
December 2010
UG06_01.3

PCI Express Scatter-Gather DMA Demo Verilog Source Code

User’s Guide

2

PCI Express Scatter-Gather
Lattice Semiconductor DMA Demo Verilog Source Code User’s Guide

Introduction
This user’s guide provides details of the Verilog code used for the Lattice PCI Express Scatter-Gather DMA Demo.
A block diagram of the entire design is provided followed by a description for each module in the design. Instruc-
tions for building the demo design using Lattice Diamond™ design software are provided as well as a review of the
preference file used for the demo.

Top Level
Figure 1 provides a top-level diagram of the demo Verilog design.

Figure 1. Top Level Block Diagram

PCI Express Endpoint IP Core

UR Gen

WB TLC
(Completor)

DMA Adapter
(Requestor)

Scatter-Gather
DMA

Tx Arbiter

WISHBONE Bus Arbiter

ColorBar 64K EBR GPIO

Transmit TLPs Receive TLPs Interrupt

Application
Layer

Adaptation
Layer

Transport
Layer

PCI Express PHY (Embedded SERDES)

PCI Express x1/x4 Link

The block diagram is separated into three distinct functions. The Transport Layer is used to move TLPs to and from
the PCI Express link. This set of features is supported by the Lattice PCI Express Endpoint IP core and embedded
SERDES. Moving up the design stack, the next layer is the Adaptation Layer. This layer is responsible for convert-
ing PCI Express TLPs into useful data for the Application Layer. The Adaptation Layer uses Lattice’s Scatter-
Gather DMA IP core as well as several other soft-IP Verilog modules to extract received TLP contents and repack-
age transmit data into TLPs for transmission. The final level is the Application Layer. The Application Layer pro-
vides the demo capability that is utilized by the demo software. In this particular demo application a color bar and
modified floating triangle are displayed on the monitor for the user.

3

PCI Express Scatter-Gather
Lattice Semiconductor DMA Demo Verilog Source Code User’s Guide

SGDMA Project Directory Structure
Figure 2 provides the directory structure for the Diamond project. The LatticeECP3™, LatticeECP2M™ and Lattic-
eSC™ implementations use most of the same files. The only differences are the top-level modules and the IP
cores. Specific files for each architecture family are located in their respective directories.

Figure 2. Directory Structure

<device>_PCIeSGDMA_<link width>/
Source/

wb_tlc/
dma_adapter/
gpio/
ur_gen/
64kebr/
colorbar/
wb_arb/
<architecture>/

ipExpressGenCore/
<architecture>/

pcie[x4,x4d1]/
sgdma/
pll/

Implementation/
<device>_PCIeSGDMA_<link width>/

Modules
This section discusses the details of each of the modules that make up the demo design. Each module listed will
be followed by the filename of the Verilog file which includes this module. Verilog files can be found in the “src”
directory of the demo package.

Top-Level – top_sgdma.v
The top-level module contains all of the blocks found in Figure 1. There is a different top-level file for the
LatticeECP3, LatticeECP2M and LatticeSC. The LatticeECP3 and LatticeECP2M use a PIPE interface to the
embedded SERDES. The LatticeSC encapsulates the SERDES inside of the PCI Express Endpoint IP core. The
LatticeSC also uses the system bus to control the multi-channel alignment registers inside of the embedded
PCS/SERDES. Other than these two differences, the top-level files are the same.

PCI Express Endpoint IP Core – pcie_bb.v
This module is the Lattice PCI Express Endpoint IP core. This module is an encrypted IP core which uses a Verilog
black box model for synthesis and an obfuscated Verilog simulation model. IPexpress™ is used to create this mod-
ule. In the ipExpressGenCore/<arch>/pcie[x4,x4d1] directory the file pcie.lpc is located. This file can be used to
load the settings into IPexpress to recreate or modify the PCI Express module.

For the LatticeECP3 and LatticeECP2M an additional file, pcie_top.v, is provided in the Source/[ecp2m, ecp3]
directory. This file provides a Verilog wrapper for the LatticeECP3 and LatticeECP2M PCI Express cores and PIPE
interfaces.

