
Introduction to the Armv8-M Architecture and its
Programmers Model
Version 1.1

User Guide
Non-Confidential
Copyright © 2022–2023 Arm Limited (or its affiliates).
All rights reserved.

Issue 01
107656_0101_01_en

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Introduction to the Armv8-M Architecture and its Programmers Model
User Guide

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0100-01 4 November 2022 Non-Confidential First release

0101-01 19 July 2023 Non-Confidential Second release

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 42

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 42

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 42

mailto:terms@arm.com

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Contents

Contents

1. Introduction to Armv8 architecture and architecture profiles...7

2. Introduction to Armv8-M architecture... 8
2.1 Baseline and Mainline..9
2.2 Architecture and micro-architecture.. 10
2.2.1 Architecture.. 10
2.2.2 Micro-architecture...10
2.3 Compatibility with Armv6-M and Armv7-M..11

3. Getting started with Armv8-M-based systems.. 12
3.1 Hardware platforms and simulation models...12
3.2 Arm Compiler for Embedded.. 13
3.2.1 Application development...13
3.2.2 Scatter-loading images with simple memory map...14
3.2.3 Tailoring the image memory map to your target hardware...16
3.3 Debug tools support..16
3.4 Common Microcontroller Software Interface Standard (CMSIS)... 16
3.5 Procedure Call Standard for Arm Architecture (AAPCS)... 18
3.6 Arm C Language Extensions (ACLE)..18

4. Operational modes and states.. 19
4.1 Operating states... 19
4.2 Operating modes.. 20
4.3 Privileged and unprivileged execution...20
4.4 Secure and Non-secure states.. 21

5. Registers..22
5.1 Registers in the register bank..22
5.1.1 R0-R12...23
5.1.2 R13, Stack Pointer (SP)..23
5.1.3 R14, Link Register (LR).. 27
5.1.4 R15, Program Counter (PC)..28
5.2 Special-purpose registers..28

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 42

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Contents

5.2.1 Program Status Registers.. 28
5.2.2 Exception mask registers...30
5.2.3 CONTROL register... 32
5.3 Floating-point registers... 35
5.3.1 Using Floating-point extension..36
5.3.2 Floating Point exceptions..38
5.4 Memory-mapped registers... 39
5.4.1 Example 1 - Enable IRQ0... 39
5.4.2 Example 2 - Enable the Floating-Point Unit (FPU)... 40

6. References.. 41

7. Next steps.. 42

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 42

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Introduction to Armv8 architecture and architecture profiles

1. Introduction to Armv8 architecture and
architecture profiles

The Armv8 architecture has several different profiles. These profiles are variants of the architecture
that target different markets and use cases. The Armv8-M architecture is one of these architecture
profiles.

Arm defines three architecture profiles: Application (A), Real-time (R), and Microcontroller (M).

The A profile:

• Supports the AArch64 or AArch32 Execution states

• Supports the A64, A32, and T32 instruction sets

• Supports a Virtual Memory System Architecture (VMSA) based on a Memory Management Unit
(MMU)

The R profile:

• Supports the AArch64 or AArch32 Execution states

• Supports the A64, or A32 and T32 instruction sets

• Supports a Protected Memory System Architecture (PMSA) with optional support for VMSA at
stage 1

The M profile:

• Implements a programmers’ model designed for low-latency interrupt processing, with
hardware stacking of registers and support for writing interrupt handlers in high-level languages

• Supports the T32 instruction set

• Supports a Protected Memory System Architecture (PMSA)

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 42

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Introduction to Armv8-M architecture

2. Introduction to Armv8-M architecture
The Armv8-M architecture defines many aspects of a Cortex-M processor’s behavior, including the
following:

• Programmers’ model

• Instruction set

• Exception model

• Memory model

• Debug components

Armv8-M is a 32-bit architecture, which evolved from the Armv7-M and Armv6-M architectures.
Armv8-M supports a subset of the T32 (Thumb) instruction set architecture. The T32 instruction
set contains 16-bit and 32-bit instructions. All T32 instructions from the Armv7-M and Armv6-M
architectures are supported in Armv8-M. This means that Armv8-M is backward compatible with
both Armv7-M and Armv6-M.

The Armv8-M architecture registers, data operations, and addresses are all 32-bit. Although the
Armv8-M architecture is 32-bit, it also supports data types of various sizes such as 8-bit, 16-bit,
and a limited set of 64-bit operations. The Armv8.1-M optionally supports 128-bit operations as
well.

The 32-bit physical address provides 4GB of address space, which is architecturally pre-defined
into several regions with different memory attributes. Some portions of the memory space are
used by the internal components of the processor core, such as programmable registers for the
following:

• Nested Vectored Interrupt Controller (NVIC)

• SysTick timer

• Memory Protection Unit (MPU)

• System Control Block (SCB)

• Debug components

The rest of the memory space is utilized by chip designers. Architecturally, there is no restriction
on the memory technology that can be connected to the systems, so products from different chip
vendors can all have different types of memories and peripherals.

The following table shows the different generations of Cortex-M processors and the architectures
they are built on:

Table 2-1: Cortex-M processor generations

Generation Processors

Armv7-M generation of Cortex-M processors Cortex-M3, Cortex-M4, Cortex-M7

Armv6-M generation of Cortex-M processors Cortex-M0, Cortex-M0+, Cortex-M1 (FPGA)

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 42

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Introduction to Armv8-M architecture

Generation Processors
Armv8-M generation of Cortex-M processors Cortex-M23, Cortex-M33, Cortex-M35P, Cortex-M55, Cortex-M85

2.1 Baseline and Mainline
The Armv8-M architecture contains a baseline architecture feature set and supports several
optional extensions to Armv8-M.

• Armv8-M Baseline: The simplest Armv8-M implementation, without any of the optional
extensions, is a Baseline implementation.

• Armv8-M Main Extension: An Armv8-M implementation with the Main Extension is also
referred to as a Mainline implementation. The Armv8-M Mainline implementation is the Armv8-
M Baseline plus the Main Extension.

All Armv8-M implementations, both Baseline and Mainline, are compatible with Armv6-M.
However, only Armv8-M Mainline implementations are compatible with Armv7-M. This is shown by
the following diagram:

Figure 2-1: Evolution of architectures for Cortex-M processors

The Armv8-M architecture supports various optional extensions. The key optional extensions and
their abbreviations include the following:

M
Main Extension

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 42

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Introduction to Armv8-M architecture

FP
Floating-point Extension. Enables support for the floating-point unit in an implementation.

MVE
M-Profile Vector Extension. Enables support for the features that are provided by the
Armv8.1 M-Profile Vector Extension (MVE). Armv8-M MVE is also referred to as Arm Helium
Technology for Armv8-M.

MPU
Memory Protection Unit. Enables support for the Memory Protection Unit in an
implementation.

DSP
Digital Signal Processing Extension. Enables a range of instructions for digital signal
processing in an implementation.

DB
Debug Extension. Enables additional debug features in an implementation.

S
Security Extension. The Armv8-M Security Extension is also referred as TrustZone
Technology for Arm Cortex-M processors.

RAS
Reliability, Availability, and Serviceability Extension. Enables RAS support in an
implementation.

