
January 2021 ES0182 Rev 13 1/45

1

STM32F40x and STM32F41x
Errata sheet

STM32F405/407xx and STM32F415/417xx
 device limitations

Silicon identification

This errata sheet applies to STM32F405xx/STM32F407xx and
STM32F415xx/STM32F417xx microcontroller families. In this document, they will be
referred to as STM32F40x and STM32F41x, respectively, unless otherwise specified.

The microcontrollers feature an ARM® 32-bit Cortex®-M4 core with FPU, for which an errata
notice is also available (see Section 1 for details).

The full list of part numbers is shown in Table 2. The products are identifiable as shown in
Table 1:

• by the revision code marked below the order code on the device package

• by the last three digits of the Internal order code printed on the box label

Table 1. Device identification(1)

1. The REV_ID bits in the DBGMCU_IDCODE register show the revision code of the device (see the
STM32F40x and STM32F41x reference manual for details on how to find the revision code).

Order code Revision code marked on device(2)

2. Refer to the datasheet for details on how to identify the revision code and the date code on the different
packages.

STM32F405xx, STM32F407xx
‘A’, ‘Z’, ‘1’, ‘2’, ‘4’, ‘Y’, ‘5’ and ‘6’

STM32F415xx, STM32F417xx

Table 2. Device summary

Reference Part number

STM32F405xx
STM32F405OG, STM32F405OE, STM32F405RG, STM32F405VG,
STM32F405ZG

STM32F407xx
STM32F407IG, STM32F407VG, STM32F407ZG,
STM32F407ZE, STM32F407IE, STM32F407VE

STM32F415xx STM32F415OG, STM32F415RG, STM32F415VG, STM32F415ZG

STM32F417xx
STM32F417VG, STM32F417IG, STM32F417ZG, STM32F417VE,
STM32F417ZE, STM32F417IE

www.st.com

http://www.st.com

Contents STM32F40x and STM32F41x

2/45 ES0182 Rev 13

Contents

1 Arm® 32-bit Cortex®-M4 with FPU limitations . 7

1.1 Cortex®-M4 interrupted loads to stack pointer can cause
erroneous behavior . 7

1.2 VDIV or VSQRT instructions might not complete correctly
when very short ISRs are used . 8

2 STM32F40x and STM32F41x silicon limitations 9

2.1 System limitations . 13

2.1.1 ART Accelerator prefetch queue instruction is not supported 13

2.1.2 MCU device ID is incorrect . 13

2.1.3 Debugging Sleep/Stop mode with WFE/WFI entry 13

2.1.4 Debugging Stop mode and system tick timer . 14

2.1.5 Wakeup sequence from Standby mode when using more than
one wakeup source . 14

2.1.6 Full JTAG configuration without NJTRST pin cannot be used 15

2.1.7 PDR_ON pin not available on LQFP100 package
for revision Z devices . 15

2.1.8 Incorrect BOR option byte when consecutively programming
BOR option byte . 15

2.1.9 Configuration of PH10 and PI10 as external interrupts is erroneous . . . 16

2.1.10 DMA2 data corruption when managing AHB and APB peripherals in a
concurrent way . 16

2.1.11 Slowing down APB clock during a DMA transfer 17

2.1.12 MPU attribute to RTC and IWDG registers could be managed
incorrectly . 17

2.1.13 Delay after an RCC peripheral clock enabling . 17

2.1.14 Battery charge monitoring lower than 2.4 Volts 18

2.1.15 Internal noise impacting the ADC accuracy . 18

2.1.16 RDP level 2 and sector write protection configuration 18

2.1.17 Possible delay in backup domain protection disabling/enabling
after programming the DBP bit . 18

2.2 TIM limitations . 19

2.2.1 PWM re-enabled in automatic output enable mode despite of
system break . 19

2.2.2 Consecutive compare event missed in specific conditions 20

2.2.3 Output compare clear not working with external counter reset 20

ES0182 Rev 13 3/45

STM32F40x and STM32F41x Contents

5

2.2.4 TRGO and TRGO2 trigger output failure . 21

2.3 IWDG peripheral limitations . 21

2.3.1 RVU and PVU flags are not reset in Stop mode 21

2.4 RTC limitations . 22

2.4.1 Spurious tamper detection when disabling the tamper channel 22

2.4.2 Detection of a tamper event occurring before enabling the tamper
detection is not supported in edge detection mode 22

2.4.3 RTC calendar registers are not locked properly 22

2.5 I2C peripheral limitations . 23

2.5.1 SMBus standard not fully supported . 23

2.5.2 Start cannot be generated after a misplaced Stop 23

2.5.3 Mismatch on the “Setup time for a repeated Start condition” timing
parameter . 23

2.5.4 Data valid time (tVD;DAT) violated without the OVR flag being set 24

2.5.5 Both SDA and SCL maximum rise time (tr) violated when VDD_I2C bus
higher than ((VDD+0.3) / 0.7) V . 24

2.5.6 Spurious Bus Error detection in Master mode . 25

2.6 SPI peripheral limitations . 25

2.6.1 Wrong CRC calculation when the polynomial is even 25

2.6.2 Corrupted last bit of data and/or CRC, received in Master mode with
delayed SCK feedback . 25

2.6.3 BSY bit may stay high at the end of a data transfer in Slave mode 26

2.7 I2S peripheral limitations . 27

2.7.1 In I2S Slave mode, WS level must be set by the
external master when enabling the I2S . 27

2.7.2 I2S2 in full-duplex mode may not work properly when SCK and
WS signals are mapped on PI1 and PI0 respectively 27

2.7.3 Corrupted last bit of data and/or CRC, received in Master mode
with delayed SCK feedback . 28

2.8 USART peripheral limitations . 28

2.8.1 Idle frame is not detected if receiver clock speed is deviated 28

2.8.2 In full-duplex mode, the Parity Error (PE) flag can be cleared by
writing to the data register . 28

2.8.3 Parity Error (PE) flag is not set when receiving in Mute mode
using address mark detection . 28

2.8.4 Break frame is transmitted regardless of nCTS input line status 29

2.8.5 nRTS signal abnormally driven low after a protocol violation 29

2.8.6 Start bit detected too soon when sampling for NACK signal
from the smartcard . 30

Contents STM32F40x and STM32F41x

4/45 ES0182 Rev 13

2.8.7 Break request can prevent the Transmission Complete flag (TC)
from being set . 30

2.8.8 Guard time is not respected when data are sent on TXE events 30

2.8.9 nRTS is active while RE or UE = 0 . 31

2.9 bxCAN limitations . 31

2.9.1 bxCAN time triggered communication mode not supported 31

2.10 OTG_FS peripheral limitations . 31

2.10.1 Data in RxFIFO is overwritten when all channels are disabled
simultaneously . 31

2.10.2 OTG host blocks the receive channel when receiving IN packets and no
TxFIFO is configured . 32

2.10.3 Host channel-halted interrupt not generated when the channel is
disabled . 32

2.10.4 Error in software-read OTG_FS_DCFG register values 32

2.11 Ethernet peripheral limitations . 33

2.11.1 Incorrect layer 3 (L3) checksum is inserted in transmitted IPv6 packets
without TCP, UDP or ICMP payloads . 33

2.11.2 The Ethernet MAC processes invalid extension headers in the received
IPv6 frames . 33

2.11.3 MAC stuck in the Idle state on receiving the TxFIFO flush command
exactly 1 clock cycle after a transmission completes 34

2.11.4 Transmit frame data corruption . 34

2.11.5 Successive write operations to the same register might not be fully
taken into account . 35

2.12 FSMC peripheral limitations . 37

2.12.1 Dummy read cycles inserted when reading synchronous memories . . . 37

2.12.2 FSMC synchronous mode and NWAIT signal disabled 38

2.12.3 FSMC NOR Flash/PSRAM controller asynchronous access on bank 2
to 4 when bank 1 is in synchronous mode
(CBURSTRW bit is set) . 38

2.13 SDIO peripheral limitations . 38

2.13.1 SDIO HW flow control . 38

2.13.2 Wrong CCRCFAIL status after a response without CRC is received . . . 39

2.13.3 SDIO clock divider BYPASS mode may not work properly 39

2.13.4 Data corruption in SDIO clock dephasing (NEGEDGE) mode 39

2.13.5 CE-ATA multiple write command and card busy signal management . . 39

2.13.6 No underrun detection with wrong data transmission 40

2.14 ADC peripheral limitations . 40

2.14.1 ADC sequencer modification during conversion 40

ES0182 Rev 13 5/45

STM32F40x and STM32F41x Contents

5

2.15 DAC peripheral limitations . 41

2.15.1 DMA underrun flag management . 41

2.15.2 DMA request not automatically cleared by DMAEN=0 41

3 Revision history . 42

List of tables STM32F40x and STM32F41x

6/45 ES0182 Rev 13

List of tables

Table 1. Device identification . 1
Table 2. Device summary . 1
Table 3. Cortex®-M4 core limitations and impact on microcontroller behavior 7
Table 4. Summary of silicon limitations . 9
Table 5. Maximum allowable APB frequency at 30 pF load . 26
Table 6. Impacted registers and bits. 35
Table 7. Document revision history . 42

ES0182 Rev 13 7/45

STM32F40x and STM32F41x Arm® 32-bit Cortex®-M4 with FPU limitations

44

1 Arm® 32-bit Cortex®-M4 with FPU limitations

An errata notice of the STM32F40x and STM32F41x core is available on Arm®(a) website
http://infocenter.arm.com.

All the described limitations are minor and related to the revision r0p1-v1 of the Cortex®-M4
core. Table 3 summarizes these limitations and their implications on the behavior of
STM32F40x and STM32F41x devices.

1.1 Cortex®-M4 interrupted loads to stack pointer can cause
erroneous behavior

Description

An interrupt occurring during the data-phase of a single word load to the stack pointer
(SP/R13) can cause an erroneous behavior of the device. In addition, returning from the
interrupt results in the load instruction being executed an additional time.

For all the instructions performing an update of the base register, the base register is
erroneously updated on each execution, resulting in the stack pointer being loaded from an
incorrect memory location.

The instructions affected by this limitation are the following:

• LDR SP, [Rn],#imm

• LDR SP, [Rn,#imm]!

• LDR SP, [Rn,#imm]

• LDR SP, [Rn]

• LDR SP, [Rn,Rm]

Workaround

As of today, no compiler generates these particular instructions. This limitation can only
occur with hand-written assembly code.

