
10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

273

Abstract — The first part of paper discusses a variety of
issues regarding finite state machine design using the hardware
description language. VHDL coding styles and different
methodologies are presented. Our study of FSM focuses on the
modeling issues such as VHDL coding style, state encoding
schemes and Mealy or Moore machines. Our discussion is
limited to the synchronous FSM, in which the transition is
controlled by a clock signal and can occur only at the
triggering edge of the clock.

The second part contains a worked example of a model that
detects a unique pattern from a serial input data stream and
generates a ‘1’ value to output whenever the sequence ‘10’
occurs. The string detector is modeled at the RTL level in
VHDL and Verilog, for comparison purposes.

The last part of this paper presents a view on VHDL and
Verilog languages by comparing their similarities and
contrasting their difference.

Index Terms — VHDL code, Verilog code, finite state
machine, Mealy machine, Moore machine, modeling issues,
state encoding.

I. INTRODUCTION

The automata theory is the basis behind the traditional
model of computation and is used for many purposes other
than controller circuit design, including computer program
compiler construction, proofs of algorithm complexity, and
the specification and classification of computer
programming languages [1].

Because automata are mathematical models that produce
values dependent upon internal state and possibly some
dependent input values, they are referred to as state
machines [2]. A state machine may allow for a finite or an
infinite set of possible states and further more, they may
have nondeterministic or deterministic behavior. A
deterministic state machine is one whose outputs are the
same for a given internal state and input values. A finite
state machine (FSM) is one where all possible state values
made a finite set. The synchronous sequential circuits that
are the focus of this paper are modeled as deterministic
finite state machines and they are modeled as either Mealy
or Moore machines.

II. OVERVIEW OF FINITE STATE MACHINES

Finite state machines (FSM) constitute a special modeling
technique for sequential logic circuits. Such a model can be
very helpful in the design of certain types of systems,
particularly those whose tasks form a well-defined sequence
[3].

The main application of an FSM is to realize operations
that are performed in a sequence of steps [4]. A large digital

system usually involves complex algorithms or tasks, which
can be expressed as a sequence of actions based on system
status and external commands. An FSM can function as the
control circuit that coordinates and governs the operations of
other units of the system [4].

Figure 1 shows the general structure for a finite state
machine. The current state of the machine is stored in the
state memory register, a set of k flip-flops clocked by a
single clock signal. The current state is the value currently
stored by the state memory register. The next state logic
circuit of the machine is a function of the state vector and
the inputs. Mealy outputs are a function of the state vector
and the inputs, while Moore outputs are a function of the
state vector only [5].

Figure 1 State Machine Structure

A finite state machine is specified by five entities:
symbolic states, input signals, output signals, next-state
function and output function [4]. A state specifies a unique
internal condition of a system and as time progresses, the
FSM transits from one state to another. The new state is
determined by the next-state function, which is a function of
the current state and input signals.

The output function specifies the value of the output
signals. If it is a function of the state only, the output is
known as a Moore output and if it is a function of the

Finite State Machine Design and
VHDL Coding Techniques

Iuliana CHIUCHISAN, Alin Dan POTORAC, Adrian GRAUR
"Stefan cel Mare" University of Suceava

str.Universitatii nr.13, RO-720229 Suceava
iulia@eed.usv.ro , alinp@eed.usv.ro, Adrian.Graur@usv.ro

next-state
logic circuit

inputs

state
memory
register

clock

current state

Mealy
output logic
circuit

Moore
output logic
circuit

Mealy outputs Moore outputs

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

274

state and input signals, the output is known as a Mealy
output. An FSM is called a Moore machine or Mealy
machine if it contains only Moore outputs or Mealy
outputs, but a complex FSM has both types of outputs.

FSMs are commonly modeled in a variety of ways,
including state diagrams, state equations, state tables, and
algorithmic state machine (ASM) charts.

In synthesis of FSM, we start with a functional
description of the circuit. From this description, we need
precise operation of the circuit using a state diagram. The
state diagram allows us to complete the next-state and
output tables and then the circuit can be derived from
these tables.

During the synthesis process, there are many possible
circuit optimizations in terms of the circuit size, speed,
and power consumption that can be performed [6].

III. ENCODING STYLE

The most important decision to make when describing
a finite state machine is what state encoding to use. To
encode the states of a state machine, we can select from
several styles, the default encoding style being binary.
The advantage in using the binary code to encode state
assignment is that requires the least number of flip-flops
(with n flip-flops can be encoded up to 2n states). The
disadvantage is that it requires more logic and is slower
than the others.

A highly encoded state assignment will use fewer flip-
flops for the state vector; however, additional logic will
be required simply to encode and decode the state [5].

A style that uses one flip-flop per state is one-hot
encoded style, because only one bit of the state vector is
asserted for any given state and all other state bits are
zero. In this case, with n flip-flops can be encoded only n
states.

There are more advantages to using the one-hot style to
design a state machine:

 One-hot state machines are faster. Speed
depends on the number of transitions into a
particular state.

 It is equally “optimal” for all machines.
 One-hot state machines are easy to design and

HDL code can be written directly from the state
diagram without coding a state table.

 Adding and deleting states, or changing
excitation equations, can be implemented easily
without affecting the rest of the state machine.

 Easily synthesized from HDL languages, VHDL
or Verilog.

 It is easy to debug.

An style that is in between the two styles above is the
two-hot encoding style, which presents two bits active per
state and therefore, with n flip-flops can be encoded up to
n(n-1)/2 states.

The encoding styles and the number of flip-flops
required for a finite state machine with eight states is
shown below:

TABLE 1. STATE ENCODING OF A 8-STATE FSM
ENCODING

STATE BINARY

STYLE

ONE-HOT

STYLE

TWO-HOT

STYLE

STATE1 000 00000001 00011
STATE2 001 00000010 00101
STATE3 010 00000100 01001
STATE4 011 00001000 10001
STATE5 100 00010000 00110
STATE6 101 00100000 01010
STATE7 110 01000000 10010
STATE8 111 10000000 01100

FLIP-FLOPS

NUMBER

THREE FLIP-
FLOPS

EIGHT FLIP-
FLOPS

FIVE FLIP-
FLOPS

The one-hot style is recommended in applications
where flip-flops are abundant, like in FPGA circuits.
CPLD circuits have fewer flip-flops available to the
designer.

While one-hot encoding is sometimes preferred
because it is easy, a large state machine will require a
large number of flip-flops. Therefore, when implementing
finite state machines on CPLD circuits, in order to
conserve available resources, it is recommended that
binary or gray encoding be used [7]. That enables the
largest number of states to be represented by as few flip-
flops as possible.

IV. HDL LANGUAGES

Most hardware designers use hardware description
languages (HDLs) to describe designs at various levels of
abstraction. A hardware description language is a high
level programming language, with programming
constructs such as assignments, conditions, iterations and
extensions for timing specification, concurrency and data
structure proper for modeling different aspects of
hardware. The most popular hardware description
languages are VHDL [8] and Verilog [9].

