
7

The Arm Triple Core Lock-Step (TCLS) Processor

XABIER ITURBE, Ikerlan

BALAJI VENU and EMRE OZER, Arm Ltd., UK

JEAN-LUC POUPAT, Airbus Defence & Space, France

GREGOIRE GIMENEZ, Dolphin Integration, France

HANS-ULRICH ZUREK, Atmel Corp., Germany

The Arm Triple Core Lock-Step (TCLS) architecture is the natural evolution of Arm Cortex-R Dual Core

Lock-Step (DCLS) processors to increase dependability, predictability, and availability in safety-critical and

ultra-reliable applications. TCLS is simple, scalable, and easy to deploy in applications where Arm DCLS pro-

cessors are widely used (e.g., automotive), as well as in new sectors where the presence of Arm technology

is incipient (e.g., enterprise) or almost non-existent (e.g., space). Specifically in space, COTS Arm processors

provide optimal power-to-performance, extensibility, evolvability, software availability, and ease of use, es-

pecially in comparison with the decades old rad-hard computing solutions that are still in use. This article

discusses the fundamentals of an Arm Cortex-R5 based TCLS processor, providing key functioning and im-

plementation details. The article shows that the TCLS architecture keeps the use of rad-hard technology to

a minimum, namely, using rad-hard by design standard cell libraries only to protect the critical parts that

account for less than 4% of the entire TCLS solution. Moreover, when exposure to radiation is relatively low,

such as in terrestrial applications or even satellites operating in Low Earth Orbits (LEO), the system could

be implemented entirely using commercial cell libraries, relying on the radiation mitigation methods imple-

mented on the TCLS to cope with sporadic soft errors in its critical parts. The TCLS solution allows thus to

significantly reduce chip manufacturing costs and keep pace with advances in low power consumption and

high density integration by leveraging commercial semiconductor processes, while matching the reliability

levels and improving availability that can be achieved using extremely expensive rad-hard semiconductor

processes. Finally, the article describes a TRL4 proof-of-concept TCLS-based System-on-Chip (SoC) that has

been prototyped and tested to power the computer on-board an Airbus Defence and Space telecom satellite.

When compared to the currently used processor solution by Airbus, the TCLS-based SoC results in a more

than 5× performance increase and cuts power consumption by more than half.

CCS Concepts: • Computer systems organization → System-on-a-chip; Embedded systems; Reliability;

Availability; Processors and memory architecture;

Additional Key Words and Phrases: Arm, soft error resilience, space avionics, safety-critical

The research described in this article has received funding from the European Union’s Horizon 2020 research and inno-

vation program under grant agreement No. 640354. Airbus DS, Arm, Atmel and Dolphin are part of this consortium and

are collaborating to bring this innovative technology into the European space industry. Xabier Iturbe was funded by the

European Union’s FP7 Marie-Curie international outgoing fellowship program with agreement No. 627579.

Authors’ addresses: X. Iturbe, Ikerlan, Arizmendiarrieta Pasalekua 2, Arrasate-Mondragon 20500, Basque Country (Spain);

email: xiturbe@ikerlan.es; B. Venu and E. Ozer, Arm Ltd., 110 Fulbourn Road, Cambridge CB19NJ, UK; email: {balaji.venu,

emre.ozer}@arm.com; J.-L. Poupat, Airbus Defence and Space, 1 Boulevard Jean Moulin, Elancourt 78990, France; email:

jean-luc.poupat@airbus.com; G. Gimenez, Dolphin Integration, 1bisA Chemin du Pre Carre, Meylan 38240, France; email:

gregoire.gimenez@dolphin.fr; H.-U. Zurek, Atmel Automotive GmbH, Parkring 4, Garching bei München 85748, Germany;

email: ulrich.zurek@atmel.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

0734-2071/2019/06-ART7 $15.00

https://doi.org/10.1145/3323917

ACM Transactions on Computer Systems, Vol. 36, No. 3, Article 7. Publication date: June 2019.

mailto:permissions@acm.org
https://doi.org/10.1145/3323917

7:2 X. Iturbe et al.

ACM Reference format:

Xabier Iturbe, Balaji Venu, Emre Ozer, Jean-Luc Poupat, Gregoire Gimenez, and Hans-Ulrich Zurek. 2019. The

Arm Triple Core Lock-Step (TCLS) Processor. ACM Trans. Comput. Syst. 36, 3, Article 7 (June 2019), 30 pages.
https://doi.org/10.1145/3323917

1 INTRODUCTION

The susceptibility of modern processors to radiation-induced soft errors is dramatically increas-
ing with the exponential growth of transistor count per chip. Small technology nodes use lower
operating voltages, which in turn reduce the energy necessary to provoke a voltage pulse at the
output of a logic gate, or to invert the value stored in a flip-flop or memory cell (Degalahal et al.
2006). Therefore, lower-energy particle strikes that did not pose any threat in past technology gen-
erations can induce soft errors in future generations. To make things worse, the rate of particle
strikes increases exponentially as the energy level of the particles decreases (Amort et al. 2011;
Johnston 2000), and cumulative radiation can eventually result in permanent damage in the chip,
that is, latch-ups or hard errors (Hargrove et al. 1998).

Soft errors have been recognized as one of the most important limits for digital electronic reli-
ability (Normand 1996). They threaten millions of processors operating at the heart of terrestrial
safety-critical equipment, ranging from cars to pacemakers, and provoke important economic loses
and brand reputation damage when they affect other non-safety-critical equipment, such as space
exploration avionics, telecom satellites, and data center servers.

Several solutions have been proposed to mitigate soft errors. These range from using specialized
rad-hard process technology (BAE Systems 2008) to architecture and circuit level fault-tolerance
techniques, but are dominated by the use of redundant components. Redundant transistors and
metal layers are used at the process level (Calin et al. 1996; Lin et al. 2011), flip-flops and Error
Correction Codes (ECCs) at the circuit level (Aeroflex Gaisler 2015; Ghahroodi et al. 2013), CPU
cores and fault supervision circuits at architecture levels (Arm Ltd. 2011; Infineon Tech. 2012;
Kuschel et al. 2010; Maxwell Tech. 2013), as well as software processes and virtualized partitions at
the software/hypervisor level (Jeffery and Figueiredo 2012; Resch et al. 2013). However, redundant
components at the circuit and process levels limit the achievable CPU performance, namely, the
highest usable clock frequency (Ghahroodi et al. 2013; Vorago Tech. 2017).

Currently available space-grade processors are usually based on decades-old designs manu-
factured with rad-hard process technology, which is very expensive, power hungry, and slow
(Aeroflex Gaisler 2015; Atmel Corp. 2004; BAE Systems 2008; Lockheed Martin 1995; Moog Broad
Reach 2015). For instance, the RAD750, which is one of the most used processors in ongoing space
missions today, including NASA’s Curiosity Mars rover, shows five to six orders of magnitude
better in radiation tolerance than its commercial PowerPC-750 counterpart, at a reported cost of
around $200,000 (in 2002) and with a maximum usable clock frequency of only 200MHz, which
limits the maximum achievable performance to only 400 DMIPS (Rhea 2002). This performance
limitation is slowing down the adoption of new architectures in space applications, such as AR-
INC 653, and is preventing the transition from channel-switching to packet-switching telecom
satellites (Poupat et al. 2017). In order to deal with this performance crisis, some space agencies
and satellite manufacturers have started to consider using COTS processors (ESA/ESTEC 2018a;
Iturbe et al. 2016a; NASA 2015; Pignol 2010; Poupat et al. 2017).

Another driving force for using COTS processors in space might well be the “New-Space” com-
panies that look to reduce the traditional prohibitive costs of space applications and open new
profitable markets for them (Vernile 2018). Namely, SpaceX, OneWeb, and others have announced
a billionaire investment to set up the largest satellite constellations in history to serve as the

ACM Transactions on Computer Systems, Vol. 36, No. 3, Article 7. Publication date: June 2019.

https://doi.org/10.1145/3323917

The Arm Triple Core Lock-Step (TCLS) Processor 7:3

backbone for the Internet of Things (IoT) (ESA/ESTEC 2018b). These constellations, which will
mainly operate in Low Earth Orbits (LEO), demand for affordable space-qualified processors avoid-
ing as much as possible the use of rad-hard process technology.

On Earth, where exposure to radiation is limited, high-performance and energy-efficient COTS
Arm processors are currently used in many terrestrial safety-critical applications conforming to
fail-safe standards such as ISO 26262 and IEC 61508. The reliability level required by these stan-
dards is achieved using Dual Core Lock-Step (DCLS) architectures (e.g., Arm Cortex-R (Arm Ltd.
2011)), which integrate two twin CPUs that execute the same program simultaneously and com-
pare the outputs at all times to detect errors (i.e., divergences). Upon the detection of an error, the
CPUs are either reset or rolled back to a previously saved correct state (i.e., checkpoint) (Gizopoulos
et al. 2011). While virtually no errors can escape undetected from the DCLS architecture, a single
error can still cause a critical computation deadline to be missed due to the delay introduced by
the error recovery process, typically in the range of milliseconds. This is an important limitation
for fail-functional applications, such as autonomous vehicles, which need to recover from errors
without degrading the system operation (Iturbe et al. 2018; Koopman and Wagner 2016).

This article discusses in detail the Arm Triple Core Lock-Step (TCLS) processor concept, which
has already been outlined in Iturbe et al. (2016c), and demonstrates its use in a prototypic TRL4
System-on-Chip (SoC) that has been tested in the laboratory to power an Airbus Defence and Space
(D&S) telecom satellite. The TCLS processor adds a third CPU with the dual objective of allowing
critical computations to continue executing in the event of individual CPU errors (i.e., using the
two remaining functional CPUs), and accelerate the subsequent error recovery process. In fact, the
TCLS implements a quick, transparent and reliable mechanism to recover from soft errors, thus
relaxing and even removing the need to use rad-hard technology in space applications, and paving
the way for building fail-functional sub-systems in terrestrial applications. The proof-of-concept
TCLS processor discussed in this article uses Arm Cortex-R5 CPUs (Arm Ltd. 2011) and can recover
from individual CPU errors within microseconds. The article also explains a novel high resilience
CPU mode to execute high-criticality software routines using the least possible amount of micro-
architecture components, thus increasing the resilience of the TCLS processor without impacting
the achievable performance.

The remainder of the article is organized as follows. Section 2 introduces related work in fault-
tolerant and rad-hard processors. Then Section 3 describes the Arm Cortex-R family of DCLS pro-
cessors, which is the baseline for the TCLS processor, and discusses the most vulnerable structures
within the Cortex-R5 CPU micro-architecture. Afterward, Section 4 explains the TCLS architecture
and describes its functioning, putting an emphasis on the error detection and recovery mechanism.
Section 5 then describes the TCLS-based SoC that has been prototyped for use in Airbus D&S tele-
com satellites and provides results for both FPGA and ASIC implementations. Finally, Section 6
concludes the article.

2 RELATED WORK

Space is a harsh environment where electrons, protons, and heavy ions present in galactic cosmic
rays and cosmic solar flares as well as trapped in Van Allen belts provoke undesired effects to
electronic circuits (Normand 2000). These effects include Total Ionizing Dose (TID), which refers to
the accumulation of ionizing dose deposition over time that eventually damages the semiconductor
material, and Single Event Effects (SEEs) or soft errors, caused by instantaneous high ionizing dose
deposition when a highly energized particle such as a heavy ion strikes a transistor. The circuit
type and semiconductor technology as well as the localization and amount of deposed charge by
the radiation particle defines if a SEE is triggered and the type of that SEE. The most common type

ACM Transactions on Computer Systems, Vol. 36, No. 3, Article 7. Publication date: June 2019.

