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Abstract — The first part of paper discusses a variety of 
issues regarding finite state machine design using the hardware 
description language. VHDL coding styles and different 
methodologies are presented. Our study of FSM focuses on the 
modeling issues such as VHDL coding style, state encoding 
schemes and Mealy or Moore machines. Our discussion is 
limited to the synchronous FSM, in which the transition is 
controlled by a clock signal and can occur only at the 
triggering edge of the clock.

The second part contains a worked example of a model that 
detects a unique pattern from a serial input data stream and 
generates a ‘1’ value to output whenever the sequence ‘10’ 
occurs. The string detector is modeled at the RTL level in 
VHDL and Verilog, for comparison purposes.

The last part of this paper presents a view on VHDL and 
Verilog languages by comparing their similarities and 
contrasting their difference.

Index Terms — VHDL code, Verilog code, finite state 
machine, Mealy machine, Moore machine, modeling issues, 
state encoding.

I. INTRODUCTION

The automata theory is the basis behind the traditional 
model of computation and is used for many purposes other 
than controller circuit design, including computer program 
compiler construction, proofs of algorithm complexity, and 
the specification and classification of computer 
programming languages [1].

Because automata are mathematical models that produce 
values dependent upon internal state and possibly some 
dependent input values, they are referred to as state 
machines [2]. A state machine may allow for a finite or an 
infinite set of possible states and further more, they may 
have nondeterministic or deterministic behavior. A 
deterministic state machine is one whose outputs are the 
same for a given internal state and input values. A finite 
state machine (FSM) is one where all possible state values 
made a finite set. The synchronous sequential circuits that 
are the focus of this paper are modeled as deterministic 
finite state machines and they are modeled as either Mealy 
or Moore machines.

II. OVERVIEW OF FINITE STATE MACHINES

Finite state machines (FSM) constitute a special modeling 
technique for sequential logic circuits. Such a model can be 
very helpful in the design of certain types of systems, 
particularly those whose tasks form a well-defined sequence 
[3].

The main application of an FSM is to realize operations 
that are performed in a sequence of steps [4]. A large digital 

system usually involves complex algorithms or tasks, which 
can be expressed as a sequence of actions based on system 
status and external commands. An FSM can function as the 
control circuit that coordinates and governs the operations of 
other units of the system [4]. 

Figure 1 shows the general structure for a finite state 
machine. The current state of the machine is stored in the 
state memory register, a set of k flip-flops clocked by a 
single clock signal. The current state is the value currently 
stored by the state memory register. The next state logic 
circuit of the machine is a function of the state vector and 
the inputs. Mealy outputs are a function of the state vector 
and the inputs, while Moore outputs are a function of the 
state vector only [5].

Figure 1 State Machine Structure

A finite state machine is specified by five entities: 
symbolic states, input signals, output signals, next-state 
function and output function [4]. A state specifies a unique 
internal condition of a system and as time progresses, the 
FSM transits from one state to another. The new state is 
determined by the next-state function, which is a function of 
the current state and input signals.

The output function specifies the value of the output 
signals. If it is a function of the state only, the output is 
known as a Moore output and if it is a function of the 
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state and input signals, the output is known as a Mealy 
output. An FSM is called a Moore machine or Mealy 
machine if it contains only Moore outputs or Mealy 
outputs, but a complex FSM has both types of outputs.

FSMs are commonly modeled in a variety of ways, 
including state diagrams, state equations, state tables, and 
algorithmic state machine (ASM) charts.

In synthesis of FSM, we start with a functional 
description of the circuit. From this description, we need 
precise operation of the circuit using a state diagram. The 
state diagram allows us to complete the next-state and 
output tables and then the circuit can be derived from 
these tables.

During the synthesis process, there are many possible 
circuit optimizations in terms of the circuit size, speed, 
and power consumption that can be performed [6]. 

III. ENCODING STYLE

The most important decision to make when describing 
a finite state machine is what state encoding to use. To 
encode the states of a state machine, we can select from
several styles, the default encoding style being binary. 
The advantage in using the binary code to encode state 
assignment is that requires the least number of flip-flops 
(with n flip-flops can be encoded up to 2n states). The 
disadvantage is that it requires more logic and is slower 
than the others.

A highly encoded state assignment will use fewer flip-
flops for the state vector; however, additional logic will 
be required simply to encode and decode the state [5].

A style that uses one flip-flop per state is one-hot 
encoded style, because only one bit of the state vector is 
asserted for any given state and all other state bits are 
zero. In this case, with n flip-flops can be encoded only n
states. 

There are more advantages to using the one-hot style to 
design a state machine:

 One-hot state machines are faster. Speed 
depends on the number of transitions into a 
particular state.

 It is equally “optimal” for all machines.
 One-hot state machines are easy to design and 

HDL code can be written directly from the state 
diagram without coding a state table.

 Adding and deleting states, or changing 
excitation equations, can be implemented easily 
without affecting the rest of the state machine.

 Easily synthesized from HDL languages, VHDL 
or Verilog. 

 It is easy to debug. 

An style that is in between the two styles above is the 
two-hot encoding style, which presents two bits active per 
state and therefore, with n flip-flops can be encoded up to 
n(n-1)/2 states.

The encoding styles and the number of flip-flops 
required for a finite state machine with eight states is 
shown below:

TABLE 1. STATE ENCODING OF A 8-STATE FSM
ENCODING

STATE BINARY

STYLE

ONE-HOT

STYLE

TWO-HOT

STYLE

STATE1 000 00000001 00011
STATE2 001 00000010 00101
STATE3 010 00000100 01001
STATE4 011 00001000 10001
STATE5 100 00010000 00110
STATE6 101 00100000 01010
STATE7 110 01000000 10010
STATE8 111 10000000 01100

FLIP-FLOPS 

NUMBER

THREE FLIP-
FLOPS

EIGHT FLIP-
FLOPS

FIVE FLIP-
FLOPS

The one-hot style is recommended in applications 
where flip-flops are abundant, like in FPGA circuits.
CPLD circuits have fewer flip-flops available to the 
designer. 

While one-hot encoding is sometimes preferred 
because it is easy, a large state machine will require a 
large number of flip-flops. Therefore, when implementing 
finite state machines on CPLD circuits, in order to 
conserve available resources, it is recommended that 
binary or gray encoding be used [7]. That enables the 
largest number of states to be represented by as few flip-
flops as possible.