VHDL (VHSIC (Very High Speed Integrated Circuits)
Hardware Description Language) [8] is an IEEE
Standard since 1987 while Verilog was standardized in
1995.

Both languages are programming language that has
been designed and optimized for describing the behavior
of digital systems. This HDL languages support the
development, verification, synthesis, and testing of
hardware designs.

In this paper we chose the VHDL language. One
important aspect related to the FSM approach in VHDL
code is that, though any sequential circuit can in principle
be modeled as a state machine, this is not always
advantageous [3]. The reason is that the code might
become longer, more complex, and more error prone than
in a conventional approach [3].

The FSM approach is adequate in systems whose tasks
constitute a well-structured list so all states can be easily
enumerated. That is, in a typical state machine
implementation, we will encounter, at the beginning of
the ARCHITECTURE, a user-defined enumerated data
type, containing a list of all possible system states [3].

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

275

V. FSM VHDL DESIGN AND MODELING ISSUES

A Finite State Machines are an important aspect of
hardware design. A well written model will function
correctly and meet requirements in an optimal manner.

Finite state machine VHDL design issues to consider
are:

 VHDL coding style.
 How many processes we use?
 State encoding.
 Mealy or Moore type outputs.

A. VHDL coding style

There are many ways of modeling the same state
machine. Our example of FSM focuses on simple tasks,
such as detecting a unique pattern from a serial input data
stream and generating a ‘1’ value to output whenever the
sequence ‘10’ occurs.

The state diagram of our string detector circuit is
shown in figure 2. There are three states, which we called
s0, s1, and s2.

Figure 2. FSM State diagram

TABLE 2. TABLE WITH CURRENT STATE, NEXT STATE AND

MEALY/MOORE OUTPUT FOR STRING DETECTOR CIRCUIT

CURRENT

STATE
NEXT STATE MEALY OUTPUT

MOORE

OUTPUT

A=0 A=1 A=0 A=1
S0 S0 S1 0 0 0
S1 S2 S1 1 0 0
S2 S0 S1 0 0 1

Simulation results are shown in figure 3. As can be
seen, the data sequence A=”010110110” was applied to
the circuit, resulting the response F= “001001010” at the
output F.

HDL code may be divided into three different parts to
represent current state logic, next state logic and Mealy or
Moore output logic. It may also be structured so that the
three different parts are combined in the model. In
VHDL, it is impossible to synthesize a combined current
state, next state, and output logic in a single always
statement.

A FSM with n state flip-flops may have 2n binary
numbers that can encode states and often, all states are
not needed. Therefore, next-state logic is best modeled
using the case statement even though this means the state
machine cannot be modeled in one process. The default
clause used in a case statement avoids having to define
the unused states.

B. How many processes?

Generally every finite state machine can be described
either by one process or by two separated processes.

In the following table, are presented the corresponding
parts of the VHDL source code for one process and two
processes design for the string detector circuit.

TABLE 3.VHDL DESIGN FOR STRING DETECTOR CIRCUIT

ONE VHDL PROCESS TWO VHDL PROCESS
FSM_ONE: PROCESS (CLK, RST)
BEGIN

IF (RST=’1’) THEN

 CURRENT_STATE <= S0;
ELSIF

(CLK’EVENT AND CLK=’1’)
THEN

CASE CURRENT_STATE IS

WHEN S0 =>
IF (A=’0’) THEN

 F<=’0’;
 NEXT_STATE <= S0;
ELSE

 F<=’0’;
 NEXT_STATE <= S1;
END IF;
WHEN S1 =>
IF (A=’0’) THEN

 F<=’01’;
 NEXT_STATE <= S2;
ELSE

 F<=’0’;
 NEXT_STATE <= S1;
END IF;
WHEN S2 =>
IF (A=’0’) THEN

 F<=’1’;
 NEXT_STATE <= S0;
ELSE

 F<=’0’;
 NEXT_STATE <= S1;
END IF;
WHEN OTHERS =>
 CURRENT_STATE <= S0;
END CASE;
END IF;
END PROCESS FSM_ONE;

--PROCESS TO HOLD SYNCHRONOUS ELEMENTS

FSM_SYNCH: PROCESS (CLK, RST)
BEGIN

IF (RST=’1’) THEN

 CURRENT_STATE <= S0;
ELSIF (CLK’EVENT AND CLK=’1’)
THEN

 CURRENT_STATE <= NEXT_STATE;
END IF;
END PROCESS FSM_SYNCH;

--PROCESS TO HOLD COMBINATIONAL LOGIC

FSM_COMB: PROCESS (A, CURRENT_
STATE) BEGIN

CASE CURRENT_STATE IS

WHEN S0=>
IF (A=’0’) THEN

 F<=’0’;
 NEXT_STATE <=S0;
ELSE

 F<=’0’;
 NEXT_STATE <= S1;
END IF;
WHEN S1=>
IF (A=’0’) THEN

 F<=’1’;
 NEXT_STATE <= S2;
ELSE

 F<=’0’;
 NEXT_STATE <= S1;
END IF;
WHEN S2=>
IF (A=’0’) THEN

 F<=’0’;
 NEXT_STATE <= S0;
ELSE

 F<=’0’;
 NEXT_STATE <= S1;
END IF;
WHEN OTHERS =>

 CURRENT_STATE <= S0;
END CASE;
END PROCESS FSM_COMB;

In one process version, in the CASE statement which
models the state transitions, the current state of the string
detector FSM is detected and it is examined whether
input values are present that lead to a change of the state.

The same FSM is used to show an implementation
based on two VHDL processes. The VHDL source code
contains two processes, one process defines synchronous
elements of the design (state registers) and the other
process defines the combinational part of the design (case
statement). The result is a clocked process describing the
storing elements and another combinational process
describing the logic. In the CASE statement, the current
state is checked and the input values are examined. If the
state has to change, then NEXT_STATE and
CURRENT_STATE will differ and with the next
appearance of the active clock edge, this new state will be
taken over as the current state.

There are different advantages and disadvantages of
using one process or two processes and these differences
are presented below.
1) Structure and legibility

The one process description is more adequate for

s0 s1

s2

0 / 0
1 / 0

0 / 10 / 0

1 / 0

1 / 0

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

276

observing changes of the states of the string detector FSM
from the outside of the VHDL module. The graphical
description resembles more a one process than a two
process description.

The VHDL source code should be split into two

processes because the combinational elements and
synchronous elements (state registers) are two different
structural elements.
2) Simulation

For two process version, can be determined
exactly the time and location where the error occurs for

the first time and therefore the source of the error.
3) Synthesis

Several synthesis tools tend to produce better results
when two processes are used to describe a finite state
machine.

C. State encoding in VHDL

A finite state machine is an abstract description of
digital structure and therefore the synthesis tools requires
states of the automaton to be encoded as binary values or
the synthesis tool itself will transform the state into a
binary description. The way in which states are assigned
binary values is called state encoding.

