target-related attributes, The procedure call-related attributes,
Miscellaneous attributes, Table 1

2021Q3 1st November 2021 Add Armv9-A value to Tag_CPU_arch.

2.2 References
This document refers to the following documents.

Ref Status / External URL Title

AAELF32 ELF for the Arm Architecture

AAPCS32 Procedure Call Standard for the Arm
Architecture

BSABI32 ABI for the Arm Architecture (Base
Standard).

EHABI32 Exception Handling ABI for the Arm
Architecture

RTABI32 Run-time ABI for the Arm Architecture

ARMARM ARM Architecture Reference Manual
ARMv7-A and ARMv7-R edition

Arm DDI 0406: Arm Architecture
Reference Manual Arm v7-A and Arm
v7-R edition

ARMv7-M Architecture Reference Manual Arm DDI 0403: Armv7-M Architecture
Reference Manual

ACLE IHI 0053A Arm C Language Extensions

9

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases
https://developer.arm.com/documentation/ddi0406/latest
https://developer.arm.com/documentation/ddi0406/latest
https://developer.arm.com/documentation/ddi0406/latest
https://developer.arm.com/documentation/ddi0403/latest
https://developer.arm.com/products/software-development-tools/compilers/arm-compiler-5/docs/101028/latest/1-preface

Ref Status / External URL Title

GDWARF http://dwarfstd.org/Dwarf3Std.php DWARF 3.0, the generic debug table
format.

GELF http://www.sco.com/developers/gabi/ ... Generic ELF, 17th December 2003 draft.

2.3 Terms and abbreviations
The ABI for the Arm Architecture uses the following terms and abbreviations:

AAPCS

Procedure Call Standard for the Arm Architecture

ABI

Application Binary Interface:

1. The specifications to which an executable must conform in order to execute in a specific execution
environment. For example, the Linux ABI for the Arm Architecture.

2. A particular aspect of the specifications to which independently produced relocatable files must conform in
order to be statically linkable and executable. For example, the AAELF32, RTABI32, ...

AEABI

(Embedded) ABI for the Arm architecture (this ABI...)

Arm-based

... based on the Arm architecture ...

core registers

The general purpose registers visible in the Arm architecture’s programmer’s model, typically r0-r12, SP, LR, PC,
and CPSR.

EABI

An ABI suited to the needs of embedded, and deeply embedded (sometimes called free standing), applications.

Q-o-I

Quality of Implementation – a quality, behavior, functionality, or mechanism not required by this standard, but
which might be provided by systems conforming to it. Q-o-I is often used to describe the toolchain-specific means
by which a standard requirement is met.

VFP

The Arm architecture’s Floating Point architecture and instruction set. In this ABI, this abbreviation includes all
floating point variants regardless of whether or not vector (V) mode is supported.

10

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

http://dwarfstd.org/Dwarf3Std.php
http://dwarfstd.org/Dwarf3Std.php
http://www.sco.com/developers/gabi/
http://www.sco.com/developers/gabi/
https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases

3 ADDENDUM: Build Attributes

3.1 Introduction to build attributes

3.1.1 About build attributes and compatibility
Build attributes record data that a linker needs to reason mechanically about the compatibility, or incompatibility, of a
set of relocatable files. Other tools that consume relocatable files may find the data useful.

Build attributes are designed to have long-term invariant meaning. They record choices to which there is long term
public commitment through the Arm Architecture Reference Manual [ARMARM], the ABI for the Arm Architecture (of
which this document is a component), vendor data sheets, and similar long lived publications.

Build attributes approximate the intentions the user of a compiler or assembler has for the compatibility of the
relocatable file produced by the compiler or assembler (Attribute values are based on user intentions).

The figure below depicts the software development flows in which build attributes are important.

Relocatable
file

Attributes

Relocatable
file

Attributes

Relocatable
file

Attributes

Tool chain A Tool chain B

Relocatable
file

Attributes

Relocatable
file

Attributes

Relocatable
file

Attributes

Compiler /
assembler

Compiler /
assembler

User
intentions

about
compatibility

User
intentions

about
compatibility

Compatibility
model A

Compatibility
model B

LinkerLinker

Exchange of portable
relocatable files

Software development flows supported by build attributes

In this depiction there are two principal uses of build attributes.

• Within a toolchain, build attributes generate rich opportunities for a linker to diagnose incompatibility, enforce
compatibility, and select library members intelligently according to its compatibility model.

• Between toolchains, build attributes describe the intended compatibility of a relocatable file and the entities it
defines in terms independent of either toolchain, promoting safe exchange of portable code in binary form.

3.1.1.1 Attribute values are based on user intentions

We base attribute values on user intentions to avoid the values being an unpredictable (effectively random) function of
a compiler’s code generation algorithms and to support using attributes with assembly language without
overburdening programmers. Where attributes support exchanging portable relocatable files among toolchains,
predictability is worth more than precision.

11

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

https://developer.arm.com/documentation/ddi0406/latest

Capturing a user’s compile-time intentions about compatibility is also important at link time. For example:

• A user might permit a compiler to use both the Arm ISA and the Thumb ISA.

(The user intends the code to be usable on any processor that has both the Arm ISA and the Thumb ISA).

• The compiler might choose to use only the Thumb ISA in a specific build of a source file.

Nonetheless, the relocatable file should be tagged as having been permitted to use the Arm ISA so that a linker
can later link it with Arm-state library code and generate Arm-state intra-call veneers if that gives benefit to the
executable file.

On the other hand, if the user intends code to be executed by both Arm7TDMI and Cortex-M3, the compiler must be
constrained to generate only Thumb v1 instructions and the relocatable file should be tagged as not permitted to use
the Arm ISA.

3.1.1.2 Capturing user intentions about compatibility

This standard does not specify how a tool should capture and approximate the intentions of its users.

As far as possible, ABI-defined compatibility tags (Public ("aeabi") attribute tags) model the long-term compatibility
commitments implicit in architectural specifications, product data sheets, and the ABI for the Arm Architecture.

In general, tools have invocation options – command-line options and GUI configuration options – that present choices
similar to those revealed in such documentation and modeled by ABI-defined compatibility tags.

The challenge for a tool that generates relocatable files is to select the set of build attributes – giving a value to each
compatibility tag – that best approximates the user’s intentions implicit in its invocation options.

This part of the problem of managing compatibility does not have a perfect solution. A user’s intentions are imperfectly
approximated by invocation options that are then sometimes imperfectly mapped to build attributes.

3.1.1.3 No standard compatibility model

This specification standardizes the meaning of build attributes, not the compatibility models within which they will be
interpreted.

For the majority of build attributes there is only one reasonable interpretation of compatibility among their values, and it
is an obvious one.

For a minority – mostly associated with procedure-call compatibility between functions – this is not the case and it is
reasonable for different toolchains to take different positions according to the markets they serve.

Thus it is entirely reasonable that a relocatable file produced by toolchain A and accepted by toolchain B’s linker might
be rejected by toolchain C’s linker when targeting exactly the same environment as toolchain B.

Our hope and intention for attributes is that they might prevent C’s linker from accepting the output of A and silently
generating a non functioning executable file or failing in a mysterious and difficult to explain manner.

3.1.2 The kinds of compatibility modeled by build attributes
Build attributes primarily model two kinds of compatibility.

• The compatibility of binary code with target hardware conforming to a revision of the Arm Architecture.

• The procedure-call compatibility between functions conforming to variants of this ABI.

The intuitive notion of compatibility can be given a mathematically precise definition using sets of demands placed on
an execution environment.

For example, a program could be defined to be compatible with a processor if (and only if) the set of instructions the
program might try to execute is a subset of the set of instructions implemented by the processor.

Target-related attributes (Target-related attributes) describe the hardware-related demands a relocatable file will place
on an execution environment through being included in an executable file for that environment.

12

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

For example, target-related attributes record whether use of the Thumb ISA is permitted, and at what architectural
revision use is permitted. A pair of values for these attributes describes the set of Thumb instructions that code is
permitted to execute and that the target processor must implement.

Procedure call-related attributes (Procedure call-related attributes) describe features of the ABI contract that the ABI
allows to vary, such as whether floating point parameters are passed in floating point registers, the size of wchar_t,
whether enumerated values are containerized according to their size, and so on.

We can also understand procedure call-related compatibility in terms of sets of demands placed on an execution
environment, but the modeling is more difficult. In this case the environment is less obvious, more abstract, and
elements of it can depend on an operating system or the toolchain itself.

Mathematically, A compatible with B can be understood as: {demands made by A} ⊆ {demands made by B}.

Making this concrete sometimes requires combining information from several tags. Writing {T16@v4T} to denote the
set of 16-bit Thumb instructions a processor must execute to conform to architecture version v4T, we can understand
T16@v4T compatible with T16@v5TE as {T16@v4T} ⊂ {T16@v5TE}.

3.1.3 The scope of build attributes
Unless #pragma or other mechanisms specific to a toolchain are used, it is usual for all parts of a relocatable file to be
built the same way with the same compatibility intentions. So, usually, build attributes are given file scope and apply to
all entities defined in the file to which they can apply. For example:

• File-scope attributes that model the compatibility of binary instructions with processors naturally apply to each
instruction in every code-containing section in the file.

(They obviously do not apply to sections that contain no code, nor to the data – such as literal pools – embedded
in code sections).

• Attributes that describe the procedure call-compatibility of functions naturally apply to every function symbol
defined in the code sections contained within the file.

Build attributes can be given to individual entities defined in a relocatable file.

• To an individual ELF section.

These attributes also apply to every (relevant) symbol defined in the section.

• To an individual function or data object identified by an ELF symbol definition.

For the public build attributes defined by this ABI (Public ("aeabi") attribute tags) a compiler for C/C++ can only need to
use section and symbol attributes in the presence of #pragmas, language extensions, or other mechanisms that affect
the compatibility of individual entities within a binary file.

Linkers that support relocatable file merging – termed partial linking by RealView linkers – will, in general, need to
transfer the file scope attributes of an input file to the individual sections that file contributes to the output file.

This standard places no requirements on the presence or absence of build attributes in executable files.

Note

From the 2.09 release, section and symbol attributes are deprecated and optional. Primary object producers are
discouraged from generating them and consumers are permitted to ignore them.

3.1.4 Build attributes and conformance to the ABI
In revision 2.05 and later revisions of this ABI specification, the presence of a build attributes section containing an
“aeabi” subsection containing a conformance tag (Conformance tag) denotes an explicit claim by the producer that the
relocatable file conforms to:

• The version of the ABI described by tag’s string parameter.

13

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

• The variant of that version described by the public (“aeabi”) build attributes.

A claim to conform to ABI version “0” denotes that no unconditional claim to conform is being made. Generic
compatibility tags (Generic compatibility tag) may then describe limited or conditional claims to conform.

In revisions of this specification before r2.05 any claim to conform to this ABI was implicit, and the version to which
conformance was (possibly) claimed was implicitly “2”.

3.1.5 Combining attribute values
Suppose E1 and E2 are entities (for example, relocatable files) with attribute values a1 and a2 for an attribute tag T.
This section discusses how to generate the correct value of T for the entity formed by combining E1 and E2 (for
example, the executable file formed by linking E1 with E2)

In each case, the values of a tag can be partially ordered according to the sets of demands they represent. We shall
write a1 ≤ a2 if an entity tagged with <T, a1> makes no more demands on its environment than an entity tagged with
<T, a2>.

Writing {T:a1} to denote the set of demands made by an entity tagged with <T, a1>, we can define a1 ≤ a2 if {T:a1} ⊆
{T:a2}. (A set of demands might be the set of instructions a processor must execute, for example).

Informally we say that a1 is compatible with a2 or a1 is more compatible than a2 when a1 ≤ a2.

Using Tag_CPU_arch (The target-related attributes) as an example, v4T ≤ v5TE, because the set of instructions
conforming to architecture v4T is a subset of the set conforming to architecture v5TE. Stated more precisely, for both
the Arm ISA and the 16-bit Thumb ISA, it is the case that {ISA@v4T} ⊆ {ISA@v5TE}.

This partial order often differs from the arithmetic order of the enumerated values though in many cases it

• Is identical (as with Tag_THUMB_ISA_use in The target-related attributes).

• Is reversed (as with Tag_ABI_align_preserved in The procedure call-related attributes).

• Represents mutually incompatible choices with which only the identical choice, or no use at all, is compatible (as
with Tag_ABI_PCS_wchar_t in The procedure call-related attributes).

Note that the appropriate partial order to use can evolve over time as the underlying specifications evolve.

3.1.5.1 Combining two values of the same tag

We shall write a1 <> a2 if a1 and a2 are unordered in the partial order of demands/compatibility and a1 + a2 to denote
the combination of a1 and a2. There are the following combination rules.

• If a1 ≤ a2, a1 + a2 = a2. Similarly, if a2 ≤ a1, a1 + a2 = a1. (‘+’ behaves like the maximum function).

