
Radiation Hardened VA416X0 32-Bit Arm<sup>®</sup> Cortex<sup>®</sup>-M4 (with FPU) microcontroller manufactured with HARDSIL<sup>®</sup> technology offering best in class radiation performance and latch-up immunity.



#### MEMORY CONFIGURATION OPTIONS

- Internal FRAM (VA41630 only)
- External SPI NVM (for code boot)
- External parallel NVM (for code boot)
- External memory bus interface (EBI for code or data)

#### RADIATION HARDENED PERFORMANCE

- VA41620 Total Ionizing Dose (TID) > 300 krad(Si)
- VA41630 Total Ionizing Dose (TID) > 200 krad(Si)<sup>1</sup>
- Soft Error Rate (SER) < 1E-15 errors / bit-day w/ EDAC & Scrub enabled (See Section 7 for details)
- Single-Event Latch-Up (SEL) immunity to LET > 110 MeVcm<sup>2</sup> / mg



#### **KEY FEATURES**

- Manufactured with HARDSIL<sup>®</sup> technology
- RAD hardened Registers with Triple-Mode Redundancy (TMR)
- 32-bit Arm<sup>®</sup> Cortex<sup>®</sup>-M4 processor
  Single-Precision Floating-Point Unit (FPU)
  SWD based debug interface
- Operating voltages
- GPIO 3.3 ± 10% V
- Core 1.5 ± 10% V
- Clock rate up to 100 MHz
  - Internal 20 MHz oscillator for fail-safe clocking
- Memory
  - 64 Kbyte on-chip data and 256 Kbyte on-chip program memory SRAM
  - 256 Kbyte SPI FRAM (VA41630 only)
  - Error Detection and Correction (EDAC)
  - Built-in Scrub Engine
- Peripherals
  - 104 Configurable GPIO pins
  - 3 UART interfaces
  - 3 I<sup>2</sup>C interfaces
  - 3 SPI interfaces
  - 2 CAN 2.0B
  - Ethernet MAC
  - SpaceWire interface
  - DMA controller
  - 8-Ch 12-bit ADC
  - 2-Ch 12-bit DAC
  - Temperature sensor
- External Asynchronous Parallel Bus Interface (EBI)
- 8-bit or 16-bit memory support
- Four chip selects of up to 16 Mbytes each
- Timer System
  - 24 configurable 32-bit counters / timers
  - Input capture, Output compares
  - PWMs, Pulse Counters, Watchdog timer
- Packages
  - 196 BGA (12mm x 12mm)
  - 176 QFP (20mm x 20mm)

#### SUPPORT

- PEB1 development board
- BSP and drivers
- See product errata in Section 12
- <sup>1</sup> Refer to Infineon-CYPT15B102Q-GGMB-Datasheet
- for FRAM radiation data.

### VORAGO CONFIDENTIAL

### **Product Datasheet**



| 1   | Functional Description                             | . 5 |
|-----|----------------------------------------------------|-----|
| 1.1 | Related Documentation                              | 5   |
| 1.2 | Feature Summary                                    | 5   |
| 1.3 | Boot Sequence                                      | 10  |
| 1.4 | Resets                                             | 10  |
| 2   | Block Diagram                                      | 11  |
| 3   | Pinout                                             | 12  |
| 3.1 | 176-pin QFP pinout                                 | 12  |
| 3.2 | 196-Pin Plastic BGA Ball-Map Diagram               | 13  |
| 3.3 | 196-Pin Plastic BGA Ball Description               | 14  |
| 3.4 | Pin Descriptions                                   | 21  |
| 3.5 | GPIO Pin Alternative Functions                     | 24  |
| 4   | Peripheral Summary                                 | 28  |
| 4.1 | Serial Peripheral Interface (SPI)                  | 28  |
| 4.2 | Universal Asynchronous Receiver/Transmitter (UART) | 28  |
| 4.3 | Inter-Integrated Circuit (I <sup>2</sup> C)        | 29  |
| 4.4 | SpaceWire (SpW)                                    | 30  |
| 4.5 | Controller Area Network (CAN)                      | 31  |
| 4.6 | General Purpose 4-Channel DMA                      | 32  |
| 4.7 | Ethernet Media Access Control (MAC)                | 32  |
| 4.8 | Analog to Digital Converter (ADC)                  | 34  |
| 4.9 | Digital to Analog Converter (DAC)                  | 34  |
| 4.1 |                                                    |     |
| 4.1 | 1 General-Purpose Input/Output Ports (GPIO)        | 35  |
| 4.1 |                                                    |     |
| 4.1 |                                                    |     |
| 4.1 | 4 Debug and programing interface                   | 37  |
| 5   | DC Electrical Characteristics                      | 39  |
| 5.1 | Absolute Maximum Ratings                           | 39  |
| 5.2 | Recommended Supply Conditions                      |     |
| 5.3 | Required Power Supply Sequencing                   | 40  |
| 5.4 | DC Current Consumption                             | 42  |
| 5.5 | Power Supply Decoupling                            |     |
| 5.6 | General Purpose I/O                                |     |
| 5.7 | Open Drain I2C Pads                                | 45  |
| 5.8 | SpaceWire Pads                                     |     |
| 5.9 | ADC Operating Conditions                           | 46  |
| 5.1 |                                                    |     |
| 5.1 |                                                    |     |
| 5.1 | •                                                  |     |
| 5.1 | •                                                  |     |
| 5.1 | 1 6                                                |     |
| 5.1 |                                                    |     |
| 5.1 | 5                                                  |     |
| 5.1 | 7 Internal Pull-up/Pull-down Resistors             | 50  |

#### **Product Datasheet**



|    | 5.18 | Pin Capacitance                           | 51 |
|----|------|-------------------------------------------|----|
| 6  |      | AC Electrical Characteristics             | 52 |
|    | 6.1  | AC Timing Conditions                      | 52 |
|    | 6.2  | Internal 20 MHz Oscillator                | 52 |
|    | 6.3  | Internal 1 MHz Oscillator                 | 52 |
|    | 6.4  | External Clock Signals                    | 52 |
|    | 6.5  | Phased Locked Loop (PLL)                  |    |
|    | 6.6  | Serial Wire Debug (SWD)                   | 54 |
|    | 6.7  | Low Voltage Differential Signaling (LVDS) | 55 |
|    | 6.8  | Ethernet MII Timing                       | 56 |
|    | 6.9  | External Bus Interface (EBI) Timing       | 57 |
|    | 6.10 | Electrostatic Discharge (ESD)             | 62 |
| 7  |      | Radiation Hardened Performance Targets    | 62 |
| 8  |      | Thermal Resistance Characteristics        | 62 |
| 9  |      | Package Mechanical Information            | 64 |
|    | 9.1  | 176-Pin Ceramic QFP                       | 64 |
|    | 9.2  | 176-Pin Plastic QFP                       | 65 |
|    | 9.3  | 196-Pin Plastic BGA                       | 66 |
|    | 9.4  | Package Pin Metallization                 | 66 |
|    | 9.5  | Reflow / Soldering Conditions             | 66 |
| 1( | כ    | Ordering Information                      | 67 |
| 11 | L    | Development Kit Ordering Information      | 67 |
| 12 | 2    | VA416XX Errata                            |    |
| 13 | _    | Disclaimer                                |    |
| 14 | -    | Revision History                          |    |
|    | •    |                                           |    |



# Features

- Performance
  - 100 MHz Arm<sup>®</sup> Cortex<sup>®</sup>-M4 processor with Single-Precision Floating-Point Unit (FPU)
- On-Chip Memory
  - 256 Kbyte Non-Volatile Memory (Infineon FRAM) (VA41630 only)
  - 256 Kbyte Program SRAM
  - 64 Kbyte Data SRAM
  - On-chip Error Detection and Correction (EDAC) and Scrub Engine
- General-purpose I/O (GPIO) pins
  - Configurable direction
  - Configurable pull-up/down resistors
  - Configurable as edge or level sensitive interrupt sources
- 24 General-purpose counter/timers
  - Configurable interrupt sources
  - Can be triggered from multiple sources (GPIO or other counter/timers)
  - Each counter/timer has an independent 32-bit counter
  - Configurable as PWM, capture or compare
- 3 x UARTS
  - Internal FIFO
  - Transmit or receive interrupt source
  - 3 x Serial Peripheral Interface (SPI) ports
    - Internal FIFO
    - Transmit or receive interrupt source
    - Multiple chip select outputs
- 3 x l<sup>2</sup>C ports
  - Internal FIFO
  - Master and Slave mode on all ports
  - Standard and Fast mode support
- System-level Triple-Mode Redundancy (TMR) on critical internal registers
- 8-Channel, 12-bit ADC
- 2-Channel, 12-bit DAC
- 2 x CAN 2.0B controllers
- Ethernet MAC
- SpaceWire controller with LVDS interface
- Random Number Generator
- Temperature sensor
- Serial Wire Debug (SWD) based debug controller (JTAG is for factory test only)
- Parallel external memory bus interface (EBI)



### 1 Functional Description

The VA416X0 is optimized for radiation environments and consists of an Arm<sup>®</sup> Cortex<sup>®</sup>-M4 CPU core and a related set of peripherals. It includes Error Detection and Correction (EDAC) logic on the internal memories. The program space EDAC is 16-bit word-based for optimum performance and reliability. The data space EDAC is 8-bit to allow reliable byte size data manipulation. In addition, the VA416X0 includes Triple-Mode Redundancy (TMR) with voting on select internal flip-flop storage elements.

#### 1.1 Related Documentation

The following associated documents will help understand this device:

- Arm<sup>®</sup> Documents (Available from <u>http://infocenter.arm.com</u>)
  - Cortex<sup>®</sup>-M4 Generic User Guide
  - Cortex<sup>®</sup>-M4 Technical Reference Manual
  - AMBA<sup>®</sup> 3 AHB-Lite<sup>™</sup> Protocol Specification
  - AMBA<sup>®</sup> 3 APB Protocol Specification
  - Arm<sup>®</sup> TrustZone<sup>®</sup> True Random Number Generator Technical Reference Manual
  - Arm<sup>®</sup> PrimeCell<sup>®</sup> External Bus Interface Technical Reference Manual
  - Arm<sup>®</sup> PrimeCell<sup>®</sup> DMA Technical Reference Manual
- NXP Documents
  - I<sup>2</sup>C-bus Specification
- Infineon Documents
  - FM25V20A FRAM Datasheet
- VORAGO Documents
  - VA416XX Programmer's Guide

#### 1.2 Feature Summary

- Processor Core
  - Arm<sup>®</sup> Cortex<sup>®</sup>-M4 processor
    - Up to 100 MHz operation
    - SysTick Counter
    - Single Cycle Multiply-and-accumulate
    - Hardware divide (2 to 12 cycles)
    - Single-precision IEEE 754 compliant HW Floating Point Unit (FPU)
    - Bit-Banding region for registers and data SRAM



- Arm<sup>®</sup> Cortex<sup>®</sup>-M4 built-in Nested Vectored Interrupt Controller (NVIC)
  - 240 Interrupt sources with a unique 3-bit priority level (176 of these are used)
  - External Non-Maskable Interrupt (NMI) pin
  - Tail chaining supported
- Arm<sup>®</sup> CoreSight<sup>™</sup> debug and trace technology
  - SWD: Serial Wire Debug
  - DAP: Debug Access Port
  - Four Breakpoint Comparators
  - Two Data Watch Point Comparators
- Memory
  - 64 Kbyte SRAM Data Memory (32 Kbyte on Data bus and 32 Kbyte on System bus)
    - Byte-level Error Detection and Correction (EDAC) logic on Data memory
  - 256 Kbyte SRAM Instruction Memory
    - Loaded from Serial Peripheral Interface (SPI) based memory or from external memory on the External Bus interface at startup
    - Configurable boot delay, boot speed, and error checking
    - 16-bit level EDAC on instruction memory
  - Programmable Scrub Engine for both Data and Instruction memory
  - Utility peripheral
    - Provides means of injecting single and multi-bit errors to check error handling routines.
  - 256 Kbyte serial FRAM in package (VA41630 only)
- System Integration Peripherals
  - System Configuration
    - Memory Control
      - Data memory clear on reset
      - Code memory reload on reset
      - Code memory write protect
      - Code/Data memory Scrub rate
      - Code/Data memory SBE/MBE counters
      - Code/Data memory SBE/MBE Interrupt control
    - GPIO Glitch Filter rate control
    - Peripheral Configuration
      - Clock gating and Reset control of individual peripherals



- Interrupt Router
  - Maps interrupt sources to timers, ADC, DAC, and DMA for flexible event triggers
- Four-Channel DMA
  - Allows CPU independent data movement from memory to memory, peripherals to memory, or memory to peripherals.
- Analog Peripherals
  - 12-bit SAR ADC
    - Eight channels on dedicated pins
    - Internal temperature sensor connection
    - 600 kps maximum sampling rate
    - Triggerable by a timer event
  - Digital to Analog Converter (DAC)
    - Two independent channels on dedicated pins
    - 12-bit resolution
    - 0.5 mA drive capability
    - DMA connection allows waveform generation
- Serial Communication Peripherals
  - Three UARTs
    - 16-word Transmit and Receive FIFOs
    - Fractional baud rate generation
    - Supports:
      - 5, 6, 7, 8, and 9 bits
      - Even, Odd and None parity
      - Stop Bits 1 or 2
      - Break generation and detection
    - Error detection
      - FIFO overflow
      - Framing error
      - Parity error
      - Break detection
    - Configurable Interrupt generation
      - FIFO level (fully configurable)
      - Receive Timeout
      - Error
  - Three SPI Ports (Fourth SPI used only to program Boot SPI FRAM)
    - Supports all four modes of SPI operation
    - Data size of 4 to 16 bits
    - 16-word Transmit and Receive FIFOs



- Block mode support for larger Frame sizes
- Master-mode clock rates up to 1/4 System clock (3.125 Mbytes/s)
- Slave-mode clock rates up to 1/24 System clock (520 kbytes/s)
- Configurable Interrupt generation for transmitting and receiving
  - FIFO level (fully configurable)
  - FIFO Overflow
  - Receive Timeout
- Three I<sup>2</sup>C Ports
  - Standard I<sup>2</sup>C-compliant bus interface
  - Dedicated open-drain pins supporting l<sup>2</sup>C Fast mode
  - Configurable as Master or Slave
  - 16-byte Transmit and Receive FIFOs
  - Configurable Interrupt generation
    - FIFO level (fully configurable)
- Ethernet Media Access Controller (MAC)
  - Supports 10/100BASE-T
  - Media-Independent interface (MII)
- Two Controller Area Network (CAN) Ports
  - Supports CAN 2.0B
  - Two-wire interface to external Physical Layer (PHY)
- SpaceWire port
  - Supports SpaceWire standard ECSS-E-ST-50-12C
  - 1k byte receive FIFO
  - 1k byte transmit FIFO
- System Connection Peripherals
  - o GPIO
    - Seven GPIO Ports with up to 104 pins total
      - 16-bit ports A-F
      - 8-bit port G
    - Configurable direction control of individual bits
    - Bit-level mask register allows single instruction setting or clearing of any bits in one port.
    - Configurable interrupt generation on ports A-F
      - Level or Edge sensitive
    - Configurable Pulse mode on individual bits
    - Configurable (0 to 3) cycle delay filtering on individual bits



- I/O Configuration
  - Manages programmable function selects of each pin to allow peripherals to be mapped to GPIO
  - Sets electrical parameters:
    - Glitch filters
    - Pull-up/Pull-down resistors
    - Signal inversion
    - Pseudo open-drain
- Timers
  - Twenty-four 32-bit timers
  - Advanced trigger modes using cascade feature
    - Separate Start/Stop based on other timers or interrupt signals
    - Multiple trigger sources from GPIO or other timers
  - Configurable output event
    - One cycle pulse when timer equal to zero detected
    - Active mode
    - Divide by two for square wave creation
    - Two PWM modes: single edge and double edge detection (supports center alignment)
- External Bus interface
  - Asynchronous with 16-bit or 8-bit data width
  - Double mapped in memory to allow Instruction or Data access
  - 16 Mbyte memory space with four chip selects
  - Configurable wait states
- Power supplies
  - Configured for use with dual supplies
    - 3.3 V for I/O
    - 1.5 V for logic
- Radiation Hardness
  - Latch-up immunity in extreme environments
  - Built to be resistant to Single Event Upsets (SEU)
  - Built with VORAGO proprietary HARDSIL<sup>®</sup> technology
  - Designed with Dual-Interlocked Storage Cells (DICE) and Triple-Mode Redundancy (TMR) on key register elements.



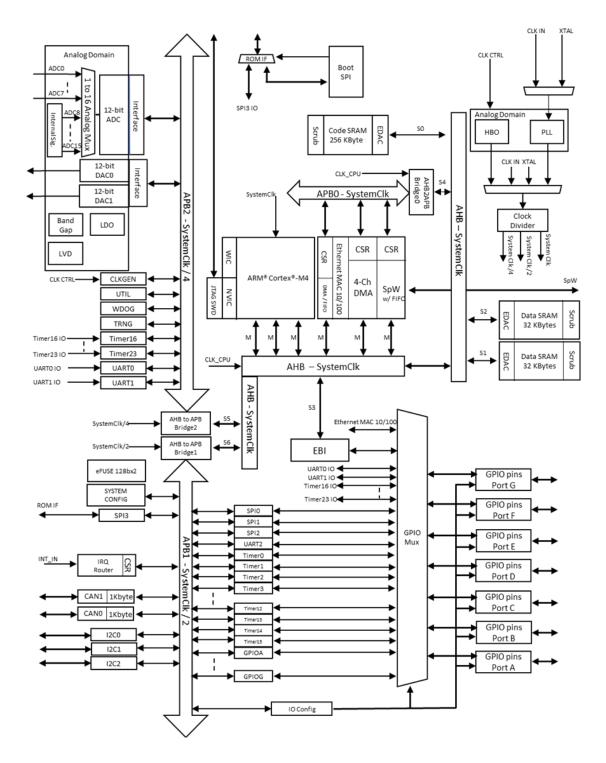
#### **1.3 Boot Sequence**

The VA416XX can boot from one of two sources: an internal/external Serial Peripheral Interface (SPI) peripheral connected to the ROM SPI interface or via the External Parallel Bus Interface (EBI). The boot mode is selected with the EBI\_BOOT pin. The clock source for boot operation is a 20 MHz internally generated oscillator (HBO)

If EBI\_BOOT=0, The VA416X0 begins operation by loading the internal SRAM code memory from an SPI memory (internal/external) via a connected Serial Peripheral Interface (SPI)

If EBI\_BOOT=1, The VA416X0 will load the internal code memory from an external memory device via the External Bus Interface.

After loading the code memory, the processor follows a typical Arm<sup>®</sup> Cortex<sup>®</sup>-M4 start sequence.


