

LatticeECP3 sysDSP Usage Guide

Technical Note

FPGA-TN-02193-1.4

March 2024

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the Buyer. The information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise rendered inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL SYSTEMS, HAZARDOUS ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM (COLLECTIVELY, "HIGH-RISK USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES, INCLUDING APPROPRIATE REDUDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information provided in this document or to any products at any time without notice.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

Contents

Contents		3
Acronym	s in This Document	5
1. Intro	oduction	6
2. sysD	SP Slice Hardware	6
3. sysD	SP Slice Software	7
3.1.	Overview	7
3.2.	Targeting sysDSP Slices Using IPexpress	7
3.3.	Targeting the sysDSP Slice by Inference	15
3.4.	Targeting the sysDSP Slice Using ispLeverDSP with Simulink	
3.5.	Targeting the sysDSP Slice by Instantiating Primitives	
4. sysD	SP in the Report Files	
4.1.	Map Report	
4.2.	PAR Report	20
4.3.	Trace Report	20
5. sysD	SP in the ispLEVER Design Planner	21
5.1.	Pre-Mapped View	21
5.2.	Floorplan View	21
6. Adva	anced Features of the sysDSP Slice	22
7. IPex	press Slice Module	27
8. Rou	nding	29
8.1.	Example 1: Rounding Toward Zero	30
8.2.	Example 2: Rounding to Positive Infinity	
8.3.	Example 3: Rounding to Negative Infinity	
8.4.	Example 4: Rounding Away from Zero	31
8.5.	Example 5: Rounding Toward Even	31
8.6.	Example 6: Rounding Toward Odd	32
9. sysD	SP Slice Control Signal and Data Signal Descriptions	32
Appendix	A. DSP Primitives	
Appendix	B. Using IPexpress for Diamond	
B.1. Inv	oking IPexpress for Diamond	
B.2. sys	sDSP in Diamond	47
Reference	es	50
Technical	Support Assistance	51
Revision I	History	

Figures

Figure 2.1. LatticeECP3 sysDSP Slice	6
Figure 3.1. MULT Mode	8
Figure 3.2. MAC Mode	9
Figure 3.3. MMAC Mode	10
Figure 3.4. MULTADDSUB Mode	11
Figure 3.5. MULTADDSUBSUM Mode	12
Figure 3.6. Adder Tree Mode	13
Figure 3.7. Wide Mux Mode	14
Figure 3.8. Barrel Shifter Mode	15
Figure 3.9. Simulink Design	18
Figure 5.1. Design Planner Pre-Mapped View	21
Figure 5.2. Floorplan View	22
Figure 6.1. Detailed sysDSP Slice Diagram	23

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

Figure 6.2. Flag Circuitry	25
Figure 6.3. Flag Pattern Circuitry	25
Figure 7.1. Slice Module GUI	27
Figure 7.2. Slice Module GUI with "Enable ALU" Unchecked	28
Figure B.1. IPexpress Interface	
Figure B.2. Creating the Module Instance	39
Figure B.3. MULT Module	40
Figure B.4. IP Generation Log Window	41
Figure B.5. MAC Module	42
Figure B.6. MMAC Module	42
Figure B.7. MULTADDSUB Module	43
Figure B.8. MULTADDSUBSUM Module	44
Figure B.9. ADDER_TREE Module	44
Figure B.10. BARREL_SHIFTER Module	45
Figure B.11. WIDE_MAX Module	45
Figure B.12. SLICE Module – Configuration	46
Figure B.13. SLICE Module – Register Setup	47
Figure B.14. Setting UGroups	48
Figure B.15. Selecting and Creating UGroups	48
Figure B.16. Floorplan View in Diamond	49

Tables

Table 1.1. sysDSP Slice vs. LUT-based Multipliers	6
Table 6.1. AMUX Inputs	23
Table 6.2. BMUX Inputs	24
Table 6.3. CMUX Inputs	24
Table 6.4. Operation Codes and ALU Functions	24
Table 6.5. Flag Input Definitions	25
Table 6.6. Flag Output Definitions	26
Table 7.1. Possible Configuration Scenarios	
5	

Acronyms in This Document

A list of acronyms used in this document.

Abbreviation	Definition
ALU	Arithmetic Logic Unit
DSP	Digital Signal Processing
FIR	Finite Impulse Response
GUI	Graphical User Interface
HDL	Hardware Description Language
LUT	Look Up Table
TDM	Time Division Multiplexing

1. Introduction

This technical note discusses how to access the features of the LatticeECP3[™] sysDSP[™] (Digital Signal Processing) slice described in the LatticeECP3 Family Data Sheet (FPGA-DS-02074). Designs targeting the sysDSP slice can offer significant improvement over traditional LUT-based implementations. Table 1.1 provides an example of the performance and area benefits of this approach.

Table 1.	1. sysDSP	Slice vs.	LUT-based	Multipliers
----------	-----------	-----------	-----------	--------------------

Multiplier Width	Register Pipelining	LatticeECP3-95-8 Using sysDSP Slice(s)		LatticeECP3-95-8 Using LUTs		
		f _{MAX} (MHz)	LUTs	f _{MAX} (MHz)	LUTs	
9x9	Input, Multiplier, Output	402	0	268	114	
18x18	Input, Multiplier, Output	402	0	163	411	
36x18	Input, Multiplier, Output	394	0	123	737	
36x36	Input, Multiplier, Output	225	0	105	1502	

2. sysDSP Slice Hardware

The LatticeECP3 sysDSP slices are located in rows throughout the device. Figure 2.1 is a simplified block diagram of two of the sysDSP slices. The programmable resources in a slice include: multipliers, ALU, muxes, pipeline registers, shift register chain and cascade chain. If the shift out register A is selected, the cascade match register (Casc AO) is available. The multipliers can be configured as 18X18 or 9X9 and the ALU can be configured as 54-bit or 24-bit. Advanced features of the sysDSP slice are described later in this document.

Figure 2.1. LatticeECP3 sysDSP Slice

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

The sysDSP slice can be configured in a number of ways. The ALU54/24 can be configured as one of the following: adder, subtracter, or accumulator. Using two sysDSP slices, the most common configurations include:

- One 36x36 Multiplier
 - Basic multiplier, no add/sub/accum/sum blocks
- Four 18x18 Multipliers
 - Two add/sub/accum blocks
- Eight 9x9 Multipliers
 - Two add/sub blocks

3. sysDSP Slice Software

3.1. Overview

The sysDSP slice can be targeted in a number of ways.

- Use IPexpress[™] to specify and configure the sysDSP module for instantiating in the user HDL design.
- Create HDL code for direct sysDSP slice inference by the synthesis tools.
- Implement the design in The MathWorks[®] Simulink[®] tool using a Lattice library of DSP blocks. The ispLeverDSP[™] tool in the ispLEVER[®] and Lattice Diamond [™] design software converts these blocks into HDL.
- Instantiate sysDSP primitives directly in the source code.

3.2. Targeting sysDSP Slices Using IPexpress

IPexpress allows you to graphically specify sysDSP elements. Once the element is specified, an HDL file is generated, which can be instantiated in a design. IPexpress allows users to configure all ports and set all available parameters. The following modules target the sysDSP slice. The resource usage estimation will be shown in the GUI. See Appendix B. Using IPexpress for Diamond for information about using IPexpress for Diamond.

- ADDER_TREE
- BARREL_SHIFTER
- MAC (Multiplier Accumulate)
- MMAC (Multiplier Multiplier Accumulate)
- MULT (Multiplier)
- MULTADDSUB (Multiplier Add/Subtract)
- MULTADDSUBSUM (Multiply Add/Subtract and SUM)
- SLICE (Fully-configurable sysDSP slice used for advanced functions)
- WIDE_MUX

MULT Module

The IPexpress MULT Module configures elements to be packed into the sysDSP slice. The function $A \times B = P$ is implemented. The screen shot shown in Figure 3.1 shows the following:

- Data Options
 - Input bus widths from 2 to 72 bits
 - Data Type specifies whether the data is Signed, Unsigned or Dynamic
 - Source specifies whether data is from Parallel, Shift or Dynamic
 - Shift Out enables the shift out port on the sysDSP slice
- Register Options
 - Reset Mode selects whether an Async or Sync Reset is used.
 - Enable Input Register selects whether data input registers are used. If enabled, clock, reset and clock enable resources can be selected.
 - Enable Pipeline Register selects whether data pipeline registers are used. If enabled, clock, reset and clock enable resources can be selected. If the option InputA or InputB is selected, the pipeline register uses the same clock as the input register. Output registers will automatically be enabled and will use the same clock.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

- Enable Output Register selects whether the data output pipeline registers are used. If enabled, clock, reset and clock enable resources can be selected.
- Enable Pipelined Mode turns on all the input, pipeline and output registers. If this mode is enabled, latency will be provided.

Multiple sysDSP slices can be spanned to accommodate large functions. Additional LUTs may be required if multiple sysDSP slices are needed. The input data format can be selected as Parallel, Shift or Dynamic. The Shift format can only be enabled if inputs are less than 18 bits. The Shift format enables a sample/shift register, which is useful in applications such as the FIR Filter.

Figure 3.1. MULT Mode

MAC Module

The IPexpress MAC Module configures elements to be packed into the sysDSP slice. The function An x Bn +/- Pn-1 = Pn is implemented. The screen shot shown in Figure 3.2 shows the following:

- Data Options
 - Input bus widths from 2 to 72 bits
 - Data Type specifies whether the data is Signed, Unsigned or Dynamic
 - Source specifies whether data is from Parallel, Shift or Dynamic
 - Shift Out enables the shift out port on the sysDSP slice
 - Add/Sub Operation selects whether the arithmetic operation is Addition, Subtraction or Dynamic

Register Options

- Reset Mode selects whether an Async or Sync Reset is used
- Enable Input Register selects whether data input registers are used. If enabled, clock, reset and clock enable resources can be selected.

- Enable Pipeline Register selects whether data pipeline registers are used. If enabled, clock, reset and clock enable resources can be selected. If the option InputA or InputB is selected, the pipeline register uses the same clock as the input register. Output registers will automatically be enabled and will use the same clock.
- Enable Output Register is selected by default and selects the data output pipeline registers to be used. Clock, reset and clock enable resources can be selected.

Multiple sysDSP slices can be spanned to accommodate large functions. Additional LUTs may be required if multiple sysDSP slices are needed. The input data format can be selected as Parallel, Shift or Dynamic. The Shift format can only be enabled if inputs are less than 18 bits. The Shift format enables a sample/shift register. The accumulator is loaded with an initial value from data on the LD port when the signal ACCUMSLOAD is toggled.

MAC	Configuration \	
	Size of the DSPMAC block	
	Width Data Type Source	
	Input A 18 (2:72) Signed V Parallel	-
CE0	Input B 18 (2-72) Signed T Parallel	-
	Accumulator 52	
	Select Shift Out A Select Shift Out B	
	Add/Sub Operation Add 👤	
	Register Options	
	Reset Mode: © SYNC © ASYNC	
→ A[17:0]	Clock CE RST	
ACCUM[51:0]	Register A CLK0 V CE0 V RST0	-
	Enable Input CLK0 V CE0 V BST0	-
	Finable Pinaline	
	Register InputB V ICE0 V InputB	1
	Register Pipeline V CE0 V Pipeline V	
Estimated Resource Usage:		
DSP_9x9: 4		
us Ordering Style: Big Endian (MSB:LSB)		

Figure 3.2. MAC Mode

MMAC Module

The IPexpress MMAC Module configures elements to be packed into the sysDSP slice. The function A0n x B0n +/- A1n x B1n + Pn-1 = Pn is implemented. The screen shot shown in Figure 3.3 shows the following:

- Data Options
 - Input bus widths from 2 to 72 bits
 - Data Type specifies whether the data is Signed, Unsigned or Dynamic
 - Source specifies whether data is from Parallel, Shift (DSP slice shift out port) or Dynamic
 - Shift Out enables the shift out port on the DSP slice
 - Operation selects whether the arithmetic operation is Addition, Subtraction or Dynamic
- Register Options
 - Reset Mode selects whether an Async or Sync Reset is used.
 - Enable Input Register selects whether data input registers are used. If enabled, clock, reset and clock enable resources can be selected.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

- Enable Pipeline Register selects whether data pipeline registers are used. If enabled, clock, reset and clock enable resources can be selected. If the option InputA or InputB is selected, the pipeline register uses the same clock as the input register. Output registers will automatically be enabled and will use the same clock.
- Enable Output Register is selected by default and selects the data output pipeline registers to be used. Clock, reset and clock enable resources can be selected.

