
Interrupts

Introduction
What is an embedded system without interrupts?

If you just needed to solve a math problem you would most likely sit down and use a desktop
computer. Embedded systems, on the other hand, take inputs from real-world events and then
act upon them. These real-world events usually translate into ‘interrupts’ – asynchronous signals
provided to the microcontroller: timers, serial ports, pushbuttons … and so on.

This chapter discusses how interrupts work; how they are implemented on the MSP430 MCU,
and what code we need to write in order to harness their functionality. The lab exercises provided
are relatively simple (using a pushbutton to generate an interrupt), but the skills we learn here will
apply to all the remaining chapters of this workshop.

Learning Objectives

Objectives

- Explain the difference between Polling &
Interrupts

- List the 4 items that are part of the MSP430’s
interrupt processing flow

- Find the interrupt vector documentation
- Describe the difference between a dedicated and

grouped interrupt
- Write a function to enable interrupts
- Write two ISR functions (one for dedicated, the

other for grouped interrupts)

MSP430 Workshop - Interrupts 5 - 1

Interrupts, The Big Picture

Chapter Topics
Interrupts ... 5-1

Interrupts, The Big Picture .. 5-3
Polling vs Interrupts ... 5-3
Processor States and Interrupts ... 5-5
Threads: Foreground and Background ... 5-6

How Interrupts Work ... 5-7
1. Interrupt Must Occur ... 5-9
2. Interrupt is Flagged (and must be Enabled) ... 5-10
3. CPU's Hardware Response .. 5-12
4. Your Software ISR .. 5-14

Interrupts: Priorities & Vectors ... 5-17
Interrupts and Priorities ... 5-17
Interrupt Vector (IV) Registers .. 5-18
Interrupt Vector Table ... 5-19

Coding Interrupts ... 5-22
Dedicated ISR (Interrupt Service Routine) .. 5-22
Grouped ISR (Interrupt Service Routine) .. 5-24
Enabling Interrupts .. 5-26

Miscellaneous Topics .. 5-28
Handling Unused Interrupts .. 5-28
Interrupt Service Routines – Coding Suggestions .. 5-29
GPIO Interrupt Summary .. 5-30
Interrupt Processing Flow ... 5-30

Interrupts and TI-RTOS Scheduling .. 5-31
Threads – Foreground and Background ... 5-31
TI-RTOS Thread Types ... 5-33
Summary: TI-RTOS Kernel ... 5-36

Lab Exercise ... 5-37

5 - 2 MSP430 Workshop - Interrupts

 Interrupts, The Big Picture

Interrupts, The Big Picture
While many of you are already familiar with interrupts, they are so fundamental to embedded
systems that we wanted to briefly describe what they are all about.

From Wikipedia:
 A hardware interrupt is an electronic alerting signal sent to the processor from an external device,

either a part of the [device, such as an internal peripheral] or an external peripheral.

In other words, the interrupt is a signal which notifies the CPU that an event has occurred. If the
interrupt is configured, the CPU will respond to it immediately – as described later in this chapter.

Polling vs Interrupts
In reality, though, there are two methods that events can be recognized by the processor. One is
called “Polling”; the other is what we just defined, “Interrupts”.

We start with a non-engineering analogy for these two methods. If you’ve ever taken a long family
vacation, you’ve probably dealt with the “Are we there yet” question. In fact, kids often ask it over-
and-over again. Eventually … the answer will be, “Yes, we’re there”. The alternative method is
when my spouse says, “Wake me up when we get there”.

Waiting for an Event: Famfiv Vacatfon

Poooing
Wane me up when we get there...

Interrupts

Both methods signal that we have arrived at our destination. In most cases, though, the use of
Interrupts tends to be much more efficient. For example, in the case of the MSP430, we often
want to sleep the processor while waiting for an event. When the event happens and signals us
with an interrupt, we can wake up, handle the event and then return to sleep waiting for the next
event.

MSP430 Workshop - Interrupts 5 - 3

Interrupts, The Big Picture

A real-world event might be our system responding to a push-button. Once again, the event could
be handled using either Polling or Interrupts.

It is common to see “simple” example code utilize Polling. As you can see from the left-side
example below, this can simply consist of a while{} loop that keeps repeating until a button-push
is detected. The big downfall here, though, is that the processor is constantly running– asking the
question, “Has the button been pushed, yet?”

Waiting for an Event: Button Push

100% CPU Load

while(1) {

// Polling GPIO button

while (GPIO_getInputPinValue()==1)
GPIO_toggleOutputOnPin();

}

// GPIO button interrupt

#pragma vector=PORT1_VECTOR

__interrupt void rx (void){

GPIO_toggleOutputOnPin();

}

> 0.1% CPU Load

Polling Interrupts

The example on the right shows an Interrupt based solution. Since this code is not constantly
running, as in the previous example’s while{} loop, the CPU load is very low.

Why do simple examples often ignore the use of interrupts? Because they are “simple”.
Interrupts, on the other hand, require an extra three items to get them running. We show two of
them in the right-hand example above.
• The #pragma sets up the interrupt vector. The MSP430 has a handy pragma which makes it

easy to configure this item. (Note: we’ll cover the details of all these items later in this
chapter.)

• The __interrupt keyword tells the compiler to code this function as an interrupt service routine
(ISR). Interrupt functions require a context save and restore of any resources used within
them.

While not shown above, we thought we’d mention the third item needed to get interrupts to work.
For a CPU to respond to an interrupt, you also need to enable the interrupt. (Oh, and you may
also have to setup the interrupt source; for example, we would have to configure our GPIO pin to
be used as an interrupt input.)

So, in this chapter we leave the simple and inefficient examples behind and move to the real-
world – where real-world embedded systems thrive on interrupts.

5 - 4 MSP430 Workshop - Interrupts

 Interrupts, The Big Picture

Processor States and Interrupts
In a previous chapter we covered many of the MSP430’s processor states. To summarize, the
MSP430 CPU can reside in: Reset, Active, or one of many Low-Power Modes (LPM). In many
cases, interrupts cause the CPU to change states. For example, when sitting in Low Power
Mode, an interrupt can “wake-up” the processor and return it to its active mode.

To help demonstrate this point, we stole the following slide from a discussion about Capacitive
Touch. While most of this slide’s content is not important for our current topic, we thought the
current vs time graph was interesting. It tries to visually demonstrate the changing states of the
device by charting power usage over time.

Notice the four states shown in this diagram:
• Notice how the current usage goes up at the beginning event – this is when the CPU is

woken up so it can start a couple of peripherals (timers) needed to read the CapTouch
button.

• The CPU can then go back to sleep while the sensor is being ‘read’ by the timers.

• When the read is complete (defined by something called “Gate” time, the CPU gets
interrupted and wakes up again in order to calculate the CapTouch button’s value from the
sensor data.

• Finally the CPU (and CapTouch hardware) can go back to sleep and wait for another system
wake-up event.

Interrupts Help Support Ultra Low Power

Only timers are running

Very little CPU
effort required

Lots of sleep time

 Keep CtU asleep (i.e. in Low
tower aode) while waiting for
event

 Lnterrupt ‘wakes up’ CtU when
it’s required
 Another way to look at it is

that interrupts often cause a
program state change

 Often, work can be done by
peripherals, letting CtU stay in
Lta (e.g. Gate Time)

MSP430 Workshop - Interrupts 5 - 5

Interrupts, The Big Picture

Threads: Foreground and Background
We conclude our Interrupts introduction by defining a few common terms used in interrupt-driven
systems: Thread, Foreground and Background.

If you look at the “code” below, you will see that there are three individual – and independent –
code segments below: main, ISR1, and ISR2.

We use the word independent because, if you were to examine the code in such a system, there
are no calls between these three routines. Each one begins and ends execution without calling
the others. It is common to call these separate segments of code: “Threads”.

Foreground / Background Scheduling
main() {

}

while(1){
background
or LPax

}

//Init
initPMM();
initClocks();
...

ISR1
geP daPa
process

{ystem Initialization
 The beginning part of main() is usually dedicated

to setting up your system (/hapters 3 and 4)

.ackground
 aost systems have an endless loop that runs

‘forever’ in the background
 In this case, ‘.ackground’ implies that it runs at a

lower priority than ‘Coreground’
 In a{P430 systems, the background loop often

contains a Low Power aode (LPax) command –
this sleeps the /PU/{ystem until an interrupt
event wakes it up

Coreground
 Interrupt {ervice woutine (I{w) runs in response

to enabled hardware interrupt
 These events may change modes in .ackground –

such as waking the /PU out of low-power mode
 I{w’s, by default, are not interruptible
 {ome processing may be done in I{w, but it’s

usually best to keep them short

ISR2
seP a flag

As we’ve seen in the workshop already, it is our main() thread that begins running once the processor has
been started. The compiler’s initialization routine calls main() when its work is done. (In fact, this is why all C
programs start with a main() function. Every compiler works the same way, in this regard.)

With the main() thread started, since it is coded with a while(1) loop, it will keep running forever. That is,
unless a hardware interrupt occurs.

When an enabled interrupt is received by the CPU, it preempts the main() thread and runs the associated
ISR routine – for example, ISR1. In other words, the CPU stops running main() temporarily and runs ISR1;
when ISR1 completes execution, the CPU goes back to running main().

5 - 6 MSP430 Workshop - Interrupts

 How Interrupts Work

Here’s where the terms Foreground and Background come into play. We call main() the Background
thread since it is our “default” thread; that is, the program is designed such that we start running main() and
go back to it whenever we’re done with our other threads, such as ISR1.

Whenever an interrupt causes another thread to run,
we call that a Foreground thread. The foreground
threads preempt the Background thread, returning to
the Background once completed.

The words “Foreground” and “Background” aren’t
terribly important. They just try to provide a bit of context that can be visualized in this common way.

It should be noted that it’s important to keep your interrupt service routines short and quick. This, again, is
common practice for embedded systems.

Note: We realize that our earlier definition of “Thread” was a little weak. What we said was true, but not complete. The
author’s favorite definition for “Thread” is as follows:

“A function or set of functions that operate independently of other code – running within their own context.”

The key addtion here is that a thread runs within its own context. When switching from one thread to another, the
context (register values and other resources) must be saved and restored.

How Interrupts Work
Now that we have a rough understanding of what interrupts are used for, let’s discuss what
mechanics are needed to make them work. Hint, there are 4 steps to getting interrupts to work…

How do Interrupts Work?
Slide left intentionally blank…

If you’ve been reading this chapter, you might notice that we’ve already covered these four items.
Over the next few pages we enumerate these steps again, filling-in additional details.

MSP430 Workshop - Interrupts 5 - 7

How Interrupts Work

Notes

5 - 8 MSP430 Workshop - Interrupts

 How Interrupts Work

1. Interrupt Must Occur
For the processor to respond to an interrupt, it must have occurred. There are many possible
sources of interrupts. Later in this chapter we will delve into the MSP430 datasheet which lists all
of the interrupt sources.

How do Interrupts Work?

• UAwT
• GtIO
• Timers
• ADC
• Etc.

1. An interrupt occurs

…currently executing code
interrupt occurs

next_line_of_code
}

Suffice it to say that most peripherals can generate interrupts to provide status and information to
the CPU. Most often, the interrupt indicates that data is available (e.g. serial port) and/or an event
has occurred that needs processing (e.g. timer). In some cases, though, an interrupt may be used
to indicate an error or exception in a peripheral that the CPU needs to handle.

