
April 2011
UG47_01.0

LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demo for the
LatticeECP3 Versa Evaluation Board

User’s Guide

2

LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demo
Lattice Semiconductor for the LatticeECP3 Versa Evaluation Board

Introduction
This document describes the LatticeMico32 Tri-Speed Ethernet Media Access Controller (MAC) IP demonstration
for the LatticeECP3 Versa Evaluation Board. The demonstration shows the ability of the Tri-Speed Ethernet MAC
IP core to function in a real network environment operating at a link speed of either 10 or 100 megabits per second
or 1000 megabits per second (gigabit). It is designed to be simple and easy-to-use, requiring no test equipment,
lengthy setup, or complex explanation. Because searching the Web is a familiar procedure to everyone, this dem-
onstration uses a Web server to demonstrate the Tri-Speed Ethernet MAC IP core, using the open-source Light-
weight IP (lwIP) network stack.

Prerequisites
The hardware, software, cable, and general requirements for this demonstration are given in the following sections.

Hardware Requirements
This demonstration requires the following hardware components:

• LatticeECP3 Versa Evaluation Board

• PC with a Gigabit Ethernet-capable (1000 Base-T) network card for running the demonstration in gigabit mode

Software Requirements
This demonstration requires the following software components:

• Internet browser on the gigabit-capable PC for accessing the Web server on the LatticeECP3 Versa Evaluation
Board. This demonstration uses Internet Explorer for demonstrating the Web server functionality.

• LatticeMico32 System for optionally rebuilding or debugging the LatticeMico32 Web server software application.

• Lattice ispVM™ System software for downloading the FPGA bitstream

• Lattice Diamond® Design Software for modifying the platform and regenerating the bitstream

Cable Requirements
The preferred cable for the gigabit Ethernet demonstration application is a category 5e (Cat 5e) twisted pair cable.

General Requirements
This demonstration requires some knowledge of the following:

• Familiarity with the LatticeMico32 System flow and usage, including the ability to download and debug
LatticeMico32 software applications. The LatticeMico32 Tutorial is a good starting point for becoming familiar
with LatticeMico32 System usage.

• Familiarity with basic TCP/IP networking concepts and troubleshooting skills and experience establishing basic
network connectivity (for example, using a hub, switch, or swapped cable)

• Familiarity with IP addressing (and subnet mask), MAC addresses, the ping utility, and the ability to configure IP
addresses on a PC

LatticeECP3 Versa Evaluation Board
The demonstration runs on a LatticeECP3 Versa Evaluation Board connected to another host computer (demon-
stration PC) on the same network or through a crossover cable. The demonstration PC physically connects directly
to the LatticeECP3 Versa Evaluation Board using a category 5e network cable. The setup is depicted in Figure 1.

www.latticesemi.com/dynamic/view_document.cfm?document_id=20894
www.latticesemi.com/dynamic/view_document.cfm?document_id=20893

3

LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demo
Lattice Semiconductor for the LatticeECP3 Versa Evaluation Board

Figure 1. LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demonstration Setup

Purpose
This simple demonstration shows the ability of the Tri-Speed Ethernet MAC to be configured with a MAC address,
receive 802.3 frames (both physical and broadcast), filter these packets, and pass them to higher-protocol soft-
ware.

The demonstration illustrates the following LatticeMico32 Tri-Speed Ethernet MAC features:

• Run-time software configurability for a 10BASE-T, 100BASE-TX, or 1000BASE-T link

• Real-world 802.3 Ethernet frames received and transmitted

• Acceptance of broadcast messages (destination MAC address ff.ff.ff.ff.ff.ff)

• Packet filtering based on configured MAC address

• Automatic padding of short frames

• Error counters and statistics

Application Space
This Web-server demonstration uses the Lightweight IP (lwIP) network stack, a comprehensive and highly configu-
rable network stack that can be used as the basis for other applications requiring advanced network-stack function-
ality, such as IP fragmentation and reassembly, DHCP functionality, and TCP, UDP, and ARP functionality. See
http://savannah.nongnu.org/projects/lwip/ for more information on lwIP network-stack usage considerations in
embedded devices.

4

LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demo
Lattice Semiconductor for the LatticeECP3 Versa Evaluation Board

The LatticeMico32 Tri-Speed Ethernet MAC is a drag-and-drop module within LatticeMico32 System, facilitating
system integration. Its simple software control and data-transfer operations make it a lightweight solution for appli-
cation development. Although this demonstration uses polled mode, you can obtain higher throughput by using
DMA transfers from memory to the Tri-Speed Ethernet MAC FIFO channels.

Limitations
The following cautions apply to this demonstration:

• The bitstream included with the demo design has no time-out restrictions. Rebuilding the demo without a valid
TSMAC IP license will only allow evaluation operation for about an hour because the Tri-Speed Ethernet MAC
evaluation version contains a built-in timer.

• This demonstration does not demonstrate how to dynamically configure the Tri-Speed Ethernet MAC according
to link-speed changes at run time (for example, plugging from a 1000BASE-T to a 100BASE-TX connection or
vice-versa). When changing link rates, press the reset button (FPGA GSRN) on the LatticeECP3 Versa evalua-
tion board to allow the software to recognize and dynamically configure the new link rate.

• It is recommended that only one client at a time communicate with the Web server.

• Only hard-coded, static pages are displayed.

• Expect low throughput with dropped packets on a busy network with a lot of broadcast traffic, especially when
debugging the application.

The LatticeECP3-35EA device has 72 block RAMs. All of these block RAMs are used by the TSMAC and for the
Mico platform. This demonstration is a comprehensive demonstration with significant debug features that enable
you to become familiar with communication between the LatticeMico32 Tri-Speed Ethernet MAC and the Marvell
88E1119R 10/100/1000 Ethernet PHY device. The pre-built application uses optimization for performance in pro-
cessing TCP/IP packets. The Mico32 debug module is included in the Mico32 platform build so the debugger can
attach and download a new application program. The USB UART is used for simple diagnostic output, as well as
the board LEDs. The Mico32 Application code is deployed entirely into on-chip EBR so the entire application is up
and running on power-up or on a reset of the FPGA.

Installing the Demonstration
Lattice distributes the demonstration package as an install executable. Download and then run the installation file.
The demonstration package includes the MSB platform, a pre-built bitstream, and the C/C++ SPE Ethernet appli-
cation project which you must import into LatticeMico32 C/C++ SPE. Additionally, the demonstration project con-
tains a zipped lwIP source distribution file and a tool for generating embedded C source files from HTML pages.