Multiple sysDSP slices can be spanned to accommodate large functions. Additional LUTs may be required if multiple sysDSP slices are needed. The input data format can be selected as Parallel, Shift or Dynamic. The Shift format can only be enabled if inputs are less than 18 bits. The Shift format enables a sample/shift register. The accumulator is loaded with an initial value from data on the LD port when the signal ACCUMSLOAD is toggled.

Size of the DSPMMAC block Vidth Data Type Source Input A0/A1 18 (2-72) Signed ▼ Parallel Input B0/B1 18 (2-72) Signed ▼ Parallel Accumulator 52 Select Shift Out A Select Shift Out B
Size of the DSPMMAC block Width Data Type Source Input A0/A1 18 (2-72) Signed ▼ Parallel Input B0/B1 18 (2-72) Signed ▼ Parallel Accumulator 52 Select Shift Out A Select Shift Out B
Width Data Type Source Input A0/A1 18 (2-72) Signed Parallel Input B0/B1 18 (2-72) Signed Parallel Accumulator 52 Select Shift Out A Select Shift Out B
Input A0/A1 18 (2-72) Signed Parallel Input B0/B1 18 (2-72) Signed Parallel Accumulator 52 Select Shift Out A Select Shift Out B
Accumulator 52 Select Shift Out A Select Shift Out B
Select Shift Out A Select Shift Out B
Uperation IALLUM+MULIA+MULIB
Panista Online
Reset Mode: © SYNC © ASYNC
Clock CE RST
F Enable Input CLKO CEO F RSTO
Register B CLKO CEO RSTO
Finable Pipeline InputB CE0 InputB
Finable Output Pipeline V CEO V Pipeline

Figure 3.3. MMAC Mode

MULTADDSUB Module

The IPexpress MULTADDSUB Module configures elements to be packed into the sysDSP slice. The function A0 x B0 +/- A1 x B1 = P is implemented. The screen shot shown in Figure 3.4 shows the following:

- Data Options
 - Input bus widths from 2 to 72 bits
 - Cascade input can be enabled. This can be used to cascade the Multaddsub modules. If this is selected, the CIN and SignCIN will appear as additional input ports and SignSUM as an additional output port.
 - Data Type specifies whether the data is Signed, Unsigned or Dynamic
 - Source specifies whether data is from Parallel, Shift or Dynamic
 - Shift Out enables the shift out port on the sysDSP slice. The cascade match register is available if Shift Out A is selected. This is useful when a cascaded chain of Multaddsub modules are implemented.
 - Add/Sub Operation selects whether the arithmetic operation is Addition, Subtraction or Dynamic

Register Options

Reset Mode selects if an Async or Sync Reset is used.

- Enable Input Register selects whether data input registers are used. If enabled, clock, reset and clock enable resources can be selected.
- Enable Pipeline Register selects whether data pipeline registers are used. If enabled, clock, reset and clock enable resources can be selected. If the option InputA or InputB is selected, the pipeline register uses the same clock as the input register. Output registers will automatically be enabled and will use the same clock.
- Enable Output Register selects if the data output pipeline registers are used. If enabled, clock, reset and clock enable resources can be selected.
- Enable Pipelined Mode turns on all the input, pipeline and output registers. If this mode is enabled, latency will be provided.

Multiple sysDSP slices can be spanned to accommodate large functions. Additional LUTs may be required if multiple sysDSP slices are needed. The input data format can be selected as Parallel, Shift or Dynamic. The Shift format can only be enabled if inputs are less than 18 bits. The Shift format enables a sample/shift register. Other than this shift register chain, the cascade chain can be enabled by selecting Enable cascade input, as described above. For appropriate operations, SUM and SignSUM (other than the last module in the cascade chain) need to be connected to CIN and SignCIN of an adjacent module. For the first module in the cascade chain, the CIN and SignCIN ports need to be assigned a value of 0.

Figure 3.4. MULTADDSUB Mode

MULTADDSUBSUM Module

The IPexpress MULTADDSUBSUM Module configures elements to be packed into the sysDSP slice. The function A0 x B0 +/- A1 x B1 + A2 x B2 +/- A3 x B3 = P is implemented. The screen shot shown in Figure 3.5 shows the following:

- Data Options
 - Input bus widths from 2 to 72 bits
 - Data Type specifies whether the data is Signed, Unsigned or Dynamic

- Source specifies whether data is from Parallel, Shift or Dynamic
- Shift Out enables the shift out port on the sysDSP slice
- Add/Sub Operation selects whether the arithmetic operation is Addition, Subtraction or Dynamic

Register Options

- Reset Mode selects whether an Async or Sync Reset is used
- Enable Input Register selects the data input registers to be used. If enabled, clock, reset and clock enable resources can be selected.
- Enable Pipeline Register selects if data pipeline registers are used. If enabled, clock, reset and clock enable resources can be selected. If the option Input A or Input B is selected, the pipeline register uses the same clock as the input register. Output registers will automatically be enabled and will use the same clock.
- Enable Output Register selects whether the data output pipeline registers are used. If enabled, clock, reset and clock enable resources can be selected.
- Enable Pipelined Mode turns on all the input, pipeline and output registers. If this mode is enabled, latency will be provided.

Multiple sysDSP slices can be spanned to accommodate large functions. Additional LUTs may be required if multiple sysDSP slices are needed. The input data format can be selected as Parallel, Shift or Dynamic. The Shift format can only be enabled if inputs are less than 18 bits. The Shift format enables a sample/shift register.

Figure 3.5. MULTADDSUBSUM Mode

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

Adder Tree Module

The IPexpress Adder Tree Module is used to generate an adder tree in the sysDSP slice. The function DataA0 + DataA1 + ... + DataAn = Resultn is implemented. The screen shot shown in Figure 3.6 shows the following:

- Data Options
 - Input bus widths from 2 to 54 bits
 - Number of inputs can be from 2 to 33
- Register Options
 - Reset Mode selects whether an Async or Sync Reset is used
 - Enable Fully Pipelined Mode selects if data pipeline and output registers are used
 - Enable Input Register selects if data input registers are used
 - Enable Output Register selects if data output registers are used

If the number of inputs is larger than 3, multiple DSP slices will be needed. Furthermore, if Fully Pipelined Mode is enabled, registers from the generic logic will be needed.

→ DataA0(35:0) → DataA1(35:0) → DataA2(35:0) → DataA3(35:0) → DataA3(35:0) → DataA4(35:0) Result(35:0) → DataA5(35:0)	Configuration \ Width 36 (2 - 54) Number of Inputs 6 (2 - 33) Reset Mode © Sync © Async
← Clock ← CikEn Reset Estimated Resource Usage: DSP_3x9: 12	I Enable Fully Pipelined Mode I Enable Input Register I Enable Output Register
Bus Ordering Style:	

Figure 3.6. Adder Tree Mode

Wide Mux Module

The IPexpress Wide Mux Module is used to generate a MUX in the sysDSP slice. The screen shot shown in Figure 3.7 shows the following:

- Data Options
 - Input bus widths from 2 to 36 bits
 - Number of inputs can be from 2 to 28
- Register Options
 - Reset Mode selects whether an Async or Sync Reset is used
 - Enable Fully Pipelined Mode selects if data input, pipeline and output registers are used
 - Enable Input Register selects if data input registers are used
 - Enable Output Register selects if data output registers are used.

→ DataA0(35:0) → DataA1(35:0) → DataA2(35:0) → DataA3(35:0) → DataA3(35:0) → DataA5(35:0) → Clock → ClkEn → Reset Estimated Resource Usage: 1117.8 DSP_9x9:8	Configuration Width 36 (2 - 36) Number of Inputs 6 (2 - 18) Reset Mode Image: Sync Async Image: Enable Fully Pipelined Mode Image: Enable Input Register Image: Enable Output Register Image: Enable Output Register
Bus Ordering Style:	

Figure 3.7. Wide Mux Mode

Barrel Shifter Module

The IPexpress Barrel Shifter Module is used to generate a Barrel Shifter in the sysDSP slice. Barrel Shifters are useful for applications such as floating point addition, compression/decompression algorithms, and pattern matching. The screen shot shown in Figure 3.8 shows the following:

- Data Options
 - Shift direction options of Left or Right
 - Type options of Zero Insert, Sign Extension (Shift Right only) or Rotate
 - Data Width can be from 1 to 40 bits or 2 to 32 for Type Rotate
- Register Options
 - Reset Mode selects whether an Async or Sync Reset is used
 - Enable Input Register selects if data input registers are used
 - Enable Pipeline Register selects if data pipeline registers are used
 - Enable Output Register selects if data output registers are used

Below are some examples of a Barrel Shifter:

Example 1:

```
Shift Direction = Left
Type = Zero Insert
A[7:0] = 0000 0100
Shift[1:0] = 10
P[7:0] = 0000 1000
Example 2:
```

Shift Direction = Right Type = Sign Extension

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

A[7:0] = 1111 1100 Shift[1:0] = 10 P[7:0] = 1111 1110

Example 3:

Shift Direction = Left Type = Rotate A[7:0] = 1111 1111 1100 Shift[1:0] = 10 P[7:0] = 1111 1111 1001

Multiple sysDSP slices can be spanned to accommodate large functions. Additional LUTs may be required if multiple sysDSP slices are needed.

Figure 3.8. Barrel Shifter Mode

3.3. Targeting the sysDSP Slice by Inference

The Inferencing flow enables the design tools to infer sysDSP slices from an HDL design. It is important to note that when using the Inferencing flow, unless the code style matches the sysDSP slice, results will not be optimal. The following are VHDL and Verilog examples.

VHDL Example

```
library ieee;
use ieee.std_logic_1164.all;
--use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity mult is
```



```
port (reset, clk : in std logic;
dataax, dataay : in std logic vector(8 downto 0);
dataout : out std logic vector (17 downto 0));
end;
architecture arch of mult is
signal dataax req, dataay req : std logic vector (8 downto 0);
signal dataout node : std logic vector (17 downto 0);
signal dataout pipeline : std logic vector (17 downto 0);
begin
process (clk, reset)
begin
if (reset='1') then
dataax reg <= (others => '0');
dataay reg <= (others => '0');
elsif (clk'event and clk='1') then
dataax reg <= dataax;</pre>
dataay reg <= dataay;</pre>
end if;
end process;
dataout_node <= dataax_reg * dataay_reg;</pre>
process (clk, reset)
begin
if (reset='1') then
dataout pipeline <= (others => '0');
elsif (clk'event and clk='1') then
dataout pipeline <= dataout node;</pre>
end if;
end process;
process (clk, reset)
begin
if (reset='1') then
dataout <= (others => '0');
elsif (clk'event and clk='1') then
dataout <= dataout pipeline;</pre>
end if;
end process;
end arch;
```

Verilog Example

module mult (dataout, dataax, dataay, clk, reset); output [35:0] dataout; input [17:0] dataax, dataay; input clk,reset; reg [35:0] dataout; reg [17:0] dataax_reg, dataay_reg; wire [35:0] dataout_node; reg [35:0] dataout_reg; always @(posedge clk or posedge reset) begin if (reset) begin dataax_reg <= 0; dataay_reg <= 0; end

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.


```
else
begin
dataax reg <= dataax;</pre>
dataay reg <= dataay;</pre>
end
end
assign dataout node = dataax reg * dataay reg;
always @(posedge clk or posedge reset)
begin
if (reset)
dataout reg <= 0;</pre>
else
dataout reg <= dataout node;</pre>
end
always @(posedge clk or posedge reset)
begin
if (reset)
dataout <= 0;</pre>
else
dataout <= dataout reg;</pre>
end
endmodule
```

3.4. Targeting the sysDSP Slice Using ispLeverDSP with Simulink

Simulink is a graphical add-on (similar to schematic entry) for MATLAB, which is produced by The MathWorks. For more information, refer to the Simulink web page at www.mathworks.com/products/simulink/.