#### 1.4 Resets

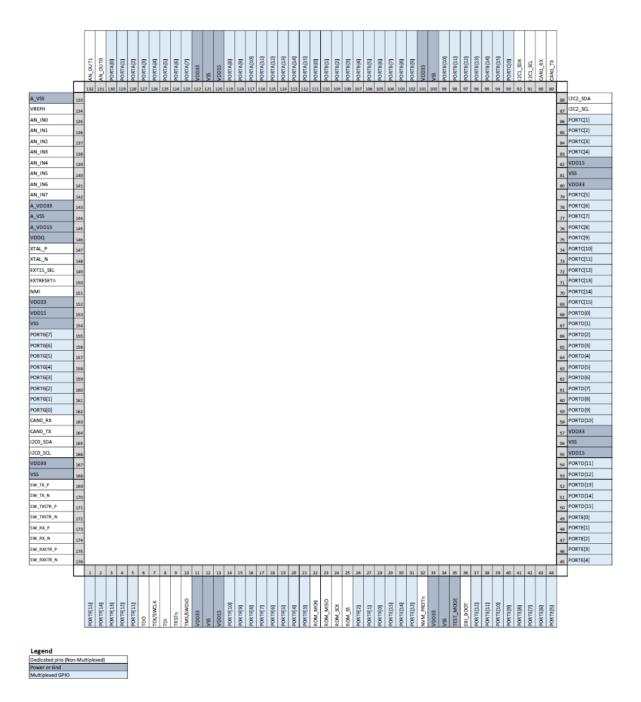
In addition to the Power-on reset, the device can be reset from other events:

- EXTRESETn pin
- SYSRESETREQ from software
- Hardware events configured by IRQ Selector Peripheral or the System Controller Peripheral:
  - Watchdog Timer
  - Memory Errors (Single or Multi-bit errors from the EDAC memory controller)



# 2 Block Diagram




**Product Datasheet** 



#### 3 Pinout

The VA416X0 is available in a choice of packages: 176-pin plastic QFP, 176-pin ceramic QFP, and 196-pin plastic BGA.

### 3.1 176-pin QFP pinout





# 3.2 196-Pin Plastic BGA Ball-Map Diagram

|   | 1    | 2    | 3     | 4    | 5     | 6    | 7    | 8    | 9    | 10    | 11    | 12   | 13   | 14    |
|---|------|------|-------|------|-------|------|------|------|------|-------|-------|------|------|-------|
| A | PF15 | NC   | SRXSN | SRXN | STXSN | STXN | SDA0 | PG01 | PG05 | NC    | XTALp | AN7  | AN3  | VREFH |
| В | PF11 | PF14 | SRXSP | SRXP | STXSP | SCL0 | PG00 | PG04 | NMI  | XTALn | A3V3  | AN4  | AN0  | DAC0  |
| С | TRST | TDO  | PF13  | STXP | 3V3   | CRXO | PG03 | PG07 | E1V5 | A1V5  | AN5   | AN1  | DAC1 | ATOUT |
| D | PF08 | TMS  | тск   | PF12 | CTX0  | PG02 | PG06 | RSTn | VDDQ | AN6   | AN2   | PA03 | PA01 | PA00  |
| E | PF04 | PF07 | PF10  | TDI  | 1V5   | VSS  | 3V3  | 1V5  | VSS  | 3V3   | PA09  | PA06 | PA04 | PA02  |
| F | SCK  | PF03 | PF06  | PF09 | VSS   | VSS  | 3V3  | 1V5  | VSS  | VSS   | PA13  | PA10 | PA07 | PA05  |
| G | PF01 | CSn  | MOSI  | PF05 | 1V5   | 1V5  | VSS  | VSS  | 3V3  | 3V3   | PB01  | PA14 | PA11 | PA08  |
| н | PE13 | PF00 | F_SO  | MISO | 3V3   | 3V3  | VSS  | VSS  | 1V5  | 1V5   | PB04  | NC   | PA15 | PA12  |
| J | EBI  | WPn  | PE15  | PF02 | VSS   | VSS  | 1V5  | 3V3  | VSS  | VSS   | PB08  | PB05 | PB02 | PB00  |
| К | PE10 | PE12 | TEST  | PE14 | 3V3   | VSS  | 1V5  | 3V3  | VSS  | 1V5   | PB12  | PB09 | PB06 | PB03  |
| L | PE08 | PE09 | PE11  | PE01 | PD13  | PD09 | PD05 | PD01 | PC13 | PC10  | PC00  | PB13 | PB10 | PB07  |
| Μ | PE06 | PE07 | PE02  | PD14 | PD10  | PD06 | PD02 | PC14 | NC   | PC07  | PC04  | SDA1 | PB14 | PB11  |
| Ν | PE05 | PE03 | PD15  | PD11 | PD07  | PD03 | PC15 | PC11 | PC08 | PC05  | PC02  | SCL2 | SCL1 | PB15  |
| Ρ | PE04 | PE00 | PD12  | PD08 | PD04  | PD00 | PC12 | PC09 | PC06 | PC03  | PC01  | SDA2 | CTX1 | CRX1  |



# 3.3 196-Pin Plastic BGA Ball Description

| MASTER<br>196B PBGA<br>BALL NUMBER | VA416x0<br>1968 PBGA<br>BALL NAME | VA416x0 Description                                                                                                                      |  |  |
|------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| A01                                | PF15                              | PORTF[15] Software configurable general-purpose I/O. Software configurable for direction, interrupt sources, and counter/timer triggers. |  |  |
| A02                                | NC                                | No connect                                                                                                                               |  |  |
| A03                                | SRXSN                             | SpaceWire Rx strobe -                                                                                                                    |  |  |
| A04                                | SRXN                              | SpaceWire Rx -                                                                                                                           |  |  |
| A05                                | STXSN                             | SpaceWire Tx strobe -                                                                                                                    |  |  |
| A06                                | STXN                              | SpaceWire Tx -                                                                                                                           |  |  |
| A07                                | SDA0                              | I <sup>2</sup> C0 Data                                                                                                                   |  |  |
| A08                                | PG01                              | PORTG[1] Software configurable general-purpose I/O. Software configurable for direction, interrupt sources, and counter/timer triggers.  |  |  |
| A09                                | PG05                              | PORTG[5] Software configurable general-purpose I/O. Software configurable for direction, interrupt sources, and counter/timer triggers.  |  |  |
| A10                                | NC                                | No connect                                                                                                                               |  |  |
| A11                                | XTALp                             | Crystal Oscillator Output                                                                                                                |  |  |
| A12                                | AN7                               | Analog input channel 7                                                                                                                   |  |  |
| A13                                | AN3                               | Analog input channel 3                                                                                                                   |  |  |
| A14                                | VREFH                             | Analog Reference (3.3 V)                                                                                                                 |  |  |
| BO1                                | PF11                              | PORTF[11] Software configurable general-purpose I/O. Software configurable for direction, interrupt sources, and counter/timer triggers. |  |  |
| B02                                | PF14                              | PORTF[14] Software configurable general-purpose I/O. Software configurable for direction, interrupt sources, and counter/timer triggers. |  |  |
| B03                                | SRXSP                             | SpaceWire Rx strobe +                                                                                                                    |  |  |
| B04                                | SRXP                              | SpaceWire Rx +                                                                                                                           |  |  |
| B05                                | STXSP                             | SpaceWire Tx strobe +                                                                                                                    |  |  |
| B06                                | SCL0                              | I <sup>2</sup> C0 Clock                                                                                                                  |  |  |
| B07                                | PG00                              | PORTG[0] Software configurable general-purpose I/O. Software configurable for direction, interrupt sources, and counter/timer triggers.  |  |  |
| B08                                | PG04                              | PORTG[4] Software configurable general-purpose I/O. Software configurable for direction, interrupt sources, and counter/timer triggers.  |  |  |
| B09                                | NMI                               | Non-maskable Interrupt – active high                                                                                                     |  |  |
| B10                                | XTALn                             | Crystal Oscillator Input                                                                                                                 |  |  |
| B11                                | A3V3                              | 3.3 V Analog IO power                                                                                                                    |  |  |



| B12      | AN4    | Analog input channel 4                                                                                                                                                                |
|----------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B13      | AN0    | Analog input channel 0                                                                                                                                                                |
|          |        |                                                                                                                                                                                       |
| B14      | DAC0   | Digital to analog output 0                                                                                                                                                            |
| C01      | TRST   | Test Reset, active low                                                                                                                                                                |
| C02      | TDO    | Test Data Out                                                                                                                                                                         |
| C03      | PF13   | PORTF[13] Software configurable general-purpose I/O. Software configurable for direction, interrupt sources, and counter/timer triggers.                                              |
| C04      | STXP   | SpaceWire Tx +                                                                                                                                                                        |
| C05      | 3V3    | 3.3 V power                                                                                                                                                                           |
| C06      | CRX0   | CANO RX                                                                                                                                                                               |
| C07      | PG03   | PORTG[3] Software configurable general-purpose I/O. Software configurable for direction, interrupt sources, and counter/timer triggers.                                               |
| C08      | PG07   | PORTG[7] Software configurable general-purpose I/O. Software                                                                                                                          |
|          |        | configurable for direction, interrupt sources, and counter/timer triggers.                                                                                                            |
| C09      | E1V5   | When high, this signal disables the internal 1.5 V regulator, and 1.5 V must                                                                                                          |
| <u> </u> | A 11/5 | be applied externally to all 1V5 pins and A1V5.                                                                                                                                       |
| C10      | A1V5   | 1.5 V Analog power (must be supplied externally if EXT15_SEL=1)                                                                                                                       |
| C11      | AN5    | Analog input channel 5                                                                                                                                                                |
| C12      | AN1    | Analog input channel 1                                                                                                                                                                |
| C13      | DAC1   | Digital to analog output 1                                                                                                                                                            |
| C14      | ATOUT  | For factory use only. Must be pulled to VSS                                                                                                                                           |
| D01      | PF08   | PORTF[8] Software configurable general-purpose I/O. Software configurable for direction, interrupt sources, and counter/timer triggers.                                               |
| D02      | TMS    | Test Mode Select/Serial Wire Debug Data IO                                                                                                                                            |
| D03      | ТСК    | Test Clock/Serial Wire Debug Clock                                                                                                                                                    |
| 005      |        |                                                                                                                                                                                       |
| D04      | PF12   | PORTF[12] Software configurable general-purpose I/O. Software configurable for direction, interrupt sources, and counter/timer triggers.                                              |
| D05      | CTX0   | CANO TX                                                                                                                                                                               |
| D06      | PG02   | PORTG[2] Software configurable general-purpose I/O. Software configurable for direction, interrupt sources, and counter/timer triggers.                                               |
| D07      | PG06   | PORTG[6] Software configurable general-purpose I/O. Software                                                                                                                          |
|          |        | configurable for direction, interrupt sources, and counter/timer triggers.                                                                                                            |
| D08      | RSTn   | External System Reset, active low. Resets the processor and all peripherals.<br>Any reset will cause this pin to drive low during the reset sequence. (Must<br>have external pull-up) |
| D09      | VDDQ   | For factory use only. Must be tied to VSS                                                                                                                                             |
| D10      | AN6    | Analog input channel 6                                                                                                                                                                |
| D11      | AN2    | Analog input channel 2                                                                                                                                                                |



| D12 | PA03 | PORTA[3] Software configurable general-purpose I/O. Software                                                                                   |  |  |  |
|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| D13 | PA01 | configurable for direction, interrupt sources, and counter/timer triggers.        PORTA[1] Software configurable general-purpose I/O. Software |  |  |  |
| 013 | FAUT | configurable for direction, interrupt sources, and counter/timer triggers.                                                                     |  |  |  |
| D14 | PA00 | PORTA[0] Software configurable general-purpose I/O. Software                                                                                   |  |  |  |
| 014 | FAUU | configurable for direction, interrupt sources, and counter/timer triggers.                                                                     |  |  |  |
| E01 | PF04 | PORTF[4] Software configurable general-purpose I/O. Software                                                                                   |  |  |  |
| EUT | FF04 | configurable for direction, interrupt sources, and counter/timer triggers.                                                                     |  |  |  |
| E02 | PF07 | PORTF[7] Software configurable general-purpose I/O. Software                                                                                   |  |  |  |
|     | 1107 | configurable for direction, interrupt sources, and counter/timer triggers.                                                                     |  |  |  |
| E03 | PF10 | PORTF[10] Software configurable general-purpose I/O. Software                                                                                  |  |  |  |
| 203 | FIIV | configurable for direction, interrupt sources, and counter/timer triggers.                                                                     |  |  |  |
| E04 | TDI  | Test Data In                                                                                                                                   |  |  |  |
| 204 |      |                                                                                                                                                |  |  |  |
| E05 | 1V5  | 1.5 V power (must be supplied externally if EXT15_SEL=1)                                                                                       |  |  |  |
| E06 | VSS  | Ground                                                                                                                                         |  |  |  |
| EU0 | \$33 | Ground                                                                                                                                         |  |  |  |
| E07 | 3V3  | 3.3 V power                                                                                                                                    |  |  |  |
| E08 | 1V5  | 1.5 V power (must be supplied externally if EXT15_SEL=1)                                                                                       |  |  |  |
| E09 | VSS  | Ground                                                                                                                                         |  |  |  |
| E10 | 3V3  | 3.3 V power                                                                                                                                    |  |  |  |
| E11 | PA09 | PORTA[9] Software configurable general-purpose I/O. Software                                                                                   |  |  |  |
|     |      | configurable for direction, interrupt sources, and counter/timer triggers.                                                                     |  |  |  |
| E12 | PA06 | PORTA[6] Software configurable general-purpose I/O. Software                                                                                   |  |  |  |
|     |      | configurable for direction, interrupt sources, and counter/timer triggers.                                                                     |  |  |  |
| E13 | PA04 | PORTA[4] Software configurable general-purpose I/O. Software                                                                                   |  |  |  |
|     |      | configurable for direction, interrupt sources, and counter/timer triggers.                                                                     |  |  |  |
| E14 | PA02 | PORTA[2] Software configurable general-purpose I/O. Software                                                                                   |  |  |  |
|     |      | configurable for direction, interrupt sources, and counter/timer triggers.                                                                     |  |  |  |
| F01 | SCK  | SPI Clock to Boot ROM.                                                                                                                         |  |  |  |
| 500 | DEOD |                                                                                                                                                |  |  |  |
| F02 | PF03 | PORTF[3] Software configurable general-purpose I/O. Software                                                                                   |  |  |  |
| F03 | PF06 | configurable for direction, interrupt sources, and counter/timer triggers.        PORTF[6] Software configurable general-purpose I/O. Software |  |  |  |
| 103 | FFUO | configurable for direction, interrupt sources, and counter/timer triggers.                                                                     |  |  |  |
| F04 | PF09 | PORTF[9] Software configurable general-purpose I/O. Software                                                                                   |  |  |  |
| F04 | FFU7 | configurable for direction, interrupt sources, and counter/timer triggers.                                                                     |  |  |  |
| F05 | VSS  | Ground                                                                                                                                         |  |  |  |
| 105 | *33  | Cround                                                                                                                                         |  |  |  |
| F06 | VSS  | Ground                                                                                                                                         |  |  |  |
| F07 | 3V3  | 3.3 V power                                                                                                                                    |  |  |  |
| F08 | 1V5  | 1.5 V power (must be supplied externally if EXT15_SEL=1)                                                                                       |  |  |  |
| F09 | VSS  | Ground                                                                                                                                         |  |  |  |
| E10 | 1/66 | Ground                                                                                                                                         |  |  |  |
| F10 | VSS  | Ground                                                                                                                                         |  |  |  |
| F11 | PA13 | PORTA[13] Software configurable general-purpose I/O. Software configurable for direction, interrupt sources, and counter/timer triggers.       |  |  |  |



| F12  | PA10  | PORTA[10] Software configurable general-purpose I/O. Software configurable for direction, interrupt sources, and counter/timer triggers. |  |
|------|-------|------------------------------------------------------------------------------------------------------------------------------------------|--|
| F13  | PA07  | PORTA[7] Software configurable general-purpose I/O. Software                                                                             |  |
|      |       | configurable for direction, interrupt sources, and counter/timer triggers.                                                               |  |
| F14  | PA05  | PORTA[5] Software configurable general-purpose I/O. Software                                                                             |  |
|      |       | configurable for direction, interrupt sources, and counter/timer triggers.                                                               |  |
| G01  | PF01  | PORTF[1] Software configurable general-purpose I/O. Software                                                                             |  |
| 001  |       | configurable for direction, interrupt sources, and counter/timer triggers.                                                               |  |
| G02  | CSn   | SPI Chip Select to Boot ROM (Active Low).                                                                                                |  |
| 002  | Con   |                                                                                                                                          |  |
| G03  | MOSI  | SPI Data Out to Boot ROM.                                                                                                                |  |
| G04  | PF05  | PORTF[5] Software configurable general-purpose I/O. Software                                                                             |  |
| 004  |       | configurable for direction, interrupt sources, and counter/timer triggers.                                                               |  |
| G05  | 1V5   | 1.5 V power (must be supplied externally if EXT15_SEL=1)                                                                                 |  |
| 005  | 145   | 1.5 V power (most be supplied externally if EXTIS_SEE T)                                                                                 |  |
| G06  | 1V5   | 1.5 V power (must be supplied externally if EXT15_SEL=1)                                                                                 |  |
| G07  | VSS   | Ground                                                                                                                                   |  |
|      |       |                                                                                                                                          |  |
| G08  | VSS   | Ground                                                                                                                                   |  |
| G09  | 3V3   | 3.3 V power                                                                                                                              |  |
|      | 0,0   |                                                                                                                                          |  |
| G10  | 3V3   | 3.3 V power                                                                                                                              |  |
| G11  | PBO1  | PORTB[1] Software configurable general-purpose I/O. Software                                                                             |  |
| •••• |       | configurable for direction, interrupt sources, and counter/timer triggers.                                                               |  |
| G12  | PA14  | PORTA[14] Software configurable general-purpose I/O. Software                                                                            |  |
| 0.2  |       | configurable for direction, interrupt sources, and counter/timer triggers.                                                               |  |
| G13  | PA11  | PORTA[11] Software configurable general-purpose I/O. Software                                                                            |  |
| 010  |       | configurable for direction, interrupt sources, and counter/timer triggers.                                                               |  |
| G14  | PA08  | PORTA[8] Software configurable general-purpose I/O. Software                                                                             |  |
| 014  | 1,400 |                                                                                                                                          |  |
| 1101 | DE10  | configurable for direction, interrupt sources, and counter/timer triggers.                                                               |  |
| H01  | PE13  | PORTE[13] Software configurable general-purpose I/O. Software                                                                            |  |
|      |       | configurable for direction, interrupt sources, and counter/timer triggers.                                                               |  |
| H02  | PFOO  | PORTF[0] Software configurable general-purpose I/O. Software                                                                             |  |
|      |       | configurable for direction, interrupt sources, and counter/timer triggers.                                                               |  |
| H03  | F_SO  | SPI Data In from Boot ROM. Must be connected to H04                                                                                      |  |
| H04  | MISO  | SPI Data In from Boot ROM. Must be connected to H03                                                                                      |  |
| H05  | 3V3   | 3.3 V power                                                                                                                              |  |
| 1107 | 0)/0  |                                                                                                                                          |  |
| H06  | 3V3   | 3.3 V power                                                                                                                              |  |
| H07  | VSS   | Ground                                                                                                                                   |  |
| H08  | VSS   | Ground                                                                                                                                   |  |
| H09  | 1V5   | 1.5 V power (must be supplied externally if EXT15_SEL=1)                                                                                 |  |
| H10  | 1V5   | 1.5 V power (must be supplied externally if EXT15_SEL=1)                                                                                 |  |
| H11  | PB04  | PORTB[4] Software configurable general-purpose I/O. Software                                                                             |  |
|      | rdV4  | configurable for direction, interrupt sources, and counter/timer triggers.                                                               |  |