4

PCI Express Scatter-Gather
Lattice Semiconductor DMA Demo Verilog Source Code User’s Guide

x4 and x4d1
In the ipExpressGenCore/<arch>/ directory there is either a pciex4 or pciex4d1 directory. The pciex4 directory is
used if the demo supports a native x4 PCI Express link. The pciex4d1 is used if the demo supports a x1 link. The
pciex4d1 directory contains the Lattice x4 PCI Express Endpoint IP core downgraded to a x1. This core is used
instead of the native Lattice x1 PCI Express Endpoint IP core to maintain the 64-bit interface required by the demo
code. The native Lattice x1 PCI Express Endpoint IP core uses a 16-bit interface, which can not be used with the
demo code.

Embedded SERDES – pcs_pipe_bb.v (LatticeECP3 and LatticeECP2M Only)
The LatticeECP3 and LatticeECP2M use a PIPE interface to the embedded SERDES. This module provides the
PIPE interface and the SERDES interface. This file is created when creating the PCI Express Endpoint IP core for
the LatticeECP3 and LatticeECP2M.

Tx Arbiter - ip_tx_arbiter.v
This module allows several clients to send TLPs to the PCI Express Endpoint IP core. Using a round-robin sched-
uler, the tx arbiter waits for the current client to finish sending TLPs before switching to the next requesting client.

Rx Credit Processing – ip_rx_crpr.v
This module monitors receive TLPs coming from the PCI Express Endpoint IP core and terminates credits for
Posted and Non-Posted TLPs that are not handled by the wb_tlc. The number of credits used by each TLP is calcu-
lated and using the PCI Express Endpoint IP core ports these credits are terminated. Terminated credits are stored
until an UpdateFC DLLP can be sent by the PCI Express Endpoint IP core informing the far-end that the credits
have been freed.

Unsupported Request Generation – ur_gen.v
All Non-Posted TLPs and memory accesses to unsupported memory must provide a completion. This module will
generate unsupported request completions informing the far-end device of these types of memory transactions.

This module receives input from both the PCI Express Endpoint IP core rx_us_req signal as well as TLPs from the
receiver. Whenever the rx_us_req signal indicates an unsupported request, this module will send an unsupported
request completion to the PCI Express Endpoint IP core.

This demo does not support I/O requests. Whenever an I/O request is made, this module will send an unsupported
request completion to the PCI Express Endpoint IP core.

This demo implements two BARs (BAR0 and BAR1). If a memory request is made to an address other than that
serviced by BAR0 or BAR1, an unsupported request completion will be sent to the PCI Express Endpoint IP core.

WISHBONE Transaction Layer Completer (WB_TLC) – wb_tlc.v
The WISHBONE Transaction Layer Completer (WB_TLC) is used as a control plane interface for the endpoint. This
module accepts received TLPs from the PCI Express Endpoint IP core. If they are memory transactions to either
BAR0 or BAR1, the memory transaction is used by the completer. Otherwise, the TLP is dropped and is handled by
the unsupported request module.

The WB_TLC is responsible for adapting 1DW TLP memory requests into WISHBONE transactions. 1 DW TLPs
are only supported since this is a low throughput control plane interface which reduces logic. There are six mod-
ules underneath the WB_TLC top level.

TLP Decoder – wb_tlc_dec.v
The WB_TLC TLP decoder is responsible for decoding the type of TLP that enters the WB_TLC. The WB_TLC is
only capable of supporting MRd and MWr TLPs that are accessing BAR0 or BAR1. All other TLPs are dropped and
presumably handled by other modules in the design. After leaving the decoder, MRd and MWr TLPs are stored in a
FIFO.

5

PCI Express Scatter-Gather
Lattice Semiconductor DMA Demo Verilog Source Code User’s Guide

Memory Request TLP FIFO – wb_tlc_req_fifo.v
The request FIFO is used to store accepted TLPs until they can be converted into WISHBONE transactions on the
WISHBONE bus. The request FIFO provides two clock domains (write and read), the 125 MHz PCI Express
domain clock is used to write TLPs into the FIFO while the 105 MHz WISHBONE domain clock is used to read
TLPs from the FIFO.

TLPs are read from the FIFO when the FIFO is no longer empty under control of the WISHBONE interface module.
This module terminates write credits when the TLPs are pulled from this FIFO. Read credits are terminated when
the completion is sent.