7:4 X. Iturbe et al.

Table 1. Summary of Rad-Hard Processors and SoCs for Space Missions

Processor Year # of Cores Arch. SEU/bit-day DMIPS/MHz max. DMIPS mW/MHz max. W

TSC695 1997 1 SPARCv7 1E-8 0.8 20 40 1

RAD6000 1997 1 PowerPC 1E-10 1.0 35 25 5

RAD750 2001 1 PowerPC 1.6E-10 2.0 400 25 5

AT697 2003 1 SPARCv8 1E-5 0.9 100 10 1

BRE440 2009 1 PowerPC 6.8E-5 2.0 300 50 8

GR712RC 2009 2 SPARCv8 unknown 1.3 280 15 1.5

UT700 2014 1 SPARCv8 5.2E-7 1.2 233 40 4

GR740 2016 4 SPARCv8 unknown 1.8 1,700 24 6

RAD5545 2016 4 PowerPC 2E-9 3.0 5,600 38 17.7

of SEE is the Single Event Upset (SEU). Smaller technology nodes are naturally more resilient to
TID, but more sensitive to SEE (Amort et al. 2011).

There are two main radiation hardening methods that are used in integrated circuits destined
for space applications: Rad-hard by Process (RHBP) (Dawes et al. 1976) and Rad-Hard by Design
(RHBD) (Amort et al. 2011; Lacoe et al. 2000; Scholastique and Hili 2017). RHBP consists in using
advanced semiconductor manufacturing processes and materials for mitigating radiation effects,
including Silicon on Insulator (SOI) (Romanko and Clegg 2005) and Silicon on Sapphire (SOS)
technologies (Schlesier 1974). These special processes require a big economic investment, and do
not allow the dense integration scale that can be achieved using the standard and much cheaper
commercial semiconductor processes, which are driven by the consumer marketplace. On the other
hand, RHBD provides radiation tolerance at the expense of a larger area by using standard cells that
include redundant transistors (e.g., Dual-Interlocked Storage Cells—DICE (Berg 2013)), guard rings
around p-wells and n-wells (Shaneyfelt et al. 1998), or modifying the geometry of the transistors
(e.g., annular, ring, and edgeless transistors (Anelli et al. 1999)). Although RHBD libraries can
still be manufactured using commercial semiconductor processes, they are usually combined with
RHBP in space-grade circuits to achieve the highest radiation tolerance levels.

Table 1 summarizes the most important processors and SoCs that have been successfully used in
space missions so far (Ginosar 2012), as well as the latest generation of space-grade processors and
SoCs that have been recently released but not yet debuted in space missions. The space-proven
processor list includes BAE RAD6000 (Lockheed Martin 1995), BAE RAD750 (BAE Systems 2008),
Atmel TSC695/ERC32 (Atmel Corp. 2004), Atmel AT697/LEON-2FT (Atmel Corp. 2011), Cobham-
Aeroflex UT700/LEON-3FT (Aeroflex Gaisler 2015), Broad Reach BRE440 (Moog Broad Reach 2015),
and Cobham-Gaisler GR712RC/LEON3-FT (Cobham 2016). Note that all these processors are man-
ufactured using rad-hard process technology and offer very limited computation capabilities com-
pared with non-space COTS devices. In fact, all of them are 32-bit single-core processors, except
for the Cobham-Gaisler GR712RC/LEON3-FT dual-core SoC. The latest generation of space-grade
SoCs, which have yet to be used in a real mission, include the 32-bit quad-core Cobham-Gaisler
GR740/LEON4-FT (Hjorth et al. 2015) and the 64-bit quad-core BAE RAD5545 (BAE Systems 2017).
The latter RAD5545 SoC promises unprecedented performance for space applications at the price
of a dramatic increase of energy consumption, which will bring major problems for use in small-
medium spacecrafts and exploration rovers where the processor power is constrained to 12 W
(Doyle et al. 2014). Meeting the power budget in these systems will require reducing the clock fre-
quency or the number of active cores at the same time, in both cases impacting the performance.

On Earth, SEEs are less frequent and hence there is no need for using any rad-hard method at
all (Atmel Corp. 2016). Instead, DCLS is the most commonly used architecture to meet the safety

ACM Transactions on Computer Systems, Vol. 36, No. 3, Article 7. Publication date: June 2019.

The Arm Triple Core Lock-Step (TCLS) Processor 7:5

integrity requirements imposed by the various functional safety standards, such as IEC 61508 and
ISO 26262. Lock-step has the great advantage of achieving the best error detection with small
impact on the usable maximum clock frequency. However, DCLS still results in increased area
and power overheads and can only detect errors manifested in the CPU output ports. Internal
architectural states (e.g., registers) are not checked directly, only indirectly if they influence an
output state.

Lock-step architectures with three or more chips enable the use of proven COTS computing
technology in space applications (after completing a qualification process) (Pignol 2010). For exam-
ple, the NASA Orion spacecraft uses three redundant computers, each consisting of two PowerPC-
750FX processors running in lock-step (Whitwam 2014), and the on-board computer in NASA’s
CALIPSO spacecraft uses four PowerPC-603 processor chips (DeCoursey et al. 2006). However,
although the PowerPC-603 processors can run up to 240MHz, they can be clocked only at 160MHz
to meet the power constraints in the spacecraft. This illustrates the limitations brought about by
outdated processor technology. In Saito et al. (2001), the authors describe the on-board computer
of the JAXA INDEX satellite that uses three Hitachi SH-3 COTS microcontrollers and a centralized
voter implemented in a space-qualified FPGA. This computer needs as long as 2s to recover from
an error. In Hillman et al. (2003), the authors describe a similar computing platform using three
PowerPC-750FX microprocessor chips and also a centralized voter implemented on a rad-tolerant
FPGA. This computing platform has been commercialized by Maxwell Technologies under the
name SCS750, and is able to deliver 1,800 MIPS and recover from an error in about 1ms (Maxwell
Tech. 2013). Central in all these approaches is the scrubbing routines that periodically remove er-
rors in the memories and redundant processors. The Computer Space Processor (CSP) designed
by the NSF Center for High-performance Reconfigurable Computing (CHREC) relies on a COTS
Xilinx Zynq SoCintegrating a 7-Series FPGA fabric and a dual-core Arm Cortex-A9 processor—to
perform critical computations, and supervised by rad-hard devices (i.e., reset and watchdog cir-
cuits) (Rudolph et al. 2014). The CSP processor will be part of future NASA missions, including the
Space test Program-Houston 5-ISS SpaceCube experiment (Wilson et al. 2014) and the Compact
Radiation BElt Explorer (CeRES) heliophysics CubeSat (Kanekal et al. 2014). Likewise, GomSpace
commercializes a small rugged computing module (NanoMind Z7000) for on-board payload data
processing also powered by a Xilinx Zynq SoC (GomSpace A/S 2017).

Arm-based lock-step microcontrollers and SoCs are very popular in terrestrial safety-critical
applications thanks to their superior performance and energy efficiency. The TI Hercules family
of 32-bit microcontrollers are based on Arm Cortex-R4 and R5 CPUs configured in DCLS and are
intended to simplify functional safety certification for IEC 61508 SIL 3 and ISO 26262 ASIL D levels
(Texas Instruments 2014). The Infineon Tricore family of 32-bit microcontrollers is based on Arm
Cortex-M0 and M4 configured in DCLS and mainly targets automotive and industrial applications
(Infineon Tech. 2012). Renesas has recently unveiled the R-Car H3 SoC to pave the way for driver-
less and autonomous cars. This SoC includes four Arm Cortex-A57 CPUs, four Arm Cortex-A5
CPUs, and two Arm Cortex-R7 CPUs configured in DCLS (Renesas 2015). NXP (now acquired by
Qualcomm) offers a wide Arm-based portfolio of microcontrollers for ISO 26262 compliant auto-
motive and IEC 61508 compliant industrial applications (NXP 2012). Following the path started
with the Zynq SoC, Xilinx has integrated a dual/quad-core Arm high-performance Cortex-A53
processor, an Arm safety-related Cortex-R5 DCLS processor, and a reconfigurable FPGA fabric in
a SoC device (Hansen 2016).

An important additional advantage of Arm processors is the vast software ecosystem and huge
user base backing them. For instance, Arm defines and maintains a Cortex Microcontroller Soft-
ware Interface Standard (CMSIS) to enable consistent device support and simple software inter-
faces among all Arm-centric microcontrollers developed by silicon partners. CMSIS simplifies

ACM Transactions on Computer Systems, Vol. 36, No. 3, Article 7. Publication date: June 2019.

7:6 X. Iturbe et al.

software reuse and reduces the learning curve for microcontroller developers as well as the time to
market for new Arm-based devices. This contrasts with the small penetration of currently available
space-grade processor architectures (i.e., SPARC and PowerPC), which has impeded the complete
development of the space sector. At the dawn of the “NewSpace” era, space applications still remain
the domain of a small number of players.

These four features of Arm processors, energy efficiency, high performance, wide software
ecosystem, and popularity, have attracted both NASA and ESA, as well as other aerospace and
silicon companies to develop new computing solutions using Arm COTS technologies. Namely,
NASA has put its attention on Cortex-A CPUs and is working in collaboration with the Goddard
Space Flight Center (GSFC), the Air Force Research Laboratory (AFRL), and Boeing on designing
a next-generation high-performance space flight dual quad-core processor using Arm Cortex-A53
CPUs (64-bit, 2.3 DMIPS/MHz) (NASA 2015). On the other hand, ESA is trying to move toward
more modular, cost-effective and reusable space avionics, where functionalities currently central-
ized in the main on-board computer would be distributed throughout a number of simpler mod-
ules powered by a Cortex-M-based microcontroller (ESA/ESTEC 2018a). Companies like Cobham,
Atmel, Texas Instruments, Vorago, and Renesas, are already developing Cortex-M and R-based
microcontrollers for space (e.g., Atmel Corp. (2016)), and the Vorago VA10820 Cortex-M0-based
microcontroller is already been used in several spacecraft applications, either as a main controller
on small satellites or as a watchdog/safety monitor to a more powerful device such as an FPGA
(Vorago Tech. 2017). However, most of the solutions described here rely to some extent on RHBP
techniques, which impacts the cost, performance, and energy consumption.

The Arm TCLS processor described in this article is an experimental and pre-commercial de-
sign created by Arm Research to allow cost-efficient Arm-based computing in space applications.
Namely, TCLS implements the redundant CPUs within the same chip to keep the best power-
to-performance ratio, and uses exclusively commercial semiconductor processes to allow the de-
sign to scale with the shrinking commercial technology nodes and reducing manufacturing costs
compared to currently available full rad-hard solutions (i.e., RHBD + RHBP). Furthermore, TCLS
decouples the CPUs from memory to ease and speed up the error recovery process, which can
be completed within microseconds, and implements a number of innovations to make the whole
design more resilient and effective.

3 THE BASELINE: ARM CORTEX-R DCLS PROCESSORS

As introduced above, Arm Cortex-R class embedded processors are widely used in microcontrollers
and SoCs for terrestrial safety-critical applications, and are starting to be seen as an alternative to
deal with the performance limitations and energy inefficiency of current space-qualified processors
(Poupat et al. 2017).

