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The focusing of a charged particle beam in a solenoid is typically explained by invoking the concept
of a Larmour frame and using Busch’s theorem. Often, there is some confusion about how a uniform
magnetic field of a long solenoid focuses the electron beam because it is generally understood that
a uniform magnetic field can only guide charged particles. We perform a simple analysis of the
dynamics of a charged particle beam in a solenoid and emphasize an intuitive understanding of some
of the interesting features. © 2009 American Association of Physics Teachers.

[DOL: 10.1119/1.3129242]

I. INTRODUCTION

A solenoid is often used to focus charged particle beams in
the low energy section of accelerators' and other devices
such as electron microscopes.2 The focusing of char;ed par-
ticle beams in a solenoid is explained in textbooks 4 using
Busch’s theorem,5 which is a statement of conservation of
canonical angular momentum in the axisymmetric magnetic
field of the solenoid. In a solenoid, the longitudinal magnetic
field on the axis is peaked at the center of the solenoid,
decreases toward the ends, and approaches zero far away
from the solenoid. In contrast, the radial magnetic field is
peaked near the ends of the solenoid. In a simple model, the
longitudinal magnetic field can be assumed to be zero out-
side the solenoid and uniform inside it. When a charged par-
ticle enters from the field-free region to the region of uni-
form magnetic field in a solenoid, it starts rotating with the
Larmour frequency, which equals half the cyclotron fre-
quency in the uniform magnetic field. The dynamics of the
charged particle is easily analyzed in the Larmour frame,
which rotates with the Larmour frequency around the axis of
the solenoid. In the Larmour frame, the centrifugal force is
half of the Lorentz force, and there is a net focusing force
toward the axis of the solenoid.

There is often some confusion about why a charged par-
ticle does not rotate with the cyclotron frequency inside the
solenoid, as is the case in a uniform magnetic field. It is also
confusing how the uniform field in a solenoid provides fo-
cusing because a charged particle in a uniform magnetic field
has a helical trajectory with a constant radius known as the
Larmour radius. The answer to these questions often is bur-
ied by the formal analysis in textbooks.

In this paper, we take a fresh look at the problem and
perform a simple analysis. We use simple geometric concepts
to understand some of the interesting aspects of the dynamics
of charged particle beams in a solenoid magnetic field, in-
cluding the focusing of charged particle beams. The empha-
sis in this paper is on developing a physical understanding of
different aspects of dynamics using simple mathematics.

In Sec. II we analyze the beam dynamics of a charged
particle beam in an axisymmetric magnetic field. In Sec. III
we discuss some special cases. We first apply this analysis to
a thin lens and derive the formula for its focal length. We
then apply this analysis to the case where an electron beam
generated in a region of uniform magnetic field subsequently
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exits this region to enter a field-free region. We also discuss
the effect of Coulomb repulsion on the beam dynamics. We
present some conclusions in Sec. IV.

II. BEAM DYNAMICS IN SOLENOID

Before we discuss the dynamics of a charged particle
beam in a solenoid magnetic field, we state the assumptions.
First, we ignore the space-charge force, that is, we neglect
the Coulomb repulsion between charged particles. Second,
we assume a cold beam, that is, the particles’ initial trans-
verse velocity is zero. In general, both assumptions are vio-
lated in reality. Also, particles will have nonzero transverse
velocities, which will have a random distribution inside the
beam. We will discuss the effect of removing these assump-
tions later in this paper.

For simplicity, we assume that the beam is cylindrical with
a uniform distribution of particles. All the particles are as-
sumed to have an initial velocity v, along the z-axis. The
components of the axisymmetric magnetic field of a solenoid
are given by

2

B.(r,2) = B(z) - %B"(@ b, (1)
B = B0+ B 2)
rr,z——z Z+16 7))+ >

where z is the distance along the solenoid axis, r is the radial
distance from the solenoid axis, and the prime denotes a
derivative with respect to z. The coordinate system used is
shown in Fig. 1. Under the paraxial approximation, we will
keep only terms up to the first order term in r. We assume
that B(z)=B, for 0<z<L and B(z)=0 otherwise. We are
thus assuming that B(z) abruptly drops to zero at the ends.
We will show later that our analysis can be generalized to an
arbitrary variation in B(z). From Eq. (2) the expression for
the magnetic field in this case in the paraxial approximation
can be written as

B, =B[u(z) —u(z-L)], (3)
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Fig. 1. Pictorial explanation of the focusing of a charged particle beam in a
solenoid. The solid curve shows the periphery of the electron beam when it
enters the solenoid. The dashed curve shows the periphery of the electron
beam after it travels some distance in the solenoid. The dotted curves show
the trajectories of individual electrons. The coordinate axis is also shown.

By=—Bo[8(2) - oz~ L)) (4)

where u(z)=1 for z>0 and u(z)=0, otherwise. Here, &(7) is
the Dirac delta function.