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Table 3. Cortex®-M4 core limitations and impact on microcontroller behavior

Arm ID
Arm

category
Arm summary of errata

Impact on STM32F40x
and STM32F41x

752770 Cat B
Interrupted loads to SP can cause erroneous
behavior

Minor

776924 Cat B
VDIV or VSQRT instructions might not complete
correctly when very short ISRs are used

Minor

Arm® 32-bit Cortex®-M4 with FPU limitations STM32F40x and STM32F41x

8/45 ES0182 Rev 13

Both limitations can be solved by replacing the direct load to the stack pointer by an
intermediate load to a general-purpose register followed by a move to the stack pointer.

Example:

Replace LDR SP, [R0] by

LDR R2,[R0]

MOV SP,R2

1.2 VDIV or VSQRT instructions might not complete correctly
when very short ISRs are used

Description

On Cortex®-M4 with FPU core, 14 cycles are required to execute a VDIV or VSQRT
instruction.

This limitation is present when the following conditions are met:

• A VDIV or VSQRT is executed

• The destination register for VDIV or VSQRT is one of s0 - s15

• An interrupt occurs and is taken

• The ISR being executed does not contain a floating point instruction

• 14 cycles after the VDIV or VSQRT is executed, an interrupt return is executed

In this case, if there are only one or two instructions inside the interrupt service routine, then
the VDIV or VQSRT instruction does not complete correctly and the register bank and
FPSCR are not updated, meaning that these registers hold incorrect out-of-date data.

Workaround

Two workarounds are applicable:

• Disable lazy context save of floating point state by clearing LSPEN to 0 (bit 30 of the
FPCCR at address 0xE000EF34).

• Ensure that every ISR contains more than 2 instructions in addition to the exception
return instruction.

ES0182 Rev 13 9/45

STM32F40x and STM32F41x STM32F40x and STM32F41x silicon limitations

44

2 STM32F40x and STM32F41x silicon limitations

Table 4 gives quick references to all documented limitations.

Legend for Table 4: A = workaround available; N = no workaround available; P = partial
workaround available, ‘-’ and grayed = fixed.

Table 4. Summary of silicon limitations

Links to silicon limitations
Revision

‘A’

Revision
‘1’, ‘2’, ‘4’, ‘5’,

‘6’, ‘Y’, ‘Z’

Section 2.1:
System limitations

Section 2.1.1: ART Accelerator prefetch queue instruction is
not supported

N -

Section 2.1.2: MCU device ID is incorrect A -

Section 2.1.3: Debugging Sleep/Stop mode with WFE/WFI
entry

A A

Section 2.1.4: Debugging Stop mode and system tick timer A A

Section 2.1.5: Wakeup sequence from Standby mode when
using more than one wakeup source

A A

Section 2.1.6: Full JTAG configuration without NJTRST pin
cannot be used

A A

Section 2.1.7: PDR_ON pin not available on LQFP100
package for revision Z devices

- N

Section 2.1.8: Incorrect BOR option byte when consecutively
programming BOR option byte

A A

Section 2.1.9: Configuration of PH10 and PI10 as external
interrupts is erroneous

N N

Section 2.1.10: DMA2 data corruption when managing AHB
and APB peripherals in a concurrent way

A A

Section 2.1.11: Slowing down APB clock during a DMA
transfer

A A

Section 2.1.12: MPU attribute to RTC and IWDG registers
could be managed incorrectly

A A

Section 2.1.13: Delay after an RCC peripheral clock enabling A A

Section 2.1.14: Battery charge monitoring lower than
2.4 Volts

P P

Section 2.1.15: Internal noise impacting the ADC accuracy A A

Section 2.1.16: RDP level 2 and sector write protection
configuration

A A

Section 2.1.17: Possible delay in backup domain protection
disabling/enabling after programming the DBP bit

A A

STM32F40x and STM32F41x silicon limitations STM32F40x and STM32F41x

10/45 ES0182 Rev 13

Section 2.2: TIM
limitations

Section 2.2.1: PWM re-enabled in automatic output enable
mode despite of system break

A A

Section 2.2.2: Consecutive compare event missed in specific
conditions

N N

Section 2.2.3: Output compare clear not working with
external counter reset

A A

Section 2.2.4: TRGO and TRGO2 trigger output failure N N

Section 2.3:
IWDG peripheral
limitations

Section 2.3.1: RVU and PVU flags are not reset in Stop mode A A

Section 2.4: RTC
limitations

Section 2.4.1: Spurious tamper detection when disabling the
tamper channel

N N

Section 2.4.2: Detection of a tamper event occurring before
enabling the tamper detection is not supported in edge
detection mode

A A

Section 2.4.3: RTC calendar registers are not locked properly A A

Section 2.5: I2C
peripheral
limitations

Section 2.5.1: SMBus standard not fully supported A A

Section 2.5.2: Start cannot be generated after a misplaced
Stop

A A

Section 2.5.3: Mismatch on the “Setup time for a repeated
Start condition” timing parameter

A A

Section 2.5.4: Data valid time (tVD;DAT) violated without the
OVR flag being set

A A

Section 2.5.5: Both SDA and SCL maximum rise time (tr)
violated when VDD_I2C bus higher than ((VDD+0.3) / 0.7) V

A A

Section 2.5.6: Spurious Bus Error detection in Master mode A A

Section 2.6: SPI
peripheral
limitations

Section 2.6.1: Wrong CRC calculation when the polynomial is
even

A A

Section 2.6.2: Corrupted last bit of data and/or CRC, received
in Master mode with delayed SCK feedback

A A

Section 2.6.3: BSY bit may stay high at the end of a data
transfer in Slave mode

A A

Section 2.7: I2S
peripheral
limitations

Section 2.7.1: In I2S Slave mode, WS level must be set by
the external master when enabling the I2S

A A

Section 2.7.2: I2S2 in full-duplex mode may not work properly
when SCK and WS signals are mapped on PI1 and PI0
respectively

A A

Section 2.7.3: Corrupted last bit of data and/or CRC, received
in Master mode with delayed SCK feedback

A A

Table 4. Summary of silicon limitations (continued)

Links to silicon limitations
Revision

‘A’

Revision
‘1’, ‘2’, ‘4’, ‘5’,

‘6’, ‘Y’, ‘Z’

ES0182 Rev 13 11/45

STM32F40x and STM32F41x STM32F40x and STM32F41x silicon limitations

44

Section 2.8:
USART peripheral
limitations

Section 2.8.1: Idle frame is not detected if receiver clock
speed is deviated

N N

Section 2.8.2: In full-duplex mode, the Parity Error (PE) flag
can be cleared by writing to the data register

A A

Section 2.8.3: Parity Error (PE) flag is not set when receiving
in Mute mode using address mark detection

N N

Section 2.8.4: Break frame is transmitted regardless of nCTS
input line status

N N

Section 2.8.5: nRTS signal abnormally driven low after a
protocol violation

A A

Section 2.8.6: Start bit detected too soon when sampling for
NACK signal from the smartcard

N N

Section 2.8.7: Break request can prevent the Transmission
Complete flag (TC) from being set

A A

Section 2.8.8: Guard time is not respected when data are
sent on TXE events

A A

Section 2.8.9: nRTS is active while RE or UE = 0 A A

Section 2.9:
bxCAN limitations

Section 2.9.1: bxCAN time triggered communication mode
not supported

N N

Section 2.10:
OTG_FS
peripheral
limitations

Section 2.10.1: Data in RxFIFO is overwritten when all
channels are disabled simultaneously

A A

Section 2.10.2: OTG host blocks the receive channel when
receiving IN packets and no TxFIFO is configured

A A

Section 2.10.3: Host channel-halted interrupt not generated
when the channel is disabled

A A

Section 2.10.4: Error in software-read OTG_FS_DCFG
register values

A A

Section 2.11:
Ethernet
peripheral
limitations

Section 2.11.1: Incorrect layer 3 (L3) checksum is inserted in
transmitted IPv6 packets without TCP, UDP or ICMP
payloads

A A

Section 2.11.2: The Ethernet MAC processes invalid
extension headers in the received IPv6 frames

N N

Section 2.11.3: MAC stuck in the Idle state on receiving the
TxFIFO flush command exactly 1 clock cycle after a
transmission completes

A A

Section 2.11.4: Transmit frame data corruption A A

Section 2.11.5: Successive write operations to the same
register might not be fully taken into account

A A

Table 4. Summary of silicon limitations (continued)

Links to silicon limitations
Revision

‘A’

Revision
‘1’, ‘2’, ‘4’, ‘5’,

‘6’, ‘Y’, ‘Z’

STM32F40x and STM32F41x silicon limitations STM32F40x and STM32F41x

12/45 ES0182 Rev 13

Section 2.12:
FSMC peripheral
limitations

Section 2.12.1: Dummy read cycles inserted when reading
synchronous memories

N N

Section 2.12.2: FSMC synchronous mode and NWAIT signal
disabled

A A

Section 2.12.3: FSMC NOR Flash/PSRAM controller
asynchronous access on bank 2 to 4 when bank 1 is in
synchronous mode (CBURSTRW bit is set)

A A

Section 2.13:
SDIO peripheral
limitations

Section 2.13.1: SDIO HW flow control N N

Section 2.13.2: Wrong CCRCFAIL status after a response
without CRC is received

A A

Section 2.13.3: SDIO clock divider BYPASS mode may not
work properly

A A

Section 2.13.4: Data corruption in SDIO clock dephasing
(NEGEDGE) mode

N N

Section 2.13.5: CE-ATA multiple write command and card
busy signal management

A A

Section 2.13.6: No underrun detection with wrong data
transmission

A A

Section 2.14:
ADC peripheral
limitations

Section 2.14.1: ADC sequencer modification during
conversion

A A

Section 2.15:
DAC peripheral
limitations

Section 2.15.1: DMA underrun flag management A A

Section 2.15.2: DMA request not automatically cleared by
DMAEN=0

A A

Table 4. Summary of silicon limitations (continued)

Links to silicon limitations
Revision

‘A’

Revision
‘1’, ‘2’, ‘4’, ‘5’,

‘6’, ‘Y’, ‘Z’

ES0182 Rev 13 13/45

STM32F40x and STM32F41x STM32F40x and STM32F41x silicon limitations

44

2.1 System limitations

2.1.1 ART Accelerator prefetch queue instruction is not supported

Description

The ART Accelerator prefetch queue instruction is not supported on revision A devices.

This limitation does not prevent the ART Accelerator from using the cache enable/disable
capability and the selection of the number of wait states according to the system frequency.