• If a1 <> a2 there are two mutually exclusive sub-cases.

• There is a least a3 such that a1 ≤ a3 and a2 ≤ a3. Then a1 + a2 = a3.

Example: Tag_CPU_arch when a1 = v6KZ, a2 = v6T2, and a3 = v7.

• There is no such a3, so a1 + a2 denotes the attempted combination of incompatible values.

Example: Tag_ABI_PCS_wchar_t when a1 = 2 and a2 = 4.

In this second sub-case it is a matter of notational taste whether a1 + a2 is defined to have a value such as error or
Top, or defined to have no value. Either way, in practice we expect an attempted combination to fail in a way specific
to a toolchain’s compatibility model (for example by provoking a link-time diagnostic).

14

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

3.2 Representing build attributes in ELF files

3.2.1 Encoding
Encoding build attributes needs more than a few bits, so we encode them in an vendor-specific section of type
SHT_ARM_ATTRIBUTES and name .ARM.attributes (for further details see [AAELF32]).

An attribute is encoded in a <tag, value> pair.

Both tags and numerical values are encoded using unsigned LEB128 encoding (ULEB128), DWARF-3 style (for
details see [GDWARF]).

The public tags and values specified by this version of the ABI encode identically as ULEB128 numbers and single
byte numbers (all values are in the range 0-127).

String values are encoded using NUL-terminated byte strings (NTBS).

3.2.2 Structure of an ELF attributes section
An attributes section contains a sequence of subsections. Each one is either

• Defined by this ABI and public to all tools that process the file.

• Private to a tool vendor’s tools.

The type of each subsection is given by a short textual (NTBS) name.

This ABI requires a vendor to register a short vendor name to use as a prefix to the names of private helper functions
(for details see [RTABI32] or [AAELF32]). The same vendor name identifies attribute subsections private to that
vendor’s tools.

A public attributes subsection is named aeabi. Names beginning Anon and anon are reserved to unregistered private
use.

3.2.3 Formal syntax of an ELF attributes section
The syntactic structure of an attributes section is:

<format-version: ‘A’>
[<uint32: subsection-length> NTBS: vendor-name
 <bytes: vendor-data>
]*

Format-version describes the format of the following data. It is a single byte. This is version 'A' (0x41). This field exists
to allow future changes in format. We do not intend that there will be many versions.

Subsection-length is a 4-byte integer in the byte order of the ELF file. It encodes the length of the subsection, including
the length field itself, the vendor name string and its terminating NUL byte, and the following vendor data. It gives the
offset from the start of this subsection to the start of the next one.

Vendor-name is a NUL-terminated byte string (NTBS) like a C-language literal string.

No requirements are placed on the format of private vendor data. The format of a public attributes subsection (“aeabi”
pseudo-vendor data) is described in Formal syntax of a public (“aeabi”) attributes subsection.

We expect a dot-ARM-dot-attributes section in a relocatable file will most typically contain one vendor subsection from
the "aeabi" pseudo-vendor and possibly one from the generating toolchain (e.g. "ARM", "gnu", "WRS", etc).

Formally, there are no constraints on the order or number of vendor subsections. A consumer can collect the public
("aeabi") attributes in a single pass over the section, then all of its private data in a second pass.

15

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

https://github.com/ARM-software/abi-aa/releases
http://dwarfstd.org/Dwarf3Std.php
https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases

3.2.4 Formal syntax of a public (“aeabi”) attributes subsection
The syntactic structure of a public attributes subsection is:

[Tag_File (=1) <uint32: byte-size> <attribute>*
 | Tag_Section (=2) <uint32: byte-size> <section number>* 0 <attribute>*
 | Tag_Symbol (=3) <unit32: byte-size> <symbol number>* 0 <attribute>*
]+

A public subsection contains any number of sub-subsections. Each records attributes relating to:

• The whole relocatable file.

These sub-subsections contain just a list of attributes. They are identified by a leading Tag_File (=1) byte.

• A set of sections within the relocatable file.

These sub-subsections contain a list of ULEB128 section numbers followed by a list of attributes. They are
identified by a leading Tag_Section (=2) byte.

• A set of (defined) symbols in the relocatable file.

These sub-subsections contain a list of ULEB128 symbol numbers followed by a list of attributes. They are
identified by a leading Tag_Symbol (=3) byte.

In each case, byte-size is a 4-byte unsigned integer in the byte order of the ELF file. Byte-size includes the initial tag
byte, the size field itself, and the sub-subsection content. That is, it is the byte offset from the start of this
sub-subsection to the start of the next sub-subsection.

Both section indexes and defined symbol indexes are non-zero, so a NUL byte ends a string and a list of indexes
without ambiguity.

There are no constraints on the order or number of sub-subsections in a public attributes subsection (but see remarks
in Conformance tag concerning Tag_conformance and No defaults tag concerning Tag_nodefaults).

A consumer that needs the data in scope nesting order can obtain the file attributes, the section-related attributes, and
the symbol-related attributes, by making three passes over the subsection.

Note

From the 2.09 release, section and symbol attributes are deprecated and optional. Primary object producers are
discouraged from generating them and consumers are permitted to ignore them.

3.2.5 Conformance constraints
This ABI requires the following of files that claim to conform (Build attributes and conformance to the ABI) to the ABI.

• Attributes that record data about the compatibility of this file with other files must be recorded in a public "aeabi"
subsection.

• Attributes meaningful only to the producer must be recorded in a private vendor subsection. These must not
affect compatibility between relocatable files.

When a producer does not explicitly claim compatibility to the ABI, it may nonetheless publicly describe the effect on
compatibility of its private attributes by using generic compatibility tags (Generic compatibility tag). These must record
a safe approximation. The producer can record precise information that only its own toolchain comprehends in a
private vendor subsection.

• We intend that another toolchain should not mistakenly link incompatible files. The price of safety is that a
toolchain might sometimes diagnose incompatibility between files that could be safely linked, because their
compatibility has been approximated.

16

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

• We do not expect that a toolchain should be able to comprehend the private data of a different toolchain (other
than through private agreement among toolchains).

3.2.6 Coding extensibility and compatibility
As a specification like this evolves, legacy binary files and the tools that process them get out of step. This will cause
difficulties when a tool must consume a public attributes subsection containing tags it does not comprehend (that is,
when the tool follows an earlier version of the specification than the binary file).

The attributes defined in Public ("aeabi") attribute tags, below, carry a mix of information that consumers can safely
ignore and information about incompatibility that must not be ignored. In the absence of further conventions, the only
safe course for a tool to take on encountering an unknown tag would be to stop processing.

To support more graceful behavior in the face of an evolving set of public tags, we adopt these conventions.

• Tags 0-63 convey information that a consuming tool must comprehend. This includes all the tags (1-32) defined
by the first release (v1.0) of this addendum. A tool encountering an unknown tag in this range should stop
processing or take similar defensive action (Q-o-I).

• Tags 64-127 convey information a consumer can ignore safely (though maybe with degraded functionality).

• For N ≥ 128, tag N has the same properties as tag N modulo 128.

To allow an ignored tag and its parameter value to be skipped easily, we adopt this convention.

• For N > 32, even numbered tags have a ULEB128 parameter and odd numbered ones have a null-terminated
byte string (NTBS) parameter.

• A consumer must comprehend tags 1-32 individually.

3.3 Public ("aeabi") attribute tags

3.3.1 About public tags
A consumer must recognize the tags described in this section (Public ("aeabi") attribute tags) in vendor subsections
named "aeabi".

Other vendor sections may re-use these tags, define their own tags, or use a completely different encoding of their
private attribute data. In each case the meaning of the data is private to the defining vendor.

While public tags and their numerical parameters are specified as ULEB128-encoded, the values defined by this
version, and all earlier versions, of the ABI encode identically as ULEB128 numbers and single byte numbers.

3.3.2 Default values for public tags
The effect of omitting a public tag in file scope is identical to including it with a value of 0 or “”, depending on its
parameter type.

A producer must consider what value it intends to give to each public tag. In the absence of Tag_nodefaults (No
defaults tag) a consumer should conclude that the producer intended to give the value 0 to each omitted public tag.

3.3.3 Inheritance of public tag values
An attribute can be given to a symbol, a section, or a relocatable file. Normally, each section in a file inherits the
attributes defined at file level and each symbol defined in a section inherits the attributes of that section.

A tag value given explicitly in a scope overrides a value that would otherwise be inherited. If Tag_nodefaults (No
defaults tag) appears in a scope, enclosed empty scopes have undefined attribute values value rather than default
zero values.

17

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

Semi formally we define the value of a public tag T in a scope S (one of Symbol, Section, or File) as follows.

value(T, S) ≡ S.empty() & S.parent.has(Tag_nodefaults) ? undefined :
 S.has(T) ? T.value :
 value(T, S.parent)
value(T, File.parent) ≡ 0

Where S.empty() ≡ not (S.has(T) for some T ≠ Tag_nodefaults)
 S.has(T) ≡ T and its value are given explicitly in scope S
 Symbol.parent ≡ Section; Section.parent ≡ File

In any scope it is erroneous to give two different values to the same attribute, though the same value may be given
more than once.

Note

From the 2.09 release, section and symbol attributes are deprecated and optional. Primary object producers are
discouraged from generating them and consumers are permitted to ignore them.

3.3.4 How this specification describes public attributes
In the following sections we describe each attribute in a uniform style, as follows.

Tag_tag_name (=tag value), parameter type (=uleb128 or NTBS)
 value Comment
 value Comment
 ...

Block commentary about the tag and its possible values.

Tag value gives the numerical representation of the tag. It is a small integer less than 128.

Parameter type gives the type of the parameter that immediately follows the tag in the attributes section. It is either a
ULEB128-encoded integer or a NUL-terminated byte string (NTBS).

Following lines enumerate the currently defined parameter values, giving a short comment about each one.

A block of explanatory text follows in some cases.

3.3.5 Target-related attributes

3.3.5.1 About target-related attributes

Target-related attributes describe the demands a user permitted a producer to place on the target system (Capturing
user intentions about compatibility).

These attributes summarize the target features and facilities needed to execute the instructions contained in the code
sections of this relocatable file. A file may make fewer demands than its attributes describe, but not more.

3.3.5.2 The target-related attributes

Tag_CPU_raw_name, (=4), NTBS

The raw name is the name a user gave to a tool or selected from a menu. It can be:

18

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

• The name of a specific manufacturer’s part (such as ML692000).

• The name of a generic part (such as Arm946E-S) or architecture (such as v5TE).

• Any other name acceptable to the toolchain.

The value "" denotes that the raw name is identical to the CPU name (described immediately below) and records that
the user built for a generic implementation (such as Arm946E-S) rather than any manufacturer-specific part (such as
ML692000) based on it.

It is always safe to use "" as a dummy value for this tag, or to omit this tag.

Tag_CPU_name, (=5), NTBS

A CPU name is defined by Arm or the architecture licensee responsible for designing the part. It is the official product
name, with no extension and no abbreviation.

An Arm-defined architecture name may be used instead of a CPU name, and denotes that the user had more generic
intentions. Arm-defined names of CPUs and architectures recognized by Arm Compiler 5.01 are listed in Arm CPU
names recognized by Arm Compiler 5.01 (armcc).

The following tags describe the processor architecture version and architecture profile for which the user intended the
producer to produce code.

Tag_CPU_arch, (=6), uleb128
 0 Pre-v4
 1 Arm v4 // e.g. SA110
 2 Arm v4T // e.g. Arm7TDMI
 3 Arm v5T // e.g. Arm9TDMI
 4 Arm v5TE // e.g. Arm946E-S
 5 Arm v5TEJ // e.g. Arm926EJ-S
 6 Arm v6 // e.g. Arm1136J-S
 7 Arm v6KZ // e.g. Arm1176JZ-S
 8 Arm v6T2 // e.g. Arm1156T2F-S
 9 Arm v6K // e.g. Arm1136J-S
 10 Arm v7 // e.g. Cortex-A8, Cortex-M3
 11 Arm v6-M // e.g. Cortex-M1
 12 Arm v6S-M // v6-M with the System extensions
 13 Arm v7E-M // v7-M with DSP extensions
 14 Arm v8-A
 15 Arm v8-R
 16 Arm v8-M.baseline
 17 Arm v8-M.mainline
 18 Arm v8.1-A
 19 Arm v8.2-A
 20 Arm v8.3-A
 21 Arm v8.1-M.mainline
 22 Arm v9-A

Tag_CPU_arch_profile (=7), uleb128
 0 Architecture profile is not applicable (e.g. pre v7, or cross-profile code),
 or is indicated by Tag_CPU_arch
 'A' (0x41) The application profile (e.g. for Cortex-A8)
 'R' (0x52) The real-time profile (e.g. for Cortex-R4)
 'M' (0x4D) The microcontroller profile (e.g. for Cortex-M3)
 ’S’ (0x53) Application or real-time profile (i.e. the ‘classic’ programmer’s model)

Tag_CPU_arch_profile states that the attributed entity requires the noted architecture profile.