The ispLeverDSP is a block set in Simulink library provided by Lattice. It allows users to create algorithms and models in Simulink and converts the algorithms and models into RTL code.

After successful installation of ispLEVER or Diamond, set a path in MATLAB to make the Lattice block set available in the Simulink library. For more information, refer to the ispLEVER 8.1 Installation Notice or the Lattice Diamond Installation Notice.

The Lattice block set includes multipliers, adders, registers, and many other building blocks. Besides the basic building blocks there are a couple of unique Lattice blocks:

- **Gateways In and Out** The design is made of the blocks between Gateway In and Gateway Out and these blocks can be converted into HDL code. When the design is converted into RTL code, the signal fed into the Gateway In is translated into the test vector for the testbench and the signal coming out of the Gateway Out is the reference copy for self-check in the testbench. In Figure 3.9, the input_x blocks on the left are Gateway In and the output block on the right is the Gateway Out.
- **Generator** The Generator block is used to convert the design into HDL files that can be instantiated in a HDL design. The Generate Block is identified by the Lattice logo as shown in Figure 3.9.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal

Figure 3.9. Simulink Design

3.5. Targeting the sysDSP Slice by Instantiating Primitives

The sysDSP slice can be targeted by instantiating the sysDSP slice primitives into a design. The advantage of instantiating primitives is that it provides access to all ports and sets all available parameters. The disadvantage of this flow is that all this customization requires extra coding by the user. Appendix A. DSP Primitives details the syntax for the sysDSP slice primitives.

4. sysDSP in the Report Files

4.1. Map Report

The Map Report includes information on how many sysDSP components are used and how many are available. A sysDSP slice is made of Multipliers and ALUs. The Map Report also shows how the sysDSP components are configured. Below is the DSP section from the Map Report Summary and the Component Details for the ALU.

Number Of Mapped DSP Components:

```
MULT18X18C 2

MULT9X9C 0

ALU54A 1

ALU24A 0

------

Number of Used DSP MULT Sites: 4 out of 256 (1 %)

Number of Used DSP ALU Sites: 2 out of 128 (1 %)

Number of clocks: 1

Net CLK0_c: 3 loads, 3 rising, 0 falling (Driver: PIO CLK0 )

DSP Component Details

------

. ALU54A dsp alu 0:
```


54-Bit ALU Opcode 0 1 Opcode 1 0 Opcode 2 1 Opcode 3 0 Opcode 4 0 Opcode 5 0 Opcode 6 0 Opcode 7 0 Opcode 8 0 Opcode 9 1 Opcode 10 0 OpcodeOPO Registers CLK CE RST -----Input CLK0 CE0 RST0 Pipeline CLK0 CE0 RST0 OpcodeOP1 Registers CLK CE RST _____ Input -- --Pipeline -- --OpcodeIN Registers CLK CE RST -----Input Pipeline Data Input Registers CLK CE RST _____ C.0 C1 Output Register CLK CE RST -----Output0 CLK0 CE0 RST0 Output1 CLK0 CE0 RST0 Flag Register CLK CE RST Flag CLK0 CE0 RST0 Other MCPAT SOURCE STATIC MASKPAT SOURCE STATIC MASK01 0x00000000000000 MCPAT 0x0000000000000 MASKPAT 0x0000000000000 RNDPAT 0x00000000000000 PSE17 0b11111111111111111 PSE53 0b1111111 GSR DISABLED RESETMODE SYNC MULT9 MODE DISABLED

4.2. PAR Report

The PAR Report shows how the sysDSP components are packed into the sysDSP slices. The PAR Report shown below has two MULT18x18s and one ALU that are packed into one sysDSP slice:

----- DSP Report -----DSP Slice #: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 # of MULT9X9C # of MULT18X18C # of ALU24A # of ALU54A DSP Slice #: 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 # of MULT9X9C # of MULT18X18C 2 # of ALU24A # of ALU54A 1 DSP Slice 33 Component Type Physical Type Instance Name MULT18 R52C2 MULT18X18C MULT18 dsp mult 1 MULT18 R52C3 MULT18X18C MULT18 dsp mult 0 ALU54 R52C5 ALU54A ALU54 dsp alu 0 ----- End of DSP Report -----

4.3. Trace Report

The Trace Report includes the timing of the design. The timing paths are analyzed to, from or through the sysDSP slice. Below is an example from the Post PAR Trace Report.

```
_____
Preference: FREQUENCY NET "CLK0 c" 350.000000 MHz ;
72 items scored, 0 timing errors detected.
_____
Passed: The following path meets requirements by 0.320ns
Logical Details: Cell type Pin type Cell/ASIC name (clock net +/-)
Source: MULT18X18C Port dsp mult 0(ASIC) (from CLK0 c +)
Destination: ALU54A Port dsp alu 0(ASIC) (to CLK0 c +)
Delay: 0.340ns (100.0% logic, 0.0% route), 1 logic levels.
Constraint Details:
0.340ns physical path delay dsp mult 0 to dsp alu 0 meets
2.857ns delay constraint less
0.000ns skew and
2.197ns MU SET requirement (totaling 0.660ns) by 0.320ns
Physical Path Details:
Name Fanout Delay (ns) Site Resource
C2OUT DEL --- 0.340 *18 R52C3.CLK0 to *T18 R52C3.P35 dsp mult 0 (from CLK0 c)
ROUTE 1 0.000 *T18 R52C3.P35 to *54 R52C5.MB35 test ecp3 mult out p 1 35 (to
CLK0 c)
_____
0.340 (100.0% logic, 0.0% route), 1 logic levels.
Clock Skew Details:
Source Clock:
Delay Connection
0.778ns N4.PADDI to MULT18 R52C3.CLK0
Destination Clock :
Delay Connection
```



```
0.778ns N4.PADDI to ALU54_R52C5.CLK0
Report: 394.166MHz is the maximum frequency for this preference.
```

5. sysDSP in the ispLEVER Design Planner

Note: See Appendix B. Using IPexpress for Diamond for usage information for Lattice Diamond design software.

5.1. Pre-Mapped View

In the Design Planner Pre-Mapped View, sysDSP instances can be viewed or grouped together. Figure 5.1 is a screen shot showing MULT and ALU instances.

Figure 5.1. Design Planner Pre-Mapped View

5.2. Floorplan View

The DSP slices are organized in rows, as shown in Figure 5.2. It can be seen that each slice extends to four columns with the multipliers on the left and ALUs on the right.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

Figure 5.2. Floorplan View

6. Advanced Features of the sysDSP Slice

Examining the LatticeECP3 sysDSP slice in more detail (Figure 6.1) reveals the Arithmetic Logic Unit (ALU) and three programmable muxes, AMUX, BMUX and CMUX. These components are used in combination to enable the advanced functions of the sysDSP slice, such as:

- Cascading of slices for implementing Adder Trees fully in sysDSP slices.
- Ternary addition functions are implemented through bypassing of multipliers.
- Various rounding techniques modify the data using the ALU.
- ALU flags.
- Dynamic muxes input selection allows for Time Division Multiplexing (TDM) of the sysDSP slice resources.

Notes:

1. Two slices are shown: Slice0 (Mult0 and Mult1) and Slice1 (Mult2 and Mult3)

2. Each 18x18 can also implement two 9x9s.

3. A Mux[53:36] and B Mux[53:36] are sign extended if SIGNEDA or SIGNEDB = 1; otherwise, they are zero extended.

4. P[17:0] has an independent multiplexer to bypass or not bypass the COUT[17:0] register. This is required to support 36*36 multiplication mode.

5. A 54-bit ALU does not al ways feed 54 bits from A, B and C. Sometimes it will select only 36b, as seen in "Arithmetic Modes".

= Bypassable registers

Figure 6.1. Detailed sysDSP Slice Diagram

AMUX

AMUX selects between multiple 54-bit inputs to the ALU statically or dynamically. The inputs to AMUX are listed in Table 6.1.

Table 6.1. AMUX Inputs

InA[1:0]	AMUX Signal Selection
00	ALU feedback
01	Output of MULTA, sign-extended to 54 bits
10	A_ALU={Cra[17:0], Ara}, concatenated result of Cra and Ara
11	GND or 54 bits of 0

Signal Descriptions:

- Cra is generated from Cr by sign extending Ar35 (on Cr(17:0)), and Br35 (on Cr(44:27))
- Ara is generated from the registered input of A (AR) sign extended to 36 bits

BMUX

BMUX selects between multiple 54-bit inputs to the ALU statically or dynamically. The inputs to BMUX are listed in Table 6.2.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal

Table 6.2. BMUX Inputs

InB[1:0]	BMUX Signal Selection
00	Output of MULTB, left shift 18 bits
01	Output of MULTB, sign-extended to 54 bits
10	B_ALU={Cra[44:27], Bra}, concatenated result of Cra and Bra
11	GND or 54 bits of 0

Signal Descriptions:

• Bra is generated from the registered input of B (BR) sign extended to 36 bits

CMUX

CMUX selects between multiple 54-bit inputs to the ALU statically or dynamically. The inputs to CMUX are listed in Table 6.3.

Table 6.3. CMUX Inputs

InC[2:0]	CMUX Signal Selection
000	GND or 54 bits of 0
001	CIN right shift 18 bits
010	CIN
011	C_ALU: sign extended Cr
100	A_ALU
101	ALU feedback
110	Constant for rounding (RNDtoPN)
111	Constant for rounding (RNDtoPNM1)

Signal Descriptions:

• CIN (Cascade Input) is connected to the COUT (Cascade Output) of an adjacent sysDSP slice

ALU

<u>Operation Codes</u>: The ALU does the processing of the sysDSP slice. Its operation can be static or dynamic and is set using a 4-bit operation code. The ALU can operate with either two inputs (BMUX and CMUX) or with three inputs mode (AMUX, BMUX and CMUX). Table 6.4 lists the operation codes and the ALU functions that are performed.

#	OPR(3)	OPR(2)	OPR(1)	OPR(0)	Function	
1	0	1	0	0	R = A + B + C	Arithmetic
2	0	1	0	1	R = A - B + C	
3	0	1	1	0	R = A + B - C	
4	0	1	1	1	R = A - B - C	
5	1	1	0	0	R = B XNOR C	Logical
6	1	1	1	0	R = B XOR C	
7	0	0	0	0	R = B NAND C	
8	1	0	0	0	R = B AND C	
9	0	0	1	1	R = B OR C	
10	1	0	1	1	R = B NOR C	

Table 6.4. Operation Codes and ALU Functions

Signal Descriptions:

- OPR(x) is the opcode bit number
- A is the output from the AMUX

• B is the output from the BMUX

• C is the output from the CMUX

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

For arithmetic operation, the ALU is a ternary adder with selectable addition or subtraction for each input. The data width for the ALU operation is 54 bits with the following exception: MUX A and B opcodes are 10 and MUX C opcode is 011. For this operation mode, the data width is limited to 36 bits. If the 0 input port for one of the MUXes is selected by the port selection port, the ALU function effectively becomes a two-input operation.