IV. HDL LANGUAGES

Most hardware designers use hardware description
languages (HDLs) to describe designs at various levels of 
abstraction. A hardware description language is a high 
level programming language, with programming
constructs such as assignments, conditions, iterations and
extensions for timing specification, concurrency and data 
structure proper for modeling different aspects of 
hardware. The most popular hardware description
languages are VHDL [8] and Verilog [9]. 

VHDL (VHSIC (Very High Speed Integrated Circuits)
Hardware Description Language) [8] is an IEEE 
Standard since 1987 while Verilog was standardized in 
1995.

Both languages are programming language that has 
been designed and optimized for describing the behavior 
of digital systems. This HDL languages support the 
development, verification, synthesis, and testing of 
hardware designs. 

In this paper we chose the VHDL language. One 
important aspect related to the FSM approach in VHDL 
code is that, though any sequential circuit can in principle 
be modeled as a state machine, this is not always 
advantageous [3]. The reason is that the code might 
become longer, more complex, and more error prone than 
in a conventional approach [3]. 

The FSM approach is adequate in systems whose tasks 
constitute a well-structured list so all states can be easily 
enumerated. That is, in a typical state machine 
implementation, we will encounter, at the beginning of 
the ARCHITECTURE, a user-defined enumerated data 
type, containing a list of all possible system states [3].
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V. FSM VHDL DESIGN AND MODELING ISSUES

A Finite State Machines are an important aspect of 
hardware design. A well written model will function 
correctly and meet requirements in an optimal manner.

Finite state machine VHDL design issues to consider 
are:

 VHDL coding style.
 How many processes we use?
 State encoding.
 Mealy or Moore type outputs.

A. VHDL coding style

There are many ways of modeling the same state 
machine. Our example of FSM focuses on simple tasks, 
such as detecting a unique pattern from a serial input data 
stream and generating a ‘1’ value to output whenever the 
sequence ‘10’ occurs.

The state diagram of our string detector circuit is 
shown in figure 2. There are three states, which we called 
s0, s1, and s2.

Figure 2. FSM State diagram

TABLE 2. TABLE WITH CURRENT STATE, NEXT STATE AND 

MEALY/MOORE OUTPUT FOR STRING DETECTOR CIRCUIT

CURRENT

STATE
NEXT STATE MEALY OUTPUT

MOORE

OUTPUT

A=0 A=1 A=0 A=1
S0 S0 S1 0 0 0
S1 S2 S1 1 0 0
S2 S0 S1 0 0 1

Simulation results are shown in figure 3. As can be 
seen, the data sequence A=”010110110” was applied to 
the circuit, resulting the response F= “001001010” at the 
output F.

HDL code may be divided into three different parts to 
represent current state logic, next state logic and Mealy or 
Moore output logic. It may also be structured so that the 
three different parts are combined in the model. In 
VHDL, it is impossible to synthesize a combined current 
state, next state, and output logic in a single always 
statement.

A FSM with n state flip-flops may have 2n binary 
numbers that can encode states and often, all states are 
not needed. Therefore, next-state logic is best modeled 
using the case statement even though this means the state 
machine cannot be modeled in one process. The default 
clause used in a case statement avoids having to define 
the unused states.

B. How many processes?

Generally every finite state machine can be described 
either by one process or by two separated processes.

In the following table, are presented the corresponding 
parts of the VHDL source code for one process and two 
processes design for the string detector circuit.

TABLE 3.VHDL DESIGN FOR STRING DETECTOR CIRCUIT

ONE VHDL PROCESS TWO VHDL PROCESS
FSM_ONE: PROCESS (CLK, RST)
BEGIN

IF (RST=’1’) THEN

  CURRENT_STATE <= S0;
ELSIF 

(CLK’EVENT AND CLK=’1’)
THEN

CASE CURRENT_STATE IS

WHEN S0 =>
IF (A=’0’) THEN

     F<=’0’;    
     NEXT_STATE <= S0;
ELSE

     F<=’0’;
     NEXT_STATE <= S1;
END IF;
WHEN S1 =>
IF (A=’0’) THEN

      F<=’01’;    
      NEXT_STATE <= S2;
ELSE

      F<=’0’;
      NEXT_STATE <= S1;
END IF;
WHEN S2 =>
IF (A=’0’) THEN

      F<=’1’;    
      NEXT_STATE <= S0;
ELSE

      F<=’0’;
      NEXT_STATE <= S1;
END IF;  
WHEN OTHERS =>
      CURRENT_STATE <= S0;
END CASE;
END IF;
END PROCESS FSM_ONE;

--PROCESS TO HOLD SYNCHRONOUS ELEMENTS

FSM_SYNCH: PROCESS (CLK, RST)
BEGIN

IF (RST=’1’) THEN

  CURRENT_STATE <= S0;
ELSIF (CLK’EVENT AND CLK=’1’)
THEN

     CURRENT_STATE <= NEXT_STATE;
END IF;
END PROCESS FSM_SYNCH;

--PROCESS TO HOLD COMBINATIONAL LOGIC

FSM_COMB: PROCESS (A, CURRENT_
STATE) BEGIN

CASE CURRENT_STATE IS

WHEN S0=>
IF (A=’0’) THEN

     F<=’0’;    
     NEXT_STATE <=S0;
ELSE

      F<=’0’;
      NEXT_STATE <= S1;
END IF;
WHEN S1=>
IF (A=’0’) THEN

      F<=’1’;    
      NEXT_STATE <= S2;
ELSE

      F<=’0’;
      NEXT_STATE <= S1;
END IF;
WHEN S2=>
IF (A=’0’) THEN

      F<=’0’;    
      NEXT_STATE <= S0;
ELSE

      F<=’0’;
      NEXT_STATE <= S1;
END IF;   
WHEN OTHERS =>    

      CURRENT_STATE <= S0;
END CASE;
END PROCESS FSM_COMB;

In one process version, in the CASE statement which 
models the state transitions, the current state of the string 
detector FSM is detected and it is examined whether 
input values are present that lead to a change of the state.

The same FSM is used to show an implementation 
based on two VHDL processes. The VHDL source code 
contains two processes, one process defines synchronous 
elements of the design (state registers) and the other 
process defines the combinational part of the design (case 
statement). The result is a clocked process describing the 
storing elements and another combinational process 
describing the logic. In the CASE statement, the current 
state is checked and the input values are examined. If the 
state has to change, then NEXT_STATE and 
CURRENT_STATE will differ and with the next 
appearance of the active clock edge, this new state will be 
taken over as the current state.