You can either download (fast program) the pre-built bitstream into the LatticeECP3 FPGA device each demonstra-
tion run or program it into the on-board SPI configuration Flash.

Installation
The LatticeMico32 Tri-Speed Ethernet MAC gigabit demonstration installs by default into the
C:\Lattice_DevKits\DK-ECP3-TSMAC-010 directory.

Note: If you intend to unzip the zipped demonstration file in a different directory, ensure that there are no spaces in
the directory path or in the directory name. You will also need to ensure that the path names to resource files are
regenerated in MSB components to point to the new location (EBR memory initialization file, TSMAC IP directory,
etc.).

Figure 2 displays the directory hierarchy.

5

LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demo
Lattice Semiconductor for the LatticeECP3 Versa Evaluation Board

Figure 2. Demonstration Directory Structure

The directories and directory contents for the demonstration are as follows:

• Bitstream - Contains the pre-built demonstration bitstream with the read-to-run Web Server demo application.

• Diamond – Contains the Diamond project used for building the bitstream

• EthernetDemoApp – Contains the Ethernet demonstration C/C++ SPE project

• EthernetDemoMSB – Contains the Ethernet demonstration MSB project

• Tools/pages – Contains the Web pages used for the project

• Tools/page_tools – Contains a tool and its source code for converting Web pages to a C source file that can be
used with the C/C++ SPE Ethernet demonstration project

Environment Setup
The demonstration consists of two parts:

• A pre-built FPGA bitstream containing the LatticeMico32 Tri-Speed Ethernet MAC platform and Web Server soft-
ware application which requires no modification

• An Ethernet demonstration software application, to modify and experiment with, that you can import into C/C++
SPE

If you are familiar with importing a software application into C/C++ SPE, you can move to “The Demonstration” on
page 7 after importing the Ethernet application.

Importing Ethernet Demonstration Software Application into C/C++ SPE
The steps in this section show you how to import the included Ethernet application software into the LatticeMico32
C/C++ SPE environment. It is assumed that you have unzipped the demonstration package with C:\ as the root.

6

LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demo
Lattice Semiconductor for the LatticeECP3 Versa Evaluation Board

1. Switch to the C/C++ SPE perspective.

2. Choose File > Import to activate the Select dialog box, shown in Figure 3.

Figure 3. Select Dialog Box

3. Select Existing Projects into Workspace.

4. Click Next to activate the Import Projects dialog box, shown in Figure 4.

Figure 4. Import Projects Dialog Box

5. Select Select root directory, if it is not already selected.

6. Select the Browse button to activate the Browse For Folder dialog box.

7. In the Browse For Folder dialog box, browse to the <demo_directory>/EthernetDemoApp directory.

8. Select OK.

7

LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demo
Lattice Semiconductor for the LatticeECP3 Versa Evaluation Board

The Import Project dialog box now shows EthernetDemoApp as one of the available projects in the Projects
pane. If you do not see any listing in the Projects pane, you have not selected the directory correctly in the pre-
vious step.

9. Select Finish.

The C/C++ Projects view in the C/C++ SPE perspective now lists the EthernetDemoApp project, as shown in
Figure 5.

Figure 5. Ethernet Demonstration Application Listed in C/C++ Projects View

10. Rebuild the imported project, EthernetDemoApp, to verify a successful build.

The project is configured so that debugging is turned off. “Enabling Software Debugging” on page 27 provides
information on enabling debugging and obtaining debugging information over a serial connection to the evalua-
tion board.

You have now successfully imported the Ethernet demonstration application into C/C++ SPE.

The Demonstration
In this section, you will learn how to set up and run the demonstration.

8

LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demo
Lattice Semiconductor for the LatticeECP3 Versa Evaluation Board

Board Setup
The LatticeECP3 Versa Evaluation Board DIP switches (SW3) should all be in the OFF position (towards top of the
board). The PHY-enabled jumper (J10) must not be installed. See the figure below:

Network Cable Setup
For gigabit operation, it is recommended that you use a category 5e twisted pair cable. Insert one end of the cate-
gory 5e twisted pair cable in the RJ-45 connector (which is closer to the USB connector) into the LatticeECP3
Versa Evaluation Board, and insert the other end of this cable into the RJ-45 connector of the gigabit Ethernet net-
work card of the host PC.

Figure 6. Twisted Pair Ethernet Cable

See “Appendix A. Alternate Network Cable Setup” on page 33 if you do not have access to a gigabit Ethernet net-
work card on the host PC but would still like to run the demonstration over a gigabit link.

You also can run the demonstration on a PC with a 100 Mbps network card without any modifications to the FPGA
bitstream or the software application.

9

LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demo
Lattice Semiconductor for the LatticeECP3 Versa Evaluation Board

Host PC Network Parameters Setup
The host PC IP address must be configured so that it can communicate with the software application on the
LatticeECP3 Versa Evaluation Board that has a default IP address of 192.168.33.175. The IP address on the host
PC must be of the format 192.168.33.xyz, where xyz can range from 2 to 254. The following example shows
192.168.33.153.

Warning: Do not use this method when connected on a company-wide network. You will probably cause conflicts
with a machine assigned the same IP address. This method is only intended for direct connection between the test
PC and the LatticeECP3 Versa Evaluation Board.

1. On the Windows platform, change the PC IP address by selecting Start > Settings > Network and Dial-up
Connections > Local Area Connection > Properties > Internet Protocol (TCP/IP) > Properties > Fixed IP
Address.

2. In the dialog box shown in Figure 7, select Use the following IP address, and enter the appropriate numbers
for IP address, Subnet mask, and Default gateway.

Figure 7. Setting Fixed IP Address Network Connectivity

3. Click OK.

LatticeMico32 Application Network Parameters Setup
Following are the default network parameters for the LatticeMico32 software application:

• Default IP address: 192.168.33.175

• Default gateway IP address: 192.168.33.1

• Default subnet mask: 255.255.255.0

• Default MAC address: 00-01-02-03-04-05

Running the Demonstration
This section guides you through the process of performing the demonstration. For visual status indication, this
demonstration uses eight discrete LEDs (D25, D24, D22, D21, D26, D27, D28, and D29) on the board located next
to the USB port. Paying attention to the LEDs, as well as to the C/C++ SPE project debug output, can help you
detect problems in the proper operation of the hardware.