Interrupts can also be generated from GPIO pins. This is how an external peripheral, or some
other controller, can signal the MSP430 CPU. Most MSP430 devices allow the pins from the first
two I/O ports (P1 and P2) to be individually configured for interrupt inputs. On the larger devices,
there may be additional ports that can be configured for this, as well.

Finally, your software can often generate interrupts. The logic for some interrupts on the
processor allow you to manually set a flag bit, thus ‘emulating’ a hardware interrupt. Not all
interrupts provide this feature, but when available, it can be a handy way to test your interrupt
service routine.

MSP430 Workshop - Interrupts 5 - 9

How Interrupts Work

2. Interrupt is Flagged (and must be Enabled)
When an interrupt signal is received, an interrupt flag (IFG) bit is latched. You can think of this as
the processor’s “copy” of the signal. As some interrupt sources are only on for a short duration, it
is important that the CPU registers the interrupt signal internally.

How do Interrupts Work?

• UAwT
• GtIO
• Timers
• ADC
• Etc.

1. An interrupt occurs

…currently executing code
interrupt occurs

next_line_of_code
}

2. It sets a flag bit
in a register

. . .

MSP430 devices are designed with “distributed” interrupt management. That is, most IFG bits are
found inside each peripheral’s control registers; this is different from most processors which have
a common, dedicated set of interrupt registers.

The distributed nature of the interrupts provides a number of benefits in terms of device flexibility
and future feature expansion; further, it fits nicely with the low-power nature of the MSP430.

The only ‘negative’ of distributed interrupts might be that it’s different — it’s just that many of us
older engineers are used to seeing all the interrupts grouped together. Bottom line, though, is that
working with interrupts (enabling interrupts, clearing flags, responding to them) is the same
whether the hardware is laid out centrally or in a distributed fashion.

5 - 10 MSP430 Workshop - Interrupts

 How Interrupts Work

Interrupt Flow
How does the interrupt signal reach the CPU?

We’ve just talked about the interrupt flag (IFG) bit – let’s start there. As described on the previous page,
when the interrupt source signal is received, the associated IFG bit is set. In fact, DriverLib contains
functions to read the status of most IFG bits. (Handy in those few cases where you need to poll an interrupt
source.)

When the IFG is set, the MSP430 device now sees that the signal has occurred, but the signal hasn’t made
its way to the CPU, yet. For that to happen, the interrupt must be enabled.

IE bit
“Individual”

Int Enable

SR.GIE
“Global”
Int Enable

IFG bit
Interrupt

‘Flag’

FPU1TIMER_A

0GPIO

0…

0NMI

Interrupt Flow

Interrupt Enable (IE); e.g.
GPIO_enableInterrupt();
GPIO_disableInterrupt();

TIMER_A_enableInterrupt();

Interrupt Flag weg (IFw)
bit set when int occurs; e.g.

GPIO_getInterruptStatus();
GPIO_clearInterruptFlag();

Global Interrupt Enable (GIE)
Enables ALL maskable interrupts

Enable: __bis_SR_register(GIE);
Disable: __bic_SR_register(GIE);

Interrupt
Source

Interrupt enable bits (IE) exist to protect the CPU … and thus, your program. Even with so many peripherals
and interrupt sources, it’s likely that your program will only care about a few of them. The enable bits provide
your program with ‘switches’ that let you ignore all those sources you don’t need.

By default, all interrupt bits are disabled (except the Watchdog Timer). It is your program’s responsibility to
enable those interrupt sources that are needed. To that end, once again, DriverLib provides a set of
functions that make it easy for you to set the necessary IE bits.

Finally, there’s a “master” switch that turns all interrupts off. This lets you turn off interrupts without having to
modify all of the individual IE bits. The MSP430 calls this the global interrupt enable (GIE). It is found in the
MSP430 Status Register (SR).

Why would you need a GIE bit? Sometimes your program may need to complete some code atomically; that
is, your program may need to complete a section of code without the fear that an interrupt could preempt it.
For example, if your program shares a global variable between two threads – say between main() and an
ISR – it may be important to prevent interrupts while the main code reads and modifies that variable.

Note: There are a few non-maskable interrupts (NMI). These sources bypass the GIE bit. These
interrupts are often considered critical events – i.e. ‘fatal’ events – that could be used to provide a
warm reset of the CPU.

MSP430 Workshop - Interrupts 5 - 11

How Interrupts Work

3. CPU's Hardware Response
At this point, let’s assume you have an interrupt that has: occurred; been flagged; and since it
was enabled, its signal has reached the CPU. What would the CPU do in response to the
interrupt?

Earlier in the chapter we stated: “The interrupt preempts the current thread and starts running the
interrupt service routine (ISR).” While this is true, there are actually a number of items performed
by the hardware to make this happen – as shown below:

How do Interrupts Work?

• UAwT
• GtIO
• Timers
• ADC
• Etc.

1. An interrupt occurs

…currently executing code
interrupt occurs

next_line_of_code
}

2. Sets a flag bit
(IFG) in register

. . .

3. CtU acknowledges INT by…
• Current instruction completes
• Saves return-to location on stack
• Saves ‘Status weg’ (Sw) to the stack
• Clears most of Sw, which turns off

interrupts globally (Sw.GIE=0)
• Determines INT source (or group)
• Clears non-grouped flag* (IFG=0)
• weads interrupt vector & calls ISw

We hope the first 3 items are self-explanatory; the current instruction is completed while the
Program Counter (PC) and Status Register (SR) are written to the system stack. (You might
remember, the stack was setup for the MSP430 by the compiler’s initialization routine. Please
refer to the compiler user’s guide for more information.)

After saving the context of SR, the interrupt hardware in the CPU clears most of the SR bits. Most
significantly, it clears GIE. That means that by default, whenever you enter an ISR function, all
maskable interrupts have been turned off. (We’ll address the topic of ‘nesting’ interrupts in the
next section.)

The final 3 items basically tell us that the processor figures out which interrupt occurred and calls
the associated interrupt service routine; it also clears the interrupt flag bit (if it’s a dedicated
interrupt). The processor knows which ISR to run because each interrupt (IFG) is associated with
an ISR function via a look-up table – called the Interrupt Vector Table.

5 - 12 MSP430 Workshop - Interrupts

 How Interrupts Work

Interrupt Vector Table – How is it different than other MCU’s?
The MSP430 Vector Table is similar and dissimilar to other microcontrollers:

• The MSP430, like most microcontrollers, uses an Interrupt Vector Table. This is an area
of memory that specifies a vector (i.e. ISR address) for each interrupt source.

• Some processors provide a unique ISR (and thus, vector) for every interrupt source.
Other processors provide only 1 interrupt vector and make the user program figure which
interrupt occurred. To maximize flexibility and minimize cost and power, the MSP430 falls
in between these two extremes. There are some interrupts which have their own,
dedicated interrupt vector – while other interrupts are logically grouped together.

• Where the MSP430 differs from many other processors is that it includes an Interrupt
Vector (IV) register for each grouped interrupt; reading this register returns the highest-
priority, enabled interrupt for that group of interrupt sources. As we’ll see later in this
chapter, all you need to do is read this register to quickly determine which specific
interrupt to handle.

Note: We’ll describe Interrupt Vector Table in more detail later in the chapter.

MSP430 Workshop - Interrupts 5 - 13

How Interrupts Work

4. Your Software ISR
An interrupt service routine (ISR), also called an interrupt handler, is the code you write that will
be run when a hardware interrupt occurs. Your ISR code must perform whatever task you want to
execute in response to the interrupt, but without adversely affecting the threads (i.e. code)
already running in the system.

Before we examine the details of the ISR; once again, how did we get to this point?
 Looking at the diagram below, we can see that (1) the interrupt must have occurred; (2) the processor

flags the incoming interrupt; (3) if enabled, the interrupt flag signal is routed to the CPU where it saves
the Status Register and Return-to address and then branches to the ISR’s address found in the
appropriate location in the vector table. (4) Finally, your ISR is executed.

How do Interrupts Work?

2. Sets a flag bit
(IFG) in register

. . .

• UAwT
• GtIO
• Timers
• A/D Converter
• Etc.

1. An interrupt
occurs

3. CtU acknowledges INT by…
• Current instruction completes
• Saves return-to location on stack
• Saves ‘Status weg’ (Sw) to the stack
• Clears most of Sw, which turns off

interrupts globally (Sw.GIE=0)
• Determines INT source (or group)
• Clears non-grouped flag* (IFG=0)
• weads interrupt vector & calls ISw

4. ISw (Interrupt Service woutine)
• Save context of system
• (optional) we-enable interrupts
• *If group INT, read IV weg to

determines source & clear IFG
• wun your interrupt’s code
• westore context of system
• Continue where it left off (wETI)

The crux of the ISR is doing what needs to be done in response to the interrupt; the 4th bullet
(listed in red) reads:

 • Run your interrupt’s code

This is meant to describe the code you write to handle the interrupt. For example, if it’s a UART
interrupt, your code might read an incoming byte of data and write it to memory.

We’ll discuss the 2nd (optional) bullet on the next page.

The 3rd bullet indicates that if this is a “grouped” interrupt, you have to add code to figure out
which interrupt, in the group, needs to be handled. This is usually done by reading the group’s IV
register. (This bullet was in red because it is code you need to write.)

The other bullets listed under “4. ISR” are related to saving and restoring the context of the
system. This is required so that the condition mentioned earlier can be met: “without adversely
affecting the code threads already running in the system.”

5 - 14 MSP430 Workshop - Interrupts

 How Interrupts Work

We show the interrupt flow in a slightly different fashion in the following diagram. As you can see,
when an enabled interrupt occurs, the processor will look up the ISR’s branch-to address from a
specific address in memory (called the interrupt vector). For the MSP430, this address is defined
using the vector pragma.

#pragma vector=WDT_VECTOR
interrupt myISR(void){

}

4. Interrupt Service Routine (ISR)

Using Interrupt Keyword
 Compiler handles context save/restore
 Call a function? Then full context is saved
 No arguments, no return values
 You cannot call any TI-RTO{ scheduler

functions (e.g. {wi_post)
 Nesting interrupts is aANUAL

&myISR

Vector Table…currently executing code
interrupt occurs

next_line_of_code
}

• {ave context of system
• (optional) Re-enable interrupts
• *If group INT, read assoc IV Reg

(determines source & clears ICD)
• Run your interrupt’s code
• Restore context of system
• Continue where it left off (RETI)

The context of the system – for example, the CPU registers used by the ISR – must be saved
before running your code and restored afterwards. Thankfully, the compiler handles this for you
when the function is declared as an interrupt. (As part of the “context restore”, the compiler will
return to running the previous thread of code by using the RETI instruction).

Please note the bullets under “Using the Interrupt Keyword” from the preceding diagram.

Using this keyword, the compiler handles all of the context save/restore for you and knows how to
return to your previous code – even restoring the original value for the Status Register (SR).

Hint: If you call a function within your ISR, the compiler will have to save/restore every CPU
register, not just the ones that it uses to implement your C code. This is because it
doesn’t know what resources the function call may end up using.

Since the interrupt occurs asynchronously to the background thread, you cannot pass arguments
to and receive return values from the ISR. You must communicate between threads using global
variables (or other appropriate data objects).