<u>Flags</u>: ALU flags are indicators generated by comparing the ALU result and constants or fixed patterns Figure 6.2 and Figure 6.3 show the circuitry for the flags. Table 6.5 and Table 6.6 provide definitions of the inputs and outputs.

Figure 6.2. Flag Circuitry

Figure 6.3. Flag Pattern Circuitry

Table 6.5. Flag Input Definitions

Flag Input	Definition
R	54-bit result from the ALU
MASK01	Memory cell constant which is a mask for EQZM/EQOM
MASKPAT	Memory cell constant which is a mask constant for EQPAT/EQPATB
MCPAT	Memory cell constant which is a MEM Cell Pattern constant
SELPAT	Mux select chooses the PAT source
SELMASK	Mux select chooses the mask source for EQPAT/EQPATB
LegacyMode	Sets OVERUNDER which is used to support LatticeECP2 legacy overflow

Table 6.6. Flag Output Definitions

Flag Output	Definition	Equation
EQZ	Equal to zero	EQZ = not(bitwise_or(R))
EQZM	Equal to zero with mask	EQZM = bitwise_and(not(R) or MASK01)
EQOM	Equal to one with mask	EQOM = bitwise_and(R or MASK01)
EQPAT ¹	Equal to PAT with mask	EQPAT = bitwise_and(not(R xor MCPAT) or MASKPAT)
EQPATB ¹	Equal to bit inverted PAT with mask	EQPATB = bitwise_and((R xor MCPAT) or MASKPAT)
OVER	Accumulator overflow	OVER = EQZM and (not(EQOM_d or EQZM_d))
UNDER	Accumulator underflow	UNDER = EQOM and (not(EQOM_d or EQZM_d))
OVERUNDER	Either over or underflow	
_d	The suffix "_d" denotes non-registered signals	

Note:

1. For EQPAT and EQPATB, the pattern to be compared with can be specified through MCPAT and MASKPAT or through C input of sysDSP slice dynamically.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

#LATTICE

7. IPexpress Slice Module

See Appendix B. Using IPexpress for Diamond for information on using the IPexpress Slice Module in Diamond. The IPexpress Slice Module allows users to configure a sysDSP slice and enable all of its advanced features. Figure 7.1 shows the GUI for the Slice Module.

SLI	CE	Configuration \ Register Setup \
	Result[36:0] → SignR →	Mult and ALU Selection F Enable MultA F Enable MultB Cascade Match Register Select Shift Out B F Enable & III
	EQZ 🔸	Operation A + B + C
	EQZM	Impact / Amus Impact / Bmus Impact
→ AA[17:0]	EQOM	MASKPAT_SOURCE STATIC MASKPAT 0x 0000000000000 00000000000000000000
→ AB[17:0]	EQPAT 🔶	MASK01 0x 0000000000000 0x00000000000000000
→ BA[17:0]	EQPATB	RNDPAT 0x 000000000000000000000000000000000000
→ BB[17:0]		Input Selection AA: Width 18 V Source Parallel V Sign Signed V
Estimated Res DSP_1	ource Usage: 9x9: 4	AB: Width 18 Source Parallet Sign Signed BA: Width 18 Source Parallet Sign Signed BB: Width 18 Source Parallet Sign Signed Source Parallet Sign Signed Sign Signed S
Bus Ordering Styl Big Endian (MSB:	e: LSB] 🗾 💌	C: Width 36 Thout Frable Frable C: Width 36 C: Enable Frable Frable Frable Registers Registers Registers Registers

Figure 7.1. Slice Module GUI

There are two sections for configuration, Mult/ALU and Input Selections. The output ports, such as data and flags, are enabled automatically depending on sysDSP operation and user options. The two sections are described below.

Input Selection

- Input bus widths which can be from 1-18 bit for AA, AB, BA, BB. AA and AB are the inputs for MultA, BA and BB are the inputs for MultB.
- Input bus widths which can be from 1-54 bit for C (only when "Enable B" is unchecked). This C input port is different from the CMUX output (input of ALU).
- Data Type specifies if the data is Signed, Unsigned or Dynamic
- Source specifies if data is from Parallel, Shift or Dynamic
- Shift Out enables the shift out port on the sysDSP slice
- Input, Pipeline and Output Registers are user-selectable

Mult and ALU Selection

To configure a sysDSP slice, the user must first consider whether the ALU is needed. The result of the ALU is a function of A, B and C, where A, B and C are outputs of AMUX, BMUX and CMUX, respectively. If the check box "Enable ALU" is unchecked, all the ALU related options will be grayed out and thus not available, as shown in Figure 7.2. These include Operation, Input A (A Mux), Input B (B Mux), Input C (C Mux), MCPAT_SOURCE, MASKPAT_SOURCE, MCPAT, MASKPAT, MASK01, and RNDPAT. This will set up the slice as two independent multipliers.

SLICE	Configuration V Register Setup
	Mult and ALU Selection
	Enable MultA Enable MultB
	Cascade Match Register Reset Mode SYNC ASYNC Select Shift Out B
	T Enable ALU
	Operation A + B + C
PA[35:0]	Input A, MultA Input B MultB Input C [0 Input C [0 Input C]
	MCPAT_SOURCE STATIC MCPAT 0x 0000000000000000000000000000000000
	MASKPAT_SOURCE STATIC MASKPAT 0x 0000000000000000000000000000000000
→ 4B[17:0]	MASK01 0x 000000000000000000000000000000000
PB[35:0]	
	RNDPAT 0x 000000000000 - 0x30000000000 - 0x30000000000
	n for RNDPAT
BB[17:0]	Input Selection
	AA: Width 18 🗹 Source Parallel 🗹 Sign Signed 💌
Estimated Besource Usage:	AB: Width 18 💌 Source Parallel 💌 Sign Signed 💌
DSP_9x9:4	BA: Width 18 💌 Source Parallel 💌 Sign Signed 💌
	BB: Width 18 💌 Source Parallel 💌 Sign Signed 💌
	Enable Enable Enable
Bus Ordering Style:	L: Width J36 To Input To Pipeline To Output Registers Registers Registers
Big Endian (MSB:LSB)	

Figure 7.2. Slice Module GUI with "Enable ALU" Unchecked

The check box "Enable ALU" should be checked if the ALU is needed. The ALU can operate in either three-input or twoinput mode or it can be configured dynamically.

- Three-input operation options: A+B+C, A+B-C, A-B+C, A-B-C.
- Two-input operation options: B XNOR C, B XOR C, B NAND C, B AND C, B OR C, B NOR C.
- **Dynamic option**: Any of the possible Opcodes listed in Table 6.4.

Next, determine whether MultA, MultB, or both, will be used.

For CMUX, the output can be one of the eight inputs or it can be configured dynamically. The available configurations for the outputs of AMUX and BMUX are dependent on whether MultA and MultB are enabled.

- If "Enable MultA" is checked, the output of AMUX can be either MultA output or configured dynamically.
- If "Enable MultA" is unchecked, the options are ALU feedback, A_ALU, 0 and DYNAMIC.
- If "Enable MultB" is checked, the output of BMUX can be MultB output, MultB shift 18L or configured dynamically.
- If "Enable MultB" is unchecked, the options are B_ALU, 0 and DYNAMIC.

Configuration of "Enable MultA" will affect the availability of the operation options:

- If "Enable MultA" is checked, the available options are A + B + C, A B + C, A + B C, A B C and DYNAMIC;
- If "Enable MultA" is unchecked, the available options are A + B + C, A B + C, A + B C, A B C, B XNOR C, B XOR C, B NAND C, B AND C, B OR C, B NOR C and DYNAMIC.

Configuration of "Enable MultB" will affect the availability of the cascade match register and select shift out B.

- If "Enable MultB" is checked, "cascade match register" and "select shift out B" will be available. CascAO and CascA1 in Figure 2.1 are controlled by the check box of cascade match register.
- If "cascade match register" is checked, registers CascA0 and CascA1 will be added to the line of shift register A.
- If "select shift out B" is checked, both SROA and SROB will be added to output ports of the Slice module. Figure 3.7 lists the possible configuration scenarios.

Scenario	MULTA	MULTB	ALU	Operation Mode
1	Yes	No	No	a. Single multiplier instance: MULTA only.
				b. Static mode only. ¹
2	No	Yes	No	a. Single multiplier instance: MULTB only.
				b. Static mode only.
3	Yes	Yes	No	a. Two multiplier instances: MULTA and MULTB b. Static mode only.
4	Yes	Yes	Yes	a. Two multiplier instances and ALU instance: MULTA, MULTB and ALU.
				b. Static mode: A + B + C or A - B + C or A + B - C or A - B - C.
				c. Dynamic mode ² : A + B + C, A - B + C, A + B - C, A - B - C, B XNOR C, B XOR C, B NAND C, B AND C, B OR C, B NOR C
5	No	Yes	Yes	a. One multiplier instance and ALU instance: MULTB and ALU.
				b. Static mode: A + B + C, A - B + C, A + B - C, A - B - C, B XNOR C, B XOR C, B
				NAND C, B AND C, B OR C, B NOR C
				c. Dynamic mode: A + B + C, A - B + C, A + B - C, A - B - C, B XNOR C, B XOR C,
				B NAND C, B AND C, B OR C, B NOR C.
6	Yes	No	Yes	a. One multiplier instance and ALU instance: MULTA and ALU.
				b. Static mode: A + B + C, A - B + C, A + B - C, A - B - C, B XNOR C, B XOR C, B NAND C, B AND C, B OR C, B NOR C
				c. Dynamic mode: A + B + C, A - B + C, A + B - C, A - B - C, B XNOR C, B XOR C,
				B NAND C, B AND C, B OR C, B NOR C
7	No	No	Yes	a. ALU instance: ALU only.
				b. Static mode: A + B + C, A - B + C, A + B - C, A - B - C, B XNOR C, B XOR C, B
				NAND C, B AND C, B OR C, B NOR C
				c. Dynamic mode: A + B + C, A - B + C, A + B - C, A - B - C, B XNOR C, B XOR C,
				B NAND C, B AND C, B OR C, B NOR C

Table 7.1. Possible Configuration Scenarios

Notes:

1. Static mode means available operation options other than DYNAMIC.

2. Dynamic mode means the operation can be configured dynamically.

If the ALU is used, some flag signals are generated by comparing the ALU results with pre-specified constants or C input. In the GUI, these constants are MASK01, MCPAT, and MASKPAT.

- If "Enable MultB" is unchecked, options for MCPAT_SOURCE and MASKPAT_SOURCE will be available. These options are STATIC and DYNAMIC.
- If "STATIC" is checked, the values for MCPAT and MASKPAT need to be specified by the user.
- If "DYNAMIC" is checked, the values for MCPAT and MASKPAT are specified though the input port C dynamically.
- If "Enable ALU" is checked, there will be an output port SignR available, which indicates the sign of the result. This port should be left unconnected if not being used.

8. Rounding

LatticeECP3 sysDSP slices provide the capability of rounding through the two rounding patterns. Rounding on a number is achieved by adding a constant (e.g. 0.5 for decimal) followed by a truncation, or in the following equation:

Output = Floor(Input + 0.5), with input and output in decimal

In sysDSP slices, there are two rounding constant inputs for CMUX. One is 0...0001000...0, (called RNDtoPN) with the binary or rounding point between the "1" and the "0" in front of the "1", and the value of RNDtoPN is 0.5 in decimal. The other one is 0...00001111...1, (called RNDtoPNM1) with the binary or rounding point between the last "0" and the first "1". Where N is the position of binary point or the number of 1s. By choosing one of these constants, the output of the sysDSP slice is (result of ALU)+ RNDtoPN or (result of ALU)+ RNDtoPNM1. The ALU result at the previous clock cycle is the input for the rounding operation and the rounding result is:

```
Output_truncated = Floor(Input + RNDtoPN)
```

or

Output_truncated = Floor(Input + RNDtoPNM1)

Other manipulations are also possible, depending on the rounding scheme to be implemented. Thus, these two constants are chosen by the user and it is up to the user to determine which rounding scheme is implemented. The information of the ALU output value (positive, negative etc.) can be extracted and used for port selection of CMUX, thus the selection of rounding constants.