We define three regions corresponding to z<<0 (region I),
0<z<L (region II), and z>L (region III). The trajectory of
the charged particle will be a straight line in regions I and III
because these regions are field-free. The trajectory will be
helical in region II because it is a region of uniform magnetic
field. We have to match the trajectory at the boundary be-
tween regions I and II and between regions II and III. At the
boundary between regions I and II, the radial magnetic field
is a Delta function as seen from Eq. (4), which gives an
impulse in the azimuthal direction. The force in the azi-
muthal direction is given by —ev.B,(z), where e is the mag-
nitude of the electronic charge. Due to this impulse, the in-
crement Av, in the azimuthal velocity of the electron as it
crosses this boundary is given by

AU‘QZV()ﬁ, (5)

where r is the radial coordinate of the particle when it enters
region II, m is the electron’s rest mass, and y=1/\r1—v§/ c?
is the usual Lorentz factor. The cyclotron frequency is de-
fined as w.,=eBy/ym and the Larmour frequency is defined
as wy=eB,/2ym. We can therefore write Avy=ryw;.

The radial component of the velocity will remain continu-
ous when the particle enters region II from region I. We
assume that v,=0 in region I. Hence, v,=0 at z=0 in region
II. Note that when the particle enters region II, the longitu-
dinal component of the velocity will also change because the
transverse component changes and the total kinetic energy is
conserved. However, in the paraxial approximation v, /v,
<1, where v, is the transverse component of the particle
velocity. Hence, the change in v, will be negligible here, and
we ignore this change. With the transverse velocity given by
Eq. (5), the particle will have a helical trajectory inside re-
gion II with the radius R, given by
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Fig. 2. Illustration of the relation between the Larmour frequency and the
cyclotron frequency. Point O is on the axis of the solenoid and point O’ is
the center of the trajectory.

=D 6)

Equation (6) tells us that for every off-axis particle that en-
ters the magnetic field, the radius of curvature inside region
II is half of the initial radial displacement of the particle from
the solenoid axis. The projections of particle trajectories on
the x-y plane are shown in Fig. 1 by dotted curves. It is clear
that every particle will just touch the solenoid axis and will
turn back as is shown. In Fig. 1 we have shown the cross
section of the periphery of the beam when it enters region II
by a solid line, and four particles located at points A, B, C,
and D on its periphery. As the beam travels through region II,
the projection of the trajectories of these particles on the x-y
plane is shown by dotted circles. After the beam travels a
certain distance in region II, these particles move from loca-
tions A, B, C, and D to locations A’, B’, C’, and D’, respec-
tively, as shown in Fig. 1. For clarity, we also have shown a
particle located at E, which is inside the periphery of the
beam. The trajectory of this particle is obtained by joining
this point with the solenoid axis and then drawing a circle of
diameter OE through these points. The particle moves to a
location E’ when the other particles move to A’, B’,... . It
is seen that the radius of the electron beam shrinks from OA
to OA’, and the periphery of the beam shrinks to A’'B'C'D’,
as shown by the dashed curve in Fig. 1. In this manner, the
beam undergoes periodic focusing in the region of uniform
magnetic field in the solenoid.

As expected, the particles rotate with the cyclotron fre-
quency about an axis passing through the center of their in-
dividual circular trajectories. The angular velocity about the
axis of the solenoid is given by half of the cyclotron fre-
quency because the angle they subtend at the axis of the
solenoid is half of the angle that they subtend at the center of
their individual circular trajectories (see Fig. 2). We clarify
the confusion between the Larmour frequency and the cyclo-
tron frequency using the simple geometry in Fig. 2. The par-
ticles rotate with the cyclotron frequency around the center
of their individual trajectories but rotate with the Larmour
frequency around the axis of the solenoid.

We now look at the trajectories of the single particles in
more detail. As discussed, the angular velocity of the particle
about the solenoid axis will remain constant and is given by
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Fig. 3. Decomposition of the particle velocity into radial and azimuthal
components with respect to the solenoid axis passing through point O.

;. The magnitude of the transverse component v, of the
velocity also remains constant at its initial value in region II
at z=0, which is same as the magnitude of Av, given by Egq.
(5) because v,=0 at z=0. The radial and azimuthal coordi-
nates of the particle are given by

r=rg cos(ﬁ), (7)
UZ
0=+ 2=, 8)
v,

Z

where 6, is the initial value of 6 and is zero for the case
shown in Fig. 2. Note that the coordinates (r,#) are mea-
sured relative to point O on the axis of the solenoid. Here,
z=v,t is taken as the independent variable instead of the time
t.

The particle velocity at an arbitrary location in region II
can be decomposed into radial and azimuthal components, as
shown in Fig. 3. The components are given by

v,=—rop tan<%>, 9)

Z

Vg=rwy. (10)

Equations (7) and (8) have been used to derive Egs. (9) and
(10).