Credit Processor - wb_tlc_cr.v
This module converts credits terminated in the WISHBONE clock domain to the PCI Express domain.

WB_TLC WISHBONE Interface – wb_intf.v
The WISHBONE interface of the WB_TLC is responsible for reading TLPs from the request FIFO and creating
WISHBONE transactions. When the request FIFO is not empty, the WISHBONE interface will read the TLP from
the FIFO until the end of the TLP. As the TLP is read, the address and data will be converted into a WISHBONE
transaction. The address is adjusted to use the least significant 18 bits.

For read transactions, the transaction ID is passed out of the module to be used by the completion generation mod-
ule.

WB_TLC Completion Generation – wb_tlc_cpld.v
The WB_TLC completion generation module is responsible for accepting data from a read request on the WISH-
BONE bus and creating a CplD TLP. As data is returned from a read on the WISHBONE bus, the CplD TLP is filled
with this data. The CplD also uses the transaction ID and length from the wb_intf module to fill the remaining fields
in the CplD. Once the CplD TLP is created it is stored in the CplD FIFO.

WB_TLC Completion FIFO – wb_tlc_cpld_fifo.v
The completion FIFO stores the CplD TLPs from the completion generation module until the TLP can be sent to the
PCI Express Endpoint IP core.

Scatter-Gather DMA – sgdma_top.v
The Scatter-Gather DMA module is a wrapper to encapsulate the Scatter-Gather DMA IP core and the buffer
descriptor memory used by the DMA core.

The Scatter-Gather DMA IP core (sgdma_bb.v) is an encrypted IP core which uses a Verilog black box model for
synthesis and an obfuscated Verilog simulation model. IPexpress is used to create this module. In the sgdma direc-
tory the file sgdma.lpc is located. This file can be used to load the settings into IPexpress to recreate or modify the
module.

The buffer descriptor memory is used to hold all of the buffer descriptors used by the SGDMA. A PMI-based
Embedded Block RAM (EBR) is used for the buffer descriptor memory. This demo uses all 256 buffer descriptors
as an example. This requires an EBR with a 10-bit address.

DMA Adapter – dma_adapter.v
The DMA Adapter is responsible for interfacing the SGDMA to the PCI Express Endpoint IP core. Like the SGDMA,
the DMA adapter uses channels. Channel 0 is used for writing data from the WISHBONE bus (via the SGDMA) to
the PCI Express core. Channel 1 is used for reading data from the PCI Express core to the WISHBONE bus (via
the SGDMA). The remaining channels of the SGDMA are not used by this adapter implementation.

When the SGDMA does a write operation (from the WISHBONE to the PCI Express) channel 0 is used to write
data into the adapter. The burst length of the WISHBONE transaction will be no larger than 128 bytes (the largest
size supported by the demo software). Using the burst length information from the SGDMA a TLP is created and
stored in the transmit FIFO. When this FIFO is not empty the adapter requests to send this TLP to the PCI Express

6

PCI Express Scatter-Gather
Lattice Semiconductor DMA Demo Verilog Source Code User’s Guide

Endpoint IP core. First the number of available Posted credits is checked and then the TLP is requested to be sent
and finally sent.

When the SGDMA does a read operation (from the PCI Express to the WISHBONE) channel 1 is used to terminate
a read transaction from the SGDMA. The adapter will immediately issue a WISHBONE retry informing the SGDMA
that this transaction will take some time and to wait until a request comes back from the adapter to gather the data.

The adapter then converts the WISHBONE read transaction into a memory read TLP to be sent to the PCI Express
Endpoint IP core. This TLP is stored in the transmit FIFO. The TLP is read out of the FIFO when there are enough
Non-Posted credits available to send the TLP. A request is made to send the TLP followed by the actual TLP.

A memory read TLP may come back with several CplD TLPs until all of the data has been returned. The adapter
will wait and store data until all of the data has been returned. Once all of the data has been returned the adapter
will issue a dma_req to the SGDMA alerting the SGDMA that all of the data for that channel has been collected.
The SGDMA will then issue a read to gather all of the data. As the data has been read from the FIFO to the
SGDMA the credits for these CplDs are released back to the PCI Express Endpoint IP core.