The following are examples of rounding. Example 1 is described in detail and the others are similar.

8.1. Example 1: Rounding Toward Zero

Steps for rounding toward zero:

- 1. Extract the sign of the ALU result.
- 2. Select the input port of the CMUX based on the result of step 1. If the sign is positive, RNDtoPNM1 will be selected to pass through CMUX. If the sign is negative, RNDtoPN will be selected to pass through CMUX.
- 3. Add the RND_CONSTANT and the ALU result.
- 4. Truncate the result of step 3. This is the rounding result.

Rounding to zero of a 54-bit value to 49-bit

		1	Rounding point
Sign	Data Type	Data Value	
	Input	000000 00000000 0000000 0000000 0000000	01 010 10000
	RNDtoPNM1	000000 0000000 0000000 0000000 0000000 0000	00 000 01111
+	Output Data	000000 0000000 0000000 0000000 0000000 010101	01 010 1 <mark>1111</mark>
	Output truncated	000000 0000000 0000000 0000000 0000000 010101	101 010
	Input	111111 1111111 1111111 11111111 1111111	01 010 10000
-	RNDtoPN	000000 0000000 0000000 0000000 0000000 0000	00 000 10000
	Output Data	111111 1111111 1111111 11111111 1111111	0101 100000
	Output truncated	111111 11111111 1111111 11111111 111111	01 011

8.2. Example 2: Rounding to Positive Infinity

Rounding to positive infinity of a 54-bit value to 49-bit

r	1		Rounding point
Sign	Data Type	Data Value	
	Input	000000 0000000 0000000 0000000 0000000 010101	01 010 10000
	RNDtoPN	000000 00000000 0000000 0000000 0000000	00 000 10000
+	Output Data	000000 00000000 0000000 0000000 0000000	0101 100000
[Output truncated	000000 00000000 0000000 0000000 0000000	LO1 011
	Input	111111 11111111 1111111 11111111 111111	01 010 10000
-	RNDtoPN	000000 0000000 0000000 0000000 0000000 0000	00 000 10000
	Output Data	111111 11111111 1111111 11111111 111111	0101 100000
	Output truncated	111111 11111111 1111111 11111111 111111	101 011

8.3. Example 3: Rounding to Negative Infinity

Rounding to negative infinity of a 54-bit value to 49-bit

1			Rounding point
Sign	Data Type	Data Value	
	Input	000000 00000000 0000000 0000000 0000000	01 010 10000
	RNDtoPNM1	000000 0000000 0000000 0000000 0000000 0000	00 000 01111
+	Output Data	000000 00000000 0000000 0000000 0000000	D1 010 11111
	Output truncated	000000 0000000 0000000 0000000 0000000 010101	.01 010
-	Input	111111 11111111 1111111 11111111 111111	01 010 10000
	RNDtoPNM1	000000 0000000 0000000 0000000 0000000 0000	00 000 01111
	Output Data	111111 11111111 1111111 11111111 111111	01 010 11111
	Output truncated	111111 11111111 1111111 11111111 111111	.01 010

8.4. Example 4: Rounding Away from Zero

Rounding away from zero of a 54-bit value to 49-bit

			Rounding point
Sign	Data Type	Data Value	
	Input	000000 00000000 0000000 0000000 0000000	01 010 1 0000
	RNDtoPN	000000 0000000 0000000 0000000 0000000 0000	00 000 10000
+	Output Data	000000 00000000 0000000 0000000 0000000	01 01 <mark>1 00000</mark>
	Output truncated	000000 0000000 0000000 0000000 0000000 010101	.01 011
-	Input	111111 11111111 1111111 11111111 111111	01 010 10000
	RNDtoPNM1	000000 0000000 0000000 0000000 0000000 0000	00 000 01111
	Output Data	111111 11111111 1111111 11111111 111111	D1 010 <u>11111</u>
	Output truncated	111111 11111111 1111111 11111111 111111	.01 010

For convergent rounding, there are two options: one is rounding toward even and the other is rounding toward odd. For rounding toward even, the number of exact x.5 is rounding toward the closest even and the others are rounding toward the nearest.

In addition to the steps listed above for rounding toward zero or infinity, some extra steps are needed. If the value of (result of ALU) + RND_CONSTANT matches a certain pattern, or if flag EQPAT = 1 is generated, the least significant bit after truncation will be assigned 0 (rounding toward even) or 1 (rounding toward odd). For rounding toward even, MAPAT = 11...1100...00, MASKPAT = 11...1100...00, where the rounding point is between the last "1" and the first "0". The flag EQPAT generated with this pattern indicates whether the (result of ALU) + RND_CONSTANT matches a certain pattern of XX...X100...00.

8.5. Example 5: Rounding Toward Even

Rounding toward even steps (54-bit value to 49-bit MSBs, rounding point = 5)

- 1. Add RNDtoPN to the result of ALU
- 2. If EQPAT=1(matches pattern XX...X100...00), then integer LSB is replaced with 0; otherwise, keep the LSB.

Rounding toward even of a 54-bit value to 49-bit

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

Round	ding toward even of a 54-	bit value to 49-bit	Rounding point	
Sign	Data Type	Data Value		
	Input	000000 00000000 0000000 0000000 0000000	00 0 10 10000	
	RNDtoPN	000000 0000000 0000000 0000000 0000000 0000	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
+	Output Data	000000 0000000 0000000 0000000 0000000 0000	00 01 1 00000	
	Match 100000	Yes		
	Output truncated	000000 0000000 0000000 0000000 0000000 0000	00 010	
	Input	111111 1111111 1111111 1111111 1111111 1111	1 101 10000	
	RNDtoPN	000000 0000000 0000000 0000000 0000000 0000	00 000 10000	
-	Output Data	111111 1111111 1111111 1111111 1111111 1111	11 10 00000	
	Match 100000	No		
	Output truncated	111111 1111111 1111111 11111111 1111111	11 110	

8.6. Example 6: Rounding Toward Odd

For rounding toward odd, MCPAT = 11...11011...11, MASKPAT = 11...1100...00, where the rounding point is between the last "1" and the first "0". The flag EQPAT generated with this pattern indicates whether the (result of ALU) + RND_CONSTANT matches a certain pattern of XX...X011...11.

Rounding toward odd steps (rounding point = 5):

- 1. Add RNDtoPNM1 to the result of ALU
- 2. If EQPAT=1(matches pattern XX...X01...11), then integer LSB is replaced with 1; otherwise, keep the LSB.

Rounding toward odd of a 54-bit value to 49-bit

Round	ding toward odd of a 54-b	bit value to 49-bit	Deve diag a sint
Sign	Data Type	Data Value	Rounding point
	Input	000000 00000000 0000000 0000000 0000000	00 010 10000
	RNDtoPNM1	000000 0000000 0000000 0000000 0000000 0000	00 000 01111
+	Output Data	000000 00000000 0000000 0000000 0000000	00 01 <mark>0 11111</mark>
	Match 011111	Yes	
	Output truncated	000000 00000000 0000000 0000000 0000000	000 011
	Input	111111 1111111 1111111 1111111 1111111 1111	11 101 10000
	RNDtoPNM1	000000 0000000 0000000 0000000 0000000 0000	00 000 01111
-	Output Data	111111 1111111 1111111 1111111 1111111 1111	11 1 01 11111
	Match 011111	No	
[Output truncated	111111 11111111 1111111 11111111 111111	11 101

For dynamic and random rounding, the selection port for CMUX is opened to the user. When and how the two rounding patterns, RNDtoPN and RNDtoPNM1, are switched is up to the user.

9. sysDSP Slice Control Signal and Data Signal Descriptions

Asynchronous reset of selected registers
Dynamic signal: 0 = unsigned, 1 = signed
Dynamic signal: 0 = unsigned, 1 = signed
Dynamic signal: 0 = accumulate, 1 = load
Dynamic signal: 0 = subtract, 1 = add
Dynamic signal: 0 = parallel input, 1 = shift input
Dynamic signal: 0 = parallel input, 1 = shift input

Appendix A. DSP Primitives

module MULT18X18C (A17, A16, A15, A14, A13, A12, A11, A10, A9, A8, A7, A6, A5, A4, A3, A2, A1, A0, B17, B16, B15, B14, B13, B12, B11, B10, B9, B8, B7, B6, B5, B4, B3, B2, B1, B0, SIGNEDA, SIGNEDB, SOURCEA, SOURCEB, CE3, CE2, CE1, CE0, CLK3, CLK2, CLK1, CLK0, RST3, RST2, RST1, RST0, SRIA17, SRIA16, SRIA15, SRIA14, SRIA13, SRIA12, SRIA11, SRIA10, SRIA9, SRIA8, SRIA7, SRIA6, SRIA5, SRIA4, SRIA3, SRIA2, SRIA1, SRIA0, SRIB17, SRIB16, SRIB15, SRIB14, SRIB13, SRIB12, SRIB11, SRIB10, SRIB9, SRIB8, SRIB7, SRIB6, SRIB5, SRIB4, SRIB3, SRIB2, SRIB1, SRIB0, SROA17, SROA16, SROA15, SROA14, SROA13, SROA12, SROA11, SROA10, SROA9, SROA8, SROA7, SROA6, SROA5, SROA4, SROA3, SROA2, SROA1, SROA0, SROB17, SROB16, SROB15, SROB14, SROB13, SROB12, SROB11, SROB10, SROB9, SROB8, SROB7, SROB6, SROB5, SROB4, SROB3, SROB2, SROB1, SROB0, ROA17, ROA16, ROA15, ROA14, ROA13, ROA12, ROA11, ROA10, ROA9, ROA8, ROA7, ROA6, ROA5, ROA4, RO A3, ROA2, ROA1, ROA0, ROB17, ROB16, ROB15, ROB14, ROB13, ROB12, ROB11, ROB10, ROB9, ROB8, ROB7, ROB6, ROB5, ROB4, RO B3,ROB2,ROB1,ROB0, P35, P34, P33, P32, P31, P30, P29, P28, P27, P26, P25, P24, P23, P22, P21, P20, P19, P18, P17, P16, P15, P14, P13, P12, P11, P10, P9, P8, P7, P6, P5, P4, P3, P2, P1, P0, SIGNEDP); input A17,A16,A15,A14,A13,A12,A11,A10,A9,A8,A7,A6,A5,A4,A3,A2,A1,A0; input B17,B16,B15,B14,B13,B12,B11,B10,B9,B8,B7,B6,B5,B4,B3,B2,B1,B0; input SIGNEDA, SIGNEDB, SOURCEA, SOURCEB; input CE3, CE2, CE1, CE0, CLK3, CLK2, CLK1, CLK0, RST3, RST2, RST1, RST0; input SRIA17, SRIA16, SRIA15, SRIA14, SRIA13, SRIA12, SRIA11, SRIA10, SRIA9; input SRIA8, SRIA7, SRIA6, SRIA5, SRIA4, SRIA3, SRIA2, SRIA1, SRIA0; input SRIB17, SRIB16, SRIB15, SRIB14, SRIB13, SRIB12, SRIB11, SRIB10, SRIB9; input SRIB8, SRIB7, SRIB6, SRIB5, SRIB4, SRIB3, SRIB2, SRIB1, SRIB0; output SROA17, SROA16, SROA15, SROA14, SROA13, SROA12, SROA11, SROA10, SROA9; output SROA8, SROA7, SROA6, SROA5, SROA4, SROA3, SROA2, SROA1, SROA0; output SROB17, SROB16, SROB15, SROB14, SROB13, SROB12, SROB11, SROB10, SROB9; output SROB8, SROB7, SROB6, SROB5, SROB4, SROB3, SROB2, SROB1, SROB0; output ROA17, ROA16, ROA15, ROA14, ROA13, ROA12, ROA11, ROA10, ROA9, ROA8, ROA7, ROA6, ROA5, ROA4, RO A3, ROA2, ROA1, ROA0; output ROB17, ROB16, ROB15, ROB14, ROB13, ROB12, ROB11, ROB10, ROB9, ROB8, ROB7, ROB6, ROB5, ROB4, RO B3, ROB2, ROB1, ROB0; output P35, P34, P33, P32, P31, P30, P29, P28, P27, P26, P25, P24, P23, P22, P21, P20, P19, P18; output P17, P16, P15, P14, P13, P12, P11, P10, P9, P8, P7, P6, P5, P4, P3, P2, P1, P0; output SIGNEDP; parameter REG INPUTA CLK = "NONE"; parameter REG INPUTA CE = "CEO"; parameter REG INPUTA RST = "RSTO"; parameter REG INPUTB CLK = "NONE"; parameter REG INPUTB CE = "CEO"; parameter REG INPUTB RST = "RSTO"; parameter REG PIPELINE CLK = "NONE"; parameter REG PIPELINE CE = "CEO"; parameter REG PIPELINE RST = "RSTO"; parameter REG OUTPUT CLK = "NONE"; parameter REG OUTPUT CE = "CEO"; parameter REG OUTPUT RST = "RSTO"; parameter CAS MATCH REG = "FALSE";