10

LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demo
Lattice Semiconductor for the LatticeECP3 Versa Evaluation Board

LED Indicators
The software controls eight discrete LEDs below the seven-segment displays on the board. Their functions are as
follows:

• D25 – Blinks approximately every second as the software passes through the main loop looking for incoming
packets or processing the network-stack timer functions.

• D24 – Set when a packet has been received by the processor.

• D22– Set when a packet has been sent to the Tri-Speed Ethernet MAC by the processor from the Tri-Speed Eth-
ernet MAC.

• D21 – Set when an ARP query for the processor’s IP address is received by the network stack.

• D26 – Set when a finger protocol packet has been received by the processor.

• D27 – Set when an HTTP (Web page) protocol packet has been received by the processor.

• D28 – Set when an HTTP (Web page) protocol packet has been completely sent by the processor.

• D29 – Set when the software is preparing the Marvell 88E1119R 10/100/1000 Ethernet PHY device for opera-
tion. Once preparation is completed, this LED is turned off and all other LEDs indicate operational status. While
this LED is lit, you can refer to the C/C++ SPE debugger output to view the software activity.

If all eight LEDs blink simultaneously on and simultaneously off approximately every second, the software has
encountered a fatal error when configuring the Marvell 88E1119R 10/100/1000 Ethernet PHY device.

Downloading the FPGA Bitstream
The pre-built bitstream, ECP3_Versa_LM32_TSMAC_demo.bit, is located in the Bitstream directory. Use the
ispVM configuration file located in the Bitstream directory to download the demonstration bitstream into the SPI
flash using the USB cable. Open ispVM, select Options->Cable and I/O Port Setup. Select Auto Detect. The USB
port settings will be as shown in Figure 8.

11

LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demo
Lattice Semiconductor for the LatticeECP3 Versa Evaluation Board

Figure 8. USB Port Settings

When USB setup has completed, select GO to program the FPGA. When the FPGA bitstream has been success-
fully downloaded, the eight discrete LEDs near the USB connector display as solid red.

Downloading the Ethernet Demonstration C/C++ SPE Software Application
Downloading the Ethernet demonstration C/C++ SPE software application requires you to successfully re-build the
imported Ethernet demonstration software application that was imported into C/C++ SPE after you make any
needed changes to the application network parameters. Next, right-click on EthernetDemoApp and select Debug
As > Debug to open a window as shown in Figure 9.

Figure 9. Debug Window

Next, select EthernetDemoApp as shown in Figure 10.

12

LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demo
Lattice Semiconductor for the LatticeECP3 Versa Evaluation Board

Figure 10. Debug EthernetDemoApp

Check to be sure the hardware configuration is as shown in Figure 11.

Figure 11. Debug EthernetDemoApp

Finally, select Debug to download the software application to the Mico32.

Pinging the Board
Pinging the board is the first step in ensuring proper network configuration and a properly functioning
LatticeMico32 Tri-Speed Ethernet MAC platform and application. The LatticeECP3 Versa Evaluation Board
responds to standard network ping commands from a host computer (demonstration PC). The ping must succeed
before continuing, as shown in Figure 12, because other demonstrations will fail if the ping does not succeed.

13

LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demo
Lattice Semiconductor for the LatticeECP3 Versa Evaluation Board

Figure 12. Successful Ping Console Output

The following LED diagnostics apply:

• D25 should toggle about every second. If D25 appears solid and is not blinking, the software has malfunctioned.

• D24 should light up to indicate incoming packets.

• D22 should light up on a successful ping, indicating that the board is sending packets back, most likely ping
replies.

• D21 may light up in conjunction with D24 and D22. ARP requests usually are sent out by network entities if they
do not already know the MAC address of a target with a specific IP address. Also, the network entities, especially
PCs, tend to cache ARP replies for a period of time. If they already know the MAC address for an IP address,
they may not send out an ARP request.

Accessing the Web Server
In addition to the LED diagnostics for the ping test, you may observe the following when the PC accesses the Web
server:

• The 14-segment display will increment for each IP packet sent back to the PC.

• D27 lights up when the Web server receives an HTTP request.

• D28 lights up when the Web server has completed sending all the associated data for a Web page. The gap
between the time that D27 lights up and the time that D29 lights up depends on the amount of data to send for a
Web request.

The software running on the CPU inside LatticeECP3 implements a Web server that serves pages over an HTTP
connection. Open Internet Explorer and simply enter the board’s IP address in the address field.

The the proxy server on the Web browser must be disabled since it will be directly connecting to the LatticeECP3
Versa Evaluation Board instead of going through a proxy server.

If you see the message shown in Figure 13, you must disable the proxy setting.

14

LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demo
Lattice Semiconductor for the LatticeECP3 Versa Evaluation Board

Figure 13. Proxy Authorization Errors

Perform the following steps to disable the proxy:

1. In Internet Explorer, choose Tools > Internet Options > Connections > LAN Settings.

2. In the dialog box shown in Figure 14, deselect Use a proxy server for your LAN.

Figure 14. Proxy Disabled

3. Click OK.

4. Close and start Internet Explorer again.

If you have not disabled the proxy server and are trying to access the board’s Web server through a twisted wire
connection or a local hub, you will probably see the Internet Explorer window shown in Figure 15.

15

LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demo
Lattice Semiconductor for the LatticeECP3 Versa Evaluation Board

Figure 15. Connection Error in Internet Explorer

You must disable the proxy in Internet Explorer, as noted earlier.

Once the proxy is disabled, the host PC should be able to access the Web pages described in this section.

To access the home page, enter the board IP address in Internet Explorer, such as http://192.168.33.175/. Alterna-
tively, you can enter http://192.168.33.175/index.html.

You may have to select Refresh in Internet Explorer if the page was the actively displayed page on Internet
Explorer or if Internet Explorer was set to cache the Web page.

The home page has a link to the LatticeMico32 Tri-Speed Ethernet MAC product page, shown in Figure 16, below
the displayed architecture image, also served by the Web server. You can click this hyperlink to retrieve the product
summary page.

16

LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demo
Lattice Semiconductor for the LatticeECP3 Versa Evaluation Board

Figure 16. Web Server's Home Page

Figure 17 illustrates the product page. You can access this page by either clicking the link in the home page or by
typing http://192.168.33.175/mac.html in the Internet Explorer address field.