The DMA adapter uses several modules to provide the functionality described.

WISHBONE Slave – dma_wbs.v
The WISHBONE slave interface of the dma adapter is a WISHBONE slave which talks directly with the SGDMA
master interface. This module converts the WISHBONE transaction into a memory TLP.

Transmit FIFO – dma_tx_fifo.v
The transmit FIFO is used to store both the memory write and memory read transactions before sending them to
the PCI Express Endpoint IP core.

Credit Available – dma_ca.v
This module is used to compare if enough credits are available to send a TLP to the PCI Express Endpoint IP core
interface. The number of credits of the next TLP to be sent is compared to the number of credits available from the
PCI Express Endpoint IP core. If enough credits are not available to send a TLP, then the TLP request is not made
until the credits become available.

Receive FIFO – dma_rx_fifo.v
The receive FIFO module is used to store CplD TLPs from the PCI Express core. These CplD TLPs must match
the tag of the outstanding request otherwise the CplD is dropped. The receive FIFO will then store all of the CplD
data until all of the bytes have been received and then issue a dma_req. When the CplD data is read from the FIFO
the credits are released to the PCI Express Endpoint IP core.

Control – dma_ctrl.v
The DMA adapter control module is responsible for controlling the read of the transmit FIFO and sending TLPs to
the PCI Express Endpoint IP core. It is responsible for making sure that the credits are checked before sending and
handling the requests and ready indications from the core.

WISHBONE Arbiter – wb_arb.v
The WISHBONE arbiter is responsible for arbitrating between the WB_TLC and the SGDMA for access to the
WISHBONE bus. It is also responsible for the slave select based on an address decode from the master selected.
To account for the demo applications features, the arbiter does not support all masters transacting with all slaves.
The SGDMA can only request data from the colorbar and 64k EBR. The WB_TLC on the other hand can request
data from all slaves on the WISHBONE bus.

GPIO – wbs_gpio.v
The General Purpose Input Output (GPIO) module is responsible for several housekeeping functions. It provides
an ID register used by the software to identify the feature set and version of the design. It also provides access to

7

PCI Express Scatter-Gather
Lattice Semiconductor DMA Demo Verilog Source Code User’s Guide

control the 16-segment LED on the board. There is a section dedicated to interrupt control logic as well as other
maintenance type functions. Table 1 is a memory map for the GPIO module.

Table 1. GPIO Module Memory Map

Address Bits Description

0x0 [0:31] ID register

0x4 [0:31] Scratch pad

0x8
[0:15] DIP switch value

[16:31] 16 segment LED

0xc

Generic down counter control

[0] Counter run

[1] Counter reload

0x10 [0:31] Counter value

0x14 [0:31] Counter reload value

0x18

SGDMA Control and Status

[0:4] DMA Request (per channel)

[5:9] DMA Ack (per channel)

0x1c [0:31] DMA Write Counter - The number of clock cycles from the DMA request to the DMA ack of channel 0

0x20 [0:31] DMA Read Counter - The number of clock cycles from the DMA request to the DMA ack of channel 1

0x24
[0:15] Root complex Non-Posted Buffer size

[16:31] Root complex Posted Buffer size

0x28 [0:31] EBR Filter value used for triangle manipulation

0x2c Not used

0x30 [0] ColorBar reset

0x100 [0:31] Interrupt Controller ID

0x104

[0] Current status of interrupt

[1] Test mode

[2] Interrupt enable to pass interrupt onto the PCI Express Endpoint IP core

[3:7] Not used

[8:15] Interrupt Test value 0

[16:23] Interrupt Test value 1

[24:31] Not used

0x108 [0:15]

If in normal mode:
[0:4] dma_ack
[5] down counter = 0

If in test mode:
[0:7] Test value 0
[8:15] Test value 1

0x10c [0:31] Interrupt mask for all sources

64K EBR – wbs_64kebr.v
The 64K EBR is used to store data on the WISHBONE bus. The WISHBONE slave is 64-bit wide and supports
burst operations on the bus.

ColorBar – wbs_colorbar.v
This WISHBONE slave is used to generate the color bar display pattern used in the demo. Each time the colorbar
is read the pixel information is incremented ultimately producing the colorbar pattern.