Some different state encoding schemes frequently used
are presented in table 1.

Most synthesis tools selects a binary code by default,
except the designer specifies another code explicitly.
From all possibilities of state encoding is used frequently
one-hot code, which is needed for speed optimized
circuits.

TABLE 4. STATE ENCODING

STATE ENCODING
TYPE STATE_TYPE IS (S0, S1, S2) ;
SIGNAL STATE : STATE_TYPE ;

BINARY CODE ONE-HOT CODE GRAY CODE
S0 → "00"
S1→ "01"
S2→ "10"

S0 → "001"
S1→ "010"
S2→ "100"

S0 → "00"
S1→ "01"
S2→ "11"

The circuit requires two flip-flops, which encode the
three states of the string detector state machine.

As the automat consists only of three states and two
flip-flops can represent up to four states, there is one
invalid state which leads to an unsafe state machine
where the behavior of the design is not determined.

The best method of state encoding is hand coding in
which case the designer decides by himself what code
will be used.

TABLE 5. HAND CODING

SUBTYPE STATE_TYPE IS STD_LOGIC_VECTOR (1 DOWNTO 0) ;
SIGNAL STATE : STATE_TYPE ;
CONSTANT S0: STATE_TYPE := "00";
CONSTANT S1: STATE_TYPE := "10";
CONSTANT S2: STATE_TYPE := "11";

The constants are defined to represent the
corresponding states of the state machine and the code
can be fixed by the designer. The behavior in case of
errors can be verified in a simulation and therefore the
hand coding alternative is the best method to design a
safe finite state machine and is furthermore portable
among different synthesis tools.

This type of state encoding has the advantage of using
a vector type and the only disadvantage is a little more
effort in writing the VHDL code, when the code is
changed.

D. MOORE MACHINE VERSUS MEALY MACHINE

The two most popular state machines are referred to as
Moore or Mealy machines, named after researchers who
published early papers on their structure [10, 11]. There
are different reasons for a designer to use one or other
version of the two different type of finite state machine.
The primary difference between these two state machines
is that the output of a Moore machine depends only upon
the state of the circuit whereas the output of a Mealy
machine depends upon both the state and the inputs of the
circuit. This has a practical effect in that the output
signals of a Moore machine only change after output
logic delays following a clock signal edge whereas the
output signals of a Mealy machine may change at any
time shortly after an input signal changes value [1].

In theoretical computer science, a Moore machine and
a Mealy machine are considered to have similar
efficiency because both can recognize “regular
expressions” [4]. When the FSM is used as a control
circuit, the control signals generated by a Moore machine
and a Mealy machine have different timing characteristics
and for the efficiency of a control circuit the timing
difference is critical. We used a simple edge detection
circuit to observe the difference between these two state
machines.

There are three major differences between the Moore
machine and Mealy machine. First, a Mealy machine
requires fewer states to perform the same task because its
output is a function of states and external inputs, and
several possible output values can be specified in one
state.

Second, a Mealy machine can generate a faster
response. Since a Mealy output is a function of input, it
changes whenever the input meets the designated
condition and a Moore machine reacts indirectly to input
changes.

The third difference involves the control of the width
and timing of the output signal. In a Mealy machine, the
width of an output signal varies with input and can be
very narrow. A Mealy machine is susceptible to
disturbances in the input signal and passes to the output.
The output of a Moore machine is synchronized with the
clock edge and its width is about the same as a clock
period.

From this perspective, selection between a Mealy
machine and a Moore machine depends on the need of
control signals. If we divide control signals into two
categories: edge-sensitive and level-sensitive, then for the
first case, both the Mealy and the Moore machines can
generate output signals that meet this requirement.
However, a Mealy machine is preferred since it uses
fewer states and responds one clock faster than does a
Moore machine. A level-sensitive control signal means
that a signal has to be asserted for a certain amount of
time. When asserted, it has to be stable and free of spikes.

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

277

A Moore machine is preferred since it can accurately
control the activation time of its output, and can shield
the control signal from input glitches.

TABLE 6. MEALY AND MOORE VHDL DESIGN FOR A STRING DETECTOR

MEALY VHDL DESIGN MOORE VHDL DESIGN
ENTITY MEALY IS

 PORT(A,CLK,RST: IN BIT;
 F: OUT BIT); END MEALY;
ARCHITECTURE FSM OF MEALY IS

SUBTYPE STATE_TYPE IS STD_
LOGIC_VECTOR (2 DOWNTO 0);
SIGNAL STATE : STATE_TYPE;
CONSTANT S0:

 STATE_TYPE:="001";
CONSTANT S1:
 STATE_TYPE:="010";
CONSTANT S2:
 STATE_TYPE:="100";
SIGNAL CURRENT_STATE,

 NEXT_STATE : STATE_TYPE;
BEGIN

FF: PROCESS (CLK, RST) BEGIN

IF (RST=’1’) THEN

 CURRENT_STATE <= S0 ;
ELSIF (CLK’EVENT AND CLK='1')
THEN

 CURRENT_STATE<= NEXT_STATE;
END IF ;
END PROCESS;
LOGIC: PROCESS (A,
CURRENT_STATE) BEGIN

CASE CURRENT_STATE IS

WHEN S0 => IF (A=’0’) THEN

 F <= ’0’;
 NEXT_STATE <= S0;
ELSE F <= ’0’;
 NEXT_STATE <= S1;
END IF;
WHEN S1 => IF (A=’0’) THEN

 F <= ’0’;
 NEXT_STATE <= S2;
ELSE F<=’0’;
 NEXT_STATE<=S1;
END IF;
WHEN S2 => IF (A=’0’) THEN

 F<=’1’;
 NEXT_STATE<=S0;
ELSE F<=’0’;
 NEXT_STATE<=S1;
END IF;
WHEN OTHERS =>
 CURRENT_STATE <= S0;
END CASE;
END PROCESS;
END FSM;

ENTITY MOORE IS

 PORT(A,CLK,RST: IN BIT;
 F: OUT BIT); END MOORE;
ARCHITECTURE FSM OF MOORE IS

SUBTYPE STATE_TYPE IS STD_
LOGIC_VECTOR (2 DOWNTO 0);
SIGNAL STATE : STATE_TYPE;
CONSTANT S0:
 STATE_TYPE:="001";
CONSTANT S1:
 STATE_TYPE:="010";
CONSTANT S2:
 STATE_TYPE:="100";
SIGNAL CURRENT_STATE,
 NEXT_STATE : STATE_TYPE;
BEGIN

FF: PROCESS (CLK, RST) BEGIN

IF (RST=’1’) THEN

 CURRENT_STATE <= S0 ;
ELSIF (CLK’EVENT AND CLK=’1’)
THEN

 CURRENT_STATE<= NEXT_STATE;
END IF ;
END PROCESS FF ;
LOGIC: PROCESS (A,
CURRENT_STATE) BEGIN

CASE CURRENT_STATE IS

WHEN S0=> F <= ’0’;
 IF (A=’0’) THEN

 NEXT_STATE <=S 0;
ELSE

 NEXT_STATE <= S1;
END IF;
WHEN S1=> F <= ’0’;
IF (A=’0’) THEN

 NEXT_STATE <= S2;
ELSE

 NEXT_STATE <= S1;
END IF;
WHEN S2=> F <= ’1’;
IF (A=’0’) THEN

 NEXT_STATE <= S0;
ELSE

 NEXT_STATE <= S1;
END IF;
WHEN OTHERS =>

 CURRENT_STATE <= S0;
END CASE;
END PROCESS;
END FSM ;

VI. VHDL/VERILOG COMPARED & CONTRASTED

Hardware structures can be modeled equally
effectively in both languages, VHDL and Verilog.
Choosing which of these hardware description languages
can use them only depends on personal preferences, EDA
tool availability or commercial and marketing issues.

