
December 2009
UG07_01.4


PCI Express Throughput Demo Verilog Source Code


User’s Guide

2

PCI Express Throughput Demo
Lattice Semiconductor Verilog Source Code User’s Guide

Introduction
This user’s guide provides details of the Verilog code used for the Lattice PCI Express SFIF Demo (also known as
the Throughput Demo). A block diagram of the entire design is provided followed by a description for each module
in the design. Instructions for building the demo design using Lattice Diamond™ design software are provided as
well as a review of the preference file used for the demo.

Top Level
Figure 1 provides a top-level diagram of the demo Verilog design.

Figure 1. Top-Level Block Diagram

PCI Express Endpoint IP Core

UR Gen

WB TLC
(Completor)

SFIF
(Requestor)

Tx Arbiter

WISHBONE Bus Arbiter

32K EBR GPIO

Transmit TLPs Receive TLPs

Application
Layer

Adaptation
Layer

Transport
Layer

PCI Express PHY (Embedded SERDES)

PCI Express x1/x4 Link

The block diagram is separated into three distinct functions. The Transport Layer is used to move TLPs to and from
the PCI Express link. This set of features is supported by the Lattice PCI Express Endpoint IP core and embedded
SERDES. Moving up the design stack, the next layer is the Adaptation Layer. This layer is responsible for convert-
ing PCI Express TLPs into useful data for the Application Layer. The Adaptation Layer uses several soft-IP Verilog
modules to extract received TLP contents and repackage transmit data into TLPs for transmission. The final level is
the Application Layer. The Application Layer provides the demo capability that is utilized by the demo software. In
this particular demo application the SFIF module is loaded with TLPs to be sent via the PCI Express link.

SFIF Project Directory Structure
Figure 2 provides the directory structure for the Diamond project. The LatticeECP3™, LatticeECP2M™ and Lattic-
eSC™ implementations use most of the same files. The only differences are the top level modules and the IP
cores. Specific files for each architecture family are located in their respective directories.

3

PCI Express Throughput Demo
Lattice Semiconductor Verilog Source Code User’s Guide

Figure 2. Directory Structure

<device>_PCIeThruput_<link width>/
Source/

wb_tlc/
sfif/
gpio/
ur_gen/
32kebr/
wb_arb/
<architecture>/

ipExpressGenCore/
<architecture>/

pcie[x4,x4d1]/
Implementation/

<device>_PCIeThruput_<link width>/

Modules
This section will discuss the details of each of the modules that make up the demo design. Each module listed will
be followed by the filename of the Verilog file which includes this module. Verilog files can be found in the “Source”
directory of the demo package.

Top-Level – top_sfif.v
The top-level module contains all of the blocks found in Figure 1. There is a different top-level file for the
LatticeECP3, LatticeECP2M and LatticeSC. The LatticeECP3 and LatticeECP2M use a PIPE interface to the
embedded SERDES. The LatticeSC encapsulates the SERDES inside of the PCI Express Endpoint IP core. The
LatticeSC also uses the system bus to control the multi-channel alignment registers inside of the embedded
PCS/SERDES. Other than these two differences, the top-level files are the same.

PCI Express Endpoint IP Core – pcie_bb.v
This module is the Lattice PCI Express Endpoint IP core. This module is an encrypted IP core which uses a Verilog
black box model for synthesis and an obfuscated Verilog simulation model. IPexpress™ is used to create this mod-
ule. In the ipExpressGenCore/<arch>/pcie[x4,x4d1] directory the file pcie.lpc is located. This file can be used to
load the settings into IPexpress to recreate or modify the PCI Express module.

For the LatticeECP3 and LatticeECP2M an additional file, pcie_top.v, is provided in the Source/[ecp2m, ecp3]
directory. This file provides a Verilog wrapper for the LatticeECP3 and LatticeECP2M PCI Express cores and PIPE
interfaces.

x4 and x4d1
In the ipExpressGenCore/<arch>/ directory there is either a pciex4 or pciex4d1 directory. The pciex4 directory is
used if the demo supports a native x4 PCI Express link. The pciex4d1 is used if the demo supports a x1 link. The
pciex4d1 directory contains the Lattice x4 PCI Express Endpoint IP core downgraded to a x1. This core is used
instead of the native Lattice x1 PCI Express Endpoint IP core to maintain the 64-bit interface required by the demo
code. The native Lattice x1 PCI Express Endpoint IP core uses a 16-bit interface, which can not be used with the
demo code.