### **Product Datasheet**



| H12 | NC   | No connect                                                                                                                               |  |
|-----|------|------------------------------------------------------------------------------------------------------------------------------------------|--|
| H13 | PA15 | PORTA[15] Software configurable general-purpose I/O. Software configurable for direction, interrupt sources, and counter/timer triggers. |  |
| H14 | PA12 | PORTA[12] Software configurable general-purpose I/O. Software configurable for direction, interrupt sources, and counter/timer triggers. |  |
| J01 | EBI  | Expanded Bus Boot Mode                                                                                                                   |  |
| J02 | WPn  | Nonvolatile memory write protection                                                                                                      |  |
| J03 | PE15 | PORTE[15] Software configurable general-purpose I/O. Software configurable for direction, interrupt sources, and counter/timer triggers. |  |
| J04 | PF02 | PORTF[2] Software configurable general-purpose I/O. Software configurable for direction, interrupt sources, and counter/timer triggers.  |  |
| J05 | VSS  | Ground                                                                                                                                   |  |
| J06 | VSS  | Ground                                                                                                                                   |  |
| J07 | 1V5  | 1.5 V power (must be supplied externally if EXT15_SEL=1)                                                                                 |  |
| 108 | 3V3  | 3.3 V power                                                                                                                              |  |
| J09 | VSS  | Ground                                                                                                                                   |  |
| J10 | VSS  | Ground                                                                                                                                   |  |
| J11 | PB08 | PORTB[8] Software configurable general-purpose I/O. Software configurable for direction, interrupt sources, and counter/timer triggers.  |  |
| J12 | PB05 | PORTB[5] Software configurable general-purpose I/O. Software configurable for direction, interrupt sources, and counter/timer triggers.  |  |
| J13 | PB02 | PORTB[2] Software configurable general-purpose I/O. Software configurable for direction, interrupt sources, and counter/timer triggers.  |  |
| J14 | РВОО | PORTB[0] Software configurable general-purpose I/O. Software configurable for direction, interrupt sources, and counter/timer triggers.  |  |
| K01 | PE10 | PORTE[10] Software configurable general-purpose I/O. Software configurable for direction, interrupt sources, and counter/timer triggers. |  |
| K02 | PE12 | PORTE[12] Software configurable general-purpose I/O. Software configurable for direction, interrupt sources, and counter/timer triggers. |  |
| K03 | TEST | For factory use only. Must be tied to ground with a 10k resistor.                                                                        |  |
| K04 | PE14 | PORTE[14] Software configurable general-purpose I/O. Software configurable for direction, interrupt sources, and counter/timer triggers. |  |
| K05 | 3V3  | 3.3 V power                                                                                                                              |  |
| K06 | VSS  | Ground                                                                                                                                   |  |
| K07 | 1V5  | 1.5 V power (must be supplied externally if EXT15_SEL=1)                                                                                 |  |
| K08 | 3V3  | 3.3 V power                                                                                                                              |  |
| К09 | VSS  | Ground                                                                                                                                   |  |
| К10 | 1V5  | 1.5 V power (must be supplied externally if EXT15_SEL=1)                                                                                 |  |
| K11 | PB12 | PORTB[12] Software configurable general-purpose I/O. Software configurable for direction, interrupt sources, and counter/timer triggers. |  |



| K12   | PB09     | PORTB[9] Software configurable general-purpose I/O. Software               |
|-------|----------|----------------------------------------------------------------------------|
|       |          | configurable for direction, interrupt sources, and counter/timer triggers. |
| K13   | PB06     | PORTB[6] Software configurable general-purpose I/O. Software               |
|       |          | configurable for direction, interrupt sources, and counter/timer triggers. |
| K14   | PB03     | PORTB[3] Software configurable general-purpose I/O. Software               |
|       |          | configurable for direction, interrupt sources, and counter/timer triggers. |
| L01   | PE08     | PORTE[8] Software configurable general-purpose I/O. Software               |
|       |          | configurable for direction, interrupt sources, and counter/timer triggers. |
| L02   | PE09     | PORTE[9] Software configurable general-purpose I/O. Software               |
|       |          | configurable for direction, interrupt sources, and counter/timer triggers. |
| L03   | PE11     | PORTE[11] Software configurable general-purpose I/O. Software              |
| 200   |          | configurable for direction, interrupt sources, and counter/timer triggers. |
| L04   | PE01     | PORTE[1] Software configurable general-purpose I/O. Software               |
| 104   | 1201     | configurable for direction, interrupt sources, and counter/timer triggers. |
| 105   | PD13     |                                                                            |
| L05   | PDI3     | PORTD[13] Software configurable general-purpose I/O. Software              |
|       |          | configurable for direction, interrupt sources, and counter/timer triggers. |
| L06   | PD09     | PORTD[9] Software configurable general-purpose I/O. Software               |
|       |          | configurable for direction, interrupt sources, and counter/timer triggers. |
| L07   | PD05     | PORTD[5] Software configurable general-purpose I/O. Software               |
|       |          | configurable for direction, interrupt sources, and counter/timer triggers. |
| L08   | PD01     | PORTD[1] Software configurable general-purpose I/O. Software               |
|       |          | configurable for direction, interrupt sources, and counter/timer triggers. |
| L09   | PC13     | PORTC[13] Software configurable general-purpose I/O. Software              |
|       |          | configurable for direction, interrupt sources, and counter/timer triggers. |
| L10   | PC10     | PORTC[10] Software configurable general-purpose I/O. Software              |
|       |          | configurable for direction, interrupt sources, and counter/timer triggers. |
| L11   | PC00     | PORTC[0] Software configurable general-purpose I/O. Software               |
|       |          | configurable for direction, interrupt sources, and counter/timer triggers. |
| L12   |          |                                                                            |
|       |          | configurable for direction, interrupt sources, and counter/timer triggers. |
| L13   | PB10     | PORTB[10] Software configurable general-purpose I/O. Software              |
| 210   | 1510     | configurable for direction, interrupt sources, and counter/timer triggers. |
| L14   | PB07     | PORTB[7] Software configurable general-purpose I/O. Software               |
| L14   | FD07     |                                                                            |
| 1101  |          | configurable for direction, interrupt sources, and counter/timer triggers. |
| M01   | PE06     | PORTE[6] Software configurable general-purpose I/O. Software               |
|       |          | configurable for direction, interrupt sources, and counter/timer triggers. |
| M02   | PE07     | PORTE[7] Software configurable general-purpose I/O. Software               |
|       |          | configurable for direction, interrupt sources, and counter/timer triggers. |
| M03   | PE02     | PORTE[2] Software configurable general-purpose I/O. Software               |
|       |          | configurable for direction, interrupt sources, and counter/timer triggers. |
| M04   | PD14     | PORTD[14] Software configurable general-purpose I/O. Software              |
|       |          | configurable for direction, interrupt sources, and counter/timer triggers. |
| M05   | PD10     | PORTD[10] Software configurable general-purpose I/O. Software              |
|       |          | configurable for direction, interrupt sources, and counter/timer triggers. |
| M06   | PD06     | PORTD[6] Software configurable general-purpose I/O. Software               |
|       |          | configurable for direction, interrupt sources, and counter/timer triggers. |
| M07   | PD02     | PORTD[2] Software configurable general-purpose I/O. Software               |
|       | <b>-</b> | configurable for direction, interrupt sources, and counter/timer triggers. |
| M08   | PC14     | PORTC[14] Software configurable general-purpose I/O. Software              |
|       | 1014     | configurable for direction, interrupt sources, and counter/timer triggers. |
| M09   | NC       | No connect                                                                 |
| 11117 |          |                                                                            |



| M10  | PC07   | PORTC[7] Software configurable general-purpose I/O. Software                                                                            |
|------|--------|-----------------------------------------------------------------------------------------------------------------------------------------|
|      |        | configurable for direction, interrupt sources, and counter/timer triggers.                                                              |
| M11  | PC04   | PORTC[4] Software configurable general-purpose I/O. Software                                                                            |
|      |        | configurable for direction, interrupt sources, and counter/timer triggers.                                                              |
| M12  | SDA1   | l <sup>2</sup> C1 Data                                                                                                                  |
| M13  | PB14   | PORTB[14] Software configurable general-purpose I/O. Software                                                                           |
|      |        | configurable for direction, interrupt sources, and counter/timer triggers.                                                              |
| M14  | PB11   | PORTB[11] Software configurable general-purpose I/O. Software                                                                           |
|      |        | configurable for direction, interrupt sources, and counter/timer triggers.                                                              |
| N01  | PE05   | PORTE[5] Software configurable general-purpose I/O. Software                                                                            |
|      |        | configurable for direction, interrupt sources, and counter/timer triggers.                                                              |
| N02  | PE03   | PORTE[3] Software configurable general-purpose I/O. Software                                                                            |
|      |        | configurable for direction, interrupt sources, and counter/timer triggers.                                                              |
| N03  | PD15   | PORTD[15] Software configurable general-purpose I/O. Software                                                                           |
|      | -      | configurable for direction, interrupt sources, and counter/timer triggers.                                                              |
| N04  | PD11   | PORTD[11] Software configurable general-purpose I/O. Software                                                                           |
|      |        | configurable for direction, interrupt sources, and counter/timer triggers.                                                              |
| N05  | PD07   | PORTD[7] Software configurable general-purpose I/O. Software                                                                            |
| 1105 | 100/   | configurable for direction, interrupt sources, and counter/timer triggers.                                                              |
| N06  | PD03   | PORTD[3] Software configurable general-purpose I/O. Software                                                                            |
| 1100 | 1000   | configurable for direction, interrupt sources, and counter/timer triggers.                                                              |
| N07  | PC15   | PORTC[15] Software configurable general-purpose I/O. Software                                                                           |
| 1407 | r CI J | configurable for direction, interrupt sources, and counter/timer triggers.                                                              |
| N08  | PC11   | PORTC[11] Software configurable general-purpose I/O. Software                                                                           |
| INUO | ren    |                                                                                                                                         |
| N09  | PC08   | configurable for direction, interrupt sources, and counter/timer triggers.                                                              |
| 1109 | PC00   | PORTC[8] Software configurable general-purpose I/O. Software                                                                            |
| N10  | DCOF   | configurable for direction, interrupt sources, and counter/timer triggers.                                                              |
| NIU  | PC05   | PORTC[5] Software configurable general-purpose I/O. Software configurable for direction, interrupt sources, and counter/timer triggers. |
| N11  | PC02   | PORTC[2] Software configurable general-purpose I/O. Software                                                                            |
|      | PCUZ   |                                                                                                                                         |
| N110 | 6610   | configurable for direction, interrupt sources, and counter/timer triggers.                                                              |
| N12  | SCL2   | I <sup>2</sup> C2 Clock                                                                                                                 |
| N13  | SCL1   | I²C1 Clock                                                                                                                              |
|      |        |                                                                                                                                         |
| N14  | PB15   | PORTB[15] Software configurable general-purpose I/O. Software                                                                           |
|      |        | configurable for direction, interrupt sources, and counter/timer triggers.                                                              |
| P01  | PEO4   | PORTE[4] Software configurable general-purpose I/O. Software                                                                            |
|      |        | configurable for direction, interrupt sources, and counter/timer triggers.                                                              |
| P02  | PEOO   | PORTE[0] Software configurable general-purpose I/O. Software                                                                            |
|      |        | configurable for direction, interrupt sources, and counter/timer triggers.                                                              |
| P03  | PD12   | PORTD[12] Software configurable general-purpose I/O. Software                                                                           |
|      |        | configurable for direction, interrupt sources, and counter/timer triggers.                                                              |
| P04  | PD08   | PORTD[8] Software configurable general-purpose I/O. Software                                                                            |
|      |        | configurable for direction, interrupt sources, and counter/timer triggers.                                                              |
| P05  | PD04   | PORTD[4] Software configurable general-purpose I/O. Software                                                                            |
|      |        | configurable for direction, interrupt sources, and counter/timer triggers.                                                              |
| P06  | PD00   | PORTD[0] Software configurable general-purpose I/O. Software                                                                            |
|      |        | configurable for direction, interrupt sources, and counter/timer triggers.                                                              |
| P07  | PC12   | PORTC[12] Software configurable general-purpose I/O. Software                                                                           |
|      |        | configurable for direction, interrupt sources, and counter/timer triggers.                                                              |
|      | 1      |                                                                                                                                         |



| P08 | PC09 | PORTC[9] Software configurable general-purpose I/O. Software configurable for direction, interrupt sources, and counter/timer triggers. |
|-----|------|-----------------------------------------------------------------------------------------------------------------------------------------|
| P09 | PC06 | PORTC[6] Software configurable general-purpose I/O. Software configurable for direction, interrupt sources, and counter/timer triggers. |
| P10 | PC03 | PORTC[3] Software configurable general-purpose I/O. Software configurable for direction, interrupt sources, and counter/timer triggers. |
| P11 | PC01 | PORTC[1] Software configurable general-purpose I/O. Software configurable for direction, interrupt sources, and counter/timer triggers. |
| P12 | SDA2 | l <sup>2</sup> C2 Data                                                                                                                  |
| P13 | CTX1 | CAN1 TX                                                                                                                                 |
| P14 | CRX1 | CAN1 RX                                                                                                                                 |

# 3.4 Pin Descriptions

| Pin Type  | Description                                                                                                                                                                                                             | Туре                                  | Internal<br>Pull-<br>up/down |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------|
|           | System Pins                                                                                                                                                                                                             |                                       |                              |
| XTAL_P    | Crystal Oscillator Output                                                                                                                                                                                               | Out                                   | None                         |
| XTAL_N    | Crystal Oscillator Input                                                                                                                                                                                                | In                                    | None                         |
| EXTRESETn | External System Reset, active low. Resets the<br>processor and all peripherals. This signal is<br>internally synchronized before being used. Any<br>reset will cause this pin to pull low during the<br>reset sequence. | Async In<br>/<br>Open<br>drain<br>Out | Pull-up                      |
| NMI       | Non-maskable Interrupt – active high                                                                                                                                                                                    | Async In                              | None                         |
| EBI_BOOT  | When high, this signal enables software boot<br>from the EBI port rather than the SPI ROM<br>interface.                                                                                                                 | In                                    | None                         |
| EXT15_SEL | When high, this signal disables the internal 1.5<br>V regulator, and 1.5 V must be applied<br>externally to all VDD15 pins and A_VDD15.                                                                                 | In                                    | None                         |
| NVM_PROTn | When low, this signal inhibits the programming of the internal FRAM (VA41630 only).                                                                                                                                     | In                                    | None                         |
| TEST_MODE | For factory use only. Must be tied to VSS with a 10k resistor.                                                                                                                                                          | In                                    | None                         |
|           | General-Purpose I/O Pins                                                                                                                                                                                                |                                       |                              |

**Product Datasheet** 



| Pin Type    | Description                                                                                                                                                                                                          | Туре        | Internal<br>Pull-<br>up/down |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------|
| PORTA[15:0] | Software configurable general-purpose I/O<br>pins. Software configurable for direction,<br>interrupt sources, and counter/timer triggers.<br>These pins are configurable as UART, SPI,<br>Timers, and Ethernet pins. | Sync<br>I/O | Software<br>configurable     |
| PORTB[15:0] | Software configurable general-purpose I/O<br>pins. Software configurable for direction,<br>interrupt sources, and counter/timer triggers.<br>These pins are configurable as UART, SPI,<br>Timers, and Ethernet pins. | Sync<br>I/O | Software<br>configurable     |
| PORTC[15:0] | Software configurable general-purpose I/O<br>pins. Software configurable for direction,<br>interrupt sources, and counter/timer triggers.<br>These pins are configurable as UART, SPI,<br>Timers, and EBI pins.      | Sync<br>I/O | Software<br>configurable     |
| PORTD[15:0] | Software configurable general-purpose I/O<br>pins. Software configurable for direction,<br>interrupt sources, and counter/timer triggers.<br>These pins are configurable as UART, Timers,<br>and EBI pins.           | Sync<br>I/O | Software<br>configurable     |
| PORTE[15:0] | Software configurable general-purpose I/O<br>pins. Software configurable for direction,<br>interrupt sources, and counter/timer triggers.<br>These pins are configurable as UART, SPI,<br>Timers, and EBI pins.      | Sync<br>I/O | Software<br>configurable     |
| PORTF[15:0] | Software configurable general-purpose I/O<br>pins. Software configurable for direction,<br>interrupt sources, and counter/timer triggers.<br>These pins are configurable as UART, SPI,<br>Timers, and EBI pins.      | Sync<br>I/O | Software<br>configurable     |
| PORTG[7:0]  | Software configurable general-purpose I/O<br>pins. Software configurable for direction,<br>interrupt sources, and counter/timer triggers.<br>These pins are configurable as UART, SPI, and<br>Timer pins.            | Sync<br>I/O | Software<br>configurable     |
|             | SPI ROM pins                                                                                                                                                                                                         |             |                              |
| ROM_SCK     | SPI Clock to Boot ROM.                                                                                                                                                                                               | Sync<br>Out | None                         |



| Pin Type   | Description                                                                                      | Туре           | Internal<br>Pull-<br>up/down |  |
|------------|--------------------------------------------------------------------------------------------------|----------------|------------------------------|--|
| ROM_SS     | SPI Chip Select to Boot ROM (Active Low).                                                        | Sync<br>Out    | None                         |  |
| ROM_MOSI   | SPI Data Out to Boot ROM.                                                                        | Sync<br>Out    | None                         |  |
| ROM_MISO   | SPI Data In from Boot ROM (must be tied to<br>VSS for VA41630 devices with an internal<br>FRAM). | Sync In        | Pull-down                    |  |
|            | l <sup>2</sup> C Pins                                                                            |                |                              |  |
| I2C0_SCL   | l²C0 Clock                                                                                       | Open<br>drain  | None                         |  |
| I2C0_SDA   | l²C0 Data                                                                                        | Open<br>drain  | None                         |  |
| I2C1_SCL   | l²C1 Clock                                                                                       | Open<br>drain  | None                         |  |
| I2C1_SDA   | l <sup>2</sup> C1 Data Ope<br>drain                                                              |                | None                         |  |
| I2C2_SCL   | l²C2 Clock                                                                                       | Open<br>drain  | None                         |  |
| I2C2_SDA   | l <sup>2</sup> C2 Data                                                                           | Open<br>drain  | None                         |  |
|            | CAN Pins                                                                                         |                |                              |  |
| CAN0_RX    | CAN0 Receive                                                                                     | Sync In        | None                         |  |
| CAN0_TX    | CAN0 Transmit                                                                                    | Sync<br>Out    | None                         |  |
| CAN1_RX    | CAN1 Receive                                                                                     | Sync In        | None                         |  |
| CAN1_TX    | CAN1 Transmit                                                                                    | Sync<br>Out    | None                         |  |
| SWD Pins   |                                                                                                  |                |                              |  |
| TCK/SWCK   | Test Clock/Serial Wire Debug Clock                                                               | Clock          | None                         |  |
| TMS/SWDIO  | Test Mode Select/Serial Wire Debug Data IO                                                       | Sync<br>In/Out | Pull-up                      |  |
| TRSTn      | Test Reset, active low                                                                           | Sync In        | None                         |  |
| TDI        | Test Data In                                                                                     | Sync In        | None                         |  |
| TDO        | Test Data Out                                                                                    | Sync<br>Out    | None                         |  |
|            | SpaceWire Pins                                                                                   |                |                              |  |
| SW_RXSTR_N | Receive strobe negative signal                                                                   | LVDS           | None                         |  |
| SW_RXSTR_P | Receive strobe positive signal                                                                   | LVDS           | None                         |  |



| Pin Type   | Description                                                        | Туре   | Internal<br>Pull-<br>up/down |
|------------|--------------------------------------------------------------------|--------|------------------------------|
| SW_RX_N    | Receive data negative signal                                       | LVDS   | None                         |
| SW_RX_P    | Receive data positive signal                                       | LVDS   | None                         |
| SW_TXSTR_N | Transmit strobe negative signal                                    | LVDS   | None                         |
| SW_TXSTR_P | Transmit strobe positive signal                                    | LVDS   | None                         |
| SW_TX_N    | Transmit data negative signal                                      | LVDS   | None                         |
| SW_TX_P    | Transit data positive signal                                       | LVDS   | None                         |
|            | Analog pins                                                        |        |                              |
| AN_IN0     | Analog to digital converter input                                  | In     | None                         |
| AN_IN1     | Analog to digital converter input                                  | In     | None                         |
| AN_IN2     | Analog to digital converter input                                  | In     | None                         |
| AN_IN3     | Analog to digital converter input                                  | In     | None                         |
| AN_IN4     | Analog to digital converter input                                  | In     | None                         |
| AN_IN5     | Analog to digital converter input                                  | In     | None                         |
| AN_IN6     | Analog to digital converter input                                  | In     | None                         |
| AN_IN7     | Analog to digital converter input                                  | In     | None                         |
| AN_OUT0    | Digital to analog converter output                                 | Out    | None                         |
| AN_OUT1    | Digital to analog converter output                                 | Out    | None                         |
| VREFH      | Analog reference                                                   | Power  | N/A                          |
|            | Power/Ground/Analog pins                                           |        |                              |
| VDD15      | 1.5 V Core power (must be supplied externally if EXT15_SEL=1)      | Power  | N/A                          |
| VSS        | Ground                                                             | Ground | N/A                          |
| VDD33      | 3.3 V IO power                                                     | Power  | N/A                          |
| A_VDD15    | 1.5 V Analog power (must be supplied<br>externally if EXT15_SEL=1) | Power  | N/A                          |
| A_VSS      | Analog Ground                                                      | Ground | N/A                          |
| A_VDD33    | 3.3 V Analog IO power                                              | Power  | N/A                          |
| VDDQ       | For factory use only. Must be tied to VSS                          | Power  | N/A                          |