Verilog HDL allows a designer to describe designs at a
high level of abstraction such as at the structural or
behavioral level as well as the lower implementation
levels leading to Very Large Scale Integration Integrated
Circuits layouts and chip fabrication. A basic use of HDL
languages is the simulation of designs before the designer
must commit to fabrication.

VHDL is also a hardware description language that
describes the behavior of an electronic circuit or system,
from which the physical circuit can then be implemented
[3]. This language is designed to fill a number of needs in
the design process:

 It allows description of the structure of a design
that is how it is decomposed into sub-designs,
and how those sub-designs are interconnected;

 It allows the specification of the function of
designs using familiar programming language
forms;

 It allows a design to be simulated before being
manufactured, so that designers can test for
correctness and compare alternatives.

Regarding design reusability in Verilog the functions
and procedures must be placed in a separate file and
included using include compiler directive to make them
accessible from different module statements [12]. In the
VHDL case, the procedures and functions may be placed
in a package so that they are available to any design-unit
that wishes to use them.

Compared to VHDL, Verilog data types are very
simple, easy to use and unlike VHDL, all data types used
in a Verilog model are not defined by the user but by the
Verilog language. Objects of type reg hold their value
over simulation cycles and should not be confused with
the modeling of a hardware register. Verilog may be
preferred because of simplicity, but VHDL may be
recomended because it allows a multitude of user defined
data types to be used.

There are more VHDL constructs and features for
high-level modeling, compared with Verilog, where is no
equivalent to the high-level VHDL modeling statements.
In VHDL abstract data types can be used along with the
following statements: package statements for model
reuse, configuration statements for configuring design
structure, generate statements for replicating structure and
generic statements for generic models [12].

There is no concept of library in Verilog and this is
due to origins as an interpretive language. In VHDL a
library is a store for compiled entities, architectures,
packages and configurations and they are useful for
managing multiple design projects, compared with
Verilog, where are not statements who manage large
designs.

A final specification regarding VHDL is that, contrary
to regular computer programs which are sequential, its
statements are concurrent and only statements placed
inside a process, function, or procedure are executed
sequentially. For that reason, VHDL is referred to as a
code rather than a program.

Model of a string detector circuit was proposed as
problem for describing a finite state machine using
VHDL and in this last part of paper we include a model
written in Verilog in addition to VHDL, for comparison
purposes.

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

278

TABLE 7. MEALY AND MOORE VERILOG DESIGN FOR A STRING

DETECTOR CIRCUIT

MEALY VERILOG DESIGN MOORE VERILOG DESIGN
MODULE

MEALY_STRING_DETECTOR (F, A,
CLK, RST);
 OUTPUT F;
 INPUT A, CLK, RST;
 REG F;
 REG [2:0] CURRENT_STATE,
 NEXT_STATE;
PARAMETER

 S0=3’B001,
 S1=3’B010,
 S2=3’B100;

ALWAYS

@ (POSEDGE CLK AND POSEDGE

RST) BEGIN

IF (RST = = 1)
 CURRENT_STATE <= S0 ;
ELSE

 CURRENT_STATE<= NEXT_STATE;
END

ALWAYS

@(CURRENT_STATE OR A)

BEGIN

CASE (CURRENT_STATE)

MODULE

MOORE_STRING_DETECTOR (F, A,
CLK, RST);
 OUTPUT F;
 INPUT A, CLK, RST;
 REG F;
 REG [2:0] CURRENT_STATE,
 NEXT_STATE;
PARAMETER

 S0=3’B001,
 S1=3’B010,
 S2=3’B100;

ALWAYS

@ (POSEDGE CLK OR POSEDGE RST)
BEGIN

IF (RST = = 1)
 CURRENT_STATE <= S0 ;
ELSE

 CURRENT_STATE<= NEXT_STATE;
END

ALWAYS

@(CURRENT_STATE OR A)
BEGIN

CASE (CURRENT_STATE)

S0 : IF (A = = 0) BEGIN

 F <= 0;
 NEXT_STATE <= S0;
END

ELSE BEGIN

 F <= 0;
 NEXT_STATE <= S1;
END

S1 : IF (A = = 0) BEGIN

 F <= 0;
 NEXT_STATE <= S2;
END

ELSE BEGIN

 F<= 0;
 NEXT_STATE <= S1;
END

S2 : IF (A = = 0) BEGIN

 F<=1;
 NEXT_STATE <= S0;
END

ELSE BEGIN

 F<=0;
 NEXT_STATE <= S1;
END

DEFAULT :
 CURRENT_STATE <= S0;
ENDCASE

END

ENDMODULE

S0 :
BEGIN

 F <= 0;
IF (A = = 0)
 NEXT_STATE <= S0;
ELSE

 NEXT_STATE <= S1;
END

S1 :
BEGIN

 F <= 0;
IF (A = = 0)
 NEXT_STATE <= S2;
ELSE

 NEXT_STATE <= S1;
END

S2 :
BEGIN

 F <= 1;
IF (A = = 0)

 NEXT_STATE <= S0;
ELSE

 NEXT_STATE <= S1;
END

DEFAULT :
 CURRENT_STATE <= S0;
ENDCASE

END

ENDMODULE

Figure 3. Simulation Results for String Detector circuit

VII. CONCLUSIONS

This paper shows the relationship between finite state
machines and VHDL/Verilog code. A fundamental
motivation to use VHDL or Verilog is that both are a
standard, technology independent language, and are
therefore portable and reusable.

There are many ways to describe FSM designs and
some design rules in HDL languages are:

 Use parameters to define state encodings.
Parameters are constants that are local to a
module and after defining the state encodings at
the top of the module, never use the state
encodings again in the code. This method makes
it possible to easily change the state codings in
just one place in module.

 Use a two process/always block coding style to
describe FSM designs with combinational
outputs because this style is efficient and can
easily describe Mealy designs.

 Avoid the one process/always block FSM coding
style because this code style is more complicate
than two process/always block coding style and
output assignments are more error prone to
coding mistakes.