Workaround

• Revision A devices: none

• Revision Z and 1 devices: fixed.

2.1.2 MCU device ID is incorrect

Description

On revision A devices, the STM32F40x and STM32F41x have the same MCU device ID as
the STM32F20x and STM32F21x devices. On revision A devices, when reading the
Revision identifier, this will return 0x2000 instead of 0x1000. The device ID and revision ID
can be read from address 0xE0042000.

Workaround

• Revision A devices

To differentiate the STM32F4xxx from the STM32F2xxx series, read the MCU device
ID and the Core Device.

– For STM32F2xxx

MCU device ID = STM32F2xxx device ID

Core Device = Cortex®-M3

– For STM32F4xxx

MCU device ID = STM32F4xxx device ID

Core Device = Cortex®-M4

• Revision Z and 1 devices: fixed.

2.1.3 Debugging Sleep/Stop mode with WFE/WFI entry

Description

When the Sleep debug or Stop debug mode is enabled (DBG_SLEEP bit or DBG_STOP bit
are set in the DBGMCU_CR register), this allows software debugging during Sleep or Stop
mode. After wakeup some unreachable instructions could be executed if the following
condition are met:

• If the application software disables the Prefetch queue

• The number of wait state configured on Flash interface is higher than 0

• And Linker place WFE or WFI instructions on 4-bytes aligned addresses
(0x080xx_xxx4)

STM32F40x and STM32F41x silicon limitations STM32F40x and STM32F41x

14/45 ES0182 Rev 13

Workaround

• Add three NOPs after WFI/WFE instruction

• Keep one AHB master active during sleep (example keep DMA1 or DMA2 RCC clock
enable bit set)

• Execute WFI/WFE instruction from routines inside the SRAM

2.1.4 Debugging Stop mode and system tick timer

Description

If the system tick timer interrupt is enabled during the Stop mode debug (DBG_STOP bit set
in the DBGMCU_CR register), it will wake up the system from Stop mode.

Workaround

To debug the Stop mode, disable the system tick timer interrupt.

2.1.5 Wakeup sequence from Standby mode when using more than
one wakeup source

Description

The various wakeup sources are logically OR-ed in front of the rising-edge detector which
generates the wakeup flag (WUF). The WUF needs to be cleared prior to Standby mode
entry, otherwise the MCU wakes up immediately.

If one of the configured wakeup sources is kept high during the clearing of the WUF (by
setting the CWUF bit), it may mask further wakeup events on the input of the edge detector.
As a consequence, the MCU might not be able to wake up from Standby mode.

Workaround

To avoid this problem, the following sequence should be applied before entering Standby
mode:

• Disable all used wakeup sources,

• Clear all related wakeup flags,

• Re-enable all used wakeup sources,

• Enter Standby mode

Note: Be aware that, when applying this workaround, if one of the wakeup sources is still kept
high, the MCU enters Standby mode but then it wakes up immediately generating a power
reset.

ES0182 Rev 13 15/45

STM32F40x and STM32F41x STM32F40x and STM32F41x silicon limitations

44

2.1.6 Full JTAG configuration without NJTRST pin cannot be used

Description

When using the JTAG debug port in debug mode, the connection with the debugger is lost if
the NJTRST pin (PB4) is used as a GPIO. Only the 4-wire JTAG port configuration is
impacted.

Workaround

Use the SWD debug port instead of the full 4-wire JTAG port.

2.1.7 PDR_ON pin not available on LQFP100 package
for revision Z devices

Description

On revision Z devices, the PDR_ON pin (pin 99) available on LQFP100 package is replaced
by VSS. As a consequence, the POR/PDR feature is always enabled.

Workaround

• Applications using on revision A devices with PDR_ON pin connected to VDD
(POR/PDR feature enabled)

Connect the former PDR_ON pin to VSS on revision Z devices.

• Applications using revision A devices with PDR_ON pin connected to VSS (POR/PDR
feature disabled)

No modification is required when migrating to revision Z devices. However, it is no
longer possible to supply the product from a 1.7 V VDD on LQFP100 package since
VDD minimum value is 1.8 V when the POR/PDR feature is enabled.

2.1.8 Incorrect BOR option byte when consecutively programming
BOR option byte

Description

When the AHB prescaler is greater than 2, and consecutive BOR option byte program
operations are performed without resetting the device, then an incorrect value might be
programmed in the BOR option byte.

Workaround

To program consecutive BOR option byte values, either configure the AHB prescaler to 1 or
2, or perform a system reset between each BOR option byte program operation.

STM32F40x and STM32F41x silicon limitations STM32F40x and STM32F41x

16/45 ES0182 Rev 13

2.1.9 Configuration of PH10 and PI10 as external interrupts is erroneous

Description

PH10 or PI10 is selected as the source for the EXTI10 external interrupt by setting bits
EXTI10[3:0] of SYSCFG_EXTICR3 register to 0x0111 or 0x1000, respectively. However,
this erroneous operation enables PH2 and PI2 as external interrupt inputs.

As a result, it is not possible to use PH10/PI10 as interrupt sources if PH2/PI2 are not
selected as the interrupt source, as well. This means that bits EXTI10[3:0] of
SYSCFG_EXTICR3 register and bits EXTI2[3:0] of SYSCFG_EXTICR1 should be
programmed to the same value:

• 0x0111 to select PH10/PH2

• 0x1000 to select PI10/PI2

Workaround

None.

2.1.10 DMA2 data corruption when managing AHB and APB peripherals in a
concurrent way

Description

When the DMA2 is managing AHB Peripherals (read- or write-sensitive devices such as
peripherals embedding FIFOs or GPIOs) and also APB transfers in a concurrent way, this
generates a data corruption (multiple DMA access). When this condition occurs:

• The data transferred by the DMA to the AHB peripherals could be corrupted in case of
a FIFO target.

• For memories, it will result in multiple access (not visible by the Software) and the data
is not corrupted.

• For the DCMI, a multiple unacknowledged request could be generated, which implies
an unknown behavior of the DMA.

AHB peripherals embedding FIFO are DCMI, CRYPTO, and HASH. Also we can consider
external FIFO controlled by the FSMC and GPIO Output Data register as AHB write
sensitive peripherals.

On sales types without CRYPTO, mainly impacted peripheral is the DCMI peripheral which
embeds a FIFO. External FIFO controlled by the FSMC and GPIOs when used as parallel
output are also impacted.

Workaround

Avoid concurrent AHB (DCMI, CRYPTO, HASH, FSMC with external FIFO, or GPIOs output
data register) and APB transfer management using the DMA2.

ES0182 Rev 13 17/45

STM32F40x and STM32F41x STM32F40x and STM32F41x silicon limitations

44

2.1.11 Slowing down APB clock during a DMA transfer

Description

When the CPU modifies the APB clock (slows down the clock: changes AHB/APB prescaler
from 1 to 2, 1 to 4, 1 to 8 or 1 to 16) while the DMA is performing a write access to the same
APB peripherals, the current DMA transfer will be blocked. Only system reset will recover.

Workaround

Before slowing down the APB clock, wait until the end of the DMA transfer on this APB.

2.1.12 MPU attribute to RTC and IWDG registers could be managed
incorrectly

Description

If the MPU is used and the non bufferable attribute is set to the RTC or IWDG memory map
region, the CPU access to the RTC or IWDG registers could be treated as bufferable,
provided that there is no APB prescaler configured (AHB/APB prescaler is equal to 1).

Workaround

If the non bufferable attribute is required for these registers, the software could perform a
read after the write to guaranty the completion of the write access.

2.1.13 Delay after an RCC peripheral clock enabling

Description

A delay between an RCC peripheral clock enable and the effective peripheral enabling
should be taken into account in order to manage the peripheral read/write to registers.

This delay depends on the peripheral mapping:

• If the peripheral is mapped on AHB: the delay should be equal to 2 AHB cycles.

• If the peripheral is mapped on APB: the delay should be equal to 1 + (AHB/APB
prescaler) cycles.

Workarounds

1. Use the DSB instruction to stall the Cortex®-M4 CPU pipeline until the instruction is
completed.

2. Insert “n” NOPs between the RCC enable bit write and the peripheral register writes
(n = 2 for AHB peripherals, n = 1 + AHB/APB prescaler in case of APB peripherals).

3. Or simply insert a dummy read operation from the corresponding register just after
enabling the peripheral clock.

STM32F40x and STM32F41x silicon limitations STM32F40x and STM32F41x

18/45 ES0182 Rev 13

2.1.14 Battery charge monitoring lower than 2.4 Volts

Description

If (VDD = VDDA) is lower than or equal to 2.4 V, the VBAT conversion correctness is not
guaranteed in full temperature and voltage ranges. When VBAT is set, the voltage divider
bridge is enabled and VBAT/2 is connected to the ADC input. In order to monitor the battery
charge correctly, the input of the ADC must not be higher than (VDDA - 0.6 V).

Thus, VBAT/2 < VDD – 0.6 V implies that VDD > 2.4 V.

Workaround

None. (VDD = VDDA) should be greater than 2.4 V.

2.1.15 Internal noise impacting the ADC accuracy

Description

An internal noise generated on VDD supplies and propagated internally may impact the ADC
accuracy.

This noise is always active whatever the power mode of the MCU (RUN or Sleep).

Workarounds

Two steps could be followed to adapt the accuracy level to the application requirements:

1. Configure the Flash ART as Prefetch OFF and (Data + Instruction) cache ON.

2. Use averaging and filtering algorithms on ADC output codes.

For more workaround details of this limitation, refer to AN4073.

2.1.16 RDP level 2 and sector write protection configuration

Description

When the MCU is protected with RDP level2, the configuration of the sector write protection
remains changeable by the user code.

Workarounds

Protect sensitive sectors and FLASH_OPTCR register using the Cortex-M MPU (memory
protection unit) taking special care of ISR management.

2.1.17 Possible delay in backup domain protection disabling/enabling
after programming the DBP bit

Description

Depending on the AHB/APB1 prescaler, a delay between DBP bit programming and the
effective disabling/enabling of the backup domain protection must be taken into account.

The higher APB1 prescaler value, the higher the delay.

ES0182 Rev 13 19/45

STM32F40x and STM32F41x STM32F40x and STM32F41x silicon limitations

44

Workaround

Apply one of the following measures:

• Insert a dummy read operation to the PWR_CR register just after programming the
DBP bit.