There are different advantages and disadvantages of 
using one process or two processes and these differences 
are presented below.
1) Structure and legibility

The one process description is more adequate for 

s0 s1

s2

0 / 0
1 / 0

0 / 10 / 0

1 / 0

1 / 0
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observing changes of the states of the string detector FSM 
from the outside of the VHDL module. The graphical 
description resembles more a one process than a two 
process description.

The VHDL source code should be split into two 

processes because the combinational elements and 
synchronous elements (state registers) are two different 
structural elements.
2) Simulation

For two process version, can be determined 
exactly the time and location where the error occurs for 

the first time and therefore the source of the error.
3) Synthesis

Several synthesis tools tend to produce better results
when two processes are used to describe a finite state 
machine.

C. State encoding in VHDL

A finite state machine is an abstract description of 
digital structure and therefore the synthesis tools requires 
states of the automaton to be encoded as binary values or 
the synthesis tool itself will transform the state into a 
binary description. The way in which states are assigned 
binary values is called state encoding. 

Some different state encoding schemes frequently used 
are presented in table 1.

Most synthesis tools selects a binary code by default,
except the designer specifies another code explicitly. 
From all possibilities of state encoding is used frequently 
one-hot code, which is needed for speed optimized 
circuits.

TABLE 4. STATE ENCODING

STATE ENCODING
TYPE STATE_TYPE IS ( S0, S1, S2) ;
SIGNAL STATE : STATE_TYPE ;

BINARY CODE ONE-HOT CODE GRAY CODE
S0 → "00"
S1→ "01"
S2→ "10"

S0 → "001"
S1→ "010"
S2→ "100"

S0 → "00"
S1→ "01"
S2→ "11"

The circuit requires two flip-flops, which encode the 
three states of the string detector state machine.

As the automat consists only of three states and two 
flip-flops can represent up to four states, there is one 
invalid state which leads to an unsafe state machine 
where the behavior of the design is not determined.

The best method of state encoding is hand coding in 
which case the designer decides by himself what code 
will be used.

TABLE 5. HAND CODING

SUBTYPE STATE_TYPE IS STD_LOGIC_VECTOR (1 DOWNTO 0) ;
SIGNAL STATE : STATE_TYPE ;
CONSTANT S0: STATE_TYPE := "00";
CONSTANT S1: STATE_TYPE := "10";
CONSTANT S2: STATE_TYPE := "11";

The constants are defined to represent the 
corresponding states of the state machine and the code 
can be fixed by the designer. The behavior in case of 
errors can be verified in a simulation and therefore the 
hand coding alternative is the best method to design a 
safe finite state machine and is furthermore portable 
among different synthesis tools.

This type of state encoding has the advantage of using 
a vector type and the only disadvantage is a little more 
effort in writing the VHDL code, when the code is 
changed. 

D. MOORE MACHINE VERSUS MEALY MACHINE

The two most popular state machines are referred to as 
Moore or Mealy machines, named after researchers who 
published early papers on their structure [10, 11]. There 
are different reasons for a designer to use one or other 
version of the two different type of finite state machine. 
The primary difference between these two state machines
is that the output of a Moore machine depends only upon 
the state of the circuit whereas the output of a Mealy 
machine depends upon both the state and the inputs of the 
circuit. This has a practical effect in that the output 
signals of a Moore machine only change after output 
logic delays following a clock signal edge whereas the 
output signals of a Mealy machine may change at any 
time shortly after an input signal changes value  [1].

In theoretical computer science, a Moore machine and 
a Mealy machine are considered to have similar 
efficiency because both can recognize “regular 
expressions” [4]. When the FSM is used as a control 
circuit, the control signals generated by a Moore machine 
and a Mealy machine have different timing characteristics 
and for the efficiency of a control circuit the timing
difference is critical. We used a simple edge detection 
circuit to observe the difference between these two state 
machines.

There are three major differences between the Moore 
machine and Mealy machine. First, a Mealy machine 
requires fewer states to perform the same task because its 
output is a function of states and external inputs, and 
several possible output values can be specified in one 
state. 

Second, a Mealy machine can generate a faster 
response. Since a Mealy output is a function of input, it 
changes whenever the input meets the designated 
condition and a Moore machine reacts indirectly to input 
changes. 

The third difference involves the control of the width 
and timing of the output signal. In a Mealy machine, the 
width of an output signal varies with input and can be
very narrow. A Mealy machine is susceptible to 
disturbances in the input signal and passes to the output. 
The output of a Moore machine is synchronized with the 
clock edge and its width is about the same as a clock 
period. 

From this perspective, selection between a Mealy 
machine and a Moore machine depends on the need of 
control signals. If we divide control signals into two 
categories: edge-sensitive and level-sensitive, then for the 
first case, both the Mealy and the Moore machines can 
generate output signals that meet this requirement. 
However, a Mealy machine is preferred since it uses 
fewer states and responds one clock faster than does a 
Moore machine. A level-sensitive control signal means 
that a signal has to be asserted for a certain amount of 
time. When asserted, it has to be stable and free of spikes. 
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A Moore machine is preferred since it can accurately
control the activation time of its output, and can shield 
the control signal from input glitches.

TABLE 6. MEALY AND MOORE VHDL DESIGN FOR A STRING DETECTOR

MEALY VHDL DESIGN MOORE VHDL DESIGN
ENTITY MEALY IS

   PORT(A,CLK,RST: IN BIT;
               F: OUT BIT);  END MEALY;
ARCHITECTURE FSM OF MEALY IS

SUBTYPE STATE_TYPE IS STD_
LOGIC_VECTOR (2 DOWNTO 0);
SIGNAL STATE : STATE_TYPE;
CONSTANT S0:    

        STATE_TYPE:="001";
CONSTANT S1:
       STATE_TYPE:="010";
CONSTANT S2:
      STATE_TYPE:="100";
SIGNAL CURRENT_STATE,       

            NEXT_STATE : STATE_TYPE;
BEGIN

FF: PROCESS (CLK, RST) BEGIN

IF (RST=’1’) THEN 

     CURRENT_STATE  <=  S0 ;
ELSIF (CLK’EVENT AND CLK='1')
THEN

 CURRENT_STATE<= NEXT_STATE;
END IF ;
END PROCESS;
LOGIC: PROCESS (A,
CURRENT_STATE) BEGIN

CASE CURRENT_STATE IS

WHEN S0 => IF (A=’0’) THEN

      F <= ’0’;    
      NEXT_STATE <= S0;
ELSE       F <= ’0’;
      NEXT_STATE <= S1;
END IF;
WHEN S1 => IF (A=’0’) THEN

      F <= ’0’;    
      NEXT_STATE <= S2;
ELSE       F<=’0’;
      NEXT_STATE<=S1;
END IF;
WHEN S2 => IF (A=’0’) THEN

      F<=’1’;    
      NEXT_STATE<=S0;
ELSE      F<=’0’;
     NEXT_STATE<=S1;
END IF;   
WHEN OTHERS =>
     CURRENT_STATE <=  S0;
END CASE;
END PROCESS;
END FSM;