2.2 Architecture and micro-architecture
The difference between architecture and micro-architecture is as follows:

2.2.1 Architecture

The details of the architecture used by Cortex-M processors are defined in the Armv8-M
Architecture Reference Manual. For Armv8-M processors, the Armv8-M Architecture Reference
Manual provides the specification of the programmer’s model, instruction set, exception
model, security architecture and debug architectures. The set of rules outlined in the Armv8-M
Architecture Reference Manual outlines the behaviors of each instruction and the support available
for debug tools, but not the details of how the processors are implemented.

2.2.2 Micro-architecture

Each Cortex-M processor has its own implementation level details. For example, the number of
pipeline stage, the architectural features supported, the bus protocol used on the processor. High
level specifications of the processors are detailed in Technical Reference Manuals. For example, the

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 42

https://developer.arm.com/documentation/ddi0553/br/?lang=en
https://developer.arm.com/documentation/ddi0553/br/?lang=en

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Introduction to Armv8-M architecture

Cortex-M33 Technical Reference Manual provides the details of the Cortex-M33 processor. Refer
to the Cortex-M33 Technical Reference Manual for more details.

2.3 Compatibility with Armv6-M and Armv7-M
While the Armv8-M architecture is similar to Armv6-M and Armv7-M architecture, enabling most
applications developed on previous architecture to run on the Armv8-M architecture, it also offers
improvements over previous M-Profile architectures in the following areas:

• The optional Security Extension.

• An improved, optional, Memory Protection Unit (MPU) programmers’ model.

• Alignment with Armv8-A and Armv8-R memory types.

• Stack pointer limit checking.

• Improved support for multi-processing (Exclusive access support).

• Better alignment with C11 and C11++.

Some of these Armv8-M features might impact the RTOS design.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 42

https://developer.arm.com/documentation/100230/latest

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Getting started with Armv8-M-based systems

3. Getting started with Armv8-M-based
systems

This chapter gives a brief introduction about available platform, compiler, tools, and software
support available for Armv8-M-based systems.

3.1 Hardware platforms and simulation models
There are several platforms and simulation models available for Armv8-M-based systems, including
the following:

Fast Models and Fixed Virtual Platforms (FVPs)
An FVP is a virtual development platform built with Arm Fast Models for software
development without a physical board. An FVP can be used standalone from a command-line
interface.

Some FVPs are packaged as part of software development tools like Arm Development
Studio and Keil MDK. These toolkits provide connection dialogs to allow the user to connect
to the FVP through an IDE.

The Fast Models tool provides an environment to design and create custom virtual platforms,
like FVPs, for early software development. The Fast Models tool provides different types of
ready-made M-profile Fast Models. Refer to Fast Models on Arm Developer for more details.
Note that Fast models and FVPs are functional models only and therefore they are not cycle
accurate.

RTL simulators from Arm EDA tool vendors
See the Release Note and Integration and Implementation information for your Armv8-M
implementation for further information on RTL simulator support. For example, if you are
using a Cortex-M55 processor, then refer to the Cortex-M55 Release Note and Arm Cortex-
M55 Processor Integration and Implementation Manual. Note that these documents are
confidential and are only available to licensees.

Arm MPS3 prototyping board
The Arm MPS3 platform provides a way to load pre-built Arm subsystem images into its
FPGA. For more information about the Arm MPS3 platform, see MPS3 FPGA Prototyping
Board on Arm Developer.

Arm Virtual Hardware (AVH)
The AVH provides multiple Arm model platforms for developers to verify and validate
embedded and IoT applications during software design cycle, see arm Virtual Hardware for
more details.

Arm IP Explorer
The Arm IP Explorer is a cloud-based platform that can used by hardware engineers
designing Arm-based systems. Helps create high level SoC design and evaluate IP

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 42

https://developer.arm.com/Tools%20and%20Software/Fast%20Models
https://developer.arm.com/en/dev2/Tools%20and%20Software/MPS3%20FPGA%20Prototyping%20Board
https://developer.arm.com/en/dev2/Tools%20and%20Software/MPS3%20FPGA%20Prototyping%20Board
https://avh.arm.com

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Getting started with Armv8-M-based systems

compatibity. Ideal for SoC architects and system integrators, see Arm IP Explorer for more
details.

Third-party platforms
Arm works closely with its partners who license Arm technology. Arm partners who have
licensed Cortex-M processor(s) Intellectual Property (IP) for design typically develop their
own platforms. Such platforms may be publicly available.

3.2 Arm Compiler for Embedded
Arm Compiler for Embedded is a component of Arm Development Studio and Arm Keil MDK.
Alternatively, you can use Arm Compiler for Embedded as a standalone product.

Arm Compiler for Embedded combines the optimized tools and libraries from Arm with a modern
LLVM-based compiler framework. The components in Arm Compiler for Embedded are:

armclang
The compiler and integrated assembler that compiles C, C++, and GNU assembly language
sources.

armasm
The legacy assembler. Use armasm only for Arm-syntax assembly code.

armlink
The linker combines the contents of one or more object files with selected parts of one or
more object libraries to produce an executable program.

fromelf
The image conversion utility can convert Arm ELF images to binary formats. It can also
generate textual information about the input image, such as its disassembly, code size, and
data size.

Arm C libraries
Arm C libraries provide an implementation of library features as defined in C standards.

For detailed information on Arm Compiler for Embedded please read the following:

• Arm Compiler for Embedded Reference Guide

• Arm Compiler for Embedded User Guide

3.2.1 Application development

A typical application development flow might involve the following:

• Developing C/C++ source code for the main application (armclang).

• Developing assembly source code for near-hardware components, such as interrupt service
routines (armclang, or armasm for legacy assembly code).

• Linking all objects together to generate an image (armlink).

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 42

https://www.arm.com/products/ip-explorer
https://developer.arm.com/documentation/101754/0618/?lang=en
https://developer.arm.com/documentation/100748/0618/?lang=en

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Getting started with Armv8-M-based systems

• Converting an image to flash format in plain binary, Intel Hex, and Motorola-S formats
(fromelf).

The following figure shows how development of a typical application uses the compilation tools:

Figure 3-1: Compilation Tools Flow

3.2.2 Scatter-loading images with simple memory map

For images with a simple memory map, you can specify the memory map using only linker
command-line options, or with a scatter file.

The following figure shows a simple memory map:

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 42

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Getting started with Armv8-M-based systems

Figure 3-2: Scatter File Format

The following example shows the corresponding scatter-loading description that loads the
segments from the object file into memory:

LOAD_ROM 0x0000 0x8000 ; Name of load region (LOAD_ROM),
 ; Start address for load region (0x0000),
 ; Maximum size of load region (0x8000)
{
 EXEC_ROM 0x0000 0x8000 ; Name of first exec region (EXEC_ROM),
 ; Start address for exec region (0x0000),
 ; Maximum size of first exec region (0x8000)
 {
 * (+RO) ; Place all code and RO data into
 ; this exec region
 }
 SRAM 0x10000 0x6000 ; Name of second exec region (SRAM),
 ; Start address of second exec region (0x10000),
 ; Maximum size of second exec region (0x6000)
 {
 * (+RW, +ZI) ; Place all RW and ZI data into
 ; this exec region
 }
}

The maximum size specifications for the regions are optional. However, if you include them, they
enable the linker to check that a region does not overflow its boundary.