The value 0 states that there is no requirement for any specific architecture profile. The value ‘S’ denotes that the
attributed entity requires the classic programmer’s model rather than the microcontroller programmer’s model.

19

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

Starting with architecture versions v8-A, v8-R and v8-M, the profile is represented by Tag_CPU_arch. For these
architecture versions and any later versions, a value of 0 should be used for Tag_CPU_arch_profile.

The following tags track the permitted use of instruction sets. The architecture revision (Tag_CPU_arch) implies the
permitted subset of instructions from the permitted ISA.

Tag_ARM_ISA_use, (=8), uleb128
 0 The user did not permit this entity to use Arm instructions
 1 The user intended that this entity could use Arm instructions

Tag_THUMB_ISA_use, (=9), uleb128
 0 The user did not permit this entity to use Thumb instructions
 1 (deprecated) The user permitted this entity to use 16-bit Thumb instructions (including BL)
 2 (deprecated) 32-bit Thumb instructions were permitted (implies 16-bit instructions permitted)
 3 The user permitted this entity to use Thumb code. The set of permitted instructions can be
 determined by the setting of Tag_CPU_arch and Tag_CPU_arch_profile

 Note: The historical use of values 1 and 2 date to a time when there was
 a clear separation between implementations using 16-bit only Thumb
 instructions and those using the extended set of instructions. The
 introduction of Armv8-M.baseline has blurred this distinction to the
 point where it is no-longer useful. Arm recommends that in future all
 toolchains emit a value of 3 when use of Thumb was intended by the user
 and 0 (or omitting the tag entirely) when use of Thumb was not intended.

Tag_FP_arch, (=10), uleb128 (formerly Tag_VFP_arch = 10)
 0 The user did not permit this entity to use instructions requiring FP hardware
 1 The user permitted use of instructions from v1 of the floating point (FP) ISA
 2 Use of the v2 FP ISA was permitted (implies use of the v1 FP ISA)
 3 Use of the v3 FP ISA was permitted (implies use of the v2 FP ISA)
 4 Use of the v3 FP ISA was permitted, but only citing registers D0-D15, S0-S31
 5 Use of the v4 FP ISA was permitted (implies use of the non-vector v3 FP ISA)
 6 Use of the v4 FP ISA was permitted, but only citing registers D0-D15, S0-S31
 7 Use of the Arm v8-A FP ISA was permitted
 8 Use of the Arm v8-A FP ISA was permitted, but only citing registers D0-D15, S0-S31

Tag_WMMX_arch, (=11), uleb128
 0 The user did not permit this entity to use WMMX
 1 The user permitted this entity to use WMMX v1
 2 The user permitted this entity to use WMMX v2

Tag_Advanced_SIMD_arch, (=12), uleb128
 0 The user did not permit this entity to use the Advanced SIMD Architecture (Neon)
 1 Use of the Advanced SIMDv1 Architecture (Neon) was permitted
 2 Use of Advanced SIMDv2 Architecture (Neon) (with half-precision floating-point and
 fused MAC operations) was permitted
 3 Use of the Arm v8-A Advanced SIMD Architecture (Neon) was permitted
 4 Use of the Arm v8.1-A Advanced SIMD Architecture (Neon) was permitted

Tag_MVE_arch, (=48), uleb128
 0 The user did not permit this entity to use the M-profile Vector Extension
 1 Use of the Integer M-profile Vector Extension was permitted
 2 Use of the Integer and Floating Point M-profile Vector Extension was
 permitted

Tag_FP_HP_extension (=36), uleb128 (formerly Tag_VFP_HP_extension = 36)
 0 The user intended half-precision floating point instructions may be used if they
 exist in the available FP and ASIMD instruction sets as indicated by Tag_FP_arch
 and Tag_ASIMD_arch
 1 Use of the half-precision instructions first added as an optional extension to
 VFPv3/Advanced SIMDv1 was permitted, in addition to those indicated by Tag_FP_arch
 and Tag_ASIMD_arch
 2 Use of the half-precision instructions first added as an optional extension to
 Armv8.2-A Floating-Point and Advanced SIMD was permitted, in addition to those
 indicated by Tag_FP_arch and Tag_ASIMD_arch

The following tag describes the unaligned data accesses the user permitted the producer to make.

20

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

Tag_CPU_unaligned_access, (=34), uleb128
 0 The user did not intend this entity to make unaligned data accesses
 1 The user intended that this entity might make v6-style unaligned data accesses

The following tags describe intended use of optional architectural extensions.

Tag_T2EE_use, (=66), uleb128
 0 No use of T2EE extension was permitted, or no information is available
 1 Use of the T2EE extension was permitted

In effect, Tag_T2EE_use describes the intended use of ENTERX and LEAVEX instructions. Tag_T2EE_use is
deprecated from r2.09.

Tag_Virtualization_use, (=68), uleb128
 0 No use of any virtualization extension was permitted, or no information available
 1 Use of the TrustZone extension was permitted
 2 Use of the virtualization extensions (HVC, ERET) were permitted
 3 Use of TrustZone and virtualization extensions were permitted

In effect, Tag_Virtualization_use describes the intended use of the SMC instruction in bit 0 of the tag value and
the intended use of HVC and ERET instructions in bit 1.

Tag_MPextension_use, (=42), uleb128
 0 No use of Arm v7 MP extension was permitted, or no information available.
 1 Use of the Arm v7 MP extension was permitted.

In effect, Tag_MPextension_use describes the intended use of the PLDW (preload write hint) instruction.

Tag_DIV_use, (=44), uleb128
 0 The user intended divide instructions may be used if they exist, or no explicit
 information recorded. This code was permitted to use SDIV and UDIV if the
 instructions are guaranteed present in the architecture,
 as indicated by Tag_CPU_arch and Tag_CPU_arch_profile.
 1 This code was explicitly not permitted to use SDIV or UDIV.
 2 This code was permitted to use SDIV and UDIV in the Arm and Thumb ISAs; the
 instructions are present as an optional architectural extension above the base
 architecture implied by Tag_CPU_arch and Tag_CPU_arch_profile.

Note

Value 1 records an explicit intention to not use divide instructions in this code, on targets where they would
otherwise be permitted. This intention could be conveyed to the object producer by citing a "no divide"
command-line option, or by other means. How a linker interprets this intention is QoI.

Note

Producers must emit value 2 if and only if the permission to use SDIV and UDIV cannot be conveyed using values 0
and 1.

Tag_DSP_extension, (=46), uleb128
 0 The user intended DSP instructions may be used if they exist. This
 entity is permitted to use DSP instructions if they are guaranteed

21

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

 present in the architecuture as indicated by Tag_CPU_arch.
 1 This code was permitted to use Thumb DSP functions as an optional
 architecture extension above the base architecture as indicated by
 Tag_CPU_arch.

Tag_PAC_extension (=50), uleb128
 0 The user did not permit this entity to use PAC/AUT instructions
 1 The user permitted this entity to use PAC/AUT instructions in the NOP
 space
 2 The user permitted this entity to use PAC/AUT instructions in the NOP
 and in the non-NOP space

Tag_BTI_extension (=52), uleb128
 0 The user did not permit this entity to use BTI instructions
 1 The user permitted this entity to use BTI instructions in the NOP space
 2 The user permitted this entity to use BTI instructions in the NOP and
 in the non-NOP space

3.3.6 Procedure call-related attributes

3.3.6.1 About procedure call-related attributes

Procedure call-related attributes describe compatibility with the ABI. They summarize the features and facilities that
must be agreed in an interface contract between functions defined in this relocatable file and elsewhere. We call the
functions subject to such interface contracts public functions.

Aside

In C/C++ terminology, all public functions have extern linkage but not all extern functions are public. In ELF
terminology, all public symbols are global, but not all global symbols are public.

For a public function defined in this relocatable file, attributes describe what the user intended the producer to
guarantee about the function.

For a public function used by code in this relocatable file, attributes describe what the user intended the producer to
assume about the function.

3.3.6.2 The procedure call-related attributes

Tag_PCS_config, (=13), uleb128
 0 No standard configuration used, or no information recorded
 1 Bare platform configuration
 2 Linux application configuration
 3 Linux DSO configuration
 4 Palm OS 2004 configuration
 5 Reserved to future Palm OS configuration
 6 Symbian OS 2004 configuration
 7 Reserved to future Symbian OS configuration

22

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

Tag_PCS_config summarizes the user intention behind the procedure-call standard configuration used. Its value
must be consistent with the values given to the tags below, and must not be used as a macro in place of them.

The following four tags summarize how the user intended the attributed entity to address static data.

Tag_ABI_PCS_R9_use, (=14), uleb128
 0 R9 used as V6 (just another callee-saved register, implied by omitting the tag)
 1 R9 used as SB, a global Static Base register
 2 R9 used as a Thread Local Storage (TLS) pointer
 3 R9 not used at all by code associated with the attributed entity

R9 has a role in some variants of the PCS. Tag_ABI_PCS_R9_use describes the user’s chosen PCS variant.

When R9 is used as a Thread Local Storage (TLS) pointer (Tag_ABI_PCS_R9_use = 2), R9 plays the role that would
otherwise be played by one of the three Software Thread ID Registers TPIDRURW, TPIDRURO, TPIDRPRW defined in
section B3.12.46, CP15 c13 Software Thread ID registers, of the Arm Architecture Reference Manual Arm v7-A and
Arm v7-R edition [Arm DDI 0406].

The role played by that TPID* register is defined by the software platform’s ABI.

Tag_ABI_PCS_RW_data, (=15), uleb128
 0 RW static data was permitted to be addressed absolutely
 1 RW static data was only permitted to be addressed PC-relative
 2 RW static data was only permitted to be addressed SB-relative
 3 The user did not permit this entity to use RW static data

Tag_ABI_PCS_RO_data, (=16), uleb128
 0 RO static data was permitted to be addressed absolutely
 1 RO static data was only permitted to be addressed PC-relative
 2 The user did not permit this entity to use RO static data

Tag_ABI_PCS_GOT_use, (=17), uleb128
 0 The user did not permit this entity to import static data
 1 The user permitted this entity to address imported data directly
 2 The user permitted this entity to address imported data indirectly (e.g. via a GOT)

Compatibility among shared objects and their clients is affected by whether imported data are addressed directly or
indirectly. Linux imported data must be addressed indirectly (via the Global Object Table, or GOT). Symbian OS
(2004) imported data must be addressed directly.

The following two tags describe the permitted sizes of a wide character and an enumerated data item.

Tag_ABI_PCS_wchar_t, (=18), uleb128
 0 The user prohibited the use of wchar_t when building this entity
 2 The user intended the size of wchar_t to be 2
 4 The user intended the size of wchar_t to be 4

Tag_ABI_enum_size, (=26), uleb128
 0 The user prohibited the use of enums when building this entity
 1 Enum values occupy the smallest container big enough to hold all their values
 2 The user intended Enum containers to be 32-bit
 3 The user intended that every enumeration visible across an ABI-complying interface
 contains a value needing 32 bits to encode it; other enums can be containerized

The following pair of tags summarizes the alignment contract across an interface.

Tag_ABI_align_needed, (=24), uleb128
 0 The user did not permit code to depend the alignment of 8-byte data or data with
 extended (> 8-byte) alignment
 1 Code was permitted to depend on the 8-byte alignment of 8-byte data items
 2 Code was permitted to depend on the 4-byte alignment of 8-byte data items

23

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

 3 Reserved
 n (in 4..12) Code was permitted to depend on the 8-byte alignment of 8-byte data items
 and the alignment of data items having up to 2n-byte extended alignment

Tag_ABI_align_preserved, (=25), uleb128
 0 The user did not require code to preserve 8-byte alignment of 8-byte data objects
 1 Code was required to preserve 8-byte alignment of 8-byte data objects
 2 Code was required to preserve 8-byte alignment of 8-byte data objects and to
 ensure (SP MOD 8) = 0 at all instruction boundaries (not just at function calls)
 3 Reserved
 n (in 4..12) Code was required to preserve the alignments of case 2 and the alignment
 of data items having up to 2n-byte extended alignment.

The following five tags summarize the requirements code associated with this attributed entity was permitted to place
on floating-point arithmetic.