ENTITY MOORE IS

    PORT(A,CLK,RST: IN BIT;
                F: OUT BIT); END MOORE;
ARCHITECTURE FSM OF MOORE IS

SUBTYPE STATE_TYPE IS STD_
LOGIC_VECTOR (2 DOWNTO 0);
SIGNAL STATE : STATE_TYPE;
CONSTANT S0:
        STATE_TYPE:="001";
CONSTANT S1:
        STATE_TYPE:="010";
CONSTANT S2:
        STATE_TYPE:="100";
SIGNAL CURRENT_STATE,
            NEXT_STATE : STATE_TYPE;
BEGIN

FF: PROCESS (CLK, RST) BEGIN

IF (RST=’1’) THEN 

      CURRENT_STATE <= S0 ;
ELSIF (CLK’EVENT AND CLK=’1’)
THEN

 CURRENT_STATE<= NEXT_STATE;
END IF ;
END PROCESS FF ;
LOGIC: PROCESS (A,
CURRENT_STATE) BEGIN

CASE CURRENT_STATE IS

WHEN S0=> F <= ’0’;    
 IF (A=’0’) THEN

      NEXT_STATE <=S 0;
ELSE

      NEXT_STATE <= S1;
END IF;
WHEN S1=> F <= ’0’;    
IF (A=’0’) THEN

      NEXT_STATE <= S2;
ELSE

      NEXT_STATE <= S1;
END IF;
WHEN S2=> F <= ’1’;    
IF (A=’0’) THEN

      NEXT_STATE <= S0;
ELSE

      NEXT_STATE <= S1;
END IF;   
WHEN OTHERS =>     

      CURRENT_STATE <= S0;
END CASE;
END PROCESS;
END FSM ;

VI. VHDL/VERILOG COMPARED & CONTRASTED

Hardware structures can be modeled equally 
effectively in both languages, VHDL and Verilog. 
Choosing which of these hardware description languages 
can use them only depends on personal preferences, EDA 
tool availability or commercial and marketing issues.

Verilog HDL allows a designer to describe designs at a 
high level of abstraction such as at the structural or 
behavioral level as well as the lower implementation 
levels leading to Very Large Scale Integration Integrated 
Circuits layouts and chip fabrication. A basic use of HDL 
languages is the simulation of designs before the designer 
must commit to fabrication. 

VHDL is also a hardware description language that
describes the behavior of an electronic circuit or system, 
from which the physical circuit can then be implemented
[3]. This language is designed to fill a number of needs in 
the design process:

 It allows description of the structure of a design 
that is how it is decomposed into sub-designs, 
and how those sub-designs are interconnected;

 It allows the specification of the function of 
designs using familiar programming language 
forms;

 It allows a design to be simulated before being 
manufactured, so that designers can test for 
correctness and compare alternatives.

Regarding design reusability in Verilog the functions 
and procedures must be placed in a separate file and 
included using include compiler directive to make them 
accessible from different module statements [12]. In the 
VHDL case, the procedures and functions may be placed 
in a package so that they are available to any design-unit 
that wishes to use them.

Compared to VHDL, Verilog data types are very 
simple, easy to use and unlike VHDL, all data types used 
in a Verilog model are not defined by the user but by the 
Verilog language. Objects of type reg hold their value 
over simulation cycles and should not be confused with 
the modeling of a hardware register. Verilog may be 
preferred because of simplicity, but VHDL may be 
recomended because it allows a multitude of user defined 
data types to be used.

There are more VHDL constructs and features for 
high-level modeling, compared with Verilog, where is no 
equivalent to the high-level VHDL modeling statements.
In VHDL abstract data types can be used along with the 
following statements: package statements for model 
reuse, configuration statements for configuring design 
structure, generate statements for replicating structure and 
generic statements for generic models [12].

There is no concept of library in Verilog and this is 
due to origins as an interpretive language. In VHDL a 
library is a store for compiled entities, architectures, 
packages and configurations and they are useful for 
managing multiple design projects, compared with 
Verilog, where are not statements who manage large 
designs.

A final specification regarding VHDL is that, contrary 
to regular computer programs which are sequential, its 
statements are concurrent and only statements placed 
inside a process, function, or procedure are executed 
sequentially. For that reason, VHDL is referred to as a 
code rather than a program.

Model of a string detector circuit was proposed as 
problem for describing a finite state machine using 
VHDL and in this last part of paper we include a model 
written in Verilog in addition to VHDL, for comparison 
purposes.
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TABLE 7. MEALY AND MOORE VERILOG DESIGN FOR A STRING 

DETECTOR CIRCUIT

MEALY VERILOG DESIGN MOORE VERILOG DESIGN
MODULE 

MEALY_STRING_DETECTOR (F, A,
CLK, RST);
      OUTPUT F;
      INPUT A, CLK, RST;
      REG F;
      REG [2:0] CURRENT_STATE,
                          NEXT_STATE;
PARAMETER 

       S0=3’B001,
       S1=3’B010,
       S2=3’B100;

ALWAYS

@ (POSEDGE CLK AND POSEDGE 

RST) BEGIN

IF (RST = = 1)
     CURRENT_STATE  <=  S0 ;
ELSE 

 CURRENT_STATE<= NEXT_STATE;
END 

ALWAYS 

@(CURRENT_STATE OR A)  

BEGIN

CASE (CURRENT_STATE)

MODULE 

MOORE_STRING_DETECTOR (F, A,
CLK, RST);
     OUTPUT F;
      INPUT A, CLK, RST;
      REG F;
     REG [2:0] CURRENT_STATE,
                         NEXT_STATE;
PARAMETER 

        S0=3’B001,
        S1=3’B010,
        S2=3’B100;

