
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/317054108

Phase Noise Induced by a Vibrating Antenna

Article  in  IEEE Transactions on Microwave Theory and Techniques · May 2017

DOI: 10.1109/TMTT.2017.2699682

CITATIONS

3
READS

676

1 author:

John Ward

Raytheon Company

69 PUBLICATIONS   2,114 CITATIONS   

SEE PROFILE

All content following this page was uploaded by John Ward on 06 March 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/317054108_Phase_Noise_Induced_by_a_Vibrating_Antenna?enrichId=rgreq-96acc312b69a6bc7cae3652c33e28a55-XXX&enrichSource=Y292ZXJQYWdlOzMxNzA1NDEwODtBUzo3MzM1MTk4NjUyMDA2NDJAMTU1MTg5NjE3MjI0OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/317054108_Phase_Noise_Induced_by_a_Vibrating_Antenna?enrichId=rgreq-96acc312b69a6bc7cae3652c33e28a55-XXX&enrichSource=Y292ZXJQYWdlOzMxNzA1NDEwODtBUzo3MzM1MTk4NjUyMDA2NDJAMTU1MTg5NjE3MjI0OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-96acc312b69a6bc7cae3652c33e28a55-XXX&enrichSource=Y292ZXJQYWdlOzMxNzA1NDEwODtBUzo3MzM1MTk4NjUyMDA2NDJAMTU1MTg5NjE3MjI0OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John-Ward-39?enrichId=rgreq-96acc312b69a6bc7cae3652c33e28a55-XXX&enrichSource=Y292ZXJQYWdlOzMxNzA1NDEwODtBUzo3MzM1MTk4NjUyMDA2NDJAMTU1MTg5NjE3MjI0OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John-Ward-39?enrichId=rgreq-96acc312b69a6bc7cae3652c33e28a55-XXX&enrichSource=Y292ZXJQYWdlOzMxNzA1NDEwODtBUzo3MzM1MTk4NjUyMDA2NDJAMTU1MTg5NjE3MjI0OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Raytheon-Company?enrichId=rgreq-96acc312b69a6bc7cae3652c33e28a55-XXX&enrichSource=Y292ZXJQYWdlOzMxNzA1NDEwODtBUzo3MzM1MTk4NjUyMDA2NDJAMTU1MTg5NjE3MjI0OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John-Ward-39?enrichId=rgreq-96acc312b69a6bc7cae3652c33e28a55-XXX&enrichSource=Y292ZXJQYWdlOzMxNzA1NDEwODtBUzo3MzM1MTk4NjUyMDA2NDJAMTU1MTg5NjE3MjI0OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John-Ward-39?enrichId=rgreq-96acc312b69a6bc7cae3652c33e28a55-XXX&enrichSource=Y292ZXJQYWdlOzMxNzA1NDEwODtBUzo3MzM1MTk4NjUyMDA2NDJAMTU1MTg5NjE3MjI0OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


TMTT-2016-08-0965.R1 1

 
Abstract—When an antenna vibrates, it induces phase noise on 

the signals that it transmits and receives.  This noise source is 
significant for microwave and millimeter-wave systems operating 
in high-vibration environments that require low phase noise at 
small frequency offsets.  The purpose of this paper is to derive 
equations to compute phase noise from vibration parameters and 
to validate the equations with measurements.  It is shown that the 
induced phase noise varies as ࢜ࢌ

ି૝, where ࢜ࢌ is the frequency of 
vibration.  The results are then compared to the phase noise 
induced on an oscillator by vibration to determine the oscillator g 
sensitivity such that the oscillator and antenna phase noise 
contributions are equal.  For state-of-the-art low-g-sensitivity 
oscillators, the phase noise contribution of the antenna can 
dominate at vibrational frequencies up to several kilohertz.  The 
vibrational phase noise sensitivity of the antenna is also larger 
than reported vibrational sensitivity of coaxial cables up to at 
least 1000 Hz vibrational frequencies and bandpass filters up to 
300 to 1000 Hz vibrational frequencies depending on the filter 
quality factor.  

 
Index Terms—antennas, phase noise, vibration. 
 