Tag_ABI_FP_rounding, (=19), uleb128
 0 The user intended this code to use the IEEE 754 round to nearest rounding mode
 1 The user permitted this code to choose the IEEE 754 rounding mode at run time

Tag_ABI_FP_denormal, (=20), uleb128
 0 The user built this code knowing that denormal numbers might be flushed to (+) zero
 1 The user permitted this code to depend on IEEE 754 denormal numbers
 2 The user permitted this code to depend on the sign of a flushed-to-zero number being
 preserved in the sign of 0

Tag_ABI_FP_exceptions, (=21), uleb128
 0 The user intended that this code should not check for inexact results
 1 The user permitted this code to check the IEEE 754 inexact exception

Tag_ABI_FP_user_exceptions, (=22), uleb128
 0 The user intended that this code should not enable or use IEEE user exceptions
 1 The user permitted this code to enables and use IEEE 754 user exceptions

Tag_ABI_FP_number_model, (=23), uleb128
 0 The user intended that this code should not use floating point numbers
 1 The user permitted this code to use IEEE 754 format normal numbers only
 2 The user permitted numbers, infinities, and one quiet NaN (see [RTABI32_])
 3 The user permitted this code to use all the IEEE 754-defined FP encodings

FP model hierarchies are difficult to specify. In practice, there is a large lattice of potentially useful models, depending
on whether FP arithmetic is done by software or by hardware, and on the properties of that hardware. The tags above
allow requirements to be specified using independent features. For example, code following the Java numerical model
should record Tag_ABI_FP_denormal = 1 and Tag_ABI_FP_number_model = 2, while graphics code
concerned with speed above all other considerations might record Tag_ABI_FP_number_model = 1 and
Tag_ABI_FP_optimization_goals = 2 (see below).

The following tag summarizes use of 16-bit floating point numbers by the attributed entities.

Tag_ABI_FP_16bit_format (=38), uleb128
 0 The user intended that this entity should not use 16-bit floating point numbers
 1 Use of IEEE 754 (draft, November 2006) format 16-bit FP numbers was permitted
 2 Use of VFPv3/Advanced SIMD “alternative format” 16-bit FP numbers was permitted

Options 1 and 2 are mutually incompatible.

The next three tags record permitted use of the VFP extension and WMMX co-processor. Note that:

• Under the base variant of the procedure call standard [AAPCS32], FP parameters and results are passed the
soft FP way, in core registers or on the stack. WMMX parameters and results are passed the same way.

• The VFP variant of [AAPCS32] uses VFP registers D0-D7 (s0-s15) to pass parameters and results.

24

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases

• The Intel WMMX convention is to use wR0-wR9 to pass parameters and results.

Tag_ABI_HardFP_use, (=27), uleb128
 0 The user intended that FP use should be implied by Tag_FP_arch
 1 The user intended this code to execute on the single-precision variant
 derived from Tag_FP_arch
 2 Reserved
 3 The user intended that FP use should be implied by Tag_FP_arch
 (Note: This is a deprecated duplicate of the default encoded by 0)

Tag_ABI_VFP_args, (=28), uleb128
 0 The user intended FP parameter/result passing to conform to AAPCS, base variant
 1 The user intended FP parameter/result passing to conform to AAPCS, VFP variant
 2 The user intended FP parameter/result passing to conform to toolchain-specific
 conventions
 3 Code is compatible with both the base and VFP variants; the user did not permit
 non-variadic functions to pass FP parameters/results

Tag_ABI_WMMX_args, (=29), uleb128
 0 The user intended WMMX parameter/result passing conform to the AAPCS, base variant
 1 The user intended WMMX parameter/result passing conform to Intel’s WMMX conventions
 2 The user intended WMMX parameter/result passing conforms to toolchain-specific
 conventions

The following tag summarizes the level of conformance to the rules for creating and maintaining a chain of frame
records on the stack.

Tag_FramePointer_use, (=72), uleb128
 0 This code makes no claims to conformance with the rules for use of a frame pointer
 1 This code creates a frame record for all functions that may modify the value stored
 in the link register (LR)
 2 This code does not create frame records, but preserves the value stored in the
 frame pointer register (FP)

It is recommended that code that uses a private convention for maintaining a frame chain should leave this tag unset
(=0) and then use a vendor-specific attribute to record this property.

Generally this tag can be ignored for the purposes of diagnosing object file compatibility, unless a program explictly
needs to depend on being able to walk the frame chain.

The following tag describes a producer use of branch target identification instructions.

Tag_BTI_use (=74), uleb128
 0 This code is compiled without branch target enforcement
 1 This code is compiled with branch target enforcement

3.3.7 Miscellaneous attributes
The following tag describes a producer use of pointer authentication instructions.

Tag_PACRET_use (=76), uleb128
 0 This code is compiled without return address signing and authentication
 1 This code is compiled with return address signing and authentication

3.3.7.1 Optimization attributes

The final pair of ABI-related tags record optimization goals. These are not required for reasoning about incompatibility,
but assist with selecting appropriate variants of library members.

25

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

Tag_ABI_optimization_goals, (=30), uleb128
 0 No particular optimization goals, or no information recorded
 1 Optimized for speed, but small size and good debug illusion preserved
 2 Optimized aggressively for speed, small size and debug illusion sacrificed
 3 Optimized for small size, but speed and debugging illusion preserved
 4 Optimized aggressively for small size, speed and debug illusion sacrificed
 5 Optimized for good debugging, but speed and small size preserved
 6 Optimized for best debugging illusion, speed and small size sacrificed

With Tag_ABI_optimization_goals we capture one of three potentially conflicting intentions – high performance,
small size, and easy debugging – at one of two levels.

At the first level the goal is unambiguous, but pursuit of it is constrained. The conflicting goals still matter, but less than
the primary goal.

At the second level, the conflicting goals are insignificant in comparison to the primary goal. It is difficult to capture
optimization intentions precisely, but to a significant degree what matters to a toolchain is the user’s goal (speed, small
size, or debug-ability), and whether or not the user is willing to sacrifice all other considerations to achieving that goal.

Tag_ABI_FP_optimization_goals, (=31), uleb128
 0 No particular FP optimization goals, or no information recorded
 1 Optimized for speed, but small size and good accuracy preserved
 2 Optimized aggressively for speed, small size and accuracy sacrificed
 3 Optimized for small size, but speed and accuracy preserved
 4 Optimized aggressively for small size, speed and accuracy sacrificed
 5 Optimized for accuracy, but speed and small size preserved
 6 Optimized for best accuracy, speed and small size sacrificed

With Tag_ABI_FP_optimization_goals we also capture one of three potentially conflicting goals at one of the
same two levels as Tag_ABI_optimization_goals captures.

Some accuracy sacrificed is intended to allow, for example, re-association of expressions in generated code. In library
code it is intended to permit the assumption that value ranges will be reasonable. In particular, binary to decimal and
decimal to binary conversion may meet only the minimum standards specified by IEEE 754, and range reduction for
trigonometric functions should be assumed to be naive.

3.3.7.2 Generic compatibility tag

The generic compatibility tag describes the limited compatibility this file might offer when no strong claim to conform to
the ABI (Build attributes and conformance to the ABI) has been made using Tag_conformance (Conformance tag).

Tag_compatibility (=32), uleb128: flag, NTBS: vendor-name

An omitted tag implies flag = 0, vendor-name = “”. An explicit flag value is not 0 and can be considered to be the first
byte(s) of the vendor name for the purpose of skipping the entry. The default value of 0 describes the implicit claim
made by files generated prior to v1.06 of this specification.

The defined flag values and their meanings are as follows.

0 The tagged entity has no toolchain-specific requirements
 (and no vendor tag hides an ABI incompatibility)
1 This entity can conform to the ABI if processed by the named toolchain.
 The ABI variant to which it conforms is described solely by public “aeabi” tags
>1 The tagged entity does not conform to the ABI but it can be processed by other
 tools under a private arrangement described by flag and vendor-name

A flag value >1 identifies an arrangement, beyond the scope of the ABI, defined by the named vendor. A toolchain that
recognizes the arrangement might successfully process this file. Note that a producer must use the name of the
vendor defining the arrangement, not the name of the producing toolchain.

26

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

(Versions of this specification through v1.05 stated:

>1 The tagged entity is compatible only with identically tagged entities,
 and entities not tagged by this toolchain

The underlined part of that definition was a mistake that makes the definition useless. With the underlined part
removed, the old definition is effectively compatible with, but more restrictive than, the new one).

3.3.7.3 Secondary compatibility tag

Tag_CPU_arch conceals a difficulty in relation to the 16-bit Thumb ISA: there is no way to tag an entity as compatible
with both Arm7TDMI (architecture v4T) and Cortex-M1 (architecture v6-M variant).The set of instructions compatible
with both targets excludes the 16-bit Thumb SVC (formerly SWI) instruction. In effect we need a pseudo architecture
v4T-no-SVC to describe such code, but no such architecture exists so it cannot simply be added to the
Tag_CPU_arch enumeration.

We have chosen to deal with this problem describing such code as v4T also compatible with v6-M (or as v6-M also
compatible with v4T) using the following safely ignorable (Coding extensibility and compatibility) tag.

Tag_also_compatible_with (=65), NTBS: data

The data string must be further interpreted as a ULEB128-encoded tag followed by a value of that tag. If that value is
numerical (i.e. ULEB128), there is an additional NUL byte following it. Thus, the data string value of the
Tag_also_compatible_with tag must be in one of the following two formats:

• ULEB128: tag, ULEB128: value, 0.

• ULEB128: tag, NTBS: data.

The following byte sequence records the intention to also be compatible with architecture version v6-M.

Tag_also_compatible_with (=65) Tag_CPU_arch (=6) v6-M (=11) 0

At this release of the ABI (2023Q3) there are only two defined uses of Tag_also_compatible_with:

• To express v4T also compatible with v6-M and v6-M also compatible with v4T.

• To express v8-A also compatible with v8-R and v8-R also compatible with v8-A.

All other uses are RESERVED to the ABI. Future releases of the ABI may relax this constraint.

3.3.7.4 Conformance tag

The conformance tag describes the version of the ABI to which conformity is claimed by an entity.

Tag_conformance (=67), string: ABI-version

This version of the ABI is “2023Q3”. The minor version (dot-xy) is for information and does not affect the claim. Version
“0” denotes no claim to conform and is the default if the tag is omitted.

To simplify recognition by consumers in the common case of claiming conformity for the whole file, this tag should be
emitted first in a file-scope sub-subsection of the first public subsection of the attributes section.

In this case, the dot-ARM-dot-attributes section would begin “A~~~~aeabi01~~~~C2023Q3”, where ‘~’ denotes an
unknown byte value.

27

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

3.3.7.5 No defaults tag

The occurrence of a no defaults tag in an attributes sub-subsection indicates that the tag values inherited (Default
values for public tags, Inheritance of public tag values) by entities in enclosed scopes with no explicitly given tags are
UNDEFINED rather than 0.

Tag_nodefaults (=64), uleb128: ignored (write as 0)

A consuming tool may take IMPLEMENTATION DEFINED action if any tag has an UNDEFINED value after a
dot-ARM-dot-attributes section has been fully processed.

Consumers that do not recognize this tag will default UNDEFINED values to 0.

To make processing easy for consumers, this tag should be emitted before any other tag in an attributes
sub-subsection other than the conformance tag (Conformance tag).

We expect the no defaults tag to be used only by linkers that merge attributed and un-attributed (legacy) relocatable
files.

Note

From the 2.09 release, section and symbol attributes are deprecated and optional. Primary object producers are
discouraged from generating them and consumers are permitted to ignore them. Hence from the 2.09 release use
of this tag is deprecated.

28

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

3.4 Arm CPU names recognized by Arm Compiler 5.01 (armcc)
Arm Compiler 5.01 armcc recognizes the following Arm processor product names:

ARM7EJ-S ARM9TDMI ARM1020E Cortex-M0 Cortex-R7

ARM7TM ARM920T ARM1022E Cortex-M0plus Cortex-A5

ARM7TDM ARM922T ARM1026EJ-S Cortex-M1 Cortex-A7

ARM7TDMI ARM940T ARM1136J-S Cortex-M3 Cortex-A8

ARM710T ARM9E-S ARM1136JF-S Cortex-M4 Cortex-A9

ARM720T ARM9EJ-S ARM1156T2-S SC000 Cortex-A15

ARM740T ARM926EJ-S ARM1156T2F-S SC300

ARM7TM-S ARM946E-S ARM1176JZ-S Cortex-R4

ARM7TDMI-S ARM966E-S ARM1176JZF-S Cortex-R4F

ARM810 ARM968E-S MPCore Cortex-R5

(Many of these names are trademarks of Arm Limited. For details see http://www.arm.com/legal.html).

The following pseudo processor names are recognized as architecture version names:

4 5T 6 7

4T 5TE 6K 7-A

5TEJ 6T2 7-R

6Z 7-M

6-M 7E-M

6S-M

(Other Arm product version names and non-Arm product names are also recognized).

3.5 Attributes summary and history
Table 1 lists the public attribute tag names and for each tag its numerical value, its parameter type, the ABI revision in
which it was introduced, and the revisions in which its parameter values or meaning were amended.