## 3.5 GPIO Pin Alternative Functions

GPIO pins can be configured for various peripherals on the VA416X0 MCU. The default configuration is for all the pins to be assigned as GPIO. Please refer to the VA416XX Programmer's Guide for more information about the usage of GPIO pins and their alternative functions.



| Port pin default<br>function<br>FUNSEL[1:0]=00 | Alternative function 1<br>FUNSEL[1:0]=01 | Alternative function 2<br>FUNSEL[1:0]=10 | Alternative function 3<br>FUNSEL[1:0]=11 |
|------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| PORTA[0]                                       | TIM[0]                                   | SPI2_SSn4                                | UARTO_RTSn                               |
| PORTA[1]                                       | TIM[1]                                   | SPI2_SSn3                                | UART0_CTSn                               |
| PORTA[2]                                       | TIM[2]                                   | SPI2_SSn2                                | UARTO_TX                                 |
| PORTA[3]                                       | TIM[3]                                   | SPI2_SSn1                                | UARTO_RX                                 |
| PORTA[4]                                       | TIM[4]                                   | SPI2_SSn0                                | Not assigned                             |
| PORTA[5]                                       | TIM[5]                                   | SPI2_SCK                                 | Not assigned                             |
| PORTA[6]                                       | TIM[6]                                   | SPI2_MISO                                | Not assigned                             |
| PORTA[7]                                       | TIM[7]                                   | SPI2_MOSI                                | Not assigned                             |
| PORTA[8]                                       | ETH_MDIO                                 | SPI2_SSn6                                | TIM[8]                                   |
| PORTA[9]                                       | ETH_MDC                                  | SPI2_SSn5                                | Not assigned                             |
| PORTA[10]                                      | ETH_RxD3                                 | TIM[23]                                  | Not assigned                             |
| PORTA[11]                                      | ETH_RxD2                                 | TIM[22]                                  | Not assigned                             |
| PORTA[12]                                      | ETH_RxD1                                 | TIM[21]                                  | Not assigned                             |
| PORTA[13]                                      | ETH_RxD0                                 | TIM[20]                                  | Not assigned                             |
| PORTA[14]                                      | ETH_Rx_DV                                | TIM[19]                                  | Not assigned                             |
| PORTA[15]                                      | ETH_Rx_CLK                               | TIM[18]                                  | Not assigned                             |
| PORTB[0]                                       | ETH_Rx_ER                                | TIM[17]                                  | SPI1_SSn7                                |
| PORTB[1]                                       | ETH_Tx_ER                                | TIM[16]                                  | SPI1_SSn6                                |
| PORTB[2]                                       | ETH_Tx_CLK                               | TIM[15]                                  | SPI1_SSn5                                |
| PORTB[3]                                       | ETH_Tx_EN                                | TIM[14]                                  | SPI1_SSn4                                |
| PORTB[4]                                       | ETH_TxD0                                 | TIM[13]                                  | SPI1_SSn3                                |
| PORTB[5]                                       | ETH_TxD1                                 | TIM[12]                                  | SPI1_SSn2                                |
| PORTB[6]                                       | ETH_TxD2                                 | TIM[11]                                  | SPI1_SSn1                                |
| PORTB[7]                                       | ETH_TxD3                                 | TIM[10]                                  | SPI1_SSn0                                |
| PORTB[8]                                       | ETH_COL                                  | TIM[9]                                   | SPI1_SCK                                 |
| PORTB[9]                                       | ETH_CRS                                  | TIM[8]                                   | SPI1_MISO                                |
| PORTB[10]                                      | ETH_PPS_OUT                              | TIM[7]                                   | SPI1_MOSI                                |
| PORTB[11]                                      | SPIO_SSn3                                | TIM[6]                                   | Not assigned                             |
| PORTB[12]                                      | SPI0_SSn2                                | TIM[5]                                   | UART1_RTSn                               |
| PORTB[13]                                      | SPIO_SSn1                                | TIM[4]                                   | UART1_CTSn                               |
| PORTB[14]                                      | SPI0_SSn0                                | TIM[3]                                   | UART1_TX                                 |
| PORTB[15]                                      | SPI0_SCK                                 | TIM[2]                                   | UART1_RX                                 |
| PORTC[0]                                       | SPI0_MISO                                | TIM[1]                                   | Not assigned                             |
| PORTC[1]                                       | SPI0_MOSI                                | TIM[0]                                   | Not assigned                             |
| PORTC[2]                                       | EBI_A[0] <sup>1</sup>                    | UARTO_RTSn                               | Not assigned                             |
| PORTC[3]                                       | EBI_A[1] <sup>1</sup>                    | UART0_CTSn                               | Not assigned                             |



| Port pin default<br>function | Alternative function 1<br>FUNSEL[1:0]=01 | Alternative function 2<br>FUNSEL[1:0]=10 | Alternative function 3<br>FUNSEL[1:0]=11 |
|------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| FUNSEL[1:0]=00               |                                          |                                          |                                          |
| PORTC[4]                     | EBI_A[2] <sup>1</sup>                    | UARTO_TX                                 | Not assigned                             |
| PORTC[5]                     | EBI_A[3]                                 | UARTO_RX                                 | Not assigned                             |
| PORTC[6]                     | EBI_A[4] 1                               | Not assigned                             | Not assigned                             |
| PORTC[7]                     | EBI_A[5]                                 | SPI1_SSn1                                | Not assigned                             |
| PORTC[8]                     | EBI_A[6] <sup>1</sup>                    | SPI1_SSn0                                | Not assigned                             |
| PORTC[9]                     | EBI_A[7] <sup>1</sup>                    | SPI1_SCK                                 | Not assigned                             |
| PORTC[10]                    | EBI_A[8] <sup>1</sup>                    | SPI1_MISO                                | Not assigned                             |
| PORTC[11]                    | EBI_A[9] <sup>1</sup>                    | SPI1_MOSI                                | Not assigned                             |
| PORTC[12]                    | EBI_A[10] <sup>1</sup>                   | UART2_RTSn                               | Not assigned                             |
| PORTC[13]                    | EBI_A[11] <sup>1</sup>                   | UART2_CTSn                               | Not assigned                             |
| PORTC[14]                    | EBI_A[12] <sup>1</sup>                   | UART2_TX                                 | Not assigned                             |
| PORTC[15]                    | EBI_A[13] <sup>1</sup>                   | UART2_RX                                 | Not assigned                             |
| PORTD[0]                     | EBI_A[14] <sup>1</sup>                   | TIM[0]                                   | Not assigned                             |
| PORTD[1]                     | EBI_A[15] <sup>1</sup>                   | TIM[1]                                   | Not assigned                             |
| PORTD[2]                     | EBI_A[16] <sup>1</sup>                   | TIM[2]                                   | Not assigned                             |
| PORTD[3]                     | EBI_A[17] <sup>1</sup>                   | TIM[3]                                   | Not assigned                             |
| PORTD[4]                     | EBI_A[18] <sup>1</sup>                   | TIM[4]                                   | Not assigned                             |
| PORTD[5]                     | EBI_A[19] <sup>1</sup>                   | TIM[5]                                   | Not assigned                             |
| PORTD[6]                     | EBI_A[20] <sup>1</sup>                   | TIM[6]                                   | Not assigned                             |
| PORTD[7]                     | EBI_A[21] <sup>1</sup>                   | TIM[7]                                   | Not assigned                             |
| PORTD[8]                     | EBI_A[22] <sup>1</sup>                   | TIM[8]                                   | Not assigned                             |
| PORTD[9]                     | EBI_A[23] <sup>1</sup>                   | TIM[9]                                   | UART1_RTSn                               |
| PORTD[10]                    | EBI_D[15] <sup>1</sup>                   | TIM[10]                                  | UART1_CTSn                               |
| PORTD[11]                    | EBI_D[14] <sup>1</sup>                   | TIM[11]                                  | UART1_TX                                 |
| PORTD[12]                    | EBI_D[13] <sup>1</sup>                   | TIM[12]                                  | UART1_RX                                 |
| PORTD[13]                    | EBI_D[12] <sup>1</sup>                   | TIM[13]                                  | Not assigned                             |
| PORTD[14]                    | EBI_D[11] <sup>1</sup>                   | TIM[14]                                  | Not assigned                             |
| PORTD[15]                    | EBI_D[10] <sup>1</sup>                   | TIM[15]                                  | Not assigned                             |
| PORTE[0]                     | EBI_D[9] <sup>1</sup>                    | TIM[16]                                  | UARTO_RTSn                               |
| PORTE[1]                     | EBI_D[8] <sup>1</sup>                    | TIM[17]                                  | UART0_CTSn                               |
| PORTE[2]                     | EBI_D[7] <sup>1</sup>                    | TIM[18]                                  | UARTO_TX                                 |
| PORTE[3]                     | EBI_D[6]                                 | TIM[19]                                  | UARTO_RX                                 |
| PORTE[4]                     | <br>EBI_D[5] <sup>1</sup>                | TIM[20]                                  | <br>Not assigned                         |
| PORTE[5]                     | EBI_D[4]                                 | TIM[21]                                  | SPI1_SSn7                                |
| PORTE[6]                     | EBI_D[3] <sup>1</sup>                    | TIM[22]                                  |                                          |
| PORTE[7]                     | EBI_D[2] <sup>1</sup>                    | TIM[23]                                  | SPI1_SSn5                                |
| PORTE[8]                     | EBI_D[1]                                 | SPI1_SSn4                                | TIM[16]                                  |



| Port pin default<br>function<br>FUNSEL[1:0]=00 | Alternative function 1<br>FUNSEL[1:0]=01 | Alternative function 2<br>FUNSEL[1:0]=10 | Alternative function 3<br>FUNSEL[1:0]=11 |
|------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| PORTE[9]                                       | EBI_D[0] <sup>1</sup>                    | SPI1_SSn3                                | TIM[17]                                  |
| PORTE[10]                                      | Not assigned                             | SPI1_SSn2                                | TIM[18]                                  |
| PORTE[11]                                      | Not assigned                             | SPI1_SSn1                                | TIM[19]                                  |
| PORTE[12]                                      | EBI_CEn[0] <sup>1</sup>                  | SPI1_SSn0                                | TIM[20]                                  |
| PORTE[13]                                      | EBI_CEn[1] <sup>1</sup>                  | SPI1_SCK                                 | TIM[21]                                  |
| PORTE[14]                                      | EBI_CEn[2] <sup>1</sup>                  | SPI1_MISO                                | TIM[22]                                  |
| PORTE[15]                                      | EBI_CEn[3] <sup>1</sup>                  | SPI1_MOSI                                | TIM[23]                                  |
| PORTF[0]                                       | EBI_OEn <sup>1</sup>                     | SPI2_SSn4                                | TIM[0]                                   |
| PORTF[1]                                       | EBI_WEn <sup>1</sup>                     | SPI2_SSn3                                | TIM[1]                                   |
| PORTF[2]                                       | SPI1_SSn0                                | SPI2_SSn2                                | TIM[2]                                   |
| PORTF[3]                                       | SPI1_SCK                                 | SPI2_SSn1                                | TIM[3]                                   |
| PORTF[4]                                       | SPI1_MISO                                | SPI2_SSn0                                | TIM[4]                                   |
| PORTF[5]                                       | SPI1_MOSI                                | SPI2_SCK                                 | TIM[5]                                   |
| PORTF[6]                                       | UART2_RTSn                               | SPI2_MISO                                | TIM[6]                                   |
| PORTF[7]                                       | UART2_CTSn                               | SPI2_MOSI                                | TIM[7]                                   |
| PORTF[8]                                       | UART2_TX                                 | Not assigned                             | TIM[8]                                   |
| PORTF[9]                                       | UART2_RX                                 | Not assigned                             | TIM[9]                                   |
| PORTF[10]                                      | UART1_RTSn                               | Not assigned                             | TIM[10]                                  |
| PORTF[11]                                      | UART1_CTSn                               | Not assigned                             | TIM[11]                                  |
| PORTF[12]                                      | UART1_TX                                 | Not assigned                             | TIM[12]                                  |
| PORTF[13]                                      | UART1_RX                                 | TIM[19]                                  | Not assigned                             |
| PORTF[14]                                      | UARTO_RTSn                               | TIM[20]                                  | Not assigned                             |
| PORTF[15]                                      | UART0_CTSn                               | TIM[21]                                  | Not assigned                             |
| PORTG[0]                                       | UARTO_TX                                 | TIM[22]                                  | Not assigned                             |
| PORTG[1]                                       | UARTO_RX                                 | TIM[23]                                  | Not assigned                             |
| PORTG[2]                                       | TIM[9]                                   | SPI1_SSn0                                | Not assigned                             |
| PORTG[3]                                       | TIM[10]                                  | SPI1_SCK                                 | Not assigned                             |
| PORTG[4]                                       | SPI1_SSn3                                | SPI1_MISO                                | Not assigned                             |
| PORTG[5]                                       | SPI1_SSn2                                | Not assigned                             | Not assigned                             |
| PORTG[6]                                       | SPI1_SSn1                                | TIM[12]                                  | Not assigned                             |
| PORTG[7]                                       | Not assigned                             | Not assigned                             | Not assigned                             |

Note: When the EBI peripheral is used to access external memory, all GPIO pins associated with the EBI can only be used for EBI functions. These pins cannot be used as a GPIO or other alternative functions. This applies whether the VA416x0 booting from the EBI pins (EBI\_BOOT=1) or the ROM SPI pins (EBI\_BOOT=0).



### 4 Peripheral Summary

### 4.1 Serial Peripheral Interface (SPI)

The VA416X0 contains three general-purpose Serial Peripheral Interface (SPI) blocks. A fourth master only SPI is dedicated to the boot memory and uses a dedicated set of pins. The other three use pins shared with various GPIOs. Please refer to the VA416XX Programmer's Guide for more information about the usage of the SPI. The SPI peripheral supports the following features:

- Master mode
- Slave mode
- Buffered RX/TX operation with dual four entry FIFOs
- Serial clock (SCK) with programmable polarity (SPO) and phase (SPH)
- SPIO has up to 4 chip selects
- SPI1 has up to 8 chip selects
- SPI2 has up to 7 chip selects
- SPI3 is Master only and shares its pins with the SPI ROM pins (ROM\_SCK, ROM\_MOSI, ROM\_MISO, ROM\_SS)
- Interrupt conditions:
  - TX FIFO is at least half empty (TXIM)
  - RX FIFO is at least half full (RXIM)
  - RX Timeout (RTIM)
  - RX FIFO overrun (RORIM)

## 4.2 Universal Asynchronous Receiver/Transmitter (UART)

The VA416X0 contains three Universal Asynchronous Receiver/Transmitter (UART) interface blocks with an independent Transmit and Receive section, each with a 16byte FIFO. The UART pins are shared with various GPIO pins. Please refer to the VA416XX Programmer's Guide for more information about the usage of the UART. The UART peripheral supports the following features:

- Selectable even, odd, or no parity
- Selectable one or two stop bits
- Word sizes from 5 to 8 bits
- 9-bit address mode
- Baud rates from 300 to 115,200 bps (or up to 2 Mbps)
- 16-byte RX and TX FIFO
- Detection of Framing, Parity, and Overrun errors
- Full Duplex or Half Duplex operation



- Break signal generation and detection
- Interrupt conditions:
  - Receive FIFO at least half full (IRQ\_RX)
  - Receive FIFO overflow, receive frame error, receive parity error, or receive break condition (IRQ\_RX\_STATUS)
  - Receive timeout (IRQ\_RX\_TO)
  - Transmit FIFO at least half empty (IRQ\_TX)
  - Transmit FIFO overflow (IRQ\_TX\_STATUS)
  - Transmit FIFO empty (IRQ\_TX\_EMPTY)
  - Transmitter interrupt when CTSn changes value (IRQ\_TX\_CTS)

#### 4.3 Inter-Integrated Circuit (I<sup>2</sup>C)

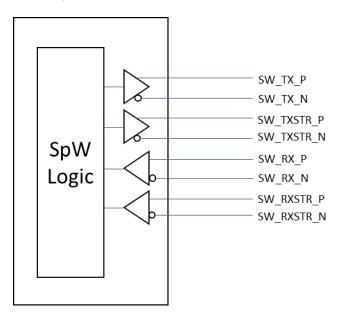
The VA416X0 contains three Inter-Integrated Circuit (I<sup>2</sup>C) interface blocks. Please refer to the VA416XX Programmer's Guide for more information about the usage of the I<sup>2</sup>C.

The I<sup>2</sup>C peripheral supports the following features:

- Standard I<sup>2</sup>C-compliant bus interface
- Configurable as Master or Slave
- Dedicated open-drain pins
- 16-word FIFO for both transmit and receive
- Programmable clock rate for normal 100 kHz mode or 400 kHz mode
- Interrupt conditions:
  - TX FIFO ready (TXREADY)
  - TX FIFO empty (TXEMPTY)
  - TX FIFO overflow (TXOVERFLOW)
  - RX FIFO full (RXFULL)
  - RX FIFO ready (RXREADY)
  - RX FIFO overflow (RXOVERFLOW)
  - Clock low timeout (CLKLOTO)
  - I<sup>2</sup>C Status (STATUS)



## 4.4 SpaceWire (SpW)


The VA416X0 contains a single SpaceWire interface block. Please refer to the VA416XX Programmer's Guide for more information about the usage of the SpaceWire.

The SpaceWire interface supports the following features

- Full implementation of SpaceWire standard ECSS-E-ST-50-12C
- Protocol ID extension ECSS-E-ST-50-11C
- RMAP protocol ECSS-E-ST-50-11C
- AMBA AHB backend with DMA
- Descriptor-based autonomous multi-packet transfer
- 1 Kbyte receive FIFO
- 1 Kbyte transmit FIFO

This interface implements the SpaceWire Time Distribution Protocol (TDP). The protocol provides the capability to transfer time values and synchronize them between onboard users of the SpaceWire network. The time values are transferred as CCSDS Time Codes, and synchronization is performed through SpaceWire Time Codes.