I. INTRODUCTION 

RIOR research into the effects of vibration on antennas has 
largely focused on the vibrational deformation of 

antennas, especially for the case where the antenna is 
electrically large.  It has been shown that vibration-induced 
antenna deformation changes antenna patterns, including 
changing the main beam direction (pointing), increasing beam 
width, changing null depths and locations, and changing 
sidelobe levels [1][2].  Task groups chartered by the North 
Atlantic Treaty Organization (NATO) to study the vibration 
control of antennas highlight the importance of understanding 
and mitigating the impacts of vibration on antenna 
performance.  Known as Task Group SET-087 and Task 
Group SET-131, these studies have demonstrated active 
vibration suppression systems that improve antenna 
performance [3]-[5]. 

The negative impacts of antenna vibration include inducing 
errors into measured direction-of-arrival (DOA) estimates of 
radio direction-finding systems [6] as well as degrading radar 
performance including Moving Target Indicators (MTI) and 
Synthetic Aperture Radar (SAR) [7]-[9].  Antenna vibration 
has also been investigated in the context of cosite interference.  
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Typical transmitted communications signals may be 150 dB 
stronger than weak received signals.  Phase noise on the 
transmit signal can degrade link performance if the transmit 
and receive signal are closely spaced in frequency [10].  
Antenna vibration has also been studied in the context of 
phased array feeds for radio telescopes [11]. 

Even without deformation of the antenna itself, the physical 
displacement of an antenna in space caused by vibration 
induces phase errors on signals transmitted and received by 
the antenna.  An alternate interpretation of this phase error is 
that acceleration induces time-varying Doppler shifts on the 
signals.  This effect is similar to the way that vibration induces 
phase noise on crystal oscillators.  The effect of vibration on 
oscillators can be understood by considering that static 
acceleration changes the frequency of a crystal oscillator, and 
that the change in frequency is directly proportional to the 
acceleration.  This leads to the definition of an oscillator’s g 
sensitivity ΓԦ, which is the constant of proportionality between 
the acceleration and the resulting fractional frequency shift, 

Δ݂

௢݂
=  ΓԦ ∙ aሬԦ  , (1)

where aሬԦ is the acceleration vector, ௢݂ is the frequency without 
acceleration, and Δ݂ is the frequency shift induced by the 
acceleration [12]-[14].  The time-varying changes in oscillator 
frequency with vibrational acceleration induce phase noise on 
oscillators in much the same way that the vibration of 
antennas induces phase noise due to time-varying Doppler 
shifts. 

In contrast to prior work that focuses on the vibration-
induced deformation of antennas and antenna arrays, this 
paper investigates phase noise caused by rigid vibrational 
displacement of an antenna in space.  An expression for the 
phase noise induced by sinusoidal antenna vibration will be 
derived, and then this result will be extended to random 
vibration.  These equations are needed to evaluate and 
mitigate the impact of antenna vibration on system phase noise 
performance.  The results will then be compared to oscillator g 
sensitivity to provide a simple rule-of-thumb to determine 
which component contributes the most vibration-induced 
phase noise to the system, the oscillator or the antenna.  State-
of-the-art radio-frequency oscillators are available with g 
sensitivities down to as low as a few times 10-12 per g, where g 
is the acceleration of gravity near the earth’s surface [15]-[19].  
At this level, the phase noise contribution from the vibration 
of the antenna will be larger than the phase noise contribution 
from the vibration of the oscillator at frequency offsets up to 
several kilohertz. 

II. SINUSOIDAL VIBRATION 

Assume that an oscillator is generating a pure sine tone at 
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frequency ௢݂.  Further, assume that this oscillator is unaffected 
by vibration.  The oscillator is feeding an antenna, call it 
antenna A.  Antenna A is vibrating about the coordinate 
system origin at a frequency ௩݂.  A second antenna called 

antenna B located at ሬܴറ is receiving signals from the vibrating 
antenna (Fig. 1).  Antenna B is stationary and not vibrating. 

 
Antenna A’s position as a function of time is given by 

(ݐ)Ԧݔ = ߨԦ୭sin(2ݔ ௩݂(2) .(ݐ

In antenna A’s reference frame, the phase radiated by 
antenna A is increasing with time with a constant slope equal 
to the angular frequency.  The phase measured by antenna B is 
offset by the propagation delay over the distance separating 
the antennas.  Therefore, the phase in radians received by 
antenna B is 

Φ୆(ݐ) = Φ୅(0) + ߨ2 ௢݂ ൤ݐ −
(ݐ)ܦ

ܿ
൨ , (3)

where Φ୅(0) is the initial phase at antenna A, D(t) is the 
distance separating the two antennas and ܿ is the speed of light 
in vacuum.  The distance separating the antennas is a function 
of the vibrational displacement in accordance with (2), 