Apart from the limit checking, you can achieve the same result with the following linker command-
line:

armlink --ro_base 0x0 --rw_base 0x10000

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 42

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Getting started with Armv8-M-based systems

3.2.3 Tailoring the image memory map to your target hardware

You can use a scatter file to define a memory map, giving you control over the placement of data
and code in memory. In your final embedded system, without semihosting functionality, you are
unlikely to use the default memory map. Your target hardware usually has several memory devices
located at different address ranges. To make the best use of these devices, you must have separate
views of memory at load and runtime.

The following shows how to use a scatter file by running the armlink command with the “–scatter”
option:

armlink --scatter scatter.scat file1.o file2.o

Scatter-loading defines two types of memory regions:

• Load regions containing application code and data at reset and load-time.

• Execution regions containing code and data when the application is executing. One or more
execution regions are created from each load region during application startup.

A single code or data section can only be placed in a single execution region. It cannot be split.

For more details on tailoring your target memory map with stack, heap, and location of target
peripherals, refer to the Embedded Software Development section in the Arm Compiler for
Embedded User Guide.

3.3 Debug tools support
Designed for the Arm architecture, Arm Development Studio (Arm DS) and Keil MDK is the most
comprehensive embedded C/C++ dedicated software development solution which supports debug
for Cortex–M CPUs. Its components include the following:

• Arm Compiler for Embedded 6 for compiling bare-metal embedded applications. Includes
support for the latest Arm architectures.

• Arm Compiler for Embedded FuSa to accelerate the building of safety critical code and simplify
TÜV SÜD certification process.

• Complete library of reference Fixed Virtual Platforms (FVPs) along with pre-built examples.

• Entitlement to Keil MDK Professional Edition is included in Silver, Gold, and Platinum editions.

3.4 Common Microcontroller Software Interface Standard
(CMSIS)

As the complexity of embedded systems increases, the compatibility and portability of software
code becomes even more important. Having a reusable software often helps in reducing the
development time for subsequent projects. To allow a high level of compatibility between software

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 42

https://developer.arm.com/documentation/100748/0618
https://developer.arm.com/documentation/100748/0618

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Getting started with Armv8-M-based systems

products and to improve software portability and reusability, Arm has worked with several
microcontroller tool vendors and software solution providers to develop the CMSIS - a common
software framework for Cortex-M processors and Cortex-M microcontroller products.

CMSIS-Core is part of the Cortex Microcontroller Software Interface Standard (CMSIS) and
provides a standardized API for different aspects of software development for the Cortex-M
devices, including the following:

• Startup and initialization code templates.

• Processor core instruction intrinsics.

• Processor core peripheral functions and macros.

• Device-specific system clock and peripheral macros and functions.

More details on CMSIS-Core source code and documentation are available from the following
CMSIS GitHub repository:

• github.com/ARM-software/CMSIS_5

Few of the popular compilers that CMSIS-Core supports are listed below:

• Arm Compiler (version 5 and later)

• GNU Arm Embedded Toolchain

• IAR C/C++ Compiler

Arm Compiler is available as part of the following products:

• Arm Development Studio (Arm DS)

• Keil Microcontroller Development Kit (Keil MDK)

The following table lists some of the CMSIS-CORE files in a typical Cortex-M33 software project:

File Description

<device>.h Definition of constants, peripheral device register definitions required by CMSIS-CORE

core_cm33.h Definition of registers for processor peripherals such as NVIC, SysTick Timer, System Control Block (SCB)

cmsis_compiler.h Enables selection of compiler-specific header files

cmsis_armclang.h Provides intrinsic functions and core register access functions

cmsis_armcc.h Provides intrinsic functions and core register access functions

cmsis_version.h CMSIS version information

system_<device>.h Header file for functions implemented in system_<device>.c

system_<device>.c 1. System initialization function called void SystemInit(void)

2. Definition of variable for clock SystemCoreClock

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 42

https://github.com/ARM-software/CMSIS_5

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Getting started with Armv8-M-based systems

3.5 Procedure Call Standard for Arm Architecture (AAPCS)
When a function is written using assembly language and needs to interact with other C codes,
there is a range of requirements that need to be followed to allow the interface between software
functions to work. These requirements are captured in the Procedure Call Standard for Arm
Architecture (AAPCS). Some of the main areas covered by the AAPCS are as follows:

Register usage in function calls
Defines the registers that are termed as Caller-saved and Callee-saved. For example, a
function call should retain the values in R4-R11. If these registers need to be changed during
function call execution, then they should be saved and restored before ending the function
call.

Passing parameters to functions
The AAPCS defines the registers to use to pass parameters to function calls. The exact
registers that are used depends on the number and size of the parameters being passed.
For example, in a simple case where there are two integer parameters being passed to a
function, then the AAPCS defines that the R0 and R1 registers could be used to pass the two
parameters.

Stack alignment
If an assembly function needs to call a C function, it should ensure that the current selected
stack pointer points to a doubleword-aligned address location.

For more details, see Procedure Call Standard for Arm Architecture.

3.6 Arm C Language Extensions (ACLE)
The Arm architecture includes features that go beyond the set of operations available to C/C++
programmers. The intention of the Arm C Language Extensions (ACLE) is to allow the creation of
applications and middleware code that is portable across compilers and across Arm architecture
variants while fully utilizing the advanced features of the Arm architecture.

The ACLE standardizes the intrinsics to access Arm instructions which do not map directly to
C operators generally either for optimal implementation of algorithms or for accessing special
system-level features. The ACLE incorporates some language extensions introduced in the GCC
C compiler. The ACLE extends some of the guarantees of C, allowing assumptions to be made in
source code beyond those permitted by Standard C.

The ACLE provides details on supported intrinsics, predefined macros, and attributes. Refer to the
Arm C Language Extensions for more detailed explanations and information about corresponding
architecture features.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 42

https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/acle

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Operational modes and states

4. Operational modes and states
The Armv8-M architecture has two operating states and two operating modes. Along with these
operating modes and states, the Armv8-M architecture supports privileged and unprivileged access
levels. The privileged access level can access all resources in the processor, while the unprivileged
access level means some memory regions are inaccessible and a few operations cannot be used.

4.1 Operating states
The two operating states provided by Armv8-M are as follows:

Thumb state
If the processor is running the software program code (Thumb instructions), it is in Thumb
state. Armv8-M-based processors do not support A32 instruction set and there is no Arm
state.

Debug state
When the processor is halted, for example by a debugger or by hitting a breakpoint, it enters
Debug state and stops executing instructions.

Figure 4-1: Operation states and modes

Debug state is only used for debugging operations. In Debug state, processor execution is halted
and no instructions can be executed by processor. This state is entered by a halt request from
the debugger, or by debug events generated from debug components in the processor. This state
allows the debugger to access or change the processor register values, peripheral registers, and
system memory.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 42

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Operational modes and states

4.2 Operating modes
The two operating modes provided by Armv8-M are as follows:

Thread mode
When executing application code, the processor can be either in privileged access level or
unprivileged access level. This is controlled by the special-purpose CONTROL register. Refer
to Registers for more information about special-purpose registers. On reset, the processor
enters privileged Thread mode in Thumb state. When the processor is executing in Thread
mode, it has an option to switch to using a separate banked Stack Pointer (SP).

Handler mode
When executing an exception handler such as Interrupt Service Routine (ISR), the processor
will be in handler mode. When in handler mode, the processor always has privileged access
level.