A program claiming conformance to revision r2.x of this ABI must comprehend tags with values less than 64 (Coding
extensibility and compatibility) defined in revisions r2.x and earlier, and all parameter values defined for those tags by
those revisions.

Table 2 summarizes amendments to the specification of build attributes ABI revision by ABI revision.

Table 1, Summary and history of individual attributes

Tag Value
Parameter
type

ABI
revision Amendments

Tag_File 1 uint32 r2.0

Tag_Section 2 uint32 r2.0 r2.09: Use deprecated.

Tag_Symbol 3 uint32 r2.0 r2.09: Use deprecated.

Tag_CPU_raw_name 4 NTBS r2.0

29

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

http://www.arm.com/legal.html

Tag Value
Parameter
type

ABI
revision Amendments

Tag_CPU_name 5 NTBS r2.0

Tag_CPU_arch 6 uleb128 r2.0 r2.06: Added enum values for v6-M,
v6S-M;

r2.08: Added enum value for v7E-M.

r2.09: Added enum value for v8.

Tag_CPU_arch_profile 7 uleb128 r2.0 r2.05: Added ‘S’ denoting ‘A’ or ‘R’ (don’t
care)

Tag_ARM_ISA_use 8 uleb128 r2.0

Tag_THUMB_ISA_use 9 uleb128 r2.0

Tag_FP_arch
(formerly Tag_VFP_arch)

10 uleb128 r2.0 r2.04: Added enum value for VFPv3

r2.06: Added enum value for VFPv3
restricted to D0-D15

r2.08: Renamed; added enum value for
VFPv4 (adds fused MAC + 16-bit FP data
in memory).

r2.09: Added enum value for v8-A FP

Tag_WMMX_arch 11 uleb128 r2.0 r2.02: Added enum value for wireless
MMX v2.

Tag_Advanced_SIMD_arch 12 uleb128 r2.0 r2.08: Added enum value for Neon with
fused MAC

r2.09: Clarified existing usages and added
enum value for v8-A ASIMD

Tag_PCS_config 13 uleb128 r2.0

Tag_ABI_PCS_R9_use 14 uleb128 r2.0 r2.08: Clarified that value = 2 denotes
using R9 to emulate one of the
architecturally defined thread ID registers
in CP15 c13.

Tag_ABI_PCS_RW_data 15 uleb128 r2.0

Tag_ABI_PCS_RO_data 16 uleb128 r2.0

Tag_ABI_PCS_GOT_use 17 uleb128 r2.0

Tag_ABI_PCS_wchar_t 18 uleb128 r2.0

Tag_ABI_FP_rounding 19 uleb128 r2.0

Tag_ABI_FP_denormal 20 uleb128 r2.0

Tag_ABI_FP_exceptions 21 uleb128 r2.0 r2.09: fixed typo (missing ‘permitted’)

Tag_ABI_FP_user_exceptions 22 uleb128 r2.0

30

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

Tag Value
Parameter
type

ABI
revision Amendments

Tag_ABI_FP_number_model 23 uleb128 r2.0

Tag_ABI_align_needed
(formerly ..._align8_needed)

24 uleb128 r2.0 r2.08: Generalized to extended alignment
of 2n bytes for n in 4..12

Tag_ABI_align8_preserved
(formerly ..align8_preserved)

25 uleb128 r2.0 r2.08: Generalized to extended alignment
of 2n bytes for n in 4..12

Tag_ABI_enum_size 26 uleb128 r2.0

Tag_ABI_HardFP_use 27 uleb128 r2.0 r2.09: Clarified use of existing values and
removed DP-only option

Tag_ABI_VFP_args 28 uleb128 r2.0 r2.09: Added enum value for code
compatible with both the base and VFP
variants

Tag_ABI_WMMX_args 29 uleb128 r2.0

Tag_ABI_optimization_goals 30 uleb128 r2.0

Tag_ABI_FP_optimization_goals 31 uleb128 r2.0

Tag_compatibility 32 NTBS r2.0 r2.05: Revised the ineffective definition.
The new one is compatible with the old
one if a nonsensical clause in the old one
is ignored.

Tag_CPU_unaligned_access 34 uleb128 r2.02

Tag_FP_HP_extension
(was Tag_VFP_HP_extension)

36 uleb128 r2.06 r2.08: Renamed (VFP → FP)

r2.09: Clarified use of existing values.

Tag_ABI_FP_16bit_format 38 uleb128 r2.06

Tag_MPextension_use 42 uleb128 r2.08

Tag_DIV_use 44 uleb128 r2.08 r2.09: Changed wording to clarify meaning.

Tag_DSP_extension 46 uleb128 2018q4

Tag_MVE_arch 48 uleb128 2019q4

Tag_PAC_extension 50 uleb128 2021q1

Tag_BTI_extension 52 uleb128 2021q1

Tag_nodefaults 64 uleb128 r2.06 r2.07: Re-specified tag value inheritance
more precisely (Inheritance of public tag
values and No defaults tag). In the
absence of Tag_nodefaults the
specification reduces to that used before
its introduction. We believe that only Arm
tools are affected.

r2.09: Use deprecated as Tag_Section and
Tag_Symbol are deprecated.

31

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

Tag Value
Parameter
type

ABI
revision Amendments

Tag_also_compatible_with 65 NTBS r2.05 r2.06: Restricted usage as noted in
Secondary compatibility tag.

r2.09: Clarified data format.

Tag_conformance 67 NTBS r2.05

Tag_T2EE_use 66 uleb128 r2.07 r2.09: Deprecated as not useful

Tag_Virtualization_use 68 uleb128 r2.07 r2.08: Added two enumeration values to
support the 2009 virtualization extensions.

Tag_MPextension_use 70 uleb128 r2.07 r2.08: Recoded to 42 (must be recognized
by toolchains). PLDW is a user-mode
instruction, undefined in architecture v7
w/o MP extensions.

Tag_FramePointer_use 72 uleb128 2019q2

Tag_BTI_use 74 uleb128 2021q1

Tag_PACRET_use 76 uleb128 2021q1

Table 2, History of attributes in ABI revisions and ABI-Addenda document versions

ABI Revision Doc vsn Date Amendments

r2.0 v1.0 March 2005 Initial release of the build attributes specification.

r2.01 v1.01 5th July 2005 Added extensibility and compatibility rules (now Coding
extensibility and compatibility).

r2.02 v1.03 13th October 2005 Added wMMX v2 to Tag_WMMX_arch enumeration.
Added Tag_CPU_unaligned_access.

r2.03 v1.04 6th January 2006 No changes to the specification of build attributes.

r2.04 v1.05 8th May 2006 Added VFPv3 to Tag_FP_arch enumeration.

r2.05 v1.06 25th January 2007 Added introductory Introduction to build attributes.
Clarified that all current uleb128 values are also plain byte
values.
Clarified inheritance of default values through nested
scopes.
Clarified the definitionof conformance.
Added ‘S’ to the Tag_CPU_arch_profile enumeration.
Corrected the previously useless definition of
Tag_compatibility.
Added Tag_also_compatible_with and
Tag_conformance.
Added Procedure call-related attributes about combining
attribute values.
Many minor editorial improvements.

32

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

ABI Revision Doc vsn Date Amendments

r2.06 A October 2007 Major re-write of material with emphasis on clear
presentation.
Added v6-M and v6S-M to Tag_CPU_arch enumeration.
Added VFPv3 restricted to D0-D15 to Tag_FP_arch
enumeration.
Added Tag_FP_HP_extension,
Tag_ABI_FP_16bit_format, and
Tag_nodefaults. Restricted the use of
Tag_also_compatible_with in the face of persistent
difficulties with its formal definition.

r2.07 B October 2008 Added Tag_T2EE_use, Tag_Virtualization_use and
Tag_MPextension_use. Clarified tag value inheritance
and the use of Tag_Nodefaults; clarified the meaning of
Tag_CPU_name and Tag_CPU_raw_name.

r2.08 C October 2009 Added Tag_CPU_arch enum value V7E-M =13; renamed
Tag_VFP_arch to Tag_FP_arch, added values for VFPv4;
renamed Tag_VFP_HP_extension to
Tag_FP_HP_extension; added value to
Tag_Advanced_SIMD_arch for Neon with fused MAC;
added values to Tag_Virtualization_use describing
use of the virtualization extensions; recoded
Tag_MPextension use to catch potential user-mode faults;
added Tag_DIV_use to describe use of UDIV/SDIV in code
for v7A. Clarified the role of R9 when used as a TLS
(Tag_ABI_PCS_R9_use = 2). Renamed
Tag_ABI_align8_needed, Tag_ABI_align8_preserved
and extended them to extended 2n-byte alignment (for n in
4-12).

r2.09 D November 2012 Changed Tag_DIV_use wording to clarify meaning.
Clarified Tag_also_compatible_with data format.
Deprecated Tag_Section, Tag_Symbol and
Tag_nodefaults. Added architecture v8 values to
Tag_CPU_arch, Tag_FP_arch,
Tag_Advanced_SIMD_arch. Clarified use of existing
Tag_Advanced_SIMD_arch and Tag_FP_HP_extension
values. Deprecated Tag_T2EE_use. Clarified use of
Tag_ABI_HardFP_use values and removed DP-only
option. Fixed typo (missing ‘permitted’) in
Tag_ABI_FP_exceptions. Added enum value to
Tag_ABI_VFP_args for code compatible with both the
base and VFP variants.

33

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

4 ADDENDUM: Thread Local Storage

4.1 Introduction to thread local storage
Thread Local Storage (TLS) is a class of own data (static storage) that – like the stack – is instanced once for each
thread of execution. It fits into the abstract storage hierarchy as follows.

• (Most global) Program-own data (static and extern variables, instanced once per program/process).

• Thread local storage (variables instanced once per thread, shared between all accessing function activations).

• (Most local) Automatic data (stack variables, instanced once per function activation, per thread).

Thread local storage generates a number of issues at a number of levels, not all of which affect an ABI.

• How to denote TLS in source programs.

Gcc uses __tls T t...; Microsoft use __declspec(thread) T t...; this is Q-o-I.

• How to represent the initializing images of TLS in object files, and how to define symbols in TLS.

The rules for ELF are well established (see SHF_TLS, STT_TLS in [GELF])

• How a loader or run-time system creates instances of TLS per-thread at execution time.

This is part of ABI for the platform or execution environment.

• How to relocate, statically and dynamically, with respect to symbols defined in TLS (for details of relocations
relevant to Arm Linux see [AAELF32]).

• How code must address variables allocated in TLS (the subject of the notes below).

It is the last two bullet points that are the subject of this ABI.

4.2 Introduction to TLS addressing
In the most general form supported by Linux, Windows, and similar platforms, a program is constructed dynamically
from an application and a number of shared libraries (called, respectively, DSOs or DLLs). Each component
(application or shared library) can be mapped into multiple processes. Additionally, a DSO or DLL can be loaded
dynamically by a program, rather than being part of the initial process image constructed when the program is first
loaded.

For the purpose of addressing TLS, both Linux and Windows identify the components of an application using indexes.
On both platforms, indexes are allocated dynamically when a process is created, or when a DSO or DLL is loaded
dynamically. The details of how indexes are allocated are specific to a platform and differ significantly between Linux
and Windows.

A component can have a different TLS index in two different processes, so its thread index must be part of its
program-own state (or be queried dynamically). The run-time system is responsible for maintaining a per-thread vector
of pointers to allocated TLS regions indexed by these component indexes. Under both Linux and the Win32 API,
access to the vector is hidden behind run-time functions.

There is a system resource (such as a dedicated register) called the thread pointer that, typically, points to a control
block for the currently executing thread which, in turn, points to the TLS vector for that thread.

At this stage, the details of TLS addressing become quite platform specific. In the next subsection we describe the
concepts appropriate to Linux for Arm, which is all that this revision of the ABI supports.

4.3 Linux for Arm TLS addressing
The below figure depicts the fundamental components of the TLS addressing architecture used by Linux for Arm.

34

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

http://www.sco.com/developers/gabi/
https://github.com/ARM-software/abi-aa/releases

TCB TLS TLS...

TLS

nnn dtv dtv... dtv dtv

TLS

Index: 1 ... N N + 1

Component index N stored in GOT

PC-relative reference to GOT

Offset in TLS
of imported

variable
stored in

GOT
Data

segment

GOT ... DSO

Text
segment

offset 1
offset N

tp

1 N

D

1 N D

Linux for Arm TLS addressing architecture

In the most general case, the location of an imported thread local datum – or an exported datum that might be
pre-empted – is represented by a pair of GOT entries that give:

• The index in the dynamic thread vector of the pointer to the TLS block containing the datum (the application itself
has index 1 and index 0 is reserved to the run-time system).

• The offset of the datum in the pointed-to TLS block.