LatticeECP3 sysDSP Usage Guide Technical Note


```
parameter MULT BYPASS = "DISABLED";
parameter GSR = "ENABLED";
parameter RESETMODE = "SYNC";
endmodule
module MULT9X9C (
A8, A7, A6, A5, A4, A3, A2, A1, A0, B8, B7, B6, B5, B4, B3, B2, B1, B0,
SIGNEDA, SIGNEDB, SOURCEA, SOURCEB,
CE3, CE2, CE1, CE0, CLK3, CLK2, CLK1, CLK0, RST3, RST2, RST1, RST0,
SRIA8, SRIA7, SRIA6, SRIA5, SRIA4, SRIA3, SRIA2, SRIA1, SRIA0,
SRIB8, SRIB7, SRIB6, SRIB5, SRIB4, SRIB3, SRIB2, SRIB1, SRIB0,
SROA8, SROA7, SROA6, SROA5, SROA4, SROA3, SROA2, SROA1, SROA0,
SROB8, SROB7, SROB6, SROB5, SROB4, SROB3, SROB2, SROB1, SROB0,
ROA8, ROA7, ROA6, ROA5, ROA4, ROA3, ROA2, ROA1, ROA0,
ROB8, ROB7, ROB6, ROB5, ROB4, ROB3, ROB2, ROB1, ROB0,
P17, P16, P15, P14, P13, P12, P11, P10, P9, P8, P7, P6, P5, P4, P3, P2, P1, P0,
SIGNEDP,
);
input A8, A7, A6, A5, A4, A3, A2, A1, A0;
input B8, B7, B6, B5, B4, B3, B2, B1, B0;
input SIGNEDA, SIGNEDB, SOURCEA, SOURCEB;
input CE0, CE1, CE2, CE3, CLK0, CLK1, CLK2, CLK3, RST0, RST1, RST2, RST3;
input SRIA8, SRIA7, SRIA6, SRIA5, SRIA4, SRIA3, SRIA2, SRIA1, SRIA0;
input SRIB8, SRIB7, SRIB6, SRIB5, SRIB4, SRIB3, SRIB2, SRIB1, SRIB0;
output SROA8, SROA7, SROA6, SROA5, SROA4, SROA3, SROA2, SROA1, SROA0;
output SROB8, SROB7, SROB6, SROB5, SROB4, SROB3, SROB2, SROB1, SROB0;
output ROA8, ROA7, ROA6, ROA5, ROA4, ROA3, ROA2, ROA1, ROA0;
output ROB8, ROB7, ROB6, ROB5, ROB4, ROB3, ROB2, ROB1, ROB0;
output P17, P16, P15, P14, P13, P12, P11, P10, P9, P8, P7, P6, P5, P4, P3, P2, P1, P0;
output SIGNEDP;
parameter REG INPUTA CLK = "NONE";
parameter REG INPUTA CE = "CEO";
parameter REG INPUTA RST = "RSTO";
parameter REG INPUTB CLK = "NONE";
parameter REG INPUTB CE = "CEO";
parameter REG INPUTB RST = "RSTO";
parameter REG PIPELINE CLK = "NONE";
parameter REG PIPELINE CE = "CEO";
parameter REG PIPELINE RST = "RSTO";
parameter REG OUTPUT CLK = "NONE";
parameter REG OUTPUT CE = "CEO";
parameter REG OUTPUT RST = "RSTO";
parameter CAS MATCH REG = "NONE";
parameter MULT BYPASS = "DISABLED";
parameter GSR = "ENABLED";
parameter RESETMODE = "SYNC";
endmodule
module ALU54A(
CE3, CE2, CE1, CE0, CLK3, CLK2, CLK1, CLK0, RST3, RST2, RST1, RST0, SIGNEDIA, SIGNEDIB,
A35, A34, A33, A32, A31, A30, A29, A28, A27, A26, A25, A24, A23, A22, A21, A20, A19, A18,
A17, A16, A15, A14, A13, A12, A11, A10, A9, A8, A7, A6, A5, A4, A3, A2, A1, A0,
B35, B34, B33, B32, B31, B30, B29, B28, B27, B26, B25, B24, B23, B22, B21, B20, B19, B18,
B17, B16, B15, B14, B13, B12, B11, B10, B9, B8, B7, B6, B5, B4, B3, B2, B1, B0,
c53,c52,c51,c50,c49,c48,c47,c46,c45,c44,c43,c42,c41,c40,c39,c38,c37,c36,
c35,c34,c33,c32,c31,c30,c29,c28,c27,c26,c25,c24,c23,c22,c21,c20,c19,c18,
```

c17, c16, c15, c14, c13, c12, c11, c10, c9, c8, c7, c6, c5, c4, c3, c2, c1, c0, MA35, MA34, MA33, MA32, MA31, MA30, MA29, MA28, MA27, MA26, MA25, MA24, MA23, MA22, MA21, MA20, MA19, MA18, MA17, MA16, MA15, MA14, MA13, MA12, MA11, MA10, MA9, MA8, MA7, MA6, MA5, MA4, MA3, MA2, MA1, MA0, MB35,MB34,MB33,MB32,MB31,MB30,MB29,MB28,MB27,MB26,MB25,MB24,MB23,MB22,MB21, MB20, MB19, MB18, MB17, MB16, MB15, MB14, MB13, MB12, MB11, MB10, MB9, MB8, MB7, MB6, MB5, MB4,MB3,MB2,MB1,MB0, CIN53, CIN52, CIN51, CIN50, CIN49, CIN48, CIN47, CIN46, CIN45, CIN44, CIN43, CIN42, CIN41, CIN40, CIN39, CIN38, CIN37, CIN36, CIN35, CIN34, CIN33, CIN32, CIN31, CIN30, CIN29, CIN28, CIN27, CIN26, CIN25, CIN24, CIN23, CIN22, CIN21, CIN20, CIN19, CIN18, CIN17, CIN16, CIN15, CIN14, CIN13, CIN12, CIN11, CIN10, CIN9, CIN8, CIN7, CIN6, CIN5, CIN4, CIN3, CIN2, CIN1 ,CINO, OP10, OP9, OP8, OP7, OP6, OP5, OP4, OP3, OP2, OP1, OP0, SIGNEDCIN, R53, R52, R51, R50, R49, R48, R47, R46, R45, R44, R43, R42, R41, R40, R39, R38, R37, R36, R35,R34,R33,R32,R31,R30,R29,R28,R27,R26,R25,R24,R23,R22,R21,R20,R19,R18, R17, R16, R15, R14, R13, R12, R11, R10, R9, R8, R7, R6, R5, R4, R3, R2, R1, R0, EQZ, EQZM, EQOM, EQPAT, EQPATB, OVER, UNDER, OVERUNDER, SIGNEDR); input CE0, CE1, CE2, CE3, CLK0, CLK1, CLK2, CLK3, RST0, RST1, RST2, RST3, SIGNEDIA, SIGNEDIB; input A35,A34,A33,A32,A31,A30,A29,A28,A27,A26,A25,A24,A23,A22,A21,A20,A19,A18; input A17,A16,A15,A14,A13,A12,A11,A10,A9,A8,A7,A6,A5,A4,A3,A2,A1,A0; input B35,B34,B33,B32,B31,B30,B29,B28,B27,B26,B25,B24,B23,B22,B21,B20,B19,B18; input B17,B16,B15,B14,B13,B12,B11,B10,B9,B8,B7,B6,B5,B4,B3,B2,B1,B0; input C53,C52,C51,C50,C49,C48,C47,C46,C45,C44,C43,C42,C41,C40,C39,C38,C37,C36; input C35,C34,C33,C32,C31,C30,C29,C28,C27,C26,C25,C24,C23,C22,C21,C20,C19,C18; input C17,C16,C15,C14,C13,C12,C11,C10,C9,C8,C7,C6,C5,C4,C3,C2,C1,C0; input MA35, MA34, MA33, MA32, MA31, MA30, MA29, MA28, MA27, MA26, MA25, MA24, MA23, MA22, MA21; input MA20, MA19, MA18, MA17, MA16, MA15, MA14, MA13, MA12, MA11, MA10, MA9, MA8, MA7, MA6, MA5; input MA4, MA3, MA2, MA1, MA0; input MB35,MB34,MB33,MB32,MB31,MB30,MB29,MB28,MB27,MB26,MB25,MB24,MB23,MB22,MB21; input MB20,MB19,MB18,MB17,MB16,MB15,MB14,MB13,MB12,MB11,MB10,MB9,MB8,MB7,MB6,MB5; input MB4, MB3, MB2, MB1, MB0; input CIN53, CIN52, CIN51, CIN50, CIN49, CIN48, CIN47, CIN46, CIN45, CIN44, CIN43, CIN42; input CIN41, CIN40, CIN39, CIN38, CIN37, CIN36, CIN35, CIN34, CIN33, CIN32, CIN31, CIN30, CIN29; input CIN28, CIN27, CIN26, CIN25, CIN24, CIN23, CIN22, CIN21, CIN20, CIN19, CIN18, CIN17, CIN16; input CIN15, CIN14, CIN13, CIN12, CIN11, CIN10, CIN9, CIN8, CIN7, CIN6, CIN5, CIN4, CIN3, CIN2, CIN1 ,CIN0; input OP10, OP9, OP8, OP7, OP6, OP5, OP4, OP3, OP2, OP1, OP0, SIGNEDCIN; output R53,R52,R51,R50,R49,R48,R47,R46,R45,R44,R43,R42,R41,R40,R39,R38,R37,R36; output R35,R34,R33,R32,R31,R30,R29,R28,R27,R26,R25,R24,R23,R22,R21,R20,R19,R18; output R17,R16,R15,R14,R13,R12,R11,R10,R9,R8,R7,R6,R5,R4,R3,R2,R1,R0; output EQZ, EQZM, EQOM, EQPAT, EQPATB, OVER, UNDER, OVERUNDER, SIGNEDR; parameter REG INPUTCO CLK = "NONE"; parameter REG INPUTCO CE = "CEO"; parameter REG INPUTCO RST = "RSTO"; parameter REG INPUTC1 CLK = "NONE"; parameter REG INPUTC1 CE = "CEO"; parameter REG INPUTC1 RST = "RST0";