By default, the Cortex-M processors start in privileged Thread mode and in Thumb
state. In many simple applications, there is no need to use the unprivileged Thread
model and the banked SP at all.

4.3 Privileged and unprivileged execution
In privileged execution, software can use all instructions and has access to all resources. Privileged
software can write to the CONTROL register to change from privileged to unprivileged for
software execution in Thread mode. However, it cannot switch itself back from unprivileged to
privileged.

Within a single security state, only a transition to handler mode can change from unprivileged
to privileged execution. In unprivileged mode, software has limited access to instructions that
change processor state. It cannot access the system timer, NVIC, or System Control Block, and has
restricted access to memory or peripherals that are marked with privileged access only.

The separation of privileged and unprivileged execution allows system designers to give different
permissions to different parts of the system. For example, critical sections like the OS kernel can be
privileged, while user application tasks are unprivileged. Besides the differences in memory access
permissions and access to several special instructions, the programmers’ model of privileged access
level and unprivileged access level are almost the same.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 42

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Operational modes and states

4.4 Secure and Non-secure states
When the optional Security Extension is implemented in a processor, there are two new states,
the Secure state and the Non-Secure state. The existing thread and handler modes are duplicated
between the two security states:

Secure state
When the processor is in Secure privileged state, it can access all resources. When the core is
in Secure state, it can access both Secure and Non-secure memory. If the Security Extension
is implemented in an Armv8-M-based processor, then the processor starts up in Secure,
privileged, thread mode.

Non-secure state
When the processor is in Non-secure privileged state, it can gain access to resources subject
to security access permissions defined by Secure software (SAU and IDAU). When the core
is in Non-secure state, it can only access Non-secure memory. If the Security Extension is
not implemented in an Armv8-M-based processor, then there is no Secure state and the
processor starts up in Non-secure privileged thread mode.

Figure 4-2: Security states and modes

Note that Security states and privilege modes are orthogonal to each other. Both Secure and Non-
Secure state supports privileged and unprivileged levels.

More details on Secure and Non-secure states along with privilege level and operating modes are
available in the Armv8-M Security Extension User Guide.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 42

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Registers

5. Registers
Arm is a load/store architecture. When processing data, the processor loads the data into a register
from memory, performs data processing operations, and then optionally stores the result back
into memory. Armv8-M supports 32-bit registers which enables 32-bit data processing. There are
various types of registers supported in the Armv8-M architecture to enable 32-bit data processing.
If the Floating-point (FP) or Digital Signal Processing (DSP) extensions are included, then there are
some operations that can perform 64-bit data processing.

The various types of registers within the Armv8-M architecture include the following:

1. General-purpose registers

2. Special-purpose registers

3. Memory-mapped registers

The following sections describe each of these different types of registers available within the
Armv8-M Architecture.

5.1 Registers in the register bank
There are sixteen 32-bit registers in the register bank, referred to R0-R15. R0-R12 are general-
purpose registers used by most of the instructions. R13-R15 have designated usage.

Figure 5-1: Registers

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 42

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Registers

5.1.1 R0-R12

Registers R0 to R12 are general-purpose registers. The first eight (R0-R7) are also called low
registers. Due to the limited number of bits in instruction opcodes, many 16-bit instructions can
only access the low registers. The high registers (R8-R12) can be used with 32-bit instructions and
with some 16-bit instructions like the MOV instruction. The initial values of R0 to R12 are UNKNOWN
out of reset.

5.1.2 R13, Stack Pointer (SP)

R13 is the Stack Pointer (SP). It is used for accessing the stack memory, for example with PUSH and
POP instructions. When the processor pushes new data onto the stack, it decrements the stack
pointer and then writes the data to the memory location. Physically, there can be either two or four
different stack pointers.

If the Security Extension is not implemented, then there are two stack pointers:

Main stack pointer, commonly referred to as MSP or SP_Main
The MSP is the default stack pointer used at reset, and is used for all exception handling.

Process stack pointer, commonly referred as PSP or SP_Process
The PSP is the alternative stack pointer that can only be used in thread mode, and is usually
used for application tasks of the operating system (OS).

Stack pointer selection is determined by the special register called CONTROL. The SPSEL field in
the CONTROL register can be programmed to select between stack pointers for thread mode stack
operations as follows:

• Set SPSEL to 0 to select MSP.

• Set SPSEL to 1 to select PSP.

In normal program execution, only one of these stack pointers will be active. Though both MSP and
PSP are 32-bit registers, the lowest two bits of the stack pointers are always zero, and writes to
these two bits are ignored. The stack memory operations such as PUSH and POP are always 32-bit.
Refer to Stack memory for more information about PUSH and POP operations with stack memory.

If an operating system is used, the stack for each of the application threads will be separated from
each other. The PSP enables application threads to switch contexts without affecting the stack
used by privileged code. The stack selected on an exception return is based on the SPSEL bit in the
EXC_RETURN payload value which is automatically stacked on exception entry. This is shown in
the following diagram:

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 42

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Registers

Figure 5-2: PSP stacking and unstacking

Software must never place any data below the current stack pointer position.
Stacking on exception entry can occur at any time (for example, in response to an
interrupt) and can overwrite any data below the stack pointer.

If the Security Extension is implemented in a system, then there are four stack pointers:

• Main Stack Pointer for Non-secure state (MSP_NS)

• Process Stack Pointer for Non-secure state (PSP_NS)

• Main Stack Pointer for Secure state (MSP_S)

• Process Stack Pointer for Secure state (PSP_S)

The stack pointers are banked when the Security Extension is implemented. In both Secure and
Non-secure states, the processor implements the main stack and the process stack, with a pointer
for each held in independent registers. The _S and _NS suffixes identify whether the stack pointer
is for the Secure state or Non-secure state.

The following table shows which stack pointer is banked between Secure and Non-secure states:

Stack Pointer Secure State Non-secure State

Main Stack Pointer MSP_S MSP_NS

Process Stack Pointer PSP_S PSP_NS

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 42

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Registers

5.1.2.1 Accessing stack pointers

The current stack pointer selected by CONTROL.SPSEL can be accessed as SP/R13 with many
instructions. Here is an example:

// When CONTROL.SPSEL = 0;
ADDW R0,SP,#1 ; R0 = MSP+1

// When CONTROL.SPSEL = 1;
SUBW R2,SP,#1 ; R2 = PSP-1;

The MSP and PSP registers are accessed using the special register access instructions MRS and MSR:

MRS <register>, <special_reg>: Read special register into general-purpose register
MSR <special_reg>, <register>: Write to special register from general-purpose
 register

The following examples show how to access the MSP and PSP registers:

MRS R5, MSP ; R5 = MSP, read MSP into R5 register.
MSR PSP, R7 ; PSP = R7, write R7 value into PSP.