(ݐ)ܦ = ห ሬܴԦ − ߨԦ௢sin (2ݔ ௩݂ݐ)ห . (4)

Define ܴ ≡ ห ሬܴԦห and ̂ݎ ≡ ሬܴԦ/ห ሬܴԦห.  Since for typical systems 
the antenna separation is on the scale of kilometers and the 
vibrational displacement is on the scale of millimeters, 
ܴ ≫  Ԧ௢| and the first-order approximation of the distance canݔ|
be used: 

(ݐ)ܦ = ܴ − Ԧ௢ݔ) ∙ (ݎ̂ sin(2ߨ ௩݂(5) .(ݐ

Substituting (5) into (3) and choosing the initial phase to be 

Φ୅(0) =
ଶగ௙೚ோ

௖
, the phase of the signal received by antenna B 

is 

Φ୆(ݐ) = ߨ2 ௢݂ ቈݐ +
Ԧ௢ݔ ∙ ݎ̂

ܿ
sin(2ߨ ௩݂ݐ)቉ . (6)

Since vibration is more often described in terms of 
acceleration than displacement, it is useful to rewrite (6) in 
terms of the peak acceleration.  The peak acceleration can be 
found by taking the second derivative of position (2) with 
respect to time, 

Ԧܽ௣ = ߨ2) ௩݂)ଶݔԦ௢  . (7)

Note that there are two acceleration peaks of equal magnitude 
but opposite direction.  For convenience, the peak acceleration 
in the direction of ݔԦ௢ was chosen for the definition of Ԧܽ௣. 

Solve (7) for ݔԦ௢ and substitute the result back into (6). 

Φ୆(ݐ) = ߨ2 ௢݂ݐ +
1

ߨ2
Ԧܽ௣ ∙ ݎ̂

ܿ
௢݂

௩݂
ଶ sin(2ߨ ௩݂(8) .(ݐ

A. Power Spectrum of the Received Voltage 

Ignoring amplitude modulation due to the variation in path 
loss as the antenna separation changes, the voltage received by 
antenna B is 

V(ݐ) = ோܸcosሾΦ୆(ݐ)ሿ . (9)

Substituting (8) into (9), the received voltage can be written 
as 

V(ݐ) = ோܸܿݏ݋ ቈ2ߨ ௢݂ݐ +
1

ߨ2
Ԧܽ௣ ∙ ݎ̂

ܿ
௢݂

௩݂
ଶ sin(2ߨ ௩݂ݐ)቉ . (10)

Note that the peak acceleration Ԧܽ௣ is in SI units (m/s²).  For 
convenience, define ߚ in radians as 

β ≡
1

ߨ2
Ԧܽ௣ ∙ ݎ̂

ܿ
௢݂

௩݂
ଶ . (11)

Then 

V(ݐ) = ோܸܿݏ݋ሾ2ߨ ௢݂ݐ + ߨsin(2 ߚ ௩݂ݐ)ሿ . (12)

Expanding (12) to decompose the received voltage as a sum 
of sinusoidal components, 

(ݐ)ܸ = ோܸ ෍ (ߚ)௡ܬ ∙ cosሾ2ߨ( ௢݂ + ݊ ௩݂)ݐሿ ,
௡ୀାஶ

௡ୀିஶ
 (13)

where ܬ௡ is a Bessel function of the first kind [20].  It can be 
seen from inspection of (13) that the carrier frequency 
corresponds to ݊ = 0 and that the carrier has vibration-
induced sidebands at frequency offsets of integer multiples of 
± ௩݂.  Fig. 2 shows the fraction of the total received power in 
the carrier and each of ten frequency offsets for a sinusoidal 
vibration of 10 Hz with 1 g peak acceleration as a function of 
carrier frequency.  It can be seen that below 10 GHz, the 
power in the sidebands at ௢݂ ± ݊ ௩݂ increases by 20n decibels 
per decade of frequency. 

  
Fig. 3 shows spectra for several carrier frequencies with 

10 Hz sinusoidal vibration and 1 g peak acceleration.  At 
1 GHz, ߚ equals 0.052 radians, and the spurious signal 
sidebands fall off strongly with increasing order of the 
harmonic of the vibration frequency.  However, at 100 GHz, ߚ 
equals 5.2 radians, causing the carrier power to be suppressed 

 
Fig. 1.  The vibration of antenna A induces phase noise on the signal 
received by antenna B. 
  