• Wait for end of the operation (reset through BDRST bit or write to the backup domain)
via a polling loop on targeted registers.

2.2 TIM limitations

2.2.1 PWM re-enabled in automatic output enable mode despite of
system break

Description

In automatic output enable mode (AOE bit set in TIMx_BDTR register), the break input can
be used to do a cycleby-cycle PWM control for a current mode regulation. A break signal
(typically a comparator with a current threshold) disables the PWM output(s) and the PWM
is re-armed on the next counter period.

However, a system break (typically coming from the CSS Clock security System) is
supposed to stop definitively the PWM to avoid abnormal operation (for example with PWM
frequency deviation).

In the current implementation, the timer system break input is not latched. As a
consequence, a system break indeed disables the PWM output(s) when it occurs, but PWM
output(s) is (are) re-armed on the following counter period.

Workaround

Preferably, implement control loops with the output clear enable function (OCxCE bit in the
TIMx_CCMR1/CCMR2 register), leaving the use of break circuitry solely for internal and/or
external fault protection (AOE bit reset).

STM32F40x and STM32F41x silicon limitations STM32F40x and STM32F41x

20/45 ES0182 Rev 13

2.2.2 Consecutive compare event missed in specific conditions

Description

Every match of the counter (CNT) value with the compare register (CCR) value is expected
to trigger a compare event. However, if such matches occur in two consecutive counter
clock cycles (as consequence of the CCR value change between the two cycles), the
second compare event is missed for the following CCR value changes:

• in edge-aligned mode, from ARR to 0:

– first compare event: CNT = CCR = ARR

– second (missed) compare event: CNT = CCR = 0

• in center-aligned mode while up-counting, from ARR-1 to ARR (possibly a new ARR
value if the period is also changed) at the crest (that is, when TIMx_RCR = 0):

– first compare event: CNT = CCR = (ARR-1)

– second (missed) compare event: CNT = CCR = ARR

• in center-aligned mode while down-counting, from 1 to 0 at the valley (that is, when
TIMx_RCR = 0):

– first compare event: CNT = CCR = 1

– second (missed) compare event: CNT = CCR = 0

This typically corresponds to an abrupt change of compare value aiming at creating a timer
clock single-cycle wide pulse in toggle mode.

As a consequence:

• In toggle mode, the output only toggles once per counter period (squared waveform),
whereas it is expected to toggle twice within two consecutive counter cycles (and so
exhibit a short pulse per counter period).

• In center mode, the compare interrupt flag does note rise and the interrupt is not
generated.

Note: The timer output operates as expected in modes other than the toggle mode.

Workaround

None.

2.2.3 Output compare clear not working with external counter reset

Description

The output compare clear event (ocref_clr) is not correctly generated when the timer is
configured in the following slave modes: Reset mode, Combined reset + trigger mode, and
Combined gated + reset mode.

The PWM output remains inactive during one extra PWM cycle if the following sequence
occurs:

1. the output is cleared by the ocref_clr event

2. the timer reset occurs before the programmed compare event

ES0182 Rev 13 21/45

STM32F40x and STM32F41x STM32F40x and STM32F41x silicon limitations

44

Workaround

Apply one of the following measures:

1. Use BKIN (or BKIN2 if available) input for clearing the output, selecting the Automatic
output enable mode (AOE = 1).

2. Mask the timer reset during the PWM ON time to prevent it from occurring before the
compare event (for example with a spare timer compare channel open-drain output
connected with the reset signal, pulling the timer reset line down).

2.2.4 TRGO and TRGO2 trigger output failure

Description

Some reference manual revisions may omit the following information.

The timers can be linked using ITRx inputs and TRGOx outputs. Additionally, the TRGOx
outputs can be used as triggers for other peripherals (for example ADC). Since this circuitry
is based on pulse generation, care must be taken when initializing master and slave
peripherals or when using different master/slave clock frequencies:

• If the master timer generates a trigger output pulse on TRGOx prior to have the
destination peripheral clock enabled, the triggering system may fail.

• If the frequency of the destination peripheral is modified on-the-fly (clock prescaler
modification), the triggering system may fail.

As a conclusion, the clock of the slave timer or slave peripheral must be enabled prior to
receiving events from the master timer, and must not be changed on-the-fly while triggers
are being received from the master timer.

This is a documentation issue rather than a product limitation.

Workaround

No application workaround is required or applicable as long as the application handles the
clock as indicated.

2.3 IWDG peripheral limitations

2.3.1 RVU and PVU flags are not reset in Stop mode

Description

The RVU and PVU flags of the IWDG_SR register are set by hardware after a write access
to the IWDG_RLR and the IWDG_PR registers, respectively. If the Stop mode is entered
immediately after the write access, the RVU and PVU flags are not reset by hardware.

Before performing a second write operation to the IWDG_RLR or the IWDG_PR register,
the application software must wait for the RVU or PVU flag to be reset. However, since the
RVU/PVU bit is not reset after exiting the Stop mode, the software goes into an infinite loop
and the independent watchdog (IWDG) generates a reset after the programmed timeout
period.

STM32F40x and STM32F41x silicon limitations STM32F40x and STM32F41x

22/45 ES0182 Rev 13

Workaround

Wait until the RVU or PVU flag of the IWDG_SR register is reset before entering the Stop
mode.

2.4 RTC limitations

2.4.1 Spurious tamper detection when disabling the tamper channel

Description

If the tamper detection is configured for detection on falling edge event (TAMPFLT=00 and
TAMPxTRG=1) and if the tamper event detection is disabled when the tamper pin is at high
level, a false tamper event is detected.

Workaround

None

2.4.2 Detection of a tamper event occurring before enabling the tamper
detection is not supported in edge detection mode

Description

When the tamper detection is enabled in edge detection mode (TAMPFLT=00):

• When TAMPxTRG=0 (rising edge detection): if the tamper input is already high before
enabling the tamper detection, the tamper event may or may not be detected when
enabling the tamper detection. The probability to detect it increases with the APB
frequency.

• When TAMPxTRG=1 (falling edge detection): if the tamper input is already low before
enabling the tamper detection, the tamper event is not detected when enabling the
tamper detection.

Workaround

The I/O state should be checked by software in the GPIO registers, just after enabling the
tamper detection and before writing sensitive values in the backup registers, in order to
ensure that no active edge occurred before enabling the tamper event detection.

2.4.3 RTC calendar registers are not locked properly

Description

When reading the calendar registers with BYPSHAD=0, the RTC_TR and RTC_DR
registers may not be locked after reading the RTC_SSR register. This happens if the read
operation is initiated one APB clock period before the shadow registers are updated. This
can result in a non-consistency of the three registers. Similarly, RTC_DR register can be
updated after reading the RTC_TR register instead of being locked.

ES0182 Rev 13 23/45

STM32F40x and STM32F41x STM32F40x and STM32F41x silicon limitations

44

Workaround

1. Use BYPSHAD = 1 mode (Bypass shadow registers), or

2. If BYPSHAD = 0, read SSR again after reading SSR/TR/DR to confirm that SSR is still
the same, otherwise read the values again.

2.5 I2C peripheral limitations

2.5.1 SMBus standard not fully supported

Description

The I2C peripheral is not fully compliant with the SMBus v2.0 standard since It does not
support the capability to NACK an invalid byte/command.

Workarounds

A higher-level mechanism should be used to verify that a write operation is being performed
correctly at the target device, such as:

1. Using the SMBAL pin if supported by the host

2. the alert response address (ARA) protocol

3. the Host notify protocol

2.5.2 Start cannot be generated after a misplaced Stop

Description

If a master generates a misplaced Stop on the bus (bus error) while the microcontroller I2C
peripheral attempts to switch to Master mode by setting the START bit, the Start condition is
not properly generated.

Workaround

In the I²C standard, it is allowed to send a Stop only at the end of the full byte (8 bits +
acknowledge), so this scenario is not allowed. Other derived protocols like CBUS allow it,
but they are not supported by the I²C peripheral.

A software workaround consists in asserting the software reset using the SWRST bit in the
I2C_CR1 control register.

2.5.3 Mismatch on the “Setup time for a repeated Start condition” timing
parameter

Description

In case of a repeated Start, the “Setup time for a repeated Start condition” (named Tsu;sta in
the I²C specification) can be slightly violated when the I²C operates in Master Standard
mode at a frequency between 88 kHz and 100 kHz.

STM32F40x and STM32F41x silicon limitations STM32F40x and STM32F41x

24/45 ES0182 Rev 13

The limitation can occur only in the following configuration:

• in Master mode

• in Standard mode at a frequency between 88 kHz and 100 kHz (no limitation in Fast-
mode)

• SCL rise time:

– If the slave does not stretch the clock and the SCL rise time is more than 300 ns (if
the SCL rise time is less than 300 ns, the limitation cannot occur)

– If the slave stretches the clock

The setup time can be violated independently of the APB peripheral frequency.

Workaround

Reduce the frequency down to 88 kHz or use the I²C Fast-mode, if supported by the slave.

2.5.4 Data valid time (tVD;DAT) violated without the OVR flag being set

Description

The data valid time (tVD;DAT, tVD;ACK) described by the I²C standard can be violated (as well
as the maximum data hold time of the current data (tHD;DAT)) under the conditions described
below. This violation cannot be detected because the OVR flag is not set (no transmit buffer
underrun is detected).

This limitation can occur only under the following conditions:

• in Slave transmit mode

• with clock stretching disabled (NOSTRETCH=1)

• if the software is late to write the DR data register, but not late enough to set the OVR
flag (the data register is written before)

Workaround

If the master device allows it, use the clock stretching mechanism by programming the bit
NOSTRETCH=0 in the I2C_CR1 register.

If the master device does not allow it, ensure that the software is fast enough when polling
the TXE or ADDR flag to immediately write to the DR data register. For instance, use an
interrupt on the TXE or ADDR flag and boost its priority to the higher level.

2.5.5 Both SDA and SCL maximum rise time (tr) violated when VDD_I2C bus
higher than ((VDD+0.3) / 0.7) V

Description

When an external legacy I2C bus voltage (VDD_I2C) is set to 5 V while the MCU is powered
from VDD, the internal 5-Volt tolerant circuitry is activated as soon the input voltage (VIN)
reaches the VDD + diode threshold level. An additional internal large capacitance then
prevents the external pull-up resistor (RP) from rising the SDA and SCL signals within the
maximum timing (tr) which is 300 ns in fast mode and 1000 ns in Standard mode.

The rise time (tr) is measured from VIL and VIH with levels set at 0.3VDD_I2C and
0.7VDD_I2C.