Embedded SERDES – pcs_pipe_bb.v (LatticeECP3 and LatticeECP2M Only)
The LatticeECP3 and LatticeECP2M use a PIPE interface to the embedded SERDES. This module provides the
PIPE interface and the SERDES interface. This file is created when creating the PCI Express Endpoint IP core for
the LatticeECP3 and LatticeECP2M.

4

PCI Express Throughput Demo
Lattice Semiconductor Verilog Source Code User’s Guide

Tx Arbiter – ip_tx_arbiter.v
This module allows several clients to send TLPs to the PCI Express Endpoint IP core. Using a round-robin sched-
uler, the tx arbiter waits for the current client to finish sending TLPs before switching to the next client.

Rx Credit Processing – ip_rx_crpr.v
This module monitors receive TLPs coming from the PCI Express Endpoint IP core and terminates credits for
Posted and Non-Posted TLPs which are not handled by the wb_tlc module. The number of credits used by each
TLP is calculated and using the PCI Express Endpoint IP core ports these credits are terminated. Terminated cred-
its are stored until an UpdateFC DLLP can be sent by the PCI Express Endpoint IP core informing the far end that
the credits have been freed.

Unsupported Request Generation – ur_gen.v
All Non-Posted TLPs and memory accesses to unsupported memory must provide a completion. This module will
generate unsupported request completions informing the far-end device of these types of memory transactions.

This module receives input from both the PCI Express Endpoint IP core rx_us_req signal as well as TLPs from the
receiver. Whenever the rx_us_req signal indicates an unsupported request this module will send an unsupported
request completion to the PCI Express Endpoint IP core.

This demo does not support I/O requests. Whenever an I/O request is made this module will send an unsupported
request completion to the PCI Express Endpoint IP core.

This demo implements two BARs (BAR0 and BAR1). If a memory request is made to an address other than that
serviced by BAR0 or BAR1 an unsupported request completion will be sent to the PCI Express Endpoint IP core.

WISHBONE Transaction Layer Completer (WB_TLC) – wb_tlc.v
The WISHBONE Transaction Layer Completer (WB_TLC) is used as a control plane interface for the endpoint. This
module accepts received TLPs from the PCI Express Endpoint IP core. If they are memory transactions to either
BAR0 or BAR1, the memory transaction is used by the completer. Otherwise, the TLP is dropped and is handled by
the unsupported request module.

The WB_TLC is responsible for adapting 1DW TLP memory requests into WISHBONE transactions. 1 DW TLPs
are only supported since this is a low throughput control plane interface which reduces logic. There are several
modules underneath the WB_TLC top level.

TLP Decoder – wb_tlc_dec.v
The WB_TLC TLP decoder is responsible for decoding the type of TLP that enters the WB_TLC. The WB_TLC is
only capable of supporting MRd and MWr TLPs that are accessing BAR0 or BAR1. All other TLPs are dropped and
presumably handled by other modules in the design. After leaving the decoder, MRd and MWr TLPs write into a
FIFO.

Memory Request TLP FIFO – wb_tlc_req_fifo.v
The request FIFO is used to store accepted TLPs until they can be converted into WISHBONE transactions on the
WISHBONE bus. The request FIFO provides two clock domains (write and read), however this demo design con-
nects both ports to the single 125MHz clock domain.

TLPs are read from the FIFO when the FIFO is no longer empty under control of the WISHBONE interface module.
This module terminates write credits when the TLPs are pulled from this FIFO. Read credits are terminated when
the completion is sent.

Credit Processor - wb_tlc_cr.v
This module converts credits terminated in the WISHBONE clock domain to the PCI Express domain.

WB_TLC WISHBONE Interface – wb_intf.v

5

PCI Express Throughput Demo
Lattice Semiconductor Verilog Source Code User’s Guide

The WISHBONE interface of the WB_TLC is responsible for reading TLPs from the request FIFO and creating
WISHBONE transactions. When the request FIFO is not empty, the WISHBONE interface will read the TLP from
the FIFO until the end of the TLP. As the TLP is read, the address and data will be converted into a WISHBONE
transaction. The address is adjusted to use the least significant 18 bits.

For read transactions the transaction ID is passed out of the module to be used by the completion generation mod-
ule.

WB_TLC Completion Generation – wb_tlc_cpld.v
The WB_TLC completion generation module is responsible for accepting data from a read request on the WISH-
BONE bus and creating a CplD TLP. As data is returned from a read on the WISHBONE bus the CplD TLP is filled
with this data. The CplD also uses the transaction ID and length from the wb_intf module to fill the remaining fields
in the CplD. Once the CplD TLP is created it is stored in the CplD FIFO.