We now look at what happens when the particle exits re-
gion II and enters region III. The particle again sees the B,
field, which is a Dirac delta function, and the Lorentz force
due to coupling between B, and v, gives an impulse in the
azimuthal direction. Consequently, v, undergoes a sudden
change at this boundary given by

Avﬂz_rle’ (11)
where r| is the radial coordinate of the particle at the exit of
region II. By using Egs. (10) and (11), we find the important

result that at the entrance of region III, v,=0. The radial
velocity remains unchanged at the boundary and is given by
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w;L
v,=—Fop tan<i>. (12)
UZ

We assume that v, does not undergo any change at the
boundary due to the paraxial approximation. In region III,
the particle moves in a straight line with constant v, given by
Eq. (12). After the beam undergoes periodic focusing in re-
gion II, the particles attain a radial velocity toward the sole-
noid axis [provided the tan term in Eq. (12) is positive],
which is proportional to their radial displacement from the
solenoid axis at the exit of region II, that is, v,=—kr|, where
k is a constant. It can be easily shown that in this situation
the beam will ideally be focused to a point after traveling a
distance z=v,/k in region III. Thus the charged particle beam
is focused in region III after passing through the solenoid.

III. SOME SPECIAL CASES

We first consider the case of a thin lens, that is, L
<v,/w;. In this case, when the particle exits region II, the
solenoid imparts a radial velocity to the particle given by

2
o€ 2

Ur= 4,y2m2UZBOL’ (13)
where we have used the approximation that w;L/v,<<1.
Equation (13) can be further generalized to a case where B,
has an arbitrary spatial variation if we assume the thin lens
approximation so that the solenoid just gives an impulse to
the electron and does not perturb its radial coordinate signifi-
cantly. To do so, we assume that the form of B, is given by
Egs. (3) and (4) piecewise, where B, varies from one seg-
ment to the other. In this way, Eq. (13) is generalized to the
following form:

2
e

'=—r—— | B%z. 14

' 4)’2m2vff : (1

Here, r' =dr/dz denotes the slope of the particle’s trajectory.
We use Eq. (14) to derive the formula for the focal length f
of the thin solenoid lens as

1 &?
f - 4y2mzvf

which is derived in many textbooks.™ The integration is
performed over the entire length of the solenoid.

We next discuss what happens when the electrons are gen-
erated inside a magnetic field, that is, when there is a residual
magnetic field at the cathode and the electron beam comes
out of the region of the magnetic field. This geometry corre-
sponds to region I being absent and the cathode placed at z
=0. We want to analyze what happens when the beam enters
region III. The trajectory will be a straight line in region II
because we are assuming a cold beam with no transverse
component of velocity. When the beam exits region II, it will
acquire an azimuthal velocity vy=—rw;. In this region par-
ticles will travel in a straight line. The trajectory of particles
at locations P, Q, R, and S on the periphery of the beam are
shown in Fig. 4. These particles move to the locations P’,
Q’,R’, and S’, respectively, as is shown. The beam acquires
an angular momentum and rotates and simultaneously ex-
pands as it propagates in the field-free region (see Fig. 4). As

fBzdz, (15)
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Fig. 4. Expansion and rotation of a beam with angular momentum. The solid
curve is the periphery of the beam at the exit of region II, and the dashed
curve is the periphery of the beam after it travels a distance d. The beam
rotates by an angle 6 and expands self-similarly.

it expands, its angular velocity decreases to conserve angular
momentum. The angular velocity of the beam after it travels
a distance d in this region is given by

2
v

2z
=055 5. (16)
"0l v wld
The beam size increases as the beam propagates such that the
angular momentum of the beam is conserved. The beam size
Ry after the beam travels a distance d from the exit of region
II is given by

R;\?
R;=Rg+(%) &2, (17)
UZ

which can be derived from Fig. 4. Here, R; is the beam size
at the exit of region II. The far-field beam divergence is
therefore given by 6,=w;R;/v,. The product of beam size at
the beam waist and the far-field divergence is known as the
emittance. The angular momentum of the beam thus gives
rise to an equivalent emittance & for the beam given by

2
= eBoRi ’
2ymu,

which is known as the Busch emittance and is derived in
Ref. 3 using the envelope equation. Our derivation implies
that if there is a residual magnetic field at the cathode of the
electron gun, the beam acquires an angular momentum and
develops an equivalent emittance given by Eq. (18). In ap-
plications where low electron beam emittance is required, we
need to make sure that the residual magnetic field at the
cathode location is as small as possible. In some applica-
tions, we use this angular momentum to generate a flat elec-
tron beam with very low emittance in the vertical direction
compared to the horizontal direction. To do so, we deliber-
ately put a magnetic field at the cathode location to generate
a beam with an angular momentum. A set of skew quadru-
poles is then used to remove the angular momentum, gener-
ating a flat beam.’

