

LatticeECP3 Memory Usage Guide

Technical Note

FPGA-TN-02188-1.9

March 2024

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the Buyer. The information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise rendered inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL SYSTEMS, HAZARDOUS ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM (COLLECTIVELY, "HIGH-RISK USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES, INCLUDING RAPPROPRIATE REDUDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information provided in this document or to any products at any time without notice.

©2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

Contents

Contents	3
Acronyms in This Document	5
1. Introduction	6
2. Utilizing IPexpress	6
2.1. IPexpress Flow	6
3. Utilizing the PMI	10
4. Memory Modules	10
4.1. Single-Port RAM (RAM_DQ) – EBR Based	10
4.2. True Dual-Port RAM (RAM_DP_TRUE) – EBR Based	15
4.3. Pseudo Dual-Port RAM (RAM_DP) – EBR Based	23
4.4. Read Only Memory (ROM) – EBR Based	27
5. First In First Out (FIFO) Memory	
6. Dual Clock First-In-First-Out (FIFO_DC) Memory	35
6.1. FIFO_DC Flags	35
7. Distributed Single-Port RAM (Distributed_SPRAM) – PFU-Based	44
8. Distributed Dual-Port RAM (Distributed_DPRAM) – PFU-Based	46
9. Distributed ROM (Distributed_ROM) – PFU-Based	49
10. Initializing Memory	50
10.1. Initialization File Formats	
Appendix A. Attribute Definitions	53
References	
Technical Support Assistance	55
Revision History	

Figures

Figure 2.1. IPexpress, Main Window	7
Figure 2.2. Example: Generating Pseudo Dual Port RAM (RAM_DP) Using IPexpress	8
Figure 2.3. Example: Generating Pseudo Dual Port RAM (RAM_DP) Module Customization – General Options	9
Figure 4.1. Single-Port Memory Module Generated by IPexpress	. 10
Figure 4.2. Single Port RAM Timing Waveform in Normal (NORMAL) Mode, without Output Registers	13
Figure 4.3. Single Port RAM Timing Waveform in Normal (NORMAL) Mode, with Output Registers	13
Figure 4.4. Single Port RAM Timing Waveform in Write Through (WRITETHROUGH) Mode, without Output Registers .	14
Figure 4.5. Single Port RAM Timing Waveform in Write Through (WRITETHROUGH) Mode, with Output Registers	14
Figure 4.6. Single Port RAM Timing Waveform in Read Before Write (READBEFOREWRITE) Mode, without Output	
Registers	15
Figure 4.7. Single Port RAM Timing Waveform in Read Before Write (READBEFOREWRITE) Mode, with Output Register	ers
Figure 4.8. True Dual-Port Memory Module Generated by IPexpress	
Figure 4.9. True Dual Port RAM Timing Waveform in Normal (NORMAL) Mode, without Output Registers	
Figure 4.10. True Dual Port RAM Timing Waveform in Normal (NORMAL) Mode with Output Registers	.19
Figure 4.11. True Dual Port RAM Timing Waveform in Write Through (WRITETHROUGH) Mode, without Output	
Registers	.20
Figure 4.12. True Dual Port RAM Timing Waveform in Write Through (WRITETHROUGH) Mode, with Output Registers	s 21
Figure 4.13. True Dual Port RAM Timing Waveform in Read Before Write (READBEFOREWRITE) Mode, without Outpu	It
Registers	22
Figure 4.14. True Dual Port RAM Timing Waveform in Read Before Write (READBEFOREWRITE) Mode, with Output	
Registers	23
Figure 4.15. Pseudo Dual-Port Memory Module Generated by IPexpress	
Figure 4.16. PSEUDO DUAL PORT RAM Timing Diagram - without Output Registers	

©2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

Figure 4.17. PSEUDO DUAL PORT RAM Timing Diagram - with Output Registers	
Figure 4.18. ROM - Read Only Memory Module Generated by IPexpress	27
Figure 4.19. ROM Timing Waveform - without Output Registers	29
Figure 4.20. ROM Timing Waveform - with Output Registers	29
Figure 5.1. FIFO Without Output Registers, Start of data Write Cycle	30
Figure 5.2. FIFO Without Output Registers, End of Data Write Cycle	
Figure 5.3. FIFO Without Output Registers, Start of Data Read Cycle	31
Figure 5.4. FIFO Without Output Registers, End of Data Read Cycle	32
Figure 5.5. FIFO with Output Registers, Start of Data Write Cycle	33
Figure 5.6. FIFO with Output Registers, End of Data Write Cycle	33
Figure 5.7. FIFO with Output Registers, Start of Data Read Cycle	34
Figure 5.8. FIFO with Output Registers, End of Data Read Cycle	34
Figure 5.9. FIFO with Output Registers and RdEn on Output Registers	35
Figure 6.1. FIFO_DC Without Output Registers, Start of Data Write Cycle	36
Figure 6.2. FIFO_DC Without Output Registers, End of Data Write Cycle	37
Figure 6.3. FIFO_DC Without Output Registers, Start of Data Read Cycle	38
Figure 6.4. FIFO_DC Without Output Registers, End of Data Read Cycle	39
Figure 6.5. FIFO_DC with Output Registers, Start of Data Write Cycle	40
Figure 6.6. FIFO_DC with Output Registers, End of Data Write Cycle	41
Figure 6.7. FIFO_DC with Output Registers, Start of Data Read Cycle	42
Figure 6.8. FIFO_DC with Output Registers, End of Data Read Cycle	43
Figure 6.9. FIFO_DC with Output Registers and RdEn on Output Registers	44
Figure 7.1. Distributed Single-Port RAM Module Generated by IPexpress	44
Figure 7.2. PFU Based Distributed Single Port RAM Timing Waveform - without Output Registers	45
Figure 7.3. PFU Based Distributed Single Port RAM Timing Waveform - with Output Registers	46
Figure 8.1. Distributed Dual-Port RAM Module Generated by IPexpress	46
Figure 8.2. PFU Based Distributed Dual Port RAM Timing Waveform - without Output Registers	47
Figure 8.3. PFU Based Distributed Dual Port RAM Timing Waveform - with Output Registers	48
Figure 9.1. Distributed ROM Generated by IPexpress	49
Figure 9.2. PFU Based Distributed ROM Timing Waveform - without Output Registers	49
Figure 9.3. PFU Based Distributed ROM Timing Waveform - with Output Registers	50

Tables

Table 4.1. EBR-Based Single-Port Memory Port Definitions	
Table 4.2. Single-Port Memory Sizes for 18K Memories in LatticeECP3 Devices	
Table 4.3. Single-Port RAM Attributes of LatticeECP3 Devices	
Table 4.4. EBR-Based True Dual-Port Memory Port Definitions	
Table 4.5. Dual-Port Memory Sizes for 18K Memory in LatticeECP3 Devices	
Table 4.6. True Dual-Port RAM Attributes for LatticeECP3 Devices	
Table 4.7. EBR-Based Pseudo Dual-Port Memory Port Definitions	24
Table 4.8. Pseudo Dual-Port Memory Sizes for 18K Memory in LatticeECP3 Devices	25
Table 4.9. Pseudo Dual-Port RAM Attributes for LatticeECP3 Devices	25
Table 4.10. EBR-Based ROM Port Definitions	
Table 4.11. ROM Memory Sizes for 16K Memory for LatticeECP3	
Table 4.12. ROM Attributes for LatticeECP3	
Table 7.1. PFU-Based Distributed Single Port RAM Port Definitions	45
Table 8.1. PFU-Based Distributed Dual-Port RAM Port Definitions	47
Table 9.1. PFU-Based Distributed ROM Port Definitions	

Acronyms in This Document

A list of acronyms used in this document.

Acronym	Definition	
EBR	Embedded Block RAM	
FIFO	First In First Out	
IP	Intellectual Property	
LUT	Look Up Table	
PFF	Programmable Functional Unit without RAM	
PFU	Programmable Functional Unit	
PLL	Phase-Locked Loops	
PMI	Parameterizable Module Inferencing	
RAM	Random-Access Memory	
ROM	Read-Only Memory	

©2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

1. Introduction

This technical note discusses memory usage for the LatticeECP3[™] family of FPGA devices. It is intended to be used by design engineers as a guide to integrating the EBR- and PFU-based memories for this device family in ispLEVER[®].

The LatticeECP3 architecture provides many resources for memory-intensive applications. The sysMEM[™] Embedded Block RAM (EBR) compliments its distributed PFU-based memory. Single-Port RAM, Dual-Port RAM, Pseudo Dual-Port RAM and ROM memories can be constructed using the EBR. The LUTs and PFUs can implement Distributed Single-Port RAM, Dual-Port RAM and ROM. The internal logic of the device can be used to configure the memory elements as FIFO and other storage types.

The capabilities of the EBR Block RAM and PFU RAM are referred to in this document. Designers can utilize the memory primitives in several ways:

- Via IPexpress[™] The IPexpress GUI allows users to specify the memory type and size required. IPexpress uses this
 information to construct a netlist to implement the desired memory by using one or more of the memory
 primitives.
- Via PMI (Parameterizable Module Inferencing) PMI allows experienced users to skip the graphical interface and utilize the configurable memory primitives on-the-fly from the ispLEVER Project Navigator. The parameters and the control signals needed either in Verilog or VHDL can be set. The top-level design will have the parameters defined and signals declared so the interface can automatically generate the black box during synthesis.
- Via the Instantiation of Memory Primitives Memory primitives are called directly by the top-level module and instantiated in the user's design. This is an advanced method and requires a thorough understanding of memory hook-ups and design interfaces.

The remainder of this document discusses these approaches.

2. Utilizing IPexpress

Designers can utilize IPexpress to easily specify a variety of memories in their designs. These modules will be constructed using one or more memory primitives along with general purpose routing and Look-Up Tables (LUTs) as required. The primitives include:

- Single Port RAM (RAM_DQ) EBR-based
- Dual PORT RAM (RAM_DP_TRUE) EBR-based
- Pseudo Dual Port RAM (RAM DP) EBR-based
- Read Only Memory (ROM) EBR-based
- First In First Out Memory (FIFO and FIFO_DC) EBR-based
- Distributed Single Port RAM (Distributed_SPRAM) PFU-based
- Distributed Dual Port RAM (Distributed_DPRAM) PFU-based
- Distributed ROM (Distributed_ROM) PFU/PFF-based

2.1. IPexpress Flow

For generating any of these memories, create (or open) a project for the LatticeECP3 devices.

From the Project Navigator, select Tools > Module / IP Manager. Alternatively, users can also click the red and yellow button in the left-hand corner of the toolbar when LatticeECP3 devices are targeted in the project.

This opens the IPexpress window as shown in Figure 2.1.