In safety-critical applications, Cortex-R processors are typically used in DCLS configuration,
where two identical CPU cores share primary core’s TCMs, caches, and peripheral ports. The
outputs of the two CPUs are compared at every clock cycle to detect and isolate errors, preventing
them from propagating to memories and input/output interfaces. In order to enable detection of
common-source faults, such as glitches in the clock tree, the primary CPU runs two clock cycles
ahead of the secondary CPU. This time diversity ensures that a common-source fault does not
affect the two CPUs in the same way because each CPU is in a different architectural state. Cortex-
R processors implement a number of features with a focus on dependable real-time performance
(Arm Ltd. 2011), including (1) Tightly Coupled Memories (TCMs) to store instruction and data for
bounded real-time response, (2) a micro Snoop Control Unit (uSCU) to maintain data coherency
with the data cache when dealing with DMA transactions in real-time streaming applications, and
(3) Low-Latency Peripheral Port (LLPP) to carry out fast communications with external peripherals

ACM Transactions on Computer Systems, Vol. 36, No. 3, Article 7. Publication date: June 2019.

The Arm Triple Core Lock-Step (TCLS) Processor 7:7

Fig. 1. Arm Cortex-R5 micro-architecture and micro-components.

through AXI and AHB on-chip buses. On-chip busses and memories, including caches and TCMs,
are protected with built-in safety features.

3.1 The Cortex-R5 CPU Micro-Architecture

The Cortex-R5 CPU has an eight-stage pipelined in-order dual-issue 32-bit micro-architecture with
five execution paths (Arm Ltd. 2011). It implements the ARMv7-R instruction set and also supports
Thumb-2 for high code density. Figure 1 depicts the Cortex-R5 micro-architecture and the per-
centage of the total CPU sequential elements used by each micro-component (i.e., flip-flops and
memory cells). In this figure, we use the prefix IF x to refer to the interface that a given micro-
component x exposes in the CPU boundaries.

There are 5 CPU micro-components related to the cache memories: (1) the data cache con-
troller (DCACHE), (2) the instruction cache controller (ICACHE), (3) the common logic for both
controllers (CACHE-LOGIC), (4) a master AXI bus interface to access the main memory (CACHE-
AXIM), and (5) the cache store buffer (CACHE-STB), which includes four 64-bit independent slots
where data is buffered prior to being written in the main memory or data cache. Interestingly, the
cache store buffer is not used when writing data in TCMs. In this study, we use 16KB instruction
and data cache memories. Caches and TCMs are protected against soft errors using parity checking
and ECC (i.e., SECDED). A small cache memory is also included to replace up to 64 TCM memory
cells when these get permanently damaged.

ACM Transactions on Computer Systems, Vol. 36, No. 3, Article 7. Publication date: June 2019.

7:8 X. Iturbe et al.

Fig. 2. Fault propagation and dependability terminology in Cortex-R5 DCLS processor.

The Pre-Fetch Unit (PFU) retrieves instructions from the instruction cache, TCM, or main mem-
ory and predicts the outcome of branches in the instruction stream to increase performance (e.g.,
conditionals, loops, and function returns). A pre-decode stage is used to accommodate branch pre-
diction and an instruction queue is implemented to keep the CPU pipeline fed with instructions
during branches. The Memory Protection Unit (MPU) captures and aborts non-authorized (i.e.,
illegal) memory accesses and the Load Store Unit (LSU) manages all load and store operations
efficiently.

The Floating Point Unit (FPU) is fully integrated within the Data Path Unit (DPU) pipeline (i.e.,
not a separate co-processor) and there is a hardware Multiply and Accumulate (MAC) unit and a
divider for high-performance calculations. We have broken the DPU down into 10 major micro-
components. The (1) DPU-REGBANK and (2) DPU-FREGBANK are the integer and floating-point
register files, respectively. The visible registers at a given point of time depend on the processor
mode at that time (e.g., user, privileged). The (3) DPU-CPSR includes the Current Program Status
Register (CPSR) and five Saved Program Status Registers (SPSRs) to be used by exception handlers.
The (4) DPU-BR is responsible for the majority of the PFU interface. The (5) DPU-DE implements
most of the DPU logic, including the main instruction decoder logic, the logic to detect dual in-
struction issue restrictions (e.g., instructions with the same destination), the logic to generate the
Program Counter (PC), the instruction queue logic, and the logic to translate the register numbers
into physical registers depending on the mode of the processor. The (6) DPU-CP includes the logic
for dealing with the co-processor instructions and implements the CP14 and CP15 registers used
to configure TCMs, caches, breakpoints, and watch-points. The CP15 registers also hold the con-
figuration related to the MPU, such as the number of memory regions defined (12 in this study)
and the base addresses, sizes, and memory types of these regions. The (7) DPU-DP instantiates the
main data-path modules involved in execution stages, such as the Arithmetic Logic Unit (ALU),
MAC, and divider, and also contains the multiplexors to select data to and from those pipelines.
The (8) DPU-FPU contains all the registers, and the data-path structures for the FPU pipeline. The
(9) DPU-LDST pipelines the various control signals required for load/store transactions with the
LSU. Finally, the (10) DPU-CTL implements all the control signals that are generic to the DPU
pipeline, that is, not associated with any specific data-path.

3.2 Vulnerabilities in the Cortex-R5 CPU Micro-Architecture

This subsection studies the effect of soft and hard errors in the Cortex-R5 processor and identifies
the most sensitive CPU structures. The study covers error propagation through the CPU micro-
architecture and manifestation in the CPU output ports, and extends a previous study that has
been published in (Iturbe et al. 2016b).

We use the dependability terminology presented in Avizienis et al. (2004). As shown in Figure 2,
in a DCLS processor this terminology can be applied as follows. A fault (e.g., soft error) is active

ACM Transactions on Computer Systems, Vol. 36, No. 3, Article 7. Publication date: June 2019.

The Arm Triple Core Lock-Step (TCLS) Processor 7:9

when it produces an error, which is manifested as a different value in one of the internal CPU’s
output ports. A failure occurs when an error (e.g., wrong computed data) is propagated outside
the processor, either to the I/Os or to the memories. In the Cortex-R5 DCLS processor, failures are
prevented by rolling the processor back to a safe state when a mismatch in any of the ports of the
two lock-step CPUs is detected.

A fault can remain dormant (i.e., latent), affect an idle component (i.e., a component that con-
tains no valid data), or can be masked at circuit or micro-architecture levels, preventing it from
being propagated to the CPU output ports. Circuit level masking occurs when a transient pulse is
gated from all possible target sequential elements (e.g., ANDed with a 0), attenuated by subsequent
combinational logic levels, or does not arrive within the capture window of the target sequential
element. Micro-architecture level masking occurs when the erroneous data is overwritten before
use, masked in subsequent logic operations, or simply has no effect in the computation (e.g., dead
instructions).

3.2.1 Fault Injection Experiments. Given the lack of specific benchmarks for space applications,
we used seven benchmarks from the EEMBC’s AutoBench suite that characterize the most com-
mon operations in safety-critical automotive applications. These include Controller Area Network
(CAN) canrdr01, tooth-to-spark ttsprk01 (i.e., locating the engine’s cog when the spark is ig-
nited), road speed calculation rspeed01, pulse-width modulation puwmod01, and table lookup and
interpolation tblook01. The remaining two benchmarks deal with matrix mapping operations
matrix01 and Finite Impulse Response (FIR) filters aifirf01, which are becoming increasingly
important for sensors used in engine knock detection, vehicle stability control, and occupant safety
systems. Note that these operations can be considered to be similar to those typically performed
on-board a telecom satellite.

We simulated the Cortex-R5 DCLS processor using the Synopsis VCS tool, which allowed us
to obtain accurate fault injection results at the RTL level without incurring the high economic
costs of irradiation tests, and avoiding the intractable device level simulation time (i.e., electrical
simulation). In fact, in order to reduce the simulation time in the fault injection experiments, we
ran only 10 iterations of each benchmark, taking between 125,000 and 782,000 clock cycles to
be completed. We did not use higher level abstraction models in our experiments (e.g., Gem5)
because of the accuracy loss (Kaliorakis et al. 2017). Namely, micro-architecture models do not
allow fault propagation delays to be measured with precision of clock cycles as they do not consider
non-architectural registers in the CPU pipeline. Secondly, micro-architecture models do not model
the CPU output ports and hence they do not allow one to observe manifested errors in the CPU
boundaries, which is one of the objectives of our fault-injection experiments. We have used this
information to design a more effective error recovery mechanism in the TCLS, as explained in
Section 4.2.

We considered the worst-case scenario where all sequential elements in the processor could
be affected by errors with the same probability. Hence, we injected faults in all the sequential
elements in the primary CPU core and relied on the DCLS comparator logic to detect error situa-
tions. Soft faults were injected by inverting the value stored in the sequential elements in the CPU
for a clock period, while hard faults were simulated by forcing the signal values at their opposite
levels for the rest of the benchmark execution (i.e., stuck-at faults). If the injected faults did not
manifest in the CPU boundaries, the architectural state of the two CPUs (i.e., register files, CPSR,
SPSRs, CP14/CP15, and MPU registers) were compared at the end of the benchmark execution to
detect latent errors. Therefore, this methodology slightly overrates the vulnerability of architec-
tural elements by considering all latent errors in them; however, not doing the final comparison
would result in a vulnerability underestimation as many of the value mismatches in architectural

ACM Transactions on Computer Systems, Vol. 36, No. 3, Article 7. Publication date: June 2019.

7:10 X. Iturbe et al.

Fig. 3. Fault injection experiments.

Fig. 4. Fault injection simulation runs.

elements would likely propagate to the CPU output ports and manifest as errors if the simulation
continued to run. The vulnerability overrating effect is more apparent when faults are injected
in later stages of the program execution as there is less time left for them to be masked. On the
other hand, the results are more accurate when errors are injected in early stages of the program
execution. For instance, early injected faults in a non-used register can still be masked when the
register is later used and an actual value is written to it.

In each fault injection experiment a single fault was injected in a given sequential element at a
given instant of time. For the sake of simplicity and aiming at covering the widest behavior of the
CPU, the benchmark execution time was divided into 64 equally sized time intervals (TMx), and
for each of these intervals a fault injection instant was randomly selected, as shown in Figure 3.
This means that up to 64 different faults were injected in each CPU sequential element at different
time intervals, each of them in a different fault injection experiment (shown as a subindex number
in Figure 3). On average one fault was injected per few hundred clock cycles, and in total, more
than 1 million fault injection experiments were conducted per benchmark.

The fault injection experiments were executed in the Arm Research Cluster at Cambridge, UK.
In order to reduce the overall simulation time, incremental simulation was used. As shown in
Figure 4, the simulation context was saved at the beginning of each new fault injection interval

ACM Transactions on Computer Systems, Vol. 36, No. 3, Article 7. Publication date: June 2019.

The Arm Triple Core Lock-Step (TCLS) Processor 7:11

Fig. 5. Soft errors: Number (in table) and percentage (in chart) of critical elements in each Cortex-R5

micro-component.

and then restored multiple times in each subsequent fault injection experiment, thus reducing
the span of time to simulate. Likewise, several fault injection experiments were packed together
(m in Figure 4) into a smaller number of simulation runs (j) with the dual objective of keeping
VCS initialization time to a minimum and exploiting execution parallelism in the Arm cluster.
The exact number of fault injection experiments that were packed together in each simulation
run was chosen, based on the simulation time of each particular benchmark, with the objective of
making the experiments run concurrently for the longest span of time (typically: 50 < m < 100).
We achieved a peak simulation speed greater than 30,000 fault injection experiments per hour.