REFERENCES
[1] Hopcroft, J. E., Ullman, J. D., ”Introduction to Automata Theory,

Languages, and Computation”, Addison-Wesley, 1979.
[2] Reese, R. B. , Thornton, M. A., ”Introduction to Logic Synthesis

using Verilog HDL”, Morgan & Claypool Publishers’ series
Synthesis lectures on digital circuits and systems, USA, ISSN:
1930-3166, pp. 46-79, 2006

[3] Volnei, A .Pedroni, ”Circuit Design with VHDL”, MIT Press
Cambridge, Massachusetts, London, England, ISBN 0-262-16224-
5, pp. 159-186, 2004

[4] Chu, Pong P., ”RTL hardware design using VHDL”, A Wiley-
Interscience publication, USA, ISBN: 978-0-471-72092-8, pp.
313-373, 2006

[5] Golson, S. , ”State Machine Design Techniques for Verilog and
VHDL”, Synopsys Journal of High-Level Design, pp. 1-2, 1994

[6] Enoch O. Hwang, “Digital Logic and Microprocessor Design With
VHDL”, ISBN 0-534-46593-5, pp. 328-377, 2004

[7] XILINX – “A CPLD VHDL Introduction”, 1-800-255-7778, 2001
[8] IEEE Standard 1076-1993, IEEE Standard Description Language

Based on the VHDL Hardware Description Language, 1993.
[9] IEEE Standard 1364-2001, IEEE Standard Description Language

Based on the Verilog Hardware Description Language, 2001.
[10] Mealy, G. H., “A method for synthesizing sequential circuits,”

Bell System Tech. J., Vol. 34, No. 5, pp. 1045–1079, 1955.
[11] Moore, E. F., “Gedanken experiments on sequential machines,”

Automata Studies. Princeton, NJ: Princeton University Press, pp.
129–153, 1956.

[12] Smith, D. J., “VHDL & Verilog Compared & Contrasted
Plus Modeled Example Written in
VHDL, Verilog and C”, Proceedings of the 33rd annual Design
Automation Conference, USA 1996

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

10th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 27-29, 2010

Finite State Machine Design and

VHDL Coding Techniques

Iuliana CHIUCHISAN, Alin Dan POTORAC, Adrian GRAUR

"Stefan cel Mare" University of Suceava

str.Universitatii nr.13, RO-720229 Suceava

iulia@eed.usv.ro , alinp@eed.usv.ro, Adrian.Graur@usv.ro

Abstract — The first part of paper discusses a variety of issues regarding finite state machine design using the hardware description language. VHDL coding styles and different methodologies are presented. Our study of FSM focuses on the modeling issues such as VHDL coding style, state encoding schemes and Mealy or Moore machines. Our discussion is limited to the synchronous FSM, in which the transition is controlled by a clock signal and can occur only at the triggering edge of the clock.

The second part contains a worked example of a model that detects a unique pattern from a serial input data stream and generates a ‘1’ value to output whenever the sequence ‘10’ occurs. The string detector is modeled at the RTL level in VHDL and Verilog, for comparison purposes.

The last part of this paper presents a view on VHDL and Verilog languages by comparing their similarities and contrasting their difference.

Index Terms — VHDL code, Verilog code, finite state machine, Mealy machine, Moore machine, modeling issues, state encoding.

I. INTRODUCTION

The automata theory is the basis behind the traditional model of computation and is used for many purposes other than controller circuit design, including computer program compiler construction, proofs of algorithm complexity, and the specification and classification of computer programming languages [1].

Because automata are mathematical models that produce values dependent upon internal state and possibly some dependent input values, they are referred to as state machines [2]. A state machine may allow for a finite or an infinite set of possible states and further more, they may have nondeterministic or deterministic behavior. A deterministic state machine is one whose outputs are the same for a given internal state and input values. A finite state machine (FSM) is one where all possible state values made a finite set. The synchronous sequential circuits that are the focus of this paper are modeled as deterministic finite state machines and they are modeled as either Mealy or Moore machines.

II. OVERVIEW OF FINITE STATE MACHINES

Finite state machines (FSM) constitute a special modeling technique for sequential logic circuits. Such a model can be very helpful in the design of certain types of systems, particularly those whose tasks form a well-defined sequence [3].

The main application of an FSM is to realize operations that are performed in a sequence of steps [4]. A large digital system usually involves complex algorithms or tasks, which can be expressed as a sequence of actions based on system status and external commands. An FSM can function as the control circuit that coordinates and governs the operations of other units of the system [4].

Figure 1 shows the general structure for a finite state machine. The current state of the machine is stored in the state memory register, a set of k flip-flops clocked by a single clock signal. The current state is the value currently stored by the state memory register. The next state logic circuit of the machine is a function of the state vector and the inputs. Mealy outputs are a function of the state vector and the inputs, while Moore outputs are a function of the state vector only [5].

[image: image1]

Figure 1 State Machine Structure

A finite state machine is specified by five entities: symbolic states, input signals, output signals, next-state function and output function [4]. A state specifies a unique internal condition of a system and as time progresses, the FSM transits from one state to another. The new state is determined by the next-state function, which is a function of the current state and input signals.

The output function specifies the value of the output signals. If it is a function of the state only, the output is known as a Moore output and if it is a function of the

state and input signals, the output is known as a Mealy output. An FSM is called a Moore machine or Mealy machine if it contains only Moore outputs or Mealy outputs, but a complex FSM has both types of outputs.

FSMs are commonly modeled in a variety of ways, including state diagrams, state equations, state tables, and algorithmic state machine (ASM) charts.

In synthesis of FSM, we start with a functional description of the circuit. From this description, we need precise operation of the circuit using a state diagram. The state diagram allows us to complete the next-state and output tables and then the circuit can be derived from these tables.

During the synthesis process, there are many possible circuit optimizations in terms of the circuit size, speed, and power consumption that can be performed [6].

III. ENCODING STYLE

The most important decision to make when describing a finite state machine is what state encoding to use. To encode the states of a state machine, we can select from several styles, the default encoding style being binary. The advantage in using the binary code to encode state assignment is that requires the least number of flip-flops (with n flip-flops can be encoded up to 2n states). The disadvantage is that it requires more logic and is slower than the others.

A highly encoded state assignment will use fewer flip-flops for the state vector; however, additional logic will be required simply to encode and decode the state [5].

A style that uses one flip-flop per state is one-hot encoded style, because only one bit of the state vector is asserted for any given state and all other state bits are zero. In this case, with n flip-flops can be encoded only n states.

There are more advantages to using the one-hot style to design a state machine:

· One-hot state machines are faster. Speed depends on the number of transitions into a particular state.

· It is equally “optimal” for all machines.

· One-hot state machines are easy to design and HDL code can be written directly from the state diagram without coding a state table.

· Adding and deleting states, or changing excitation equations, can be implemented easily without affecting the rest of the state machine.