©2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

Name	Version	11	
Module Module Modules Mithmetic_Modules SPArithmetic_Modules DSP_Modules OSP_Modules OSP_Modules		enabled fields on the Custon	e the module or IP, enter the information in the (such as Project Path, File Name, etc.) and click nize button. A dialog will open to a low of the selected module or IP.
	3.5 2.4 3.5	Macro Type:	Version
EBR_LComponents 词 RAM_DP 词 RAM_DP_TRUE 词 RAM_DQ	6.1 7.1 7.1	Module Name:	
- 교환 ROM - 교환 ROM - 관후 RFO - 교환 RFO_DC	5.0 4.6 5.2	Project Path:	c:\isptools7_2\examples\fpga\latticeecp3\vhd\brepT
FAM_Based_Shift_Register	4.1	File Name:	tes_dpram
		Design Entry:	Schematic/VHDL
		Device Family:	LatiticeECP3
		Part Name:	LFE3-70E-6FN484CES
			Customize

Figure 2.1. IPexpress, Main Window

The left pane of this window includes the Module Tree. The EBR-based Memory Modules are under the **EBR_Components** directory and the PFU-based Distributed Memory Modules are under the **Storage_Components** directory, as shown in Figure 2.1.

As an example, let us consider generating an EBR-based Pseudo Dual Port RAM of size 512x16. Select **RAM_DP** under **EBR_Components**. The right pane changes as shown in Figure 2.2.

Name	Version	Î Î		
Module Architecture_Modules DSP_Modules DSP_Modules DSP_Modules N Memory_Modules N Memory_Modules N Memory_Modules N Memory_Modules		To generate the module or IP, enter the information in the enabled fields (such as Project Path, File Name, etc.) and click on the Customize button. A dialog will open to a low customization of the selected module or IP.		
Distributed_DPRAM Distributed_ROM Distributed_ROM Distributed_SPRAM Distributed_SPRAM	3.5 2.4 3.5	Macro Type:	Module Version 6.1	
	6.1 7.1	Module Name:	RAM_DP	
一顿 RAM_DQ 如 ROM 	7.1 5.0 4.6	Project Path:	c:\isptools7_2\examples\fpqa\latticeecp3\vhdl\prep1	
FAM_Based_Shift_Register	5.2 4.1	File Name:	tes_dpram	
		Design Entry:	Schematic/VHDL	
		Device Family:	LatticeECP3	
		Part Name:	LFE3-70E-6FN484CES	
		· ·	Customize	

Figure 2.2. Example: Generating Pseudo Dual Port RAM (RAM_DP) Using IPexpress

In the right pane, options like **Device Family, Macro Type, Category,** and **Module_Name** are device- and selected-module-dependent. These cannot be changed in IPexpress.

Users can change the directory where the generated module files will be placed by clicking the **Browse** button in the **Project Path**.

The entity name for the module to be generated can be specified in the **Module Name** text box. Users must provide this entity name.

Design Entry, Verilog or VHDL, by default is the same as the project type. If the project is a VHDL project, the selected Design Entry option will be "Schematic/ VHDL", and "Schematic/ Verilog-HDL" if the project type is Verilog- HDL.

The **Device** pull-down menu allows users to select different devices within the same family, LatticeECP3 in this example.

By clicking the Customize button, another window opens where users can customize the RAM (Figure 2.3).

RAM_DP	Configuration \
WrAddress[8:0] RdAddress[8:0] Data[15:0] WE HdLlock U[15:0] Reset WrClockEn Estimated Resource Usage: EBR: 1 Bus Ordering Style: Big Endian [MSB:LSB]	Specify the sze of RAM_DP Read Poit Address Depth [512] (2-131072) Data Width [16] (1-256) Write Poit Address Depth [512] (2-101072) Data Width [10] (1-250) Provide Byte Enables Byte Size [9] ▼ ✓ Enable Cutput Register Optimization C Area C Speed Memory File Memory File Memory File Memory File format: Thex C Addressed Hex Enable ECC (not supported for Data Width > 64) Pipeline Stages for Q and ERROR Outputs ▼
Import LPC to ispLEVER project	Cenerate Close Help

Figure 2.3. Example: Generating Pseudo Dual Port RAM (RAM_DP) Module Customization – General Options

The left side of this window shows the block diagram of the module. The right side includes the **Configuration** tab where users can choose options to customize the RAM_DP (e.g. specify the address port sizes and data widths).

Users can specify the address depth and data width for the **Read Port** and the **Write Port** in the text boxes provided. In this example, we are generating a Pseudo Dual Port RAM of size 512 x 16. Users can also create RAMs of different port widths for Pseudo Dual Port and True Dual Port RAMs.

The Input Data and the Address Control are always registered, as the hardware only supports the clocked write operation for the EBR-based RAMs. The checkbox **Enable Output Registers** inserts the output registers in the Read Data Port. Output registers are optional for EBR-based RAMs.

Users can also pre-initialize their memory with the contents specified in the **Memory File**. It is optional to provide this file in the RAM; however for ROM, the Memory File is required. These files can be of Binary, Hex or Addresses Hex format. The details of these formats are discussed in the Initialization File section of this document.

At this point, users can click the **Generate** button to generate the module they have customized. A VHDL or Verilog netlist is then generated and placed in the specified location. Users can incorporate this netlist in their designs.

Another important button is the **Load Parameters** button. IPexpress stores the parameters specified in a <module_name>.lpc file. This file is generated along with the module. Users can click on the Load Parameters button to load the parameters of a previously-generated module to re-visit or make changes to them.

©2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

3. Utilizing the PMI

Parameterizable Module Inferencing (PMI) allows experienced users to skip the graphical interface and utilize the configurable memory modules on-the-fly from the ispLEVER Project Navigator. The parameters and control signals needed can be set in either Verilog or VHDL. The top-level design includes the defined memory parameters and declared signals. The interface can then automatically generate the black box during synthesis and ispLEVER can generate the netlist on-the-fly. Lattice memories are the same as industry standard memories, so you can get the parameters for each module from any memory-related guide, which is available through the on-line help system.

To do this, the user creates a Verilog or VHDL behavior code for the memory and the synthesis tool automatically identifies it as memory and synthesizes it as a distributed or EBR memory. Memory sizes smaller than 2K bits are automatically mapped to Distributed mode and those larger than 2K bits will be implemented using EBRs. This default option can be over-ridden using the RAM_STYLE attribute in Synplify. Refer to Appendix A for example code.

ECC in Memory Modules

IPexpress allows users to implement Error Check Codes in the EBR-based memory modules. There is a checkbox to enable ECC in the configuration tab for the module.

If you choose to use ECC, you will have a 2-bit error signal and the error codes are as below.

- Error[1:0]=00 Indicates there is no error.
- Error[0]=1 Indicates there was a 1-bit error which was fixed.
- Error[1]=1 Indicates there was a 2-bit error which cannot be corrected.

4. Memory Modules

4.1. Single-Port RAM (RAM_DQ) – EBR Based

The EBR blocks in LatticeECP3 devices can be configured as Single-Port RAM or RAM_DQ. IPexpress allows users to generate the Verilog-HDL or VHDL along the EDIF netlist for the memory size as per design requirements.

IPexpress generates the memory module, as shown in Figure 4.1.

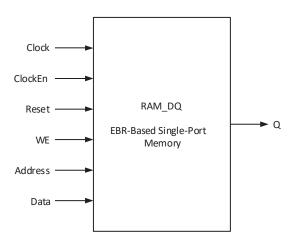


Figure 4.1. Single-Port Memory Module Generated by IPexpress

Since the device has a number of EBR blocks, the generated module makes use of these EBR blocks, or primitives, and cascades them to create the memory sizes specified by the user in the IPexpress GUI. For sizes smaller than an EBR block, the module will be created in one EBR block and only one memory can be realized in the block. For memory sizes larger than one EBR block, multiple EBR blocks can be cascaded in depth or width (as required to create these sizes).

In Single-Port RAM mode, the inputs - data and address - are registered at the input of the memory array. The output data of the memory is optionally registered at the output.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

The various ports and their definitions for Single-Port Memory are listed in Table 4.1. The table lists the corresponding ports for the module generated by IPexpress and for the EBR RAM_DQ primitive.

Port Name in the Generated Module	Port Name in the EBR Block Primitive	Description
Clock	CLK	Clock
ClockEn	CE	Clock Enable
Address	AD[x:0]	Address Bus
Data	DI[y:0]	Data In
Q	DO[y:0]	Data Out
WE	WE	Write Enable
Reset	RST	Reset
—	CS[2:0]	Chip Select

Table 4.1. EBR-Based Single-Port Memory Port Definitions

Reset (or RST) resets only the input and output registers of the RAM. It does not reset the contents of the memory.

CS, or Chip Select, is useful when memory requires multiple EBR blocks to be cascaded. The CS signal forms the MSB for the address when multiple EBR blocks are cascaded. CS is a 3-bit bus, so it can cascade eight memories easily. If the memory size specified by the user requires more than eight EBR blocks, the software automatically generates the additional address decoding logic, which is implemented in the PFU (external to the EBR blocks).

Each EBR block consists of 18,432 bits of RAM. The values for x (address) and y (data) of each EBR block are listed in Table 4.2.

Single Port Memory Size	Input Data	Output Data	Address [MSB:LSB]
16,384 x 1	DI	DO	AD[13:0]
8,192 x 2	DI[1:0]	DO[1:0]	AD[12:0]
4,096 x 4	DI[3:0]	DO[3:0]	AD[11:0]
2,048 x 9	DI[8:0]	DO[8:0]	AD[10:0]
1,024 x 18	DI[17:0]	DO[17:0]	AD[9:0]
512 x 36	DI[35:0]	DO[35:0]	AD[8:0]

©2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-TN-02188-1.9

Table 4.3 shows the various attributes available for the Single-Port Memory (RAM_DQ). Some of these attributes are user-selectable through the IPexpress GUI.

Attribute	Description	Values	Default Value	User Selectable Through IPexpress
Address depth	Address Depth Read Port	16K, 8K, 4K, 2K, 1K, 512		YES
Data Width	Data Word Width Read Port	1, 2, 4, 9, 18, 36	1	YES
Enable Output Registers	Register Mode (Pipelining) for Write Port	NOREG, OUTREG	NOREG	YES
Enable GSR	Enables Global Set Reset	ENABLE, DISABLE	ENABLE	YES
Memory File Format		BINARY, HEX, ADDRESSED HEX		YES
Write Mode	Read / Write Mode for Write Port	NORMAL, WRITE- THROUGH, READBEFOREWRITE ¹	NORMAL	YES
Chip Select Decode	Chip Select Decode for Read Port	0b000, 0b001, 0b010, 0b011, 0b100, 0b101, 0b110, 0b111	0b000	NO
Init Value	Initialization value	0x00000000000000000000000 000000000000	0x00000000 0000000000 0000000000 0000000	NO

Note: READBEFOREWRITE Mode is available only for LatticeECP3-XXEA devices.

The Single-Port RAM (RAM_DQ) can be configured as NORMAL, WRITE THROUGH or READBEFOREWRITE modes. Each of these modes affects the data coming out of port Q of the memory during the write operation followed by the read operation at the same memory location.

Additionally, users can select to enable the output registers for RAM_DQ. Figure 2.3 to Figure 4.2 show the internal timing waveforms for the Single Port RAM (RAM_DQ) with these options.

It is important that no setup and hold time violations occur on the address registers (address). Failing to meet these requirements can result in corruption of memory contents. This applies to both read and write operations.