3.2.2 Soft Error Analysis. Up to 5.6% of the injected soft faults resulted in an error manifested in
the CPU output ports. Likewise, up to 14.72% of the fault injection experiments resulted in a latent
error affecting the CPU architectural state, but they did not manifest in the CPU output ports.

As expected, the micro-components that provoke most of the errors in the CPU are the reg-
ister files: DPU-REGBANK and DPU-FREGBANK, which jointly account for at least 75% of the
total CPU errors. Note that a fault in these structures directly affects the data being processed,
which is a much more straightforward error propagation mechanism than in other CPU micro-
components where faults are more likely to affect data-path registers, and hence are more likely
to be masked. Moreover, register files are vulnerable to faults for longer periods of time than the
micro-components in data-paths, which are only vulnerable while the data-path is active. The
most notable example of this is the DPU-FPU, which remains idle when executing integer code,
and thus shows the lowest error rate among all CPU micro-components (less than 0.3%). A straight
error propagation mechanism similar to that of register files also dominates the CACHE-STB and
CACHE-AXIM, which are equipped with data buffers.

Errors also occur when a fault affects a global control register and corrupts the CPU configu-
ration/functioning. This error propagation mechanism dominates the DPU-CP micro-component
and can also be seen in a lesser extent in the DPU-CPSR.

Finally, the case of the PFU is very interesting as most of the faults affecting it are benign,
resulting in branch mispredictions that only impact the performance, but they are still considered
errors in a lock-step processor and reduce the availability of the system.

3.2.3 CPU Micro-Component Soft Error Vulnerability Analysis. Figure 5 categorizes each se-
quential element in the CPU into five Criticality Levels (CLs). Level 0 means that a fault in that
element never provokes an error (i.e., non-critical), whereas level 5 indicates that a fault in that
element always results in an error. Levels 1–4 cover different error rates in 25% increments each
(CL1: 1–25%; CL2: 25–50%; CL3: 50–75%, and CL4: 75–99%). Each element is classified in the high-
est CL shown in any of the benchmarks tested, and all functionally equivalent elements (e.g., same
data vector register bits) are classified in the same CL, equal to the highest CL among them.

ACM Transactions on Computer Systems, Vol. 36, No. 3, Article 7. Publication date: June 2019.

7:12 X. Iturbe et al.

Fig. 6. Error manifestation time (max., avg., and min.).

Note that more than half of the total sequential elements in the CPU never provoke an error
(i.e., CL0), and more than 70% of the errors are provoked by around only 2,000 sequential elements.
Since this represents less than 15% of the total sequential elements in the Cortex-R5 CPU, we
believe there are good opportunities for a notable reliability improvement with small area and
power consumption penalties. These results are used in Section 4.3 to propose a high resilience
CPU mode that minimizes the number of vulnerable sequential elements used in the processor
pipeline when executing high-criticality routines.

As shown in Figure 5, the register files solely account for more than 90% of the total CL5 elements
in the CPU. The floating-point register file contributes with around 24% more CL5 elements than
the integer register file, but on the other hand, the integer register file has the greatest combined
number of CL4 and CL3 elements and the least number of non-critical CL0 elements among all
CPU micro-components. This reflects the fact that integer registers are far more frequently used
than floating-point registers (this is why there are very few CL0 elements), but tend to have shorter
lifetimes (this is why some faults do not corrupt actual data, leading to fewer CL5 elements). Other
micro-components where data remains buffered for a significant amount of time (e.g., CACHE-STB
and CACHE-AXIM) also have a very reduced percentage of their elements classified in CL0, while
this does not happen in the micro-components that store data for only a few clock cycles, such as
the LSU and DPU-LDST.

Both DPU-CTL and especially DPU-DE show a low rate of CL0 elements, which is likely to be
the result of the central role they play in executing every single instruction in the CPU. In fact,
the most critical structure in the DPU-DE is the instruction queue. However, there are no CL4 nor
CL5 elements in the DPU-DE. This can be due to the fact that not all instructions buffered in the
instruction queue are finally executed by the CPU because of branches and some of the executed
instructions are dead instructions that generate unused results. In the DPU-CTL, the most critical
structures are the exception handler logic and the PC pipeline.

Control registers, such as CP14/CP15 registers in the DPU-CP, tend to be classified in CL5 as
they have the potential to affect a large number of instructions, directly or indirectly, eventually
resulting in processed data errors. On the other hand, data-path registers, which usually have very
short lifetimes, tend to be classified in more relaxed criticality levels. For instance, the DPU-DP
and DPU-FPU execution units do not have any element classified in CL3, CL4, and CL5.

The error rate in the PFU is well dispersed along different CLs, reflecting the random accesses to
the branch predictor table during the program execution. The latter table and the return-address
stack are the most critical structures in this micro-component.

3.2.4 Soft Error Propagation and Latent Fault Analysis. Figure 6 shows the maximum, average,
and minimum number of clock cycles that take soft faults injected in each micro-component to
propagate to the CPU output ports.

ACM Transactions on Computer Systems, Vol. 36, No. 3, Article 7. Publication date: June 2019.

The Arm Triple Core Lock-Step (TCLS) Processor 7:13

Fig. 7. Error manifestation time histogram in execution units.

Note that all of the CPU micro-components have a minimum error manifestation time equal to
or less than seven clock cycles, whereas the average error manifestation time in the whole CPU is
683 clock cycles. Indeed, it is interesting to see the high variability of the error manifestation time
across the different CPU micro-components, which can be as high as tens of thousands of clock
cycles.

As expected, errors propagate more quickly when they affect processing data, which is the case
in LSU, CACHE-STB, DPU-LDST, DPU-DP, and DPU-FPU. Notably, the error manifestation time
is shorter in execution units, such as DPU-DP and DPU-FPU, than in data storage units, such as
register files. The reason for this is that data in execution units is more likely to be transferred to
the CPU outputs (e.g., memory) within a short time, while data stored in register files can remain
there for a long time. This is especially the case in floating-point operations. For example, when
performing a matrix multiplication, active matrix row and column values (or a subset of them)
are typically stored in floating-point registers (Lam et al. 1991). Therefore, the DPU-REGBANK,
which is typically involved in more immediate computations, shows significantly shorter error
manifestation time than the DPU-FREGBANK. The exceptions are some long-life integer variables,
such as indexes in iterative loops, which are stored in the DPU-REGBANK and processed in the
DPU-DP. Errors affecting these variables tend to manifest in the CPU ports after thousands of clock
cycles, which contrasts with the tens of clock cycles needed by the vast majority of the rest of the
errors in the DPU-DP (see Figure 7(a)). Hence, these long-life variables increase the average error
manifestation time in the DPU-DP, making it even greater than that in the DPU-FPU. In fact, the
latter DPU-FPU micro-component deals only with data variables, and therefore shows a uniform
error manifestation time distribution within a short time span in the range of tens of clock cycles
(see Figure 7(b)).

Branch prediction related components (i.e., PFU and DPU-BR) show a great dispersion in error
manifestation time, with the average in the range of hundreds of clock cycles and the maximum

ACM Transactions on Computer Systems, Vol. 36, No. 3, Article 7. Publication date: June 2019.

7:14 X. Iturbe et al.

Fig. 8. Hard errors: Number (in table) and percentage (in chart) of critical elements in each Cortex-R5 micro-

component.

reaching tens of thousands of clock cycles. This emphasizes the randomness of the error propa-
gation mechanism in these components, which highly depends on the arbitrary accesses to the
branch prediction table in the PFU. Finally, the DPU-CP shows one of the longest error manifes-
tation times, which suggests an intricate error propagation path of faults that corrupt the CPU
configuration/functioning.

3.2.5 Hard Error Analysis. Up to 46% of the simulated hard faults resulted in errors manifested
as deviations at the CPU output ports. On the other hand, the number of latent errors provoked
by hard faults was negligible. As a result of a longer interference of stuck-at faults with the nor-
mal functioning of the CPU (i.e., a stuck-at fault can be seen as many soft faults injected at many
different points of time), there is a polarization of the criticality of CPU elements. As shown in
Figure 8, most of these elements are clustered in either CL5 (58%) or CL0 (37%) criticality levels,
with the remaining 5% elements falling mostly in the CL4 and CL3 categories. As hard fault in-
jection experiments are a superset of soft fault injection experiments, elements that showed some
vulnerability to soft faults are definitely classified in CL5. It is interesting to see that the most vul-
nerable CPU micro-components to hard errors are not only those that store user or configuration
data as occurred in soft error experiments, but also those which implement CPU control logic,
such as CACHE-LOGIC, DCACHE, ICACHE, DPU-DE, DPU-BR, and DPU-DP.

4 THE ARM CORTEX-R-BASED TCLS PROCESSOR

As depicted in Figure 9, the TCLS processor integrates three identical Cortex-R5 CPUs running in
lock-step and coordinated by a TCLS Assist Unit. The CPUs share a Vectorized Interrupt Controller
(VIC), AMBA Network Interconnect (NIC) unit, and ECC-protected TCMs and instruction/data
caches. In order to keep engineering and certification costs to a minimum, the Cortex-R5 CPUs
are not significatively modified. Only a few little combinational circuitries are added to them to
make their pipeline more resilient when executing high-criticality software routines, as explained
in Section 4.3.

The instructions to execute by the TCLS processor are read from the shared instruction cache
or TCM and distributed to the triplicated CPUs. At every clock cycle, the outputs delivered by the
CPUs are majority-voted in the TCLS Assist Unit and forwarded to peripherals, memories, and I/O
ports. Simultaneously, the CPU outputs are compared to detect errors. These can be correctable,
when two of the CPUs deliver the same set of outputs, or uncorrectable, when all of the CPUs
deliver a different set of outputs. In the highly unlikely case of uncorrectable errors, the TCLS tran-
sitions to a fail-safe operation state, in which it might force a global reset of the entire SoC where
it is integrated. In the event of correctable errors, the TCLS initiates a CPU resynchronization pro-
cess to correct the architectural state of the wrong CPU, as described in Section 4.2. The processor
can be configured to carry out the CPU resynchronization either immediately or on-demand upon

ACM Transactions on Computer Systems, Vol. 36, No. 3, Article 7. Publication date: June 2019.

The Arm Triple Core Lock-Step (TCLS) Processor 7:15

Fig. 9. TCLS architecture overview.

detecting an error. The latter on-demand recovery is driven by software and is useful to prevent
the interruption of critical hard real-time tasks and maintain data integrity. Note that the TCLS
can still work safely with only two functionally correct CPUs (in DCLS configuration).

In order to prevent the accumulation of latent soft errors, which might eventually result in
uncorrectable error situations, the CPUs in the TCLS processor should be periodically scrubbed
using the same CPU resynchronization procedure triggered in correctable error situations (i.e.,
preventive scrubbing). In fact, this is a recommended technique by the ISO 26262 safety standard
to improve the Latent Fault Metric (LFM) in automotive applications. The CPU scrubbing interval
can be configured by software.

The TCLS in conjunction with the ECC-protected TCM, where the error recovery routines are
held, enable the creation of a Reliable Root Node that can be used to execute error detection and
recovery routines (e.g., BIST routines) to protect other components in the SoC (e.g., peripherals
and memories).