The SpaceWire interface consists of four differential pairs (two inputs and two outputs), as shown in the figure. The VA416X0 incorporates the Low Voltage Differential Signal (LVDS) driver and receiver structures. External LVDS circuits are not required.





### 4.5 Controller Area Network (CAN)

The VA416X0 contains two CAN interface blocks. Please refer to the VA416XX Programmer's Guide for more information about CAN usage.

The CAN Controller implements the following features:

Compliant to CAN Specification 2.0B

- Standard data and remote frames
- Extended data and remote frames
- Up to 8 bytes data length
- Programmable bit rate of up to 1 Mbps
- 15 message buffers, each configurable as a receive or transmit buffer
  - Message buffers are 16-bit oriented as dual-port RAM
  - One buffer may be used as a basic CAN path

Remote frame support

- Automatic transmission after reception of a Remote Transmission Request (RTR)
- Auto receive after transmission of an RTR

Acceptance filtering

- Two filtering capabilities: global acceptance mask and individual buffer identifiers
- One of the buffers uses an independent acceptance filtering procedure Programmable transmit priority

Interrupt capability

- One interrupt vector for all message buffers (receive/transmit/error)
- Each interrupt source can be enabled/disabled

16-bit counter with time stamp capability on successful message reception or transmission

Push-pull capable output pins

**Diagnostic functions** 

- Error identification
- Loopback and listen-only features for test and initialization purposes

An external CAN transceiver is required to connect the VA416X0 to a CAN interface bus.



### 4.6 General Purpose 4-Channel DMA

The VA416X0 supports a single DMA interface to allow the MCU to transfer data from a peripheral to memory or memory to a peripheral, independent of the Arm<sup>®</sup> CPU. The Ethernet and SpaceWire peripherals have their own DMA and will not use the general-purpose DMA. Please refer to the VA416XX Programmer's Guide for more information about the usage of the DMA.

The DMA controller implements the following features:

- Each DMA channel has dedicated handshake signals
- Each DMA channel has a programmable priority level
- Each priority level arbitrates using a fixed priority that is determined by the DMA channel
- Support for multiple transfer types:
  - Memory-to-memory
  - Memory-to-peripheral
  - Peripheral-to-memory
- Support for multiple DMA transfer data widths
- The number of transfers in a single DMA cycle is programmable from 1 to 1024

Typical use cases for the DMA are:

- ADC routing results to RAM buffer
- SPI/UART emptying own FIFO into RAM buffer or vice versa
- Moving external EBI Memory to on-chip SRAM

### 4.7 Ethernet Media Access Control (MAC)

The VA416X0 contains an Ethernet interface block. Please refer to the VA416XX Programmer's Guide for more information about the usage of the Ethernet. The Ethernet controller implements the following features:

MAC General features

- Compliant with the full IEEE 802.3-2002 specifications
- Supports IEEE 802.1Q VLAN tag detection for reception frames
- Support of CSMA/CD protocol for half-duplex operation
- Supports full-duplex only configuration
- Supports IEEE 802.3x flow control for full-duplex operation
- Supports backpressure for flow control in half-duplex mode



- Optional forwarding of received pause frames to the user application when operating in full-duplex mode
- Automatic CRC and pad generation controllable on a per-frame basis
- Optional Automatic Pad Stripping on the receive frames
- Programmable frame length to support standard Ethernet frames 16KB in size
- Programmable inter-frame gap to 40 to 96-bit times (steps of 8)
- Supports a variety of flexible address filtering modes
- Checksum options:
  - o Offload Engine for Ipv4, Ipv6, TCP, UDP, ICMP
  - Insertion in transmit frames
  - Check of received frames
- Support for IEEE 1588-2002 time-stamping of transmitted and received frames

#### **External PHY interface features**

- Supports industry-standard MII
- MDIO master interface for PHY device configuration and management

#### Ethernet DMA features

- Four single-channel transmit and receive engines
- Fully synchronous design operating on a single system clock
- 32/64/128-bit data transfers
- Optimized for packet-oriented DMA transfers with frame delimiters
- Byte-aligned addressing for data buffers supported
- Dual-buffer (ring) and linked-list (chained) descriptor chaining
- Descriptor architecture allows large blocks of data transfer with minimum CPU intervention
- Each descriptor can transfer up to 16 Kbyte of data
- Comprehensive status reporting for normal operation and transfers with errors
- Programmable burst size for optimal host bus utilization
- Programmable interrupt options for different operational conditions
- Per-frame transmit/receive complete interrupt control
- Round-robin or fixed-priority arbitration between receive and transmit engines
- Start/stop modes

#### Ethernet FIFO

- 2 Kbyte transmit buffer
- 2 Kbyte receive buffer

An external Ethernet PHY is required to connect the VA416X0 to an Ethernet bus.



## 4.8 Analog to Digital Converter (ADC)

The VA416X0 Analog to Digital Converter (ADC) is a general-purpose 12-bit successive approximation architecture. Please refer to the VA416XX Programmer's Guide for more information about the usage of the ADC.

ADC feature summary:

- Resolution: 12-bit
- 600k samples per second
- Eight external input channels
- Eight internal channels, including a temperature sensor
- 32-word FIFO for storing continuous mode conversion
- Timers can trigger conversion events
- DMA connection for moving data from ADC to data SRAM
- Interrupt capability on conversion complete
- Optional sweep mode will automatically convert from a single channel to up to eight channels repeatedly and store the results in the FIFO
- Operating supply range from 3.0 to 3.6 V
- Integrated temperature sensor (uncalibrated to ±5°C)
- Programmable conversion clock

### 4.9 Digital to Analog Converter (DAC)

The VA416X0 Digital-to-Analog Converter (DAC) is a general-purpose 12-bit voltage output block. Please refer to the VA416XX Programmer's Guide for more information about the usage of the DAC.

DAC feature summary

- Resolution: 12-bit
- Rail to rail voltage output
- 32-word FIFO
- Power-on reset output = 0 V
- Operating supply range from 3.0 to 3.6 V
- 2 Independent DAC outputs
- Close coupling to the interrupt controller and MCU that allows periodic updates

#### Power up and Reset Behavior of DAC

If the DAC is enabled in software, the output of the DAC will be set to a zero volt reading following a reset.



## 4.10 Timers/Counters (TIM)

The VA416X0 contains 24 general-purpose Timer/Counter interface blocks. These can be configured as timers or event counters. They can be free-running or triggered by system events. Timer pins are shared with various GPIO pins. Please refer to the VA416XX Programmer's Guide for more information about the usage of the Timers.

Timer feature summary

- Advanced trigger modes
  - Start/Stop based on other Counter/Timers or GPIO signals
  - Multiple trigger sources
- Configurable output event
  - One cycle zero detect when a timer equal to zero is detected
  - Active mode
  - Divide by two for square wave generation
  - Two PWM modes: Single edge and double edge detection

#### 4.11 General-Purpose Input/Output Ports (GPIO)

The VA416X0 contains seven GPIO banks providing a total of 104 GPIO pins. GPIO pins can be configured as inputs or outputs. Please refer to the VA416XX Programmer's Guide for more information about the usage of the GPIO.

- PORTA[15:0]
- PORTB[15:0]
- PORTC[15:0]
- PORTD[15:0]
- PORTE[15:0]
- PORTF[15:0]
- PORTG[7:0]
- Interrupt capability on Ports A to F
- Selectable edge or level interrupts
- Programmable pull-up or pull-down resistors
- Programmable output inversion
- Selectable input filtering
- Pseudo open-drain capability
- Alternative functions available on many GPIO pins



### 4.12 External Parallel Bus Interface (EBI)

The EBI peripheral is used to interface multiple external memories to the VA416X0. The EBI can connect to an 8-bit or 16-bit external asynchronous memory of up to 16 Mbytes and supports up to four external memory devices. Each external memory will be sharing memory interface signals such as data, address, and write/read. Each memory will have its own chip enable pin (EBI\_CEn[3:0]).

The External Bus Interface can be used to load the Instruction code into the internal SRAM (if EBI\_BOOT=1). Please refer to the VA416XX Programmer's Guide for more information about the usage of the External Parallel Bus Interface.

When the EBI peripheral is used to access external memory, all GPIO pins associated with the EBI can only be used for EBI functions. These pins cannot be used as a GPIO or other alternative functions. This applies whether the VA416x0 is booting from the EBI pins (EBI\_BOOT=1) or booting from the ROM SPI pins (EBI\_BOOT=0)



## 4.13 True Random Number Generator (TRNG)

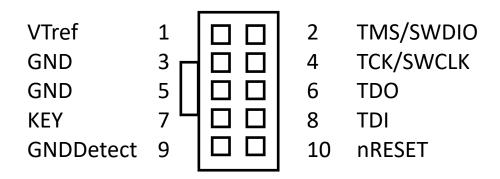
The Arm<sup>®</sup> TrustZone TRNG offers these two components:

- The TRNG that conforms to the following standards and drafts:
  - o NIST SP800-90B
  - NIST SP800-22
  - o FIPS 140-2
  - o BSI AIS-31
  - A software-implemented Deterministic Random Bit Generator (DRBG) which follows NIST SP 800-90A (making the entire RNG flow SP 800-90C compliant)

For more detailed information, see the Arm<sup>®</sup> TrustZone True Random Number Generator, Technical Reference Manual.

## 4.14 Debug and programing interface

ARM's Serial Wire Debug (SWD) replaces the traditional 5-pin JTAG debug interface by introducing a 2-pin interface with a clock (SWDCLK) and a single bi-directional data pin (SWDIO), providing all the normal JTAG debug and test functionality, although daisy-chaining devices as via JTAG is not possible. SWDIO and SWCLK are overlaid on the TMS and TCK pins, allowing the same connector to be used for JTAG and SWD (JTAG is not supported in user mode for the VA416xx). To communicate with a device via SWD, data is sent on SWDIO, synchronous to the SWCLK. With every rising edge of SWCLK, one bit of data is transmitted or received on the SWDIO pin.


#### SWD Pins

| Pin   | Туре  | Explanation                                                                                                      |
|-------|-------|------------------------------------------------------------------------------------------------------------------|
| SWCLK | Input | The clock signal to the target CPU. This pin is recommended to be pulled to a defined state on the target board. |
| SWDIO | I/O   | Bi-directional data pin. This pin should be pulled up on the target board.                                       |



| JTAG/SWD<br>Pod Signal | Purpose                                                                                                 | Connects to:                                                                                                       |
|------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| VTref                  | This is the target<br>reference<br>voltage. It is<br>used to check if<br>the target board<br>has power. | It is normally fed from VDD of the target board<br>and must not have a series resistor.                            |
| GND                    | Target ground.                                                                                          | MCU VSS.                                                                                                           |
| KEY                    | Physical key to<br>aid in cable<br>placement.                                                           | No electrical connection.                                                                                          |
| GNDDetect              | Debugger<br>ground detect.                                                                              | Use a 10k pull-up resistor to VDD33.                                                                               |
| TMS/SWDIO              | SWDIO is bi-<br>directional data<br>line.                                                               | MCU pin TMS/SWDIO.<br>Use 10K Ohm pull-up resistor to VDD33.                                                       |
| TCK/SWCLK              | Test Clock pin                                                                                          | MCU pin TCK/SWCLK. Use a 10k pull-down resistor to GND.                                                            |
| TDO                    | Test Data<br>Output pin                                                                                 | MCU pin TDO. Not used with SWD and may be left floating.                                                           |
| TDI                    | Test Data Input<br>pin                                                                                  | MCU pin TDI. Not used with SWD. Use at 10k pull-up resistor to VDD33                                               |
| nRESET                 | Reset pin                                                                                               | MCU pin EXTRESETn. Connected to active low<br>EXTRESETn input pin of the MCU so the debugger<br>can reset the MCU. |

The most common interface connector is a Samtec 10-pin: <u>FTSH-105-01-L-DV-007-K</u> connector. Shown below is the pinout.





# 5 DC Electrical Characteristics

### 5.1 Absolute Maximum Ratings

| Symbol            | Rating                  | Hi-Rel      | Unit |
|-------------------|-------------------------|-------------|------|
| $V_{DD33}$        | DC supply voltage (I/O) | -0.3 to 3.8 | V    |
| V <sub>I/O</sub>  | Voltage on any pin      | -0.3 to 3.8 | V    |
| T <sub>CASE</sub> | Operating temperature   | -55 to 125  | °C   |
| T <sub>BIAS</sub> | Temperature under bias  | -55 to 125  | °C   |
| T <sub>STG</sub>  | Storage temperature     | -55 to 125  | °C   |

## 5.2 Recommended Supply Conditions

| Symbol          | Parameter                                                                                             | Min         | Тур | Max      | Unit |
|-----------------|-------------------------------------------------------------------------------------------------------|-------------|-----|----------|------|
| $V_{DD33}$      | I/O supply voltage                                                                                    | 3.0         | 3.3 | 3.6      | V    |
| $V_{DD15}$      | Core supply voltage (if supplied externally)                                                          | 1.35        | 1.5 | 1.65     | V    |
| V <sub>ss</sub> | Ground                                                                                                | -           | 0   | -        | V    |
| $V_{ramp}$      | V <sub>DD15</sub> /V <sub>DD33</sub> supply ramp rate <sup>1,4</sup>                                  | 0.5<br>V/ms | -   | 100 V/us | I    |
| Vproff          | V <sub>DD33</sub> level at which the Power-on reset is released when voltage is rising <sup>2</sup>   | 2.65        | 2.8 | 2.95     | ۷    |
| Vpron           | V <sub>DD33</sub> level at which the Power-on reset is activated when voltage is falling <sup>3</sup> | -           | 2.7 | -        | ۷    |
|                 |                                                                                                       |             |     |          |      |

Notes:

- 1.  $V_{Ramp}$  time is the time from  $V_{DD} = 0$  V until it reaches the operating range.
- 2. V<sub>PROFF</sub> is the voltage at which the internal Power-on reset is released when power is rising.
- 3. V<sub>PRON</sub> is the voltage at which the internal Power-on reset is activated.
- 4. See additional requirements for VDD15/VDD33 power supply relationship in the graph below

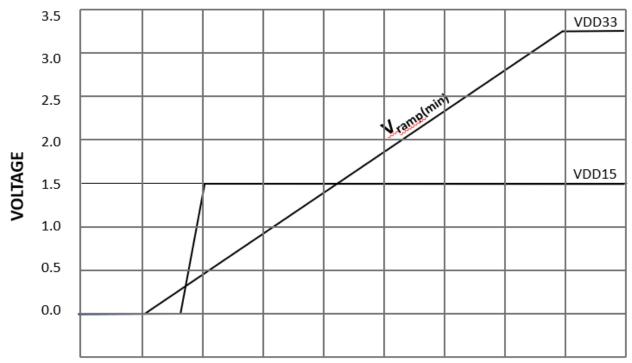


# 5.3 Required Power Supply Sequencing

Power supply sequencing requirements provide a required power-up sequence needed for guaranteed operation. An example of power-up sequencing is shown in the figure below.

For reliable boot operation, the VDD15 ramp must be faster than the VDD33 ramp to ensure that VDD33 is less than VDD15 until VDD15 reaches 1.5V.




Power sequencing for case of maximum VDD33 ramp.

To meet this requirement, the ramp rate of the VDD33 can be adjusted to slow the rise of the VDD33 relative to VDD15. This is shown in the figure below.

VA416X0

**Product Datasheet** 





Power sequencing for case of minimum VDD33 ramp.



## 5.4 DC Current Consumption

#### Core Supply Current (VDD15)

The typical core supply current is approximately 1.2mA/MHz

| System clock frequency<br>(MHz) <sup>1</sup> | Min | Тур² | Max <sup>3</sup> | Units |
|----------------------------------------------|-----|------|------------------|-------|
| 10                                           | -   | 20   | -                | mA    |
| 20                                           | -   | 35   | -                | mA    |
| 50                                           | -   | 65   | -                | mA    |
| 100                                          | -   | 125  | -                | mA    |

Notes:

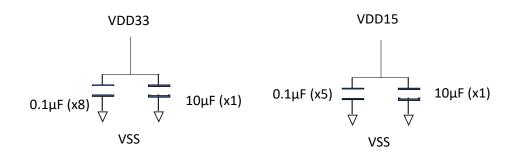
- Maximum activity is measured with all internal counters running at the maximum rate, all I<sup>2</sup>C interfaces active in Fast mode and loopback mode, all SPI interfaces active in master mode at 16x clock divide rate, and all UARTs active in loopback mode at 1M Baud rate, and the CPU running multiply operations.
- 2. Measured at nominal VDD and 25°C.
- 3. Measured at maximum VDD and 125°C.

#### I/O Supply Current<sup>1</sup> (V<sub>DD33</sub>) I<sub>DD33</sub>

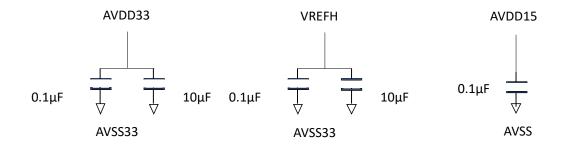
| Run I <sub>DD</sub> <sup>1</sup>           | Max | Units |
|--------------------------------------------|-----|-------|
| Overall maximum I/O current                | 200 | mA    |
| Maximum I/O current per side of the device | 100 | mA    |

Notes:

- Although each GPIO can source or sink up to 8mA, the maximum current allowed per package side of the device is 100mA. The maximum allowable current into VDD33 (I<sub>DD33</sub>) is 200mA.
   I/O supply current is entirely application dependent. It is the sum of all the GPIO outputs switching, the switching frequency of those outputs, and the capacitive loading on each pin.
- 2. Not a tested parameter


# 5.5 Power Supply Decoupling

Each power supply pair (VDD33/VSS, VDD15/VSS, A\_VDD33/A\_VSS,


A\_VDD15/A\_VSS) must be decoupled with filtering ceramic capacitors, as shown. These capacitors must be placed as close as possible to the corresponding supply pins to ensure proper operation of the MCU. Capacitors can also be placed on the bottom side of a PC board for convenience.