A Post Place and Route timing report in Lattice Diamond[®] or ispLEVER design software can be run to verify that no such timing errors occur. Refer to the timing preferences in the Online Help documents.

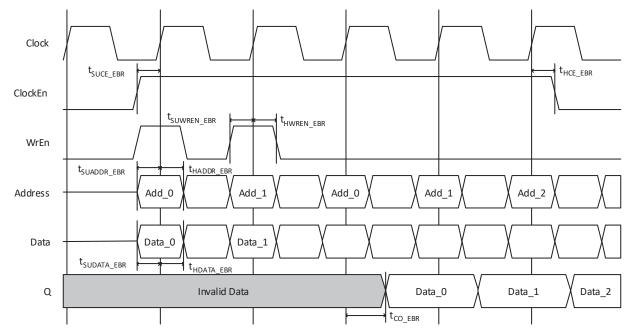


Figure 4.2. Single Port RAM Timing Waveform in Normal (NORMAL) Mode, without Output Registers

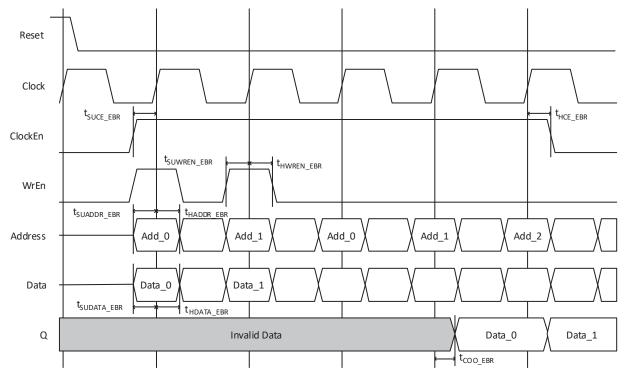


Figure 4.3. Single Port RAM Timing Waveform in Normal (NORMAL) Mode, with Output Registers

©2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

An other brand of produce names are dademarks of registered dademarks of their respective holders. The specifica

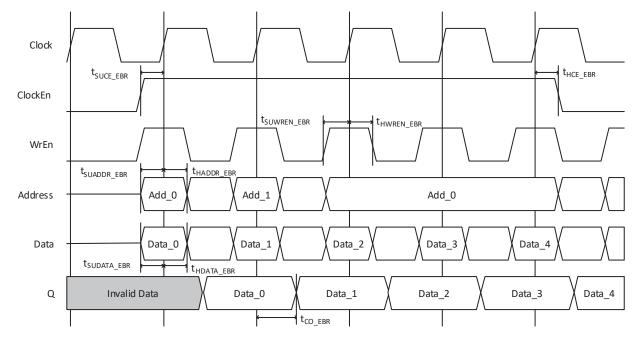


Figure 4.4. Single Port RAM Timing Waveform in Write Through (WRITETHROUGH) Mode, without Output Registers

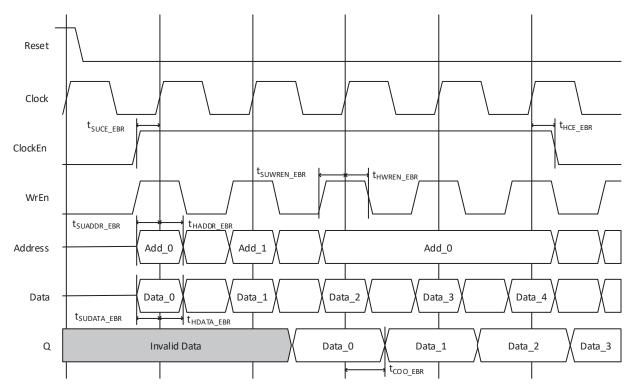


Figure 4.5. Single Port RAM Timing Waveform in Write Through (WRITETHROUGH) Mode, with Output Registers

©2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

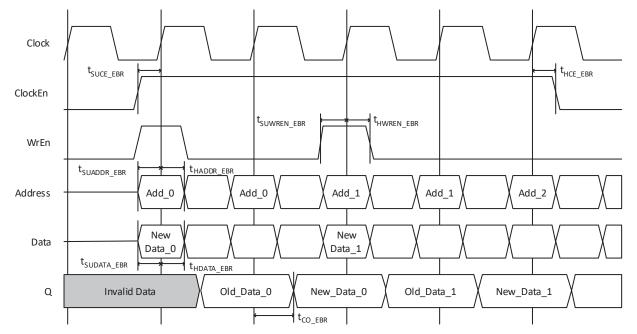


Figure 4.6. Single Port RAM Timing Waveform in Read Before Write (READBEFOREWRITE) Mode, without Output Registers

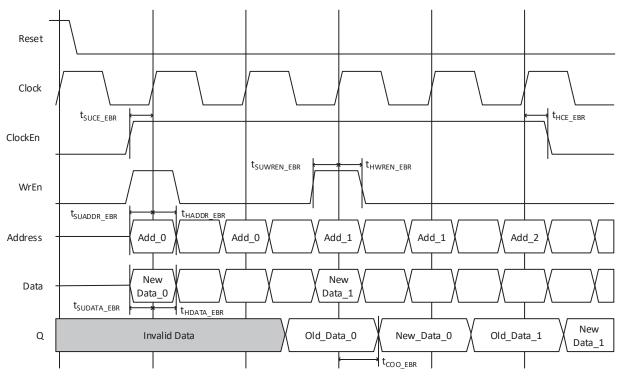


Figure 4.7. Single Port RAM Timing Waveform in Read Before Write (READBEFOREWRITE) Mode, with Output Registers

4.2. True Dual-Port RAM (RAM_DP_TRUE) – EBR Based

The EBR blocks in the LatticeECP3 devices can be configured as True-Dual Port RAM or RAM_DP_TRUE. IPexpress allows users to generate the Verilog-HDL, VHDL or EDIF netlists for the memory size as per design requirements.

IPexpress generates the memory module, as shown in Figure 4.8.

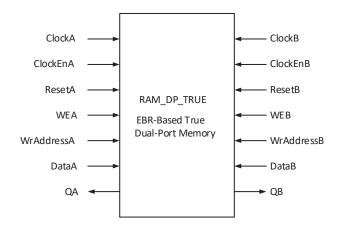


Figure 4.8. True Dual-Port Memory Module Generated by IPexpress

The generated module makes use of these EBR blocks or primitives. For memory sizes smaller than one EBR block, the module will be created in one EBR block. Where the specified memory is larger than one EBR block, multiple EBR blocks can be cascaded, in depth or width as required to create these sizes.

In True Dual Port RAM mode, the inputs - data and address - are registered at the input of the memory array. The output data of the memory is optionally registered at the output.

The various ports and their definitions for True Dual-Port RAM are listed in Table 4.4. The table lists the corresponding ports for the module generated by IPexpress and for the EBR RAM_DP_TRUE primitive.

Port Name in the Generated Module	Port Name in the EBR Block Primitive	Description
ClockA, ClockB	CLKA, CLKB	Clock for PortA and PortB
ClockEnA, ClockEnB	CEA, CEB	Clock Enables for Port CLKA and CLKB
AddressA, AddressB	ADA[x:0], ADB[x:0]	Address Bus port A and port B
DataA, DataB	DIA[y:0], DIB[y:0]	Input Data port A and port B
QA, QB	DOA[y:0], DOB[y:0]	Output Data port A and port B
WEA, WEB	WEA, WEB	Write enable port A and port B
ResetA, ResetB	RSTA, RSTB	Reset for PortA and PortB
_	CSA[2:0], CSB[2:0]	Chip Selects for each port

Table 4.4. EBR-Based True Dual-Port Memory Port Definitions

CS, or Chip Select, is useful when memory requires multiple EBR blocks to be cascaded. The CS signal forms the MSB for the address when multiple EBR blocks are cascaded. CS is a 3-bit bus, so it can cascade eight memories easily. However, if the memory size specified by the user requires more than eight EBR blocks, the software automatically generates the additional address decoding logic, which is implemented in the PFU external to the EBR blocks.

Each EBR block consists of 18,432 bits of RAM. The values for x (address) and y (data) of each EBR block are listed in Table 4.5.

 Table 4.5. Dual-Port Memory Sizes for 18K Memory in LatticeECP3 Devices

Dual Port	Input Data	Input Data	Output Data	Output Data	Address Port A	Address Port B
Memory Size	Port A	Port B	Port A	Port B	[MSB:LSB]	[MSB:LSB]
16,384 x 1	DIA	DIB	DOA	DOB	ADA[13:0]	ADB[13:0]
8,192 x 2	DIA[1:0]	DIB[1:0]	DOA[1:0]	DOB[1:0]	ADA[12:0]	ADB[12:0]
4,096 x 4	DIA[3:0]	DIB[3:0]	DOA[3:0]	DOB[3:0]	ADA[11:0]	ADB[11:0]
2,048 x 9	DIA[8:0]	DIB[8:0]	DOA[8:0]	DOB[8:0]	ADA[10:0]	ADB[10:0]
1,024 x 18	DIA[17:0]	DIB[17:0]	DOA[17:0]	DOB[17:0]	ADA[9:0]	ADB[9:0]

Table 4.6 shows the various attributes available for True Dual-Port Memory (RAM_DQ). Some of these attributes are user-selectable through the IPexpress GUI.

Attribute	Description	Values	Default Value	User Selectable Through IPexpress
Port A Address depth	Address Depth Port A	16K, 8K, 4K, 2K, 1K		YES
Port A Data Width	Data Word Width Port A	1, 2, 4, 9, 18	1	YES
Port B Address depth	Address Depth Port B	16K, 8K, 4K, 2K, 1K		YES
Port B Data Width	Data Word Width Port B	1, 2, 4, 9, 18	1	YES
Port A Enable Output Registers	Register Mode (Pipelining) for Port A	NOREG, OUTREG	NOREG	YES
Port B Enable Output Registers	Register Mode (Pipelining) for Port B	NOREG, OUTREG	NOREG	YES
Enable GSR	Enables Global Set Reset	ENABLE, DISABLE	ENABLE	YES
Memory File Format		BINARY, HEX, ADDRESSED HEX		YES
Port A Write Mode	Read / Write Mode for Port A	NORMAL, WRITE- THROUGH, READBEFOREWRITE1	NORMAL	YES
Port B Write Mode	Read / Write Mode for Port B	NORMAL, WRITE- THROUGH, READBEFOREWRITE1	NORMAL	YES
Chip Select Decode for Port A	Chip Select Decode for Port A	0b000, 0b001, 0b010, 0b011, 0b100, 0b101, 0b110, 0b111	0b000	NO
Chip Select Decode for Port B	Chip Select Decode for Port B	0b000, 0b001, 0b010, 0b011, 0b100, 0b101, 0b110, 0b111	0b000	NO
Init Value	Initialization value	0x000000000000000000000 00000000000000	0x00000000 0000000000 0000000000 0000000	NO

Table 4.6. True Dual-Port RAM Attributes for LatticeECP3 Devices

Note: READBEFOREWRITE Mode is available only for LatticeECP3-XXEA devices.