In the most general case the expression to address a thread local symbol S is:

(tp[0])[GOT
S
[0]] + GOT

S
[1]

4.3.1 Linux for Arm general dynamic model
In the general dynamic model, the addressing expression is packaged by a call to __tls_get_addr that takes a
single parameter, the address of GOT

S
. The code sequence and required relocations are shown in Table 3.

A space-optimized version of the general dynamic model that calls ___tls_get_addr (triple-underscore) is shown in
Table 4. The parameter passed to ___tls_get_addr is the offset of GOT

S
 from lr.

The Linux for Arm TLS model has two local dynamic variants. These are used to address component-local
thread-local variables more efficiently, but it can still be used in a dynamically loaded DSO. (A variable is local if its
symbol S has STB_LOCAL binding or non-STV_DEFAULT visibility). In these variants the offset of variable in the
component’s TLS segment in known at link time and only the component index must be loaded from the GOT.
Specimen code sequences and relocations are given in Table 5. This model is advantageous whenever a function
accesses more than one variable (the address of the TLS block can be a common sub-expression).

Table 3, General dynamic model (time optimized)

35

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

Location General dynamic model code sequence

.text ldr r0, .Lt0
.L1 add r0, pc, r0
 bl __tls_get_addr ; R_ARM_CALL(__tls_get_addr)
 ldr rS, [r0] ; Load S...

literal_pool .Lt0 .word S(tlsgd) + [. – .L1 – 8] ; R_ARM_TLS_GD32(S)

GOT[S] .word ; R_ARM_TLS_DTPMOD32(S)
.word ; R_ARM_TLS_DTPOFF32(S)

Table 4, General dynamic model (space optimized)

Location General dynamic model (space optimized)

.text ldr r0, .Lt0
.L1 bl __tls_get_addr ; R_ARM_CALL(__tls_get_addr)
 ldr rS, [r0] ; Load S...

literal pool .Lt0 .word S(tlsgd) + [. – .L1 – 4] ; R_ARM_TLS_GD32(S)

GOT[S] .word ; R_ARM_TLS_DTPMOD32(S)
.word ; R_ARM_TLS_DTPOFF32(S)

Table 5, Local dynamic models

Location Local dynamic model Relocation Symbol

.text ldr r0, .Lt0
.L1 add r0, pc, r0
 bl __tls_get_addr ; R_ARM_CALL(__tls_get_addr)

 ... r0 points to my TLS, a CSE ...

 ldr r1, .Lt1
 ldr rX, [r0, r1] ; long offset to X

 ... ; but a short offset to Y

 ldr rY, [r0, #Y(tlsldo)] ; R_ARM_TLS_LDO12(Y)

literal pool .Lt0 .word X(tlsldm) + [. – .L1 – 8] ; R_ARM_TLS_LDM32(X)
.Lt1 .word Y(tlsldo) ; R_ARM_TLS_LDO32(Y)

GOT[X] .word ; R_ARM_TLS_DTPMOD32(X)
.word 0

36

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

R_ARM_TLS_LDM32 sets the first element of the GOT pair to the symbol’s dynamic TLS vector index, as does
R_ARM_TLS_GD32, but sets the second element to 0 (as shown in Table 5).

TLS-related relocations for Linux for Arm are described further in [AAELF32].

4.3.2 Linux for Arm static (initial exec) model
If DSOs need not be loaded dynamically, more efficient addressing modes can be constructed if the run-time system
allocates TLS at process creation time. As depicted in Linux for Arm TLS addressing architecture, the offset from the
thread pointer tp to a component’s TLS is then known at process creation time (dynamic link time), so a component
can address its thread local variables relative to tp, without indexing the dynamic thread vector.

Below, $tp denotes a general purpose register containing the result of reading tp.

Table 6 shows the general model. It works for DSOs and the root application, in Arm and Thumb state.

Table 7 shows an optimized model for DSOs If the compiler uses a GOT pointer (denoted by $gp) and small PIC
(12-bit PC-relative) addressing. This model works only in Arm state.

Finally, Table 8 shows the code to access an application’s local thread-local variables. Because an application’s TLS
is allocated first in the initial TLS vector for the process, the offsets of its variables from tp are known at static link time
and do not need to be read from the GOT. The 12-bit model works only in Arm state.

Table 6, General initial exec model

Location Initial exec model code sequence

.text ldr r0, .Lt0
.L1 ldr r0, [pc, r0]
 ...
 ldr rS, [$tp, r0] ; Load S...

literal pool .Lt0 .word S(tpoff) + [. – .L1 – 8] ; R_ARM_TLS_IE32(S)

GOT[S] .word ; R_ARM_TLS_TPOFF32(S)

Table 7, Initial exec model, DSO with GOT pointer and small FPIC addressing (DSO only)

Location Initial exec model code sequence

.text ldr r0, [$gp, #S(gottpoff)] ; R_ARM_TLS_IE12GP(S)
...
ldr rS, [$tp, r0] ; Load S...

GOT[S] .word ; R_ARM_TLS_TPOFF32(S)

37

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

https://github.com/ARM-software/abi-aa/releases

Table 8, Initial exec model, access to an application’s local thread-local variables

Location Initial exec model code sequence

.text ldr r0, .Lt0
...
ldr rX, [$tp, r0] ; Load X
...
ldr rY, [$tp, #Y(tpoff)] ; Load Y ; R_ARM_TLS_LE12(Y)

literal pool .Lt0 .word S(tpoff) ; R_ARM_TLS_LE32(X)

TLS-related relocations for Linux for Arm are described further in [AAELF32].

38

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

https://github.com/ARM-software/abi-aa/releases

5 Reserved Names
For external symbols defined/required by the C++ ABI there are already agreed names – either the standard mangling
of C++ names or names like __cxa_acquire_guard.

The ABI for the Arm Architecture also needs a space of global symbol names private to each compiler vendor –
external names guaranteed not to clash with other vendors – and a C++ name space private to each vendor.

Many of these names have C or assembly language linkage, so we propose to reserve names of the form
__vendor-name_name, for example:

__ARM_foo
__gnu_foobar
__cxa_foobaz

In each case, namespace __vendor-name[vn] is also reserved in C++, for example:

namespace __ARM {...} namespace __ARMv2 {...}
namespace __gnuv1 {...} namespace __aeabi {...}

We also reserve the corresponding upper case vendor name with a single leading underscore to use by the vendor for
C macro names, for example:

#if _AEABI_... != 0
#if _ARM_... == 2

Prefix names themselves must not contain underscore ('_') or dollar ('$'). The following prefixes are registered.

Registered Vendors

Name Vendor

ADI Analog Devices

acle Reserved for use by Arm C Language Extensions.

aeabi Reserved to the ABI for the Arm Architecture (EABI pseudo-vendor)

AnonXyz anonXyz Reserved to private experiments by the Xyz vendor. Guaranteed not to clash with any
registered vendor name.

ARM Arm Ltd (Note: the company, not the processor).

cxa C++ ABI pseudo-vendor

dig Dignus, LLC

FSL Freescale Semiconductor Inc.

GHS Green Hills Systems

gnu GNU compilers and tools (Free Software Foundation)

iar IAR Systems

icc ImageCraft Creations Inc (ImageCraft C Compiler)

39

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

Name Vendor

intel Intel Corporation

ixs Intel Xscale

llvm The LLVM/Clang projects

PSI PalmSource Inc.

RAL Rowley Associates Ltd

SEGGER SEGGER Microcontroller GmbH

somn SOMNIUM Technologies Limited.

TASKING Altium Ltd.

TI TI Inc.

tls Reserved for use in thread-local storage routines.

WRS Wind River Systems.

To register a vendor prefix with Arm, please E-mail your request to arm.eabi at arm.com.

40

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

6 Errata and Minor Addenda
This section details errors found in the ABI for the Arm Architecture after publication of version 2.0 and minor additions
made since then.

6.1 DWARF for the Arm Architecture

6.1.1 Clarifications
(v2.01, r2.02) The ABI-v2.0 DWARF register numbering scheme for VFP registers (S0-S31 → 64-95) has been
declared obsolescent. It will become obsolete in the next major release of the ABI for the Arm Architecture.

(B, r2.09) aadwarf32-section3-5: Clarify CIE descriptions of registers that are unused by intention of the user, for
example as a consequence of the chosen procedure call standard.

6.1.2 Errors fixed
(v2.02, r2.04) aadwarf32-section3-3, suggested that DW_AT_endianness, coded as 0x5b, might be approved by the
DWARF3.0 standardization committee. In fact, 0x5b was used for another purpose and DW_AT_endianity, coded as
0x65, has been approved. The parametric values of this attribute have also changed their names and encodings.

6.1.3 Additions and omissions fixed
(v2.01, r2.02) aadwarf32-section3-1-1, specifies how to describe the VFP-v3/Neon SIMD register file. There is a new
range of DWARF register numbers allocated to D0-D31 and new schemes for describing Neon Q registers and VFP S
registers. The new numbering should also be used for VFP-v2.

6.2 ELF for the Arm Architecture

6.2.1 Clarifications
(v1.02, r2.03) aaelf32-section4-2: Corrected the wording of the description of e_entry.

(v1.03, r2.04) aaelf32-section4-2: Clarified that bit[0] of [e_entry] controls the instruction set selection on entry.

(v1.02, r2.03) aaelf32-section4-5-4: Clarified the necessary restrictions on local symbol removal in relocatable files.

(v1.04, r2.05) aaelf32-section4-6-1-2: Clarified that ‘Pa’ is the adjusted address of the place being relocated, with the
Thumb-bit stripped (defined as P & 0xFFFFFFFE), for Thumb state LDR- and ADR-type relocations.

(v1.04, r2.05) aaelf32-section4-6-1-4: Clarified that R_ARM_LDR_PC_G0 applies equally to LDRB, STRB.

(v1.04, r2.05) aaelf32-section4-6-1-6: Added this section explicitly tabulating the relocations specific to 32-bit Thumb
instructions.

(v1.05, r2.06) aaelf32-section4-1-1: Inserted the complete table of registered vendor names, now shared among
AAELF, CLIBABI, and RTABI.

(vC, r2.07) aaelf32-section5-1, aaelf32-section5-3: Added small remarks to previously empty sections to remove any
doubt that the sections might be accidentally empty.

(vC, r2.07) aaelf32-section4-6-1-4, subsection Call and Jump relocations: Listed R_ARM_PC24, R_ARM_CALL,
R_ARM_JUMP24, R_ARM_THM_CALL, R_ARM_THM_JUMP24, and R_ARM_THM_JUMP19 as the only relocations
that might cause an intra procedure call veneer to be generated.

(vC, r2.07) aaelf32-section4-6-1-7: Clarified the definition of the R_ARM_V4BX relocation and use of the null symbol
(index 0) by it.

41

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

(vC, r2.07) aaelf32-section4-6-1-10: Added additional text to table 4-16 for R_ARM_TLS_DTPMOD32 and
R_ARM_TLS_TPOFF32 clarifying the meaning of relocating with respect to the null symbol (index = 0).

(vD, r2.08) aaelf32-section1-2: Updated references to the Arm ARM to refer to the latest version published on
http://infocenter.arm.com.

(vD, r2.08) aaelf32-section4-6-1-6: Referenced the text in aaelf32-section4-6-1-4 (under the subheading Call and
Jump relocations) that describes the conditions under which a relocation is permitted to generate an ip-corrupting
intra-call or long jump veneer.

(vE, r2.09) aaelf32-section4-6-1-6: Clarified/extended note on what the aaelf32-section4-6-1-4 text deals with.

(vE, r2.09) aaelf32-section4-6: Standardized instruction descriptions to use Arm ARM terminology.

(vE, r2.09) aaelf32-section4-6-1-1: Clarified initial addend formulation for MOVW/MOVT and R_ARM_THM_PC8.

(vE, r2.09) aaelf32-section4-6-1-10: In aaelf32-table4-16, clarified the wording for R_ARM_RELATIVE.

(vF, r2.10) aaelf32-section4-6-1-2: Clarified relocation expression values are computed mod 2^32.

6.2.2 Errors fixed
(v1.01, r2.01) aaelf32-section4-3-2, aaelf32-table4-4: The definition of SHT_ARM_ATTRIBUTES was given the value
0x70000002, already allocated to SHT_ARM_PREEMPTMAP (used by RVCT 2.2 and others). The correct value of
SHT_ARM_ATTRIBUTES is 0x70000003.

(v1.04, r2.05) aaelf32-section4-6-1-2: Corrected the relocation formulae for the R_ARM_ALU_{PC|SB}_GN_NC
relocations so that they uniformly include the obligation to set the T bit when this is required.

(v1.05, r2.06) aaelf32-section4-6-1-2: Corrected the definition of Pa (introduced in r2.05) which had the wrong mask.

(v1.05, r2.06) aaelf32-section4-6-1-9: Corrected the text following aaelf32-table4-15, which misspelled
R_ARM_TLS_LE32 (relocation #108) and R_ARM_TLS_LE12 (relocation #110).