WB_TLC Completion FIFO – wb_tlc_cpld_fifo.v
The completion FIFO stores the CplD TLPs from the completion generation module until the TLP can be sent to the
PCI Express Endpoint IP core.

SFIF - sfif.v
The SFIF is used to move data across the PCI Express link as fast as possible. The design uses a transmit FIFO
that is loaded by the control plane via the WB_TLC. When the software starts the SFIF the FIFO contents are sent
to the PCI Express Endpoint IP core as fast as the credits available and tags available will allow. For read requests,
the CplD is stored into a shallow receive FIFO. The software can analyze the receive FIFO for the correct contents
of the FIFO via the WB_TLC.

The SFIF uses several modules to provide the functionality described.

WISHBONE Slave – sfif_wbs.v
The WISHBONE slave interface of the SFIF is a slave on the WISHBONE bus. This interface is used to load the tx
FIFO, read the rx FIFO, and set the parameters of the SFIF run.

Transmit FIFO – sfif_tx_fifo.v
The transmit FIFO is used to store the TLPs to be sent by the SFIF. The entire contents of the TLP are written into
the Tx FIFO in TLP form.

Credit Available – sfif_ca.v
This module is used to compare if enough credits are available to send a TLP to the PCI Express Endpoint IP core
interface. The number of credits of the next TLP to be sent is compared to the number of credits available from the
PCI Express Endpoint IP core.

Tag Available – sfif_tag.v
When performing a read operation a tag needs to be available before a read request can be sent. For each read
TLP, the SFIF increments the tag used up to 31 tags. After 31 tags, the tag rolls over to 1. If tag 1 is not available
then the SFIF must wait until tag 1 is available.

Receive FIFO – sfif_rx_fifo.v
The receive FIFO module is used to store CplD TLPs from the PCI Express core. These CplD TLPs must match
the tag of the outstanding request otherwise the CplD is dropped.

Receive Credit Processing – sfif_cr.v
Credits for the received CplDs are terminated as they come into the SFIF. This module accepts the CplDs and frees
up the credits on the PCI Express Endpoint IP core interface.

Control – sfif_ctrl.v
The SFIF control module is responsible for controlling the read of the transmit FIFO and sending TLPs to the PCI
Express Endpoint IP core. It is responsible for making sure that the credits are checked before sending and han-

6

PCI Express Throughput Demo
Lattice Semiconductor Verilog Source Code User’s Guide

dling the requests and ready indications from the core. It also handles all of the cycles and inter cycle gap parame-
ters than can be set by the user.

WISHBONE Arbiter - wb_arb.v
The WISHBONE arbiter is responsible for arbitrating between the WB_TLC and the SFIF for access to the WISH-
BONE bus. It is also responsible for the slave select based on an address decode from the master selected. To
account for the demo applications features, the arbiter does not support all masters transacting with all slaves. The
WB_TLC, however, can request data from all slaves on the WISHBONE bus.

GPIO – wbs_gpio.v
The General Purpose Input Output (GPIO) module is responsible for several housekeeping functions. It provides
an ID register used by the software to identify the feature set and version of the design. It also provides access to
control the 16-segment LED on the board. There is a section dedicated to interrupt control logic as well as other
maintenance type functions. Table 1 is a memory map for the GPIO module.

Table 1. GPIO Module Memory Map

Address Bits Description

0x0 [0:31] ID register

0x4 [0:31] Scratch pad

0x8
[0:15] DIP switch value

[16:31] 16 segment LED

0xc

Generic down counter control

[0] Counter run

[1] Counter reload

0x10 [0:31] Counter value

0x14 [0:31] Counter reload value

0x18

SGDMA Control and Status

[0:4] DMA Request (per channel)

[5:9] DMA Ack (per channel)

0x1c [0:31] DMA Write Counter - The number of clock cycles from the DMA request to the DMA ack of chan-
nel 0

0x20 [0:31] DMA Read Counter - The number of clock cycles from the DMA request to the DMA ack of chan-
nel 1

0x24
[0:15] Root complex Non-Posted Buffer size

[16:31] Root complex Posted Buffer size

0x28 [0:31] EBR Filter value used for triangle manipulation

0x2c Not used

0x30 [0] ColorBar reset

0x100 [0:31] Interrupt Controller ID

0x104

[0] Current status of interrupt

[1] Test mode

[2] Interrupt enable to pass interrupt onto the PCI Express Endpoint IP core

[3:7] Not used

[8:15] Interrupt Test value 0

[16:23] Interrupt Test value 1

[24:31] Not used

7

PCI Express Throughput Demo
Lattice Semiconductor Verilog Source Code User’s Guide

32K EBR – wbs_32kebr.v
The 32K EBR is used to store data on the WISHBONE bus. The WISHBONE slave is 64 bits wide and supports
burst operations on the bus.