TI’s real-time operating system (TI-RTOS) provides a rich set of scheduling functions that are
often used within interrupt service routines. Be aware, though, that some of these functions can
only be used with RTOS “managed” interrupts. In fact, it’s actually easier to let TI-RTOS manage
your interrupts; it automatically handles plugging the interrupt vector as well as context
save/restore. (All you have to do is write a standard C function.) But, the details of TI-RTOS are
outside the scope of this workshop. While we provide a brief discussion of TI-RTOS at the end of
this chapter, please refer to the Introduction to TI-RTOS Kernel workshop for more details.

MSP430 Workshop - Interrupts 5 - 15

http://processors.wiki.ti.com/index.php/Introduction_to_the_TI-RTOS_Kernel_Workshop

How Interrupts Work

Nesting Interrupts (not recommended)
Finally, while the MSP430 allows nesting of interrupts, it is not recommended.
• Nesting interrupts means one interrupt can interrupt another interrupt.

• You must manually configure nesting. That is, before running your interrupt handling code
you must:

− Disable any interrupts that you do not want to occur during your ISR. In other words, you
must first save, then disable, any IE bit that correlates to an interrupt that you do not want
to interrupt your ISR.

− Then, turn on interrupts globally by setting GIE = 1.

− At this point you can run your code that responds to the original interrupt. It may end up
being interrupted by any source that you left enabled.

− When you’ve completed your original interrupt code, you need to disable interrupts before
returning from the function. That is, set GIE = 0. (This is the state GIE was in when
entering your ISR code.

− You can now restore the IE bits that you saved before enabling GIE.

− At this point, you can return from the ISR and let the compiler’s code handle the
remaining context save and return branch back to the original thread.

• In general, it’s considered better programming practice to keep interrupt service routines very
short – i.e. lean-and-mean. Taking this further, with low-power and efficiency in mind, the
MSP430 team recommends you follow the no-nesting general principle.

Hint: We encourage you to avoid nesting, if at all possible. Not only is it difficult, and error
prone, it often complicates your programs ability to reach low-power modes.

5 - 16 MSP430 Workshop - Interrupts

 Interrupts: Priorities & Vectors

Interrupts: Priorities & Vectors

Interrupts and Priorities
Each MSP430 device datasheet defines the pending priority for each of its hardware interrupts. In
the case of the MSP430F5529, there are 23 interrupts shown listed below in decreasing priority.

In the previous paragraph we used the phrase “pending priority” deliberately. As you might
remember from the last topic in this chapter, interrupts on the MSP430 do not nest within each
other by default. This is because the global interrupt (GIE) bit is disabled when the CPU
acknowledges and processes an interrupt. Therefore, if an interrupt occurs while an ISR is being
executed, it will have to wait for the current ISR to finish before it can be handled … even if the
new interrupt is of higher priority.

On the other hand, if two interrupts occur at the same time – that is, if there are two interrupts
currently pending – then the highest priority interrupt is acknowledged and handled first.

INT Source Priority
SysPem ReseP high

SysPem NMI
User NMI
ComparaPor
Timer B (CCIFG0)
Timer B
WDT InPerval Timer
Serial PorP (A)
Serial PorP (B)
A/D ConverPor

GPIO (PorP 1)

GPIO (PorP 2)
Real-Time Clock low

0xFFFF

InPerrupP PrioriPies (F5529)
 There are 23 interrupts

(partially shown here)

 If multiple interrupts (of the 23) are
pending, the highest priority is
responded to first

 By default, interrupts are not
nested …
 That is, unless you re-enable INT’s

during your ISR, other interrupts will be
held off until it completes

 It doesn’t matter if the new INT is a
higher priority

 As already recommended, you should
keep your ISR’s short

 aost of these represent ‘groups’ of
interrupt source flags
 145 ICD’s map into these 23 interrupts

Most of the 23 interrupts on the ‘F5529 represent ‘groups’ of interrupts. There are actually 145
interrupt sources – each with their own interrupt flag (IFG) – that map into these 23 interrupts.

For example, the “Timer B (CCIFG0)” interrupt represents a single interrupt signal. When the
CPU acknowledges it, it will clear its single IFG flag.

On the other hand, the next interrupt in line, the “Timer B” interrupt, represents all the rest of the
interrupts that can be initiated by Timer0_B. When any one of the interrupts in this group occurs,
the ISR will need to determine which specific interrupt source occurred and clear its flag (along
with executing whatever code you want to associate with it).

MSP430 Workshop - Interrupts 5 - 17

Interrupts: Priorities & Vectors

Interrupt Vector (IV) Registers
As has been mentioned a couple of times in this chapter, to make responding to grouped
interrupts easier to handle, the MSP430 team created the concept of Interrupt Vector (IV)
Registers. Reading an IV register will return the highest-priority, pending interrupt in that group; it
will also clear that interrupts associated flag (IFG) bit.

Interrupt Vector (IV) Registers

 IV = Interrupt Vector register
 Most MSt430 interrupts can be caused by more than one

source; for example:
 Each 8-bi GtIO port one has a single CtU interrupt

 IV registers provide an easy way to determine which
source(s) actually interrupted the CtU

 The interrupt vector register reflects only ‘triggered’
interrupt flags whose interrupt enable bits are also set

 Reading the ‘IV’ register:
 Clears the pending interrupt flag with the highest priority
 trovides an address offset associated with the highest priority

pending interrupt source

 An example is provided in the “Coding Interrupts” section
of this chapter

Port 1 Interrupt Vector Register (P1IV)Returns highest
pending Port 1 IFG

For grouped interrupts, most users read the IV register at the beginning of the ISR and use the
return value to pick the appropriate code to run. This is usually implemented with a Switch/Case
statement. (We will explore an example of this code later in the chapter.)

5 - 18 MSP430 Workshop - Interrupts

 Interrupts: Priorities & Vectors

Interrupt Vector Table
We can expand the previous interrupt source & priority listing to include a few more items. First of
all, we added a column that provides the IV register associated with each interrupt. (Note, the two
names shown in red text represent the IFG bits for dedicated/individual interrupts.)

Additionally, the first 3 rows (highlighted with red background fill) indicate that these interrupt
groups are non-maskable; therefore, they bypass the GIE bit.

INT Source IV Register Vector Address Loc’n Priority
SysPem ReseP SYSRSTIV RESET_VECTOR 63 high

SysPem NMI SYSSNIV SYSNMI_VECTOR 62
User NMI SYSUNIV UNMI_VECTOR 61
ComparaPor CBIV COMP_B_VECTOR 60
Timer B (CCIFG0) CCIFG0 TIMER0_B0_VECTOR 59
Timer B TB0IV TIMER0_B1_VECTOR 58
WDT InPerval Timer WDTIFG WDT_VECTOR 57
Serial PorP (A) UCA0IV USCI_A0_VECTOR 56
Serial PorP (B) UCB0IV USCI_B0_VECTOR 55
A/D ConverPor ADC12IV ADC12_VECTOR 54

GPIO (PorP 1) P1IV PORT1_VECTOR 47

GPIO (PorP 2) P12V PORT2_VECTOR 42
Real-Time Clock RTCIV RTC_VECTOR 41 low

Iegend: Non-maskaNle Group’d IFG NiPs
MaskaNle DedicaPed IFG NiPs

Flash (128K)

INT VecPors (80)

RAM (8K)

USB RAM (2K)
Info Memory (512)
BooP Loader (2K)

Peripherals (4K)

Memory Map

0xFFFF

InPerrupP VecPors & PrioriPies (F5529)

The final column in the above diagram hints at the location of each interrupts address vector in
the memory map. For example, when using the WDT as an interval timer, you would put the
address of your appropriate ISR into location “57”. As we saw in a previous topic, this can easily
be done using the vector pragma.

The MSP430 devices reserve the range 0xFFFF to 0xFF80 for the interrupt vectors. This means
that for the ‘F5529, the address for the System Reset interrupt service routine will sit at addresses
0xFFFE – 0xFFFF. (A 16-bit address requires two 8-bit memory locations.) The remaining
interrupt vectors step down in memory from this point. The map to the right of the table shows
where the interrupt vectors appear within the full MSP430 memory map.

MSP430 Workshop - Interrupts 5 - 19

Interrupts: Priorities & Vectors

Here’s a quick look at the same table showing the MSP430FR5969 interrupt vectors and
priorities. The list is very similar to the ‘F5529; the main differences stem from the fact that the
two devices have a slightly different mix of peripherals.

INT Source IV Register Vector Address Loc’n Priority
SysPem ReseP SYSRSTIV RESET_VECTOR high

SysPem NMI SYSSNIV SYSNMI_VECTOR 54
User NMI SYSUNIV UNMI_VECTOR 53
ComparaPor_E CEIV COMP_B_VECTOR 52
Timer B0 (CCIFG0) CCIFG0 TIMER0_B0_VECTOR 51
Timer B0 TB0IV TIMER0_B1_VECTOR 50
WDT InPerval Timer WDTIFG WDT_VECTOR 49
Serial PorP (A0) UCA0IV USCI_A0_VECTOR 48
Serial PorP (B0) UCB0IV USCI_B0_VECTOR 47
ADC12_B ADC12IV TIMER0_B0_VECTOR 46

GPIO (PorP 1) P1IV PORT1_VECTOR 39

Real-Time Clock RTCIV RTC_VECTOR 31
AES256 AcceleraPor AESRDYIFG AES256_VECTOR 30 low

Iegend: Non-maskaNle Group’d IFG NiPs
MaskaNle DedicaPed IFG NiPs

Flash (64K)

INT VecPors (80)

USB RAM (2K)
Info Memory (512)
BooP Loader (2K)
Peripherals (4K)

Memory Map

0xFFFF

InPerrupP VecPors & PrioriPies (‘FR5969)

5 - 20 MSP430 Workshop - Interrupts

 Interrupts: Priorities & Vectors

The preceding interrupt tables were re-drawn to make them easier to view when projected during
a workshop. The following slide was captured from ‘F5529 datasheet. This is what you will see if
you examine the MSP430 documentation.

‘F5529 Vector Table (From Datasheet)

Each device’s datasheet provides a similar vector table listing. If you are using the ‘G2553 or
‘FR5969 devices, for example, you will find a similar table in each of their respective datasheets.

MSP430 Workshop - Interrupts 5 - 21

Coding Interrupts

Coding Interrupts
As previously discussed, the code within your interrupt service routine will vary slightly based on
whether it handles a dedicated, single interrupt or if it handles a grouped interrupt. We will cover
both cases; starting with the easier, dedicated case.