· Easily synthesized from HDL languages, VHDL or Verilog.

· It is easy to debug.

An style that is in between the two styles above is the two-hot encoding style, which presents two bits active per state and therefore, with n flip-flops can be encoded up to n(n-1)/2 states.

The encoding styles and the number of flip-flops required for a finite state machine with eight states is shown below:

Table 1. State encoding of a 8-state FSM

		

		Encoding

		State

		Binary

Style

		One-Hot

Style

		Two-Hot

Style

		State1

		000

		00000001

		00011

		State2

		001

		00000010

		00101

		State3

		010

		00000100

		01001

		State4

		011

		00001000

		10001

		State5

		100

		00010000

		00110

		State6

		101

		00100000

		01010

		State7

		110

		01000000

		10010

		State8

		111

		10000000

		01100

		Flip-flops number

		three flip-flops

		eight flip-flops

		five flip-flops

The one-hot style is recommended in applications where flip-flops are abundant, like in FPGA circuits. CPLD circuits have fewer flip-flops available to the designer.

While one-hot encoding is sometimes preferred because it is easy, a large state machine will require a large number of flip-flops. Therefore, when implementing finite state machines on CPLD circuits, in order to conserve available resources, it is recommended that binary or gray encoding be used [7]. That enables the largest number of states to be represented by as few flip-flops as possible.

IV. HDL LANGUAGES

Most hardware designers use hardware description languages (HDLs) to describe designs at various levels of abstraction. A hardware description language is a high level programming language, with programming constructs such as assignments, conditions, iterations and extensions for timing specification, concurrency and data structure proper for modeling different aspects of hardware. The most popular hardware description languages are VHDL [8] and Verilog [9].

VHDL (VHSIC (Very High Speed Integrated Circuits) Hardware Description Language) [8] is an IEEE Standard since 1987 while Verilog was standardized in 1995.

Both languages are programming language that has been designed and optimized for describing the behavior of digital systems. This HDL languages support the development, verification, synthesis, and testing of hardware designs.

In this paper we chose the VHDL language. One important aspect related to the FSM approach in VHDL code is that, though any sequential circuit can in principle be modeled as a state machine, this is not always advantageous [3]. The reason is that the code might become longer, more complex, and more error prone than in a conventional approach [3].

The FSM approach is adequate in systems whose tasks constitute a well-structured list so all states can be easily enumerated. That is, in a typical state machine implementation, we will encounter, at the beginning of the ARCHITECTURE, a user-defined enumerated data type, containing a list of all possible system states [3].

V. FSM VHDL DESIGN AND MODELING ISSUES

A Finite State Machines are an important aspect of hardware design. A well written model will function correctly and meet requirements in an optimal manner.

Finite state machine VHDL design issues to consider are:

· VHDL coding style.

· How many processes we use?

· State encoding.

· Mealy or Moore type outputs.

A. VHDL coding style

There are many ways of modeling the same state machine. Our example of FSM focuses on simple tasks, such as detecting a unique pattern from a serial input data stream and generating a ‘1’ value to output whenever the sequence ‘10’ occurs.

The state diagram of our string detector circuit is shown in figure 2. There are three states, which we called s0, s1, and s2.

[image: image2]

Figure 2. FSM State diagram

Table 2. Table with current state, next state and Mealy/Moore output for string detector circuit

		current

state

		next state

		mealy output

		moore

output

		

		A=0

		A=1

		A=0

		A=1

		

		s0

		s0

		s1

		0

		0

		0

		s1

		s2

		s1

		1

		0

		0

		s2

		s0

		s1

		0

		0

		1

Simulation results are shown in figure 3. As can be seen, the data sequence A=”010110110” was applied to the circuit, resulting the response F= “001001010” at the output F.

HDL code may be divided into three different parts to represent current state logic, next state logic and Mealy or Moore output logic. It may also be structured so that the three different parts are combined in the model. In VHDL, it is impossible to synthesize a combined current state, next state, and output logic in a single always statement.

A FSM with n state flip-flops may have 2n binary numbers that can encode states and often, all states are not needed. Therefore, next-state logic is best modeled using the case statement even though this means the state machine cannot be modeled in one process. The default clause used in a case statement avoids having to define the unused states.

B. How many processes?

Generally every finite state machine can be described either by one process or by two separated processes.

In the following table, are presented the corresponding parts of the VHDL source code for one process and two processes design for the string detector circuit.

Table 3.VHDL design for string detector circuit

		ONE VHDL PROCESS

		TWO VHDL PROCESS

		fsm_one: process (clk, rst)

begin

if (rst=’1’) then

 current_state <= s0;

elsif

(clk’event and clk=’1’) then

case current_state is

when s0 =>

if (A=’0’) then

 f<=’0’;

 next_state <= s0;

else

 f<=’0’;

 next_state <= s1;

end if;

when s1 =>

if (A=’0’) then

 f<=’01’;

 next_state <= s2;

else

 f<=’0’;

 next_state <= s1;

end if;

when s2 =>

if (A=’0’) then

 f<=’1’;

 next_state <= s0;

else

 f<=’0’;

 next_state <= s1;

end if;

when others =>

 current_state <= s0;

end case;

end if;

end process fsm_one;

		--process to hold synchronous elements

fsm_synch: process (clk, rst) begin

if (rst=’1’) then

 current_state <= s0;

elsif (clk’event and clk=’1’) then

 current_state <= next_state;

end if;

end process fsm_synch;

--process to hold combinational logic

fsm_comb: process (a, current_ state) begin

case current_state is

when s0=>

if (A=’0’) then

 f<=’0’;

 next_state <=s0;

else

 f<=’0’;

 next_state <= s1;

end if;

when s1=>

if (A=’0’) then

 f<=’1’;

 next_state <= s2;

else

 f<=’0’;

 next_state <= s1;

end if;

when s2=>

if (A=’0’) then

 f<=’0’;

 next_state <= s0;

else

 f<=’0’;

 next_state <= s1;

end if;

when others =>

 current_state <= s0;

end case;

end process fsm_comb;

In one process version, in the CASE statement which models the state transitions, the current state of the string detector FSM is detected and it is examined whether input values are present that lead to a change of the state.

The same FSM is used to show an implementation based on two VHDL processes. The VHDL source code contains two processes, one process defines synchronous elements of the design (state registers) and the other process defines the combinational part of the design (case statement). The result is a clocked process describing the storing elements and another combinational process describing the logic. In the CASE statement, the current state is checked and the input values are examined. If the state has to change, then NEXT_STATE and CURRENT_STATE will differ and with the next appearance of the active clock edge, this new state will be taken over as the current state.

There are different advantages and disadvantages of using one process or two processes and these differences are presented below.

1) Structure and legibility

The one process description is more adequate for observing changes of the states of the string detector FSM from the outside of the VHDL module. The graphical description resembles more a one process than a two process description.

The VHDL source code should be split into two processes because the combinational elements and synchronous elements (state registers) are two different structural elements.