**Digital Supplies** 



# **Analog Supplies**





# 5.6 General Purpose I/O

#### Input/Output and Input-Only Pads

| Symbol          | Parameter                           | Test Conditions | Min                     | Typ <sup>1</sup> | Max                     | Unit |
|-----------------|-------------------------------------|-----------------|-------------------------|------------------|-------------------------|------|
| V <sub>IL</sub> | Input Low<br>Voltage                | VDD33=Max       | -0.3                    | -                | $0.3 \times V_{DD33}$   | V    |
| VIH             | Input High<br>Voltage               | VDD33=Max       | 0.7 x V <sub>DD33</sub> | -                | V <sub>DD33</sub> + 0.3 | ۷    |
| $V_{hys}^{2}$   | Hysteresis<br>of Schmitt<br>trigger | VDD33=Max       | -                       | 450              | -                       | mV   |

Notes:

- 1. Typ for -55° to 125°C measured at 25°C
- 2. The following input buffers have Schmitt Trigger Inputs: TCK, TRSTn, TDI, TMS, ROM\_MISO, NVM\_PROTn, TEST\_MODE, NMI, CAN0\_RX, CAN1\_RX, EBI\_BOOT, and all GPIO

#### Input/Output and Output-Only Pads

| Symbol          | Parameter             | <b>Test Conditions</b>                    | Min                     | Typ <sup>1</sup> | Max | Unit |
|-----------------|-----------------------|-------------------------------------------|-------------------------|------------------|-----|------|
| V <sub>OL</sub> | Output voltage (Low)  | Load I = 8 mA<br>V <sub>DD33</sub> = Min  | -                       | 0.25             | 0.4 | V    |
| V <sub>OH</sub> | Output voltage (High) | Load I = -8 mA<br>V <sub>DD33</sub> = Min | 0.8 x V <sub>DD33</sub> | 3.0              | -   | V    |

Notes:

1. Typ for -55° to 125°C measured at 25°C

#### Leakage Current Input/Output and Input-Only Pads

See Section 3.1 Pin Descriptions for more information.

| Symbol                                                            | Parameter                         | Pins                                           | Test<br>Condition   | Min   | Тур¹  | Max  |
|-------------------------------------------------------------------|-----------------------------------|------------------------------------------------|---------------------|-------|-------|------|
| I <sub>in</sub><br>I <sub>in</sub><br>Input<br>Ieakage<br>current | Input<br>Ieakage                  | Pins with configurable<br>pull-up or pull-down | $V_{in} = 0 V$      | -1 µA | 10 nA | -    |
|                                                                   | current<br>(V <sub>in</sub> low)  | Tri-state Pins                                 | $V_{in} = 0 V$      | -1 µA | 10 nA | -    |
|                                                                   | Input<br>leakage                  | Pins with configurable<br>pull-up or pull-down | $V_{in} = V_{DD33}$ | -     | 10 nA | 1 µA |
|                                                                   | current<br>(V <sub>in</sub> high) | Tri-state Pins                                 | $V_{in} = V_{DD33}$ | -     | 10 nA | 1 µA |

Notes:

1. TYP for -55° to 125°C measured at 25°C



# 5.7 Open Drain I2C Pads

Open Drain I<sup>2</sup>C pad specifications apply to pads: I2C0\_SCL, I2C0\_SDA, I2C1\_SCL, I2C1\_SDA, I2C2\_SCL, and I2C2\_SDA

| Symbol          | Parameter                             | <b>Test Conditions</b>                     | Min            | Typ <sup>1</sup> | Max                        | Unit |
|-----------------|---------------------------------------|--------------------------------------------|----------------|------------------|----------------------------|------|
| VIL             | Input low<br>voltage                  |                                            | -0.3           |                  | 0.3 x V <sub>dd33max</sub> | ۷    |
| Vih             | Input high<br>voltage                 |                                            | 0.7 x Vdd33min |                  | V <sub>DD33</sub> + 0.3    | ۷    |
| $V_{hys}$       | Hysteresis<br>of Schmitt<br>trigger   |                                            | -              | 450              | -                          | mV   |
| l <sub>in</sub> | Input<br>leakage<br>current<br>(high) | $V_{in} = V_{DD33}$                        | -1 µA          | 10 nA            | 1 μA                       |      |
| Vol             | Output<br>voltage<br>(low)            | Load I = -8 mA,<br>V <sub>DD33</sub> = Min | -              | 0.25             | 0.4                        | v    |

Notes:

1. Typ for -55° to 125°C measured at 25°C

# 5.8 SpaceWire Pads

#### SpaceWire Low Voltage Differential Signaling (LVDS) Receive Pads<sup>1</sup>

LVDS TX specifications apply to pads: SW\_RX\_N, SW\_RX\_P, SW\_RXSTR\_N, and SW\_RXSTR\_P. A 100 🖸 load is provided between SW\_RX\_N and SW\_RX\_P and between SW\_RXSTR\_N and SW\_RXSTR\_P.

| Symbol          | Parameter                                   | Min | Тур | Max | Unit |
|-----------------|---------------------------------------------|-----|-----|-----|------|
| VID             | Input differential voltage                  | 75  | 100 | -   | mV   |
| V <sub>CM</sub> | Input common mode voltage                   | 0.2 | 1.2 | 2.8 | V    |
| I <sub>IC</sub> | Input current, single ended                 | 92  | 114 | 160 | μA   |
| Cin             | Input capacitance at pad (when<br>disabled) | -   | 0.9 | 1   | pF   |
| R <sub>in</sub> | Terminating resistance                      | -   | 100 | -   | Ω    |

Note:

1. Guaranteed by design



## SpaceWire Low Voltage Differential Signaling (LVDS) Transmit Pads<sup>1</sup>

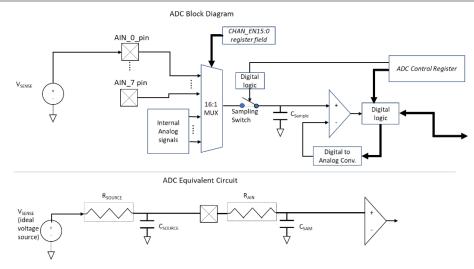
LVDS RX specifications apply to pads: SW\_TX\_N, SW\_TX\_P, SW\_TXSTR\_N, and SW\_TXSTR\_P. A 100 🖸 load is assumed between SW\_RX\_N and SW\_RX\_P and between SW\_RXSTR\_N and SW\_RXSTR\_P at the receiving end.

| Symbol           | Parameter                                                 | Min  | Тур   | Max  | Unit |
|------------------|-----------------------------------------------------------|------|-------|------|------|
|                  | Output differential voltage                               | 270  | 350   | 410  | mV   |
| Vom              | Output common-mode voltage<br>(V <sub>DD33</sub> = 3.3 V) | 1.22 | 1.25  | 1.26 | V    |
| Vocm             | Output common mode voltage                                | 1.09 | 1.25  | 1.38 | V    |
| loc              | Output current                                            | 2.7  | 3.5   | 4.1  | mA   |
| † <sub>skd</sub> | Differential pulse skew                                   | 0    | 0.025 | 0.1  | ns   |
| $C_{in}$         | Input capacitance at pad (when<br>disabled)               | -    | 0.9   | 1    | pF   |

Note:

1. Guaranteed by design

# 5.9 ADC Operating Conditions


The following table lists the operating conditions that must be maintained for the ADC to achieve the performance, as stated in ADC Operating Performance. Unless specified, the temperature range is – 55°C to 125°C.

| Symbol                        | Parameter                  | Min  | Тур  | Max          | Unit |
|-------------------------------|----------------------------|------|------|--------------|------|
| A_V <sub>DD33</sub>           | Analog supply voltage      | 3.0  | 3.3  | 3.6          | V    |
| A_I <sub>DD33</sub>           | Analog supply current      | -    | 17   | 25           | mA   |
| $A_V_{DD15}$                  | Analog supply voltage      | 1.35 | 1.5  | 1.65         | V    |
| <b>A_I</b> <sub>DD15</sub>    | Analog supply current      | -    | 400  | -            | μA   |
| $V_{REFH}$                    | Reference voltage          | 2.0  | -    | $A_V_{DD33}$ | V    |
| I <sub>REFH</sub>             | Analog reference current   | -    | -    | 100          | μA   |
| VADIN                         | Analog input voltage range | 0    | -    | VREFH        | V    |
| A_V <sub>ss</sub>             | Ground                     | -    | 0    | -            | V    |
| C <sub>SAM</sub> <sup>1</sup> | Sample capacitance         | -    | 10   | -            | рF   |
|                               | Series resistance          | -    | 1700 | -            | Ω    |
| E                             | ADC conversion clock       | 2.5  |      | 10.5         |      |
| F <sub>ADC</sub>              | frequency                  | 2.5  | -    | 12.5         | MHz  |
| $R_{Source}$                  | Source series resistance   | -    | 2000 | -            | Ω    |

Notes:

1. This is an internal circuit. Parameter guaranteed by design.





ADC Block Diagram and Equivalent Circuit

# 5.10 ADC Operating Performance

The following behavioral information applies to the operating conditions outlined in 5.9. Unless specified, the temperature range is -55°C to 125°C. For maximum accuracy, VORAGO recommends using software that will sample the ADC input pins several (two to four) times to determine an average value for the ADC input voltage. Having a filter capacitor (C<sub>SOURCE</sub>) can help reduce electrical noise and lower the source impedance. Choose a value as large as the input signal bandwidth will allow and place it very close to the ADC input pin.

| Symbol           | Parameter     | Test Conditions              | Min | Тур     | Max | Unit |
|------------------|---------------|------------------------------|-----|---------|-----|------|
|                  | Resolution    |                              | 12  | -       | -   | Bits |
| INL <sup>1</sup> | Integral non- | $f_{ADC} = 2.5 \text{ MHz}$  | -   | ±7      | -   | LSB  |
| IINL             | linearity     | $f_{ADC} = 12.5 \text{ MHz}$ | -   | ±3      | -   | LSB  |
| DNL              | Differential  | $f_{ADC} = 2.5 \text{ MHz}$  | -   | 11      | -   | LSB  |
| DINL             | non-linearity | $f_{ADC} = 12.5 \text{ MHz}$ | -   | ±3      | -   | LSB  |
| ZE               | Zero-scale    | $f_{ADC} = 2.5 \text{ MHz}$  | -   | -6 / +1 | -   | LSB  |
| ΖC               | error         | $f_{ADC} = 12.5 \text{ MHz}$ | -   | -1 / +3 | -   | LSB  |
| FE               | Full-scale    | $f_{ADC} = 2.5 \text{ MHz}$  | -   | -4 / 0  | -   | LSB  |
|                  | error         | $f_{ADC} = 12.5 \text{ MHz}$ | -   | -1 / 2  | -   | LSB  |

Notes:

1. INL is calculated using the least-squares method.



# 5.11 Post-TID ADC Operating Performance

The following information applies to the operating conditions outlined in 5.9 after 200 krad (Si) of radiation exposure. Unless specified, the temperature range is -55°C to 125°C.

| Symbol          | Parameter  | Test Conditions              | Min | Тур     | Max       | Unit |
|-----------------|------------|------------------------------|-----|---------|-----------|------|
| 75              | Zero-scale | $f_{ADC} = 2.5 \text{ MHz}$  | -   | -6 / +1 | -12 / +12 | LSB  |
| ZE              | error      | $f_{ADC} = 12.5 \text{ MHz}$ | -   | -1 / +3 | -3 / +9   | LSB  |
| FE <sup>1</sup> | Full-scale | $f_{ADC} = 2.5 \text{ MHz}$  | -   | -4 / 0  | -80/ 0    | LSB  |
| FE'             | error      | $f_{ADC} = 12.5 \text{ MHz}$ | -   | -1 / 2  | -20 / 2   | LSB  |

Notes:

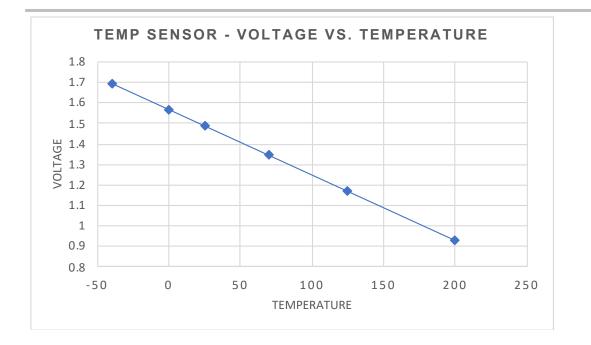
1. Specification derated to reflect total dose exposure to 300krad (Si) at 10rad (Si)/s and 25C.

# 5.12 Internal Temperature Sensor

VA416X0 has a temperature sensor that can be accessed via an internal ADC channel. The temperature sensor is referenced from VREFH.

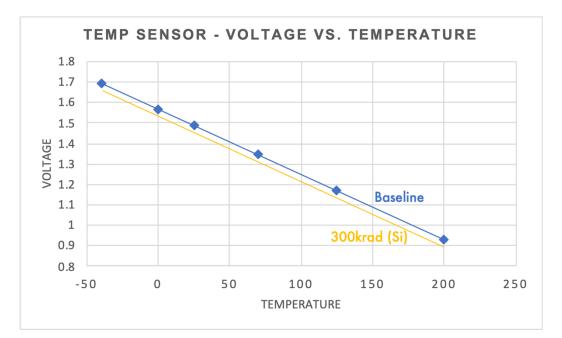
| Symbol             | Parameter                  | Тур     | Unit      |
|--------------------|----------------------------|---------|-----------|
| ΤL                 | Linearity with temperature | +/- 0.5 | °C        |
| VROOM              | 25°C voltage reading       | 1.48    | V         |
| T <sub>VALUE</sub> | 25°C ADC Count             | 0x0730  | Hex value |

A read of the temperature sensor voltage can be converted to a temperature in degrees C by using the following equation:


Voltage = -0.0032(Temperature) + 1.5685 OR Temperature = (Voltage - 1.5685) / -0.0032

Degrees\_C = ((ADC\_data\_reading\_in\_decimal / 4096 \* VREFH) - 1.5685) / (-0.0032)

Using VREFH=VDD33=3.3V, typical room temperature reading of 0x730 (1840 decimal): Degrees\_C = ((1840 / 4096 \* 3.3V) - 1.5685) / -0.0032 = 26.9 C








## 5.13 Post-TID Internal Temperature Sensor

Following TID radiation exposure, the VA416X0 internal temperature sensor that can ship uo to 8°C at room temperature. The graph below shows baseline temperature sensor data, as well as post-TID temperature sensor data after 300krad (Si) at 10rad (Si)/s.





# 5.14 DAC Operating Conditions

The following table lists the operating conditions that must be maintained for the DAC to achieve the performance, as stated in 5.15. Unless specified, the temperature range is -55°C to 125°C.

| Symbol              | Parameter               | Min | Тур | Max                       | Unit |
|---------------------|-------------------------|-----|-----|---------------------------|------|
| A_V <sub>DD33</sub> | Supply voltage          | 3.0 | 3.3 | 3.6                       | V    |
| VREFH               | Reference voltage       | 2.0 | -   | A_V <sub>DD33</sub> - 0.3 | V    |
| A_V <sub>ss</sub>   | Ground                  | -   | 0   | -                         | V    |
| RIN                 | Input resistance        | -   | 2   | -                         | kΩ   |
| CL                  | Output load capacitance | -   | 100 | -                         | рF   |
| ١                   | Output load current     | -   | 0.5 | -                         | mA   |

# 5.15 DAC Operating Performance

The following behavioral information applies to the operating conditions outline in 5.14.

| Symbol | Parameter                     | Test Conditions            | Min | Typ <sup>1</sup> | Max | Unit |
|--------|-------------------------------|----------------------------|-----|------------------|-----|------|
|        | Resolution                    |                            | 12  |                  |     | Bits |
| INL    | Integral non-<br>linearity    |                            |     | ±4               |     | LSB  |
| DNL    | Differential<br>non-linearity | $AV_{DD33}$ 3.0 V to 3.6 V |     | ±1               |     | LSB  |

Notes:

1. Typ for -55° to 125°C measured at 25°C

#### 5.16 Low-Voltage Detect Circuit

Refer to the VA416XX Programmer's Guide for more information.

| Low-Voltage Detect<br>Level  | LVL_SLCT <sup>1</sup><br>Value | Min  | Тур | Max  | Units |
|------------------------------|--------------------------------|------|-----|------|-------|
| Low-voltage detect<br>rising | -                              | 2.85 | 2.9 | 2.95 | V     |
| Low-voltage detect           | 00                             | 2.75 | 2.8 | 2.85 | V     |
| falling                      | 01                             | -    | 2.9 | -    | V     |
|                              | 10                             | -    | 3.0 | -    | V     |
|                              | 11                             | -    | 3.1 | -    | V     |

Notes:

1. LVL\_ SLCT is set to the lowest possible setting on power-up to keep the low voltage detect circuit from resetting the device.

#### 5.17 Internal Pull-up/Pull-down Resistors

| Pull direction         | Min | Тур | Max | Units |
|------------------------|-----|-----|-----|-------|
| Pull-up <sup>1</sup>   | 45  | 55  | 65  | kΩ    |
| Pull-down <sup>2</sup> | 45  | 55  | 65  | kΩ    |



#### Notes:

- 1. Pins with dedicated Pull-ups: EXTRESETn, TMS/SWDIO
- 2. Pins with dedicated Pull-downs: ROM\_MISO, TMS

Pins with software configurable pulls: All GPIO pins

#### 5.18 Pin Capacitance

| Symbol                        | Parameter                     | Conditions            | Max | Unit |
|-------------------------------|-------------------------------|-----------------------|-----|------|
|                               | Input pin capacitance         | $V_{in} = 3.3 V$      | 6   | рF   |
| C <sub>I/O</sub> <sup>2</sup> | I/O pin capacitance           | $V_{out} = 3.3 V$     | 10  | рF   |
| CPD <sup>2</sup>              | Open drain pin<br>capacitance | V <sub>out</sub> = 0V | 10  | рF   |

Notes:

- 1. Input only pins: XTAL\_N, ROM\_MISO, TCK, TRSTn, TDI, CAN0\_RX, CAN1\_RX, NMI, EBI\_BOOT, NVM\_PROTn, EXT15\_SEL, TEST\_MODE
- Bidirectional pins: PORTA[15:0], PORTB[15:0], PORTC[15:0], PORTD[15:0], PORTE[15:0], PORTF[15:0], PORTG[7:0], TMS/SWDIO
- 3. Open-drain pins: EXTRESETn, I2C0\_SCL, I2C0\_SDA, I2C1\_SCL, I2C1\_SDA, I2C2\_SCL, and I2C2\_SDA.
- 4. This is an internal circuit and is guaranteed by design.



# 6 AC Electrical Characteristics

#### 6.1 AC Timing Conditions

| V <sub>DD33</sub>                  | 3.3 V ± 0.3 V     |
|------------------------------------|-------------------|
| Input swing levels                 | 0 to 3.3 V        |
| Input rise/fall times <sup>1</sup> | 4 ns <sup>1</sup> |
| Input timing reference levels      | 1.65 V            |
| Output timing reference levels     | 1.65 V            |
| AC test load                       | 15 pF             |

Notes:

1. Rise/Fall times are measured from 20% to 80% of  $V_{DD33}$ 

## 6.2 Internal 20 MHz Oscillator

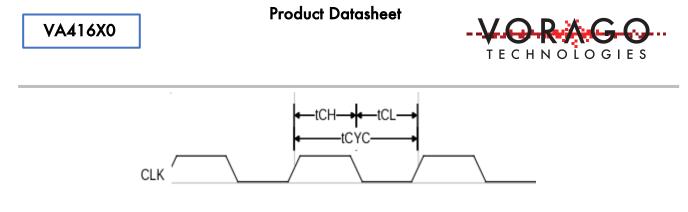
The internal 20 MHz oscillator is used for boot and Power-Up delay timing. If the system clock drops below 1MHz, the system clock will automatically switch over to the internal 20MHz oscillator as a system fail-safe mechanism.

| Parameter         | Description         | Min | Тур | Max  | Unit |
|-------------------|---------------------|-----|-----|------|------|
| t <sub>cyc</sub>  | Clock cycle time    | 40  | 50  | 66.7 | ns   |
| t <sub>FREQ</sub> | Clock frequency     | 15  | 20  | 25   | MHz  |
| -                 | Cycle time accuracy | -25 | -   | 25   | %    |

# 6.3 Internal 1 MHz Oscillator

| Parameter         | Description         | Min | Тур | Max | Unit |
|-------------------|---------------------|-----|-----|-----|------|
| t <sub>FREQ</sub> | Clock frequency     |     | 1   |     | MHz  |
| -                 | Cycle time accuracy | -28 | -   | 28  | %    |

## 6.4 External Clock Signals


The VA416X0 can be clocked in several different ways.