Out of reset, the processor automatically initializes the MSP for the security state being entered
by reading the vector table offset 0x0. The PSP stack pointer is not initialized immediately out of
reset. Privileged software should initialize PSP if needed. The CMSIS-CORE software framework
provides functions for stack pointer access. The following table summarizes these stack pointer
access functions:

CMIS-CORE function name Description

__get_MSP(void) Gets the value of MSP.

__get_PSP(void) Gets the value of PSP.

__set_MSP(uint32_t topofstack) Sets the value of MSP.

__set_PSP(unit32_t topofstack) Sets the value of PSP.

5.1.2.2 Stack memory

Arm Cortex-M processors have dedicated stack pointer (R13) hardware for stack operations. Stack
is a memory usage mechanism that allows a portion of memory to be used as a Last-In-First-Out
(LIFO) data storage buffer. Arm Cortex-M processors use the main memory address space (such as
RAM) for stack memory operations. They have a PUSH instruction to store data in the stack and a
POP instruction to retrieve data. The currently selected stack pointer is automatically adjusted for
each PUSH and POP operation. Cortex-M processors use a full descending stack. This means that the

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 42

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Registers

stack pointer always points to the last stored data in the stack memory, and the stack pointer pre-
decrements for each new PUSH operation.

Figure 5-3: Push and pop operations

The most common use for PUSH and POP instructions is to save the contents of register banks when
a function or subroutine call is made. At the beginning of the function call, the contents of some of
the registers can be saved to the stack using a PUSH instruction and then restored to their original
values at the end of the function using a POP instruction. For example, in the figure below, a simple
function named Function1 is called from the main program. Since Function1 needs to use and
modify R4 and R5 for data processing, and these registers hold values that the main program needs
later, they are saved to the stack using a PUSH instruction and then restored using a POP at the end
of Function1. This way, the program code that called the function will not lose any data from R4
and R5 and can continue to execute. Since the registers are 32 bits, each stack PUSH and stack POP
operation transfers at least 1 word (4 bytes) of data.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 42

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Registers

Figure 5-4: Banking registers on a function call

Software Best Practices:

When saving and restoring registers, for each PUSH (store to memory) operation,
there must be a corresponding POP (read from memory) and the address of the POP
should match that of the PUSH operation.

5.1.3 R14, Link Register (LR)

R14 is also called the Link Register (LR). This holds the return address when calling a function or
subroutine.

At the end of a function or subroutine, the callee function can return to the calling function and
resume by loading the value of LR into the Program Counter (PC). When a function or subroutine
call is made, the value of LR is updated automatically.

If a callee function needs to call another function, it needs to save the value of LR in the stack,
otherwise the current value in LR will be lost when the function call is made. During exception
entry, the LR is updated automatically to a special EXC_RETURN (exception return) payload value.
At the end of the exception handler the software branches to the EXC_RETURN value in LR. The
processor detects a branch to this special address and triggers the exception return process. This
enables exception handlers to be written directly in C, without the need for an assembly wrapper
around the body of the exception handler. Further details on the exception entry and exit process
will be covered in the Armv8-M Exception Model User Guide.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 42

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Registers

5.1.4 R15, Program Counter (PC)

R15 is the Program Counter (PC). It is readable and writable. A read returns the current instruction
address + 4 while writing to a PC (for example using data processing instructions) causes a branch
operation.

Since all instructions must be aligned to halfword or word addresses, the Least Significant Bit (LSB)
of the PC is always zero. However, when using branch and memory read instructions to update the
PC, you will need to set the LSB of new PC values to 1 to indicate the Thumb state. If the LSB of
PC is not set to 1, then it results in a UsageFault or HardFault fault exception.

In high-level programming languages, including C and C++, the compiler automatically sets the LSB
in branch targets. Out of reset, the PC is initialized by the value from reset vector address location
as a part of the hardware startup sequence.

All the registers from the register bank can be accessed (read or write) using debug software when
the processor is in halted Debug state.

5.2 Special-purpose registers
In addition to the general-purpose registers, the Armv8-M architecture specifies a set of special-
purpose registers.

For example, these special-purpose registers include control registers for interrupt handling,
conditional flags for reflecting data processing results for arithmetical operations, and logical
operations. The special-purpose registers are accessed using the special register access instructions
MRS and MSR:

• MRS <register>, <special_reg>: Read special register into general-purpose register

• MSR <special_reg>, <register>: Write to special register from general-purpose register

In C programming, the CMSIS-CORE defines C functions for accessing special-purpose registers.

In an Armv8-M-based system, special-purpose registers are physical registers
available within the processor.

5.2.1 Program Status Registers

The Program Status Register is a 32-bit register and is subdivided into the following:

Application Program Status Register (APSR)
Contains various ALU flags which are required for conditional branches and instruction
operations that need special flags, for example subtract with carry.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 42

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Registers

Interrupt Program Status Register (IPSR)
Contains current interrupt or exception state information.

Execution Program Status Register (EPSR)
Contains execution state information. The EPSR contains the state bit (T) and the execution
state bits for either the If-Then (IT) instruction, or the Interruptible-Continuable Instruction
(ICI) field for an interrupted load multiple or store multiple instruction.

Figure 5-5: PSR register fields

These three registers can be accessed as one combined register, often referred as XPSR.

You can access the program status registers individually. For example,

MRS R0, APSR : Read flag states into register R0
MRS R0, IPSR : Read exception and interrupt states into register R0
MSR APSR, R0 : Write flag states

The following table shows the possible combinations of accessing XPSR.

Symbol Description

APSR Application PSR only

EPSR Execution PSR only

IPSR Interrupt PSP only

IAPSR Combination of APSR and IPSR

EAPSR Combination of APSR and EPSR

IEPSR Combination of IPSR and EPSR

PSR Combination of APSR, IPSR and EPSR

Access restrictions:

The EPSR cannot be accessed by the software code using the MRS or MSR
instructions. The contents can be viewed when the xPSR is saved and restored as a
part of exception entry and exit process.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 42

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Registers

The IPSR is read-only and cannot be changed by the MSR instruction.

For more details on individual bit field descriptions, refer to the Armv8-M Architecture Reference
Manual.

The CMSIS-CORE software framework provides functions for accessing Program Status Registers.
The following table summarizes these functions for accessing PSR:

CMIS-CORE function name Usage details

__get_APSR(void) Read APSR register

__get_IPSR(void) Read IPSR register

__get_xPSR(void) Read xPSR register

5.2.2 Exception mask registers

There are three types of exception and interrupt mask registers available in the Armv8-M
architecture:

• 1-bit exception mask register, PRIMASK

• 1-bit fault mask register, FAULTMASK

• 8-bit base priority mask register, BASEPRI

Each exception (including interrupts) has a priority level. A smaller number is a higher priority and a
larger number is a lower priority. These special-purpose mask registers are used to mask exceptions
based on priority levels. These mask registers play a vital role in priority boosting methods for
exception handling within the processor. An example of the use of these registers would be to
disable exceptions when they might affect timing-critical tasks.

Out of reset, bit fields in these registers are set to zero. This means that masking or disabling of
exceptions and interrupts is not active out of reset.

Figure 5-6: Mask registers

1. PRIMASK: The PRIMASK register is a 1-bit interrupt mask register. When set, it blocks all
exceptions (including interrupts) apart from Non-Maskable Interrupts (NMI) and HardFault
exceptions. This effectively means that the current exception priority level is 0. Note that 0 is
the highest level for a programmable exception or interrupt.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 42

https://developer.arm.com/documentation/ddi0553/br/?lang=en
https://developer.arm.com/documentation/ddi0553/br/?lang=en

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Registers

2. FAULTMASK: Similar to the PRIMASK register, the FAULTMASK register also blocks all
exceptions including HardFault exception. This effectively means that the current exception
priority level is -1. Typically, NMI can preempt the program when the exception priority level is
-1.