ALWAYS

@ (POSEDGE CLK OR POSEDGE RST)
BEGIN

IF (RST = = 1)
     CURRENT_STATE  <=  S0 ;
ELSE 

 CURRENT_STATE<= NEXT_STATE;
END 

ALWAYS 

@(CURRENT_STATE OR A)
BEGIN

CASE (CURRENT_STATE)

S0 : IF (A = = 0) BEGIN

      F <= 0;    
      NEXT_STATE <= S0;
END

ELSE BEGIN

      F <= 0;
      NEXT_STATE <= S1;
END

S1 : IF (A = = 0) BEGIN

      F <= 0;    
      NEXT_STATE <= S2;
END

ELSE BEGIN

      F<= 0;
      NEXT_STATE <= S1;
END 

S2 : IF (A = = 0)  BEGIN

      F<=1;    
      NEXT_STATE <= S0;
END

ELSE BEGIN

     F<=0;
     NEXT_STATE <= S1;
END 

DEFAULT :
     CURRENT_STATE <=  S0;
ENDCASE

END

ENDMODULE

S0 :
BEGIN

       F <= 0;    
IF (A = = 0)
      NEXT_STATE <= S0;
ELSE 

      NEXT_STATE <= S1;
END

S1 :
BEGIN

      F <= 0;    
IF (A = = 0)
      NEXT_STATE <= S2;
ELSE 

      NEXT_STATE <= S1;
END

S2 :
BEGIN

      F <= 1;    
IF (A = = 0)  

      NEXT_STATE <= S0;
ELSE 

     NEXT_STATE <= S1;
END

DEFAULT :
     CURRENT_STATE <=  S0;
ENDCASE

END

ENDMODULE

Figure 3. Simulation Results for String Detector circuit

VII. CONCLUSIONS

This paper shows the relationship between finite state 
machines and VHDL/Verilog code. A fundamental 
motivation to use VHDL or Verilog is that both are a 
standard, technology independent language, and are 
therefore portable and reusable.

There are many ways to describe FSM designs and 
some design rules in HDL languages are: 

 Use parameters to define state encodings. 
Parameters are constants that are local to a 
module and after defining the state encodings at 
the top of the module, never use the state 
encodings again in the code. This method makes 
it possible to easily change the state codings in 
just one place in module.

 Use a two process/always block coding style to 
describe FSM designs with combinational 
outputs because this style is efficient and can 
easily describe Mealy designs.

 Avoid the one process/always block FSM coding 
style because this code style is more complicate
than two process/always block coding style and 
output assignments are more error prone to 
coding mistakes.
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Abstract — The first part of paper discusses a variety of issues regarding finite state machine design using the hardware description language. VHDL coding styles and different methodologies are presented. Our study of FSM focuses on the modeling issues such as VHDL coding style, state encoding schemes and Mealy or Moore machines. Our discussion is limited to the synchronous FSM, in which the transition is controlled by a clock signal and can occur only at the triggering edge of the clock. 

The second part contains a worked example of a model that detects a unique pattern from a serial input data stream and generates a ‘1’ value to output whenever the sequence ‘10’ occurs. The string detector is modeled at the RTL level in VHDL and Verilog, for comparison purposes.


The last part of this paper presents a view on VHDL and Verilog languages by comparing their similarities and contrasting their difference.

Index Terms — VHDL code, Verilog code, finite state machine, Mealy machine, Moore machine, modeling issues, state encoding.

I. INTRODUCTION


The automata theory is the basis behind the traditional model of computation and is used for many purposes other than controller circuit design, including computer program compiler construction, proofs of algorithm complexity, and the specification and classification of computer programming languages [1].

Because automata are mathematical models that produce values dependent upon internal state and possibly some dependent input values, they are referred to as state machines [2]. A state machine may allow for a finite or an infinite set of possible states and further more, they may have nondeterministic or deterministic behavior. A deterministic state machine is one whose outputs are the same for a given internal state and input values. A finite state machine (FSM) is one where all possible state values made a finite set. The synchronous sequential circuits that are the focus of this paper are modeled as deterministic finite state machines and they are modeled as either Mealy or Moore machines.

II. OVERVIEW OF FINITE STATE MACHINES

Finite state machines (FSM) constitute a special modeling technique for sequential logic circuits. Such a model can be very helpful in the design of certain types of systems, particularly those whose tasks form a well-defined sequence [3]. 


The main application of an FSM is to realize operations that are performed in a sequence of steps [4]. A large digital system usually involves complex algorithms or tasks, which can be expressed as a sequence of actions based on system status and external commands. An FSM can function as the control circuit that coordinates and governs the operations of other units of the system [4]. 

Figure 1 shows the general structure for a finite state machine. The current state of the machine is stored in the state memory register, a set of k flip-flops clocked by a single clock signal. The current state is the value currently stored by the state memory register. The next state logic circuit of the machine is a function of the state vector and the inputs. Mealy outputs are a function of the state vector and the inputs, while Moore outputs are a function of the state vector only [5].
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Figure 1 State Machine Structure

A finite state machine is specified by five entities: symbolic states, input signals, output signals, next-state function and output function [4]. A state specifies a unique internal condition of a system and as time progresses, the FSM transits from one state to another. The new state is determined by the next-state function, which is a function of the current state and input signals.


The output function specifies the value of the output signals. If it is a function of the state only, the output is known as a Moore output and if it is a function of the 


state and input signals, the output is known as a Mealy output. An FSM is called a Moore machine or Mealy machine if it contains only Moore outputs or Mealy outputs, but a complex FSM has both types of outputs.

FSMs are commonly modeled in a variety of ways, including state diagrams, state equations, state tables, and algorithmic state machine (ASM) charts. 


In synthesis of FSM, we start with a functional description of the circuit. From this description, we need precise operation of the circuit using a state diagram. The state diagram allows us to complete the next-state and output tables and then the circuit can be derived from these tables.


During the synthesis process, there are many possible circuit optimizations in terms of the circuit size, speed, and power consumption that can be performed [6]. 

III. ENCODING STYLE

The most important decision to make when describing a finite state machine is what state encoding to use. To encode the states of a state machine, we can select from several styles, the default encoding style being binary. The advantage in using the binary code to encode state assignment is that requires the least number of flip-flops (with n flip-flops can be encoded up to 2n states). The disadvantage is that it requires more logic and is slower than the others.

A highly encoded state assignment will use fewer flip-flops for the state vector; however, additional logic will be required simply to encode and decode the state [5].