System Bus – sysbus.v (LatticeSC Only)
The system bus is an embedded block of the LatticeSC that provides access to the memory map for the
PCS/SERDES block. This is required in the LatticeSC implementation of the PCI Express for multi-lane links.

uML Controller – uml.v (LatticeSC Only)
The uML controls the PCS Multi Channel aligner registers of the LatticeSC PCS to account for the lane width deter-
mined during LTSSM training. This module receives information from the PCI Express Endpoint IP core and then
writes registers in the PCS to control the multi channel aligner. More information on the uML can be found in the
PCI Express core user’s guide.

LED Status – led_status.v
This module provides the control of the LEDs on the demo board for the LTSSM states.

PLL – pll.v (LatticeSC Only)
A FPGA PLL is required to take the 100MHz PCI Express clock and create a 250MHz clock for the SERDES refer-
ence clock. The SERDES then uses a 10x multiplier to create the 2.5GHz clock for the PCI Express link.

Building the Design in Diamond
This section describes how to open an existing project or create a new project and build a bitstream for the demo
design.

Opening an Existing Project
You can open an existing Diamond project .ldf file in Diamond. To open an existing project:

1. In Diamond, choose File > Open > Project.

2. In the Open Project dialog box, choose the project .ldf file.

3. Click Open.

To build the project, double-click Bitstream File in the Process Pane.

Note: This project enables the use of the IP Hardware Timer. If the user does not have a license for any of the IP
used in this design, the IP Hardware Timer will hold the FPGA in global reset after approximately four hours of
operation. Once a valid license is installed and the project rebuilt the Hardware Timer will no longer be used.

If design changes are made to this design, place and route options may need to be adjusted to run multiple place-
ment iterations.

For instructions on how to import an ispLEVER project into Diamond, refer to the Lattice Diamond User Guide.

0x108 [0:15]

In normal mode:
[0:4] dma_ack
[5] down counter = 0

In test mode:
[0:7] Test value 0
[8:15] Test value 1

0x10c [0:31] Interrupt mask for all sources

Table 1. GPIO Module Memory Map (Continued)

Address Bits Description

www.latticesemi.com/dynamic/view_document.cfm?document_id=38975

8

PCI Express Throughput Demo
Lattice Semiconductor Verilog Source Code User’s Guide

Creating a New Project for the LatticeECP3 and LatticeECP2M
To create a new project the user must select a device, import all of the HDL files, create the .lpf file, set the search
paths, and copy all of the autoconfig files to the project directory. Below is a list of steps that need to be completed
to create a new project.

1. From the Diamond main window, choose File > New > Project.

The New Project dialog box of the Project Wizard opens. Click Next.

2. In the Project Name dialog box, do the following:

Under Project, specify the name and directory location for the new project. The default implementation name is
the same as the new project name. You can change it if you wish. Implementations are comprised of source
and strategy files. Multiple implementations are possible for one project.

Click Next.

3. In the Add Source dialog box, click Add Source. Add all source files described in the previous section.

Additionally, add the pmi_def.v file which provides the module definition for PMI modules used by the design.
Click Next.

4. On the Select Device page, select the family and device for the evaluation board you are using. For the
LatticeECP2M PCI Express Evaluation Board, select the LatticeECP2M family, LFE2M50E device, -6 speed
grade, and a FPBGA672 package. For the LatticeECP3 PCI Express Evaluation Board, select the
LatticeECP3 family, LFE3-95EA device, -7 speed grade, and a FPBGA672 package.

5. Choose Project > Active Strategy > Translate Design Settings. Verify that Macro Search Path is set to the
directory path ..\..\ipExpressGenCore\[epc3,ecp2m]\[pciex4,pciex4d1] for Windows. Your path would have
forward slashes for Linux.