ES0182 Rev 13 25/45

STM32F40x and STM32F41x STM32F40x and STM32F41x silicon limitations

44

Workaround

The external VDD_I2C bus voltage should be limited to a maximum value of
((VDD+0.3) / 0.7) V. As a result, when the MCU is powered from VDD=3.3 V, VDD_I2C
should not exceed 5.14 V to be compliant with I2C specifications.

2.5.6 Spurious Bus Error detection in Master mode

Description

In Master mode, a bus error can be detected by mistake, so the BERR flag can be wrongly
raised in the status register. This will generate a spurious Bus Error interrupt if the interrupt
is enabled. A bus error detection has no effect on the transfer in Master mode, therefore the
I2C transfer can continue normally.

Workaround

If a bus error interrupt is generated in Master mode, the BERR flag must be cleared by
software. No other action is required and the on-going transfer can be handled normally.

2.6 SPI peripheral limitations

2.6.1 Wrong CRC calculation when the polynomial is even

Description

When the CRC is enabled, the CRC calculation will be wrong if the polynomial is even.

Work-around

Use odd polynomial.

2.6.2 Corrupted last bit of data and/or CRC, received in Master mode with
delayed SCK feedback

Description

In receive transaction, in both I2S and SPI Master modes, the last bit of the transacted frame
is not captured when the signal provided by internal feedback loop from the SCK pin
exceeds a critical delay. The lastly transacted bit of the stored data then keeps the value
from the pattern received previously. As a consequence, the last receive data bit may be
wrong and/or the CRCERR flag can be unduly asserted in the SPI mode if any data under
check sum and/or just the CRC pattern is wrongly captured.

In SPI mode, data are synchronous with the APB clock. A delay of up to two APB clock
periods can thus be tolerated for the internal feedback delay. The I2S mode is more
sensitive than the SPI mode, especially in the case where an odd I2S prescaler factor is set
and the APB clock is the system clock divided by two. In this case, the internal feedback
delay is lower than 1.5 APB clock period.

The main factors contributing to the delay increase are low VDD level, high temperature,
high SCK pin capacitive load and low SCK I/O output speed. The SPI communication speed
has no impact.

STM32F40x and STM32F41x silicon limitations STM32F40x and STM32F41x

26/45 ES0182 Rev 13

Workarounds

The following workaround can be adopted, jointly or individually:

• Decrease the APB clock speed.

• Configure the I/O pad of the SCK pin to be faster.

The following table gives the maximum allowable APB frequency (that still prevents the
issue from occurring) versus GPIOx_OSPEEDR output speed for the SCK pin, with a 30 pF
capacitive load.

2.6.3 BSY bit may stay high at the end of a data transfer in Slave mode

Description

BSY flag may sporadically remain high at the end of a data transfer in Slave mode. The
issue appears when an accidental synchronization happens between internal CPU clock
and external SCK clock provided by master.

This is related to the end of data transfer detection while the SPI is enabled in Slave mode.

As a consequence, the end of data transaction may be not recognized when software needs
to monitor it (e.g. at the end of session before entering the low-power mode or before
direction of data line has to be changed at half duplex bidirectional mode). The BSY flag is
unreliable to detect the end of any data sequence transaction.

Workaround

When NSS hardware management is applied and NSS signal is provided by master, the end
of a transaction can be detected by the NSS polling by slave.

• If SPI receiving mode is enabled, the end of a transaction with master can be detected
by the corresponding RXNE event signalizing the last data transfer completion.

• In SPI transmit mode, user can check the BSY under timeout corresponding to the time
necessary to complete the last data frame transaction. The timeout should be
measured from TXE event signalizing the last data frame transaction start (it is raised
once the second bit transaction is ongoing). Either BSY becomes low normally or the
timeout expires when the synchronization issue happens.

When upper workarounds are not applicable, the following sequence can be used to
prevent the synchronization issue at SPI transmit mode.

1. Write last data to data register.

2. Poll TXE until it becomes high to ensure the data transfer has started.

3. Disable SPI by clearing SPE while the last data transfer is still ongoing.

4. Poll the BSY bit until it becomes low.

Table 5. Maximum allowable APB frequency at 30 pF load

OSPEEDR [1:0]

for SCK pin

Max. APB frequency
for SPI mode

[MHz]

Max. APB frequency
for I2S mode

[MHz]

11 (very high), 10 (high) 84 42

01 (medium) 75 35

00 (low) 25 16

ES0182 Rev 13 27/45

STM32F40x and STM32F41x STM32F40x and STM32F41x silicon limitations

44

5. The BSY flag works correctly and can be used to recognize the end of the transaction.

Note: This workaround can be used only when CPU has enough performance to disable SPI after
TXE event is detected while the data frame transfer is still ongoing. It is impossible to
achieve it when ratio between CPU and SPI clock is low and data frame is short especially.
In this specific case timeout can be measured from TXE, while calculating fixed number of
CPU clock periods corresponding to the time necessary to complete the data frame
transaction.

2.7 I2S peripheral limitations

2.7.1 In I2S Slave mode, WS level must be set by the
external master when enabling the I2S

Description

In Slave mode, the WS signal level is used only to start the communication. If the I2S (in
Slave mode) is enabled while the master is already sending the clock and the WS signal
level is low (for I2S protocol) or is high (for the LSB or MSB-justified mode), the slave starts
communicating data immediately. In this case, the master and slave will be desynchronized
throughout the whole communication.

Workaround

The I2S peripheral must be enabled when the external master sets the WS line at:

• High level when the I2S protocol is selected.

• Low level when the LSB or MSB-justified mode is selected.

2.7.2 I2S2 in full-duplex mode may not work properly when SCK and
WS signals are mapped on PI1 and PI0 respectively

Description

When SCK and WS signals are used to support I2S full-duplex through GPIO port I: PI1 and
PI0 respectively, the I2S2 peripheral cannot be able to provide internally SCK signal and
WS signal to I2S2_ext interface. In this case, I2S2_ext interface will not be able to
send/receive data.

Workaround

Other mapped pins for SCK and WS signals can be used on GPIO Port B as below:

• I2S2 CK signal: PB10 pin or PB13 pin.

• I2S2 WS signal: PB12 pin or PB9 pin.

STM32F40x and STM32F41x silicon limitations STM32F40x and STM32F41x

28/45 ES0182 Rev 13

2.7.3 Corrupted last bit of data and/or CRC, received in Master mode
with delayed SCK feedback

The limitation described in Section 2.6.2: Corrupted last bit of data and/or CRC, received in
Master mode with delayed SCK feedback also applies to I2S interface.

2.8 USART peripheral limitations

2.8.1 Idle frame is not detected if receiver clock speed is deviated

Description

If the USART receives an idle frame followed by a character, and the clock of the transmitter
device is faster than the USART receiver clock, the USART receive signal falls too early
when receiving the character start bit, with the result that the idle frame is not detected
(IDLE flag is not set).

Workaround

None.

2.8.2 In full-duplex mode, the Parity Error (PE) flag can be cleared by
writing to the data register

Description

In full-duplex mode, when the Parity Error flag is set by the receiver at the end of a
reception, it may be cleared while transmitting by reading the USART_SR register to check
the TXE or TC flags and writing data to the data register.

Consequently, the software receiver can read the PE flag as '0' even if a parity error
occurred.

Workaround

The Parity Error flag should be checked after the end of reception and before transmission.

2.8.3 Parity Error (PE) flag is not set when receiving in Mute mode
using address mark detection

Description

The USART receiver is in Mute mode and is configured to exit the Mute mode using the
address mark detection. When the USART receiver recognizes a valid address with a parity
error, it exits the Mute mode without setting the Parity Error flag.

Workaround

None.

ES0182 Rev 13 29/45

STM32F40x and STM32F41x STM32F40x and STM32F41x silicon limitations

44

2.8.4 Break frame is transmitted regardless of nCTS input line status

Description

When CTS hardware flow control is enabled (CTSE = 1) and the Send Break bit (SBK) is
set, the transmitter sends a break frame at the end of the current transmission regardless of
nCTS input line status.

Consequently, if an external receiver device is not ready to accept a frame, the transmitted
break frame is lost.

Workaround

None.

2.8.5 nRTS signal abnormally driven low after a protocol violation

Description

When RTS hardware flow control is enabled, the nRTS signal goes high when data is
received. If this data was not read and new data is sent to the USART (protocol violation),
the nRTS signal goes back to low level at the end of this new data.

Consequently, the sender gets the wrong information that the USART is ready to receive
further data.

On USART side, an overrun is detected, which indicates that data has been lost.

Workaround

Workarounds are required only if the other USART device violates the communication
protocol, which is not the case in most applications.

Two workarounds can be used:

• After data reception and before reading the data in the data register, the software takes
over the control of the nRTS signal as a GPIO and holds it high as long as needed. If
the USART device is not ready, the software holds the nRTS pin high, and releases it
when the device is ready to receive new data.

• The time required by the software to read the received data must always be lower than
the duration of the second data reception. For example, this can be ensured by treating
all the receptions by DMA mode.

STM32F40x and STM32F41x silicon limitations STM32F40x and STM32F41x

30/45 ES0182 Rev 13

2.8.6 Start bit detected too soon when sampling for NACK signal
from the smartcard

Description

According to ISO/IEC 7816-3 standard, when a character parity error is detected, the
receiver shall transmit a NACK error signal 10.5 ± 0.2 ETUs after the character START bit
falling edge. In this case, the transmitter should be able to detect correctly the NACK signal
until 11 ± 0.2 ETUs after the character START bit falling edge.

In Smartcard mode, the USART peripheral monitors the NACK signal during the receiver
time frame (10.5 ± 0.2 ETUs), while it should wait for it during the transmitter one (11 ± 0.2
ETUs). In real cases, this would not be a problem as the card itself needs to respect a 10.7
ETU period when sending the NACK signal. However this may be an issue to undertake a
certification.

Workaround

None

2.8.7 Break request can prevent the Transmission Complete flag (TC)
from being set

Description

After the end of transmission of a data (D1), the Transmission Complete (TC) flag will not be
set if the following conditions are met:

• CTS hardware flow control is enabled.

• D1 is being transmitted.

• A break transfer is requested before the end of D1 transfer.

• nCTS is de-asserted before the end of D1 data transfer.

Workaround

If the application needs to detect the end of a data transfer, the break request should be
issued after checking that the TC flag is set.