Fig. 2.  Fraction of total power in each frequency component for 10 Hz 
vibration with 1 g peak acceleration. 
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as energy is transferred to a comb at frequency offsets of 
integer multiples of the vibrational frequency.  Ten gigahertz 
represents the transitional case, with ߚ equal to half a radian. 

 

 

B. The Weak-Vibration Limit 

In most cases, the vibration is sufficiently weak that 
|β| ≪ 1 radian.  Substituting in (11) and rearranging, the 
weak-vibration limit is equivalent to 

ห Ԧܽ௣ ∙ หݎ̂ ≪
ܿߨ2 ௩݂

ଶ

௢݂
 . (14)

When (14) is valid, it is convenient to approximate the 
Bessel functions as ܬ଴(ߚ) ≈ (ߚ)ଵܬ ,1 ≈ (ߚ)ଶܬ and  2/ߚ ≈
βଶ/8 [20].  Substituting these approximations into (13) gives 

(ݐ)ܸ ≈ ோܸ ቈcos(2ߨ ௢݂ݐ) +
β
2

cosሾ2ߨ( ௢݂ + ௩݂)ݐሿ

+
β
2

cosሾ2ߨ( ௢݂ − ௩݂)ݐሿ

+
βଶ

8
cosሾ2ߨ( ௢݂ + 2 ௩݂)ݐሿ

+
βଶ

8
cosሾ2ߨ( ௢݂ − 2 ௩݂)ݐሿ቉ 

(15)

In this limit, (15) shows that the fractional power in each 
sideband at ௢݂ ± ௩݂ relative to the power of the carrier at ௢݂ is 
βଶ/4.  In dB, this is1 

 
1 If referenced to a 1 Hz bandwidth, this is equivalent to the phase noise 

L( ௩݂). 

ܲ( ௢݂ + ௩݂)

ܲ( ଴݂)
≈ ଵ଴݃݋ܮ20 ቤ

1
ߨ4

Ԧܽ௣ ∙ ݎ̂
ܿ

௢݂

௩݂
ଶቤ . (16)

Since (16) is the linear approximation, complex vibrations 
can be analyzed by decomposing them into a summation of 
independent sinusoidal components as long as the net phase 
excursions remain small compared to a radian. 

Also in the weak-vibration limit, (15) shows that the power 
in each sideband at ௢݂ ± 2 ௩݂ is βସ/64.  In dB, this becomes  

ܲ( ௢݂ + 2 ௩݂)

ܲ( ଴݂)
≈ ଵ଴݃݋ܮ40 ቤ

1

√2

1
ߨ4

Ԧܽ௣ ∙ ݎ̂
ܿ

௢݂

௩݂
ଶቤ . (17)

III. RANDOM VIBRATION 

Random vibrations are typically characterized by their 
power spectral density (PSD).  Call the vibrational PSD in the 
direction ̂ݎ̂)ܩ ݎ, ௩݂) in units of g²/Hz, where g is the 
acceleration of Earth’s gravity, i.e., 9.80665 m/s².  For a 
narrow bandwidth Δ ௩݂ of random vibration, the vibration is 
approximately sinusoidal and the peak acceleration can be 
related to the vibrational PSD. 

ܽ௣ = ݃ඥ2Δ ௩݂ݎ̂)ܩ, ௩݂)  , (18)

where the factor of √2 scales from RMS to peak values [19].  
Using this equation and (8), write the phase received by 
antenna B in terms of the vibrational PSD, using ߶௢ for the 
random phase of the vibration at time ݐ = 0: 

Φ୆(ݐ) = 

ߨ2 ௢݂ݐ +
1

ߨ2
݃
ܿ

௢݂

௩݂
ଶ ඥ2Δ ௩݂ݎ̂)ܩ, ௩݂) sin(2ߨ ௩݂ݐ + ߶௢). 

(19)

Setting the bandwidth Δ ௩݂ equal to 1 Hz, the spectral 
density of vibration-induced phase fluctuations of Φ஻(ݐ) in 
radians²/Hz is given by 

ܵம( ௩݂) =
1

ଶߨ4

݃ଶ

ܿଶ
௢݂
ଶ

௩݂
ସ ,ݎ̂)ܩ ௩݂) . (20)

The IEEE definition of phase noise is L(݂) ≡
ଵ

ଶ
ܵம(݂) [21].  