The True Dual Port RAM (RAM_DP_TRUE) can be configured as NORMAL, WRITE THROUGH or READBEFOREWRITE modes. Each of these modes affects what data comes out of the port Q of the memory during the write operation followed by the read operation at the same memory location. The detailed discussions of the WRITE modes and the constraints of the True Dual Port can be found in Appendix A.

Additionally, users can select to enable the output registers for RAM_DP_TRUE. Figure 4.9 through Figure 4.12 show the internal timing waveforms for the True Dual Port RAM (RAM_DP_TRUE) with these options.

It is important that no setup and hold time violations occur on the address registers (AddressA and AddressB). Failing to meet these requirements can result in corruption of memory contents. This applies to both read and write operations.

A Post Place and Route timing report in Lattice Diamond or ispLEVER design software can be run to verify that no such timing errors occur. Refer to the timing preferences in the Online Help documents.

©2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

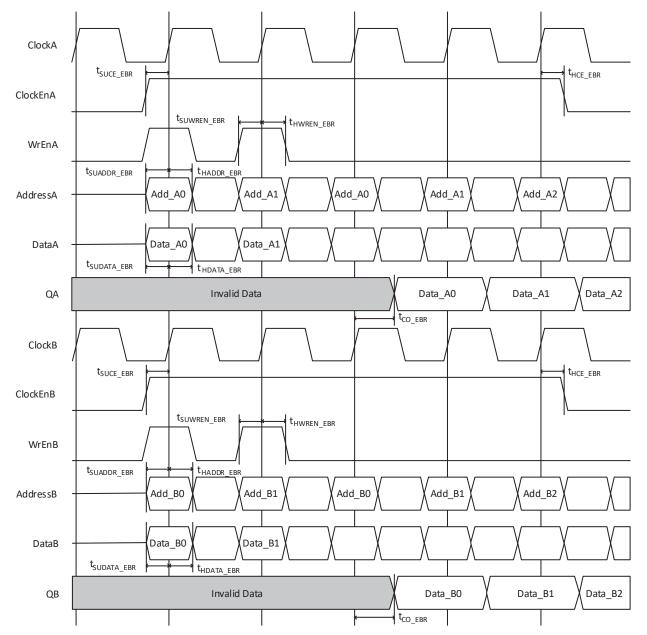


Figure 4.9. True Dual Port RAM Timing Waveform in Normal (NORMAL) Mode, without Output Registers

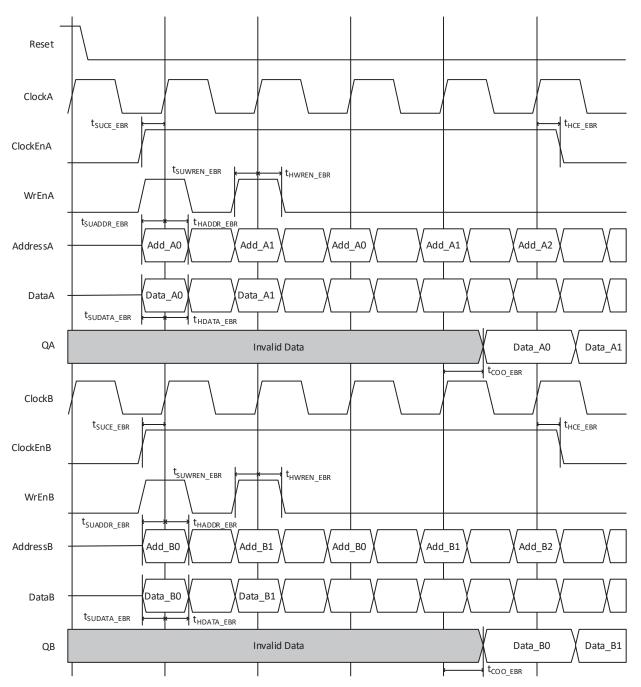


Figure 4.10. True Dual Port RAM Timing Waveform in Normal (NORMAL) Mode with Output Registers

FPGA-TN-02188-1.9

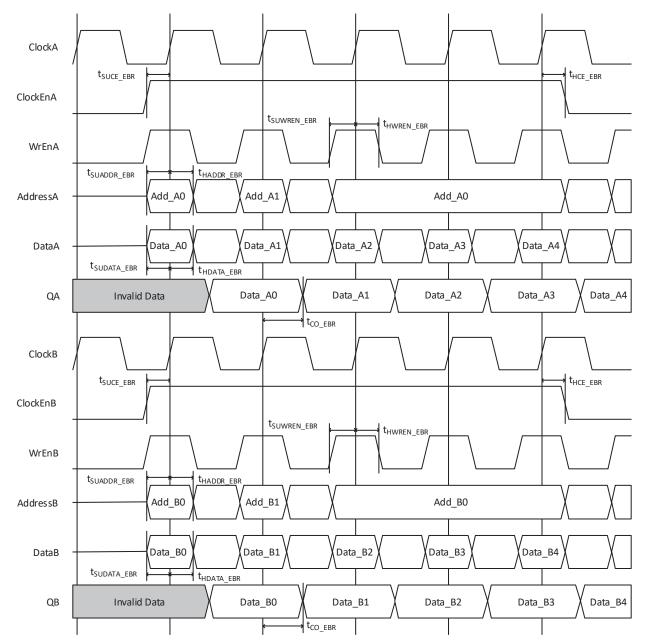


Figure 4.11. True Dual Port RAM Timing Waveform in Write Through (WRITETHROUGH) Mode, without Output Registers

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

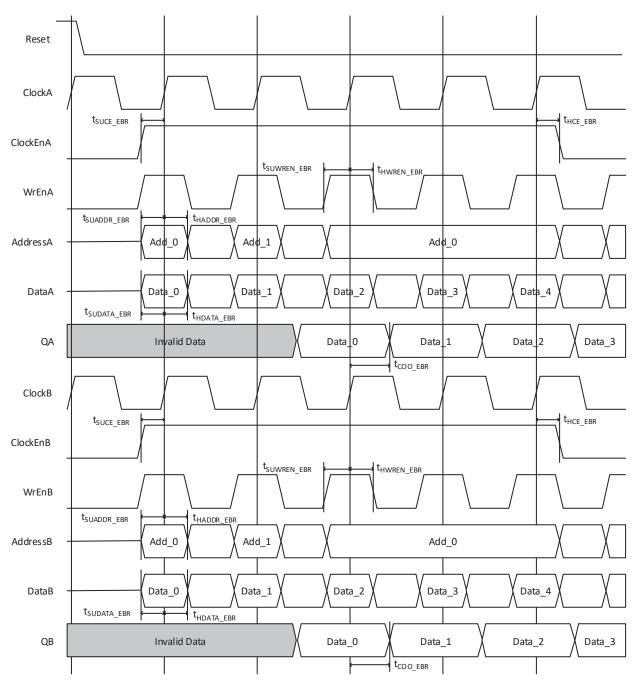


Figure 4.12. True Dual Port RAM Timing Waveform in Write Through (WRITETHROUGH) Mode, with Output Registers

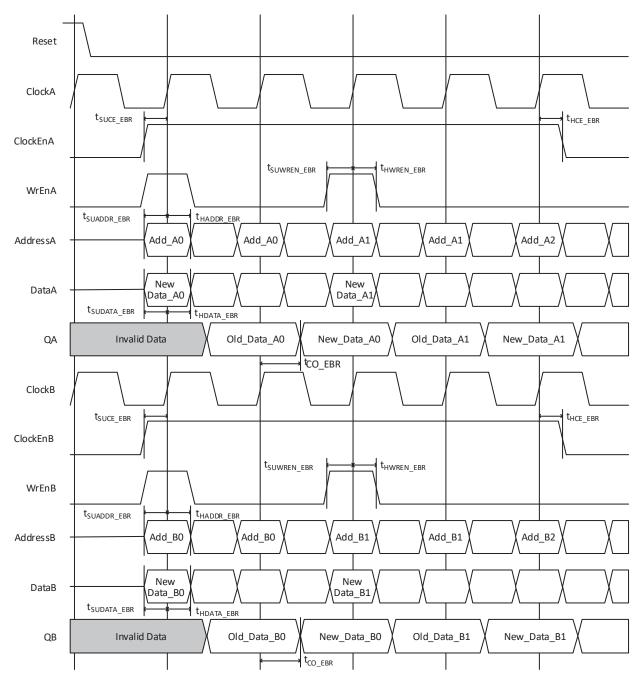
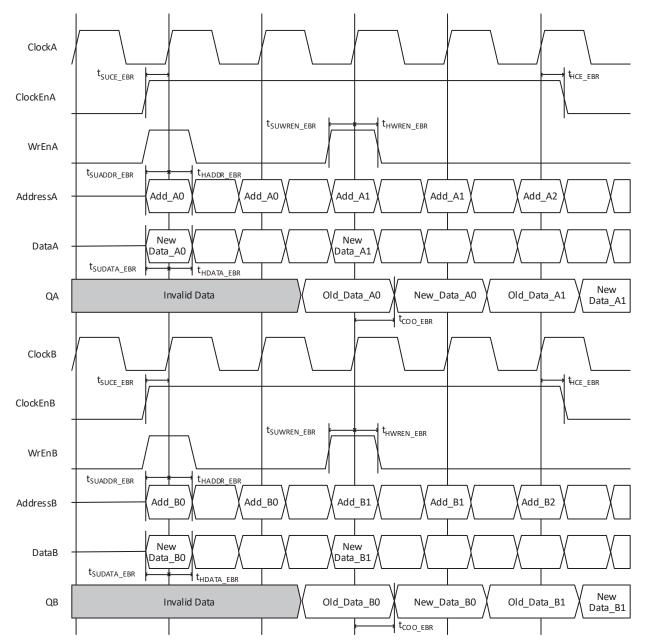
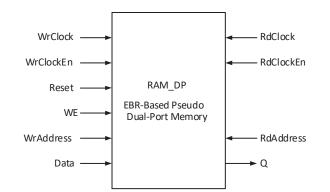
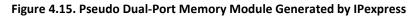


Figure 4.13. True Dual Port RAM Timing Waveform in Read Before Write (READBEFOREWRITE) Mode, without Output Registers

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.


Figure 4.14. True Dual Port RAM Timing Waveform in Read Before Write (READBEFOREWRITE) Mode, with Output Registers

4.3. Pseudo Dual-Port RAM (RAM_DP) – EBR Based

The EBR blocks in LatticeECP3 devices can be configured as Pseudo-Dual Port RAM or RAM_DP. IPexpress allows users to generate the Verilog-HDL or VHDL along with EDIF netlists for the memory size as per design requirements. IPexpress generates the memory module shown in Figure 4.15.

The generated module makes use of these EBR blocks or primitives. For memory sizes smaller than one EBR block, the module will be created in one EBR block. Where the specified memory is larger than one EBR block, multiple EBR blocks can be cascaded, in depth or width as required to create these sizes.

In Pseudo Dual-Port RAM mode the input data and address for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the output.

The various ports and their definitions for Pseudo Dual-Port memory are listed in Table 4.7. The table lists the corresponding ports for the module generated by IPexpress and for the EBR RAM_DP primitive.