2) Simulation

For two process version, can be determined

exactly the time and location where the error occurs for the first time and therefore the source of the error.

3) Synthesis

Several synthesis tools tend to produce better results when two processes are used to describe a finite state machine.

C. State encoding in VHDL

A finite state machine is an abstract description of digital structure and therefore the synthesis tools requires states of the automaton to be encoded as binary values or the synthesis tool itself will transform the state into a binary description. The way in which states are assigned binary values is called state encoding.

Some different state encoding schemes frequently used are presented in table 1.

Most synthesis tools selects a binary code by default, except the designer specifies another code explicitly. From all possibilities of state encoding is used frequently one-hot code, which is needed for speed optimized circuits.

Table 4. State encoding

		STATE ENCODING

		type state_type is (s0, s1, s2) ;

signal state : state_type ;

		BINARY CODE

		ONE-HOT CODE

		GRAY CODE

		s0 → "00"

s1→ "01"

s2→ "10"

		s0 → "001"

s1→ "010"

s2→ "100"

		s0 → "00"

s1→ "01"

s2→ "11"

The circuit requires two flip-flops, which encode the three states of the string detector state machine.

As the automat consists only of three states and two flip-flops can represent up to four states, there is one invalid state which leads to an unsafe state machine where the behavior of the design is not determined.

The best method of state encoding is hand coding in which case the designer decides by himself what code will be used.

Table 5. Hand coding

		subtype state_type is std_logic_vector (1 downto 0) ;

signal state : state_type ;

constant s0: state_type := "00";

constant s1: state_type := "10";

constant s2: state_type := "11";

The constants are defined to represent the corresponding states of the state machine and the code can be fixed by the designer. The behavior in case of errors can be verified in a simulation and therefore the hand coding alternative is the best method to design a safe finite state machine and is furthermore portable among different synthesis tools.

This type of state encoding has the advantage of using a vector type and the only disadvantage is a little more effort in writing the VHDL code, when the code is changed.

D. MOORE MACHINE VERSUS MEALY MACHINE

The two most popular state machines are referred to as Moore or Mealy machines, named after researchers who published early papers on their structure [10, 11]. There are different reasons for a designer to use one or other version of the two different type of finite state machine. The primary difference between these two state machines is that the output of a Moore machine depends only upon the state of the circuit whereas the output of a Mealy machine depends upon both the state and the inputs of the circuit. This has a practical effect in that the output signals of a Moore machine only change after output logic delays following a clock signal edge whereas the output signals of a Mealy machine may change at any time shortly after an input signal changes value [1].

In theoretical computer science, a Moore machine and a Mealy machine are considered to have similar efficiency because both can recognize “regular expressions” [4]. When the FSM is used as a control circuit, the control signals generated by a Moore machine and a Mealy machine have different timing characteristics and for the efficiency of a control circuit the timing difference is critical. We used a simple edge detection circuit to observe the difference between these two state machines.

There are three major differences between the Moore machine and Mealy machine. First, a Mealy machine requires fewer states to perform the same task because its output is a function of states and external inputs, and several possible output values can be specified in one state.

Second, a Mealy machine can generate a faster response. Since a Mealy output is a function of input, it changes whenever the input meets the designated condition and a Moore machine reacts indirectly to input changes.

The third difference involves the control of the width and timing of the output signal. In a Mealy machine, the width of an output signal varies with input and can be very narrow. A Mealy machine is susceptible to disturbances in the input signal and passes to the output. The output of a Moore machine is synchronized with the clock edge and its width is about the same as a clock period.

From this perspective, selection between a Mealy machine and a Moore machine depends on the need of control signals. If we divide control signals into two categories: edge-sensitive and level-sensitive, then for the first case, both the Mealy and the Moore machines can generate output signals that meet this requirement. However, a Mealy machine is preferred since it uses fewer states and responds one clock faster than does a Moore machine. A level-sensitive control signal means that a signal has to be asserted for a certain amount of time. When asserted, it has to be stable and free of spikes. A Moore machine is preferred since it can accurately control the activation time of its output, and can shield the control signal from input glitches.

Table 6. Mealy and Moore VHDL Design for a string detector

		MEALY VHDL DESIGN

		MOORE VHDL DESIGN

		entity mealy is

 port(a,clk,rst: in bit;

 f: out bit); end mealy;

architecture fsm of mealy is

subtype state_type is std_ logic_vector (2 downto 0);

signal state : state_type;

constant s0:

 state_type:="001";

constant s1:

 state_type:="010";

constant s2:

 state_type:="100";

signal current_state,

 next_state : state_type;

begin

ff: process (clk, rst) begin

if (rst=’1’) then

 current_state <= s0 ;

elsif (clk’event and clk='1') then

 current_state<= next_state;

end if ;

end process;

logic: process (a, current_state) begin

case current_state is

when s0 => if (a=’0’) then

 f <= ’0’;

 next_state <= s0;

else f <= ’0’;

 next_state <= s1;

end if;

when s1 => if (a=’0’) then

 f <= ’0’;

 next_state <= s2;

else f<=’0’;

 next_state<=s1;

end if;

when s2 => if (a=’0’) then

 f<=’1’;

 next_state<=s0;

else f<=’0’;

 next_state<=s1;

end if;

when others =>

 current_state <= s0;

end case;

end process;

end fsm;

		entity moore is

 port(a,clk,rst: in bit;

 f: out bit); end moore;

architecture fsm of moore is

subtype state_type is std_ logic_vector (2 downto 0);

signal state : state_type;

constant s0:

 state_type:="001";

constant s1:

 state_type:="010";

constant s2:

 state_type:="100";

signal current_state,

 next_state : state_type;

begin

ff: process (clk, rst) begin

if (rst=’1’) then

 current_state <= s0 ;

elsif (clk’event and clk=’1’) then

 current_state<= next_state;

end if ;

end process ff ;

logic: process (a, current_state) begin

case current_state is

when s0=> f <= ’0’;

 if (a=’0’) then

 next_state <=s 0;

else

 next_state <= s1;

end if;

when s1=> f <= ’0’;

if (a=’0’) then

 next_state <= s2;

else

 next_state <= s1;

end if;

when s2=> f <= ’1’;

if (a=’0’) then

 next_state <= s0;

else

 next_state <= s1;

end if;

when others =>

 current_state <= s0;

end case;

end process;

end fsm ;

VI. VHDL/VERILOG COMPARED & CONTRASTED

Hardware structures can be modeled equally effectively in both languages, VHDL and Verilog. Choosing which of these hardware description languages can use them only depends on personal preferences, EDA tool availability or commercial and marketing issues.

Verilog HDL allows a designer to describe designs at a high level of abstraction such as at the structural or behavioral level as well as the lower implementation levels leading to Very Large Scale Integration Integrated Circuits layouts and chip fabrication. A basic use of HDL languages is the simulation of designs before the designer must commit to fabrication.