A style that uses one flip-flop per state is one-hot encoded style, because only one bit of the state vector is asserted for any given state and all other state bits are zero. In this case, with n flip-flops can be encoded only n states. 

There are more advantages to using the one-hot style to design a state machine:


· One-hot state machines are faster. Speed depends on the number of transitions into a particular state.


· It is equally “optimal” for all machines.


· One-hot state machines are easy to design and HDL code can be written directly from the state diagram without coding a state table.


· Adding and deleting states, or changing excitation equations, can be implemented easily without affecting the rest of the state machine.


· Easily synthesized from HDL languages, VHDL or Verilog. 

· It is easy to debug. 


An style that is in between the two styles above is the two-hot encoding style, which presents two bits active per state and therefore, with n flip-flops can be encoded up to n(n-1)/2 states.


The encoding styles and the number of flip-flops required for a finite state machine with eight states is shown below: 


Table 1. State encoding of a 8-state FSM


		

		Encoding



		State

		Binary


Style

		One-Hot


Style

		Two-Hot


Style



		State1

		000

		00000001

		00011



		State2

		001

		00000010

		00101



		State3

		010

		00000100

		01001



		State4

		011

		00001000

		10001



		State5

		100

		00010000

		00110



		State6

		101

		00100000

		01010



		State7

		110

		01000000

		10010



		State8

		111

		10000000

		01100



		Flip-flops number

		three flip-flops

		eight flip-flops

		five flip-flops





The one-hot style is recommended in applications where flip-flops are abundant, like in FPGA circuits. CPLD circuits have fewer flip-flops available to the designer. 

While one-hot encoding is sometimes preferred because it is easy, a large state machine will require a large number of flip-flops. Therefore, when implementing finite state machines on CPLD circuits, in order to conserve available resources, it is recommended that binary or gray encoding be used [7]. That enables the largest number of states to be represented by as few flip-flops as possible.


IV. HDL LANGUAGES

Most hardware designers use hardware description languages (HDLs) to describe designs at various levels of abstraction. A hardware description language is a high level programming language, with programming constructs such as assignments, conditions, iterations and extensions for timing specification, concurrency and data structure proper for modeling different aspects of hardware. The most popular hardware description languages are VHDL [8] and Verilog [9]. 


VHDL (VHSIC (Very High Speed Integrated Circuits) Hardware Description Language) [8] is an IEEE Standard since 1987 while Verilog was standardized in 1995.


Both languages are programming language that has been designed and optimized for describing the behavior of digital systems. This HDL languages support the development, verification, synthesis, and testing of hardware designs. 

In this paper we chose the VHDL language. One important aspect related to the FSM approach in VHDL code is that, though any sequential circuit can in principle be modeled as a state machine, this is not always advantageous [3]. The reason is that the code might become longer, more complex, and more error prone than in a conventional approach [3]. 

The FSM approach is adequate in systems whose tasks constitute a well-structured list so all states can be easily enumerated. That is, in a typical state machine implementation, we will encounter, at the beginning of the ARCHITECTURE, a user-defined enumerated data type, containing a list of all possible system states [3].


V. FSM VHDL DESIGN AND MODELING ISSUES

A Finite State Machines are an important aspect of hardware design. A well written model will function correctly and meet requirements in an optimal manner.


Finite state machine VHDL design issues to consider are:


· VHDL coding style.

· How many processes we use?

· State encoding.

· Mealy or Moore type outputs.

A. VHDL coding style


There are many ways of modeling the same state machine. Our example of FSM focuses on simple tasks, such as detecting a unique pattern from a serial input data stream and generating a ‘1’ value to output whenever the sequence ‘10’ occurs. 

The state diagram of our string detector circuit is shown in figure 2. There are three states, which we called s0, s1, and s2.
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Figure 2. FSM State diagram

Table 2. Table with current state, next state and Mealy/Moore output for string detector circuit

		current

state

		next state

		mealy output

		moore


output



		

		A=0

		A=1

		A=0

		A=1

		



		s0

		s0

		s1

		0

		0

		0



		s1

		s2

		s1

		1

		0

		0



		s2

		s0

		s1

		0

		0

		1





Simulation results are shown in figure 3. As can be seen, the data sequence A=”010110110” was applied to the circuit, resulting the response F= “001001010” at the output F.


HDL code may be divided into three different parts to represent current state logic, next state logic and Mealy or Moore output logic. It may also be structured so that the three different parts are combined in the model. In VHDL, it is impossible to synthesize a combined current state, next state, and output logic in a single always statement.


A FSM with n state flip-flops may have 2n binary numbers that can encode states and often, all states are not needed. Therefore, next-state logic is best modeled using the case statement even though this means the state machine cannot be modeled in one process. The default clause used in a case statement avoids having to define the unused states. 

B. How many processes?


Generally every finite state machine can be described either by one process or by two separated processes. 

In the following table, are presented the corresponding parts of the VHDL source code for one process and two processes design for the string detector circuit.

Table 3.VHDL design for string detector circuit

		ONE VHDL PROCESS

		TWO VHDL PROCESS



		fsm_one: process (clk, rst)


begin


if (rst=’1’) then


  current_state <= s0;


elsif 

(clk’event and clk=’1’) then


case current_state is

when s0 => 

if (A=’0’) then


     f<=’0’;    


     next_state <= s0;


else


     f<=’0’;


     next_state <= s1;


end if;


when s1 => 

if (A=’0’) then


      f<=’01’;    


      next_state <= s2;


else


      f<=’0’;


      next_state <= s1;


end if;


when s2 => 

if (A=’0’) then


      f<=’1’;    


      next_state <= s0;


else


      f<=’0’;


      next_state <= s1;


end if;  

when others =>

      current_state <=  s0;


end case;

end if;

end process fsm_one;

		--process to hold synchronous elements

fsm_synch: process (clk, rst) begin

if (rst=’1’) then


  current_state <= s0;


elsif (clk’event and clk=’1’) then


     current_state <= next_state;

end if;

end process fsm_synch;

--process to hold combinational logic

fsm_comb: process (a, current_ state) begin

case current_state is

when s0=> 

if (A=’0’) then

     f<=’0’;    

     next_state <=s0;

else


      f<=’0’;


      next_state <= s1;


end if;

when s1=> 

if (A=’0’) then


      f<=’1’;    


      next_state <= s2;


else


      f<=’0’;


      next_state <= s1;


end if;


when s2=> 

if (A=’0’) then


      f<=’0’;    


      next_state <= s0;


else


      f<=’0’;


      next_state <= s1;


end if;   

when others =>    


      current_state <= s0;


end case;

end process fsm_comb;





In one process version, in the CASE statement which models the state transitions, the current state of the string detector FSM is detected and it is examined whether input values are present that lead to a change of the state.