(vB, r2.06) aaelf32-section4-6-1-6: Corrected an error in aaelf32-table4-13 where the instructions to which
R_ARM_THM_PC12 and R_ARM_THM_ALU_PREL_11_0 apply had been transposed.

(vE, r2.09) aaelf32-section4-6-1-4: Changed the behaviour of jump relocations to unresolved weak references to be
implementation-defined rather than undefined.

(vE, r2.09) aaelf32-section4-6-1-6, aaelf32-table4-13: Corrected Result Mask for R_ARM_THM_PC12.

(vE, r2.09) aaelf32-section5-2-1-1: Corrected off-by-one error in size of array.

(vF, r2.10) aaelf32-section4-6-1-2: aaelf32-table4-9: Renumbered R_ARM_IRELATIVE from 140 to 160 (the number
agreed with stakeholders; publication as 140 was incorrect). aaelf32-table4-11: Removed incorrect overflow check on
R_ARM_MOVT_ABS, R_ARM_MOVT_PREL and R_ARM_MOVT_BREL.

6.2.3 Additions and omissions fixed
(v1.01, r2.01) aaelf32-section4-3-2, aaelf32-table4-4: The definition of SHT_ARM_PREEMPTMAP was omitted. The
correct value is 0x70000002.

(v1.03, r2.04) aaelf32-section4-3-3-1, Merging of objects in sections with SHF_MERGE: Rules governing
SHF_MERGE optimizations are needed to support inter-operation between toolchains (omitted from release 1.02 and
earlier).

(v1.01, r2.01) aaelf32-section4-3-4, aaelf32-table4-5: The definition and explanation of .ARM.preemptmap were
omitted.

(v1.03, r2.04) aaelf32-section4-6-1-1, Addends and PC-bias compensation: Release 1.03 makes explicit the rules
describing the required initial addends for REL-type relocations.

(v1.04, r2.05) aaelf32-section4-6-1-2: Added additional relocations to support a new, experimental Linux TLS
addressing model described in aaelf32-section4-6-1-9, Relocations for thread-local storage.

(v1.02, r2.03) aaelf32-section4-6-1-9: Added a definition of R_ARM_RELATIVE when S = 0; described the new,
experimental, Linux TLS addressing model.

42

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

http://infocenter.arm.com

(v1.02, r2.03) aaelf32-section5-2-1: Added a specification of architecture compatibility information for executable files.

(vC, r2.07) aaelf32-section4-3-2: Added SHT_ARM_DEBUGOVERLAY and SHT_ARM_OVERLAYSECTION to
aaelf32-table4-4. These are new section types to support debugging overlaid programs.

(vC, r2.07) aaelf32-section4-3-4: Added .ARM.debug_overlay and .ARM.overlay_table to aaelf32-table4-5. These are
new special section names to support debugging overlaid programs.

(vD, r2.08) aaelf32-section4-6-1-5, aaelf32-table4-12: extended the range of R_ARM_THM_PC8 to ADR as well as
LDR(literal) instructions.

(vD, r2.08) aaelf32-section5-2-1: Updated and tidied the text and added aaelf32-section5-2-1-1, as an informative
proposal for recording executable file attributes.

(vE, r2.09) aaelf32-section4-3: Added e_flags EF_ARM_ABI_FLOAT_HARD and EF_ARM_ABI_FLOAT_SOFT to
indicate floating point PCS conformance, and EF_ARM_GCCMASK as a mask for legacy bits.

(vE, r2.09) aaelf32-section4-6-1-2, aaelf32-section4-6-1-6, aaelf32-section4-6-1-8: added
R_ARM_THM_GOT_BREL12.

(vE, r2.09) aaelf32-section4-6-1-2, aaelf32-table4-9: Reserved relocation 140 for a specific future use.

(vE, r2.09) aaelf32-section4-6-1-4, aaelf32-table4-12: Added entries for MOVW and MOVT.

(vE, r2.09) aaelf32-section4-6-1-5, aaelf32-table4-13: Added Overflow column.

(vE, r2.09) aaelf32-section4-6-1-6: Added aaelf32-table4-15.

(vF, r2.10) aaelf32-section4-6-1-2, aaelf32-table4-9: Changed the subdivisions within the reserved/unallocated
relocation space.

(vF, r2.10) aaelf32-section4-6, aaelf32-table4-9, aaelf32-table4-13, aaelf32-table4-15: Added
R_ARM_THM_ALU_ABS_Gn[_NC] relocations.

(vF, r2.10) aaelf32-section4-3-3, aaelf32-table4-5: Added SHF_ARM_NOREAD processor specific section attribute
flag.

6.3 Procedure Call Standard for the Arm Architecture

6.3.1 Clarifications
(v2.05, r2.04) Added aapcs32-section5-1, clarifying the roles of core registers and co-processor registers in the
AAPCS.

(v2.03, r2.02) aapcs32-section5-5, clarified that a callee may overwrite an incoming parameter area on the stack.

(v2.03, r2.02) aapcs32-section5-1-1-1, described how VFP-v3 d16-d31 are used.

(v2.04, r2.04) aapcs32-section5-3-1-1, clarified when linking may insert intra-call veneers that may corrupt r12 and the
condition flags.

(v2.01, r2.01) aapcs32-section7-1-3, following aapcs32-table5: Clarified that if a platform chooses that all container
types should be word sized, the type of the container is int unless the upper bound of the enumerator exceeds
2147483647.

(vB, r2.07) aapcs32-section6-1-2-1: Simplified duplicated text and clarified that homogeneous aggregates of
containerized vectors are limited to four members.

(vC, r2.07) aapcs32-section4-3-5: Minor clarifications and improvements to the terminology. Added a remark that
source language access control does not affect the test for homogeneity.

(vC, r2.07) aapcs32-section6-1-2-3: Added a remark clarifying the requirement to ‘back fill’ unused coprocessor
register candidates when passing floating-point parameters using the VFP variant of AAPCS.

(vD, r2.08) aapcs32-section7-1-3: Re-wrote the specification to better reflect the intentions for enumerated types in
ABI-complying interfaces.

(vE, r2.09) aapcs32-appendixa: Re-written to clarify requirements on Advanced SIMD types.

43

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

6.3.2 Errors fixed
(v2.03, r2.02) aapcs32-section7-1-7, retracted the requirement that the type of a plain bit-field be unsigned by default.

(vF, r2.10) aapcs32-appendixa-2, corrected the element counts of poly16x4_t and poly16x8_t.

6.3.3 Additions and omissions fixed
(v2.05, r2.05) aapcs32-section5-1-1-1, added in support of the Advanced SIMD Architecture.

(v2.05, r2.05) aapcs32-section5-1-2-1, extended in support of the Advanced SIMD Architecture.

(v2.05, r2.05) aapcs32-section5-4, extended in support of the Advanced SIMD Architecture.

(v2.05, r2.05) aapcs32-section6-1-1, added in support of the Advanced SIMD Architecture.

(v2.05, r2.05) aapcs32-section6-1-2-1 and aapcs32-section6-1-2-2, extended in support of the Advanced SIMD
Architecture.

(v2.05, r2.05) aapcs32-appendixa, added in support of the Advanced SIMD Architecture.

(v2.06, r2.06) aapcs32-section4-1: Added half-precision floating point to the data type table.

(v2.06, r2.06) Added aapcs32-section4-1-1.

(v2.06, r2.06) aapcs32-section5-4, aapcs32-section6-1-2-1: Extended the rules to half-precision floating point.

(v2.06, r2.06) Added aapcs32-section6-4-4.

(v2.06, r2.06) aapcs32-section7-1-1: Added __f16 (as an Arm extension) to aapcs32-table3.

(v2.06, r2.06) aapcs32-appendixa-2: Added float16x4_t to aapcs32-table7.

(vC, r2.07) aapcs32-section7-1-1: Specified in aapcs32-table3 that the only values of _Bool/bool are 0 and 1.

(vC, r2.07) aapcs32-section7-1-3: Specified container types for enumerated values larger than 32 bits.

(vC, r2.07) aapcs32-section7-1-4: Clarified that in C++ __va_list is in namespace std.

(vE, r2.09) aapcs32-section5-4: Clarified that memory passed for a function result may be modified at any point during
the function call.

(vE, r2.09) aapcs32-section7-1-1: Changed the illustrative source name of the half-precision float type from __f16 to
__fp16 to match [ACLE].

(vF, r2.10) aapcs32-appendixa-2, added [u]int64x1_t, [u]int64x2_t, poly64x2_t. aapcs32-section5-4,
aapcs32-section5-5, aapcs32-section6-1-1, aapcs32-section6-1-2-1: Allow half-precision floating point types as
function parameter and return types, by specifying how half-precision floating point types are passed and returned in
registers.

(vF, r2.10) aapcs32-section4-3: Added definitions of member alignment and natural alignment.

(vF, r2.10) aapcs32-section5-5: Added parameter passing rules for over-aligned types.

6.4 Base Platform ABI for the Arm Architecture

6.4.1 Clarifications
(vC, r2.09) bpabi32-section2-6-2-4: Clarify STB_WEAK definitions are treated as equivalent to STB_GLOBAL when
generating a Windows-style export table.

(vC, r2.09) bpabi32-section5-2: Give more details on export rules.

44

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

https://developer.arm.com/products/software-development-tools/compilers/arm-compiler-5/docs/101028/latest/1-preface

6.4.2 Errors fixed
(vB, r2.07) bpabi32-section2-4-3-7: Made a minor correction to the dllimport example (does not affect the
specification).

(vB, r2.07) bpabi32-section3-6-2: (In the final bullet point of the section) Changed depth-first traversal to the intended
breadth-first traversal.

6.5 C Library ABI for the Arm Architecture

6.5.1 Clarifications
(v2.01, r2.01) General: When a library function is added to a header (e.g. following additions to the C standard), any
inline (e.g. macro-implemented) version should be hidden when _AEABI_PORTABILITY_LEVEL != 0.

(v2.01, r2.01) clibabi32-section5-3-1-1: Names of macros (__A, __X, etc) are for illustration only and are not mandated
by the specification.

(v2.04, r2.06) clibabi32-section3-4: Inserted the complete table of registered vendor names, now shared among
AAELF, CLIBABI, and RTABI.

(v2.04, r2.06) clibabi32-section4-2-4: Added clibabi32-section4-2-4-2, explaining why, when generating portable
binary from C++, standard library functions should be used via extern “C” linkage.

(vC, r2.09) clibabi32-section5-2: Clarified the intended method of customizing assert().

6.5.2 Errors fixed
(v2.01, r2.01) clibabi32-section5-9, clibabi32-table6: struct lconv should be struct __aeabi_lconv.

(v2.01, r2.01) clibabi32-section5-11, clibabi32-table10: The text “((__aeabi_JMP_BUF_SIZE))” at the end of the table
is left over from a previous version and should be deleted.

(v2.02, r2.02) clibabi32-section5-3-1-1: The C99 isblank() function cannot be implemented as a macro within this
framework because __B is required to exclude tab when used by the C89 function isprint() and to include it when used
by isblank(). To fix this, we define isblank() out of line, but allow compilers to inline the obvious implementation that is
excluded from being a macro because it evaluates its parameter twice.

(v2.03, r2.04) clibabi32-section5-12: Corrected misinformation suggesting that it might be possible to access 8-byte
types using LDRD/STRD and LDM/STM.

(vC, r2.09) clibabi32-section5-11: Corrected calculation of minimum jmp_buf size (previously given as 24
double-words).

6.5.3 Additions and omissions fixed
(v2.01, r2.01) clibabi32-section4-1, clibabi32-table1: The C99 header stdbool.h is missing. There are no portability
implications of providing it. A new §5.14, describes stdbool.h, and Table 19, Summary of conformance requirements
when _AEABI_PORTABILITY_LEVEL != 0 in §6 has a new entry for stdbool.h.

(v2.01, r2.01) clibabi32-section5-3-1: The same character translations and locale bindings should be used for the
implementations of the toxxxx macros and functions as are used for the isxxxx macros and functions.

(vD, r2.10) clibabi32-section5-21: Permit wint_t to be unsigned int.

45

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

6.6 C++ ABI for the Arm Architecture

6.6.1 Clarifications
(v2.02, r2.03) cppabi32-section3-2-5-5: Clarify that entities defined in unnamed namespaces must not be exported
(because unnamed namespaces do not have globally defined names).

(v2.03, r2.04) In cppabi32-section3-2-2-3, cppabi32-section3-2-2-5, cppabi32-section3-2-4-2: Clarified the use of
__aeabi_atexit for registering atexit functions.

(v2.04, r2.06) In cppabi32-section1-2, Updated the base standard for C++ to ISO/IEC 14882:2003.

(vD, r2.09) cppabi32-section3-1: Clarified handling of empty classes.

(vE, r2.10) cppabi32-section3-1: Again clarified handling of empty classes.