17

LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demo
Lattice Semiconductor for the LatticeECP3 Versa Evaluation Board

Figure 17. Tri-Speed Ethernet MAC Product Page

If you attempt to access a page that does not exist, a “file not found” page will appear. You can also access this
page by typing http://192.168.33.175/404.html as the address in Internet Explorer.

Accessing LatticeMico32 Tri-Speed Ethernet MAC Statistics Counters Using Finger Protocol
In addition to the LED diagnostics for the ping test, when your PC accesses the statistics counters through the fin-
ger server, D26 lights up when the finger daemon receives a request.

The Ethernet demonstration application also implements a limited finger daemon that provides LatticeMico32 Tri-
Speed Ethernet MAC counter values each time it is requested to do so. Since this is the only information provided
by the finger daemon, it is independent of query specification (and as mentioned earlier, it is a minimal finger dae-
mon).

Enter the following command in a DOS console to request a LatticeMico32 Tri-Speed Ethernet MAC statistics
counter value, as shown in Figure 18:

finger stats@192.168.33.175

18

LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demo
Lattice Semiconductor for the LatticeECP3 Versa Evaluation Board

Figure 18. Finger-Provided LatticeMico32 Tri-Speed Ethernet MAC Counters Values

The values displayed are 32-bit values in hexadecimal format. The finger daemon provides a complete list of all
LatticeMico32 Tri-Speed Ethernet MAC statistics counters. Refer to the LatticeMico32 Tri-Speed Ethernet Media
Access Controller data sheet for information on these statistics counters.

Design Details
This section describes the demonstration system design and the software design.

Design Top Level
The platform Verilog file is not the design’s top-level source file nor is the platform the top-level module.

The topLevel.v file, located in the \soc directory, is the top-level file. It implements the top-level module that instanti-
ates the platform. It enables the connection of the Marvell 88E1119R10/100/1000 Ethernet PHY device’s strap-up
signals and provides the critical synthesis constraint for the Tri-Speed Ethernet MAC’s RXD signals.

Clock Sources
The LatticeECP3 Versa Evaluation Board has a 100 MHz oscillator clock source for the FPGA. The demonstration
FPGA top-level design uses this clock source directly for the MSB platform.

The Tri-Speed Ethernet MAC requires a 125 MHz clock source for gigabit operation. The Marvell 88E1119R
10/100/1000 Ethernet PHY device on the LatticeECP3 Versa Evaluation Board is capable of outputting a 125 MHz
clock when it negotiates a gigabit link. This output is used as the 125 MHz clock source required by the Tri-Speed
Ethernet MAC IP. When the Marvell 88E1119R 10/100/1000 Ethernet PHY device negotiates a 100 Mbps link, the
clock output from this device falls to 25 MHz.

MSB Platform
Figure 19 shows the MSB platform used for the LatticeMico32 Tri-Speed Ethernet MAC gigabit demonstration. This
platform is targeted to a LatticeECP3 device with a 100 MHz processor clock. You can use the constraints file pro-
vided with the demonstration if you intend to recreate the platform.

19

LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demo
Lattice Semiconductor for the LatticeECP3 Versa Evaluation Board

Figure 19. LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demonstration Platform

Refer to “Platform Configuration Dependency” on page 24 before making any changes to the platform if you plan to
use the Tri-Speed Ethernet MAC Gigabit Demonstration software application.

Software
The Ethernet demonstration C application consists of three parts:

• lwIP network stack for handling network packets and associated protocols, such as TCP/IP, ICMP, and ARP que-
ries and replies, and ARP cache management

• User application for initializing the network stack, calling periodic network-stack maintenance, such as TCP slow
and fast timer functions, and calling the network-stack function for handling incoming packets.

• Ethernet MAC driver for configuring the LatticeMico32 Tri-Speed Ethernet MAC and implementing transmit and
receive functions.

Demonstration Application File Organization
Figure 20 shows the structure of the Ethernet demonstration application directory.

20

LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demo
Lattice Semiconductor for the LatticeECP3 Versa Evaluation Board

Figure 20. Organization of the Ethernet Demonstration Application Directory

The Debug directory in the main application directory is generated as part of building the managed-build project. It
contains the built executable and the intermediate object files. The EthernetDemo directory in the main application
directory is the dynamically generated platform library directory generated by the managed-build process. Refer to
the LatticeMico32 Software Developer User Guide for details on the managed-build process.

LwIP Port-Files for LatticeMico32 (contrib directory): This directory contains lwIP-required port files for
LatticeMico32. The arch subdirectory contains three files.

• cc.h – Contains the mapping for lwIP data types to the processor-native data types, compiler structure-packing
attributes and macro declarations for the debug and assert invocation required when debugging the lwIP opera-
tion.

• perf.h – Contains performance-stamping macro declarations. For this demonstration, these macros do not map
to any functionality.

• sys_arch – Contains definitions when a system layer is used. For this demonstration, the system layer is not
used. Refer to the lwIP documentation for more information.

These files should not be modified unless it is absolutely necessary.

LwIP Source Files (lwIP directory): LwIP is a comprehensive lightweight TCP/IP network stack. Because this dem-
onstration is a managed-build project, it requires the source files to be part of the project. LwIP distribution contains
additional sources that are not required. To avoid having the managed-build process automatically compile such
sources, the essential files for the demonstration have been placed in this directory, lwip, maintaining the lwIP dis-
tribution hierarchy. The original lwIP distribution (release 1.2.0) from which this directory is populated is kept in the
main application directory, named lwip-1.2.0.zip. More information on lwIP, including development status and
licensing, is available at http://savannah.nongnu.org/projects/lwip/.