3. BASEPRI: To allow flexible interrupt masking, the Armv8-M architecture provides the BASEPRI
register which masks exceptions and interrupts based on priority level. The width of the
BASEPRI register depends on how many priority levels are implemented. When BASEPRI is set
to 0, it means that it is disabled. When BASEPRI is set to a nonzero value, it blocks exceptions
that have the same or lower priority level while allowing exceptions with a higher priority level.

In Armv8-M Baseline processors such as Cortex-M23, only PRIMASK is available. FAULTMASK
and BASEPRI registers are not included in the Armv8-M Baseline architecture. More details on
PRIMASK, FAULTMASK and BASEPRI registers are provided in the Armv8-M Exception Model User
Guide.

CPS (Change Processor State) instructions can modify PRIMASK and FAULTMASK registers. If you
want to access BASEPRI you must use MRS and MSR instructions. Note that these special purpose
registers can be modified only in a privileged mode.

CPSIE i ; Enable exceptions by clearing PRIMASK
CPSID i ; Disable exceptions by setting PRIMASK
CPSIE f ; Enable exceptions by clearing FAULTMASK
CPSIE f ; Disable exceptions by setting FAULTMASK

MRS R0,BASEPRI ; Read the BASEPRI register value
MSR BASEPRI,R2 ; Write R2 value into BASEPRI register
MSR BASEPRI_MAX,R3 ; Write to BASEPRI only when R3 value
 ; is higher priority than current BASEPRI

The MSR instruction can also be used for a qualified version of BASEPRI called
BASEPRI_MAX. If an MSR instruction is used to write to the BASEPRI_MAX register,
then it will update the BASEPRI register only if the new value is higher priority than
the current BASEPRI setting. If the BASEPRI value is already at a higher priority level
than the new value, then BASEPRI register will remain unchanged.

For example, consider a situation where the BASEPRI register is configured with
a priority value of 16. If the BASEPRI_MAX register is written with a priority
value of 12 then the execution priority would increase to this new priority value
12, disabling additional exception priorities from 15 through 12. However, if the
BASEPRI_MAX register is written with a priority value of 20, then the BASEPRI
register would remain unchanged with a priority value of 16.

Writing to BASEPRI_MAX is useful when you want to ensure that the priority level
is changed to a higher priority only when needed. This avoids the sequence of
reading the current value of BASEPRI, comparing it with a priority level, and then
writing a new value into BASEPRI register.

In C programming, CMSIS-CORE provides functions to access these mask registers, as follows:

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 42

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Registers

CMSIS-CORE function name Usage

__get_BASEPRI(void) Read BASEPRI register

__get_PRIMASK (void) Read PRIMASK register

__get_FAULTMASK (void) Read FAULTMASK register

__set_BASEPRI(uint32_t
basePri)

Set a new value for BASEPRI

__set_BASEPRI_MAX(uint32_t
basePri)

Assigns the given value to the Base Priority register only if the new value increases the
BASEPRI priority level

__set_PRIMASK(uint32_t
priMask)

Set a new value for PRIMASK

__set_FAULTMASK(uint32_t
faultMask)

Set a new value for FAULTMASK

__disable_irq (void) Disables interrupts by setting PRIMASK

__enable_irq (void) Enables interrupts by clearing PRIMASK

5.2.3 CONTROL register

The CONTROL register contains multiple bit fields depending on the features supported in an
implementation. A CONTROL register can be any one of the following:

• 2-bit when none of the optional features such as the Floating-point Extension, MVE, and the
Security Extension are implemented.

• 3-bit when either the Floating-point Extension or MVE are implemented, but other optional
features are not implemented.

• 4-bit or 8-bit depending on the support of certain optional features.

The following diagram shows the CONTROL register bit assignments:

Figure 5-7: The CONTROL register

The CONTROL register can only be written in privileged state, but can be read by both privileged
and unprivileged program software. When the Security Extension is implemented, some of the bit
fields are banked between security states.

Out of reset, the value of the CONTROL register is 0, which means the following:

1. CONTROL[0] -> Program execution starts from Privileged thread mode (indicated by
CONTROL.nPRIV = 0)

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 42

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Registers

2. CONTROL[1] -> MSP is the current selected stack pointer (indicated by CONTROL.SPSEL = 0)

3. CONTROL[3:2] -> If the Floating-point Extension is implemented in a system, then the FPU
(Floating-Point Unit) does not contain any active context data (indicated by CONTROL.FPCA =
0) and does not hold any secure data (indicated by CONTROL.SFPA = 0).

4. CONTROL[7:4] -> If the PACBTI Extension is implemented in a system, then the Pointer
Authentication and Branch Target Identification Enable bits are set to 0 (CONTROL[7:4] =
4’b0000)

Privileged software can optionally write to the CONTROL register to do the following:

• Switch the stack pointer selection by CONTROL.SPSEL:

◦ If this bit is 0, MSP is selected

◦ If this bit is 1, PSP is selected

• Switch the privileged level by CONTROL.nPRIV:

◦ If this bit is 0, switch to privileged thread mode

◦ If this bit is 1, switch to unprivileged thread mode

• Enable Pointer Authentication Code (PAC):

◦ If CONTROL.PAC_EN is set to 1, then Pointer authentication is enabled for privileged
accesses.

◦ If CONTROL.UPAC_EN is set to 1, then Pointer authentication is enabled for unprivileged
accesses.

• Enable Branch Target Identification (BTI):

◦ If CONTROL.BTI_EN is set to 1, then Branch Target Identification enabled for privileged
accesses.

◦ If CONTROL.UBTI_EN is set to 1, then Branch Target Identification enabled for unprivileged
accesses.

You do not normally need to access the CONTROL.FPCA and CONTROL.SFPA bits
directly. They are either set or cleared indirectly by the processor itself. For example,
CONTROL.FPCA bit gets set to 1 when a floating-point instruction is executed for
the first time in a program

5.2.3.1 Changing privilege level using the CONTROL register

The following code shows a simple sequence to change the privilege level by programming the
CONTROL register:

MRS R0, CONTROL ; Read CONTROL register into R0
ORR R0, R0, #1 ; Modify the R0 value to set the nPRIV field to switch to
 ; unprivileged level on programming CONTROL register with R0
 value
MSR CONTROL, R0 ; CONTROL = R0, write CONTROL register with R0 contents
ISB ; Instruction Synchronization Barrier ensures the effect
 ; of programing the CONTROL register applies

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 42

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Registers

 ; to instructions following ISB.

In C programming, CMSIS-CORE provides functions to read and write to the CONTROL register::

CMSIS-CORE function name Usage

__get_CONTROL(void) Read the CONTROL register

__set_CONTROL(uint32_t control) Write to the CONTROL register

Unlike the other special-purpose registers, the CONTROL register can be read in
unprivileged level. This allows software to determine whether the current execution
level is privileged or not.