The same FSM is used to show an implementation based on two VHDL processes. The VHDL source code contains two processes, one process defines synchronous elements of the design (state registers) and the other process defines the combinational part of the design (case statement). The result is a clocked process describing the storing elements and another combinational process describing the logic. In the CASE statement, the current state is checked and the input values are examined. If the state has to change, then NEXT_STATE and CURRENT_STATE will differ and with the next appearance of the active clock edge, this new state will be taken over as the current state.

There are different advantages and disadvantages of using one process or two processes and these differences are presented below.

1) Structure and legibility

The one process description is more adequate for observing changes of the states of the string detector FSM from the outside of the VHDL module. The graphical description resembles more a one process than a two process description.


The VHDL source code should be split into two processes because the combinational elements and synchronous elements (state registers) are two different structural elements.


2) Simulation

For two process version, can be determined 


exactly the time and location where the error occurs for the first time and therefore the source of the error.

3) Synthesis

Several synthesis tools tend to produce better results when two processes are used to describe a finite state machine.


C. State encoding in VHDL

A finite state machine is an abstract description of digital structure and therefore the synthesis tools requires states of the automaton to be encoded as binary values or the synthesis tool itself will transform the state into a binary description. The way in which states are assigned binary values is called state encoding. 

Some different state encoding schemes frequently used are presented in table 1.


Most synthesis tools selects a binary code by default, except the designer specifies another code explicitly. From all possibilities of state encoding is used frequently one-hot code, which is needed for speed optimized circuits.

Table 4. State encoding

		STATE ENCODING 



		type state_type is ( s0, s1, s2) ;


signal state : state_type ;



		BINARY CODE

		ONE-HOT CODE

		GRAY CODE



		s0 → "00"


s1→ "01"


s2→ "10"

		s0 → "001"


s1→ "010"


s2→ "100"

		s0 → "00"


s1→ "01"


s2→ "11"





The circuit requires two flip-flops, which encode the three states of the string detector state machine.


As the automat consists only of three states and two flip-flops can represent up to four states, there is one invalid state which leads to an unsafe state machine where the behavior of the design is not determined.

The best method of state encoding is hand coding in which case the designer decides by himself what code will be used.


Table 5. Hand coding


		subtype state_type is std_logic_vector (1 downto 0) ;


signal state : state_type ;


constant s0: state_type := "00";


constant s1: state_type := "10";


constant s2: state_type := "11";





The constants are defined to represent the corresponding states of the state machine and the code can be fixed by the designer. The behavior in case of errors can be verified in a simulation and therefore the hand coding alternative is the best method to design a safe finite state machine and is furthermore portable among different synthesis tools. 


This type of state encoding has the advantage of using a vector type and the only disadvantage is a little more effort in writing the VHDL code, when the code is changed. 

D. MOORE MACHINE VERSUS MEALY MACHINE

The two most popular state machines are referred to as Moore or Mealy machines, named after researchers who published early papers on their structure [10, 11]. There are different reasons for a designer to use one or other version of the two different type of finite state machine. The primary difference between these two state machines is that the output of a Moore machine depends only upon the state of the circuit whereas the output of a Mealy machine depends upon both the state and the inputs of the circuit. This has a practical effect in that the output signals of a Moore machine only change after output logic delays following a clock signal edge whereas the output signals of a Mealy machine may change at any time shortly after an input signal changes value  [1].

In theoretical computer science, a Moore machine and a Mealy machine are considered to have similar efficiency because both can recognize “regular expressions” [4]. When the FSM is used as a control circuit, the control signals generated by a Moore machine and a Mealy machine have different timing characteristics and for the efficiency of a control circuit the timing difference is critical. We used a simple edge detection circuit to observe the difference between these two state machines.


There are three major differences between the Moore machine and Mealy machine. First, a Mealy machine requires fewer states to perform the same task because its output is a function of states and external inputs, and several possible output values can be specified in one state. 


Second, a Mealy machine can generate a faster response. Since a Mealy output is a function of input, it changes whenever the input meets the designated condition and a Moore machine reacts indirectly to input changes. 


The third difference involves the control of the width and timing of the output signal. In a Mealy machine, the width of an output signal varies with input and can be very narrow. A Mealy machine is susceptible to disturbances in the input signal and passes to the output. The output of a Moore machine is synchronized with the clock edge and its width is about the same as a clock period. 


From this perspective, selection between a Mealy machine and a Moore machine depends on the need of control signals. If we divide control signals into two categories: edge-sensitive and level-sensitive, then for the first case, both the Mealy and the Moore machines can generate output signals that meet this requirement. However, a Mealy machine is preferred since it uses fewer states and responds one clock faster than does a Moore machine. A level-sensitive control signal means that a signal has to be asserted for a certain amount of time. When asserted, it has to be stable and free of spikes. A Moore machine is preferred since it can accurately control the activation time of its output, and can shield the control signal from input glitches.


Table 6. Mealy and Moore VHDL Design for a string detector


		MEALY VHDL DESIGN

		MOORE VHDL DESIGN



		entity mealy is

   port(a,clk,rst: in bit;

               f: out bit);  end mealy;

architecture fsm of mealy is

subtype state_type is std_ logic_vector (2 downto 0);


signal state : state_type;


constant s0:    


        state_type:="001";


constant s1: 

       state_type:="010";


constant s2: 

      state_type:="100";

signal current_state,       


            next_state : state_type;

begin

ff: process (clk, rst) begin

if (rst=’1’) then 

     current_state  <=  s0 ;

elsif (clk’event and clk='1') then

 current_state<= next_state;

end if ; 

end process;

logic: process (a, current_state) begin

case current_state is

when s0 => if (a=’0’) then

      f <= ’0’;    

      next_state <= s0;

else       f <= ’0’;

      next_state <= s1;

end if;

when s1 => if (a=’0’) then

      f <= ’0’;    

      next_state <= s2;

else       f<=’0’;

      next_state<=s1;

end if;

when s2 => if (a=’0’) then

      f<=’1’;    

      next_state<=s0;

else       f<=’0’;

     next_state<=s1;

end if;   

when others => 

     current_state <=  s0;