Basic lwIP configuration is controlled through the declarations in the files contained in the main application direc-
tory. The files in this directory should not be modified unless it is absolutely necessary, for example, to enhance
functionality or to add or remove modules.

www.latticesemi.com/dynamic/view_document.cfm?document_id=20893

21

LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demo
Lattice Semiconductor for the LatticeECP3 Versa Evaluation Board

The following files have been modified from the package for this demonstration:

• \lwIP\src\netif\etharp.c – Modified to update LED status on receiving an ARP request

The following files/directories from the package are not used:

• \lwIP\src\api*

• \lwIP\src\core\inet6.c

• \lwIP\src\core\ipv6*

• \lwIP\src\include\ipv6*

• \lwIP\src\netif\ethernetif.c (this file is ported to LatticeMico32 in the ts_mac directory)

• \lwIP\src\netif\loopif.c

• \lwIP\src\netif\slipif.c

• \lwIP\src\netif\ppp*

LatticeMico32 Tri-Speed Ethernet MAC Driver Files (ts_mac directory): Figure 21 shows the list of files in the
ts_mac directory. Basic Tri-Speed Ethernet MAC functionality configuration is controlled through definitions in files
that reside in the main application directory. Do not modify the files in this directory unless you modify the driver,
that is, implement MIIM control of the Marvell 88E1119R 10/100/1000 Ethernet PHY device or a different MAC
data-transfer mechanism.

Figure 21. LatticeMico32 Tri-Speed Ethernet MAC Driver Files

The Tri-Speed Ethernet MAC driver files are the following:

• ts_mac_drvr.h – This file declares driver functions available for external modules. The functions declared are
those that are required for lwIP usage.

• ts_mac_drvr.c – This file implements driver functionality for initializing the Tri-Speed Ethernet MAC, transmitting
and receiving packets, and some query functions. These functions are created for lwIP usage but can be used as
reference code for creating custom drivers.

• ts_mac_core.h – This file declares core functionality required by the Tri-Speed Ethernet MAC driver functions.

• ts_mac_core.c – This file implements functions required by the Tri-Speed Ethernet MAC driver functions.

• ts_mac_reg_defines.h – This file contains only absolutely essential Tri-Speed Ethernet MAC-specific register
definitions. It is used only by the Tri-Speed Ethernet MAC driver and core routines.

• ts_mac_config.h – This file contains Tri-Speed Ethernet MAC-specific default values used by the Tri-Speed Eth-
ernet MAC driver as part of Tri-Speed Ethernet MAC configuration.

• ethernetif.h – This file declares functions in ethernetif.c available for external modules.

• ethernetif.c – This file connects lwIP-specific transmit, receive, and initialization routines required by lwIP usage

22

LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demo
Lattice Semiconductor for the LatticeECP3 Versa Evaluation Board

to the Tri-Speed Ethernet MAC-specific routines.

Files in Main Application Directory: Figure 22 shows the files in the main application directory.

Figure 22. Files in Main Application Directory

In Figure 23, .cdtbuild, .cdtproject, .project, and user.pref are C/C++ SPE-related files and should not be modified
in any way. Modifying these files can render the demonstration project unusable.

The lwip-1.2.0.zip file contains the original unmodified lwIP source code as obtained from the lwIP web site. The
source in this zip file is used for the demonstration.

The main application directory contains two sets of files:

• Files that provide base functionality and do not require modification

• Files that provide configuration data and may require modification

The following files provide base functionality:

• DDInit.c – This file overrides the default managed-build implementation for LatticeDDInit, defined in the DDInit.c
file in the platform library directory. Refer to the LatticeMico32 Software Developer User Guide for a detailed
explanation of the managed-build process. This file is based on the default DDInit.c file generated in the platform
directory and does not need to be modified, unless you remove components from or add components to the plat-
form. The changes are to avoid unnecessary initialization of components that are not used by the Ethernet dem-
onstration application.

• fs.h – This file is part of the HTML file-system implementation and should not be modified unless you make
changes for debugging or enhancement.

23

LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demo
Lattice Semiconductor for the LatticeECP3 Versa Evaluation Board

• fs.c – This file is part of the HTML file-system implementation and should not be modified unless you make
changes for debugging or enhancement.

• fsdata.h – This file is part of the HTML file-system implementation and should not be modified unless you make
changes for debugging or enhancement.

• httpd.c – This file implements the HTTP server functionality.

• httpd.h – This file declares functions exposed by httpd.c to external modules.

• fingerd.c – This file implements the finger-server functionality.

• fingerd.h – This file declares functions exposed by fingerd.c to external modules.

• timer.c – This file implements the functionality for multiple timers, which are needed for periodically invoking lwIP
functionality, such as periodic update of the ARP cache and TCP retransmission of unacknowledged packets.
The implementation in this file relies on a single periodic callback, which is provided by the LatticeMico32 timer
driver, using the platform timer component.

• timer.h – This file declares functions exposed by timer.c for external modules.

• setitimer.c – This file contains functions that set up the single platform timer and periodically invoke the callback
function provided by timer.c. The functionality in this file uses the first timer component that it finds in the plat-
form.

• MicoUartService.c – This file overrides the functions implemented in the default MicoUartService.c file that is
populated by the managed-build process in the platform library directory. It inserts a \r character (carriage-return)
before sending a \n (new line) character, because the Hyperterminal program on Windows does not allow treat-
ing a new line as a carriage return followed by a new line. If you intend to use a different console application on
the development PC or do not need this functionality, you can delete this file.

• main.c – This file implements the main() function that performs the appropriate initialization and contains the
main control loop.

• LEDStatus.c – This file implements the LED status functionality.

• LEDStatus.h – This file declares the functions available to other modules for setting and controlling the respec-
tive LED status. It also declares constants for LED definitions.

The following files provide configuration data. They configure the demonstration application parameters, such as
network parameters and debug settings for the application, lwIP, and the embedded HTML pages. These files are
C header files.

Note: Since C/C++ SPE is not able to track dependent files, you must rebuild the Ethernet demonstration applica-
tion if you modify any of the header files (.h file), rather than just build it.

• ethernet_config.h – This file contains the basic Ethernet demonstration network configuration data, namely, the
MAC address, IP address for the LatticeECP3 Versa Evaluation Board, gateway IP address, and subnet mask.
Modify this file as needed.

• lwipopts.h – This file controls compile-time settings for lwIP, such as enabling and disabling features like UDP
and TCP. It also contains debug settings for lwIP. This file is included in the opt.h lwIP configuration file located in
/lwip/src/include/lwip directory. The opt.h header file contains default lwIP configuration settings. These settings
are used only if they are not already declared in lwipopts.h, so lwipopts.h provides a convenient means of over-
riding the default lwIP configuration. See the opt.h header file for a complete list of configurable settings.

• fsfiles.h – This file defines the embedded HTML pages and the associated file system. Only the fs.c source file
includes this file. Originally this file was a C source file named fsdata.c included by the fs.c file; however, since
the C/C++ SPE managed build tends to include all C source files for compilation (resulting in a compilation error),
fsdata.c was renamed to fsfiles.h. Including this file in any other C source file results in a compilation error,
because this file contains data structure instances.