Port Name in the Generated Module	Port Name in the EBR Block Primitive	Description
RdAddress	ADR[x:0]	Read Address
WrAddress	ADW[x:0]	Write Address
RdClock	CLKR	Read Clock
WrClock	CLKW	Write Clock
RdClockEn	CER	Read Clock Enable
WrClockEn	CEW	Write Clock Enable
Q	DO[y:0]	Read Data
Data	DI[y:0]	Write Data
WE	WE	Write Enable
Reset	RST	Reset
_	CS[2:0]	Chip Select

Table 4.7. EBR-Based Pseudo Dual-Port Memory Port Definitions

Reset (RST) resets only the input and output registers of the RAM. It does not reset the contents of the memory.

CS, or Chip Select, is useful when memory requires multiple EBR blocks to be cascaded. The CS signal forms the MSB for the address when multiple EBR blocks are cascaded. CS is a 3-bit bus, so it can cascade eight memories easily. However, if the memory size specified by the user requires more than eight EBR blocks, the software automatically generates the additional address decoding logic, which is implemented in the PFU external to the EBR blocks.

Each EBR block consists of 18,432 bits of RAM. The values for x (address) and y (data) of each EBR block are listed in Table 4.8.

Pseudo Dual-Port Memory Size	Input Data Port B	Output Data Port A	Read Address Port A [MSB:LSB]	Write Address Port B [MSB:LSB]
16,384 x 1	DIB	DOA	RAD[13:0]	WAD[13:0]
8,192 x 2	DIB[1:0]	DOA[1:0]	RAD[12:0]	WAD[12:0]
4,096 x 4	DIB[3:0]	DOA[3:0]	RAD[11:0]	WAD[11:0]
2,048 x 9	DIB[8:0]	DOA[8:0]	RAD[10:0]	WAD[10:0]
1,024 x 18	DIB[17:0]	DOA[17:0]	RAD[9:0]	WAD[9:0]
512 x 36	DIB[35:0]	DOA[35:0]	RAD[8:0]	WAD[8:0]

Table 4.8. Pseudo Dual-Port Memory Sizes for 18K Memory in LatticeECP3 Devices

Table 4.9 shows the various attributes available for the Pseudo Dual-Port Memory (RAM_DP). Some of these attributes are user-selectable through the IPexpress GUI.

Attribute	Description	Values	Default Value	User Selectable Through IPexpress
Read Port Address Depth	Address Depth Read Port	16K, 8K, 4K, 2K, 1K, 512		YES
Read Port Data Width	Data Word Width Read Port	1, 2, 4, 9, 18, 36	1	YES
Write Port Address Depth	Address Depth Write Port	16K, 8K, 4K, 2K, 1K		YES
Write Port Data Width	Data Word Width Write Port	1, 2, 4, 9, 18, 36	1	YES
Write Port Enable Out- put Registers	Register Mode (Pipelining) for Write Port	NOREG, OUTREG	NOREG	YES
Enable GSR	Enables Global Set Reset	ENABLE, DISABLE	ENABLE	YES
Memory File Format		BINARY, HEX, ADDRESSED HEX		YES
Read Port Write Mode	Read / Write Mode for Read Port	NORMAL	NORMAL	YES
Write Port Write Mode	Read / Write Mode for Write Port	NORMAL	NORMAL	YES
Chip Select Decode for Read Port	Chip Select Decode for Read Port	0b000, 0b001, 0b010, 0b011, 0b100, 0b101, 0b110, 0b111	0b000	NO
Chip Select Decode for Write Port	Chip Select Decode for Write Port	0b000, 0b001, 0b010, 0b011, 0b100, 0b101, 0b110, 0b111	0b000	NO
Init Value	Initialization value	0x000000000000000000000000000000000000	0x00000000000 0000000000000000 00000000	NO

Table 4.9. Pseudo Dual-Port RAM Attributes for LatticeECP3 Devices

Users have the option to enable the output registers for Pseudo-Dual Port RAM (RAM_DP). Figure 4.16 and Figure 4.17 show the internal timing waveforms for Pseudo-Dual Port RAM (RAM_DP) with these options.

It is important that no setup and hold time violations occur on the address registers (RdAddress and WrAddress). Failing to to meet these requirements can result in corruption of memory contents. This applies to both read and write operations.

©2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

A Post Place and Route timing report in Lattice Diamond or ispLEVER design software can be run to verify that no such timing errors occur. Refer to the timing preferences in the Online Help documents.

Figure 4.16. PSEUDO DUAL PORT RAM Timing Diagram - without Output Registers

©2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

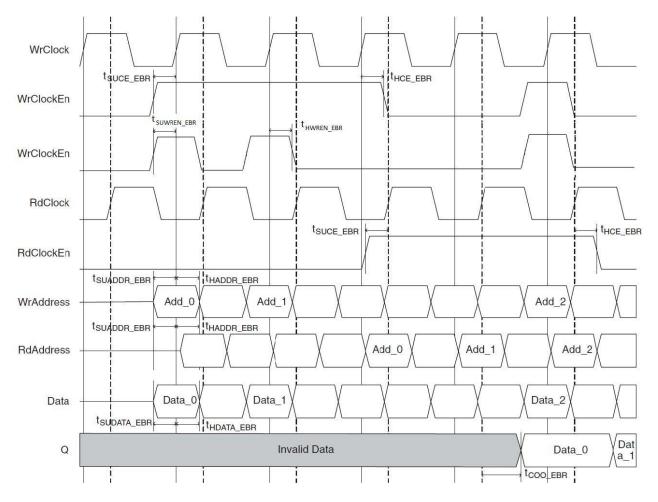


Figure 4.17. PSEUDO DUAL PORT RAM Timing Diagram - with Output Registers

4.4. Read Only Memory (ROM) – EBR Based

LatticeECP3 FPGAs support all the features of the ROM IPexpress or ROM. IPexpress allows a designer to generate Verilog-HDL, or VHDL, along with the EDIF netlist for the memory size required by their design. Users are required to provide the ROM memory content in the form of an initialization file.

IPexpress generates the memory module shown in Figure 4.18.

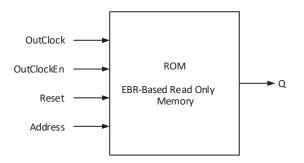


Figure 4.18. ROM - Read Only Memory Module Generated by IPexpress

The generated module makes use of these EBR blocks or primitives. For memory sizes smaller than one EBR block, the module will be created in one EBR block. Where the specified memory is larger than one EBR block, multiple EBR blocks can be cascaded in depth or width as required to create these sizes.

In ROM mode, the address for the port is registered at the input of the memory array. The output data of the memory is optionally registered at the output.

The various ports and their definitions are listed in Table 4.10. The table lists the corresponding ports for the module generated by IPexpress and for the ROM primitive.

Port Name in Generated Module	Port Name	Description
	in the EBR Block Primitive	
Address	AD[x:0]	Read Address
OutClock	CLK	Clock
OutClockEn	CE	Clock Enable
Reset	RST	Reset
-	CS[2:0]	Chip Select

Table 4.10. EBR-Based ROM Port Definitions

Reset (RST) resets only the input and output registers of the RAM. It does not reset the contents of the memory.

Chip Select (CS) is a useful port when multiple cascaded EBR blocks are required by the memory. The CS signal forms the MSB for the address when multiple EBR blocks are cascaded. Since CS is a 3-bit bus, it can cascade eight memories easily. However, if the memory size specified by the user requires more than eight EBR blocks, the ispLEVER software automatically generates the additional address decoding logic, which is implemented in the PFU external to the EBR blocks.

When generating ROM using IPexpress, the designer must provide the initialization file to pre-initialize the contents of the ROM. These files are the *.mem files and they can be of binary, hex or addressed hex formats. The initialization files are discussed in detail in the Initializing Memory section of this document.

Users have the option of enabling the output registers for Read Only Memory (ROM). Figure 4.19 and Figure 4.20 show the internal timing waveforms for the Read Only Memory (ROM) with these options.

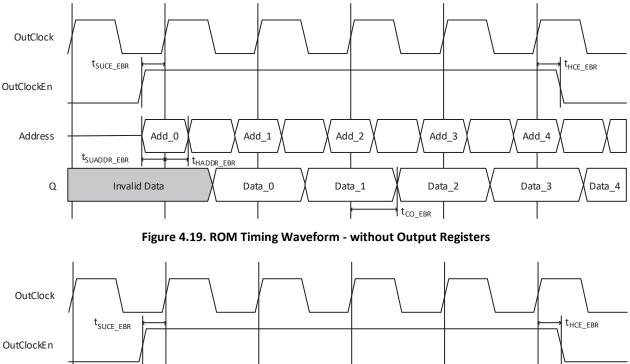
Each EBR block consists of 18,432 bits of RAM. The values for x's (for address) and y's (data) for each EBR block for the devices included in Table 4.11.

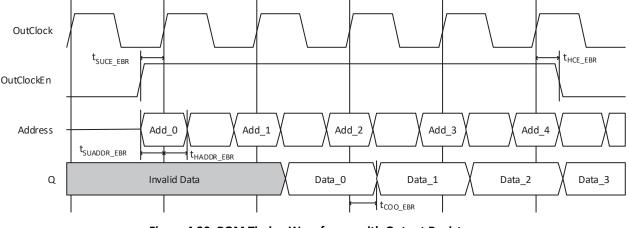
ROM	Output Data	Address Port [MSB:LSB]
16K x 1	DOA	WAD[13:0]
8K x 2	DOA[1:0]	WAD[12:0]
4K x 4	DOA[3:0]	WAD[11:0]
2К х 9	DOA[8:0]	WAD[10:0]
1K x 18	DOA[17:0]	WAD[9:0]
512 x 36	DOA[35:0]	WAD[8:0]

Table 4.11. ROM Memory Sizes for 16K Memory for LatticeECP3

LatticeECP3 FPGAs have Embedded block RAMs (EBR) which can be configured in Single-Port (RAM_DQ), Pseudo Dual-Port (RAM_DP) and True Dual-Port (RAM_DP_TRUE) RAMs. The FIFOs can be emulated to be built around these RAMs. The IPexpress point tool in ispLEVER allows users to build a FIFO and FIFO_DC around Pseudo Dual-Port RAM (or DP_RAM).

Table 4.12 shows the various attributes available for the Read Only Memory (ROM). Some of these attributes are userselectable through the IPexpress GUI. For detailed attribute definitions, refer to Appendix A.


Attribute	Description	Values	Default Value	User Selectable Through IPexpress
Address depth	Address Depth Read Port	16K, 8K, 4K, 2K, 1K, 512		YES
Data Width	Data Word Width Read Port	1, 2, 4, 9, 18, 36	1	YES
Enable Output Registers	Register Mode (Pipelining) for Write Port	NOREG, OUTREG	NOREG	YES
Enable GSR	Enables Global Set Reset	ENABLE, DISABLE	ENABLE	YES
Memory File Format		BINARY, HEX, ADDRESSED HEX		YES
Chip Select Decode	Chip Select Decode for Read Port	0b000, 0b001, 0b010, 0b011, 0b100, 0b101, 0b110, 0b111	0b000	NO


Table 4.12. ROM Attributes for LatticeECP3

Users have the option to enable the output registers for Read Only Memory (ROM). Figure 4.19 and Figure 4.20 show the internal timing waveforms for ROM with these options.