8

PCI Express Scatter-Gather
Lattice Semiconductor DMA Demo Verilog Source Code User’s Guide

System Bus – sysbus.v (LatticeSC Only)
The system bus is an embedded block of the LatticeSC that provides access to the memory map for the
PCS/SERDES block. This is required in the LatticeSC implementation of the PCI Express for multi lane links.

uML Controller – uml.v (LatticeSC Only)
The uML controls the PCS Multi Channel aligner registers of the LatticeSC PCS to account for the lane width deter-
mined during LTSSM training. This module receives information from the PCI Express Endpoint IP core and then
writes registers in the PCS to control the multi channel aligner. More information on the uML can be found in the
PCI Express Endpoint IP core user's guide.

LED Status – led_status.v
This module provides the control of the LEDs on the demo board for the LTSSM states.

PLL – pll.v
LatticeECP3 and LatticeECP2M
In LatticeECP3 and LatticeECP2M designs the FPGA PLL is used to create the WISHBONE clock domain (105
MHz).

LatticeSC
In the LatticeSC design the FPGA PLL is used to create two clock domains. The LatticeSC SERDES does not sup-
port a 25x multiplier, so the 100 MHz PCI Express clock is converted into a 250 MHz refclk for the SERDES. The
SERDES then uses a 10x multiplier to create the 2.5 GHz clock for the PCI Express link. The PLL is also used to
create the wishbone clock domain (105 MHz).

Building the Design in Diamond
This section describes how to open an existing project or create a new project and build a bitstream for the demo
design.

Opening an Existing Project
You can open an existing Diamond project .ldf file in Diamond. To open an existing project:

1. In Diamond, choose File > Open > Project.

2. In the Open Project dialog box, choose the project .ldf file.

3. Click Open.

To build the project, double-click Bitstream File in the Process Pane.

Note: This project enables the use of the IP Hardware Timer. If the user does not have a license for any of the IP
used in this design, the IP Hardware Timer will hold the FPGA in global reset after approximately four hours of
operation. Once a valid license is installed and the project rebuilt, the Hardware Timer will no longer be used.

For instructions on how to import an ispLEVER project into Diamond, refer to the Lattice Diamond User Guide.

Creating a New Project for the LatticeECP3 and LatticeECP2M
To create a new project the user will need to select a device, import all of the HDL files, create the .lpf file, set the
search paths, and copy all of the autoconfig files to the project directory. Below is a list of steps that need to be
completed in creating a new project.

1. From the Diamond main window, choose File > New > Project.

The New Project dialog box of the Project Wizard opens. Click Next.

www.latticesemi.com/dynamic/view_document.cfm?document_id=38975

9

PCI Express Scatter-Gather
Lattice Semiconductor DMA Demo Verilog Source Code User’s Guide

2. In the Project Name dialog box, do the following:

Under Project, specify the name and directory location for the new project. The default implementation name is
the same as the new project name. You can change it if you wish. Implementations are comprised of source
and strategy files. Multiple implementations are possible for one project.

Click Next.

3. In the Add Source dialog box, click Add Source. Add all source file described in the previous section.

Additionally, add the pmi_def.v file which provides the module definition for PMI modules used by the design.

Click Next.

4. On the Select Device page, select the family and device for the evaluation board you are using. For the
LatticeECP2M PCI Express Evaluation Board, select the LatticeECP2M family, LFE2M50E device, -6 speed
grade, and a FPBGA672 package. For the LatticeECP3 PCI Express Evaluation Board, select the
LatticeECP3 family, LFE3-95EA device, -7 speed grade, and a FPBGA672 package.

5. Choose Project > Active Strategy > Translate Design Settings. Verify that Macro Search Path is set to the
directory path ..\ipExpressGenCore\[epc3,ecp2m]\[pciex4,pciex4d1] for Windows. Your path would have for-
ward slashes for Linux.

6. Next, the autoconfig text files need to be copied to the project implementation directory at
ecp3-95_PCIeSGDMA_SBx4\Implementation\ecp3-95_PCIeSGDMA_SBx4\impl1. The autoconfig text files
contain lines to program the hard macros in the design. The file pcs_pipe_8b_X4.txt file should be copied into
the project directory. If the design is targeting a x1 link (using a PCI Express x4 downgraded x1 core) then the
unused channels will need to be disabled by editing the pcs_pipe_8b_x4.txt file. See the PCI Express User's
Guide for more information on modifying the file.