We next discuss the effect of the space-charge force due to
the self-field of the electron beam. The electron beam will
generate its own electric and magnetic fields, which will af-

(18)
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Fig. 5. Trajectories of electrons due to the solenoid magnetic field and the
self-field of the electron beam when the electron beam radius is given by Eq.
(20). The electron beam distribution is assumed to be uniform.

fect its trajectory. These forces will be overall repulsive and
will counteract the focusing effect due to the solenoid. The
most interesting situation arises when the net force is such
that the electrons rotate inside the solenoid in helical trajec-
tories with radii equal to their radial distance from the sole-
noid axis. In this case, the entire beam would rotate around
the solenoid axis with the Larmour frequency and with a
constant beam radius, as shown in Fig. 5. Let us find out
when this scenario can occur. If we assume the electron
beam distribution to be uniform in a cylinder with constant
radius and infinite length, the electric field and magnetic field
can be calculated and the result for the radial force on an
electron at a radial distance r from the solenoid axis is

F =2 me® I r (19)

' Bz y2 IA R2 .

Here, B,=v,/c, where c is the speed of light, I is the electron
beam current, I,=4meymc’/e=17.04 KA is the Alfvén cur-
rent, €, is the permittivity of free space, and R is the radius of
the electron beam. This force will oppose the Lorentz force
due to the solenoid field, which is —ew; B,r. It can be shown
that if the magnitude of the space-charge force F, becomes
half of the magnitude of the Lorentz force due to the sole-
noid field, then the radius of the electron’s trajectory be-
comes equal to its radial distance r from the solenoid axis.
The requirement that the magnitude of the space-charge
force becomes half of the magnitude of the Lorentz force
leads to the condition

8m?c® I
R=\—"7>55-. (20)
vB.e"B- 1,

If at the entrance of the solenoid the electron beam has a
radius equal to the matched beam radius given by Eq. (20),
the electrons will perform uniform circular motion at the
Larmour frequency, with the center of the trajectories on the
solenoid axis. For a given beam radius, the magnetic field
can be chosen such that Eq. (20) is satisfied. In that case, the
defocusing force due to self-fields will cancel the focusing
force due to solenoid field, and the electron beam will main-
tain a constant radius in the solenoid. Note that we have not
considered the diamagnetic field generated by the electron
beam in the longitudinal direction opposing the solenoid
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field, due to its azimuthal motion.” This effect is small and is
neglected here.

IV. DISCUSSION

We have described the beam dynamics of a charged par-
ticle beam in an axisymmetric magnetic field of a solenoid
and have clarified several issues regarding the focusing of
charged particle beams in a solenoid magnetic field. It has
been shown that a charged particle rotates with the cyclotron
frequency about the axis of its helical trajectory in the uni-
form field region of the solenoid when the force due to beam
self-fields are ignored. For different values of the radial co-
ordinates of electrons at the entrance to the region of uniform
magnetic field, we find that the angular velocity, even about
the solenoid axis, is constant and is equal to half of the
cyclotron frequency, which is the Larmour frequency. The
trajectory of the electron on the transverse plane is obtained
by drawing a circle of diameter equal to its radial distance
from the solenoid axis, which passes through the solenoid
axis and the electron’s initial position. The analysis of the
trajectories explains how the electron beam is periodically
focused inside the uniform field region of the solenoid. The
effect of the self-force of the beam was also discussed, and it
was shown that if the electron beam radius is equal to the
matched radius given by Eq. (20), the electrons rotate in
circles centered on the solenoid axis with the Larmour fre-
quency.

When the particle exits the solenoid, its azimuthal velocity
becomes zero, but it has a radial velocity proportional to the
radial distance of the particle from the solenoid axis. As a
result, the beam is focused, and an expression was derived
for the focal length of the solenoid. We also discussed the
situation when there is a residual magnetic field at the cath-
ode and the electrons emitted there come to a field-free re-
gion. The electron beam acquires an angular momentum in
this case, which gives rise to a rotation and simultaneous
self-similar expansion of the beam. The beam develops an
equivalent emittance.
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Our analysis can be easily extended to a beam with ellip-
tical cross section. Inside the solenoid the beam will rotate
and shrink in a self-similar fashion. Similarly, after the beam
exits the solenoid with an angular momentum, it will rotate
and expand in a self-similar fashion.

We ignored the effect of a random component of trans-
verse velocities of electrons arising due to finite emittance.
This effect will change the radius as well as the center of the
electron’s circular trajectory in Fig. 1. The change will be
different for different electrons and will give an overall de-
focusing effect. A rigorous analysis of beam dynamics of a
charged particle beam in the presence of a space-charge force
and finite emittance can be done using the envelope
equation.3
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