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

#LATTICE

parameter REG OPCODEOP0 0 CLK = "NONE"; parameter REG OPCODEOPO 0 CE = "CEO"; parameter REG OPCODEOP0 0 RST = "RSTO"; parameter REG OPCODEOP1 0 CLK = "NONE"; parameter REG OPCODEOP0 1 CLK = "NONE"; parameter REG OPCODEOP0 1 CE = "CEO"; parameter REG OPCODEOP0 1 RST = "RSTO"; parameter REG_OPCODEOP1 1 CLK = "NONE"; parameter REG OPCODEIN 0 CLK = "NONE"; parameter REG OPCODEIN 0 CE = "CEO"; parameter REG OPCODEIN 0 RST = "RSTO"; parameter REG OPCODEIN 1 CLK = "NONE"; parameter REG OPCODEIN 1 CE = "CEO"; parameter REG_OPCODEIN_1 RST = "RST0"; parameter REG OUTPUTO CLK = "NONE"; parameter REG OUTPUTO CE = "CEO"; parameter REG_OUTPUT0 RST = "RST0"; parameter REG OUTPUT1 CLK = "NONE"; parameter REG OUTPUT1 CE = "CEO"; parameter REG OUTPUT1 RST = "RST0"; parameter REG FLAG CLK = "NONE"; parameter REG FLAG CE = "CEO"; parameter REG FLAG RST = "RST0"; parameter MCPAT SOURCE = "STATIC"; parameter MASKPAT SOURCE = "STATIC"; parameter MASK01 = "0x0000000000000"; parameter MCPAT = "0x0000000000000"; parameter MASKPAT = "0x0000000000000"; parameter RNDPAT = "0x0000000000000"; parameter GSR = "ENABLED"; parameter RESETMODE = "SYNC"; parameter MULT9 MODE = "DISABLED"; parameter FORCE ZERO BARREL SHIFT = "DISABLED"; parameter LEGACY = "DISABLED"; endmodule module ALU24A(MA17, MA16, MA15, MA14, MA13, MA12, MA11, MA10, MA9, MA8, MA7, MA6, MA5, MA4, MA3, MA2, MA1, MA0, MB17, MB16, MB15, MB14, MB13, MB12, MB11, MB10, MB9, MB8, MB7, MB6, MB5, MB4, MB3, MB2, MB1, MB0, CIN23, CIN22, CIN21, CIN20, CIN19, CIN18, CIN17, CIN16, CIN15, CIN14, CIN13, CIN12, CIN11, CIN10, CIN9, CIN8, CIN7, CIN6, CIN5, CIN4, CIN3, CIN2, CIN1 ,CINO, CE3, CE2, CE1, CE0, CLK3, CLK2, CLK1, CLK0, RST3, RST2, RST1, RST0, SIGNEDIA, SIGNEDIB, OPADDN SUB, OPCINSEL, R23, R22, R21, R20, R19, R18, R17, R16, R15, R14, R13, R12, R11, R10, R9, R8, R7, R6, R5, R4, R3, R2, R1, R0); input MA17, MA16, MA15, MA14, MA13, MA12, MA11, MA10, MA9, MA8, MA7, MA6, MA5; input MA4, MA3, MA2, MA1, MA0; input MB17, MB16, MB15, MB14, MB13, MB12, MB11, MB10, MB9, MB8, MB7, MB6, MB5; input MB4,MB3,MB2,MB1,MB0; input CIN23, CIN22, CIN21, CIN20, CIN19, CIN18, CIN17, CIN16;

input

```
CIN15, CIN14, CIN13, CIN12, CIN11, CIN10, CIN9, CIN8, CIN7, CIN6, CIN5, CIN4, CIN3, CIN2, CIN1
,CIN0;
input
CE0, CE1, CE2, CE3, CLK0, CLK1, CLK2, CLK3, RST0, RST1, RST2, RST3, SIGNEDIA, SIGNEDIB, OPADDN
SUB, OPCINSEL;
output R23, R22, R21, R20, R19, R18;
output R17,R16,R15,R14,R13,R12,R11,R10,R9,R8,R7,R6,R5,R4,R3,R2,R1,R0;
parameter REG OUTPUT CLK = "NONE";
parameter REG OUTPUT CE = "CEO";
parameter REG OUTPUT RST = "RSTO";
parameter REG OPCODE 0 CLK = "NONE";
parameter REG OPCODE 0 CE = "CEO";
parameter REG OPCODE 0 RST = "RST0";
parameter REG OPCODE 1 CLK = "NONE";
parameter REG OPCODE 1 CE = "CEO";
parameter REG OPCODE 1 RST = "RSTO";
parameter GSR = "ENABLED";
parameter RESETMODE = "SYNC";
endmodule
```

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-TN-02193-1.4

Appendix B. Using IPexpress for Diamond

B.1. Invoking IPexpress for Diamond

There are several ways IPexpress can be invoked. To invoke IPexpress from the Start menu, select:

Start > Programs > Lattice Diamond 1.0 > Accessories > IPexpress

To invoke IPexpress from within Diamond, a project must be opened, then invoke the IPexpress icon or select:

Tools > IPexpress

The IPexpress interface appears as shown below:

Figure B.1. IPexpress Interface

Scroll to the modules and left-click on the module you wish to use. Enter the information into the IPexpress interface as shown in the example Figure B.2.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Figure B.2. Creating the Module Instance

Select Customize.

An example of a MULT Module Dialog window appears as shown in Figure B.3. Select **Help** for information about the fields in this window.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

MULT	Configuration \	
	Size of the DSPMULT block	
	Width Data Type Source	
2014223-00	Input A 9 (2-72) Signed V Parallel	
	Input B 9 (2-72) Signed V Parallel	
	Output 18	
	🗖 Select Shift Out A 👘 Select Shift Out B	
	Register Options	
	Reset Mode: SYNC ASYNC	
→ RST0 P[17:0] →	Clock CE RS ⁻	
	Enable Input Register A CLK0 CLE0 CE0 RS-0	
→ A[8:0]		•
	Enable Pipelined Mode	
→ B[8:0]	Fable Pipeline InputB V CEO V InputB	-
	Finable Output Register Pipeline V CEO V Pipelin	1e 💌
Estimated Resource Usage: DSP_9x9: 1		
Pus Ordeina Shile: Dia Endian (MCD-1 SD1		
Import IPX to Diamond project	Generate Close Hel	n

Figure B.3. MULT Module

When you are finished selecting your options, Select **Generate**. A log window will appear similar to what is shown in Figure B.4.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

Iniguration Generate Log Generated Log Errors/Warnings Mog Copyright (c) 1995-2001 Lucent Technologies Inc: All rights reserved. Copyright (c) 2002-2010 Lattice Semiconductor Corporation, All rights reserved. Copyright (c) 2002-2010 Lattice Semiconductor Corporation, All rights reserved. Edition SCUBA Module Synthesis Issued command : C:\scc\Diamond 134\diamond\1.0\ispfpga\bin\nt\scuba.exe-w-n MULT_Design -lang verilog -synth synplify -bus_exp 7 Criciu name :: MULT_Design Module by: c. dspruuk Module Version : 4.0 Ports :: Inputs :: CLK0, CE0, RST0, A[8:0], B[8:0] Outputs :: F[17:0] U/D buffer : not inserted EDIF output :: suppressed Verido output :: MULT_Design	ofiguration Generate Log	
Generated Log Errors/Warnings Msg Copyright (c) 1995-2001 Lucent Technologies Inc: All rights reserved. Copyright (c) 2002-2010 Lattice Semiconductor Corporation, All rights reserved. BEGIN SCUBA Module Synthesis Issued command : C:Vscc\Diamond 134\diamond\1.0\ispfpga\bin\nt\scuba exe -w -n MULT_Design -lang verilog -synth synplify -bus_exp 7 Circuit name : MULT_Design Module Usersion : 4.0 Ports : Inputs : CLK0, CE0, RST0, A[8:0], B[8:0] Outputs : CLK0, CE0, RST0, A[8:0], B[8:0] Outputs : CLK0, CE0, RST0, A[8:0], B[8:0] Outputs : continented EDIF output : suppressed Verilog output : Suppressed	inguiddorr	
Copyright (c) 1995-2001 Lucent Technologies Inc: All rights reserved. Copyright (c) 2001 Agere Systems: All rights reserved. Copyright (c) 2002-2010 Lattice Semiconductor Corporation, All rights reserved. BEGIN SCUBA Module Synthesis Issued command :: D'IsocNDiamond.134\diamond\1.0\ispfpga\bin\nt\scuba.exe -w -n MULT_Design -lang verilog -synth synplify -bus_exp 7 Circuit name :: MULT_Design Module Version :: 4.0 Ports :: Inputs :: CLK0, CE0, RST0, A[8:0], B[8:0] Outputs :: P[17:0] Outputs :: P[17:0] Output :: suppressed Verilog output :: Suppressed Verilog output :: Suppressed	Generated Log Errors/Warnings Msg	
Verilog template : MULT_Design_tmpl.v Verilog testbench: tb_MULT_Design_tmpl.v Verilog purpose : for synthesis and simulation Bus notation : big endian Besend output:MULT_Design pro	Copyright (c) 1995-2001 Lucent Technologies In Copyright (c) 2001 Agere Systems: All rights rese Copyright (c) 2002-2010 Lattice Semiconductor I BEGIN SCUBA Module Synthesis Issued command : C-Visco-Diamond.134\dia Circuit name : MULT_Design Module type : dspmuth Module Version : 4.0 Ports : Inputs : CLK0, CE0, RST0, A(8:0), B Dutputs : CLK0, CE0, RST0, A(8:0), B Dutputs : CLK0, CE0, RST0, A(8:0), B Dutputs : CLK0, CE0, RST0, A(8:0), B Ustparts : Lippresed EDIP output : suppressed Verilog dutputs : MULT_Design, Ympl.v Verilog template : MULT_Design, Ympl.v Verilog template : MULT_Design, Ympl.v	c. All rights reserved. rved Corporation, All rights reserved. mond\1.0\ispfpga\bin\nt\scuba.exe -w -n MULT_Design -lang verilog -synth synplify -bus_exp 7 [8:0]
	Report output : MULT_Design.srp Estimated Resource Usage: DSP_9x9 : 1	
END SCUBA Module Synthesis	Report output: : MULT_Design.srp Estimated Resource Usage: DSP_sk3:1 END_SCUBA Module Synthesis	
END SCUBA Module Synthesis File: MULT_Design.lpc created.	Report output : MULT_Design.srp Estimated Resource Usage: DSP_9x9:1 END SCUBA Module Synthesis File: MULT_Design.lpc created.	
END SCUBA Module Synthesis File: MULT_Design.lpc created. End process: completed successfully.	Report output : MULT_Design.srp Estimated Resource Usage: DSP_sk9:1 END SCUBA Module Synthesis File: MULT_Design.lpc created. End process: completed successfully.	
END SCUBA Module Synthesis File: MULT_Design.lpc created. End process: completed successfully. Total Warnings: 0	Report output : MULT_Design.sp Estimated Resource Usage: DSP_Sk3 : 1 END SCUBA Module Synthesis File: MULT_Design.lpc created. End process: completed successfully. Total Warnings: 0	
END SCUBA Module Synthesis File: MULT_Design.lpc created. End process: completed successfully. Total Warnings: 0 Total Errors: 0	Report output : MULT_Design.srp Estimated Resource Usage: DSP_sk9:1 END SCUBA Module Synthesis File: MULT_Design.lpc created. End process: completed successfully. Total Warnings: 0 Total Errors: 0	
END SCUBA Module Synthesis File: MULT_Design.lpc created. End process: completed successfully. Total Warnings: 0 Total Errors: 0	Report output : MULT_Design.srp Estimated Resource Usage: DSP_Sk9 : 1 END SCUBA Module Synthesis File: MULT_Design.lpc created. End process: completed successfully. Total Warnings: 0 Total Errors: 0	

Figure B.4. IP Generation Log Window

All other DSP Module interfaces for the LatticeECP3 are shown in the figures below.