Dedicated ISR (Interrupt Service Routine)

INT Source IV Register Vector Address Loc’n Priority
SysPem ReseP SYSRSTIV RESET_VECTOR 63 high

SysPem NMI SYSSNIV SYSNMI_VECTOR 62
User NMI SYSUNIV UNMI_VECTOR 61
ComparaPor CBIV COMP_B_VECTOR 60
Timer B (CCIFG0) CCIFG0 TIMER0_B0_VECTOR 59
Timer B TB0IV TIMER0_B1_VECTOR 58
WDT InPerval Timer WDTIFG WDT_VECTOR 57
Serial PorP (A) UCA0IV USCI_A0_VECTOR 56
Serial PorP (B) UCB0IV USCI_B0_VECTOR 55
A/D ConverPor ADC12IV ADC12_VECTOR 54

GPIO (PorP 1) P1IV PORT1_VECTOR 47

GPIO (PorP 2) P12V PORT2_VECTOR 42
Real-Time Clock RTCIV RTC_VECTOR 41 low

Iegend: Non-maskaNle Group’d IFG NiPs
MaskaNle DedicaPed IFG NiPs

Flash (128K)

INT VecPors (80)

RAM (8K)

USB RAM (2K)
Info Memory (512)
BooP Loader (2K)

Peripherals (4K)

Memory Map

0xFFFF

InPerrupP VecPors & PrioriPies (F5529)

The watchdog interrupt flag vector (WDTIFG) is a dedicated interrupt; therefore, your ISR code
only needs to respond to the single interrupt condition. Additionally, because it is a dedicated
interrupt, the CPU hardware automatically clears the WDTIFG bit when responding to the
interrupt and branching to your ISR.

When writing an ISR for dedicated interrupts, you code must address three items:

1. Put the ISR address into the vector table (using the vector #pragma)

2. Save/Restore the CPU context (using the __interrupt keyword)

3. Write your interrupt handler code (in other words, “Do what needs doing”)

5 - 22 MSP430 Workshop - Interrupts

 Coding Interrupts

We will use the following code example to demonstrate these three items.

#pragma vector=WDT_VECTOR

__interrupt void myWdtISR(void) {

GPIO_toggleOutputOnPin(...);

}

Interrupt Service Routine (Dedicated INT)

 #pragma vector assigns
‘myISR‘ to correct location
in vector table

 __interrupt keyword tells
compiler to save/restore
context and RETI

IbT {ource IV wegister Vector Address Loc’n
WDT Interval Timer WDTIFG WDT_VECTOR 57

 For a dedicated
interrupt, the MSP430
CPU auto clears the
WDTIFG flag

Plug the Vector Table (#pragma vector)
In our example, the following line of code:

#pragma vector=WDT_VECTOR

tells the compiler to associate the function (on the following line) with the WDT_VECTOR.
Looking in the MSP430F5529 device-specific linker command file, you should find this vector
name (“WDT_VECTOR”) associated with vector #57. This matches with the datasheet
documentation we looked at earlier in the chapter.

Save/Restore CPU context (__interrupt keyword)
The __interrupt keyword tells the compiler that this function is an interrupt service routine and
thus it needs to save (and then restore) the context of the processor (i.e. CPU registers) before
(and after) executing the function’s code.

Don’t forget, functions using the __interrupt keyword cannot accept arguments or return values.

Hint: Empirical analysis shows that “__interrupt” and “interrupt” are both accepted by the
compiler.

Your Interrupt Code
In this example, the output of a GPIO pin is toggled every time the watchdog timer interrupt event
occurs. Not all ISR’s will be this short, but we hope this gives you a good starting example to work
from.

MSP430 Workshop - Interrupts 5 - 23

Coding Interrupts

Grouped ISR (Interrupt Service Routine)
Logical Diagram for Grouped Interrupts
Before examining the code for a grouped ISR, let’s first examine the grouped interrupt using a
logical diagram.

As we briefly mentioned earlier in the chapter (and will discuss in full detail in a later chapter), the
Timer_A and Timer_B peripherals are provided with two interrupts. For example, when looking at
Timer0_A5, there is a dedicated interrupt for TA0CCR0 (which stands for Timer0_A
Capture/Compare Register 0). Notice below how this is routed directly to the GIE input mux.

The remaining five Timer0_A5 interrupts are logically AND’d together; this combination provides a
second interrupt signal from Timer0_A5 to the GIE input mux.

Individual & Multiple Interrupt Sources

CPU

0
1

0
0

0

)
0

1
0

0
1

TIMER0_A5

TA0CCR1
TA0CCR2
TA0CCR3
TA0CCR4

TA0CTL

.CCLCG .CCLE
1 1TA0CCR0

0
1

0
0

0
1

1
1

0
1

0
0

1
1

0
0

)
GPIO Port 1 t1LCG t1LE

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7

SR.GIE

52
TA0IV

53

LNT Source LCG LV Register Vector Address Loc’n
Timer A (CCIFG0) TA0CCR0.CCIFG none TIMER0_A0_VECTOR 53
Timer A TA0CCR1.IFG1…TA0CCR4.IFG TA0IV TIMER0_A1_VECTOR 52

GPIO (Port 1) P1IFG.0 … P1IFG.7 P1IV PORT1_VECTOR 47

47

Example:
Interrupts on

pin 1 and 5

Reading P1IV
returns highest
priority interrupt
and clears it’s
IFG Nit

Single interrupt:
 Only caused Ny one

INT – simplifies ISR
 IFG auto cleared

This diagram also shows that all of the input pins for GPIO port 1 (P1) share a single, grouped
interrupt. This means your GPIO ISR must always verify which pin actually caused an interrupt
whenever the ISR is executed.

The interrupt logic within the CPU recognizes each of these interrupt sources, therefore:
• If the first interrupt (TA0CCR0) occurs, it will cause the code at vector address 53

(TIMER_A0_VECTOR) to be executed.

• Similarly, the remaining Timer0 interrupts are associated with vector 52.

• Finally, the GPIO port (P1) was assigned (by the chip designer) to vector 47.

5 - 24 MSP430 Workshop - Interrupts

 Coding Interrupts

ISR Example for Grouped Interrupts
The code for a grouped ISR begins similar to any MPS430 interrupt service routine; you should
use the #pragma vector and __interrupt keyword syntax.

#pragma vector=PORT1_VECTOR

__interrupt void myISR(void) {

switch(__even_in_range(P1IV, 0x10)) {

case 0x00: break; // None
case 0x02: break; // Pin 0
case 0x04: break; // Pin 1

case 0x06: GPIO_toggleOutputOnPin(…); // Pin 2
break;

case 0x08: break; // Pin 3
case 0x0A: break; // Pin 4
case 0x0C: break; // Pin 5
case 0x0E: break; // Pin 6
case 0x10: break; // Pin 7
default: _never_executed();

}}

Interrupt Service Routine (Group INT)
IbT {ource IV wegister Vector Address Loc’n

GPIO (Port 1) P1IV PORT1_VECTOR 47

 #pragma vector assigns
‘myISR‘ to correct location
in vector table

 __interrupt keyword tells
compiler to save/restore
context and RETI

 Reading P1IV register:
 Returns value for

highest priority INT
for the Port 1 ‘group’

 Clears IFG bit
 Tell compiler to ignore

un-needed switch cases
by using intrinsics:
__even_in_range()
_never_executed()

For grouped interrupts, though, we also need to determine which specific source caused the CPU
to be interrupted. As we’ve described, the Interrupt Vector (IV) register is an easy way to
determine the highest-priority, pending interrupt source. In the case of GPIO port 1, we would
read the P1IV register.

It’s common to see the IV register read within the context of a switch statement. In the above
case, if the P1IV register returns “6”, it means that pin 2 was our highest-priority, enabled
interrupt on Port 1; therefore, its case statement is executed. (Note, the return values for each IV
register are detailed in the F5xx device Users Guide and the F5xx DriverLib User’s Guide. You
will find similar documentation for all MSP430 devices..)

If our program was using Pin 2 on Port 1, you should see the code for case 0x06 executed if the
GPIO interrupt occurs.

By the way, there are two items in the above code example which help the compiler to produce
better, more optimized, code. While these intrinsic functions are not specific to interrupt
processing, they are useful in creating optimized ISR’s.
• The __even_in_range() intrinsic function provides the compiler a bounded range to evaluate.

In other words, this function tells the compiler to only worry about even results that are lower
or equal to 10.

• Likewise the _never_executed() intrinsic tells the compiler that, in this case, “default” will
never occur.

MSP430 Workshop - Interrupts 5 - 25

Coding Interrupts

Enabling Interrupts
Earlier in the chapter we learned that for the CPU to recognize an interrupt two enable bits must
be set:

• Individual Enable – one IE bit for each interrupt source

• Global Interrupt Enable – GIE is a common “master” enable bit for all interrupts (except
those defined as non-maskable)

In the example below we show the code required to setup a GPIO pin as an interrupt. We chose
to enable the interrupt, as well as configuring the other GPIO pins, in a function called initGPIO();
implementing your code in this way is not required, but it’s how we decided to organize our code.

The key DriverLib function which enables the external interrupt is:

GPIO_enableInterrupt()

You will find that most of the MSP430ware DriverLib interrupt enable functions take a similar
form: <module>_enableInterrupt().

Enabling Interrupts – GPIO Example
#include <driverlib.h>

void main(void) {
// Setup/Hold Watchdog Timer (WDT+ or WDT_A)
initWatchdog();

// Configure Power Manager and Supervisors (PMM)
initPowerMgmt();

// Configure GPIO ports/pins
initGPIO();

// Setup Clocking: ACLK, SMCLK, MCLK (BCS+, UCS, or CS)
initClocks();

//--
// Then, configure any other required peripherals and GPIO
...

__bis_SR_register(GIE);

while(1) {
...
}

void initGPIO() {
// Set P1.0 as output
GPIO_setAsOutputPin (

GPIO_PORT_P1, GPIO_PIN0);

PMM_unlockLPM5(); // for FRAM devices

// Set input & enable P1.1 as INT
GPIO_setAsInputPinWithPullUpResistor (

GPIO_PORT_P1, GPIO_PIN1);

GPIO_interruptEdgeSelect (
GPIO_PORT_P1, GPIO_PIN1,
GPIO_LOW_TO_HIGH_TRANSITION);

GPIO_clearInterruptFlag (
GPIO_PORT_P1, GPIO_PIN1);

GPIO_enableInterrupt (
GPIO_PORT_P1, GPIO_PIN1);

}

__bis_SR_register(GIE);

initGPIO();

Within initGPIO() we highlighted three other related functions in Red:
• GPIO_setAsInputPinWithPullUpResistor() is required to configure the pin as an input. On

the Launchpad, the hardware requires a pull-up resistor to complete the circuit properly.
Effectively, this function configures our interrupt “source”.

• GPIO_interruptEdgeSelect() should be used to configure what edge transition (low-to-high
or high-to-low) will trigger an interrupt. This configures bits in the port’s IES register – which
are left uninitialized after reset.

5 - 26 MSP430 Workshop - Interrupts

 Coding Interrupts

• GPIO_clearInterruptFlag() clears the IFG bit associated with our pin (e.g. P1.1). This is not
required but is commonly used right before a call to “enable” an interrupt. You would clear the
IFG before setting IE when you want to ignore any prior interrupt event; in other words, clear
the flag first if you only care about interrupts that will occur now – or in the future.

Finally, once you have enabled each individual interrupt, the global interrupt needs to be enabled.
This can be done in a variety of ways. The two most common methods utilize compiler intrinsic
functions:
• __bis_SR_register(GIE) instructs the compiler to set the GIE bit in the Status Register

− bis = bit set

− SR = Status Register

− GIE = which bit to set in the SR

• __enable_interrupts(void) tells the compiler to enable interrupts. The compiler uses the
EINT assembly instruction which pokes 1 into the GIE bit.

Sidebar – Where in your code should you enable GIE?
The short answer, “Whenever you need to turn on interrupts”.

A better answer, as seen in our code example, is “right before the while{} loop”.