end case; 

end process; 

end fsm;

		entity moore is

    port(a,clk,rst: in bit;

                f: out bit); end moore;

architecture fsm of moore is

subtype state_type is std_ logic_vector (2 downto 0);


signal state : state_type;


constant s0: 

        state_type:="001";


constant s1: 

        state_type:="010";


constant s2:  


        state_type:="100";

signal current_state, 

            next_state : state_type;

begin

ff: process (clk, rst) begin

if (rst=’1’) then 

      current_state <= s0 ;

elsif (clk’event and clk=’1’) then

 current_state<= next_state;

end if ; 

end process ff ;

logic: process (a, current_state) begin

case current_state is

when s0=> f <= ’0’;    

 if (a=’0’) then

      next_state <=s 0;

else

      next_state <= s1;

end if;

when s1=> f <= ’0’;    

if (a=’0’) then

      next_state <= s2;

else

      next_state <= s1;

end if;

when s2=> f <= ’1’;    

if (a=’0’) then

      next_state <= s0;

else

      next_state <= s1;

end if;   

when others =>     

      current_state <= s0;

end case;

end process; 

end fsm ;





VI. VHDL/VERILOG COMPARED & CONTRASTED

Hardware structures can be modeled equally effectively in both languages, VHDL and Verilog. Choosing which of these hardware description languages can use them only depends on personal preferences, EDA tool availability or commercial and marketing issues.

Verilog HDL allows a designer to describe designs at a high level of abstraction such as at the structural or behavioral level as well as the lower implementation levels leading to Very Large Scale Integration Integrated Circuits layouts and chip fabrication. A basic use of HDL languages is the simulation of designs before the designer must commit to fabrication. 

VHDL is also a hardware description language that describes the behavior of an electronic circuit or system, from which the physical circuit can then be implemented [3]. This language is designed to fill a number of needs in the design process:

· It allows description of the structure of a design that is how it is decomposed into sub-designs, and how those sub-designs are interconnected; 


· It allows the specification of the function of designs using familiar programming language forms;

· It allows a design to be simulated before being manufactured, so that designers can test for correctness and compare alternatives.


Regarding design reusability in Verilog the functions and procedures must be placed in a separate file and included using include compiler directive to make them accessible from different module statements [12]. In the VHDL case, the procedures and functions may be placed in a package so that they are available to any design-unit that wishes to use them.


Compared to VHDL, Verilog data types are very simple, easy to use and unlike VHDL, all data types used in a Verilog model are not defined by the user but by the Verilog language. Objects of type reg hold their value over simulation cycles and should not be confused with the modeling of a hardware register. Verilog may be preferred because of simplicity, but VHDL may be recomended because it allows a multitude of user defined data types to be used.

There are more VHDL constructs and features for high-level modeling, compared with Verilog, where is no equivalent to the high-level VHDL modeling statements. In VHDL abstract data types can be used along with the following statements: package statements for model reuse, configuration statements for configuring design structure, generate statements for replicating structure and generic statements for generic models [12].

There is no concept of library in Verilog and this is due to origins as an interpretive language. In VHDL a library is a store for compiled entities, architectures, packages and configurations and they are useful for managing multiple design projects, compared with Verilog, where are not statements who manage large designs.

A final specification regarding VHDL is that, contrary to regular computer programs which are sequential, its statements are concurrent and only statements placed inside a process, function, or procedure are executed sequentially. For that reason, VHDL is referred to as a code rather than a program.

Model of a string detector circuit was proposed as problem for describing a finite state machine using VHDL and in this last part of paper we include a model written in Verilog in addition to VHDL, for comparison purposes.


Table 7. Mealy and Moore Verilog design for a string detector circuit


		MEALY VERILOG DESIGN

		MOORE VERILOG DESIGN



		module mealy_string_detector (f, a, clk, rst);


      output f;


      input a, clk, rst;


      reg f;


      reg [2:0] current_state, 

                          next_state;


parameter 


       s0=3’b001, 


       s1=3’b010, 


       s2=3’b100;


always

@ (posedge clk and posedge rst) begin

if (rst = = 1) 


     current_state  <=  s0 ;


else 

 current_state<= next_state;


end 


always 

@(current_state or a)  

begin


case (current_state)

		module moore_string_detector (f, a, clk, rst);


     output f;


      input a, clk, rst;


      reg f;


     reg [2:0] current_state, 

                         next_state;


parameter 


        s0=3’b001, 


        s1=3’b010, 


        s2=3’b100;


always 

@ (posedge clk or posedge rst) begin

if (rst = = 1) 


     current_state  <=  s0 ;


else 

 current_state<= next_state;


end 


always 

@(current_state or a)


begin


case (current_state) 



		s0 : if (a = = 0) begin

      f <= 0;    


      next_state <= s0;

end

else begin


      f <= 0;


      next_state <= s1;


end

s1 : if (a = = 0) begin

      f <= 0;    


      next_state <= s2;

end

else begin


      f<= 0;


      next_state <= s1;


end 

s2 : if (a = = 0)  begin

      f<=1;    


      next_state <= s0;

end

else begin


     f<=0;


     next_state <= s1;


end 


default : 


     current_state <=  s0;


endcase


end

endmodule

		s0 : 

begin


       f <= 0;    


if (a = = 0) 

      next_state <= s0;

else 


      next_state <= s1;

end

s1 : 

begin


      f <= 0;    


if (a = = 0) 

      next_state <= s2;

else 


      next_state <= s1;


end


s2 : 

begin


      f <= 1;    


if (a = = 0)  

      next_state <= s0;

else 


     next_state <= s1;

end

default : 


     current_state <=  s0;


endcase


end

endmodule
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Figure 3. Simulation Results for String Detector circuit

VII. CONCLUSIONS

This paper shows the relationship between finite state machines and VHDL/Verilog code. A fundamental motivation to use VHDL or Verilog is that both are a standard, technology independent language, and are therefore portable and reusable.


There are many ways to describe FSM designs and some design rules in HDL languages are: 

· Use parameters to define state encodings. Parameters are constants that are local to a module and after defining the state encodings at the top of the module, never use the state encodings again in the code. This method makes it possible to easily change the state codings in just one place in module.


· Use a two process/always block coding style to describe FSM designs with combinational outputs because this style is efficient and can easily describe Mealy designs.


· Avoid the one process/always block FSM coding style because this code style is more complicate than two process/always block coding style and output assignments are more error prone to coding mistakes.
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