NAC.	Continuenting
MAC CLK0 CE0 RST0 ACCUMSLOAD ACCUMSLOAD ACCUM[51:0] Estimated Resource Usage: DSP_SAS: 4	Configuration \ Size of the DSPMAC block Input A 18 (2-72) Signed Parallel Input B 18 (2-72) Signed Parallel Imput Parallel Accumulator 52 Select Shift Out A Select Shift Out B Add/Sub Operation Add Imput Parallel Imput Parallel
Bus Ordering Style: [Big Endian [MSB:LSB]	

Figure B.5. MAC Module

Figure B.6. MMAC Module

Figure B.7. MULTADDSUB Module

Figure B.8. MULTADDSUBSUM Module

Figure B.9. ADDER_TREE Module

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

BARREL_SHIFTER	Configuration \
Data[35:0] Shift[4:0] Clock Result[35:0] ClkEn ClkEn Estimated Resource Usage: DSP_3x9:8 Bus Ordering Style: Bit Endian IMSE1:581	Shift Direction C Left C Right Type Zero Insert S Data Width 36 (2 - 40) Maximum Number of Shifts 31 (1 - 35) Reset Mode C Sync C Async F Enable Input Register Enable Pipeline Register Enable Output Register
Big Endian [MSB:LSB] 📃 👤	

Figure B.10. BARREL_SHIFTER Module

Lattice FPGA Module WIDE_MUX Configuration Generate Log	
WIDE_MUX → DataA0(35:0] → DataA1(35:0] → DataA3(35:0] → DataA3(35:0] → DataA4(35:0) → DataA4(35:0) → DataA4(35:0) → Se(2:0) → Clock → Clock → Reset Estimated Besource Usage: DSP_9x9:8	Configuration Width 36 (2 - 36) Number of Inputs 6 (2 - 18) Reset Mode Image: Sync Image: Configuration of Async Image: Enable Fully Pipelined Mode Image: Enable Input Register Image: Enable Output Register Image: Enable Output Register
Bus Ordering Style: Big Endian (MSB:LSB)	Generate Close Help

Figure B.11. WIDE_MAX Module

^{© 2024} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

SLICE	Configuration { Register Setup }
→ CLK0 Result[36:0] → CE0 EQ2 → RST0 EQ2M → AA[17:0] EQPAT AB[17:0] EQPAT BA[17:0]	Mult and ALU Selection ✓ Enable MultA ✓ Enable MultB Cascade Match Register Reset Mode SYNC ASYNC Select Shift Out B ✓ Input 6 SYNC ASYNC Input A MultA ✓ Input 8 Input 7 Octonomous Octonomous MCPAT_SOURCE STATIC ✓ MCPAT 0x 0000000000000 Ox000000000000 MASKPAT_SOURCE STATIC ✓ MASKPAT 0x 0000000000000 Ox000000000000 MASKO1 0x 00000000000000 Ox00000000000000 Ox0000000000000 NDPAT 0x 00000000000000 Ox00000000000000000 Ox000000000000000000000000000000000000
BB(17:0)	Input Selection AA: Width 18 Source Parallel Sign Signed
Estimated Resource Usage: DSP_9x9: 4	AB: Width 18 Source Parallel Sign Signed BA: Width 18 Source Parallel Sign Signed BB: Width 18 Source Parallel Sign Signed C: Width 36 Source Parallel Sign Signed Source Parallel Signe
Bus Ordering Style: Big Endian [MSB:LSB]	Registers Registers Registers

Figure B.12. SLICE Module – Configuration

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

	SLICE	Configuration Register Setup }	
	17 (MARCH 19)	Select Pipelining Clock CE	Reset
→ CLK0	Result[36:0]	Enable Input Register AA	RSTO V
	SignR 🗕 🗭		RSTO V
CEO		Enable Input Register BA	RSTO V
	EQZ	Enable Input Register BB	RSTO V
	EQZM	🔽 Enable Input Register C CLK0 💌 CE0	RSTO V
		Enable MultA Pipeline Register	RSTO V
	EQOM	Enable MultB Pipeline Register	RSTO V
	EQPAT	🔽 Enable MultA Butput Register 🛛 CLK0 💌 CE0	RSTO V
AB[17:0]	100100000000 201	🔽 Enable MultB Output Register CLK0 💌 CE0	RSTO V
	EQPATB	Enable ALU Opcode Register	RSTO V
BA(17.0]	OVER	Enable ALU Opcode Pipeline Register CLK0 🛫 CE0	RSTO V
		Enable ALU Output and Flag Register CLK0 🛫 CE0	RSTO V
Poplaria	UNDER		
Estima	ited Resource Usage: DSP_9x9: 4		
Bus Orde	ring Style:		
Big Endia	in [MSB:LSB]		

Figure B.13. SLICE Module – Register Setup

B.2. sysDSP in Diamond

Pre-Mapped View

Grouping Instances

sysDSP instances can be viewed or grouped together. In Diamond, select **Tools > Spreadsheet View**. Select the Groups tab. Right-click on **UGROUP** and select **New UGroup...**

Figure B.14. Setting UGroups

A Create New UGroup window appears as shown in Figure B.15.

Left-click on an instance and select the right arrow (>) to add to the UGroup. To select multiple instances, hold the **Ctrl** or **Shift** key while selecting the instances with the left mouse button. Select the **Add** button to complete the UGroup.

🖗 Create Ne	w UGROU	Р				? 🛽
UGROUP Name	e:	Color:				
LUTs:	REGs:	EBR5:				
	O Region					×
Anchor		Row: (2 - 123)		Column: (2 - 181)		
	Site	2		2		
		Height: (1 - 122)		Width: (1 - 180)		
BBox		122		180		
vailable Insta	ances:		s	elected Instances:		
i genbiki genbiki genbiki genbiki genbiki genbiki genbiki genbiki genbiki	u_10A_ds u_10A_ds u_10A_ds u_11A_ds u_11A_ds u_11A_ds u_11A_ds u_12A_ds u_12A_ds u_12A_ds u_12A_ds	p size shift cascade size p,size shift cascade size(dop, pull, 0 p,size shift, cascade size(dop, pull, 0 p,size shift, cascade size(dop, pull, 1 p,size shift, cascade size(dop, pull, 0 p,size shift, cascade size(dop, mult, 1 p,size shift, cascade size(dop, mult, 1 p,size shift, cascade size(dop, pull, 1 size(dop, pull, 1) size(dop, pull, 1) Size	> >> <			
					Add	ancel Help

Figure B.15. Selecting and Creating UGroups

Floorplan View in Diamond

The DSP slices are organized in rows, as shown in Figure B.16. It can be seen that each slice extends to four columns with the multipliers on the left and ALUs on the right.

🚸 Lattice Diamond - Floorplan View									
<u>File Edit View Project Design Process To</u>	ols <u>W</u> ir	ndow <u>F</u>	<u>t</u> elp		194 - 194				
<u>9.6.696</u> № 9.806			7. Q, Q, Q	X 🔍 🛛 🖬 🛛	u 🛛 🖉				
27 2 0 5 \$ 2 4 4 0 2 2 4 4		s 🔣 :	9 🥱 🖪 🛛		9				
File List 🚦 🕹	Diagra	m 🗵	IPexpress	🛛 📔 Package	e View 🔯 🗍 🌐	Device View 🔣	🔣 Floorplan ¥	iew 🛛 🔺 🕨	a ×
🖻 🚺 mixedcounter 🔥		TO		AMER	AME 10	A MEAD	raikite	1.00 CER	~
LFE3-95EA-7FN672CES	*	1 Z		MILE	KANCIL	R MEAL	NEE	Na Cat	
🖻 🦾 Strategies	sin			AND A	THEN .			Nata .	
Area	Q	U3			[]				
U Assistant									
	-			10 630	Ne COD	RBEAD	N8-180	N# 180	
Strategy1	(B)			No LIN.	NACIE	RBEHL	Fa-Cat.	19-12	
Strategy2				No EN	14 53	Nation 1	14-14	10 (4)	
Fe verilog_vhdl	1212			- Court				1	
🖨 🔢 verilog_vhdl_edif	10 al								
🖨 🖾 Input Files		DE		U ULT9_R520 Z	MULTE_RS203			UULT9_RS206	
edif/rev_1/count8.edn		FJ			HULLER BOOD	ALU 24_R52C 4	ALUS4_R52C5	BUTTE BOOK	
source/topcount.v	1			MULI18_H52C2	MULT18_R5203			MULT18_H5206	-
source/typepackage.vhd [work]	R	P6	32		-	2-24	1.22	1	
Constraint Files	U			17. J	ce.			1.00	
Constraint Files mixedcounter v Inf		DA		NOSO	FARLED	A BEAD	NAME:	NOTAL	
mixedcounter_v.lpr		P4		MILE	MARKED C.	P. 882.16	Faller.	NOTE:	
mixedcounter yve.lpf				NOLN	TOCH .	Page 1	128.0	Nota .	
🖨 🗀 Debug Files	同	R3		1010			1454		
🔚 🍋 Reveal1.rvl	10000	-6-20-00							
🖳 💭 Script Files				NHCR	NAKID	A.BE.ID		NHEAD	
🖻 💭 Analysis Files 🔛 🔛				NHER	NHEAL	KHEAL	11 E.E.	NAVEAR.	-
< >		-		MER	TALS	PARTA	NER	MICH	~
ss Hier Cicti Modul File									
Output									đΧ
Finished drawing Design View.									~
Computing statistics									
Entities/Modules: 189. Root Entities/Mo	dules:	: 1. Un	defined Entiti	es/Modules: 0.	Instances: 36	5. Number Of Le	evels: 3.		
211 125									
Finished droving Design View									
Running BKM Check									
BKM Check finished with (0) errors, and	1 101 1	Jarning	з.						
	20030-013 OCB								
Loading logical preference information	2 1		1992 - 1993 - 194						
Loading device for application GENERIC	from 1	tile 'e	c5a97x146.nph'	in environmen	nt: C:/lscc/Dia	amond.134/diamo	ond/1.0/ispfpga	1.	
rinish loading logical preference file									
									×
Ready							Mem	Usage: 113,268 K	

Figure B.16. Floorplan View in Diamond

References

- LatticeECP3 Family Devices web page
- Boards, Demos, IP Cores, and Reference Designs for LatticeECP3 Family Devices web page
- Lattice Diamond Software web page
- Lattice Insights for Lattice Semiconductor Training Series and Learning Plans

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

For frequently asked questions, refer to the Lattice Answer Database at www.latticesemi.com/Support/AnswerDatabase.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

Revision History

Revision 1.4, March 2024

Section	Change Summary
All	• Changed document number from TN1182 to FPGA-TN-02193.
	Updated document template.
Disclaimers	Added this section.
Acronyms in This Document	Added this section.
References	Added this section.
Technical Support Assistance	Added the link to Lattice Answer Database.

Revision 1.3, February 2012

Section	Change Summary
All	Updated document with new corporate logo.

Revision 1.2, June 2010

Section	Change Summary
All	Updated for Lattice Diamond software support.

Revision 1.1, June 2009

Section	Change Summary
All	• Updated the performance table.
	• Updated the MAP, PAR and Trace reports.
	• Updated the DSP slice block diagram and description on arithmetic operation.
IPexpress Slice Module	Updated the IPexpress modules GUI and description.

Revision 1.0, February 2009

Section	Change Summary
All	Initial release.

www.latticesemi.com