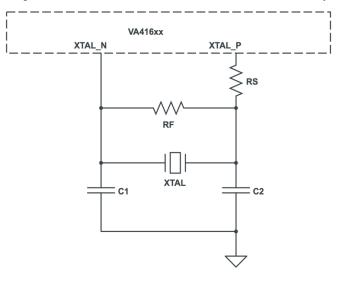
- Internal oscillator
- 4 to 10 MHz external crystal oscillator with PLL or without PLL enabled
- 4 to 100 MHz external square wave with PLL enabled
- 0 to 100 MHz external square wave without PLL enabled

#### External Clock Signal

An external clock can be used to drive the XTAL\_N input with the XTAL\_P pin left unconnected. The clock signal must adhere to the following table.

| Parameter        | Description            | Time | Unit |
|------------------|------------------------|------|------|
| t <sub>cyc</sub> | Clock cycle time (min) | 10   | ns   |
| t <sub>сн</sub>  | Clock high (min)       | 4    | ns   |
| t <sub>CL</sub>  | Clock low (min)        | 4    | ns   |




#### External Crystal Oscillator

If an external crystal oscillator circuit is used, please refer to the crystal oscillator manufacturer's data sheet for exact values of resistors and capacitors for proper oscillation at the fundamental frequency, reliable startup, and to maximize stability.

| Parameter                | Description       | Min | Тур | Max | Unit |
|--------------------------|-------------------|-----|-----|-----|------|
| <b>f</b> <sub>XTAL</sub> | Crystal frequency | 4   | -   | 10  | MHz  |
| R <sub>F</sub>           | Feedback resistor | -   | 1M  | -   | Ω    |
| Rs                       | Series resistor   | 1k  | -   | 20k | Ω    |
| ts                       | Startup time      | -   | 10  | 15  | ms   |

Note:

PC board trace lengths for the oscillator circuit should be as short as possible



## 6.5 Phased Locked Loop (PLL)

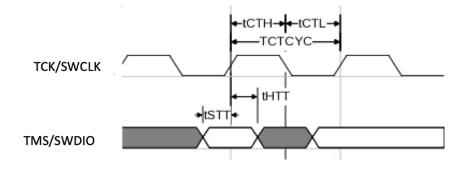
The VA416X0 contains an internal PLL circuit that can be used to generate internal frequencies higher than the input clock. The PLL clock can be used as the MCU system clock. Please refer to the VA416XX Programmer's Guide for more information on the usage of the PLL.

| Parameter         | Description      | Тур | Max | Unit |
|-------------------|------------------|-----|-----|------|
| <b>f</b> in       | Input frequency  | 4   | 100 | MHz  |
| <b>f</b> out      | Output frequency | -   | 100 | MHz  |
| t <sub>LOCK</sub> | PLL lock time    | 10  | 100 | μs   |

VA416X0

Product Datasheet




| Jitter          | PLL clock jitter (percentage of input frequency) | 3 | - | %  |
|-----------------|--------------------------------------------------|---|---|----|
| t <sub>CL</sub> | Clock low (min)                                  | 4 | - | ns |

Note: Guaranteed by design

# 6.6 Serial Wire Debug (SWD)

The Serial Wire Debug interface allows access to the Arm<sup>®</sup> Debug Access Port (DAP). The TMS/SWDIO pin is bi-directional data, and the TCK/SWCLK pin is a clock input to the VA416X0.

| Parameter          | Description                               | Тур | Unit |
|--------------------|-------------------------------------------|-----|------|
| t <sub>ctcyc</sub> | TCK/SWCLK cycle time (min) <sup>2</sup>   | 60  | ns   |
| t <sub>стн</sub>   | TCK/SWCLK high (min) <sup>2</sup>         | 20  | ns   |
| t <sub>CTL</sub>   | TCK/SWCLK low (min) <sup>2</sup>          | 20  | ns   |
| t <sub>sπ</sub>    | TMS/SWDIO setup time to<br>TCK/SWCLK rise | 2.0 | ns   |
| tнтт               | TMS/SWDIO hold time to<br>TCK/SWCLK rise  | 6.0 | ns   |

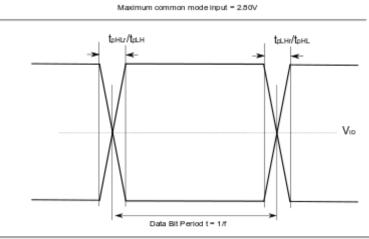




# 6.7 Low Voltage Differential Signaling (LVDS)

#### LVDS Receiver Timing Specifications

| Symbol            | Description                                         | Min | Тур | Max | Unit |
|-------------------|-----------------------------------------------------|-----|-----|-----|------|
| F                 | Operating frequency                                 |     | 100 | 100 | MHz  |
| t <sub>pHLr</sub> | Input differential propagation<br>delay high to low |     | 2.3 |     | ns   |
| t <sub>pLHr</sub> | Input differential propagation<br>delay low to high |     | 2.3 |     | ns   |


Note: Guaranteed by design

#### LVDS Transmitter Timing Specifications

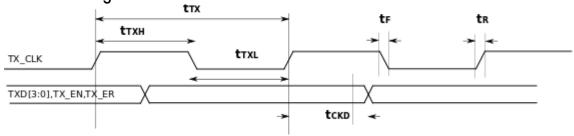
| Symbol           | Description                                          |  | Тур | Max | Unit |
|------------------|------------------------------------------------------|--|-----|-----|------|
| F                | Operating frequency                                  |  | 100 | -   | MHz  |
| t <sub>pHL</sub> | Output differential propagation<br>delay high to low |  | 1.5 |     | ns   |
| t <sub>pLH</sub> | Output differential propagation delay low to high    |  | 1.5 |     | ns   |

Note: Guaranteed by design

#### LVDS Timing



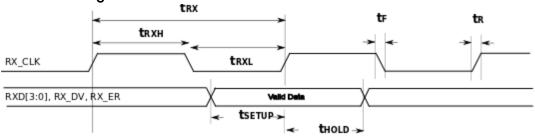
Minimum common mode input = 200 mV




# 6.8 Ethernet MII Timing

| Parameter                      | Description                             |      | Тур | Max | Unit |
|--------------------------------|-----------------------------------------|------|-----|-----|------|
| t <sub>TX</sub>                | Transmit clock period for 10 Mbps - 400 |      | 400 | -   | ns   |
| t <sub>TX</sub>                | Transmit clock period for 100<br>Mbps   | - 40 |     | -   | ns   |
| t⊤xh/txl                       | Transmit clock duty cycle               | 35   | -   | 65  | %    |
| t <sub>скр</sub>               | Transmit clock to MII data delay        | 1    | 5   | 15  | ns   |
| t <sub>R,</sub> t <sub>F</sub> | Transmit clock rise and fall time       | 1    | -   | 4   | ns   |

Note: Guaranteed by design


#### Transmit timing



| Parameter                       | Description                               |    | Тур | Max | Unit |
|---------------------------------|-------------------------------------------|----|-----|-----|------|
| t <sub>RX</sub>                 | Receive clock period for 10 Mbps          |    | 400 | -   | ns   |
| t <sub>RX</sub>                 | Receive clock period for 100<br>Mbps      |    | 40  | -   | ns   |
| t <sub>RXH/RXL</sub>            | Receive clock duty cycle                  |    | -   | 65  | %    |
| tsetup                          | Receive data set up time to receive clock | 10 | -   | -   | ns   |
| t <sub>HOLD</sub>               | Receive data hold time to receive clock   | 10 | -   | -   | ns   |
| t <sub>R</sub> , t <sub>F</sub> | Receive clock rise and fall time          | 1  | -   | 4   | ns   |

Note: Guaranteed by design

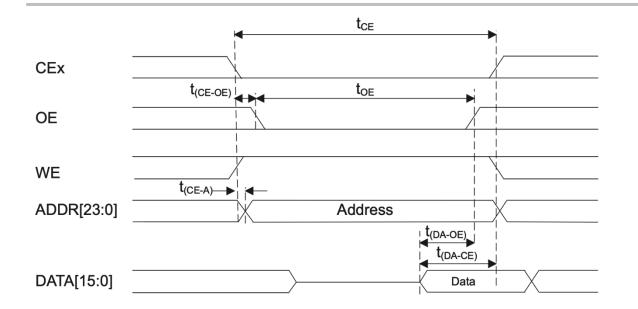
#### Receive timing





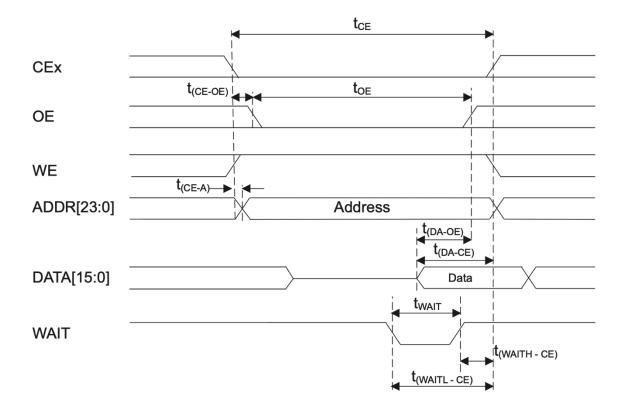
# 6.9 External Bus Interface (EBI) Timing

In all timing tables, the  $t_{\text{HCLK}}$  is the MCU system clock. The External Bus Interface is designed to be timing compatible with industry standard memories.


| Parameter                            | Description                                            | Min                     | Тур | Max                       | Unit |
|--------------------------------------|--------------------------------------------------------|-------------------------|-----|---------------------------|------|
| t <sub>CE</sub>                      | Chip select low time                                   | 2 t <sub>HCLK</sub> - 2 | -   | 2 t <sub>HCLK</sub> + 0.5 | ns   |
| t <sub>CE</sub> to t <sub>OE</sub>   | Chip select low to<br>output enable low<br>set-up time | 0                       | -   | 1                         | ns   |
| t <sub>OE</sub>                      | Output enable low<br>time                              | 2 t <sub>HCLK</sub> - 1 | -   | 2 t <sub>HCLK</sub> + 0.5 | ns   |
| t <sub>OE</sub> to t <sub>CE</sub>   | Output enable high<br>to chip select high<br>hold time | 0                       | -   | -                         | ns   |
| t <sub>CE</sub> to t <sub>A</sub>    | Chip select low to<br>address valid set-up<br>time     | -                       | -   | 0.5                       | ns   |
| t <sub>OE</sub> to t <sub>A</sub>    | Address hold time<br>after output enable<br>high       | 0                       | -   | -                         | ns   |
| t <sub>DATA</sub> to t <sub>CE</sub> | Data to chip select<br>high set-up time                | 2 t <sub>HCLK</sub> – 2 | -   | -                         | ns   |
| t <sub>DATA</sub> to t <sub>OE</sub> | Data to output<br>enable high set-up<br>time           | 2 t <sub>HCLK</sub> – 2 | -   | -                         | ns   |
| t <sub>oe</sub> to t <sub>data</sub> | Data hold time after<br>output enable high             | 0                       | -   | -                         | ns   |
| t <sub>ce</sub> to t <sub>data</sub> | Data hold time after<br>chip select high               | 0                       | -   | -                         | ns   |

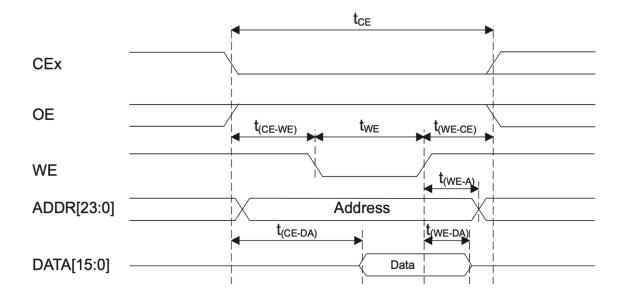
Read timing (no wait states)




Product Datasheet

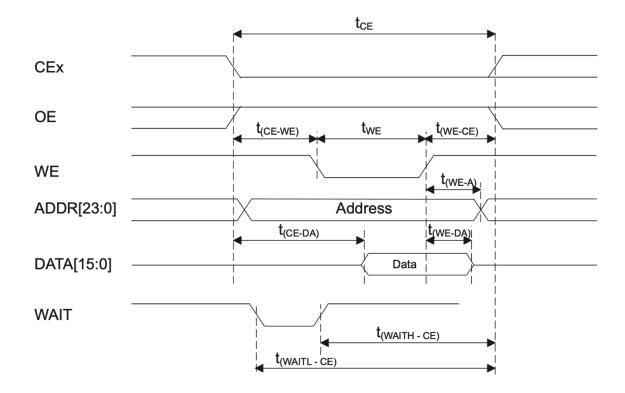







| Parameter                 | Description                                           | Min                       | Тур | Max                     | Unit |
|---------------------------|-------------------------------------------------------|---------------------------|-----|-------------------------|------|
| <b>t</b> ⊂E               | Chip select low time                                  | 7 t <sub>HCLK</sub> + 1   | -   | 7 t <sub>HCLK</sub>     | ns   |
| t <sub>OE</sub>           | Output enable low time                                | 5 t <sub>HCLK</sub> - 1   | -   | 5 t <sub>HCLK</sub> + 1 | ns   |
| <b>t</b> WAIT             | Wait signal low<br>time                               | t <sub>HCLK</sub> . 0.5   | -   | -                       | ns   |
| $t_{CE}$ to $t_A$         | Chip select low to<br>address valid set-up<br>time    | -                         | -   | 0.5                     | ns   |
| twaitl to t <sub>ce</sub> | Wait signal valid<br>before chip select<br>high       | 5 t <sub>HCLK</sub> + 1.5 | -   | -                       | ns   |
| $t_{WAITH}$ to $t_{CE}$   | Chip select hold<br>time after wait<br>signal invalid | 4 t <sub>HCLK</sub> + 1   | -   | -                       | ns   |






| Write timing (                       | no wait states)                                    |                         |     |                           |      |
|--------------------------------------|----------------------------------------------------|-------------------------|-----|---------------------------|------|
| Parameter                            | Description                                        | Min                     | Тур | Max                       | Unit |
| t <sub>CE</sub>                      | Chip select low time                               | 3 t <sub>HCLK</sub> - 2 | -   | 3 t <sub>HCLK</sub> + 0.5 | ns   |
|                                      | Chip select low to                                 |                         |     |                           |      |
| t <sub>CE</sub> to t <sub>OE</sub>   | output enable low<br>set-up time                   | t <sub>нсιк</sub> - 0.5 | -   | t <sub>нсιк</sub> + 0.5   | ns   |
| t <sub>WE</sub>                      | Write enable low<br>time                           | t <sub>HCLK</sub>       | -   | t <sub>HCLK</sub> + 0.5   | ns   |
|                                      | Write enable high                                  |                         |     |                           |      |
| t <sub>we</sub> to t <sub>CE</sub>   | to chip select high<br>hold time                   | t <sub>HCLK</sub> + 0.5 | -   | -                         | ns   |
| t <sub>CE</sub> to t <sub>A</sub>    | Chip select low to<br>address valid set-up<br>time | -                       | -   | 0                         | ns   |
| t <sub>we</sub> to t <sub>A</sub>    | Address hold time<br>after write enable<br>high    | t <sub>нсік</sub> + 0.5 | -   | -                         | ns   |
| t <sub>CE</sub> to t <sub>DATA</sub> | Chip select low to<br>data valid time              | -                       | -   | t <sub>нсιк</sub> + 2     | ns   |
| t <sub>DATA</sub> to t <sub>WE</sub> | Data hold time after<br>write enable high          | t <sub>HCLK</sub> + 0.5 | -   | -                         | ns   |





| Write timing (                        | Write timing (with wait states)                       |                           |     |                         |      |  |  |
|---------------------------------------|-------------------------------------------------------|---------------------------|-----|-------------------------|------|--|--|
| Parameter                             | Description                                           | Min                       | Тур | Max                     | Unit |  |  |
| t <sub>CE</sub>                       | Chip select low time                                  | 8 t <sub>HCLK</sub> - 0.5 | -   | 8 t <sub>HCLK</sub> + 1 | ns   |  |  |
| t <sub>WE</sub>                       | Write enable low<br>time                              | 6 t <sub>HCLK</sub> - 0.5 | -   | 6 t <sub>HCLK</sub> + 1 | ns   |  |  |
| twaitl to tce                         | Wait signal valid<br>before chip select<br>high       | 6 t <sub>HCLK</sub> - 0.5 | -   | -                       | ns   |  |  |
| t <sub>waith</sub> to t <sub>ce</sub> | Chip select hold<br>time after wait<br>signal invalid | 4 t <sub>HCLK</sub> + 2   | -   | -                       | ns   |  |  |





## 6.10Electrostatic Discharge (ESD)

ESD testing is done in conformance with MIL-PRF-38534 and applies to all pads

| Parameter                            | Test Conditions | Value | Unit |
|--------------------------------------|-----------------|-------|------|
| ESD for Human Body Model (HBM)       | All pins        | 2000  | V    |
| ESD for field-induced Charged Device | All pins        | 500   | V    |
| Model (CDM)                          |                 |       |      |

# 7 Radiation Hardened Performance Targets

| Parameter | Description                                            | Min | Тур   | Max | Unit                           |
|-----------|--------------------------------------------------------|-----|-------|-----|--------------------------------|
| TID       | Total ionizing dose (VA41620)                          | -   | -     | 300 | krad(Si)                       |
| TID       | Total ionizing dose (VA41630)                          | -   | -     | 200 | krad(Si)                       |
| SER       | Soft error rate (EDAC & Scrub <sup>1</sup><br>enabled) | -   | 1E-15 | -   | error bit per day <sup>2</sup> |
| SEL       | Linear energy transfer (latch-up immunity)             | 110 | -     | -   | MeV * cm² / mg                 |

Notes:

- 1. Running at an appropriate frequency to prevent the accumulation of errors in the memory to achieve consistently low SER over time.
- 2. In geosynchronous orbit, solar min, and 100 mils of aluminum shielding.

# 8 Thermal Resistance Characteristics

Per JEDEC JESD51-2, the intent of thermal resistance measurements is solely for a thermal performance comparison of one package to another in a standardized environment. This methodology is not meant to and will not predict the performance of a package in an application-specific environment.

176-pin plastic QFP package thermal resistance data

| Thermal Parameter                  | Test Conditions                         | Symbol          | Value | Unit |
|------------------------------------|-----------------------------------------|-----------------|-------|------|
|                                    | Four-layer board (2s2p); Still air      | θ」              | 30.81 | °C/W |
| Junction to Ambient <sup>1,2</sup> | Four-layer board (2s2p); air flow 1 m/s | θ <sub>JA</sub> | 27.62 | °C/W |
|                                    | Four-layer board (2s2p); air flow 2 m/s | θ <sub>JA</sub> | 26.49 | °C/W |
| Junction to Case <sup>3,4</sup>    | -                                       | θ」              | 6.01  | °C/W |
| Junction to Board <sup>⁵</sup>     | -                                       | θյ <sub>в</sub> | 23.67 | °C/W |

#### Notes:

1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the

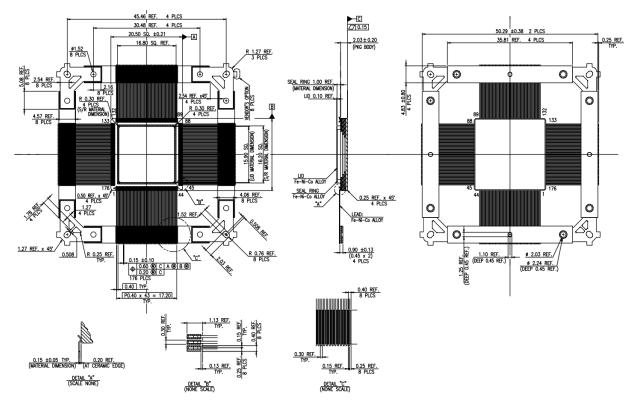


board, and board thermal resistance.