It is important that no setup and hold time violations occur on the address registers (Address). Failing to meet these requirements can result in corruption of memory contents. This applies to both read operations in this case.

A Post Place and Route timing report in Lattice Diamond or ispLEVER design software can be run to verify that no such timing errors occur. Refer to the timing preferences in the Online Help documents.

5. First In First Out (FIFO) Memory

The FIFO, or the single clock FIFO, is an emulated FIFO. The address logic and flag logic is implemented in the FPGA fabric around the RAM.

The ports available on the FIFO are:

- Reset
- Clock
- WrEn
- RdEn
- Data
- Q
- Full Flag
- Almost Full Flag
- Empty Flag
- Almost Empty Flag

Let us first discuss the non-pipelined or the FIFO without output registers. Figure 5.1 shows the operation of the FIFO when it is empty and the data begins to be written into it.

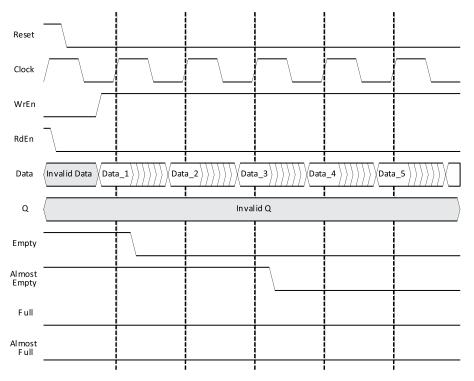


Figure 5.1. FIFO Without Output Registers, Start of data Write Cycle

The WrEn signal must be high to start writing into the FIFO. The Empty and Almost Empty flags are high to begin and Full and Almost Full are low.

When the first data is written into the FIFO, the Empty flag de-asserts (or goes low) since the FIFO is no longer empty. In this figure we assume that the Almost Empty flag setting is 3 (address location 3). So, the Almost Empty flag is deasserted when the third address location is filled.

Assume that we continue to write into the FIFO to fill it. When the FIFO is filled, the Almost Full and Full flags are asserted. Figure 5.2 shows the behavior of these flags. In this figure we assume that the FIFO depth is 'N'.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

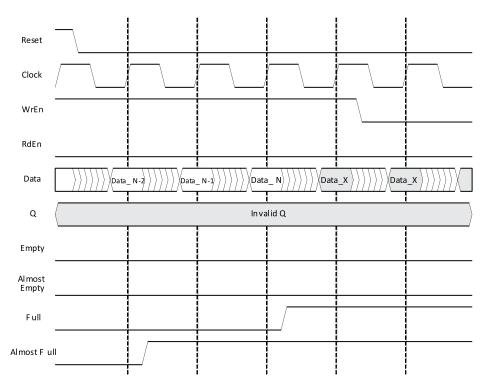


Figure 5.2. FIFO Without Output Registers, End of Data Write Cycle

In Figure 5.2, the Almost Full flag is two locations before the FIFO is filled. The Almost Full flag is asserted when the N-2 location is written, and the Full flag is asserted when the last word is written into the FIFO.

Data_X data inputs are not written since the FIFO is full (Full flag is high).

Now let us look at the waveforms when the contents of the FIFO are read out. Figure 5.3 shows the start of the read cycle. RdEn goes high and the data read starts. The Full and Almost Full flags are de-asserted, as shown.

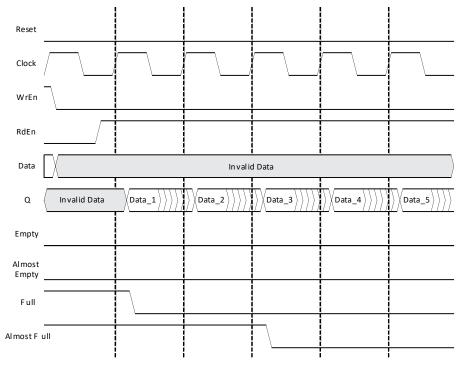
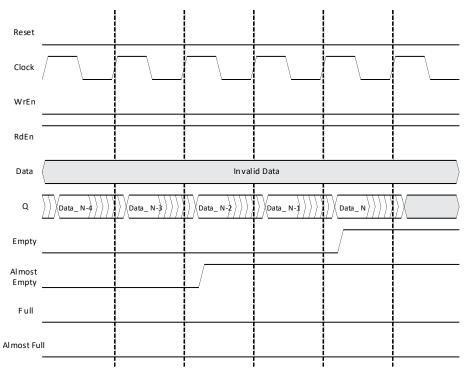
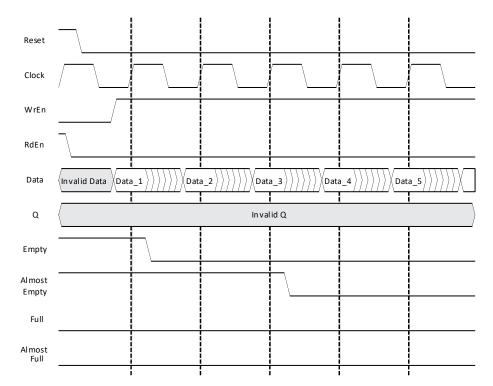


Figure 5.3. FIFO Without Output Registers, Start of Data Read Cycle

Similarly, as the data is read out and FIFO is emptied, the Almost Empty and Empty flags are asserted (see Figure 5.4).

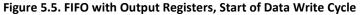

Figure 5.4. FIFO Without Output Registers, End of Data Read Cycle

Figure 5.1 to Figure 5.4 show the behavior of non-pipelined FIFO or FIFO without output registers. When the registers are pipelined, the output data is delayed by one clock cycle. There is also an option for output registers to be enabled by the RdEn signal.

Figure 5.5 to Figure 5.8 show similar waveforms for the FIFO with an output register and an output register enable with RdEn. Note that flags are asserted and de-asserted with similar timing to the FIFO without output registers. Only the data out 'Q' gets delayed by one clock cycle.

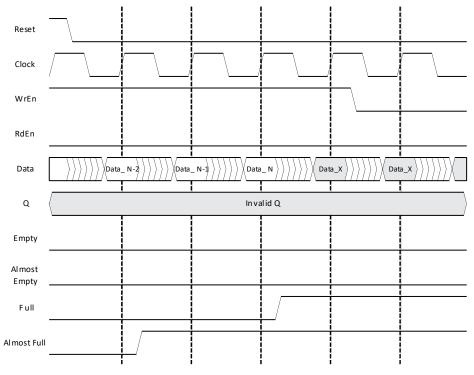
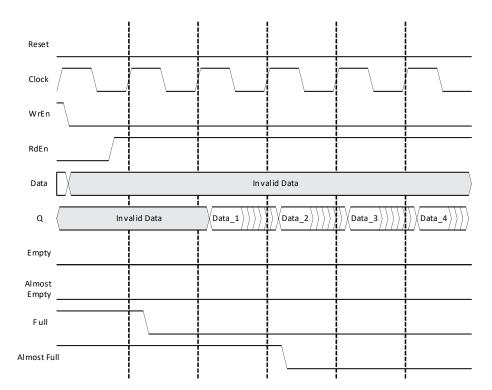



Figure 5.6. FIFO with Output Registers, End of Data Write Cycle

©2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-TN-02188-1.9

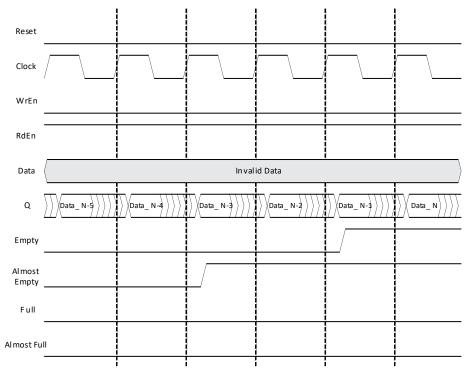


Figure 5.8. FIFO with Output Registers, End of Data Read Cycle

If the option enable output register with RdEn is selected, it still delays the data out by one clock cycle (as compared to the non-pipelined FIFO). The RdEn should also be high during that clock cycle, otherwise the data takes an extra clock cycle when the RdEn goes true.

©2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

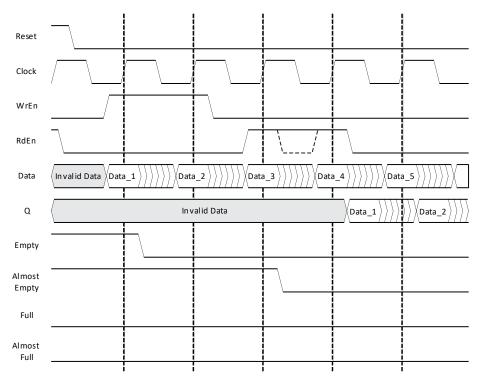


Figure 5.9. FIFO with Output Registers and RdEn on Output Registers

6. Dual Clock First-In-First-Out (FIFO_DC) Memory

The FIFO_DC, or dual clock FIFO, is also an emulated FIFO. The address logic and flag logic are implemented in the FPGA fabric around the RAM.

The ports available on the FIFO_DC include:

- Reset
- RPReset
- WrClock
- RdClock
- WrEn
- RdEn
- Data
- Q
- Full Flag
- Almost Full Flag
- Empty Flag
- Almost Empty Flag

6.1. FIFO_DC Flags

As an emulated FIFO, FIFO_DC requires the flags to be implemented in the FPGA logic around the block RAM. Because of the two clocks, the flags are required to change clock domains from read clock to write clock and vice versa. This adds latency to the flags either during assertion or de-assertion. Latency can be avoided only in one of the cases (either assertion or de-assertion) or distributed among the two.

In the emulated FIFO_DC, there is no latency during assertion of the flags. Thus, when the flag goes true, there is no latency. However, due to the design of the flag logic running on two clock domains, there is latency during deassertion.

^{©2024} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal

Let us assume that we start to write into the FIFO_DC to fill it. The write operation is controlled by WrClock and WrEn. However, it takes extra RdClock cycles for the de-assertion of the Empty and Almost Empty flags.

De-assertion of Full and Almost Full although result of reading out the data from the FIFO_DC, takes extra WrClock cycles after reading the data for these flags to come out.

With this in mind, let us look at the waveforms for FIFO_DC without output registers. Figure 6.1 shows the operation of the FIFO_DC when it is empty and the data begins to be written into it.

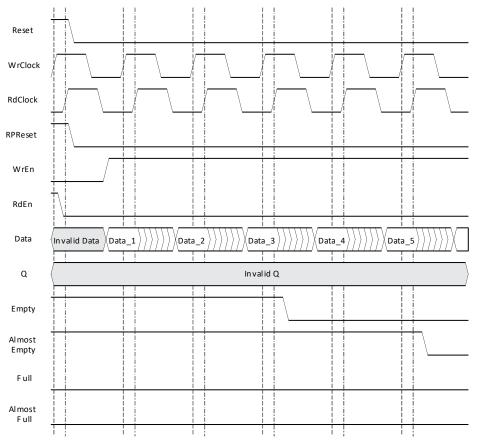


Figure 6.1. FIFO_DC Without Output Registers, Start of Data Write Cycle

The WrEn signal has to be high to start writing into the FIFO_DC. The Empty and Almost Empty flags are high to begin and Full and Almost Full are low.