24

LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demo
Lattice Semiconductor for the LatticeECP3 Versa Evaluation Board

Configurable LwIP Network-Stack Parameters
The opt.h lwIP header file, located in the /lwip/src/includes/lwip/ directory, contains default lwIP-configurable
parameters. You can override these parameters by defining them in the lwipopts.h header file located in the main
application directory.

Some of the configurations defined in the lwipopts.h header file for reducing the network-stack code size are the
following:

• UDP support is turned off because the Ethernet demonstration application does not require UDP.

• UDP checksum generation for transmit and check for receive is turned off. When UDP is turned off, it overrides
these settings.

• LwIP statistics are turned off.

• IP reassembly and P fragmentation are turned off.

• IP options are turned off. LwIP therefore discards packets that contain an options field in the IP header.

Configurable Network and MAC Parameters
Changing the Ethernet demonstration application’s network parameters does not require you to generate a new bit-
stream.

The configurable network parameters are defined in the ethernet_config.h header file in the SPE project, shown in
Figure 23.

Figure 23. Location of the Network Parameters File

The contents of the network parameters file are shown in Figure 24. The lwIP network stack used by the Ethernet
demonstration application has built-in DHCP support that can be enabled or disabled at compile time. This demon-
stration does not use DHCP, because it is disabled (LWIP_DHCP is set to 0 in lwipopts.h header file). The demon-
stration therefore uses the parameters defined in the LWIP_DHCP conditional. You can modify the provided MAC
address, IP address, gateway IP address, and the subnet mask in this file.

25

LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demo
Lattice Semiconductor for the LatticeECP3 Versa Evaluation Board

Figure 24. Contents of the Network Parameters File

Once you modify this file, be sure to rebuild (using the Rebuild command) the project rather than build it (using the
Build command), because C/C++ SPE does not correctly identify dependent files when modifying header files.
Once the rebuilding is finished, the generated executable contains code to configure the Tri-Speed Ethernet MAC
and the lwIP network stack with the new parameters.

Platform Configuration Dependency
This application has the following platform dependencies:

• The LatticeMico32 Tri-Speed Ethernet MAC MSB component instance must be named ts_mac_core. If you
rename the component instance, you must modify the low_level_init function in the ethernetif.c source file to cor-
rect the MAC base-address definition.

• The application must include at least one 32-bit timer instance. If it contains a single timer instance, it must not
be used by the application. If there are more instances, the first instance of the timer is used by the Ethernet
demonstration application for the network timer facility. To change this behavior, modify the setitimer.c source file.

• The application must include an 8-bit output GPIO named LED, which is used by the LEDStatus.c file to update
the status of the LEDs according to the application activity. If you plan to remove the LED GPIO, you must make
the appropriate changes to the LEDStatus.c file to avoid compilation errors.

• The finger daemon reports Tri-Speed Ethernet MAC counter values. If you do not plan to use the Tri-Speed Eth-
ernet MAC statistics module, you must disable the finger daemon initialization in the main() function. Disabling
the finger daemon initialization automatically excludes all finger code.

26

LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demo
Lattice Semiconductor for the LatticeECP3 Versa Evaluation Board

Setting Up the Marvell 88E1119R 10/100/1000 Ethernet PHY Device
The main module performs the following steps to configure the Marvell 88E1119R 10/100/1000 Ethernet PHY
device in this demonstration before entering the main loop:

1. Issues a soft reset to the Marvell 88E1119R 10/100/1000 Ethernet PHY device.

2. Configures the Marvell 88E1119R 10/100/1000 Ethernet PHY device to auto-negotiate.

3. Requests the Marvell 88E1119R 10/100/1000 Ethernet PHY device to auto-negotiate.

4. Queries the Marvell 88E1119R 10/100/1000 Ethernet PHY device for the link speed, once auto-negotiation is
complete.

5. Configures the ethernetif structure for allowing the lwIP Ethernet drivers to configure the Tri-Speed Ethernet
MAC for correct operation.

Main Control Loop
The entire control application exists in one forever loop. This is the standard approach to small control systems.
Interrupts are not used, nor is an operating system or executive, although lwIP can be ported for use with an oper-
ating system. The program looks for a packet to be read from the Tri-Speed Ethernet MAC. If pending, the packet is
read by the functions in ethernetif.c, and appropriate lwIP calls are made to process this incoming packet. Once the
check for a received packet is processed, the main loop calls the appropriate lwIP timer functions that must be
called periodically if their associated timers have elapsed.

Web Server Execution
The Web server application is implemented in the httpd.c source file. Initialization of the Web server, which resides
in httpd_init and is invoked by main(), provides a callback function to lwIP that is called when an incoming HTTP
connection is accepted by the lwIP network stack. This call-accept callback function, in turn, provides the callback
function that lwIP calls when it receives a packet for this accepted connection. In effect, the Web server is part of
the main control loop, because the main control loop calls the lwIP functions when it receives packets from the Tri-
Speed Ethernet MAC.

Finger Server Execution
The finger application is implemented in the fingerd.c source file. The finger server is initialized in the main() func-
tion by calling the fingerd_init function. The finger server has an architecture very similar to that of the Web server
and can be used as reference code for other applications. Processing the finger request and sending the data is
performed through callback functions called when network data arrives or is sent. In effect, the finger server is also
part of the main control loop, because the main control loop calls the lwIP functions when it receives packets from
the Tri-Speed Ethernet MAC.

Tri-Speed Ethernet MAC Driver
The software uses a driver to configure and control the Tri-Speed Ethernet MAC IP and the external Marvell
88E1119R 10/100/1000 Ethernet PHY device through the host interface registers. The driver also handles the
FIFO interface to send and receive Ethernet packets. If you plan to use these drivers as is in a multi-tasking situa-
tion, you must modify the provided drivers for protection against calls from being accessed simultaneously by mul-
tiple threads.

The driver is implemented in the tsmac_init function in the ts_mac_drvr.c source file. This function performs the fol-
lowing Tri-Speed Ethernet MAC initializations:

• Sets the operation mode.

• Sets a maximum packet size limit for the Tri-Speed Ethernet MAC.

• Sets MAC RX/TX FIFO thresholds.

• Sets the MAC address.