- 2. Simulation models are setup following the EIA/JESD51-2 for still air condition and following the EIA/JESD51-6 for moving air condition. The package is placed with horizontal orientation.
- 3. The model and boundary condition intend to simulate the  $\theta_{JC}$  test conditions. A cold plate and the grease between package and cold plate are modeled.
- 4.  $\theta_{JC}$  represents the thermal resistance between the chip to package top case.
- 5. The model and boundary conditions intend to simulate the test conditions specified in EIA/JESD51-8.

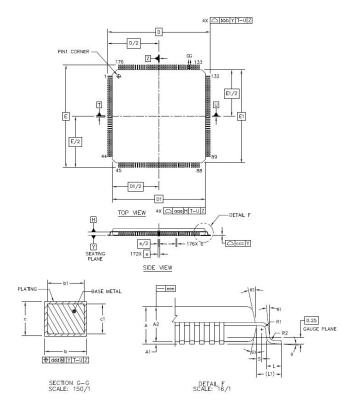
#### 196- pin BGA package thermal resistance data

| Thermal Parameter                  | Test Conditions                         | Symbol          | Value | Unit |
|------------------------------------|-----------------------------------------|-----------------|-------|------|
|                                    | Four-layer board (2s2p); Still air      | θ <sub>JA</sub> | 18.74 | °C/W |
| Junction to Ambient <sup>1,2</sup> | Four-layer board (2s2p); air flow 1 m/s | θ <sub>JA</sub> | 16.72 | °C/W |
|                                    | Four-layer board (2s2p); air flow 2 m/s | θ <sub>JA</sub> | 15.95 | °C/W |
| Junction to Case <sup>3,4</sup> –  |                                         | θ <sub>JC</sub> | 6.49  | °C/W |
| Junction to Board <sup>⁵</sup>     | _                                       | θ <sub>JB</sub> | 8.17  | °C/W |


#### Notes:

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. The simulation models are setup following the EIA/JESD51-2 for still air condition and following the EIA/JESD51-6 for moving air condition. The package is placed with horizontal orientation.
- The model and boundary condition intend to simulate the θ<sub>JC</sub> test conditions. A cold plate and the grease between package and cold plate are modeled.
- 4.  $\theta_{JC}$  represents the thermal resistance between the chip to package top case.
- 5. The model and boundary conditions intend to simulate the test conditions specified in EIA/JESD51-8.

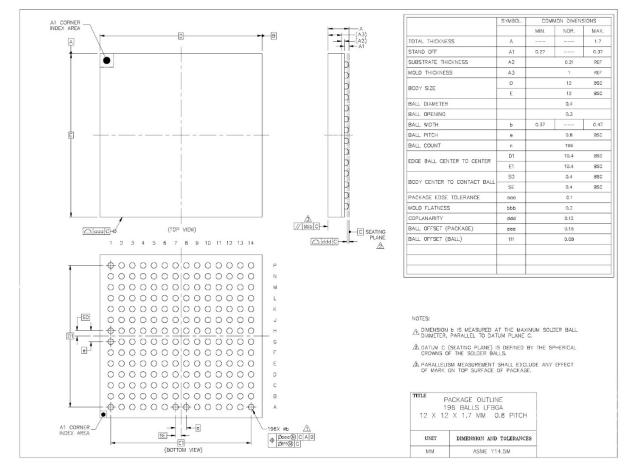



# 9 Package Mechanical Information

# 9.1 176-Pin Ceramic QFP






# 9.2 176-Pin Plastic QFP



|                                       |     | SYMBOL | MIN     | NOM    | MAX  |
|---------------------------------------|-----|--------|---------|--------|------|
| TOTAL THICKNESS                       |     | A      |         |        | 1.6  |
| STAND OFF                             |     | A1     | 0.05    |        | 0.15 |
| MOLD THICKNESS                        |     | A2     | 1.35    | 1.4    | 1.45 |
| LEAD WIDTH(PLATING)                   |     | b      | 0.13    | 0.18   | 0.23 |
| LEAD WIDTH                            |     | b1     | 0.13    | 0.16   | 0.19 |
| L/F THICKNESS(PLATI                   | NG) | c      | 0.09    |        | 0.2  |
| L/F THICKNESS                         |     | c1     | 0.09    |        | 0.16 |
| , , , , , , , , , , , , , , , , , , , | х   | D      |         | 22 BSC |      |
|                                       | Y   | E      |         | 22 BSC |      |
| DODY CIT                              | х   | D1     |         | 20 BSC |      |
| BODY SIZE                             | Y   | E1     | 20 BSC  |        |      |
| LEAD PITCH                            |     | е      | 0.4 BSC |        |      |
|                                       |     | L      | 0.45    | 0.6    | 0.75 |
| FOOTPRINT                             |     | L1     | 1 REF   |        |      |
|                                       |     | θ      | 0.      | 3.5    | 7.   |
|                                       |     | θ1     | 0.      |        |      |
|                                       |     | 82     | 11*     | 12'    | 13'  |
|                                       |     | 03     | 11*     | 12*    | 13*  |
|                                       |     | R1     | 0.08    |        |      |
|                                       |     | R2     | 0.08    |        | 0.2  |
|                                       |     | S      | 0.2     |        |      |
| PACKAGE EDGE TOLERANCE                |     | aaa    |         | 0.1    |      |
| LEAD EDGE TOLERANCE                   |     | bbb    | 0.2     |        |      |
| COPLANARITY                           |     | ccc    | 0.08    |        |      |
| LEAD OFFSET                           |     | ddd    | 0.07    |        |      |
| MOLD FLATNESS                         |     | eee    |         | 0.05   |      |



### 9.3 196-Pin Plastic BGA



# 9.4 Package Pin Metallization

| Package                                 | Material           |
|-----------------------------------------|--------------------|
| 176-pin plastic                         | 100% Matte Tin     |
| 176-pin ceramic (including QML devices) | 99.9% Gold         |
| 196-pin BGA                             | 63% Tin / 37% Lead |

# 9.5 Reflow / Soldering Conditions

To prevent potential memory corruption of the FRAM, soldering conditions for the VA41630 must not exceed 260°C for 3 seconds.



# 10 Ordering Information

| Part Number            | Package         | NVM                               | Qualification         |
|------------------------|-----------------|-----------------------------------|-----------------------|
| VA41630-<br>CQ176F0EBA | Ceramic 176 QFP | 256 Kbyte on-chip<br>FRAM         | Engineering Sample    |
| VA41630-<br>CQ176FKQBA | Ceramic 176 QFP | 256 Kbyte on-chip<br>FRAM         | MIL-PRF-38534 Class K |
| VA41630-<br>CQ176FVQBA | Ceramic 176 QFP | 256 Kbyte on-chip<br>FRAM         | MIL-PRF-38535 Class V |
| VA41630-<br>PQ176F0PBA | Plastic 176 QFP | 256 Kbyte on-chip<br>FRAM         | VORAGO HiRel Qual     |
| VA41630-<br>PG196F0PBA | Plastic 196 BGA | 256 Kbyte on-chip<br>FRAM         | VORAGO HiRel Qual     |
| VA41620-<br>CQ176F0EBA | Ceramic 176 QFP | External NVM<br>(parallel or SPI) | Engineering Sample    |
| VA41620-<br>PQ176F0PBA | Plastic 176 QFP | External NVM<br>(parallel or SPI) | VORAGO HiRel Qual     |
| VA41620-<br>PG196F0PBA | Plastic 196 BGA | External NVM<br>(parallel or SPI) | VORAGO HiRel Qual     |

# 11 Development Kit Ordering Information

| Description          | Part number  | Features                                                                                                                                                                                   |
|----------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Development<br>Board | PEB1-VA41630 | Supported by Keil <sup>TM</sup> MDK-Arm <sup>®</sup> Microcontroller Software Kit<br>Board Support Package (BSP) includes example software for<br>peripherals<br>Includes Segger J-Link OB |
| Development<br>Board | PEB1-VA41620 | Supported by Keil <sup>TM</sup> MDK-Arm <sup>®</sup> Microcontroller Software Kit<br>Board Support Package (BSP) includes example software for<br>peripherals<br>Includes Segger J-Link OB |



# 12 VA416XX Errata

| VOR-ER1004: Serial Wire [                                                                                                                                 | Debug                                                                                                                                |                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Description                                                                                                                                               | Workaround                                                                                                                           | Comment                               |
| Serial Wire Debug (SWD) is<br>not functioning as intended<br>without code in boot memory                                                                  | VA41630: Will ship devices with<br>code in NVM. Do not erase internal<br>NVM and leave blank                                         | Present in VA416xx Rev B<br>silicon   |
|                                                                                                                                                           | VA41620/28/29: External memory                                                                                                       |                                       |
|                                                                                                                                                           | must have code programmed into it                                                                                                    |                                       |
| VOR-ER1008: True Random                                                                                                                                   | Number Generator (TRNG)                                                                                                              |                                       |
| Description                                                                                                                                               | Workaround                                                                                                                           | Comment                               |
| A read of EHR_DATA[5] will<br>always return a value of<br>0x0000_0000 and will<br>automatically clear the<br>contents of EHR_DATA[4:0]                    | Do not read EHR_DATA[5] until<br>after EHR_DATA[4:0] has been read                                                                   | Present in VA416xx Rev A/B<br>silicon |
| VOR-ER1009: Internal Volte                                                                                                                                | age Regulator                                                                                                                        |                                       |
| Description                                                                                                                                               | Workaround                                                                                                                           | Comment                               |
| The use of the internal 1.5V<br>digital and analog regulators<br>can cause an unreliable<br>power-up condition                                            | An external 3.3V and 1.5V supply<br>must be applied to the device                                                                    | Present in VA416xx Rev A/B<br>silicon |
| VOR-ER1010: TMR Refresh                                                                                                                                   | Issue with UARTO and UART1                                                                                                           |                                       |
| Description                                                                                                                                               | Workaround                                                                                                                           | Comment                               |
| UART errors (on UARTO and<br>UART1 only) may occur if<br>the TMR refresh rate is set to<br>any number higher than O<br>(for refresh every clock<br>cycle) | Set the DIVCOUNT_L value in the<br>REFRESH_CONFIG_L Register to<br>0x0000                                                            | Present in VA416xx Rev B<br>silicon   |
| VOR-ER1011: TRSTn pull re                                                                                                                                 | sistor direction                                                                                                                     |                                       |
| Description                                                                                                                                               | Workaround                                                                                                                           | Comment                               |
| Pulling the TRSTn up through<br>a 10k Ohm resistor may<br>result in NVM programming<br>issues                                                             | ghFor proper programming operation<br>of the MCU, pin TRSTn should bePresent in VA416x<br>silicon                                    |                                       |
| VOR-ER1012: Internal Band                                                                                                                                 | l-Gap Measurement                                                                                                                    |                                       |
| Description                                                                                                                                               | Workaround                                                                                                                           | Comment                               |
| Performing an ADC<br>conversion on ADC channels<br>11 or 12 can cause the<br>MCU to reset                                                                 | Do not set up the ADC to perform an<br>ADC conversion on either the<br>Bandgap 1.0V (channel 11) or the<br>Bandgap 1.5V (channel 12) | Present in VA416xx Rev B<br>silicon   |
|                                                                                                                                                           | Interface (EBI) Wait States                                                                                                          |                                       |



| Description                  | Workaround                             | Comment                    |
|------------------------------|----------------------------------------|----------------------------|
| Extra wait states are        | Program the CFGWRITECYCLE in the       | Present in VA416xx Rev B   |
| required for EBI reads above | EBICFG[3:0] registers to a value of 3  | silicon                    |
| 70MHz                        | or higher for bus frequencies of       |                            |
|                              | 70MHz or higher                        |                            |
| VOR-ER1014: Ethernet 10/     | 100 MAC does not work at 100Mb         | ps                         |
| Description                  | Workaround                             | Comment                    |
| Ethernet peripheral          | Operate the Ethernet peripheral at     | Present in VA416xx Rev B   |
| encounters an excessive      | 10Mbps                                 | silicon                    |
| number of errors at          |                                        |                            |
| 100Mbps                      |                                        |                            |
| VOR-ER1015: EDAC SBE/MI      | BE count registers are not addressed a | correctly for writes       |
| Description                  | Workaround                             | Comment                    |
| In the SYSCONFIG block,      | Must compensate for this in the        | Present in VA416xx Rev A/B |
| data written to              | application firmware.                  | silicon                    |
| RAM1_SBE is miswritten to    |                                        |                            |
| RAMO_MBE and data            |                                        |                            |
| written to RAM0_MBE is       |                                        |                            |
| incorrectly written to       |                                        |                            |
| RAM1_SBE. The reads of       |                                        |                            |
| the counts from RAMx_MBE     |                                        |                            |
| and RAMx_SBE registers are   |                                        |                            |
| correct and the EDAC         |                                        |                            |
| circuitry correctly updates  |                                        |                            |
| these register counts.       |                                        |                            |



# **13 Disclaimer**

#### IMPORTANT NOTICE - PLEASE READ CAREFULLY

VORAGO Technologies reserves the right to make changes, corrections, enhancements, modifications, and improvements to VORAGO products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on VORAGO products before placing orders. VORAGO products are sold pursuant to VORAGO's terms and conditions of sale in place at the time of order acknowledgement.

The use of this product is subject to the manufacturer's standard terms and conditions available on the manufacturer's website <u>here</u>.

VORAGO Technologies 1501 S. MOPAC Expressway, Suite #350 Austin, TX 78746 www.voragotech.com Email: info@voragotech.com Phone: (512) 347-1800



| 14 Revision | History |                |                                                                                                                                                                   |
|-------------|---------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date        | Version | Page Locations | Description                                                                                                                                                       |
| 05/22/2017  | 0.1     | All            | Initial draft                                                                                                                                                     |
| 06/20/2018  | 0.2     | 4,5,10,33      | Fixed typos. Updated block diagram                                                                                                                                |
| 06/21/2018  | 0.3     | 11             | Updated pinout                                                                                                                                                    |
| 07/06/2018  | 0.4     | 11             | Added pin description table                                                                                                                                       |
| 08/01/2018  | 0.5     | 30-42          | Replaced tables, added PTG[7] in pin diagram and function select table, added plastic package information                                                         |
| 11/12/2018  | 0.6     | 11             | updated the pinout diagram to show $V_{\text{DD33}}$ and $V_{\text{DD15}}$ instead of $V_{\text{DD10}}$ and $V_{\text{DD}}$                                       |
| 12/03/2018  | 0.7     | 41             | Changed 1 MHz internal clock timing to 20 MHz                                                                                                                     |
| 02/20/2019  | 0.8     | 11-14          | Updated the pinout diagram and updated some pin<br>names. Reconfigured some section numbers and replaced<br>peripheral block diagrams. Added die pad coordinates. |
| 06/26/2019  | 0.9     | All            | Reconfigured some sections, updated formatting and symbols throughout, added electrical tables, and replaced several feature descriptions.                        |
| 07/19/2019  | 0.92    | 35-47          | Cleaned up some figures and tables, added deep-sleep<br>information, EBI specifications, and removed some<br>redundant information                                |
| 11/12/2019  | 0.93    | 12, 53         | Corrected pin names and updated ceramic package drawing.                                                                                                          |
| 03/11/2020  | 0.94    | 35-43          | Updated electrical specifications for VOL, VOH, and<br>removed VOH for the I <sup>2</sup> C pins. Also, minor corrections<br>were made throughout the text.       |
| 03/26/2020  | 0.94A   | All            | Grammar and punctuation scrub, and clarification for<br>readability and understanding. Added EBI timing<br>diagrams and LVDS pin electrical specifications.       |
| 04/20/2020  | 0.95    | 14, 52         | Moved die pad information to Section 9.                                                                                                                           |
| 06/30/2020  | 0.96    | 51             | Added improved IDD specs and information.                                                                                                                         |
| 07/28/2020  | 0.97    | 12             | Corrected pinout diagram, pin 146                                                                                                                                 |
| 08/07/2020  | 0.98    | 13-16, 52, 60  | added BGA package                                                                                                                                                 |
| 09/15/2020  | 0.99    | 13, 19, 60     | Added pins VDDQ and TEST_MODE                                                                                                                                     |
| 01/27/2021  | 0.991   | 18, 39         | TMS has a pull-down, not pull-up                                                                                                                                  |
| 4/21/2021   | 0.992   | 41             | Corrected typo in the table in Section 6.3.                                                                                                                       |
| 6/9/2021    | 0.995   | 33, 38, 46-49  | Corrected power supply decoupling, updated the<br>temperature sensor graph, updated the EBI timing<br>diagrams, and cleaned up ADC and DAC tables.                |
| 6/30/2021   | 1.0     | All            | Removed "Preliminary" from each page.                                                                                                                             |
| 7/16/2021   | 1.1     | 63             | Updated part numbers                                                                                                                                              |
| 8/5/21      | 1.2     | 1              | Updated radiation data verbiage                                                                                                                                   |
| 8/23/21     | 1.3     | All            | Edited header to be consistent with other datasheets.<br>Updated package options.                                                                                 |
| 10/6/21     | 1.4     | 64             | Removed bare die as package option.                                                                                                                               |

VA416X0



| 12/21/21 | 1.5 | 1, 53                   | Updated block diagram to be consistent with other VORAGO datasheets. Updated notes to SER data.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------|-----|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3/2/22   | 1.6 | 1, 20                   | Replaced JTAG with SWD on block diagram. Removed JTAG from BGA ball descriptions table.                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3/28/22  | 1.7 | 1, 56                   | Minor edits to cover page, for consistency with other VORAGO datasheets. Added required soldering conditions.                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4/13/22  | 1.8 | 65, 66                  | Added VA416XX errata.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7/13/22  | 1.9 | 1,9,12,35,37            | Page 1 added reference to errata in support box<br>Page 9 added section. 1.3 Boot Sequence<br>Page 12 updated section. 3.2 196-Pin Plastic BGA Ball-<br>Map diagram, updated VA416x0 Description<br>Page 35 added section. 4.14 Debug and programing<br>interface (DBG)<br>Page 37 added section. 5.3 Required Power Supply<br>Sequencing                                                                                                                                                                                                           |
| 10/21/22 | 2.0 | 12, 68                  | Corrected BGA ball L06, now PD09 was NC. Updated ordering info with production part numbers                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3/3/23   | 2.1 | 66                      | Added VA41630 QML-V part to Section 9 Ordering<br>Information.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4/10/23  | 2.2 | 42, 63, 71              | Removed deep sleep mode table. Added package<br>thermal information, added Ethernet erratum, and some<br>other minor changes.                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7/12/23  | 2.3 | 67                      | Corrected 9.4 Pin Metallization Table.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8/7/23   | 2.4 | 1, 9, 23, 48,<br>49, 69 | Replaced block diagram with blue box version for<br>compatibility with other data sheets and to show 8 ADC<br>channels. Added reference to Infineon FRAM datasheet<br>for FRAM radiation data. Removed "Option for use with<br>a single 3.3 V supply". TMS has an internal pull-up<br>resistor. Added verbiage to the temp sensor example.<br>Added post-TID ADC performance table & post-TID<br>internal temp sensor chart. Updated metallization table.<br>Added VOR-ER1015 EDAC register address erratum. A<br>few font changes for consistency. |