When the first data is written into the FIFO_DC, the Empty flag de-asserts (or goes low), as the FIFO_DC is no longer empty. In this figure we assume that the Almost Empty setting flag setting is 3 (address location 3). The Almost Empty flag is de-asserted when the third address location is filled.

Now let us assume that we continue to write into the FIFO_DC to fill it. When the FIFO_DC is filled, the Almost Full and Full Flags are asserted. Figure 6.2 shows the behavior of these flags. In this figure we assume that FIFO_DC depth is 'N'.

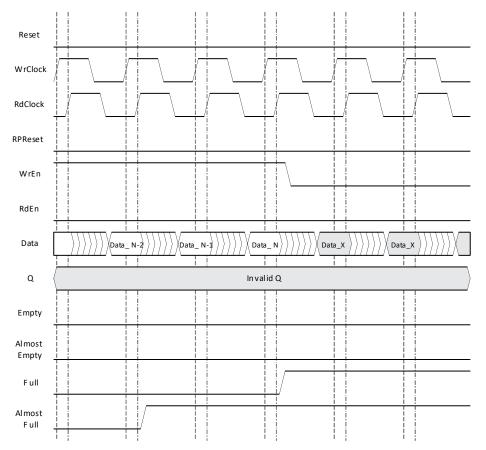


Figure 6.2. FIFO_DC Without Output Registers, End of Data Write Cycle

In Figure 6.2, the Almost Full flag is two locations before the FIFO_DC is filled. The Almost Full flag is asserted when the N-2 location is written, and the Full flag is asserted when the last word is written into the FIFO_DC.

Data_X data inputs are not written since the FIFO_DC is full (Full flag is high).

Note that the assertion of these flags is immediate and there is no latency when they go true.

Now let us look at the waveforms when the contents of the FIFO_DC are read out. Figure 6.3 shows the start of the read cycle. RdEn goes high and the data read starts. The Full and Almost Full flags are de-asserted as shown. Note that the de-assertion is delayed by two clock cycles.

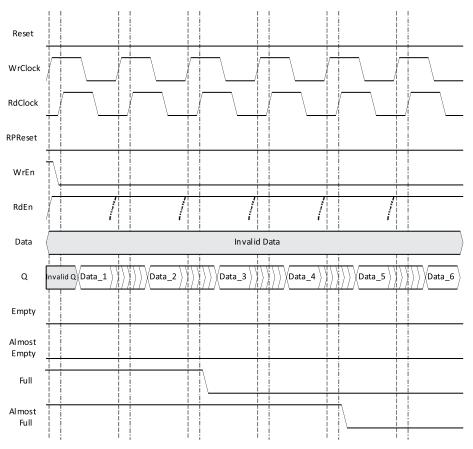


Figure 6.3. FIFO_DC Without Output Registers, Start of Data Read Cycle

Similarly, as the data is read out and FIFO_DC is emptied, the Almost Empty and Empty flags are asserted (see Figure 6.4).

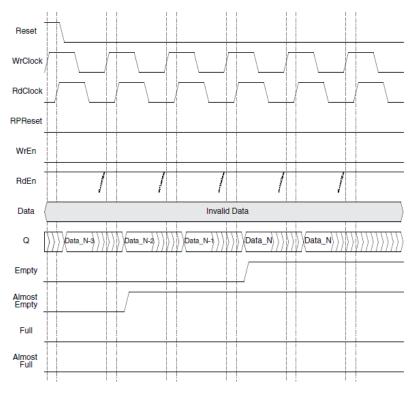


Figure 6.4. FIFO_DC Without Output Registers, End of Data Read Cycle

Figure 6.1 to Figure 6.4 show the behavior of the non-pipelined FIFO_DC or FIFO_DC without output registers. When we pipeline the registers, the output data is delayed by one clock cycle. There is an extra option for output registers to be enabled by the RdEn signal.

Figure 6.5 to Figure 6.8 show similar waveforms for the FIFO_DC with output register and without output register enable with RdEn. Note that flags are asserted and de-asserted with timing similar to the FIFO_DC without output registers. However, only the data out 'Q' is delayed by one clock cycle.

©2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

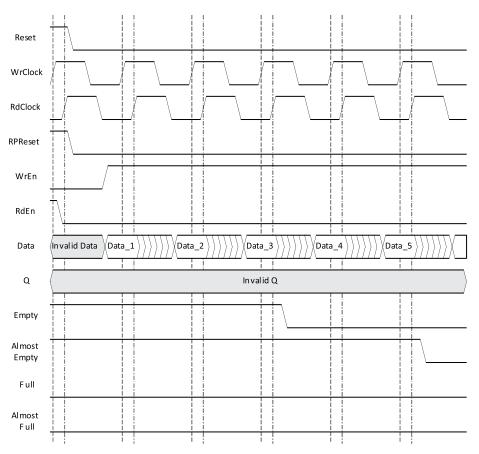


Figure 6.5. FIFO_DC with Output Registers, Start of Data Write Cycle

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

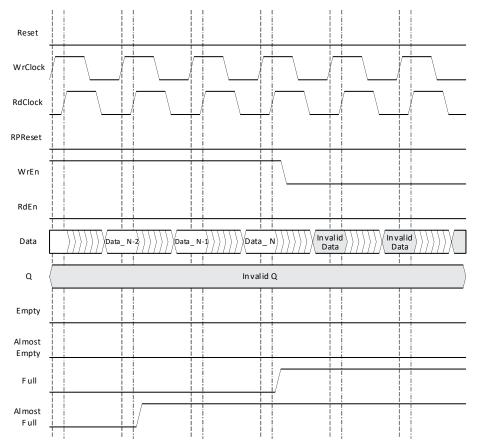


Figure 6.6. FIFO_DC with Output Registers, End of Data Write Cycle

©2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-TN-02188-1.9

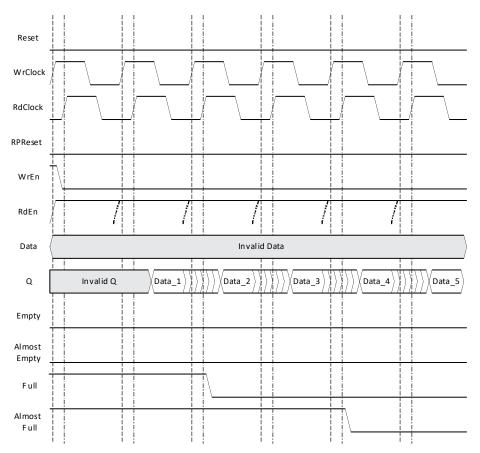


Figure 6.7. FIFO_DC with Output Registers, Start of Data Read Cycle

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

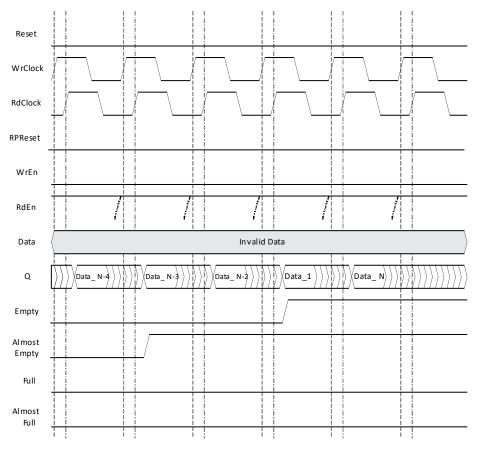


Figure 6.8. FIFO_DC with Output Registers, End of Data Read Cycle

If the designer selects the option enable output register with RdEn, it still delays the data out by one clock cycle (as compared to the non-pipelined FIFO_DC). RdEn should also be high during that clock cycle, otherwise the data takes an extra clock cycle when the RdEn is goes true.

©2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

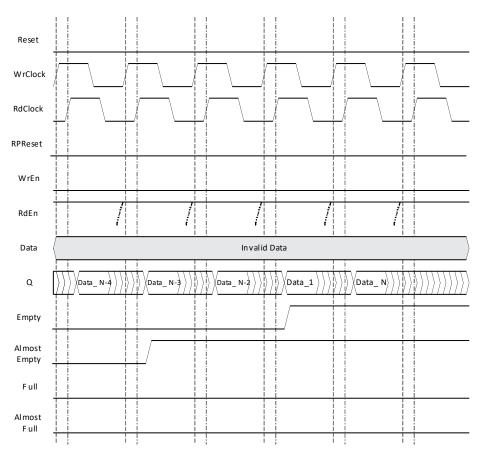


Figure 6.9. FIFO_DC with Output Registers and RdEn on Output Registers

7. Distributed Single-Port RAM (Distributed_SPRAM) – PFU-Based

PFU-based Distributed Single-Port RAM is created using the 4-input LUTs available in the PFU. These LUTs can be cascaded to create larger distributed memory sizes.

Figure 7.1 shows the Distributed Single-Port RAM module as generated by IPexpress.

©2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

The generated module makes use of the 4-input LUTs available in the PFU. Additional logic such as a clock or reset is generated by utilizing the resources available in the PFU.

Ports such as Read Clock (RdClock) and Read Clock Enable (RdClockEn) are not available in the hardware primitive. These are generated by IPexpress when the user wants to enable the output registers in the IPexpress configuration.

The various ports and their definitions listed in Table 7.1. The table lists the corresponding ports for the module generated by IPexpress and for the primitive.

Port Name in Generated Module	Port Name in the EBR block Primitive	Description
Clock	СК	Clock
ClockEn	-	Clock Enable
Reset	-	Reset
WE	WRE	Write Enable
Address	AD[3:0]	Address
Data	DI[1:0]	Data In
Q	DO[1:0]	Data Out

Table 7.1. PFU-Based Distributed Single Port RAM Port Definitions

Ports such as Read Clock (RdClock) and Read Clock Enable (RdClockEn), are not available in the hardware primitive. These are generated by IPexpress when the user wants to enable the output registers in their IPexpress configuration. The various ports and their definitions for the memory are included in Table 4.11. The table lists the corresponding ports for the module generated by IPexpress and for the primitive.