4.1 TCLS Assist Unit

Figure 10 shows the four main parts in the TCLS Assist Unit: (1) Majority voter, (2) Error detection
logic, (3) CPU resynchronization logic, and (4) Control registers. As shown in the figure, the TCLS
Assist Unit can also be configured to include support for injecting errors in selected CPU outputs,
which is very useful to carry out chip manufacturing tests and real-time performance tests in error
scenarios.

The most vulnerable parts, such as the CPU resynchronization logic and control registers, are
protected against soft errors as described in Section 4.1.2. This is recommended by the ISO 26262
standard to improve the Single Point Fault Metric (SPFM) in terrestrial automotive applications.
For space use, the TCLS Assist Unit is to be implemented using RHBD libraries, as described in
Section 5.1. Since this unit represents only a fraction of the total TCLS processor, cost, performance,
and power consumption overheads can still be kept to a minimum.

4.1.1 Majority Voter and Error Detection Logic. The majority voter acts as an error propagation
boundary, masking correctable errors and preventing them from propagating to the caches and

ACM Transactions on Computer Systems, Vol. 36, No. 3, Article 7. Publication date: June 2019.

7:16 X. Iturbe et al.

Fig. 10. Block diagram of the TCLS assist unit.

ACM Transactions on Computer Systems, Vol. 36, No. 3, Article 7. Publication date: June 2019.

The Arm Triple Core Lock-Step (TCLS) Processor 7:17

Fig. 11. Internal structure of the comparators in the TCLS error detection logic.

TCMs. This reduces the error recovery time as the memory state does not need to be restored. All
CPU output ports are majority voted in TCLS.

The error detection logic identifies correctable and uncorrectable errors within the CPUs. In ad-
dition to the CPU output ports, a reduced number of internal CPU signals are also monitored to
allow detection of errors before they propagate to other CPU parts. Upon detecting an error in a
CPU internal signal, specific recovery actions for the affected CPU micro-component are started.
When the on-demand error recovery mode is enabled, the erroneous CPU is immediately stopped
(i.e., clock signal disabled) to prevent error propagation within it until starting the recovery ac-
tions. This is much quicker than waiting for the error to propagate to the CPU output ports and
then correcting all architectural registers. The internal CPU signals to expose to the error detection
logic are carefully chosen to increase the error detection coverage.

Register files, which account for more than 75% of the total errors in Cortex-R5 CPUs (see Sec-
tion 3.2), offer an excellent opportunity to detect errors as most of the instructions executed by
the CPUs involve accesses to them, either to read operands or to write results computed by the
execution units. Likewise, the cache store buffer interface allows for detecting errors in execution
units that corrupt data to be written directly to memory (i.e., without being previously stored in
register files). Hence, the internal CPU signals that are exposed to the error detection logic are (1)
the two 32-bit write ports in the integer and floating-point register files, and (2) the 64-bit data and
32-bit address ports in the cache store buffer interface. In total, we expose less than 250 internal
CPU signals, which represents around a 9% increase in the total number of monitored signals.

As shown in Figure 11, there are three different groups of signals that are monitored by the
TCLS error detection logic: (1) the CPU output ports, (2) the internal CPU signals discussed above,
and (3) the CPU output ports in the TCM interface. These are less than 200 ports in the Cortex-R5
and play a major role in the CPU resynchronization process. In fact, these are the only ports that
are monitored while conducting a CPU resynchronization in order to avoid benign errors that
might be provoked by other CPU micro-components that are not exercised at these times (e.g.,
CACHE-AXIM).

The comparators in the error detection logic process each group of monitored signals in separate
XOR chains, as shown in Figure 11. Each chain results in an error signal that is flagged when there is
a mismatch in its input signals: (1) “Full_Resync” indicates errors in the standard CPU output ports,

ACM Transactions on Computer Systems, Vol. 36, No. 3, Article 7. Publication date: June 2019.

7:18 X. Iturbe et al.

(2) “Reduced_Resync” indicates errors in the CPU internal signals, and (3) “Uncorrectable” indi-
cates uncorrectable errors in the TCM ports when carrying out a CPU resynchronization. Although
not shown in Figure 11, the comparators also indicate the group of internal CPU signals where the
error was detected (i.e., write ports in integer/floating-point register files or cache store buffer in-
terface). Full_Resync and Reduced_Resync signals generated by the comparators are combined to
detect correctable and uncorrectable error situations (see Figure 10). In correctable error situations,
each of these signals triggers different error recovery actions in TCLS, as explained in Section 4.2.

Both error detection logic and majority voter are essentially combinational, but while the bit-
wise majority voter involves very few logic levels, the error detection logic involves vector-wise
comparison of the thousands of CPU output ports and hence needs to be pipelined as shown in
Figure 11. Since errors are reasonably rare, it is extremely unlikely that a fault affects a pipelining
register during one of the particular clock cycles when it is active. Hence, most of the faults that
affect these registers will result in false-positive detected errors.

4.1.2 CPU Resynchronization Logic and TCLS Control Registers. As shown in Figure 10, the CPU

resynchronization logic is built around a six-state Finite State Machine (FSM) that interacts with the
CPUs during the error recovery process. The FSM is implemented with the capability to jump to a
defined recovery state if an illegal state is reached due to a soft error. This is achieved by encoding
each FSM state using one-hot codes and directing the undefined states with multiple “1”s to the
TCLS Fail Safe recovery state.

The functioning of the FSM is directed by the configuration stored in the TCLS control regis-

ters, which are accessible by software through a memory-mapped AHB slave peripheral interface.
These registers are used, for instance, to enable/disable the TCLS configuration, configure the er-
ror recovery mechanism to be immediate or on-demand, or keep status information including the
erroneous CPU id and the number of errors detected. Data integrity in the TCLS registers is pro-
tected with a technique that combines one-hot encoding and parity bits (Venu et al. 2016). Namely,
the error protection bits are interleaved with data bits in the registers to maximize error detection
coverage and an FSM-centric logic continuously checks these bits to detect upsets, which are au-
tomatically corrected within a few clock cycles. The latter FSM also uses one-hot encoding to cope
with illegal state transitions provoked by soft errors.

4.2 TCLS Error Recovery Process: CPU Resynchronization

The CPU resynchronization process in the TCLS processor consists of two assembly routines:
SAVE and RESTORE. The code of these two routines, as well as the data structures involved in the
CPU resynchronization process, are stored in the ECC-protected TCM. This reduces the amount
of CPU hardware and ports exercised while carrying out the resynchronization process to avoid
unnecessary uncorrectable errors. As shown in Figure 1, TCMs are directly accessed from the
LSU micro-component, circumventing the use of the cache store buffer in the CACHE-STB micro-
component and the cache access interface, which comprises significantly more ports than the
interface of the TCM.

SAVE is the Interruption Servicing Routine (ISR) to handle the fast interruption (FIQ) issued
by the TCLS Assist Unit upon detection of a correctable error. When servicing this ISR, the CPU
pipeline is automatically flushed and the PC saved. As discussed in Section 4.1.1, the action taken
when executing SAVE ISR depends on the error signal generated by the comparators in the error
detection logic (i.e., Full Resync or Reduced Resync).

If the error is manifested in the standard CPU output ports, the SAVE ISR pushes out the entire
architectural state of the three CPUs, that is, register files and configuration registers. In Cortex-R5
CPUs this includes pushing out the value of 113 registers, which are passed through the majority

ACM Transactions on Computer Systems, Vol. 36, No. 3, Article 7. Publication date: June 2019.

The Arm Triple Core Lock-Step (TCLS) Processor 7:19

Fig. 12. Full CPU Resynchronization when error is detected in CPU output ports.

voter in the TCLS Assist Unit and stored in a Program Stack mapped to the ECC-protected TCM.
We name this recovery process as full CPU resynchronization and is shown in Figure 12.

If the error is detected in the CPU internal signals, the SAVE ISR pushes only the affected set
of architectural registers. More specifically, if the error is observed in the write ports of register

ACM Transactions on Computer Systems, Vol. 36, No. 3, Article 7. Publication date: June 2019.

7:20 X. Iturbe et al.

files, then only 30 integer registers or 32 floating-point registers are pushed out, majority voted,
and stored in the Program Stack mapped to the ECC-protected TCM. If the error is observed in the
cache store buffer interface, no register is pushed out, but memory barriers are executed to force
incorrect data in the cache store buffer to be immediately drained to memory and not be reused by
the instructions in the CPU pipeline. In the latter case, the error detection logic ignores the sub-
sequent divergence observed in the CPU’s output write data ports. This shorter recovery process
helps increase the amount of time CPUs are performing active computation, thus improving the
system availability. We name it as selective CPU resynchronization.

If an additional divergence of a CPU other than the one that triggered the resynchronization
process is detected during the architectural state dump, the CPU resynchronization FSM in the
TCLS Assist Unit transitions to the fail-safe state as the system is considered to be not trustable
(i.e., uncorrectable error is assumed). This situation is indicated with the Uncorrectable error signal
generated by the comparators in the error detection logic.

In a full CPU resynchronization, the CPUs enter the Wait for Event (WFE) low-power standby
mode after executing the SAVE ISR. Simultaneously, the CPU resynchronization FSM activates an
internal Resynchronization Under Execution (RUE) flag in the TCLS control registers. When the
CPU resynchronization FSM observes the WFE signal, it issues a reset to the three CPUs to purge
any soft error that might exist in their micro-architecture and wakes them up from the standby
mode. When starting up, the CPUs check the RUE flag to distinguish between a normal reset and
a reset provoked by a CPU resynchronization process. In the latter case, the CPUs branch to the
RESTORE routine, which restores the previously saved architectural state from the TCM. Note
that the last register to be restored is the PC, when returning from the routine, thus resuming the
normal operation of the CPUs at the same point in the code where they were suspended to launch
the CPU resynchronization process.

In a selective CPU resynchronization, the CPUs jump to the RESTORE routine directly from the
SAVE ISR. Unlike in the full resynchronization, the CPU resynchronization FSM does not issue a
global reset to the CPUs to preserve the content of their micro-architecture registers, which are
believed to be correct. The RESTORE routine restores the required architectural registers back
from the TCM. As in the full CPU resynchronization, the last register to be restored is the PC,
thus resuming the normal operation of the CPUs. We have checked that most CPU errors are
corrected by performing a selective CPU resynchronization. The only errors that are not corrected
are those that affect the CPU configuration (e.g., CP14/CP15 and MPU registers), which occur in
less than 5% of the error scenarios discussed in Section 3.2. To deal with these cases, a full CPU
resynchronization (including a CPU reset) is carried out if an error is detected a short time after
completing a selective CPU resynchronization.

Permanent hard errors in the CPUs may result in a live-lock situation where the TCLS Assist
Unit forces continuous resynchronization operations. In order to deal with these locks, the TCLS
Assist Unit implements a software-writable control register where one can specify the maximum
number of CPU resynchronization attempts to be done within a certain period of time before
considering that the CPU is affected by a permanent error. In this situation, the TCLS switches to
DCLS mode and signals the need for replacement (useful in terrestrial applications).