You can detect if the current execution level is privileged by checking the value of IPSR and
CONTROL registers:

int in_privileged(void)
{
 if (__get_IPSR() != 0) return 1; // TRUE when in handler mode
 else // In Thread mode
 if ((__get_CONTROL() & 0x1) == 0) return 1; // TRUE when nPRIV == 0
 else return 0; FALSE when nPRIV ==1
}

5.2.3.2 Stack pointer selection using the CONTROL register

The following code shows a how to set thread mode to use SP_Process as the current stack
pointer:

MRS R0, CONTROL ; Read current CONTROL
ORRS R0, R0, #0x2 ; Set SPSEL
MSR CONTROL, R0 ; Write to CONTROL
ISB ; Instruction Synchronization Barrier ensures
 ; the effect of programing the CONTROL register applies
 ; to instructions following ISB.

5.2.3.3 Stack pointer limit registers

Cortex-M processors use a fully descending stack operation model. This means that the stack
pointers are decremented when more data is added to the stack. When too much data is pushed
into the stack and the space consumed is more than the allocated stack space, overflowing stack
data can corrupt the OS kernel data and memories used by other application tasks. This can cause
various types of errors and may even result in security vulnerabilities.

The Armv8-M architecture includes stack limit registers to detect stack overflow errors. The stack
limit registers are 32-bit and each stack pointer MSP and PSP has a corresponding stack limit
register for stack limit checking:

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 42

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Registers

• MSPLIM, Main Stack Pointer Limit Register

• PSPLIM, Process Stack Pointer Limit Register

By default, stack limit registers are reset to 0 (the lowest address in memory map) so that the stack
limits will not be reached. Effectively this means that the stack limit checks are disabled at startup.
The stack limit registers can be programmed when the processor is executing in privileged state.
The stack limit registers (MSPLIM and PSPLIM) are accessed by MRS and MSR instructions similar to
MSP and PSP. A stack can descend to a point until its stack limit value set in the stack limit register.
Any attempt to descend further than its stack limit value causes a stack limit violation. If a stack
limit violation occurs, a UsageFault or HardFaultfault exception is triggered.

Writes to the lower 3 bits (bit 2 to bit 0) of the stack limit registers are ignored.
Therefore stack limits are always aligned to doubleword boundaries.

The stack limit registers are banked when the Security Extension is implemented. The _S and _NS
suffixes identify whether the stack limit register is for the Secure state or Non-secure state.

The following table shows the stack limit registers banked between Secure and Non-secure states.

Stack limit register Secure stack Non-secure stack

Main stack pointer limit register MSPLIM_S MSPLIM_NS

Process stack pointer limit register PSPLIM_S PSPLIM_NS

Similar to stack pointer access, the CMSIS-CORE software framework provides functions for
accessing stack limit registers. The following table summarizes the stack limit register functions:

CMIS-CORE function name Usage details

__get_MSPLIM(void) Gets the value of the MSPLIM register

__get_PSPLIM(void) Gets the value of the PSPLIM register

__set_MSPLIM(uint32_t limitofstack) Sets the value of the MSPLIM register

__set_PSPLIM(unit32_t limitofstack) Sets the value of the PSPLIM register

5.3 Floating-point registers
The Floating-Point Unit (FPU) hardware is an optional component in Armv8-M Mainline processors,
for example the Cortex-M4, Cortex-M7, and Cortex-M33. If the FPU is available, it includes an

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 42

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Registers

additional register bank containing 32 registers (S0-S31) and a Floating-Point Status and Control
Register (FPSCR). This is shown in the following diagram:

Figure 5-8: FPU Registers

Each of the 32 bit registers S0-S31 (“S” stands for Single precision) can be accesseed individually
using floating-point instructions, or accessed as a pair, using the register names D0-D15 (“D”
stands for Double precision). For example, S1 and S0 are paired together to become D0, and S3
and S2 are paired together to become D1. The FPSCR register can only be accessed in privileged
state. It contains various bit fields defining some of the floating-point operation behaviors and
providing status information about floating-point operation results. By default, the FPU is disabled
when the processor is out of reset to reduce power consumption. Hence before using floating-
point operations, the FPU should be enabled by programming the Coprocessor Access Control
Register (CPACR).

5.3.1 Using Floating-point extension

To use floating-point unit implemented within the processor, it needs to be enabled. The
global enable of Floating-point is performed using SCB->CPACR register. This is handled inside

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 42

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Registers

SystemInit() function. The FPU enabling code is enabled by C macros using the following
preprocessing directives/macros in CMSIS-CORE.

Preprocessing
Directive

Description

__FPU_PRESENT Indicates whether Cortex-M processor has an FPU. If it does, this macro is set to 1 by device specific header.

__FPU_USED Indicates whether an FPU is being used. Must be set to 0 if __FPU_PRESENT is 0. It can either be 0 or 1 if
__FPU_PRESENT is 1. This is set by compilation tools in their project settings.

__FPU_DP Indicates whether the FPU support double precision operations.

5.3.1.1 Compiler command line options

By selecting the FPU to be used in the project settings (within the IDE), the toolchain automatically
sets the compiler options to include the FPU support.

Here are few example command line options that be used for Cortex-M processors like Cortex-
M33:

For users of Arm Compiler 6 (which comes with Arm DS or DS-5), the following command line
option can be used to enable FPU feature during compilation.

"armclang --target=arm-arm-none-eabi -marmv8-m.main -mfpu=fpv5-sp-d16 -mfloat-abi=hard"

For GNU C compiler (gcc), following command line can be used to enable FPU feature during
compilation.

"arm-none-eabi-gcc -mthumb -march=armv8-m.main -mfpu=fpv5-sp-d16 -mfloat-abi=hard

5.3.1.2 ABI options

Application Binary Interface (ABI) refers to the specification that defines how the parameters
and the results of the floating-point calculations are transferred across function boundaries. For
example, even if you have an FPU in the processor, you may require to use C runtime library
functions because many of the math functions require a sequence of calculations.

The ABI options affect:

• Whether the floating-point unit is used

• How parameters and results are passed between caller and callee functions.

There are three major ABI options available for floating-point. The options and its operation details
are listed in the table below

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 42

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Registers

Arm C compiler 6 and
GCC Floating-point
ABI options

Description

-mfloat-abi=soft Soft ABI without FPU hardare: All floating-point operations are handled by the runtime library functions. Values
are passed through integer register bank

-mfloat-abi=softfp Soft ABI with FPU hardware: This allows the compiled code to generate codes that directly access the FPU. But,
if a calculation needs to use a runtime library function, a soft-float calling convention is used. Values are passed
through integer register bank

-mfloat-abi=hard Hard ABI: This allows the compiled code to generate codes that directly accesss the FPU and use FPU-specific
calling conventions when calling runtime library functions

5.3.2 Floating Point exceptions

Armv7-M and Armv8-M Mainline processors support the option of a hardware floating point unit
(FPU). This is compliant with the IEEE 754 standard. The IEEE specification defines a number of
invalid or out-of-range calculations and results, that it describes as “floating point exceptions”. The
FPSCR provides six sticky bits so that sotware can check the sticky bit values to determine whether
the calculations carried out were successful. Refer below table for additional information.

Floating-point
Exception

FPSCR
bit

Example

Invalid Operation IOC Square root of a negative number (returns a QNaN by default)

Division by zero DZC Divide by zero or log(0) (returns +/- infinity by default)

Overflow OFC A result that is too large (returns +/- infinity by default)

Underflow UFC A result that is very small (returns a denormalized value)

Inexact IXC The result has been rounded (returns a rounded result by default)

Input Denormal IDC A denormalized input value is replaced with a zero in the calculation due to the Flush-to-zero
mode.