2.8.8 Guard time is not respected when data are sent on TXE events

Description

In smartcard mode, when sending a data on TXE event, the programmed guard time is not
respected i.e. the data written in the data register is transferred on the bus without waiting
the completion of the guardtime duration corresponding to the previous transmitted data.

Workaround

Write the data after TC is set because in smartcard mode, the TC flag is set at the end of the
guard time duration.

ES0182 Rev 13 31/45

STM32F40x and STM32F41x STM32F40x and STM32F41x silicon limitations

44

2.8.9 nRTS is active while RE or UE = 0

Description

The nRTS line is driven low as soon as RTSE bit is set even if the USART is disabled (UE =
0) or if the receiver is disabled (RE=0) i.e. not ready to receive data.

Workaround

Configure the I/O used for nRTS as an alternate function after setting the UE and RE bits.

2.9 bxCAN limitations

2.9.1 bxCAN time triggered communication mode not supported

Description

The time triggered communication mode described in the reference manual is not
supported. As a result timestamp values are not available. TTCM bit must be kept cleared in
the CAN_MCR register (time triggered communication mode disabled).

Workaround

None

2.10 OTG_FS peripheral limitations

2.10.1 Data in RxFIFO is overwritten when all channels are disabled
simultaneously

Description

If the available RxFIFO is just large enough to host 1 packet + its data status, and is
currently occupied by the last received data + its status and, at the same time, the
application requests that more IN channels be disabled, the OTG_FS peripheral does not
first check for available space before inserting the disabled status of the IN channels. It just
inserts them by overwriting the existing data payload.

Workaround

Use one of the following recommendations:

1. Configure the RxFIFO to host a minimum of 2 × MPSIZ + 2 × data status entries.

2. The application has to check the RXFLVL bit (RxFIFO non-empty) in the
OTG_FS_GINTSTS register before disabling each IN channel. If this bit is not set, then
the application can disable an IN channel at a time. Each time the application disables
an IN channel, however, it first has to check that the RXFLVL bit = 0 condition is true.

STM32F40x and STM32F41x silicon limitations STM32F40x and STM32F41x

32/45 ES0182 Rev 13

2.10.2 OTG host blocks the receive channel when receiving IN packets and no
TxFIFO is configured

Description

When receiving data, the OTG_FS core erroneously checks for available TxFIFO space
when it should only check for RxFIFO space. If the OTG_FS core cannot see any space
allocated for data transmission, it blocks the reception channel and no data is received.

Workaround

Set at least one TxFIFO equal to the maximum packet size. In this way, the host application,
which intends to supports only IN traffic, also has to allocate some space for the TxFIFO.

Since a USB host is expected to support any kind of connected endpoint, it is good practice
to always configure enough TxFIFO space for OUT endpoints.

2.10.3 Host channel-halted interrupt not generated when the channel is
disabled

Description

When the application enables, then immediately disables the host channel before the
OTG_FS host has had time to begin the transfer sequence, the OTG_FS core, as a host,
does not generate a channel-halted interrupt. The OTG_FS core continues to operate
normally.

Workaround

Do not disable the host channel immediately after enabling it.

2.10.4 Error in software-read OTG_FS_DCFG register values

Description

When the application writes to the DAD and PFIVL bitfields in the OTG_FS_DCFG register,
and then reads the newly written bitfield values, the read values may not be correct.

The values written by the application, however, are correctly retained by the core, and the
normal operation of the device is not affected.

Workaround

Do not read from the OTG_FS_DCFG register’s DAD and PFIVL bitfields just after
programming them.

ES0182 Rev 13 33/45

STM32F40x and STM32F41x STM32F40x and STM32F41x silicon limitations

44

2.11 Ethernet peripheral limitations

2.11.1 Incorrect layer 3 (L3) checksum is inserted in transmitted IPv6 packets
without TCP, UDP or ICMP payloads

Description

The application provides the per-frame control to instruct the MAC to insert the L3
checksums for TCP, UDP and ICMP packets. When automatic checksum insertion is
enabled and the input packet is an IPv6 packet without the TCP, UDP or ICMP payload, then
the MAC may incorrectly insert a checksum into the packet. For IPv6 packets without a TCP,
UDP or ICMP payload, the MAC core considers the next header (NH) field as the extension
header and continues to parse the extension header. Sometimes, the payload data in such
packets matches the NH field for TCP, UDP or ICMP and, as a result, the MAC core inserts
a checksum.

Workaround

When the IPv6 packets have a TCP, UDP or ICMP payload, enable checksum insertion for
transmit frames, or bypass checksum insertion by using the CIC (checksum insertion
control) bits in TDES0 (bits 23:22).

2.11.2 The Ethernet MAC processes invalid extension headers in the received
IPv6 frames

Description

In IPv6 frames, there can be zero or some extension headers preceding the actual IP
payload. The Ethernet MAC processes the following extension headers defined in the IPv6
protocol: Hop-by-Hop Options header, Routing header and Destination Options header.
All extension headers, except the Hop-by-Hop extension header, can be present multiple
times and in any order before the actual IP payload. The Hop-by-Hop extension header, if
present, has to come immediately after the IPv6’s main header.

The Ethernet MAC processes all (valid or invalid) extension headers including the Hop-by-
Hop extension headers that are present after the first extension header. For this reason, the
GMAC core will accept IPv6 frames with invalid Hop-by-Hop extension headers. As a
consequence, it will accept any IP payload as valid IPv6 frames with TCP, UDP or ICMP
payload, and then incorrectly update the Receive status of the corresponding frame.

Workaround

None.

STM32F40x and STM32F41x silicon limitations STM32F40x and STM32F41x

34/45 ES0182 Rev 13

2.11.3 MAC stuck in the Idle state on receiving the TxFIFO flush command
exactly 1 clock cycle after a transmission completes

Description

When the software issues a TxFIFO flush command, the transfer of frame data stops (even
in the middle of a frame transfer). The TxFIFO read controller goes into the Idle state
(TFRS=00 in ETH_MACDBGR) and then resumes its normal operation.

However, if the TxFIFO read controller receives the TxFIFO flush command exactly one
clock cycle after receiving the status from the MAC, the controller remains stuck in the Idle
state and stops transmitting frames from the TxFIFO. The system can recover from this
state only with a reset (e.g. a soft reset).

Workaround

Do not use the TxFIFO flush feature.

If TXFIFO flush is really needed, wait until the TxFIFO is empty prior to using the TxFIFO
flush command.

2.11.4 Transmit frame data corruption

Frame data corrupted when the TxFIFO is repeatedly transitioning from non-empty to empty
and then back to non-empty.

Description

Frame data may get corrupted when the TxFIFO is repeatedly transitioning from non-empty
to empty for a very short period, and then from empty to non-empty, without causing an
underflow.

This transitioning from non-empty to empty and back to non-empty happens when the rate
at which the data is being written to the TxFIFO is almost equal to or a little less than the
rate at which the data is being read.

This corruption cannot be detected by the receiver when the CRC is inserted by the MAC,
as the corrupted data is used for the CRC computation.

Workaround

Use the Store-and-Forward mode: TSF=1 (bit 21 in ETH_DMAOMR). In this mode, the data
is transmitted only when the whole packet is available in the TxFIFO.

ES0182 Rev 13 35/45

STM32F40x and STM32F41x STM32F40x and STM32F41x silicon limitations

44

2.11.5 Successive write operations to the same register might not be fully
taken into account

Description

A write to a register might not be fully taken into account if a previous write to the same
register is performed within a time period of four TX_CLK/RX_CLK clock cycles. When this
error occurs, reading the register returns the most recently written value, but the Ethernet
MAC continues to operate as if the latest write operation never occurred.

See Table 6: Impacted registers and bits for the registers and bits impacted by this limitation.

Table 6. Impacted registers and bits

Register name Bit number Bit name

DMA registers

ETH_DMABMR 7 EDFE

ETH_DMAOMR

26 DTCEFD

25 RSF

20 FTF

7 FEF

6 FUGF

4:3 RTC

GMAC registers

ETH_MACCR

25 CSTF

23 WD

22 JD

19:17 IFG

16 CSD

14 FES

13 ROD

12 LM

11 DM

10 IPCO

9 RD

7 APCS

6:5 BL

4 DC

3 TE

2 RE

ETH_MACFFR MAC frame filter register

ETH_MACHTHR 31:0 Hash Table High Register

STM32F40x and STM32F41x silicon limitations STM32F40x and STM32F41x

36/45 ES0182 Rev 13

ETH_MACHTLR 31:0 Hash Table Low Register

ETH_MACFCR

31:16 PT

7 ZQPD

5:4 PLT

3 UPFD

2 RFCE

1 TFCE

0 FCB/BPA

ETH_MACVLANTR
16 VLANTC

15:0 VLANTI

ETH_MACRWUFFR - all remote wakeup registers

ETH_MACPMTCSR

31 WFFRPR

9 GU

2 WFE

1 MPE

0 PD

ETH_MACA0HR - MAC address 0 high register

ETH_MACA0LR - MAC address 0 low register

ETH_MACA1HR - MAC address 1 high register

ETH_MACA1LR - MAC address 1 low register

ETH_MACA2HR - MAC address 2 high register

ETH_MACA2LR - MAC address 2 low register

ETH_MACA3HR - MAC address 3 high register

ETH_MACA3LR - MAC address 3 low register

IEEE 1588 time stamp registers

Table 6. Impacted registers and bits (continued)

Register name Bit number Bit name

ES0182 Rev 13 37/45

STM32F40x and STM32F41x STM32F40x and STM32F41x silicon limitations

44

Workaround

Two workarounds could be applicable:

• Ensure a delay of four TX_CLK/RX_CLK clock cycles between the successive write
operations to the same register.

• Make several successive write operations without delay, then read the register when all
the operations are complete, and finally reprogram it after a delay of four
TX_CLK/RX_CLK clock cycles.

2.12 FSMC peripheral limitations

2.12.1 Dummy read cycles inserted when reading synchronous memories

Description

When performing a burst read access to a synchronous memory, two dummy read accesses
are performed at the end of the burst cycle whatever the type of AHB burst access.
However, the extra data values which are read are not used by the FSMC and there is no
functional failure.

Workaround

None.