Unlike in DCLS, where the error recovery is application-dependent (e.g., checkpoint-rollback),
the recovery process in TCLS is automatic and transparent to the software. A full CPU resynchro-
nization is completed within only 2,351 clock cycles (SAVE routine takes 1,171 clock cycles and
RESTORE takes 1,180), and a selective CPU resynchronization needs less than 400 clock cycles.
Hence, when running at 300MHz, a full CPU resynchronization takes less than 8μs, which is a
great improvement compared to related solutions for space that need as much as 1ms (Maxwell
Tech. 2013). In automotive applications, the quick, predictable, and transparent error recovery

ACM Transactions on Computer Systems, Vol. 36, No. 3, Article 7. Publication date: June 2019.

The Arm Triple Core Lock-Step (TCLS) Processor 7:21

mechanism available in TCLS could be used to build fail-functional Electronic Control Units (ECUs)
(Iturbe et al. 2018).

4.3 High-Resilience CPU Mode for Executing High-Criticality Routines

Section 3.2 has identified the most vulnerable micro-components in the Cortex-R5 CPU. Namely,
Figure 5 shows that DPU-DE, CACHE-STB, and PFU have a large number of sequential elements
classified in high criticality levels (CL5 to CL3), which is only surpassed by that in the micro-
components that include architectural structures (i.e., DPU-REGBANK, DPU-FREGBANK, and
DPU-CP).

This section proposes a novel high resilience CPU execution mode that uses the bare mini-
mum hardware in the critical DPU-DE, CACHE-STB, and PFU micro-components to increase er-
ror resilience of the Cortex-R5 pipeline when executing high-criticality routines, such as the CPU
resynchronization in TCLS. This mode can also be used when carrying out check-points in a DCLS
processor and memory scrubbing in any type of processor. This execution mode, however, does
not protect register files and other architectural registers, such as CP14/CP15 and MPU registers.
The high resilience mode is based on two principles: (1) keep the instructions and data in the
ECC-protected TCM for the longest possible time without impacting the performance, and (2) dis-
able or by-pass all structures in the CPU pipeline that are not strictly necessary for executing the
high-criticality routines (e.g., performance-oriented CPU features).

When the CPU enters the high-resiliency mode, the instruction fetch rate is reduced to minimize
the amount of time highly critical instructions remain unprotected in the CPU internal buffers
(i.e., instruction queue, fetch, decode, and issue buffers). Due to the nature of the TCLS SAVE
routine, where LD instructions are followed by ST and PUSH instructions, the performance penalty
provoked by the reduced instruction fetch rate is only a few clock cycles. This is because the
performance achievable by LD and ST operations is largely bound by the data-side throughput,
and PUSH instructions generate plenty of data-side bandwidth whilst consuming little instruction-
side bandwidth. Likewise, the TCLS SAVE routine contains few branches, and therefore significant
buffering of instructions is not needed to keep the CPU pipeline full. Similar results are expected
when using the high-resilience mode in check-pointing and memory scrubbing routines, which
also follow the same LD-PUSH/ST instruction structure.

As shown in Figure 13, the Cortex-R5 hardware disabled in the high-resilience mode includes
most of the slots in the instruction and issue queues in the DPU-DE (i.e., only two slots are made
available), hardware debugging support (e.g., break-point registers), and branch prediction-related
hardware in the PFU (e.g., branch prediction table). As previously discussed, it is advisable to only
use TCMs for both data and instructions executed in the high-resilience mode, thus circumventing
the cache store buffer as well. Note that larger CPUs are more likely to have a greater amount of
logic that can be avoided. For instance, the dispatch queue size in an out-of-order CPU could also
be reduced.

The hardware to be added in the CPU micro-architecture to support the high-resilience mode
is extremely light, resulting in almost zero area and power consumption overheads. Namely, a set
of multiplexers is added to drive the fetch rate control signal in the PFU micro-component and
the instruction/issue queue signals in the DPU-DE micro-component. These multiplexers, as well
as the debug enable signal, are commanded by a software-writable control bit in one of the CPU
configuration registers in the DPU-CP micro-component. Note that the Cortex-R5 CPU already
includes hardware support for enabling and disabling the branch predictor feature from software.

We have conducted a series of fault injection experiments to evaluate the resilience improve-
ment brought about by the high-resilience mode. Namely, we have compared the error rate when
injecting soft faults while the processor executes the TCLS SAVE routine without enabling this

ACM Transactions on Computer Systems, Vol. 36, No. 3, Article 7. Publication date: June 2019.

7:22 X. Iturbe et al.

Fig. 13. Disabled structures in the CPU pipeline in the high-resilience mode (in gray).

Fig. 14. Reduction in percentage of critical elements in the Cortex-R5 pipeline when enabling the high-

resilience CPU mode.

mode (baseline) and when it is enabled. The fault injection conditions are the same as described in
Section 3.2.1. The obtained results are shown in Figure 14 and confirm that the overall error rate is
reduced by 11%. The major improvement is in the decoder, which shows only a 9% error rate when
the high-resilience mode is enabled vs. 25% when this mode is disabled. As shown in Figure 14,
the number of high-criticality elements in the CPU pipeline has also been significantly reduced
when enabling the high-resilience mode. In fact, there is a migration from high criticality levels
(CL2 to CL5) to low criticality levels, resulting in a slight increase in the number of CL1 elements.
It is especially interesting to see the reduction of 15% in the number of CL5 elements.

4.4 Reliability Assessment of the TCLS Architecture

In order to test the improvement in reliability brought about by the TCLS solution, we repeated
the soft error injection experiments described in Section 3, and compared the results with those
in the single-core Cortex-R5 CPU. Besides injecting soft faults in each sequential element of one
of the three CPUs in the TCLS architecture, we also injected soft faults in the TCLS Assist Unit. Our
experiments showed that none of the faults injected in the CPU lead to a system error, and only
around 2% of the injected faults in the TCLS Assist Unit resulted in incorrect functional behavior
of the TCLS and eventually provoke a transition to the fail-safe state. This behavior proved that
the techniques implemented to detect faults in the TCLS Assist Unit are effective. The number
of elements in the TCLS solution that were found to be critical was limited to only 115 flip-flops,

ACM Transactions on Computer Systems, Vol. 36, No. 3, Article 7. Publication date: June 2019.

The Arm Triple Core Lock-Step (TCLS) Processor 7:23

Fig. 15. General architecture of the TCLS-based SoC.

Fig. 16. Memory map of the TCLS-based SoC.

which is a considerable reduction compared to the more than 7,800 potentially vulnerable elements
identified in the single-core Cortex-R5 CPU, as shown in Figure 5. However, we have to note here
that these results can only be considered to be orientative as real radiation conditions might well
provoke multiple simultaneous bit upsets or other effects that have not been simulated in our fault
injections experiments, such as transients in the combinational logic.

5 TCLS-BASED SOC PROTOTYPE FOR TELECOM SATELLITE CASE STUDY

The Arm TCLS processor described in this article was used in a prototypic SoC computer for an
Airbus D&S telecom satellite. This SoC was implemented on a Xilinx Virtex-7 XC7VX485T FPGA
and tested in a laboratory environment.

Figures 15 and 16 show the general architecture and memory map of the prototyped SoC, re-
spectively. The SoC is provided with 128Mb flash and 1GB DDR3 memories. The TCLS is coupled
with 512kB on-chip scratchpad memory, which acts as a local-store memory, 64kB ECC-protected

ACM Transactions on Computer Systems, Vol. 36, No. 3, Article 7. Publication date: June 2019.

7:24 X. Iturbe et al.

Fig. 17. ST Commercial C65 vs RHBD S65 libraries.

data/instruction cache memories, and two TCMs to achieve hard real-time performance (TCM-
A: 256kB and TCM-B: 512kB). The SoC includes standard peripherals, such as a timer, watch-dog,
SPI, and UART, as well as other peripherals typically used in space applications, such as SpaceWire
(SpW) and MIL-STD-1553 (Milbus) buses to interact with off-chip avionics modules. All periph-
erals are interconnected through an Arm NIC-400. The prototyped SoC works at 100MHz and
delivers approximately 160 DMIPS performance, consuming around 44,000 Slice LUTs (58% of the
available LUTs in the FPGA), 245 I/Os (35% of the available pins), and uses about 17Mb on-chip
memory (46% of the available Block-RAMs).

A test software was developed to check that all blocks in the SoC are functioning correctly at am-
bient temperature in standard laboratory conditions. This software includes classical benchmark
test sequences dedicated to test the ability of the system to handle hard real-time operations and
routines typically executed in telecom satellite applications, such as telemetry and telecommand
handling.

The error recovery mechanism of TCLS was successfully tested by injecting faults in the CPU
output ports using the fault injection logic implemented in the TCLS Assist Unit (see Section 4.1)
while the system was executing the aforementioned telecom satellite routines. We conducted a
statistical analysis on the availability improvement that could be achieved by TCLS in a represen-
tative 10-year telecom satellite mission operating in LEO orbit with a solar activity of 8 solar flare
days, which is a usual case for estimations. This analysis showed that the quick error recovery in
TCLS can reduce the system downtime by a 1,000× factor compared with a DCLS solution, where
a global reset is always required to recover from errors. Availability is in fact a central requirement
in most space missions, especially in telecom satellites with huge direct costs per downtime hour
and important indirect economic losses due to reputation damage.

5.1 Toward a Radiation Immune ASIC Implementation

We implemented different versions of the SoC described in the previous section (without on-chip
scratchpad memory) to compare the Power, Performance, and Area (PPA) numbers. Two STMi-
croelectronics’ 65nm sets of libraries were used in these implementations: (1) C65 library contains
commercial non-rad-hard elements only, whereas (2) C65-SPACE RHBD library (further short-
ened into S65), which has been derived from the former commercial library, using a modified
design of the standard cells to improve the overall soft error rate in space radiation environments
(Scholastique and Hili 2017). The difference in design, and hence size, of a flip-flop cell in the two
libraries can be seen in Figure 17. Namely, S65 library uses bigger geometries and adds a redun-
dancy scheme to flip-flops to mitigate soft errors, as well as C-elements to the clock tree buffers to
filter glitches. To compensate for the timing degradation due to radiation hardening, the voltage
threshold in the S65 library is lowered compared to that in C65.

ACM Transactions on Computer Systems, Vol. 36, No. 3, Article 7. Publication date: June 2019.

The Arm Triple Core Lock-Step (TCLS) Processor 7:25

Fig. 18. Floorplan of the TCLS-based SoC using commercial C65 standard cell libraries.

A first baseline implementation is not powered by TCLS, but by a single-core COTS Cortex-R5
CPU and uses exclusively S65 libraries. In this implementation, the cache memories and TCMs
represent approximately 85% of the circuit area and the Cortex-R5 CPU core accounts for more
than 50% of the logic area. The second implementation uses exclusively C65 libraries to imple-
ment TCLS. The third implementation uses S65 libraries in the critical TCLS Assist Unit and C65
libraries in the rest of the SoC components, including the Cortex-R5 CPUs, peripherals, and TCMs.
Note that since the hardening is done at the level of cell libraries, i.e., RHBD, both rad-hard and
commercial libraries can be combined in the same design because they both use the same de-
sign rules of C65 (although S65 uses bigger geometries and adds redundant elements). We used
the same methodology and Quality of Results (QoR) targets in all implementations to ensure fair
comparison between them.

Figure 18 shows the floorplan of the TCLS-based SoC implemented with C65 standard cells. The
arrangement of components in this implementation is very similar to the other three implemen-
tations. The TCLS and debug logic are located in the central part of the chip, the cache memories

ACM Transactions on Computer Systems, Vol. 36, No. 3, Article 7. Publication date: June 2019.

7:26 X. Iturbe et al.