Conceptually, the main() function for most embedded systems consists of two parts:
• Setup

• Loop

That is, the first part of the main() function is where we tend to setup our I/O, peripherals, and other
system hardware. In our example, we setup the watchdog timer, power management, GPIO, and
finally the system clocks.

The second part of main() usually involves an infinite loop – in our example, we coded this with an
endless while{} loop. An infinite loop is found in almost all embedded systems since we want to run
forever after the power is turned on.

The most common place to enable interrupts globally (i.e. setting GIE) is right between these two
parts of main(). Looking at the previous code example, this is right where we placed our function that
sets GIE.

As a product example, think of the A/C power adaptor you use to charge your computer; most of
these, today, utilize an inexpensive microcontroller to manage them. (In fact, the MSP430 is very
popular for this type of application.) When you plug in your power adapter, we’re guessing that you
would like it to run as long as it’s plugged in. In fact, this is what happens; once plugged in, the first
part of main() sets up the required hardware and then enters an endless loop which controls the
adaptor. What makes the MSP430 such a good fit for this application is: (1) it’s inexpensive; and (2)
when a load is not present and nothing needs to be charged, it can turn off the external charging
components and put itself to sleep – until a load is inserted and wakes the processor back up.

MSP430 Workshop - Interrupts 5 - 27

Miscellaneous Topics

Miscellaneous Topics

Handling Unused Interrupts
While you are not required to provide interrupt vectors – or ISR’s – for every CPU interrupt, it’s
considered good programming practice to do so. To this end, the MSP430 compiler issues a
warning whenever there are “unhandled” interrupts.

The following code is an example that you can include in all your projects. Then, as you
implement an interrupt and write an ISR for it, just comment the associated #pragma line from
this file.

Handling Unused Interrupts
 The MSP430 compiler issues warning whenever all interrupts are not handled

(i.e. when you don’t have a vector specified for each interrupt)

 Here’s a simple example of how this might be handled:

// Example for UNUSED_HWI_ISR()

#pragma vector=ADC12_VECTOR
#pragma vector=COMP_B_VECTOR
#pragma vector=DMA_VECTOR
#pragma vector=PORT1_VECTOR
...

#pragma vector=TIMER1_A1_VECTOR
#pragma vector=TIMER2_A0_VECTOR
#pragma vector=TIMER2_A1_VECTOR
#pragma vector=UNMI_VECTOR
#pragma vector=USB_UBM_VECTOR
#pragma vector=WDT_VECTOR
__interrupt void UNUSED_HWI_ISR (void)
{

__no_operation();
}

Note: The TI code generation tools distinguish between “warnings” and “errors”. Both represent
issues found during compilation and build, but whereas a warning is issued and code
building continues … when an error is encountered, an error statement is issued and the
tools stop before creating a final executable.

5 - 28 MSP430 Workshop - Interrupts

 Miscellaneous Topics

Interrupt Service Routines – Coding Suggestions
Listed below are a number of required and/or good coding practices to keep in mind when writing
hardware interrupt service routines. Many of these have been discussed elsewhere in this
chapter.

Hardware ISR’s – Coding Practices
 An interrupt routine must be declared with no arguments and must return void

 Global variables are often used to “pass” information to or from an ISR
 Do not call interrupt handling functions directly (Rather, write to IFG bit)
 Interrupts can be handled directly with C/C++ functions using the interrupt

keyword or pragma
… Conversely, the TI-RTOS kernel easily manages Hwi context

 Calling functions in an ISR
 If a C/C++ interrupt routine doesn’t call other functions, usually, only those

registers that the interrupt handler uses are saved and restored.
 However, if a C/C++ interrupt routine does call other functions, the routine saves

all the save-on-call registers if any other functions are called
 Why? The compiler doesn’t know what registers could be used by a nested

function. It’s safer for the compiler to go ahead and save them all.
 Re-enable interrupts? (Nesting ISR’s)

 DON’T – it’s not recommended – better that ISR’s are “lean & mean”
 If you do, change IE masking before re-enabling interrupts
 Disable interrupts before restoring context and returning (RETI re-enables int’s)

 Beware – Only You Can Prevent Reentrancy…

We wrote the last bullet, regarding reentrancy, in a humorous fashion. That said, it speaks to an
important point. If you decide to enable interrupt nesting, you need to be careful that you either
prevent reentrancy - or that your code is capable of reentrancy.

Wikipedia defines reentrancy as:
 In computing, a computer program or subroutine is called reentrant if it can be interrupted in the middle of its

execution and then safely called again ("re-entered") before its previous invocations complete execution.

This type of program/system error can be very difficult to debug (i.e. find and fix). This is
especially true if you call functions within your interrupt service routines. For example, the C
language’s malloc() function is not reentrant. If you were to call this function from an ISR and it
was interrupted, and then it is called again by another ISR, your system would most likely fail –
and fail in a way that might be very difficult to detect.

So, we stated this humorously, but it is very true. We recommend that:
• You shouldn’t nest interrupts

• If you do, verify the code in your ISR is reentrant

• Never call malloc() – or similar functions - from inside an ISR

MSP430 Workshop - Interrupts 5 - 29

Miscellaneous Topics

GPIO Interrupt Summary
The diagram used to summarize the GPIO control registers in a previous chapter is a good way
to visualize the GPIO interrupt capabilities of our devices. From the diagram below we can see
that most MSP430 processors allow ports P1 and P2 to be used as external interrupt sources; we
see this from the fact that these ports actually have the required port interrupt registers.

PA PB PC PD PJ*
(4-bit)

Reset
Value
(PUC)P1† P2 P3 P4 P5 P6 P7 P8

PxIN

All
Cour

5evices
support

torts 1 and 2

C5529
CR4133
CR5969
(only)

C5529 (t8 x3-bits)
CR4133 (t8 x12-bits)

C55
&

CR59

undef
PxOUT unchg
PxDIR 0x00
PxREN 0x00
PxDS 0x00
PxSEL 0x00
PxIV

CR5969 (only)

0x00
PxIES unchg
PxIE 0x00
PxIFG 0x00

GPIO Interrupt Register Summary

 P1IV: Interrupt Vector generator
Highest Priority Pending interrupt enabled on Port 1

 P1IES: Interrupt Edge Select
Are interrupts triggered on high/loR edge? (0 = loR-to-high)

 P1IE: Interrupt Enable register for Port 1
 P1IFG: Interrupt Flag register for Port 1

There are other devices in the MSP430 family that support interrupts on more than 2 ports, but of
the three example processors we use throughout this course, only the FR5969 (FRAM) devices
support interrupt inputs on additional ports (P3 and P4).

Interrupt Processing Flow
The following information was previously covered in this chapter, but since the slide is a good
summary of the interrupt processing flow, we have included it anyway.

ISR hardware - automatically
 PC pushed
 SR pushed
 Interrupt vector moved to PC
 GIE, CPUOFF, OSCOFF and SCG1 cleared
 IFG flag cleared on single source flags

reti - automatically
 SR popped - original
 PC popped

Prior to ISR
SP

Item1
Item2

PC
SR

SP

SP

Item1
Item2

Item1
Item2

PC
SR

Interrupt Processing

5 - 30 MSP430 Workshop - Interrupts

 Interrupts and TI-RTOS Scheduling

Interrupts and TI-RTOS Scheduling
When embedded systems start to become more complex – that is, when you need to juggle more
than a handful of events – using a Real-Time Operating System (RTOS) can greatly increase
your system’s reliability … while decreasing your time-to-market, frustration and costs.

The Texas Instruments RTOS (TI-RTOS) – also known as SYS/BIOS – provides many functions
that you can use within your program; for example, the TI-RTOS kernel includes: Scheduling,
Instrumentation, and Memory Management. You can choose which parts of TI-RTOS are needed
and discard the rest (to saves memory).

Think of TI-RTOS as a library and toolset to help you build and maintain robust systems. If you’re
doing just “one” thing, it’s probably overkill. As you end up implementing more and more
functionality in your system, though, the tools and code will save you time and headaches.

The only part of TI-RTOS discussed in this chapter is “Scheduling”. We talk about this because it
is very much related to the topics covered throughout this chapter – interrupts and threads. In
many cases, if you’re using an RTOS, it will manage much of the interrupt processing for you; it
will also provide additional options for handling interrupts – such as post-processing of interrupts.

As a final note, we will only touch on the topics of scheduling and RTOS’s. TI provides a 2-day
workshop where you can learn all the details of the TI-RTOS kernel. You can view a video
version of the TI-RTOS course or take one live. Please check out the following wiki page for more
information:

http://processors.wiki.ti.com/index.php/Introduction_to_the_TI-RTOS_Kernel_Workshop

Threads – Foreground and Background
Our quick introduction to TI-RTOS begins with a summary of threads. While we discussed these
concepts earlier in the chapter, they are very important to how a RTOS scheduler works.

What is a Thread?

main() {

init code

}

while(1) {
nonRT Fxn

}

UART ISR
get byte
process
output

Timer ISR
Scan keyboard

 We all know what a function() is…
 A thread is a function that runs

within a specific context; e.g.
 triority
 wegisters/CtU state
 {tack

 To retain a thread’s context,
we must save

then restore it
 aost common threads in a system

are hardware interrupts

Foreground
threads

Background
thread

MSP430 Workshop - Interrupts 5 - 31

http://processors.wiki.ti.com/index.php/Introduction_to_the_TI-RTOS_Kernel_Workshop

Interrupts and TI-RTOS Scheduling

We also discussed the idea of foreground and background threads as part of the interrupts
chapter. In the case shown below (on the left), the endless loop in main() will run forever and be
pre-empted by higher-priority hardware interrupts.

main() {

init code

}

while(1) {
nonRT Fxn

}

H/W ISR
get data
process
printf()

Foreground / Background Scheduling
R

TO
S Scheduler

Idle
nonRT

+ instrumentation

 Idle events run in sequence when no Iwi’s are posted
 Iwi is I{w with automatic vector table generation + context save/restore
 Iwi performs “process” – typical use is to perform IwT need, then post

“follow-up activity”

main() {
init
BIOS_start()

}

Hwi
get data
process
IOG_info1()

TI-RTOS utilizes these same concepts … only the names and threads change a little bit.

Rather than main() containing both the setup and loop code as described earlier, TI-RTOS
creates an Idle thread that operates in place of the while{} loop found previously in main(). In
other words, rather than adding your functions to a while{} loop, TI-RTOS has you add them to
Idle. (TI-RTOS includes a GUI configuration tool that makes this very easy to do.)

Since interrupts are part of the MSP430’s hardware, they essentially work the same way when
using TI-RTOS. What changes when using RTOS are:

• TI-RTOS calls them Hwi threads … for Hardware Interrupts

• Much of the coding effort is handled automatically for you by TI-RTOS (very nice)

Don’t worry, though, you’re not locked into anything. You can mix-and-match how you handle
interrupts. Let TI-RTOS manage some of your interrupts while handling others in your own code,
just as we described in this chapter.

Hint: When using TI-RTOS, the author prefers to let it manage all of the interrupts because it’s
easier that way. Only

Only in a rare case – like to save a few CPU cycles – would there be a need to managed
an interrupt outside of TI-RTOS. Thusfar, the only reason I’ve actually done this is to
provde that it works.

5 - 32 MSP430 Workshop - Interrupts

 Interrupts and TI-RTOS Scheduling

TI-RTOS Thread Types
We already described two types of threads: Hwi and Idle. Using these two threads is very similar
to what we described throughout this chapter.