VHDL is also a hardware description language that describes the behavior of an electronic circuit or system, from which the physical circuit can then be implemented [3]. This language is designed to fill a number of needs in the design process:

· It allows description of the structure of a design that is how it is decomposed into sub-designs, and how those sub-designs are interconnected;

· It allows the specification of the function of designs using familiar programming language forms;

· It allows a design to be simulated before being manufactured, so that designers can test for correctness and compare alternatives.

Regarding design reusability in Verilog the functions and procedures must be placed in a separate file and included using include compiler directive to make them accessible from different module statements [12]. In the VHDL case, the procedures and functions may be placed in a package so that they are available to any design-unit that wishes to use them.

Compared to VHDL, Verilog data types are very simple, easy to use and unlike VHDL, all data types used in a Verilog model are not defined by the user but by the Verilog language. Objects of type reg hold their value over simulation cycles and should not be confused with the modeling of a hardware register. Verilog may be preferred because of simplicity, but VHDL may be recomended because it allows a multitude of user defined data types to be used.

There are more VHDL constructs and features for high-level modeling, compared with Verilog, where is no equivalent to the high-level VHDL modeling statements. In VHDL abstract data types can be used along with the following statements: package statements for model reuse, configuration statements for configuring design structure, generate statements for replicating structure and generic statements for generic models [12].

There is no concept of library in Verilog and this is due to origins as an interpretive language. In VHDL a library is a store for compiled entities, architectures, packages and configurations and they are useful for managing multiple design projects, compared with Verilog, where are not statements who manage large designs.

A final specification regarding VHDL is that, contrary to regular computer programs which are sequential, its statements are concurrent and only statements placed inside a process, function, or procedure are executed sequentially. For that reason, VHDL is referred to as a code rather than a program.

Model of a string detector circuit was proposed as problem for describing a finite state machine using VHDL and in this last part of paper we include a model written in Verilog in addition to VHDL, for comparison purposes.

Table 7. Mealy and Moore Verilog design for a string detector circuit

		MEALY VERILOG DESIGN

		MOORE VERILOG DESIGN

		module mealy_string_detector (f, a, clk, rst);

 output f;

 input a, clk, rst;

 reg f;

 reg [2:0] current_state,

 next_state;

parameter

 s0=3’b001,

 s1=3’b010,

 s2=3’b100;

always

@ (posedge clk and posedge rst) begin

if (rst = = 1)

 current_state <= s0 ;

else

 current_state<= next_state;

end

always

@(current_state or a)

begin

case (current_state)

		module moore_string_detector (f, a, clk, rst);

 output f;

 input a, clk, rst;

 reg f;

 reg [2:0] current_state,

 next_state;

parameter

 s0=3’b001,

 s1=3’b010,

 s2=3’b100;

always

@ (posedge clk or posedge rst) begin

if (rst = = 1)

 current_state <= s0 ;

else

 current_state<= next_state;

end

always

@(current_state or a)

begin

case (current_state)

		s0 : if (a = = 0) begin

 f <= 0;

 next_state <= s0;

end

else begin

 f <= 0;

 next_state <= s1;

end

s1 : if (a = = 0) begin

 f <= 0;

 next_state <= s2;

end

else begin

 f<= 0;

 next_state <= s1;

end

s2 : if (a = = 0) begin

 f<=1;

 next_state <= s0;

end

else begin

 f<=0;

 next_state <= s1;

end

default :

 current_state <= s0;

endcase

end

endmodule

		s0 :

begin

 f <= 0;

if (a = = 0)

 next_state <= s0;

else

 next_state <= s1;

end

s1 :

begin

 f <= 0;

if (a = = 0)

 next_state <= s2;

else

 next_state <= s1;

end

s2 :

begin

 f <= 1;

if (a = = 0)

 next_state <= s0;

else

 next_state <= s1;

end

default :

 current_state <= s0;

endcase

end

endmodule

[image: image3.png]

Figure 3. Simulation Results for String Detector circuit

VII. CONCLUSIONS

This paper shows the relationship between finite state machines and VHDL/Verilog code. A fundamental motivation to use VHDL or Verilog is that both are a standard, technology independent language, and are therefore portable and reusable.

There are many ways to describe FSM designs and some design rules in HDL languages are:

· Use parameters to define state encodings. Parameters are constants that are local to a module and after defining the state encodings at the top of the module, never use the state encodings again in the code. This method makes it possible to easily change the state codings in just one place in module.

· Use a two process/always block coding style to describe FSM designs with combinational outputs because this style is efficient and can easily describe Mealy designs.

· Avoid the one process/always block FSM coding style because this code style is more complicate than two process/always block coding style and output assignments are more error prone to coding mistakes.

REFERENCES

[1] Hopcroft, J. E., Ullman, J. D., ”Introduction to Automata Theory, Languages, and Computation”, Addison-Wesley, 1979.

[2] Reese, R. B. , Thornton, M. A., ”Introduction to Logic Synthesis using Verilog HDL”, Morgan & Claypool Publishers’ series Synthesis lectures on digital circuits and systems, USA, ISSN: 1930-3166, pp. 46-79, 2006

[3] Volnei, A .Pedroni, ”Circuit Design with VHDL”, MIT Press Cambridge, Massachusetts, London, England, ISBN 0-262-16224-5, pp. 159-186, 2004

[4] Chu, Pong P., ”RTL hardware design using VHDL”, A Wiley-Interscience publication, USA, ISBN: 978-0-471-72092-8, pp. 313-373, 2006

[5] Golson, S. , ”State Machine Design Techniques for Verilog and VHDL”, Synopsys Journal of High-Level Design, pp. 1-2, 1994

[6] Enoch O. Hwang, “Digital Logic and Microprocessor Design With VHDL”, ISBN 0-534-46593-5, pp. 328-377, 2004

[7] XILINX – “A CPLD VHDL Introduction”, 1-800-255-7778, 2001

[8] IEEE Standard 1076-1993, IEEE Standard Description Language Based on the VHDL Hardware Description Language, 1993.

[9] IEEE Standard 1364-2001, IEEE Standard Description Language Based on the Verilog Hardware Description Language, 2001.

[10] Mealy, G. H., “A method for synthesizing sequential circuits,” Bell System Tech. J., Vol. 34, No. 5, pp. 1045–1079, 1955.

[11] Moore, E. F., “Gedanken experiments on sequential machines,” Automata Studies. Princeton, NJ: Princeton University Press, pp. 129–153, 1956.

[12] Smith, D. J., “VHDL & Verilog Compared & Contrasted
Plus Modeled Example Written in
VHDL, Verilog and C”, Proceedings of the 33rd annual Design Automation Conference, USA 1996

next-state logic circuit

state memory register

current state

Mealy output logic circuit

Moore output logic circuit

inputs

clock

Mealy outputs

Moore outputs

s2

0 / 0

1 / 0

 s1

1 / 0

1 / 0

 s0

0 / 1

0 / 0

278

273