7. The project requires a logical preference file (.lpf). Start with the file from the kit at
ecp3-95_PCIeSGDMA_SBx4\Implementation\ecp3-95_PCIeSGDMA_SBx4. This file may need modification
to match your design..

8. Choose Project > Active Strategy > Place and Route Design Settings.

9. In the Strategy dialog box, set the number of Placement Iterations to 10. This will allow place and route to try 10
different placements while attempting to satisfy all of the timing constraints.

10. The design is now ready to be built. Double-click on Bitstream File in the Process pane of Diamond to create
the bitstream.

Note: This project enables the use of the IP Hardware Timer. If the user does not have a license for any of the IP
used in this design, the IP Hardware Timer will hold the FPGA in global reset after approximately four hours of
operation. Once a valid license is installed and the project rebuilt, the Hardware Timer will no longer be used.

Conclusion
This user’s guide provides a description for the PCI Express SGDMA Demo design. With the help of this guide, a
user can rebuild the bitstream used for the demo and begin to modify the design to achieve their design goals.

Technical Support Assistance
Hotline: 1-800-LATTICE (North America)

+1-503-268-8001 (Outside North America)
e-mail: techsupport@latticesemi.com
Internet: www.latticesemi.com

http://www.latticesemi.com/
www.latticesemi.com/dynamic/view_document.cfm?document_id=7838
www.latticesemi.com/dynamic/view_document.cfm?document_id=7838

10

PCI Express Scatter-Gather
Lattice Semiconductor DMA Demo Verilog Source Code User’s Guide

Revision History
Date Version Change Summary

January 2008 01.0 Initial release.

July 2008 01.1 Document title change from “Lattice PCI Express x4 Scatter-Gather
DMA Demo Verilog Source Code User’s Guide” to “Lattice PCI Express
Scatter-Gather DMA Demo Verilog Source Code User’s Guide.”

Updates to support PCI Express Endpoint IP core version 3.3.

Updates to support solution kit directory structure.

Updates to support WISHBONE clock domain change.

December 2009 01.2 Added LatticeECP3 support.

December 2010 01.3 Updated for Lattice Diamond design software support.

	Introduction
	Top Level
	SGDMA Project Directory Structure
	Modules
	Top-Level – top_sgdma.v
	PCI Express Endpoint IP Core – pcie_bb.v
	x4 and x4d1
	Embedded SERDES – pcs_pipe_bb.v (LatticeECP3 and LatticeECP2M Only)
	Tx Arbiter - ip_tx_arbiter.v
	Rx Credit Processing – ip_rx_crpr.v
	Unsupported Request Generation – ur_gen.v
	WISHBONE Transaction Layer Completer (WB_TLC) – wb_tlc.v
	TLP Decoder – wb_tlc_dec.v
	Memory Request TLP FIFO – wb_tlc_req_fifo.v
	Credit Processor - wb_tlc_cr.v
	WB_TLC WISHBONE Interface – wb_intf.v
	WB_TLC Completion Generation – wb_tlc_cpld.v
	WB_TLC Completion FIFO – wb_tlc_cpld_fifo.v

	Scatter-Gather DMA – sgdma_top.v
	DMA Adapter – dma_adapter.v
	WISHBONE Slave – dma_wbs.v
	Transmit FIFO – dma_tx_fifo.v
	Credit Available – dma_ca.v
	Receive FIFO – dma_rx_fifo.v
	Control – dma_ctrl.v

	WISHBONE Arbiter – wb_arb.v
	GPIO – wbs_gpio.v
	64K EBR – wbs_64kebr.v
	ColorBar – wbs_colorbar.v
	System Bus – sysbus.v (LatticeSC Only)
	uML Controller – uml.v (LatticeSC Only)
	LED Status – led_status.v
	PLL – pll.v
	LatticeECP3 and LatticeECP2M
	LatticeSC

	Building the Design in Diamond
	Opening an Existing Project
	Creating a New Project for the LatticeECP3 and LatticeECP2M

	Conclusion
	Technical Support Assistance
	Revision History