TI-RTOS Thread Types – More Design Options
tr

io
rit

y
Iwi

Iardware Interrupts

 Iardware event triggers Iwi to run
 BIhS handles context save/restore, nesting
 Iwi triggers follow-up processing
 triorities set in silicon

Swi
Software Interrupts

 Software posts Swi to run
 terforms Iwi ‘follow-up’ activity (process data)
 Up to 32 priority levels (16 on C28x)
 hften favored by traditional h/w interrupt users

Task
Tasks

 Usually enabled to run by posting a ‘semaphore’
(a task signaling mechanism) (similar to tosix)

 Designed to run concurrently – pauses when
waiting for data (semaphore)

 Favored by folks experienced in high-level hS’s

Idle
Background

 Runs as an infinite while(1) loop
 Users can assign multiple functions to Idle
 Single priority level

TI-RTOS provides two additional thread types: Software Interrupts (Swi) and Tasks (Task). As
you can see above, these thread types fall between Hwi and Idle in terms of priority.

Each of these threads can be used to extend your system’s processing organization.

What do we mean by this?

You might remember that we HIGHLY recommended that you DO NOT nest interrupts. But what
happens if you want to run an algorithm based on some interrupt event? For example, you want
to run a filter whenever you receive a value from an A/D converter or from the serial port.

Without an RTOS, you would need to organize your main while{} loop to handle all of these
interrupt, follow-up tasks. This is not a problem for one or two events; but for lots of events, this
can become very complicated – especially when they all run at different rates. This way of
scheduling your processing is called a SuperLoop.

With an RTOS, we can post follow-up activity to a Swi or Task. A Swi acts just like a software
triggered interrupt service routine. Tasks, on the other hand, run all the time (have you heard the term
multi-tasking before?) and utilize Semaphores to signal when to run or when to block (i.e. pause).

In other words, Swi’s and Task’s provide two different ways to schedule follow-up processing
code. They let us keep our hardware interrupts (Hwi’s) very short and simple – for example, all
we need to do is read our ADC and then post an associated Swi to run.

If all of this sounds complicated, it really isn’t. While outside the scope of this course, the TI-
RTOS course will have you up-and-running in no time. Once you experience the effective
organization provided by an RTOS, you may never build another system without one.

MSP430 Workshop - Interrupts 5 - 33

Interrupts and TI-RTOS Scheduling

TI-RTOS Details
The following slide provides some “characteristics” of the TI-RTOS kernel. The bottom-line here is
that it is a priority-based scheduler. The highest priority thread gets to run, period. (Remember,
hardware interrupts are always the highest priority.)

TI-RTOS Kernel – Characteristics
 RThS means “Real-time h/S” – so the intent of this h/S is to provide common

services to the user WITIhUT disturbing the real-time nature of the system

 The TI-RThS Kernel (SYS/BIhS) is a tRE-EatTIVE scheduler. This means the
highest priority thread ALWAYS RUNS CIRST. Time-slicing is not inherently
supported.

 The kernel is EVENT-DRIVEN. Any kernel-configured interrupts or user calls to
AtIs such as Swi_post() will invoke the scheduler. The kernel is NhT time-
sliced although threads can be triggered on a time bases if so desired.

 The kernel is hBJECT BASED. All AtIs (methods) operate on self-contained
objects. Therefore when you change hNE object, all other objects are
unaffected.

 Being object-based allows most RThS kernel calls to be DETERaINISTIC. The
scheduler works by updating event queues such that all context switches take
the same number of cycles.

 Real-time Analysis AtIs (such as Logs) are small and fast – the intent is to LEAVE
them in the program – even for production code – yes, they are really that small

While you can construct a time-slicing system using TI-RTOS, this is not commonly done. While
time-slicing can be a very effective technique in host operating systems (like Windows or Linux), it
is not a common method for scheduling threads in an embedded system.

5 - 34 MSP430 Workshop - Interrupts

 Interrupts and TI-RTOS Scheduling

Hwi – Swi – Idle Scheduling
Here’s a simple, visual example of what real-time scheduling might look like in an RTOS based
system.

BIOS – Priority Based Scheduling
Iwi 2

Iwi 1

Swi 3 (Ii)

Swi 2

Swi 1 (Lo)

main

Idle

Audio_ISR()
{
read_sample();
Swi_post(Swi_2);
}

int1

start

post2 rtn

int2

post3 rtn

post1 rtn

rtn

rtn

User SETs the priorities, BIhS executes them

tosted
wunning
weady

Notice how the system enters Idle from main(). Idle is always ready to run (just as our old while{}
loop was always ready to run).

When a hardware interrupt (Hwi) occurs, we leave Idle and execute the Hwi thread’s code. Since
it appears the Hwi posted a Swi, that’s where the TI-RTOS scheduler goes to once the Hwi
finishes.

We won’t go through the remaining details in this course, though we suspect that you can all
follow the diagram. For this slide, and a lot more information, please refer to the TI-RTOS Kernel
Workshop.

MSP430 Workshop - Interrupts 5 - 35

Interrupts and TI-RTOS Scheduling

Summary: TI-RTOS Kernel
The following slide summarizes much of the functionality found in the TI-RTOS kernel. In this
chapter we’ve only touched on the scheduling features.

TI-RTOS Kernel (i.e. SYS/BIOS) is a
library of services that users can
add to their system to perform
various tasks:

TI-RTOS Kernel Services

 Memory Mgmt (stack, heap, cache)

 Real-time Analysis (logs, graphs, loads)

 Scheduling (various thread types)

 Synchronization (e.g. semaphores, events)

The TI-RTOS product includes the kernel, shown above, along with a number of additional drivers
and stacks. Oh, and the kernel comes with complete source code – nothing is hidden from you.

For many, though, one of the compelling features of TI-RTOS is that it’s FREE*.

Remember, we make our money selling you devices. Our code and tools are there to help you
get your programs put together – and your systems to market – more quickly.

* That is, it’s free for use on all Texas Instruments processors.

5 - 36 MSP430 Workshop - Interrupts

 Lab 5 – Interrupts

Lab 5 – Interrupts
This lab introduces you to programming MSP430 interrupts. Using interrupts is generally one of
the core skills required when buiding embedded systems. If nothing else, it will be used
extensively in later chapters and lab exercises.

Lab 5 – Button Interrupts
 Lab Worksheet… a Quiz, of sorts:

 Lnterrupts
 Save/Restore Context
 Vectors and triorities

 Lab 5a – tushing your Button
 Create a CCS project that uses an interrupt

to toggle the LE5 when a button is pushed
 This requires you to create:

o Setup code enabling the GtLO interrupt
o GtLO LSR for pushbutton pin

 You’ll also create code to handle all the
interrupt vectors

 Optional
 Lab 5b – Use the Watchdog Timer

Use the W5T in interval mode to
blink the an LE5

Lab 5a covers all the essential details of interrupts:
− Setup the interrupt vector

− Enable interrupts

− Create an ISR

When complete, you should be able to push the SW1 button and toggle the Red LED on/off.

Lab 5b is listed as optional since, while these skills are valuable, you should know enough at the
end of Lab 5a to move on and complete the other labs in the workshop.

MSP430 Workshop - Interrupts 5 - 37

Lab 5 – Interrupts

Lab Topics
Interrupts ... 5-36

Lab 5 – Interrupts .. 5-37
Lab 5 Worksheet ... 5-39

General Interrupt Questions .. 5-39
Interrupt Flow .. 5-40
Setting up GPIO Port Interrupts .. 5-40
Interrupt Priorities & Vectors ... 5-41
ISR’s for Group Interrupts ... 5-42

Lab 5a – Push Your Button ... 5-44
File Management .. 5-44
Configure/Enable GPIO Interrupt … Then Verify it Works .. 5-47
Add a Simple Interrupt Service Routine (ISR) .. 5-50

Sidebar – Vector Error .. 5-50
Upgrade Your Interrupt Service Routine (ISR) ... 5-52

(Optional) Lab 5b – Can You Make a Watchdog Blink? ... 5-53
Import and Explore the WDT_A Interval Timer Example .. 5-53
Run the code ... 5-55
Change the LED blink rate .. 5-55

Appendix ... 5-56

5 - 38 MSP430 Workshop - Interrupts

 Lab 5 – Interrupts

Lab 5 Worksheet
General Interrupt Questions
Hint: You can look in the Chapter 5 discussion for the answers to these questions

1. When your program is not in an interrupt service routine, what code is it usually executing?
And, what ‘name’ do we give this code?

 __

2. Why keep ISR’s short? That is, why shouldn’t you do a lot of processing in them)?

 __

3. What causes the MSP430 to exit a Low Power Mode (LPMx)?

 __

4. Why are interrupts generally preferred over polling?

MSP430 Workshop - Interrupts 5 - 39

Lab 5 – Interrupts

Interrupt Flow
5. Name 4 sources of interrupts? (Well, we gave you one, so name 3 more.)
 Hint: Look at the chapter discussion, datasheet or User’s Guide for this answer.

6. What signifies that an interrupt has occurred?
 Hint: Look at the “Interrupt Flow” part of this chapter discussion.

A __________ bit is set

 What’s the acronym for these types of ‘bits” ___________

Setting up GPIO Port Interrupts
Next, let’s review the code required to setup one of the Launchpad buttons for GPIO input.
(Hint: Look in the Chapter 5 “Enabling Interrupts” discussion for help on the next two questions.)

7. Write the code to enable a GPIO interrupt for the listed Port.Pin?
 // GPIO pin to use: F5529 = P1.1, FR4133 = P1.2, FR5969 = P1.1

 ___ // setup pin as input

 ___ // set edge select

 ___ // clear individual flag

 ___ // enable individual interrupt

8. Write the line of code required to turn on interrupts globally:

 ___________________________________ // enable global interrupts (GIE)

 Where, in our programs, is the most common place we see GIE enabled?
(Hint: you can look back at the sidebar discussion where we showed how to do this.)

Timer_A

5 - 40 MSP430 Workshop - Interrupts

 Lab 5 – Interrupts

Interrupt Priorities & Vectors
9. Check the interrupt that has higher priority. (Hint: Look at the chapter discussion or device

datasheet for the answer.)
 GPIO Port 2
 WDT Interval Timer

10. Where do you find the name of an “interrupt vector” (e.g. PORT1_VECTOR)?

 Hint: Which header file defines symbols for each device?

11. Write the code to set the interrupt vector? (To help, we’ve provided a simple ISR to go with the line
of code we’re asking you to complete. Finish the #pragma statement...)

// Put’s the ISR function’s address into the Port 1 vector location

__interrupt void pushbutton_ISR (void)
{
 // Toggle the LED on/off
 GPIO_toggleOutputOnPin(GPIO_PORT_P1, GPIO_PIN0);
}

 What is wrong with this GPIO port ISR?

12. How do you pass a value into (or out from) and interrupt service routine (ISR)?

 Hint: Look at the chapter topic “Interrupt Service Routines – Coding Suggestions”.

#pragma

MSP430 Workshop - Interrupts 5 - 41

Lab 5 – Interrupts

ISR’s for Group Interrupts
As we learned earlier, most MSP430 interrupts are grouped. For example, the GPIO port
interrupts are all grouped together. (Hint: To answer these last two questions, look at the
discussion titled “Grouped ISR” in this chapter’s discussion.)