ETH_PTPTSCR

18 TSPFFMAE

17:16 TSCNT

15 TSSMRME

14 TSSEME

13 TSSIPV4FE

12 TSSIPV6FE

11 TSSPTPOEFE

10 TSPTPPSV2E

9 TSSSR

8 TSSARFE

5 TSARU

3 TSSTU

2 TSSTI

1 TSFCU

0 TSE

Table 6. Impacted registers and bits (continued)

Register name Bit number Bit name

STM32F40x and STM32F41x silicon limitations STM32F40x and STM32F41x

38/45 ES0182 Rev 13

2.12.2 FSMC synchronous mode and NWAIT signal disabled

Description

When the FSMC synchronous mode operates with the NWAIT signal disabled, if the polarity
(WAITPOL in the FSMC_BCRx register) of the NWAIT signal is identical to that of the
NWAIT input signal level, the system hangs and no fault is generated.

Workaround

PD6 (NWAIT signal) must not be connected to AF12 and the NWAIT polarity must be
configured to active high (set WAITPOL bit to 1 in FSMC_BCRx register).

2.12.3 FSMC NOR Flash/PSRAM controller asynchronous access on bank 2
to 4 when bank 1 is in synchronous mode
(CBURSTRW bit is set)

Description

If bank 1 of NOR/PSRAM controller is enabled in synchronous write mode (CBURSTRW bit
set), while any other NOR/PSRAM banks (2 to 4) are enabled in asynchronous mode, two
limitations occur:

• The byte lane NBL[1:0] are not active(kept at ‘1’) for the first write access to the
asynchronous memory.

• The system hangs without any fault generation when a write access is performed to an
asynchronous memory with the extended feature enabled.

These two limitations occur only when the NOR/PSRAM bank 1 is configured in
synchronous write mode (CBURSTRW bit set).

Workaround

If multiple banks are enabled with mixed asynchronous and synchronous write modes, use
any NOR/PSRAM bank for synchronous write access, except for bank 1.

2.13 SDIO peripheral limitations

2.13.1 SDIO HW flow control

Description

When enabling the HW flow control by setting bit 14 of the SDIO_CLKCR register to ‘1’,
glitches can occur on the SDIOCLK output clock resulting in wrong data to be written into
the SD/MMC card or into the SDIO device. As a consequence, a CRC error will be reported
to the SD/SDIO MMC host interface (DCRCFAIL bit set to ‘1’ in SDIO_STA register).

Workaround

None.

Note: Do not use the HW flow control. Overrun errors (Rx mode) and FIFO underrun (Tx mode)
should be managed by the application software.

ES0182 Rev 13 39/45

STM32F40x and STM32F41x STM32F40x and STM32F41x silicon limitations

44

2.13.2 Wrong CCRCFAIL status after a response without CRC is received

Description

The CRC is calculated even if the response to a command does not contain any CRC field.
As a consequence, after the SDIO command IO_SEND_OP_COND (CMD5) is sent, the
CCRCFAIL bit of the SDIO_STA register is set.

Workaround

The CCRCFAIL bit in the SDIO_STA register shall be ignored by the software. CCRCFAIL
must be cleared by setting CCRCFAILC bit of the SDIO_ICR register after reception of the
response to the CMD5 command.

2.13.3 SDIO clock divider BYPASS mode may not work properly

Description

In high speed communication mode, when SDIO_CK is equal to 48 MHz
(PLL48_output = 48 MHz), the BYPASS bit is equal to ‘1’ and the NEGEDGE bit is equal to
‘0’ (respectively bit 10 and bit 13 in the SDIO_CLKCR register), the hold timing at the I/O pin
is not aligned with the SD/MMC 2.0 specifications.

Workaround

When not using USB nor RNG, PLL48_output (SDIOCLK) frequency can be raised up to
75 MHz, allowing to reach 37.5 MHz on SDIO_CK in high speed mode. The BYPASS bit,
the CLKDIV bit and the NEGEDGE bit are equal to ‘0’.

2.13.4 Data corruption in SDIO clock dephasing (NEGEDGE) mode

Description

When NEGEDGE bit is set to ‘1’, it may lead to invalid data and command response read.

Workaround

None. A configuration with the NEGEDGE bit equal to ‘1’ should not be used.

2.13.5 CE-ATA multiple write command and card busy signal management

Description

The CE-ATA card may inform the host that it is busy by driving the SDIO_D0 line low, two
cycles after the transfer of a write command (RW_MULTIPLE_REGISTER or
RW_MULTIPLE_BLOCK). When the card is in a busy state, the host must not send any
data until the BUSY signal is de-asserted (SDIO_D0 released by the card).

This condition is not respected if the data state machine leaves the IDLE state (Write
operation programmed and started, DTEN = 1, DTDIR = 0 in SDIO_DCTRL register and
TXFIFOE = 0 in SDIO_STA register).

As a consequence, the write transfer fails and the data lines are corrupted.

STM32F40x and STM32F41x silicon limitations STM32F40x and STM32F41x

40/45 ES0182 Rev 13

Workaround

After sending the write command (RW_MULTIPLE_REGISTER or
RW_MULTIPLE_BLOCK), the application must check that the card is not busy by polling the
BSY bit of the ATA status register using the FAST_IO (CMD39) command before enabling
the data state machine.

2.13.6 No underrun detection with wrong data transmission

Description

In case there is an ongoing data transfer from the SDIO host to the SD card and the
hardware flow control is disabled (bit 14 of the SDIO_CLKCR is not set), if an underrun
condition occurs, the controller may transmit a corrupted data block (with wrong data word)
without detecting the underrun condition when the clock frequencies have the following
relationship:

[3 x period(PCLK2) + 3 x period(SDIOCLK)] >= (32 / (BusWidth)) x period(SDIO_CK)

Workaround

Avoid the above-mentioned clock frequency relationship, by:

• Incrementing the APB frequency

• or decreasing the transfer bandwidth

• or reducing SDIO_CK frequency

2.14 ADC peripheral limitations

2.14.1 ADC sequencer modification during conversion

Description

When a software start of conversion is used as an ADC trigger, and if the ADC_SQRx or
ADC_JSQRx registers are modified during the conversion, the current conversion is reset
and the ADC does not automatically restart the new conversion sequence. The hardware
start of conversion trigger is not impacted and the ADC automatically restarts the new
sequence when the next hardware trigger occurs.

Workaround

When a software start of conversion is used, the user application must first set the SWSART
bit in the ADC_CR2 register, and then restart the new conversion sequence.

ES0182 Rev 13 41/45

STM32F40x and STM32F41x STM32F40x and STM32F41x silicon limitations

44

2.15 DAC peripheral limitations

2.15.1 DMA underrun flag management

Description

If the DMA is not fast enough to input the next digital data to the DAC, as a consequence,
the same digital data is converted twice. In these conditions, the DMAUDR flag is set, which
usually leads to disable the DMA data transfers. This is not the case: the DMA is not
disabled by DMAUDR=1, and it keeps servicing the DAC.

Workaround

To disable the DAC DMA stream, reset the EN bit (corresponding to the DAC DMA stream)
in the DMA_SxCR register.

2.15.2 DMA request not automatically cleared by DMAEN=0

Description

if the application wants to stop the current DMA-to-DAC transfer, the DMA request is not
automatically cleared by DMAEN=0, or by DACEN=0.

If the application stops the DAC operation while the DMA request is high, the DMA request
will be pending while the DAC is reinitialized and restarted; with the risk that a spurious
unwanted DMA request is serviced as soon as the DAC is re-enabled.

Workaround

To stop the current DMA-to-DAC transfer and restart, the following sequence should be
applied:

1. Check if DMAUDR is set.

2. Clear the DAC/DMAEN bit.

3. Clear the EN bit of the DAC DMA/Stream

4. Reconfigure by software the DAC, DMA, triggers etc.

5. Restart the application.

Revision history STM32F40x and STM32F41x

42/45 ES0182 Rev 13

3 Revision history

Table 7. Document revision history

Date Revision Changes

19-Sep-2011 1 Initial release.

12-Dec-2011 2

Replaced STM42F4xx by STM32F4xx on cover page.

Added silicon revision Z.

Modified link to Arm 32-bit Cortex-M4F errata notice in Section 1:
Arm® 32-bit Cortex®-M4 with FPU limitations.

Updated status of ART Accelerator prefetch queue and MCU device
ID limitations for revision Z in Table 4: Summary of silicon limitations

Updated Section 2.1.1: ART Accelerator prefetch queue instruction
is not supported and Section 2.1.2: MCU device ID is incorrect to
make differentiate between revision A and revision Z devices.

Added Section 2.1.6: Full JTAG configuration without NJTRST pin
cannot be used, Section 2.1.7: PDR_ON pin not available on
LQFP100 package for revision Z devices, Section 2.1.8: Incorrect
BOR option byte when consecutively programming BOR option byte,
and Section 2.1.9: Configuration of PH10 and PI10 as external
interrupts is erroneous.

Updated workaround for Section 2.8.5: nRTS signal abnormally
driven low after a protocol violation.

Added Section 2.13.2: Wrong CCRCFAIL status after a response
without CRC is received and Section 2.3.1: RVU and PVU flags are
not reset in Stop mode.

03-Aug-2012 3

Added Section : None., Section 2.1.11: Slowing down APB clock
during a DMA transfer, Section 2.1.12: MPU attribute to RTC and
IWDG registers could be managed incorrectly, Section 2.1.13: Delay
after an RCC peripheral clock enabling, Section 2.1.14: Battery
charge monitoring lower than 2.4 Volts and Appendix A: Revision
code on device marking.

Added Section 2.12.2: FSMC synchronous mode and NWAIT signal
disabled.

Added Section 2.13.3: SDIO clock divider BYPASS mode may not
work properly, Section 2.13.4: Data corruption in SDIO clock
dephasing (NEGEDGE) mode and Section 2.13.5: CE-ATA multiple
write command and card busy signal management.

Added Section 2.15: DAC peripheral limitations with Section 2.15.1:
DMA underrun flag management and Section 2.15.2: DMA request
not automatically cleared by DMAEN=0.

ES0182 Rev 13 43/45

STM32F40x and STM32F41x Revision history

44

25-Apr-2013 4

Added Section 1.2: VDIV or VSQRT instructions might not complete
correctly when very short ISRs are used

Removed the reference to ‘Cortex-M4F’ in the whole document.

Updated Table 2: Device summary, Section 2.1.2: MCU device ID is
incorrect. Added Section 2.1.5: Wakeup sequence from Standby
mode when using more than one wakeup source.

Updated Section 2.12.1: Dummy read cycles inserted when reading
synchronous memories.