27

LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demo
Lattice Semiconductor for the LatticeECP3 Versa Evaluation Board

TCP/IP Software Stack
The Ethernet demonstration software application uses the open-source lwIP network stack. The following descrip-
tion is taken from the lwIP home page (http://savannah.nongnu.org/projects/lwip/):

LwIP is a small independent implementation of the TCP/IP protocol suite that has been developed by Adam Dun-
kels at the Computer and Networks Architectures (CNA) lab at the Swedish Institute of Computer Science (SICS).

The focus of the lwIP TCP/IP implementation is to reduce resource usage while still having a full-scale TCP. This
makes lwIP suitable for use in embedded systems with tens of kilobytes of free RAM and room for around 40 kilo-
bytes of code ROM.

The lwIP implementation offers the following features:

• IP (Internet Protocol), including packet forwarding over multiple network interfaces

• ICMP (Internet Control Message Protocol) for network maintenance and debugging

• UDP (User Datagram Protocol), including experimental UDP-lite extensions

• TCP (Transmission Control Protocol) with congestion control, RTT estimation, fast recovery, and fast retransmit

• Specialized raw API for enhanced performance

• Optional Berkeley-like socket API

• DHCP (Dynamic Host Configuration Protocol)

• PPP (Point-to-Point Protocol)

• ARP (Address Resolution Protocol) for Ethernet”

You can find additional information on lwIP at http://savannah.nongnu.org/projects/lwip/.

Enabling Software Debugging
You can obtain debugging information from the Marvell 88E1119R10/100/1000 Ethernet PHY device and the lwIP
network stack.

Debugging Device Communication
Before executing the main loop, main() attempts to communicate with the Marvell 88E1119R 10/100/1000 Ether-
net PHY device and set it up for proper operation. The software application is built with optimization flags turned off
to enable debugging and contains numerous printf statements indicating the activities performed before entering
the main loop. Figure 25 shows a typical output on the debug console for a successful Marvell 88E1119R
10/100/1000 Ethernet PHY device communication and link establishment session.

Figure 25. Communication Debug Output of the Marvell 88E1119R 10/100/1000 Ethernet PHY Device

28

LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demo
Lattice Semiconductor for the LatticeECP3 Versa Evaluation Board

Debugging LwIP
The lwIP network stack contains a significant amount of debugging information. Also, you can selectively enable
debugging information. This debugging information is output over the application’s standard-out stream. Although
you can use either the processor’s JTAG channel or an RS-232 connection as a standard out, it is highly recom-
mended that you use the RS-232 connection. The processor’s JTAG channel consumes significant processor
cycles, resulting in a drastically reduced network throughput and, in situations of heavy traffic load, even a total
breakdown of network connectivity if all the debug options are turned on.

Note1: Due to the limited available program memory (all FPGA EBR resources are used in this design); few lwIP
debug options can actually be enabled without exhausting code space resources.

Note2: Also, you cannot use the processor’s JTAG channel for standard I/O device selection if the application is
being deployed to flash for stand-alone operation.

Perform the following steps to enable the lwIP debug information flow to the development PC.

1. Insert the following preprocessor definition in the Project Properties dialog box: LWIP_DEBUG.

2. Remove the following preprocessor definition in the Project Properties dialog box: LWIP_NOASSERT.

3. To select RS-232 as the standard output, do not define _MICOUART_FILESUPPORT_DISABLED_, and make
sure the software application’s platform properties reflects RS-232 as the standard I/O device.

Figure 26 shows the preprocessor definitions for the packaged demonstration before you perform the steps just
given.

Figure 26. Preprocessor Options Before Enabling Debugging

Figure 27 shows the preprocessor definitions after you perform steps 1 through 3 just given.

29

LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demo
Lattice Semiconductor for the LatticeECP3 Versa Evaluation Board

Figure 27. Preprocessor Options Configured for Debug

4. If you are planning to put in breakpoints and step through the code, change the compiler optimization option to
–O0 (no optimizations) and the debug option to –g2.

5. Rebuild the application.

6. Download and debug the application. For the lwIP debugging information, make sure the RS-232 connection is
established between the LatticeECP3 Versa Evaluation Board and the development PC.

Default lwIP debugging conditionals are defined in the opt.h header file. Defined values for these conditionals in the
lwipots.h header file override the defaults in the opt.h header file. The lwipopts.h header file provided with the appli-
cation lists the available debugging conditionals. You can change these values in the lwipopts.h header file located
in the project directory. You must rebuild the application if you make any changes to lwipopts.h or any header file.

Figure 28 shows a sample of the lwIP debugging output with TCP_DEBUG set to DBG_OFF in the lwipopts.h file.
CP_DEBUG is enabled by default in lwipopts.h; however, since it discards much of the unnecessary TCP informa-
tion, it was disabled. If you want to debug the TCP flow in the network stack, leave the value as is in lwipots.h with
the demonstration package.

30

LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demo
Lattice Semiconductor for the LatticeECP3 Versa Evaluation Board

Figure 28. Sample Debug Output

Modifying Web Pages
Perform the following steps to modify the Web pages or to provide additional Web pages. The Web page for “File
Not Found” is embedded in the Web server so that if the embedded file system is not created correctly, the Web
server will still be able to serve this page.

1. Place your new Web pages or modified Web pages in the /tools/httpd/pages directory of the demonstration
installation.

2. If you are adding new Web pages, add the names of the new Web page files to files.txt. Do not leave a new line
at the end of the file list.

3. Start the LatticeMico32 System SDK shell and execute the makepages_lwIP.exe program, as shown in
Figure 29.

31

LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demo
Lattice Semiconductor for the LatticeECP3 Versa Evaluation Board

Figure 29. Running makepages_lwip.exe from LatticeMico312 System SDK Shell

The output of a successful run of makepages_lwIP.exe is a C source file, fsdata.c.

4. Rename this file to fsfiles.h.

5. Replace the provided fsfiles.h file in your EthernetDemoApp project, which was imported in C/C++ SPE, and
rebuild the project. You must rebuild the project rather than build it.

To verify your modifications to the Web pages, run the Ethernet demonstration application and try to access the
Web pages. If you do not find the Web page, the Web the server will issue a 404 (page not found) error.

You may have to select Refresh in Internet Explorer if the page was the actively displayed page on Internet
Explorer or if Internet Explorer was set to cache the Web page.

Troubleshooting
Following are some commonly encountered problems in the demonstration and possible solutions.