13. For dedicated interrupts (such as WDT interval timer) the CPU clears the IFG flag when
responding to the interrupt. How does an IFG bit get cleared for group interrupts?

5 - 42 MSP430 Workshop - Interrupts

 Lab 5 – Interrupts

14. Creating ISR’s for grouped interrupts is as easy as following a ‘template’. The following code
represents a grouped ISR template.
• Fill in the appropriate blank line to respond to the Port 1 pin used for the pushbutton on

your Launchpad. (F5529/FR5969 = P1.1; FR4133 = P1.2)

• Add the code needed to toggle the LED (on P1.0) in response to the button interrupt.

#pragma vector=PORT1_VECTOR
__interrupt void pushbutton_ISR (void) {
 switch(__even_in_range(____________________, 0x10)){
 case 0x00: break; // None
 case 0x02: break; // Pin 0

 __

 break;
 case 0x04: // Pin 1

 __

 break;
 case 0x06: // Pin 2

 __

 break;
 case 0x08: // Pin 3

 break;
 case 0x0A: // Pin 4

 __

 break;
 case 0x0C: // Pin 5

 break;
 case 0x0E: // Pin 6

 __

 break;
 case 0x10: // Pin 7

 __

 default:
 _never_executed();

}

MSP430 Workshop - Interrupts 5 - 43

Lab 5 – Interrupts

Lab 5a – Push Your Button
When Lab 5a is complete, you should be able to push the S2 button and toggle the Red LED
on/off.

We will begin by importing the solution to Lab 4a. After which we’ll need to delete a bit of ‘old’
code and add the following.

− Setup the interrupt vector

− Enable interrupts

− Create an ISR

Launchpad Pin Button

F5529 P1.1 S2

FR5969 P1.1 S2

FR4133 P2.2 S1

File Management
1. Close all previous projects. Also, close any remaining open files.

2. Import the solution for Lab 4a from: lab_04a_clock_solution

 Select import previous CCS project from the Project menu:

Project → Import CCS Projects…

5 - 44 MSP430 Workshop - Interrupts

 Lab 5 – Interrupts

3. Rename the imported project to: lab_05a_buttonInterrupt

 You can right-click on the project name and select Rename, though the easiest way to
rename a project is to:

Select project in Project Explorer → hit @
 When the following dialog pops up, fill in the new project name:

4. Verify the project is active, then check that it builds and runs.

 Before we change the code, let’s make sure the original project is working. Build and run the
project – you should see the LED flashing once per second.

 When complete, terminate the debugger.

5. Add unused_interrupts.c file to your project.

 To save a lot of typing (and probably typos) we already created this file for you. You’ll need to
add it to your project.

Right-click project → Add Files…

 Find the file in:

C:\msp430_workshop\<target>\lab_05a_buttonInterrupt\unused_interrupts.c

“Copy” the file into your project

 You can take a quick look at this file, if you’d like. Notice that we created a single ISR function
that is associated with all of the interrupts on your device – since, at this point, all of the
interrupts are unused. As you add each interrupt to the project, you will need to modify this
file.

lab_05a_buttonInterrupt

MSP430 Workshop - Interrupts 5 - 45

Lab 5 – Interrupts

6. Before we start adding new code … comment out the old code from while{} loop.

 Open main.c and comment out the code in the while{} loop. This is the old code that flashes
the LED using the inefficient __delay_cycles() function.

 The easiest way to do this is to:

Select all the code in the while{} loop

c-| (This toggles the line comments on/off)

 Once commented, the loop should look similar to that below:

After commenting out the while code, just double-check for errors by clicking the build
button. (Fix any error that pops up.)

5 - 46 MSP430 Workshop - Interrupts

 Lab 5 – Interrupts

Configure/Enable GPIO Interrupt … Then Verify it Works

Add Code to Enable Interrupts

7. Open main.c and modify initGPIO() to enable the interrupt for your push-button.

 If you need a hint on what three lines are required, refer back to the Lab 5 Worksheet,
question # 7 (see page 5-40).

 Note that the pin numbers are the same, but the switch names differ for these Launchpads:
− For the ‘F5529 Launchpad, we’re using pushbutton S2 (P1.1)

− For the ‘FR5969 Launchpad, we’re using pushbutton S2 (P1.1)

− For the ‘FR4311 Launchpad, we’re using pushbutton S1 (P1.2)

8. Add the line of code needed to enable interrupts globally (i.e GIE).
 This line of code should be placed right before the while{} loop in main(). Refer back to the

Lab 5 Worksheet, question # 8 (see page 5-40).

9. Build your code.
 Fix any typos or errors.

Start the Debugger and Set Breakpoints
Once the debugger opens, we’ll setup two breakpoints. This allows us to verify the interrupts
were enabled, as well as trapping the interrupt when it occurs.

10. Launch the debugger.

11. Set a breakpoint on the “enable GIE” line of code in main.c.

12. Next, set a breakpoint inside the ISR in the unused_interrupts.c file.

MSP430 Workshop - Interrupts 5 - 47

Lab 5 – Interrupts

Run Code to Verify Interrupts are Enabled

13. Click Resume … the program should stop at your first breakpoint.

14. Open the Registers window in CCS (or show it, if it’s already open).
 If the Registers window isn’t open, do so by:

View → Registers

15. Verify Port1 bits: DIR, OUT, REN, IE, IFG.
 The first breakpoint halts the processor right before setting the GIE bit. Before turning on the

interrupts, let’s view the GPIO Port 1 settings. Scroll/expand the registers to verify:
• P1DIR.0 = 1 (pin in output direction)

• P1DIR.1 = 0 (input direction – to be used for generating an interrupt)

• P1REN.1 = 1 (we enabled the resistor for our input pin)

• P1OUT.0 = 0 (we set it low to turn off LED)

• P1IE.1 = 1 (our button interrupt is enabled)

• P1IES.1 = 0 (configured to generate an interrupt on a low-to-high transition)

• P1IFG.1 = 0 (at this point, we shouldn’t have received an
 interrupt – unless you already pushed the button…)

 Here’s a snapshot of the P1IE register as
an example …

16. Next, let’s look at the Status Register (SR).

 You can find it under the Core Registers at the top
of the Registers window.

 You should notice that the GIE bit equals 0, since
we haven’t executed the line of code enabling
interrupts globally, yet.

5 - 48 MSP430 Workshop - Interrupts

 Lab 5 – Interrupts

17. Single-step the processor (i.e. Step-Over) and watch GIE change.

 Click the toolbar button or tap the ^key. Either way, the Registers window should update:

Testing your Interrupt
With everything set up properly, let’s try out our code.

18. Click Resume (i.e. Run) … and nothing should happen.

 In fact, if you Suspend (i.e. Halt) the processor, you should see that the program counter is
sitting in the while{} loop, as expected.

19. Press the appropriate pushbutton on your board.

 Did that cause the program to stop at the breakpoint we set in the ISR?

 If you hit Suspend in the previous step, did you remember to hit Resume afterwards?

 (If it didn’t stop, and you cannot figure out why, ask a neighbor/instructor for help.)

MSP430 Workshop - Interrupts 5 - 49

Lab 5 – Interrupts

Add a Simple Interrupt Service Routine (ISR)
Thus far we have used the HWI_UNUSED_ISR. We will now add an ISR specifically for our push-
button’s GPIO interrupt.

20. Add the Port 1 ISR to the bottom of main.c.

 Here’s a simple ISR routine that you can copy/paste into your code.
//***
// Interrupt Service Routines
//***
#pragma vector= ?????
__interrupt void pushbutton_ISR (void)
{
 // Toggle the LED on/off
 GPIO_toggleOutputOnPin(GPIO_PORT_P1, GPIO_PIN0);
}

 Don‘t forget to fill in the ???? with your answer from question #11 from the worksheet (see
page 5-41).

21. Build the program to test for any errors.

 You should have gotten the error …

This error tells us that the linker cannot fit the PORT1_VECTOR into memory because the
interrupt vector is defined twice. (INT47 on the ‘F5529 and ‘FR4133; INT39 on the ‘FR5969)

 We just created one of these vectors, where is the other one coming from?

Sidebar – Vector Error
First, how did we recognize this error?

1. It says, “errors encountered during linking”. This tells us the complilation was fine, but
there was a problem in linking.

2. Next, “symbol “__TI_int47”” redefined”. Oops, too many definitions for this symbol. It also
tells us that this symbol was found in both unused_interrupts.c as well as main.c.
(OK, it says that the offending files were .obj, but these were directly created from their
.c source counterparts.

3. Finally, what’s with the name, “__TI_int47”? Go back and look at the Interrupt Vector
Location (sometimes it’s also called Interrupt Priority) in the Interrupt Vector table. You
can find this in the chapter discussion or the datasheet. Once you’ve done so, you should
see the correlation with the PORT1_VECTOR.

5 - 50 MSP430 Workshop - Interrupts

 Lab 5 – Interrupts

22. Comment out the PORT1_VECTOR from unused_interrupts.c.

23. Try building it again

 It should work this time… our fingers are crossed for you.

24. Launch the debugger.

25. Remove all breakpoints.

View → Breakpoints
Click the Remove All button

26. Set a breakpoint inside your new ISR.

27. Run your code … once the code is running, push the button to generate an interrupt.

 The processor should stop at your ISR (location shown above). Breakpoints like this can
make it easier to see that we reached the interrupt. (A good debugging trick.)

28. Resuming once again, at this point inside the ISR should toggle-on the LED.

 If it works, call out “Hooray!”

29. Push the button again.

 Hmmm… did you get another interrupt? We didn’t appear to.

 We didn’t see the light toggle-off – and we didn’t stop at the breakpoint inside the ISR.

 Some of you may have already known this was going to happen. If you’re still unsure, go
back to Step #0 from our worksheet (page 5-43). We discussed it there.

MSP430 Workshop - Interrupts 5 - 51

Lab 5 – Interrupts

Upgrade Your Interrupt Service Routine (ISR)
If you hadn’t already guessed what the problem was, we can deduce that since the IFG bit never
got cleared, the CPU never realized that new interrupts were being applied.

For grouped interrupts, if we use the appropriate Interrupt Vector (IV) register, we can easily
decipher the highest priority interrupt of the group; and, it clears the correct IFG bit for us.

30. Replace the code inside your ISR with the code that uses the P1IV register.

 Once again, we have already created the code as part of the worksheet; refer to the
Worksheet, Step 14 (page 5-43).

 To make life easier, here’s a copy of the original template from the worksheet. You may want
to cut/paste this code, then tweak it with answers from your worksheet. (Note: this is the code
for the ‘F5529 and ‘FR5969. Remember that the ‘FR4133 uses a different pin on Port 1.)

//***

// Interrupt Service Routines

//***

#pragma vector=PORT1_VECTOR

__interrupt void pushbutton_ISR (void) {
 switch(__even_in_range(????, 0x10)) {
 case 0x00: break; // None
 case 0x02: break; // Pin 0
 case 0x04: // Pin 1
 ??????????????????????;
 break;
 case 0x06: break; // Pin 2
 case 0x08: break; // Pin 3
 case 0x0A: break; // Pin 4
 case 0x0C: break; // Pin 5
 case 0x0E: break; // Pin 6
 case 0x10: break; // Pin 7
 default: _never_executed();
 }

}

Hint: The syntax indentation often gets messed up when pasting code. If/when this occurs, the
CCS editor provides a way to correct this using (<ctrl>-I).