6. Next, the autoconfig text files need to be copied to the project implementation directory at 
ecp3-95_PCIeThruput_SBx4\Implementation\ecp3-95_PCIeThruput_SBx4\impl1. The autoconfig text files
contain lines to program the hard macros in the design. The file pcs_pipe_8b_X4.txt file should be copied into
the project directory. If the design is targeting a x1 link (using a PCI Express x4 downgraded x1 core) then the
unused channels will need to be disabled by editing the pcs_pipe_8b_x4.txt file. See the PCI Express User's
Guide for more information on modifying the file.

7. 7. The project requires a logical preference file (.lpf). Start with the file from the kit at 
ecp3-95_PCIeThruput_SBx4\Implementation\ecp3-95_PCIeThruput_SBx4. This file may need modifica-
tion to match your design.

8. Choose Project > Active Strategy > Place and Route Design Settings.

9. In the Strategy dialog box, set the number of Placement Iterations to 10. This will allow place and route to try
10 different placements while attempting to satisfy all of the timing constraints.

10. The design is now ready to be built. Double click on the Bitstream File in the Process pane of Diamond to cre-
ate the bitstream.

Note: This project enables the use of the IP Hardware Timer. If the user does not have a license for any of the IP
used in this design, the IP Hardware Timer will hold the FPGA in global reset after approximately four hours of
operation. Once a valid license is installed and the project rebuilt the Hardware Timer will no longer be used.

Conclusion
This user’s guide provides a description for the PCI Express SFIF Demo design. With this guide, users can rebuild
the bitstream used for the demo and begin to modify the design to achieve their design goals.

www.latticesemi.com/dynamic/view_document.cfm?document_id=7838
www.latticesemi.com/dynamic/view_document.cfm?document_id=7838

9

PCI Express Throughput Demo
Lattice Semiconductor Verilog Source Code User’s Guide

Technical Support Assistance
Hotline: 1-800-LATTICE (North America)

+1-503-268-8001 (Outside North America)
e-mail: techsupport@latticesemi.com
Internet: www.latticesemi.com

Revision History
Date Version Change Summary

January 2008 01.0 Initial release.

January 2008 01.1 Updated note in Opening an Existing Project text section.

Updated numbered list in Creating a New Project for the LatticeECP2M
section.

July 2008 01.2 Document title change from “Lattice PCI Express x4 SFIF Demo Verilog
Source Code User’s Guide” to “Lattice PCI Express Throughput Demo
Verilog Source Code User’s Guide.”

Updates to support PCI Express core version 3.3.

Updates to support solution kit directory structure.

Updates to support WISHBONE clock domain change.

December 2009 01.3 Added LatticeECP3 support.

December 2010 01.4 Updated for Lattice Diamond design software support.

http://www.latticesemi.com/

	Introduction
	Top Level
	SFIF Project Directory Structure
	Modules
	Top-Level – top_sfif.v
	PCI Express Endpoint IP Core – pcie_bb.v
	x4 and x4d1
	Embedded SERDES – pcs_pipe_bb.v (LatticeECP3 and LatticeECP2M Only)
	Tx Arbiter – ip_tx_arbiter.v
	Rx Credit Processing – ip_rx_crpr.v
	Unsupported Request Generation – ur_gen.v
	WISHBONE Transaction Layer Completer (WB_TLC) – wb_tlc.v
	TLP Decoder – wb_tlc_dec.v
	Memory Request TLP FIFO – wb_tlc_req_fifo.v
	Credit Processor - wb_tlc_cr.v
	WB_TLC WISHBONE Interface – wb_intf.v
	WB_TLC Completion Generation – wb_tlc_cpld.v
	WB_TLC Completion FIFO – wb_tlc_cpld_fifo.v

	SFIF - sfif.v
	WISHBONE Slave – sfif_wbs.v
	Transmit FIFO – sfif_tx_fifo.v
	Credit Available – sfif_ca.v
	Tag Available – sfif_tag.v
	Receive FIFO – sfif_rx_fifo.v
	Receive Credit Processing – sfif_cr.v
	Control – sfif_ctrl.v

	WISHBONE Arbiter - wb_arb.v
	GPIO – wbs_gpio.v
	32K EBR – wbs_32kebr.v
	System Bus – sysbus.v (LatticeSC Only)
	uML Controller – uml.v (LatticeSC Only)
	LED Status – led_status.v
	PLL – pll.v (LatticeSC Only)

	Building the Design in Diamond
	Opening an Existing Project
	Creating a New Project for the LatticeECP3 and LatticeECP2M

	Conclusion
	Technical Support Assistance
	Revision History