In units of dB radian²/Hz, 

L( ௩݂) = ଵ଴݃݋ܮ10 ቂ
ଵ

଼గమ
௚మ

௖మ
௙೚

మ

௙ೡ
ర ,ݎ̂)ܩ ௩݂)ቃ . (21)

Fig. 4 shows examples of the effect of random vibration for 
carrier frequencies ranging from 10 MHz to 100 GHz for 
random vibration with 0.1 g²/Hz power spectral density.  It can 
be seen that the phase noise increases 20 dB per decade 
increase in carrier frequency, and falls off 40 dB per decade 
increase of the vibrational frequency.  Phase noise scales as 
10 dB per decade of the vibrational PSD. 

Fig. 3.  Spectrum of a carrier with 10 Hz vibration at 1 g peak acceleration. 
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IV. EXPERIMENTAL RESULTS 

Fig. 5 shows the block diagram of an experimental setup 
that was used to validate the equations for the phase noise 
induced by a vibrating antenna.  An Agilent E8257D signal 
generator was connected to a transmit patch antenna.  The 
transmit antenna was vibrated on a shaker table.  The 
transmitted signal was received by a stationary patch antenna 
and then analyzed with an Agilent E5052B phase noise 
analyzer. 

 
Sinusoidal vibrations were measured at a carrier frequency 

of 9.7 GHz with vibrational frequencies ranging from 15 to 
500 Hz and peak accelerations ranging from 0.01 to 1.0 g.  
Results are shown in Fig. 6 and Fig. 7.  The phase noise 
analyzer uses a phase detector to reject amplitude modulation, 
such as amplitude modulation caused by the change in path 
loss with antenna separation.  Error bars reflect the specified 
uncertainty of 4 dB for the phase noise analyzer; the shaker 
peak acceleration uncertainty is negligible compared to the 
phase noise analyzer uncertainty.  The relative power in each 
spur was computed by integrating over frequency offset after 
subtracting the measurement noise floor.  The measured data 
agree with the calculated values within the measurement error. 

Random vibrations were measured with a 9.7 GHz carrier 
with vibration PSD of 0.01, 0.1, and 1.0 g²/Hz over the range 
20 to 150 Hz.  Results are shown in Fig. 8.  The static noise 
floor was measured with the shaker table turned off, and is 
dominated by the phase noise of the signal generator and 
phase noise analyzer.  The measurement error caused by the 
static noise floor was sufficiently small compared to the phase 
noise analyzer specified uncertainty that it was ignored 
without subtracting from the measured data.  The measured 
data agree with the calculated values within the measurement 
uncertainty. 

 

 

 

V. COMPARISON TO SENSITIVITY OF OTHER COMPONENTS 

A. Oscillator Acceleration Sensitivity 

The phase noise induced on an oscillator by vibration can 
be expressed as 

L( ௩݂) = ଵ଴݃݋ܮ20 ቈ
ห୻ሬሬԦห௙೚

௙ೡ
ටீ(௙ೡ)

ଶ
቉ , (22)

Fig. 4.  Phase noise induced by 0.1 g²/Hz random vibration.  For small 
angles, the units are equivalent to dBc/Hz. 
 

 
Fig. 5.  Block diagram of the experimental phase noise measurement setup.  

Fig. 6.  Measured phase noise spurs on a 9.7 GHz carrier for sinusoidal 
vibration with 1 g peak acceleration. 
 

Fig. 7.  Measured phase noise spurs on a 9.7 GHz carrier for 15 Hz 
sinusoidal vibration. 
 

Fig. 8.  Measured phase noise of a 9.7 GHz carrier with random vibration
from 20 to 150 Hz. 
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where ΓԦ is the oscillator acceleration-sensitivity vector defined 
in (1) in units of 1/g and ܩ( ௩݂) is the acceleration power 
spectral density in units of g²/Hz [22].  If the vibrational PSD 
is isotropic, then (21) and (22) can be equated to find the 
oscillator g sensitivity where the phase noise contribution of 
the antenna vibration equals the phase noise contribution of 
the oscillator vibration.  This is true when 

Γ =
݃

ߨ2 ௩݂ܿ
≈

5.2 ∙ 10ିଽ

௩݂
  , (23)

where ௩݂ is in hertz and Γ is in units of 1/g.  This threshold is 
independent of the carrier frequency and the vibrational PSD.  
It can be seen from Fig. 9 that at vibrational frequencies of a 
few hertz or less, the antenna contribution tends to dominate 
even for normal oscillators that aren’t designed for low g 
sensitivity.  For high-quality low-g-sensitivity oscillators of 
Γ ≈ 10ିଵଵ, the antenna vibration dominates up to frequency 
offsets of several hundred hertz, and when the oscillator is 
mechanically vibration isolated, which is most effective at 
frequencies above a few hundred hertz, antenna vibration can 
dominate at all vibrational frequencies. 