Table 2. PPA Results (% are Overheads w.r.t. the Baseline Single-Core Implementation

Using S65 RHBD Libraries)

Single-core S65
(Baseline) TCLS C65 TCLS C65 & S65

Performance
359.8MHz 314.3MHz (−14%) 311MHz (−16%)

≈600 DMIPS ≈525 DMIPS (−14%) ≈520 DMIPS (−15%)

Power
Core only 491.3mW 530mW (+7%) 553.1mW (+13%)

Total (incl. TCMs) 721.6mW 758.8mW (+5%) 781.9mW (+9%)

Area
Core only 2.86mm2 3.64mm2 (+27%) 3.8mm2 (+33%)

Total (incl. TCMs) 12.14mm2 12.92mm2 (+6%) 13.08mm2 (+8%)

and TCMs span the top/bottom parts, and the peripherals are mapped to the bottom left side. The
peripherals that take small chip area are not labeled in this figure (e.g., UART, SPI, timer, and watch-
dog); they are only represented with different colors. Table 2 shows the PPA numbers extracted
from the place-and-route databases of the three implementations.

The TCLS solution results in similar PPA numbers as the baseline single-core implementation
using S65 RHBD libraries. Namely, TCLS’ overall impact on the chip area (<10%) is relaxed be-
cause peripherals, cache memories, and TCMs are not triplicated. The power consumption over-
head varies between +5% and +9% when using exclusively C65 and when combining C65 and S65
libraries, respectively. It is important to note the impact on the achievable maximum clock fre-
quency in the TCLS solution, which is reduced by around 15%, due to the complexity overhead
brought by the triplicated CPU cores and the TCLS Assist Unit. A deeper analysis shows that the
critical path in the single-core implementation is a memory to register connection located in the
ECC of the data cache, while in the TCLS implementation the critical paths are in the standard
cells area.

5.2 Discussion

The degradation in PPA numbers of the Arm TCLS design with selective RHBD radiation harden-
ing (or not using rad-hard technology at all) does not seem to be prohibitive for building “best-in-
class” space-qualified SoCs. Namely, the overhead in area and energy consumption of TCLS com-
pared to a RHBD single-core processor is less than 10% when integrated in an SoC that implements
relevant functions and peripherals in satellite applications. Note that these overhead numbers will
decrease as the SoCs become more complex and integrate more on-chip functions and memory.
In these SoCs, the TCLS can be useful to safely execute the routines and mechanisms necessary
to ensure the integrity of the entire system, handling error situations in the other components.
The TCLS also provides an effective error detection and recovery mechanism to increase system
availability, which is not available in single-core rad-hard processors, and is of utmost importance
in telecom satellites and autonomous vehicles.

The Arm Cortex-R5 TCLS-powered SoC prototype discussed in this work results in a more than
5× performance increase compared to the currently used SoC computer in Airbus D&S telecom
satellites, named SCOC3, which is based on the Gaisler LEON3-FT processor (Koebel and Coldefy
2010) and manufactured using Atmel 180nm RHBP technology (Atmel Corp. 2005). Likewise, the
TCLS-based SoC reduces the power consumption to less than half. Compared to the brand new
BAE quad-core rad-hard RAD5545 SoC (BAE Systems 2017), the Arm Cortex-R5-based TCLS so-
lution delivers 10× less performance but also consumes 30× less energy. Compared to the latest
LEON4-FT-based Cobham-Gaisler quad-core GR740 processor, the TCLS solution provides 3× less

ACM Transactions on Computer Systems, Vol. 36, No. 3, Article 7. Publication date: June 2019.

The Arm Triple Core Lock-Step (TCLS) Processor 7:27

performance and 10× improvement in energy consumption. We are now looking on improving
the performance of TCLS while still keeping its energy consumption within the power budget
advised for space applications (Doyle et al. 2014), which in some cases is well below the consump-
tion of rad-hard space-grade SoCs such as RAD5545. An on-going research effort in this line con-
sists in replacing the Cortex-R5 CPUs with the newer and more powerful Cortex-R52 CPUs (2.16
DMIPS/MHz), and integrating an embedded on-chip FPGA (eFPGA) to accelerate custom signal
processing algorithms (Poupat 2017).

While the improvement in energy consumption is inherent to the efficiency of the Arm ar-
chitecture and the achievable performance depends on the specific CPU used, the TCLS solution
allows one to leverage the continuous scaling of commercial process libraries, resulting in compet-
itive manufacturing costs and a good prospect for further improvements in energy efficiency and
performance with every new technology node. Namely, the CPUs in TCLS can be implemented
using state-of-the-art commercial libraries with small additional costs, but it will require a huge
effort and money to be invested to develop equivalent rad-hard libraries for the same technology
nodes. Cost is in fact a critical aspect to consider by the “NewSpace” companies that are looking
for ultra-reliable components at automotive pricing for building their satellite mega constellations.
The TCLS also implements a number of soft error mitigation techniques that could be sufficient
when radiation levels are relatively low, such as in LEO orbits, removing completely the need for
rad-hard process technologies.

6 CONCLUSIONS

This article has introduced the Arm Triple Core Lock-Step (TCLS) processor using Cortex-R5
CPUs, and has discussed its integration into a proof-of-concept SoC to power the on-board com-
puters in next-generation Airbus D&S telecom satellites. The TCLS processor can detect errors in
the CPUs and recover automatically from most of them within microseconds, thereby reducing
system downtime by a factor of 1,000× compared with COTS Cortex-R5 DCLS processors in a
representative telecom satellite 10-year mission operating in LEO orbit. This article proposes to
constrain the use of rad-hard technology, namely, only using RHBD libraries to implement the
critical parts of the TCLS processor, such as the error recovery mechanism. Since the potentially
critical parts represent only around 4% of the TCLS processor—we have identified only 2% of the
TCLS elements to be critical by means of fault injection (i.e., 115 flip-flops)—this approach permits
one to keep the performance and energy consumption overheads introduced by rad-hard technol-
ogy to a minimum. The remaining 96% of the processor can benefit from the continuous scaling of
commercial standard cell libraries and the entire solution leverages the commercial semiconduc-
tor technology breakthroughs. Although we have checked that the TCLS processor can run at a
maximum clock frequency slightly lower than COTS processors used in commercial safety-critical
terrestrial applications, it can still deliver around 5× more performance than the space-qualified
processors currently used in Airbus D&S satellites, which implement register triplication at the
circuit level. Furthermore, the TCLS consumes considerably less energy than currently available
space-qualified processors, meeting the power budgets advised for future avionics systems. The
TCLS solution described in this article paves the way for the adoption of COTS Arm technology
(and its vast software ecosystem and user base) in the space sector as it can be potentially used
with any type of Arm CPUs, including more powerful R-class cores (e.g., R52) and performance-
oriented A-class families. The transition to using Arm technology in space is in fact led by both
NASA and ESA that are currently developing Arm-based processors using RHBP techniques to
protect against space radiation effects. Hence, TCLS is the first initiative for enabling cost-efficient
computing in space, which might well be appealing by “NewSpace” companies that are looking
to optimize costs and generate profit. After having qualified the TCLS solution up to TRL4 (i.e.,

ACM Transactions on Computer Systems, Vol. 36, No. 3, Article 7. Publication date: June 2019.

7:28 X. Iturbe et al.

technology validated in the lab), the next objective will be to test it on a space environment on-
board an experimental CubeSat. Beyond space, key applications for the TCLS processor on Earth
might well be in future autonomous cars and data center servers, in both cases using exclusively
commercial standard cell libraries.

REFERENCES

Aeroflex Gaisler. 2015. UT700 32-bit Fault-Tolerant SPARC V8/LEON 3FT Processor. Technical Report.

T. Amort, W. Snapp, J. Evans, J. Popp, M. Cabanas-Holmen, and E. Cannon. 2011. 90nm RHBD ASIC design capability. In

Proceedings of the Military and Aerospace Programmable Logic Devices Workshop.

G. Anelli, M. Campbell, M. Delmastro, F. Faccio, S. Floria, A. Giraldo, E. Heijne, P. Jarron, K. Kloukinas, A. Marchioro, P.

Moreira, and W. Snoeys. 1999. Radiation tolerant VLSI circuits in standard deep submicron CMOS technologies for the

LHC experiments: Practical design aspects. IEEE Transactions on Nuclear Science 46, 6 (1999), 1690–1696.

Arm Ltd. 2011. Cortex-R5 and Cortex-R5F. Technical Reference Manual. Technical Report.

Atmel Corp. 2004. Rad-Hard 32-bit SPARC Embedded Processor TSC695F. Technical Report.

Atmel Corp. 2005. ATC18RHA Rad-Hard 0.18m CMOS Cell-Based ASIC Family for Space Use. Technical Report.

Atmel Corp. 2011. Rad-Hard 32-bit SPARC V8 Processor AT697F. Technical Report.

Atmel Corp. 2016. Space components vs parts for automotive applications. In Proceedings of the European Space Components

Conference.

A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr. 2004. Basic concepts and taxonomy of dependable and secure

computing. IEEE Transactions on Dependable and Secure Computing 1, 1 (2004), 11–33.

BAE Systems. 2008. RAD750 Radiation-Hardened PowerPC Microprocessor. Technical Report.

BAE Systems. 2017. RAD5545 Multi-Core System-on-Chip Power Architecture Processor. Technical Report.

M. Berg. 2013. Revisiting dual interlocked storage cell (DICE) single event upset (SEU) sensitivity. In Proceedings of the

Microelectronics Reliability and Qualification Working Meeting.

T. Calin, M. Nicolaidis, and R. Velazco. 1996. Upset hardened memory design for submicron CMOS technology. IEEE Trans-

actions on Nuclear Science 43, 6 (1996), 2874–2878.

Cobham. 2016. GR712RC Data Sheet. Technical Report.

W. R. Dawes, G. F. Derbenwick, and B. L. Gregory.1976. Process technology for radiation-hardened CMOS integrated cir-

cuits. IEEE Journal of Solid-State Circuits 11, 4 (1976), 459–465.

R. DeCoursey, R. Melton, and R. R. Estes. 2006. Non-radiation hardened microprocessors in space-based remote sensing

systems. In Proceedings of the SPIE Europe Remote Sensing Conference.

V. Degalahal, R. Ramanarayanan, N. Vijaykrishnan, Y. Xie, and M. J. Irwin. 2006. Effect of Power Optimizations on Soft Error

Rate. Springer, Chapter 1, 1–20.

R. Doyle, R. Some, W. Powell, G. Mounce, M. Goforth, S. Horan, and M. Lowry. 2014. High performance spaceflight com-

puting (HPSC) next-generation space processor (NGSP): A joint investment of NASA and AFRL. In Proceedings of the

International Symposium on Artificial Intelligence, Robotics, and Automation in Space.

ESA/ESTEC. 2018a. Statement of Work: Arm-based MCU (TEC/2016.43). Retrieved March 6, 2018 from http://emits.sso.esa.

int/emits/owa/emits_online.showao?typ1=7593&user=Anonymous.

ESA/ESTEC. 2018b. This is the Year Internet from Space gets Really Serious. Retrieved January 7, 2019 from http://www.

universetoday.com/138210/year-internet-space-gets-really-serious.

M. M. Ghahroodi, E. Ozer, and D. Bull. 2013. SEU and SET-tolerant Arm Cortex-R4 CPU for space and avionics applications.

In Proceedings of the Workshop on Manufacturable and Dependable Multi-core Architectures at Nanoscale.