6.6.2 Errors fixed
(v2.01, r2.01) cppabi32-section3-2-4: The global constructor vector section (.init_array) of ELF type SHT_INITARRAY,
was erroneously specified to be read-only. The generic ELF specification requires these sections to have the
SHF_WRITE flag set. The C++ ABI for the Arm Architecture requires producers to generate these sections as if they
were read-only. (Some execution environments require .init_array sections to be read-only and linkers targeting these
environments may drop the SHF_WRITE flag. Doing so must not cause run-time failures).

(vB, r2.07) In cppabi32-section3-1, removed the Arm-specified mangling of the 16-bit FP type name added in r2.06
(Dh has been specified by the generic C++ ABI). Noted the mangling of std::va_list now that [AAPCS32] affirms that
__va_list is in namespace std.

(vC, r2.08) In cppabi32-section3-2-2-3: corrected typos in and the wording of the justification for defining
__aeabi_vec_delete3 but not __aeabi_vec_delete2.

(vC, r2.08) cppabi32-section3-2-2-3: In the definition of __aeabi_vec_ctor_nocookie_nodtor, corrected the order of
size and count parameters to __aeabi_vec_ctor_cookie_nodtor().

(vC, r2.08) In cppabi32-section3-2-5-5: corrected broken class export syntax and corrected comments about entities
declared in unnamed namespaces and those derived from them.

6.6.3 Additions and omissions fixed
(v2.04, r2.06) In cppabi32-section3-1, specified the name mangling (GC++ABI § 5.1.5) for the 16-bit FP type added to
[AAPCS32].

(v2.04, r2.06) In cppabi32-section3-2-6, added an Arm-specific rule for the ELF binding of guard variable symbols.

6.7 Exception Handling ABI for the Arm Architecture

6.7.1 Clarifications
(v2.04, r2.05) In paragraph 5 in ehabi32-section7-4, clarified that an unwinder must in general restore all the machine
registers listed in the VRS.

(v2.02, r2.02) In ehabi32-section7-7, and ehabi32-section8-4-1, we clarify that _Unwind_Complete may overwrite UCB
fields specific to the exception propagation that has just completed, and make clear the consequences of this. In
ehabi32-section8-4-1 we are less prescriptive about which of__cxa_allocate_exception and __cxa_throw initialize the
UCB and LEO fields.

(vB, r2.10) Throughout, use UAL instruction mnemonics where possible.

46

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases

6.7.2 Errors fixed
(v2.02, r2.02) In ehabi32-section8-4-1, we have added the specification of __cxa_get_exception_ptr. Adding this
function and having compilers generate calls to it, corrects a non-conformance with the C++ Standard. This function
was recently added to the Itanium ABI, from which the Arm EHABI is derived. There are consequential changes to
ehabi32-section8-2, bullet 1 to mandate that barrier_cache.bitpattern[0] is valid on catch handler entry and to
ehabi32-section8-4-1 in the definition of __cxa_begin_catch, regarding initialisation of barrier_cache.bitpattern[0].
ehabi32-section8-5-4 adds an example of using __cxa_get_exception_ptr in a handler entry sequence.

Detailed rationale: The C++ Standard states that std::uncaught_exception() should return true after completing
evaluation of the object to be thrown until completing the initialization of the exception-declaration in the matching
catch handler. Thus for example:

 try {
 //
 throw S();
 //
 } catch (S s) {
 //
}

uncaught_exception() should return true between the end of the S() call and the end of the initialization of s. This has
not been the case in several implementations, such as g++ and RVCT 2.2, where uncaught_exception() was
incorrectly false during any copy construction of s. Version 2.0 of the EHABI cannot handle this case correctly.

The original Itanium spec declared void __cxa_begin_catch(void *exceptionObject) and required it be called on entry
to a catch handler, and in some other circumstances, to perform some housekeeping including updating the
uncaught_exception count. The void *exceptionObject is really intended to be a pointer to (IA_64 terminology) an
_Unwind_Exception object, the language-independent sub-object within a propagated exception object. The handler
code itself (as Arm understands it) was supposed to obtain a pointer to the matched C++ object by being passed such
a pointer in a machine register, or by some other unspecified means. In EHABI terminology, _Unwind_Exception is
_Unwind_Control_Block.

The g++ community, HP, and Arm all changed __cxa_begin_catch to return the pointer to the matched C++ object,
thus avoiding the need to save the register containing the matched object pointer over the call to __cxa_begin_catch.
On return from __cxa_begin_catch, initialization of the catch parameter then proceeds. In other words, the code
sequence is BL __cxa_begin_catch, initialize catch parameter if there is one.

Unfortunately, because __cxa_begin_catch has updated the uncaught_exception count, uncaught_exception() will
return the wrong value if it is called during the initialization – as is possible if the catch parameter is a class type with
non-trivial copy constructor. This is corrected by using the new routine, when the code sequence for catches with a
parameter of class type with a non-trivial copy constructor becomes:

save r0 somewhere
BL __cxa_get_exception_ptr
initialize catch parameter
recover r0
BL __cxa_begin_catch

The wording change in ehabi32-section8-4-1 precludes the unlikely (and undesirable) possibility that handler code
received the matched object pointer in some other place, then copied it to barrier_cache.bitpattern[0], without overly
constraining the implementation.

6.7.3 Additions and omissions fixed
(v2.02, r2.02) In ehabi32-section7-2, we have added _Unwind_DeleteException whose behaviour is described in
ehabi32-section7-6. This function is present in the Itanium ABI and is a convenience function with no cost if not used
by an implementation. Some vendors have requested Arm add this to remove a need for conditional compilation when
targeting the Arm ABI verses other ABIs. The Arm definition is compatible with the Itanium requirements.

47

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

(v2.02, r2.02) In ehabi32-section7-5-2, ehabi32-section7-5-3, ehabi32-section7-5-4, and ehabi32-section9-3, we have
added support for VFPv3. The Arm VFP v3 adds 16 double precision registers, D16-D31. It should be possible to
restore these during unwinding but because the registers are intended for scratch use, this is expected to be
uncommon. Specifically:

• In ehabi32-section7-5-2, we extend the register range for _UVRSC_VFP/_UVRSD_DOUBLE to 0-31.

• In ehabi32-section7-5-3, we extend the register range for _UVRSC_VFP/_UVRSD_DOUBLE to 0-31.

• In ehabi32-section7-5-4, we clarify that _UVRSC_VFP/_UVRSD_DOUBLE undoes the effect or one or more
FSTMD instructions.

• In ehabi32-section9-3 we allocate unwinding instruction "11001000 sssscccc" to popping
D[16+ssss]-D[16+ssss+cccc], to permit recovery of a range of the new registers (including any range containing
just one register).

• In ehabi32-section9-3 Update the remarks (split remark d and add extra words) to clarify the limitations of VFP
unwinding instructions (No incompatible change)

6.8 Run-time ABI for the Arm Architecture

6.8.1 Clarifications
(v2.03, r2.06) rtabi32-section3-8: Inserted the complete table of registered vendor names, now shared among AAELF,
CLIBABI, and RTABI.

(v2.03, r2.06) rtabi32-section4-3-1: Clarified the meaning of signed integer division when the result cannot be
represented (MIN_INT/-1).

(vB, r2.07) rtabi32-section4-4-3-2: Add return value comments to each of the __aeabi_* helper functions.

(vC, r2.08) rtabi32-section3: added rtabi32-section3-10, to explain legacy, deprecated __hardfp_ name mangling
implemented by some compilers, notably armcc.

(vC, r2.08) rtabi32-section4-1-2: improved text specifying the registers maybe affected by a call to an FP helper.

6.8.2 Errors fixed and features withdrawn or deprecated
(v2.02, r2.05) rtabi32-section4-1-2, deprecated use of fneg and dneg because inlining these functions is always more
efficient, even with the Thumb-1 ISA. Conforming library implementations must still provide implementations.

(vC, r2.08) rtabi32-section4-1-2: declared fneg/dneg obsolete (withdrawn).

6.8.3 Additions and omissions fixed
(v2.01, r2.02) In (new) rtabi32-section4-3-5, we define __aeabi_read_tp() that returns the thread pointer denoted by
$tp in Linux for Arm static (initial exec) model, of this specification.

(v2.01, r2.02) In rtabi32-section4-4-7, brought the list of __cxa_ functions up to date and in line with [EHABI32].

(vC, r2.08) rtabi32-section4-1-2: added to rtabi32-table7, conversion helpers between VFPv3 half-precision memory
format and float.

(vD, r2.09) rtabi32-section4-1-2: added to rtabi32-table7, conversion helpers from double to VFPv3 half-precision
memory format.

48

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

https://github.com/ARM-software/abi-aa/releases

6.9 ABI for the Arm Architecture - The Base Standard

6.9.1 Clarifications
(vB, r2.07) bsabi32-section3-9, A note about ar format: Fixed one minor typographical error and added a newly found
Wikipedia reference to ar format.

49

Copyright © 2005-2009, 2012, 2015, 2018, 2020-2023, Arm Limited and its affiliates. All rights reserved.

	1 Preamble
	1.1 Abstract
	1.2 Keywords
	1.3 Latest release and defects report
	1.4 Licence
	1.5 About the license
	1.6 Contributions
	1.7 Trademark notice
	1.8 Copyright

	2 About this document
	2.1 Change Control
	2.1.1 Current Status and Anticipated Changes
	2.1.2 Change history

	2.2 References
	2.3 Terms and abbreviations

	3 ADDENDUM: Build Attributes
	3.1 Introduction to build attributes
	3.1.1 About build attributes and compatibility
	3.1.1.1 Attribute values are based on user intentions
	3.1.1.2 Capturing user intentions about compatibility
	3.1.1.3 No standard compatibility model

	3.1.2 The kinds of compatibility modeled by build attributes
	3.1.3 The scope of build attributes
	3.1.4 Build attributes and conformance to the ABI
	3.1.5 Combining attribute values
	3.1.5.1 Combining two values of the same tag

	3.2 Representing build attributes in ELF files
	3.2.1 Encoding
	3.2.2 Structure of an ELF attributes section
	3.2.3 Formal syntax of an ELF attributes section
	3.2.4 Formal syntax of a public (“aeabi”) attributes subsection
	3.2.5 Conformance constraints
	3.2.6 Coding extensibility and compatibility

	3.3 Public ("aeabi") attribute tags
	3.3.1 About public tags
	3.3.2 Default values for public tags
	3.3.3 Inheritance of public tag values
	3.3.4 How this specification describes public attributes
	3.3.5 Target-related attributes
	3.3.5.1 About target-related attributes
	3.3.5.2 The target-related attributes

	3.3.6 Procedure call-related attributes
	3.3.6.1 About procedure call-related attributes
	3.3.6.2 The procedure call-related attributes

	3.3.7 Miscellaneous attributes
	3.3.7.1 Optimization attributes
	3.3.7.2 Generic compatibility tag
	3.3.7.3 Secondary compatibility tag
	3.3.7.4 Conformance tag
	3.3.7.5 No defaults tag

	3.4 Arm CPU names recognized by Arm Compiler 5.01 (armcc)
	3.5 Attributes summary and history

	4 ADDENDUM: Thread Local Storage
	4.1 Introduction to thread local storage
	4.2 Introduction to TLS addressing
	4.3 Linux for Arm TLS addressing
	4.3.1 Linux for Arm general dynamic model
	4.3.2 Linux for Arm static (initial exec) model

	5 Reserved Names
	6 Errata and Minor Addenda
	6.1 DWARF for the Arm Architecture
	6.1.1 Clarifications
	6.1.2 Errors fixed
	6.1.3 Additions and omissions fixed

	6.2 ELF for the Arm Architecture
	6.2.1 Clarifications
	6.2.2 Errors fixed
	6.2.3 Additions and omissions fixed

	6.3 Procedure Call Standard for the Arm Architecture
	6.3.1 Clarifications
	6.3.2 Errors fixed
	6.3.3 Additions and omissions fixed

	6.4 Base Platform ABI for the Arm Architecture
	6.4.1 Clarifications
	6.4.2 Errors fixed

	6.5 C Library ABI for the Arm Architecture
	6.5.1 Clarifications
	6.5.2 Errors fixed
	6.5.3 Additions and omissions fixed

	6.6 C++ ABI for the Arm Architecture
	6.6.1 Clarifications
	6.6.2 Errors fixed
	6.6.3 Additions and omissions fixed

	6.7 Exception Handling ABI for the Arm Architecture
	6.7.1 Clarifications
	6.7.2 Errors fixed
	6.7.3 Additions and omissions fixed

	6.8 Run-time ABI for the Arm Architecture
	6.8.1 Clarifications
	6.8.2 Errors fixed and features withdrawn or deprecated
	6.8.3 Additions and omissions fixed

	6.9 ABI for the Arm Architecture - The Base Standard
	6.9.1 Clarifications