 Select the ‘ugly’ code and press c-I

31. Build the code.
 If you correctly inserted the code and replaced all the questions marks, hopefully it built

correctly the first time.

32. Launch the debugger. Run/Resume. Push the button. Verify the light toggles.
 Run the program. Push the button and verify that the interrupt is taken every time you push

the button. If the breakpoint in the ISR is still set, you should see the processor stop for each
button press (and then you’ll need to click Resume).

 You’re welcome to explore further by single-stepping thru code, using breakpoints,
suspending (halting) the processor and exploring the various registers.

5 - 52 MSP430 Workshop - Interrupts

 Lab 5 – Interrupts

(Optional) Lab 5b – Can You Make a Watchdog Blink?
The goal of this lab is to blink the LED. Rather than using a _delay_cycles() function, we’ll use a
timer to tell us when to toggle the LED.

In Lab 4 we used the Watchdog timer as a … well, a watchdog timer. In all other exercises, thus
far, we just turned it off with WDT_A_hold().

In this lab exercise, we’re going to use it as a standard timer (called ‘interval’ timer) to generate a
periodic interrupt. In the interrupt service routine, we’ll toggle the LED.

As we write the ISR code, you may notice that the Watchdog Interval Timer interrupt has a
dedicated interrupt vector. (Whereas the GPIO Port interrupt had 8 grouped interrupts that shared
one vector.)

Import and Explore the WDT_A Interval Timer Example
1. Import the wdt_a_ex2_intervalACLK project from the MSP430 DriverLib examples.

 We’re going to “cheat” and use the example provided with MSP430ware to get the WDT_A
timer up and running.

 As we discussed in Chapter 3, there are two ways we can import an example project:
− Use the Project→Import CCS Projects (as we’ve done before)

− Utilize the TI Resource Explorer (which is what we’ll do again)

a) Open the TI Resource Explorer window, if it’s not already open

View → Resource Explorer (Examples)

b) Locate the wdt_a_ex2_intervalACLK example for your processor.

Look for it as shown here under: Example Projects → WDT_A

If you’re using the FR5969, follow
the same path starting from the

MSP430FR5xx_6xx heading

Likewise, pick the
MSP430FR2xx_4xx is you’re

using the FR4311

MSP430 Workshop - Interrupts 5 - 53

Lab 5 – Interrupts

c) Click the link to “Import the example project into CCS”.

Once imported you can close the TI Resource Explorer, if you want to get it out of the way.

d) Rename the imported project to: lab_05b_wdtBlink

While not required, this should make it easier to match the project to our lab files later on.

2. Open the lab_05b_wdtBlink.c file. Review the following points:

 Notice the DriverLib function that sets up the
WDT_A for interval timing.
You can choose which clock to use; we selected
ACLK. By the way, what speed is ACLK running at?
(This example uses ACLK at the default rate.)
As described, dividing ACLK/8192 gives us an
interval of ¼ second.

The WDT_A is a system (SYS) interrupt, so it’s
IFG and IE bits are in the Special Functions
Register. It’s always good practice to clear a flag
before enabling the interrupt. (Remember, CPU
won’t be interrupted until we set GIE.)

Along with enabling interrupts globally (GIE=1), this
example puts the CPU into low power mode (LPM3).

When the interrupt occurs, the CPU wake up and
handles it, then goes back into LPM3. (Low Power
modes will be discussed further in a future chapter.)

They got a little bit fancy with the interrupt
vector syntax. This code has been designed
to work with 3 different compilers:

TI, IAR, and GNU C compiler.

These GPIO functions
should be familiar by
now …

Since WDT has a dedicated interrupt
vector, the code inside the ISR is simple.
We do not have to manually clear the IFG
bit, or use the IV vector to determine the
interrupt source.

5 - 54 MSP430 Workshop - Interrupts

 Lab 5 – Interrupts

Run the code
3. Build and run the example.

 You should see the LED blinking…

Change the LED blink rate
4. Terminate the debug session.

5. Modify the example to blink the LED at about 1 second intervals.
 Tip: If you want help with selecting and typing function arguments, you can you the

autocomplete feature of CCS. Just type part of the test, such as:

WDT_A_CLOCKDIVER_

 and then hit:

Control-TAB

 and a popup box appears providing you with choices – select the one you want. In this case,
we suggest you divide by 32K.

6. Build and run the example again.

 If you want, you can experiment with other clock divider rates to see their affect on the LED’s
blink rate.

MSP430 Workshop - Interrupts 5 - 55

Appendix

Appendix

Lab 05 Worksheet (1)
General Interrupt Questions
1. When your program is not in an interrupt service routine, what code is it

usually executing? And, what ‘name’ do we give this code?
__

2. Why keep ISR’s short (i.e. not do a lot of processing in them)?
__
__
__

3. What causes the MSP430 to exit a Low Power Mode (LPMx)?
__

4. Why are interrupts generally preferred over polling?
__
__

main functions while{} loop. We often call this ‘background’ processing.

We don’t want to block other interrupts. The other option is nesting

interrupts, but this is LbEFFLCLEbT. 5o interrupt follow-up processing in

while{} loop … or use TL-wThS kernel.

Lnterrupts

They are a lot more efficient. tolling ties up the CtU – even worse it

consumes power waiting for an event to happen.

Lab 05 Worksheet (2)
Interrupt Flow
5. Name 3 more sources of interrupts?

__
__
__
__

6. What signifies that an interrupt has occurred?
A __________ bit is set
What’s the acronym for these types of ‘bits” ___________

Tfmbo_A
GtLh

Watchdog Lnterval Timer

Analog Converter … and many more

flag

LFG

5 - 56 MSP430 Workshop - Interrupts

 Appendix

Lab 05 Worksheet (3)
7. Write the code to enable a GPIO interrupt for the listed Port.Pin?

GPIO pin to use: F5529 = P1.1, FR4133 = P1.2, FR5969 = P1.1
F5529 and FR5969:
___ // set up pin as input
___ // set edge select
___ // clear individual INT
__ // enable individual INT

FR4133:
___ // set up pin as input
___ // set edge select
___ // clear individual INT
__ // enable individual INT

GPIO_setAsInputPinWithPullUpResistor (GPIO_PORT_1, GPIO_PIN1);
GPIO_interruptEdgeSelect (GPIO_PORT_P1, GPIO_PIN1, GPIO_LOW_TO_HIGH_TRANSITION);
GPIO_clearInterruptFlag (GPIO_PORT_P1, GPIO_PIN1);
GPIO_enableInterrupt (GPIO_PORT_P1, GPIO_PIN1);

GPIO_setAsInputPinWithPullUpResistor (GPIO_PORT_1, GPIO_PIN2);
GPIO_interruptEdgeSelect (GPIO_PORT_P1, GPIO_PIN2, GPIO_LOW_TO_HIGH_TRANSITION);
GPIO_clearInterruptFlag (GPIO_PORT_P1, GPIO_PIN2);
GPIO_enableInterrupt (GPIO_PORT_P1, GPIO_PIN2);

Lab 05 Worksheet (4)
Interrupt Service Routine
8. Write the line of code required to turn on interrupts globally:

_________________________________ // enable global interrupts (GIE)
Where, in our programs, is the most common place we see GIE enabled?
(Hint, you can look back at the slides where we showed how to do this.)

__

__bis_Sw_set(GLE);

wight before the while{} loop in main().

MSP430 Workshop - Interrupts 5 - 57

Appendix

Lab 05 Worksheet (5)
Interrupt Priorities & Vectors
9. Check the interrupt that has higher priority:

F5529 FR4133 FR5969
 GPIO Port 2 int42 int36 int36
R WDT Interval Timer int56 int49 int41

Let’s say you’re CPU is in the middle of the GPIO Port 2 ISR, can it be
interrupted by a new WDT interval timer interrupt? If so, is there anything
you could do to your code in order to allow this to happen?
__
__
bo, by default, aSt430 interrupts are disabled when running an LSw. To

enable this you could set up interrupt nesting (though this isn’t recommended)

Sidebar – Interrupt Vector Symbols
We needed all of these vector names to create an ‘unused vectors’
source file that’s provided you for in this lab exercise:

unused_interrupts.c

To get all of these symbols, we followed these steps:
1. Copy every line from the header file with the string “_VECTOR”.
2. Delete the duplicate lines (each vector symbol shows up twice in the file)
3. Replace “#define ” with “#pragma vector=” (and remove the text after the vector name)
4. Delete the “RESET_VECTOR” symbol as this vector is handled by the compiler’s

initialization routine

Lab 05 Worksheet (6)
10. Where do you find the name of an “interrupt vector”?

__
__
Lt’s defined in the device specific header file.

Cor example: msp430f5529.h, msp430fr5969.h, or msp430fr4133.h

5 - 58 MSP430 Workshop - Interrupts

 Appendix

11. How do you write the code to set the interrupt vector?
// Sets ISR address in the vector for Port 1

#pragma ___________________________________

__interrupt void pushbutton_ISR (void)
{

// Toggle the LED on/off
GPIO_toggleOutputOnPin(GPIO_PORT_P1, GPIO_PIN0);

}

What is wrong with this GPIO port ISR?
__
__

Lab 05 Worksheet (7)

vector=thwT1_VE/Thw

DtLh ports are grouped interrupts. Lt’s better to read the t1LV register

so you can handle multiple pin interrupts using switch/case statement

Lab 05 Worksheet (8)
12. How do you pass a value into (or out from) and interrupt service routine

(ISR)?
__

ISR’s for Group Interrupts
As we learned earlier, most MSP430 interrupts are grouped. For example, the
GPIO port interrupts are all grouped together.

13. For dedicated interrupts (such as WDT interval timer) the CPU clears
the IFG flag when responding to the interrupt. How does an IFG bit get
cleared for group interrupts?

__
__

Lnterrupts cannot pass arguments, we need to use global variables

Either manually; or when you read the LV register (such as t1LV).

MSP430 Workshop - Interrupts 5 - 59

Appendix

Lab 05 Worksheet (9)
14. Creating ISR’s for grouped interrupts is as easy as following a ‘template’.

Toggle P1.0 when button is pressed. F5529/FR5969 uses P1.1;
#pragma vector=PORT1_VECTOR
__interrupt void pushbutton_ISR (void) {

switch(__even_in_range(____________, 0x10)) {

// C5529 and Cw5969 use t1.1 for button:
case 0x02: break; // Pin 0
case 0x04: // Pin 1

break;

case 0x06: break; // Pin 2

// Cw4311 uses t1.2 for button:
case 0x02: break; // Pin 0
case 0x04: break; // Pin 1
case 0x06: // Pin 2

break;

t1LV

GtLh_togglehutputhntin(GtLh_thwT_t1, GtLh_tLb0);

GtLh_togglehutputhntin(GtLh_thwT_t1, GtLh_tLb0);

5 - 60 MSP430 Workshop - Interrupts

	5. Interrupts
	Interrupts, The Big Picture
	How Interrupts Work
	Interrupts: Priorities & Vectors
	Coding Interrupts
	Miscellaneous Topics
	Interrupts and TI-RTOS Scheduling
	Lab 5 – Interrupts
	Worksheet
	Lab 5a
	Lab 5b
	Appendix