These Floating point “exceptions” should not be confused with the concept of exceptions in the
Arm architecture. Refer Chapter-4 of Armv8-M Exception Model User Guide to understand the
concept of exception with Floating-point context handling in Arm architecture. Floating point
exceptions do not directly cause a change in program flow, but simply cause sticky flags in a status
register to be set.

If you are designing software with high safety requirements, you could add the checking of the
FPSCR in your code. However, in some instances not all floating-point calculations are carried
out by the FPU. Some could be carried out by C runtime library function. If you are using C99,
then you can examine and change the configuration of floating-point runtime library using int
fegetenv(envp); and int fesetenv(envp);.

However, Cortex-M processors that support the optional FPU also present these internal register
bits as output signal ports, and the system designer can choose whether to physically connect
these signals individually, or combined together, to interrupt inputs on the processor. If the
system designer connects the floating point exception outputs to general interrupt lines, then the
corresponding interrupt will be invoked when a floating point exception occurs, and software will
need to provide an exception handler for that interrupt to deal with the floating point condition.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 42

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Registers

Figure 5-9: Floating point exception status bit for hardware exception generation

By connecting the FPU exception status bits to the NVIC as shown in the Figure above, a system
can trigger an interrupt when an error condition such as “divide by zero” or “overflow” occurs.
Note that since interrupt events are imprecise, the generated exception could be delayed by a few
cycles. This delay occurs even when the exception is not blocked by other exceptions. As a result,
you will not be able to determine which floating point instruction triggered the exception. When
the FPU exception status is used to trigger exceptions in NVIC, before the end of interrupt service
routine, the exception handler needs to clear exception status bits in FPSCR register and stacked
FPSCR. If exception status is not cleared, then the exception could get triggered again.

5.4 Memory-mapped registers
A number of system components such as Nested Vectored Interrupt Controller (NVIC), Memory
Protection Unit (MPU), debug control registers, and coprocessor control registers, are memory-
mapped in the Armv8-M architecture. These memory-mapped registers reside in an architecturally-
defined fixed memory address space.

Since the majority of the system registers are memory-mapped registers, they are accessible using
the load and store instructions or using pointers in C programming. A few simple examples are
shared in this section, but you can find more complex examples in dedicated guides such as the
Armv8-M Memory Model and MPU user guide, and the Armv8-M Security Extension user guide.

5.4.1 Example 1 - Enable IRQ0

The following is an example code sequence to enable an IRQ0 (IRQ0 -> Interrupt number #16).

; To enable an IRQ0, bit[0] of NVIC_ISER (NVIC Interrupt Set Enable Register) should
 be set to 1.
; This can be done by writing 0x1 to NVIC_ISER.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 42

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1

Registers

LDR R0,=0xE000E100 ; Load address of NVIC_ISER
MOV R1,#0x1 ; Bit[0] of R1 is set to 1
STR R1,[R0] ; Write 1 to bit[0] of NVIC_ISER to enable IRQ0
DSB

If you are using a high-level language like C, then you can use the following CMSIS function:

void NVIC_EnableIRQ (IRQn_Type IRQn)

In this example, since IRQ0 needs to be enabled, the CMSIS function can be called as
NVIC_EnableIRQ(0).

5.4.2 Example 2 - Enable the Floating-Point Unit (FPU)

If the Floating-point (FP) Extension is implemented in a processor, then before using FP instructions
in a program, the FP enable bits in Coprocessor Access Control Register (CPACR) should be set to
1.

The following is an example code sequence to enable the FPU:

; To enable the Floating-point Extension, bits[23:20] of the CPACR register
; should be programmed for CP10 and CP11 coprocessor register access

LDR R0,=0xE000ED88 ; Load address of CPACR
LDR R1,[R0] ; Load the current value of CPACR
ORR R1, R1, #(0xF<<20) ; Configure bits[23:20] for CP10 and CP11 coprocessor
 register access
STR R1,[R0] ; Write modified CPACR value
DSB
ISB

If you are a using high-level language, you can use the CMSIS software framework. Besides an
NVIC data structure in CMSIS-CORE, the System Control Block (SCB) data structure also contains
some registers that can be used by software. So for this example, you can us the following code to
enable the FPU.

SCB->CPACR|= 0x00F00000; // Enable the Floating-Point Unit for full access

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 42

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1
References

6. References
Here are some resources related to material in this guide:

• Armv8-M Architecture Reference Manual

• Books:

◦ The Definitive Guide to Arm Cortex-M3 and Cortex-M4 Processors - Joseph Yiu

◦ The Definitive Guide to Arm Cortex-M23 and Cortex-M33 Processors - Joseph Yiu

• Cortex-M resources

• Procedure Call Standard for the Arm Architecture

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 42

https://developer.arm.com/documentation/ddi0553/latest
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/cortex-m-resources
https://developer.arm.com/documentation/ihi0042/latest

Introduction to the Armv8-M Architecture and its
Programmers Model User Guide

Document ID: 107656_0101_01_en
Version 1.1
Next steps

7. Next steps
Refer to the following guides for more details about specific architectural extensions:

• Armv8-M Exception Model User Guide

• Armv8-M Memory Model and MPU User Guide

• Armv8-M Security Extension User Guide

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 42

	Introduction to the Armv8-M Architecture and its Programmers Model User Guide
	Contents
	1. Introduction to Armv8 architecture and architecture profiles
	2. Introduction to Armv8-M architecture
	2.1 Baseline and Mainline
	2.2 Architecture and micro-architecture
	2.2.1 Architecture
	2.2.2 Micro-architecture

	2.3 Compatibility with Armv6-M and Armv7-M

	3. Getting started with Armv8-M-based systems
	3.1 Hardware platforms and simulation models
	3.2 Arm Compiler for Embedded
	3.2.1 Application development
	3.2.2 Scatter-loading images with simple memory map
	3.2.3 Tailoring the image memory map to your target hardware

	3.3 Debug tools support
	3.4 Common Microcontroller Software Interface Standard (CMSIS)
	3.5 Procedure Call Standard for Arm Architecture (AAPCS)
	3.6 Arm C Language Extensions (ACLE)

	4. Operational modes and states
	4.1 Operating states
	4.2 Operating modes
	4.3 Privileged and unprivileged execution
	4.4 Secure and Non-secure states

	5. Registers
	5.1 Registers in the register bank
	5.1.1 R0-R12
	5.1.2 R13, Stack Pointer (SP)
	5.1.2.1 Accessing stack pointers
	5.1.2.2 Stack memory

	5.1.3 R14, Link Register (LR)
	5.1.4 R15, Program Counter (PC)

	5.2 Special-purpose registers
	5.2.1 Program Status Registers
	5.2.2 Exception mask registers
	5.2.3 CONTROL register
	5.2.3.1 Changing privilege level using the CONTROL register
	5.2.3.2 Stack pointer selection using the CONTROL register
	5.2.3.3 Stack pointer limit registers

	5.3 Floating-point registers
	5.3.1 Using Floating-point extension
	5.3.1.1 Compiler command line options
	5.3.1.2 ABI options

	5.3.2 Floating Point exceptions

	5.4 Memory-mapped registers
	5.4.1 Example 1 - Enable IRQ0
	5.4.2 Example 2 - Enable the Floating-Point Unit (FPU)

	6. References
	7. Next steps