Added Section 2.2: TIM limitations, Section 2.7.2: I2S2 in full-duplex
mode may not work properly when SCK and WS signals are mapped
on PI1 and PI0 respectively, Section 2.11.5: Successive write
operations to the same register might not be fully taken into account
and Section 2.12.3: FSMC NOR Flash/PSRAM controller
asynchronous access on bank 2 to 4 when bank 1 is in synchronous
mode (CBURSTRW bit is set) , Section 2.13.6: No underrun
detection with wrong data transmission and Section 2.14.1: ADC
sequencer modification during conversion.

Added Figure 6: WLCSP90 top package view.

11-Oct-2013 5

Added silicon revision 1.

Added Section 2.5.5: Both SDA and SCL maximum rise time (tr)
violated when VDD_I2C bus higher than ((VDD+0.3) / 0.7) V.

Moved device marking to datasheets.

21-Jan-2015 6

Added: rev 2 and Y on Table 1: Device identification, Section 1.2:
VDIV or VSQRT instructions might not complete correctly when very
short ISRs are used

Section 2.4: RTC limitations

from Section 2.8.6: Start bit detected too soon when sampling for
NACK signal from the smartcard to Section 2.8.9: nRTS is active
while RE or UE = 0

Section 2.9: bxCAN limitations

Updated Table 4: Summary of silicon limitations

14-Sep-2015 7

Added:Section 2.6: SPI peripheral limitations, Section 2.6.1: Wrong
CRC calculation when the polynomial is even

Section 2.5.6: Spurious Bus Error detection in Master mode.

Section 2.4.7: Wrong behavior related with MCU Stop mode when
wakeup from Stop mode by I2C peripheral is disabled.

Section 2.6.3: BSY bit may stay high at the end of a data transfer in
Slave mode.

Section 2.6.2: Corrupted last bit of data and/or CRC, received in
Master mode with delayed SCK feedback.

Updated:Section 2.1.10: DMA2 data corruption when managing AHB
and APB peripherals in a concurrent way.

Replaced Section 2.1.5: Debugging Stop mode with WFE entry with
Section 2.1.3: Debugging Sleep/Stop mode with WFE/WFI entry.

Table 7. Document revision history (continued)

Date Revision Changes

Revision history STM32F40x and STM32F41x

44/45 ES0182 Rev 13

24-Nov-2016 8

Added workaround in Section 2.1.13: Delay after an RCC peripheral
clock enabling.

Added Section 2.4.3: RTC calendar registers are not locked
properly.

Updated Section 2.6.2: Corrupted last bit of data and/or CRC,
received in Master mode with delayed SCK feedback and added
Section 2.5.3: Wrong CRC transmitted in Master mode with delayed
SCK feedback. Updated Section 2.6.3: BSY bit may stay high at the
end of a data transfer in Slave mode.

Updated limitation description in Section 2.5.2: Start cannot be
generated after a misplaced Stop.

Added Section 2.7.3: Corrupted last bit of data and/or CRC, received
in Master mode with delayed SCK feedback in Section 2.7: I2S
peripheral limitations.

04-Jul-2017 9

Removed Section Wrong CRC transmitted in Master mode with
delayed SCK feedback and Section 2.4.7: Wrong behavior related
with MCU Stop mode when wakeup from Stop mode by I2C
peripheral is disabled. The I2C limitation does not apply to
STM32F40x and STM32F41x microcontrollers.

Updated Section 2.6.2: Corrupted last bit of data and/or CRC,
received in Master mode with delayed SCK feedback.

24-Apr-2019 10

Added revision code “4” in Table 1: Device identification.

Updated Table 4: Summary of silicon limitations.

Added Section 2.1.16: RDP level 2 and sector write protection
configuration.

05-Dec-2019 11
Added Section 2.1.17: Possible delay in backup domain protection
disabling/enabling after programming the DBP bit.

08-Apr-2020 12 Added revision code “4” on document cover page.

04-Jan-2021 13

Removed list of revisions from Section : Silicon identification
introduction.

Added revision 5 and 6.

Added Section 2.2: TIM limitations.

Table 7. Document revision history (continued)

Date Revision Changes

ES0182 Rev 13 45/45

STM32F40x and STM32F41x

45

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics – All rights reserved

	Table 1. Device identification
	Table 2. Device summary
	1 Arm® 32-bit Cortex®-M4 with FPU limitations
	Table 3. Cortex®-M4 core limitations and impact on microcontroller behavior
	1.1 Cortex®-M4 interrupted loads to stack pointer can cause erroneous behavior
	1.2 VDIV or VSQRT instructions might not complete correctly when very short ISRs are used

	2 STM32F40x and STM32F41x silicon limitations
	Table 4. Summary of silicon limitations
	2.1 System limitations
	2.1.1 ART Accelerator prefetch queue instruction is not supported
	2.1.2 MCU device ID is incorrect
	2.1.3 Debugging Sleep/Stop mode with WFE/WFI entry
	2.1.4 Debugging Stop mode and system tick timer
	2.1.5 Wakeup sequence from Standby mode when using more than one wakeup source
	2.1.6 Full JTAG configuration without NJTRST pin cannot be used
	2.1.7 PDR_ON pin not available on LQFP100 package for revision Z devices
	2.1.8 Incorrect BOR option byte when consecutively programming BOR option byte
	2.1.9 Configuration of PH10 and PI10 as external interrupts is erroneous
	2.1.10 DMA2 data corruption when managing AHB and APB peripherals in a concurrent way
	2.1.11 Slowing down APB clock during a DMA transfer
	2.1.12 MPU attribute to RTC and IWDG registers could be managed incorrectly
	2.1.13 Delay after an RCC peripheral clock enabling
	2.1.14 Battery charge monitoring lower than 2.4 Volts
	2.1.15 Internal noise impacting the ADC accuracy
	2.1.16 RDP level 2 and sector write protection configuration
	2.1.17 Possible delay in backup domain protection disabling/enabling after programming the DBP bit

	2.2 TIM limitations
	2.2.1 PWM re-enabled in automatic output enable mode despite of system break
	2.2.2 Consecutive compare event missed in specific conditions
	2.2.3 Output compare clear not working with external counter reset
	2.2.4 TRGO and TRGO2 trigger output failure

	2.3 IWDG peripheral limitations
	2.3.1 RVU and PVU flags are not reset in Stop mode

	2.4 RTC limitations
	2.4.1 Spurious tamper detection when disabling the tamper channel
	2.4.2 Detection of a tamper event occurring before enabling the tamper detection is not supported in edge detection mode
	2.4.3 RTC calendar registers are not locked properly

	2.5 I2C peripheral limitations
	2.5.1 SMBus standard not fully supported
	2.5.2 Start cannot be generated after a misplaced Stop
	2.5.3 Mismatch on the “Setup time for a repeated Start condition” timing parameter
	2.5.4 Data valid time (tVD;DAT) violated without the OVR flag being set
	2.5.5 Both SDA and SCL maximum rise time (tr) violated when VDD_I2C bus higher than ((VDD+0.3) / 0.7) V
	2.5.6 Spurious Bus Error detection in Master mode

	2.6 SPI peripheral limitations
	2.6.1 Wrong CRC calculation when the polynomial is even
	2.6.2 Corrupted last bit of data and/or CRC, received in Master mode with delayed SCK feedback
	Table 5. Maximum allowable APB frequency at 30 pF load

	2.6.3 BSY bit may stay high at the end of a data transfer in Slave mode

	2.7 I2S peripheral limitations
	2.7.1 In I2S Slave mode, WS level must be set by the external master when enabling the I2S
	2.7.2 I2S2 in full-duplex mode may not work properly when SCK and WS signals are mapped on PI1 and PI0 respectively
	2.7.3 Corrupted last bit of data and/or CRC, received in Master mode with delayed SCK feedback

	2.8 USART peripheral limitations
	2.8.1 Idle frame is not detected if receiver clock speed is deviated
	2.8.2 In full-duplex mode, the Parity Error (PE) flag can be cleared by writing to the data register
	2.8.3 Parity Error (PE) flag is not set when receiving in Mute mode using address mark detection
	2.8.4 Break frame is transmitted regardless of nCTS input line status
	2.8.5 nRTS signal abnormally driven low after a protocol violation
	2.8.6 Start bit detected too soon when sampling for NACK signal from the smartcard
	2.8.7 Break request can prevent the Transmission Complete flag (TC) from being set
	2.8.8 Guard time is not respected when data are sent on TXE events
	2.8.9 nRTS is active while RE or UE = 0

	2.9 bxCAN limitations
	2.9.1 bxCAN time triggered communication mode not supported

	2.10 OTG_FS peripheral limitations
	2.10.1 Data in RxFIFO is overwritten when all channels are disabled simultaneously
	2.10.2 OTG host blocks the receive channel when receiving IN packets and no TxFIFO is configured
	2.10.3 Host channel-halted interrupt not generated when the channel is disabled
	2.10.4 Error in software-read OTG_FS_DCFG register values

	2.11 Ethernet peripheral limitations
	2.11.1 Incorrect layer 3 (L3) checksum is inserted in transmitted IPv6 packets without TCP, UDP or ICMP payloads
	2.11.2 The Ethernet MAC processes invalid extension headers in the received IPv6 frames
	2.11.3 MAC stuck in the Idle state on receiving the TxFIFO flush command exactly 1 clock cycle after a transmission completes
	2.11.4 Transmit frame data corruption
	2.11.5 Successive write operations to the same register might not be fully taken into account
	Table 6. Impacted registers and bits

	2.12 FSMC peripheral limitations
	2.12.1 Dummy read cycles inserted when reading synchronous memories
	2.12.2 FSMC synchronous mode and NWAIT signal disabled
	2.12.3 FSMC NOR Flash/PSRAM controller asynchronous access on bank 2 to 4 when bank 1 is in synchronous mode (CBURSTRW bit is set)

	2.13 SDIO peripheral limitations
	2.13.1 SDIO HW flow control
	2.13.2 Wrong CCRCFAIL status after a response without CRC is received
	2.13.3 SDIO clock divider BYPASS mode may not work properly
	2.13.4 Data corruption in SDIO clock dephasing (NEGEDGE) mode
	2.13.5 CE-ATA multiple write command and card busy signal management
	2.13.6 No underrun detection with wrong data transmission

	2.14 ADC peripheral limitations
	2.14.1 ADC sequencer modification during conversion

	2.15 DAC peripheral limitations
	2.15.1 DMA underrun flag management
	2.15.2 DMA request not automatically cleared by DMAEN=0

	3 Revision history
	Table 7. Document revision history (continued)