R. Ginosar. 2012. Survey of processors for space. In Proceedings of the Data Systems in Aerospace Conference.

D. Gizopoulos, M. Psarakis, S. V. Adve, P. Ramachandran, S. Siva, S. Hari, D. Sorin, A. Meixner, A. Biswas, and X. Vera.

2011. Architectures for online error detection and recovery in multicore processors. In Proceedings of the Conference on

Design, Automation and Test in Europe.

GomSpace A/S. 2017. NanoMind Z7000 Datasheet On-board CPU and FPGA for Space Applications. Technical Report.

L. Hansen. 2016. Unleash the Unparalleled Power and Flexibility of Zynq UltraScale+ MPSoCs - WP470.

M. J. Hargrove, S. Voldman, R. Gauthier, J. Brown, K. Duncan, and W. Craig. 1998. Latchup in CMOS technology. In Pro-

ceedings of the IEEE International Reliability Physics Symposium.

R. Hillman, G. Swift, P. Layton, M. Conrad, C. Thibodeau, and F. Irom. 2003. Space processor radiation mitigation and

validation techniques for an 1,800 MIPS processor board. In Proceedings of the European Conference on Radiation and Its

Effects on Components and Systems.

M. Hjorth, M. Aberg, N. J. Wessman, J. Andersson, R. Chevallier, R. Forsyth, R. Weigand, and L. Fossati. 2015. GR740:

Rad-hard quad-core LEON4FT system-on-chip. In Proceedings of the Data Systems in Aerospace Conference.

ACM Transactions on Computer Systems, Vol. 36, No. 3, Article 7. Publication date: June 2019.

http://emits.sso.esa.int/emits/owa/emits_online.showao?typ1=7593&user=Anonymous
http://emits.sso.esa.int/emits/owa/emits_online.showao?typ1=7593&user=Anonymous
http://www.universetoday.com/138210/year-internet-space-gets-really-serious
http://www.universetoday.com/138210/year-internet-space-gets-really-serious

The Arm Triple Core Lock-Step (TCLS) Processor 7:29

Infineon Tech. 2012. Tricore: Highly Integrated and Performance Optimized 32-bit Microcontrollers for Automotive and Indus-

trial Applications. Technical Report.

X. Iturbe, D. Keymeulen, P. Yiu, D. Berisford, R. Carlson, K. Hand, and E. Ozer. 2016a. On the Use of System-on-Chip Tech-

nology in Next-Generation Instruments Avionics for Space Exploration. Springer, Chapter 1, 1–22.

X. Iturbe, B. Venu, J. Jagst, E. Ozer, P. Harrod, C. Turner, and J. Penton. 2018. Addressing functional safety challenges in

autonomous vehicles with the arm triple core lock-step (TCLS) architecture. IEEE Design and Test Magazine 35, 3 (2018),

7–14.

X. Iturbe, B. Venu, and E. Ozer. 2016b. Soft error vulnerability assessment of the real-time safety-related Arm Cortex-R5

CPU. In Proceedings of the IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology

Systems.

X. Iturbe, B. Venu, E. Ozer, and S. Das. 2016c. A triple core lock-step (TCLS) Arm Cortex-R5 processor for safety-critical and

ultra-reliable applications. In Proceedings of the IEEE/IFIP International Conference on Dependable Systems and Networks.

C. M. Jeffery and R. J. O. Figueiredo. 2012. A flexible approach to improving system reliability with virtual lockstep. IEEE

Transactions on Dependable and Secure Computing 9, 1 (2012), 2–15.

A. H. Johnston. 2000. Scaling and technology issues for soft error rates. In Proceedings of the Annual Research Conference

on Reliability.

M. Kaliorakis, D. Gizopoulos, R. Canal, and A. Gonzalez. 2017. MeRLiN: Exploiting dynamic instruction behavior for fast

and accurate microarchitecture level reliability assessment. In Proceedings of the 2017 Annual International Symposium

on Computer Architecture.

S. Kanekal, A. Jones, B. Randol, D. Patel, E. Summerlin, E. Gorman, G. Crum, G. D. Nolfo, N. Paschalidis, S. Heyward, and

S. Riall. 2014. CeREs: A compact radiation belt explorer. In Proceedings of the AIAA/USU Conference on Small Satellites.

F. Koebel and J. F. Coldefy. 2010. SCOC3: A space computer on a chip. In Proceedings of the Conference on Design, Automation

and Test in Europe.

P. Koopman and M. Wagner. 2016. Challenges in autonomous vehicle testing and validation. In Proceedings of the SAE World

Congress Conference.

T. Kuschel, R. Mariani, and H. Shigehara. 2010. A flexible microcontroller architecture for fail-safe and fail-operational

systems. In Proceedings of the HiPEAC Workshop on Design for Reliability.

R. C. Lacoe, J. V. Osborn, R. Koga, S. Brown, and D.C. Mayer. 2000. Application of hardness-by-design methodology to

radiation-tolerant ASIC technologies. IEEE Transactions on Nuclear Science 47, 6 (2000), 2334–2341.

M. D. Lam, E. E. Rothberg, and M. E. Wolf. 1991. The cache performance and optimizations of blocked algorithms. In

Proceedings of the International Conference on Architectural Support for Programming Languages and Operating Systems.

S. Lin, Y. B. Kim, and F. Lombardi. 2011. A 11-transistor nanoscale CMOS memory cell for hardening to soft errors. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems 19, 5 (2011), 900–904.

Lockheed Martin. 1995. RAD6000 Radiation Hardened 32-Bit Processor. Technical Report.

Maxwell Tech. 2013. SCS750 Single Board Computer for Space. Technical Report.

Moog Broad Reach. 2015. BRE440 Rad-Hard CPU. Technical Report.

NASA. 2015. Statement of Work (SOW) for the Development of the High Performance Space Computing (HPSC) Processor.

Technical Report.

E. Normand. 1996. Single event upset at ground level. IEEE Transactions on Nuclear Science 43, 6 (1996), 2742–2750.

E. Normand. 2000. Radiation Effects in Spacecraft and Aircraft. Retrieved January 7, 2019 from http://lws.gsfc.nasa.gov/

documents/mission_requirements/normand_020900.pdf.

NXP. 2012. Automotive Solutions Setting the Pace for Innovation. Technical Report.

M. Pignol. 2010. COTS-based applications in space avionics. In Proceedings of the Conference on Design, Automation and

Test in Europe.

J. L. Poupat. 2017. DAHLIA system-on-chip. In Proceedings of the IEEE International Conference on Space Mission Challenges

for Information Technology.

J. L. Poupat, B. Leroy, and T. Helfers. 2017. TCLS arm for space. In Proceedings of the Conference on Data Systems in Aerospace.

Renesas. 2015. Main Specifications of the R-Car H3 SoC. Technical Report.

S. Resch, A. Steininger, and C. Scherrer. 2013. Software composability and mixed criticality for triple modular redundant

architectures. In Proceedings of the SASSUR International Workshop on Next Generation of System Assurance Approaches

for Safety-Critical Systems.

J. Rhea. 2002. BAE Systems moves into Third Generation Rad-Hard Processors. Retrieved January 7, 2019 from

http://www.militaryaerospace.com/articles/print/volume-13/issue-5/news/bae-systems-moves-into-third-generation-

rad-hard-processors.html.

T. Romanko and B. Clegg. 2005. SOI Eases Radiation-Hardened ASIC Designs. Retrieved January 7, 2019 from https://www.

design-reuse.com/articles/10962/soi-eases-radiation-hardened-asic-designs.html.

ACM Transactions on Computer Systems, Vol. 36, No. 3, Article 7. Publication date: June 2019.

http://lws.gsfc.nasa.gov/documents/mission_requirements/normand_020900.pdf
http://lws.gsfc.nasa.gov/documents/mission_requirements/normand_020900.pdf
http://www.militaryaerospace.com/articles/print/volume-13/issue-5/news/bae-systems-moves-into-third-generation-rad-hard-processors.html
http://www.militaryaerospace.com/articles/print/volume-13/issue-5/news/bae-systems-moves-into-third-generation-rad-hard-processors.html
https://www.design-reuse.com/articles/10962/soi-eases-radiation-hardened-asic-designs.html
https://www.design-reuse.com/articles/10962/soi-eases-radiation-hardened-asic-designs.html

7:30 X. Iturbe et al.

D. Rudolph, C. Wilson, J. Stewart, P. Gauvin, A. George, H. Lam, G. Crum, M. Wirthlin, A. Wilson, and A. Stoddard.

2014. CHREC space processor: A multifaceted hybrid architecture for space computing. In Proceedings of the AIAA/USU

Conference on Small Satellites.

H. Saito, Y. Masumoto, T. Mizuno, A. Miura, M. Hashimoto, H. Ogawa, S. Tachikawa, T. Oshima, A. Choki, H. Fukuda, M.

Hirahara, and S. Okano. 2001. Piggy-back satellite for Aurora observation and technology demonstration. Acta Astro-

nautica 48, 5 (2001), 723–735.

K. M. Schlesier. 1974. Radiation hardening of CMOS/SOS integrated circuits. IEEE Transactions on Nuclear Science 47, 6

(1974), 152–158.

T. Scholastique and L. Hili. 2017. A 65nm Hardened ASIC Technology for Space Applications. Retrieved January 7, 2019

from http://indico.esa.int/indico/event/165/contribution/13/material/1/1.pdf.

M. R. Shaneyfelt, P. E. Dodd, B. L. Draper, and R. S. Flores. 1998. Challenges in hardening technologies using shallow-trench

isolation. IEEE Transactions on Nuclear Science 45, 6 (1998), 2584–2592.

Texas Instruments. 2014. Hercules TMS570 Microcontrollers. Technical Report.

B. Venu, E. Ozer, X. Iturbe, and A. Robinson. 2016. A fail-functional automotive CPU subsystem architecture for mitigating

single point of failures. In Proceedings of the IEEE International Workshop on Automotive Reliability and Test.

A. Vernile. 2018. The Rise of Private Actors in the Space Sector. Springer.

Vorago Tech. 2017. VA10820 - Radiation Hardened Arm Cortex-M0 MCU Datasheet. Technical Report.

R. Whitwam. 2014. NASA’s Orion Spacecraft runs on a 12 Year-old Single-Core Processor from the iBook G3. Retrieved Jan-

uary 7, 2019 from https://www.geek.com/chips/nasas-orion-spacecraft-runs-on-a-12-year-old-single-core-processor-

from-the-ibook-g3-1611132/.

C. Wilson, J. Stewart, P. Gauvin, J. MacKinnon, J. Coole, J. Urriste, A. George, G. Crum, E. Timmons, J. Beck, T. Flatley, A.

Wilson, M. Wirthlin, and A. Stoddard. 2014. CSP hybrid space computing for STP-H5/ISEM on ISS. In Proceedings of the

AIAA/USU Conference on Small Satellites.

Received October 2017; revised June 2018; accepted November 2018

ACM Transactions on Computer Systems, Vol. 36, No. 3, Article 7. Publication date: June 2019.

http://indico.esa.int/indico/event/165/contribution/13/material/1/1.pdf
https://www.geek.com/chips/nasas-orion-spacecraft-runs-on-a-12-year-old-single-core-processor-from-the-ibook-g3-1611132/
https://www.geek.com/chips/nasas-orion-spacecraft-runs-on-a-12-year-old-single-core-processor-from-the-ibook-g3-1611132/