 

B. Coaxial Cables 

Hati et al. measured the phase noise sensitivity of coaxial 
cables to vibration [23].  Tests were conducted using a 
10 GHz carrier with 80 mm lengths of semi-rigid and flexible 
coaxial cables under 0.001 g²/Hz vibration from 10 Hz to 
2000 Hz.  These results are compared to the antenna 
contribution to phase noise in Table I.  It is found that the 
antenna sensitivity is greater than the coaxial cable sensitivity 
at all measured vibrational frequencies. 

 

C. Filters 

Hati et al. measured the phase noise sensitivity of 10 GHz 
bandpass cavity filters to vibration [23].  The effective quality 
factors of the filters were 3739 and 320.  Tests were conducted 
using a 10 GHz carrier with 0.001 g²/Hz vibration from 10 Hz 

to 2000 Hz.  It was shown that the high-Q filter was more 
sensitive to vibration than the low-Q filter.  These results are 
compared to the antenna contribution to phase noise in Table 
II.  It can be seen that the antenna contribution is greater than 
the filter contribution in all cases except the high-Q filter at 
1000 Hz. 

 

VI. CONCLUSIONS 

Phase noise spurs induced by sinusoidal vibration of an 
antenna have been computed with exact solutions as well as 
with approximate solutions for weak vibrations.  For weak 
sinusoidal vibrations, the spurs induced by a vibrating antenna 
scale as the square of the carrier frequency and with the square 
of the peak acceleration, but fall off with the fourth power of 
the vibrational frequency.  When the vibrational displacement 
becomes significant compared to the carrier wavelength, 
nonlinear effects create phase noise spurs offset from the 
carrier frequency by integer multiples of the vibration 
frequencies, and vibration can suppress the power at the 
carrier frequency.  Phase noise has also been computed for 
random vibration PSDs.  The phase noise induced by the 
random vibration of an antenna increases with the square of 
the carrier frequency, decreases with the fourth power of the 
vibrational frequency, and increases linearly with the 
vibrational PSD.  For systems based on oscillators with g 
sensitivity around Γ ≈ 10ିଽ, the phase noise induced by 
vibration of the antenna dominates over the phase noise 
induced by vibration of the oscillator for vibration frequencies 
below a few hertz, independent of carrier frequency and 
vibration level.  For high-quality low-g-sensitivity oscillators 
around Γ ≈ 10ିଵଵ, the antenna dominates up to vibrational 
frequencies of about 500 Hz.  For a 10 GHz carrier, the 
vibration sensitivity of the antenna is larger than reported 
coaxial cable vibration sensitivities up to 1000 Hz vibrational 
frequency, and is larger than the vibration sensitivity of cavity 
filters up to 300 to 1000 hertz depending on the filter Q. 
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Fig. 9.  Threshold where the phase noise contribution from oscillator 
vibration and antenna vibration are equal. 
  

TABLE I 
PHASE NOISE ON A 10 GHZ CARRIER UNDER 0.001 G²/HZ VIBRATION 

Offset Antenna Flexible 
Coax 

Semi-Rigid 
Coax 

10 Hz -39 dBc/Hz -100 dBc/Hz -112 dBc/Hz 
30 Hz -58 dBc/Hz -102 dBc/Hz -140 dBc/Hz 
100 Hz -79 dBc/Hz -117 dBc/Hz -130 dBc/Hz 
300 Hz -98 dBc/Hz -129 dBc/Hz -130 dBc/Hz 

1,000 Hz -119 dBc/Hz -125 dBc/Hz -140 dBc/Hz 

 

TABLE II 
PHASE NOISE ON A 10 GHZ CARRIER UNDER 0.001 G²/HZ VIBRATION 

Offset Antenna High-Q filter Low-Q filter 
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