The board or demonstration does nothing:

1. Observe the LatticeMico32 C/C++ SPE debug console when running the program in the debug mode and
observe the Marvell 88E1119R 10/100/1000 Ethernet PHY device setup messages.

2. Make sure that the software heartbeat (D25) is blinking.

3. Reload the bitstream from the demonstration Bitstream directory.

You cannot ping the board:

1. Make sure that the visual indicators provided in “LED Indicators” on page 11 light up as indicated.

2. Make sure that the IP address configuration is set correctly on the LatticeECP3 Versa Evaluation Board, as
well as on the host computer.

3. Make sure that the subnet masks match up; the network stack has a strong relationship to the subnet mask.

4. Make sure that you are using either a hub or a crossover cable.

5. If the problem persists, turn on lwIP debugging and debug the application. The starting point is in the receive
routine ethernetif_input function, called from the main() function.

The Web browser does not display pages:

1. If pinging the board succeeds, the network configuration is correct.

32

LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demo
Lattice Semiconductor for the LatticeECP3 Versa Evaluation Board

2. Make sure that the proxy, if used, is disabled on the browser.

3. For extreme network activity that causes the demonstration software to lose packets, use a direct connection to
the board.

If you need to analyze the network traffic, connect the LatticeECP3 Versa Evaluation Board directly to the host
computer, using either a cable or a hub. Then download and install the WireShark (formerly known as Ethereal)
network protocol analyzer on the host computer. Allow it to install WinPCap as part of the installation. WireShark is
a powerful network protocol analyzer that enables you to capture, display, and analyze network traffic at the host
computer’s network interface.

Third-Party Software
Table 1 lists the third-party software tools and source code that are used in this demonstration. These packages
are all freely available to the general public from various Web sites on the Internet.

Table 1. Third-Party Software Tools Used in Demonstration

Software Source/Author License Description

lwIP Adam Dunkels BSD style
(Open Source)

TCP/IP network stack (C language)
Project page: http://savannah.nongnu.org/projects/lwip/

References
The following documents provide more information on topics discussed in this guide:

• LatticeMico32 Software Developer User’s Guide

• LatticeMico32 Tutorial

• LatticeMico32 Processor Reference Manual

• LatticeMico32 Tri-Speed Ethernet Media Access Controller data sheet, accessible through the LatticeMico32
MSB interface

• LatticeMico32 MSB and C/C++ online Help, accessible through the LatticeMico32 System Help

Technical Support Assistance
Hotline: 1-800-LATTICE (North America)

+1-503-268-8001 (Outside North America)
e-mail: techsupport@latticesemi.com
Internet: www.latticesemi.com

Revision History
Date Version Change Summary

April 2011 01.0 Initial release.

http://www.latticesemi.com/
www.latticesemi.com/dynamic/view_document.cfm?document_id=20893
www.latticesemi.com/dynamic/view_document.cfm?document_id=20894
www.latticesemi.com/dynamic/view_document.cfm?document_id=20890

33

LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demo
Lattice Semiconductor for the LatticeECP3 Versa Evaluation Board

Appendix A. Alternate Network Cable Setup
If you do not have access to a PC with a gigabit-capable network card, you can use a gigabit switch, such as Net-
gear’s ProSafe 5 Port Gigabit Switch (Model GS105) to perform the demonstration.

Figure 30 shows the cable connectivity when using a gigabit switch.

Figure 30. Cable Connectivity for a Gigabit Switch

If you also do not have access to a gigabit switch, you can connect the LatticeECP3 Versa Evaluation Board to a
PC capable of providing 100 megabit-per-second connectivity or to a hub or switch capable of providing 100 mega-
bit-per-second network connectivity. For instructions on operating in 100Mbps full- or half-duplex mode, see
“Appendix B. 10/100 Mbps Link” on page 34.

34

LatticeMico32 Tri-Speed Ethernet MAC Gigabit Demo
Lattice Semiconductor for the LatticeECP3 Versa Evaluation Board

Appendix B. 10/100 Mbps Link
The demonstration software configures the Marvell 88E1119R 10/100/1000 Ethernet PHY device to perform auto-
negotiation (10, 100, or 1000 megabits per second). It also allows the device to determine whether it is working
with a crossover cable or a straight cable.

If the LatticeECP3 Versa Evaluation Board and its connection partner cannot negotiate connection speed, you can
configure the application software to operate in 10 or 100 Mbps full-duplex mode.

To do this, you must change the positions of the SW3 DIP switch positions. The settings for 10 Mbit are as shown in
Figure 31. The settings for 100 Mbit are as shown in Figure 32.

Figure 31. DIP Switch Settings for 10 Mbps Full-Duplex Mode

SW3
Figure 32. DIP Switch Settings for 100 Mbps Full-Duplex Mode

SW3

	Introduction
	Prerequisites
	Hardware Requirements
	Software Requirements
	Cable Requirements
	General Requirements

	LatticeECP3 Versa Evaluation Board
	Purpose
	Application Space
	Limitations

	Installing the Demonstration
	Installation
	Environment Setup
	Importing Ethernet Demonstration Software Application into C/C++ SPE

	The Demonstration
	Board Setup
	Network Cable Setup
	Host PC Network Parameters Setup
	LatticeMico32 Application Network Parameters Setup
	Running the Demonstration
	LED Indicators
	Downloading the FPGA Bitstream
	Downloading the Ethernet Demonstration C/C++ SPE Software Application
	Pinging the Board
	Accessing the Web Server
	Accessing LatticeMico32 Tri-Speed Ethernet MAC Statistics Counters Using Finger Protocol

	Design Details
	Design Top Level
	Clock Sources
	MSB Platform
	Software
	Demonstration Application File Organization
	Configurable LwIP Network-Stack Parameters
	Configurable Network and MAC Parameters
	Platform Configuration Dependency
	Setting Up the Marvell 88E1119R 10/100/1000 Ethernet PHY Device
	Main Control Loop
	Web Server Execution
	Finger Server Execution
	Tri-Speed Ethernet MAC Driver
	TCP/IP Software Stack

	Enabling Software Debugging
	Debugging Device Communication
	Debugging LwIP

	Modifying Web Pages

	Troubleshooting
	Third-Party Software
	References
	Technical Support Assistance
	Revision History
	Appendix A. Alternate Network Cable Setup
	Appendix B. 10/100 Mbps Link