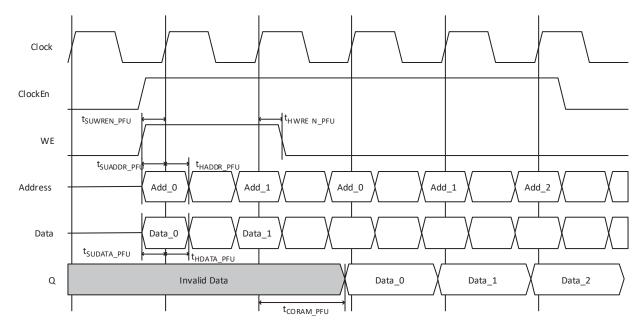


Figure 7.2. PFU Based Distributed Single Port RAM Timing Waveform - without Output Registers

©2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

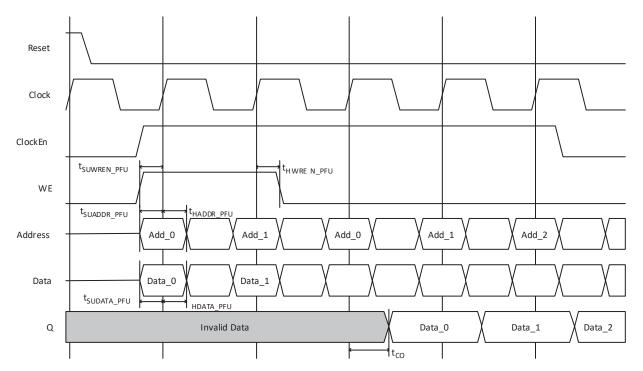
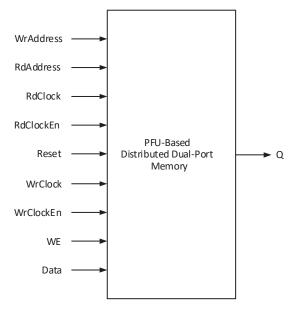



Figure 7.3. PFU Based Distributed Single Port RAM Timing Waveform - with Output Registers

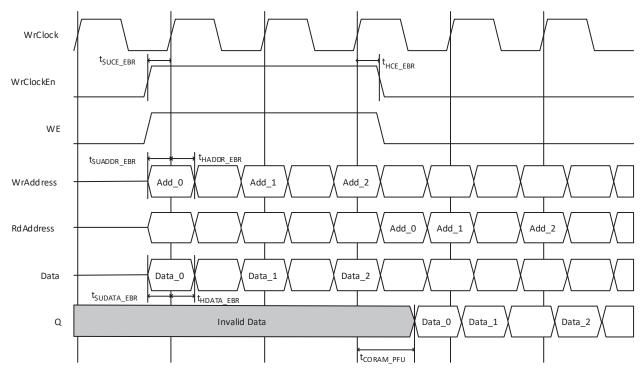
8. Distributed Dual-Port RAM (Distributed_DPRAM) – PFU-Based

PFU-based Distributed Dual-Port RAM is also created using the 4-input LUTs available in the PFU. These LUTs can be cascaded to create larger distributed memory sizes.

Figure 8.1 shows the Distributed Single-Port RAM module as generated by IPexpress.

The generated module makes use of the 4-input LUTs available in the PFU. Additional logic such as a clock or reset is generated by utilizing the resources available in the PFU.

Ports such as the Read Clock (RdClock) and Read Clock Enable (RdClockEn) are not available in the hardware primitive. These are generated by IPexpress when the user wants the to enable the output registers in the IPexpress configuration.


The various ports and their definitions are listed in Table 8.1. The table lists the corresponding ports for the module generated by IPexpress and for the primitive.

Port Name in the Generated Module	Port Name in the EBR Block Primitive	Description
WrAddress	WAD[23:0]	Write Address
RdAddress	RAD[3:0]	Read Address
RdClock	-	Read Clock
RdClockEn	-	Read Clock Enable
WrClock	WCK	Write Clock
WrClockEn	-	Write Clock Enable
WE	WRE	Write Enable
Data	DI[1:0]	Data Input
Q	RDO[1:0]	Data Out

Table 8.1. PFU-Based Distributed Dual-Port RAM Port Definitions

Ports such as Read Clock (RdClock) and Read Clock Enable (RdClockEn) are not available in the hardware primitive. These are generated by IPexpress when the user wants the to enable the output registers in the IPexpress configuration.

Users have the option of enabling the output registers for Distributed Dual Port RAM (Distributed_DPRAM). Figure 8.2 and Figure 8.3 show the internal timing waveforms for the Distributed Dual Port RAM (Distributed_DPRAM) with these options.

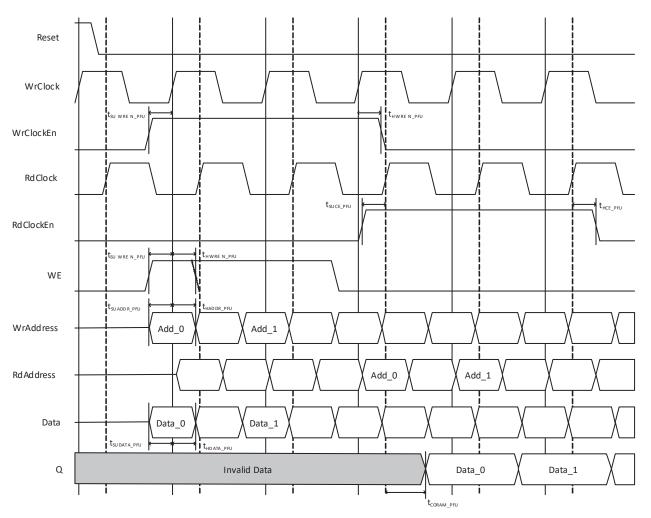


Figure 8.3. PFU Based Distributed Dual Port RAM Timing Waveform - with Output Registers

©2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

9. Distributed ROM (Distributed_ROM) – PFU-Based

PFU-based Distributed ROM is also created using the 4-input LUTs available in the PFU. These LUTs can be cascaded to create larger distributed memory sizes.

Figure 9.1 shows the Distributed ROM module generated by IPexpress.

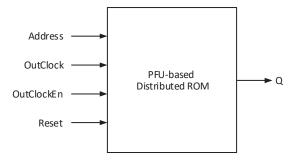
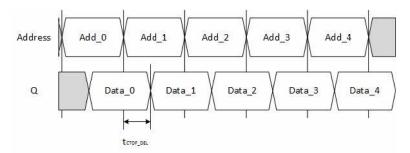


Figure 9.1. Distributed ROM Generated by IPexpress

The generated module makes use of the 4-input LUTs available in the PFU. Additional logic such as a clock or reset is generated by utilizing the resources available in the PFU.


Ports such as Out Clock (OutClock) and Out Clock Enable (OutClockEn) are not available in the hardware primitive. These are generated by IPexpress when the user wants to enable the output registers in the IPexpress configuration.

The various ports and their definitions are listed in Table 9.1. The table lists the corresponding ports for the module generated by IPexpress and for the primitive.

Table 9.1. PFU-Based Distributed ROM Port Definitions

Port Name in the Generated Module	Port Name in the EBR Block Primitive	Description
Address	AD[3:0]	Address
OutClock	—	Out Clock
OutClockEn	—	Out Clock Enable
Reset	—	Reset
Q	DO	Data Out

Users have the option to enable the output registers for Distributed ROM (Distributed_ROM). Figure 9.2 and Figure 9.3 show the internal timing waveforms for the Distributed ROM with these options.

Figure 9.2. PFU Based Distributed ROM Timing Waveform - without Output Registers

^{©2024} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

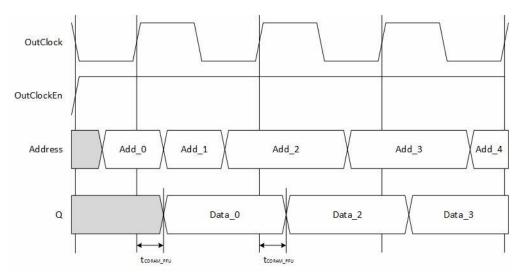


Figure 9.3. PFU Based Distributed ROM Timing Waveform - with Output Registers

10. Initializing Memory

In each memory mode, it is possible to specify the power-on state of each bit in the memory array. This allows the memory to be used as ROM if desired. Each bit in the memory array can have a value of 0 or 1.

10.1. Initialization File Formats

The initialization file is an ASCII file, which the designer can create or edit using any ASCII editor. IPexpress supports three memory file formats:

- 1. Binary file
- 2. Hex File
- 3. Addressed Hex

The file name for the memory initialization file is *.mem (<file_name>.mem). Each row includes the value to be stored in a particular memory location. The number of characters (or the number of columns) represents the number of bits for each address (or the width of the memory module).

The initialization file is primarily used for configuring the ROMs. RAMs can also use the initialization file to preload memory contents.

Binary File

The binary file is a text file of 0s and 1s. The rows indicate the number of words and the columns indicate the width of the memory.

Memory Size 20x32

Hex File

The hex file is a text file of hexadecimal characters arranged in a similar row-column arrangement. The number of rows in the file is the same as the number of address locations, with each row indicating the content of the memory location.

Memory Size 8x16

A001 0B03 1004 CE06 0007 040A 0017 02A4

Addressed Hex

Addressed hex consists of lines of addresses and data. Each line starts with an address, followed by a colon, and any number of data. The format of the file is "address: data data data data data" where the address and data are hexadecimal numbers.

A0:03 F3 3E 4F

B2 : 3B 9F

In the example above, the first line shows 03 at address A0, F3 at address A1, 3E at address A2, and 4F at address A3. The second line shows 3B at address B2 and 9F at address B3.

©2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

There is no limitation on the address and data values. The value range is automatically checked based on the values of addr_width and data_width. If there is an error in an address or data value, an error message is printed. It is not necessary to specify data at all address locations. If data is not specified at a certain address, the data at that location is initialized to 0. SCUBA makes memory initialization possible both through the synthesis and simulation flows.

Appendix A. Attribute Definitions

DATA_WIDTH

Data width is associated with the RAM and FIFO elements. The DATA_WIDTH attribute defines the number of bits in each word. It uses the values defined in the RAM size tables in each memory module.

REGMODE

REGMODE, or the Register mode attribute, is used to enable pipelining in the memory. This attribute is associated with the RAM and FIFO elements. The REGMODE attribute takes the NOREG or OUTREG mode parameter that disables and enables the output pipeline registers.

CSDECODE

CSDECODE or the Chip Select Decode attributes are associated with block RAM elements. CS, or Chip Select, is the port available in the EBR primitive that is useful when memory requires multiple EBR blocks to be cascaded. The CS signal forms the MSB for the address when multiple EBR blocks are cascaded. CS is a 3-bit bus, so it can cascade eight memories easily.

CSDECODE takes the following parameters: "000", "001", "010", "011", "100", "101", "110", and "111". CSDECODE values determine the decoding value of CS[2:0]. CSDECODE_W is chip select decode for write and CSDECODE_R is chip select decode for read for Pseudo Dual Port RAM. CSDECODE_A and CSDECODE_B are used for True Dual-Port RAM elements and refer to the A and B ports.

WRITEMODE

The WRITEMODE attribute is associated with the block RAM elements. It takes the NORMAL, WRITETHROUGH, and READBEFOREWRITE mode parameters.

In NORMAL mode, the output data does not change or get updated, during the write operation. This mode is supported for all data widths.

In WRITETHROUGH mode, the output data is updated with the input data during the write cycle. This mode is supported for all data widths.

WRITEMODE_A and WRITEMODE_B are used for Dual-Port RAM elements and refer to the A and B ports in True Dual-Port RAM.

In READBEFOREWRITE mode, the output data port is updated with the existing data stored in the write address, during a write cycle. This mode is supported for x9, x18 and x36 data widths.

For all modes of the True Dual-Port module, simultaneous read access from one port and write access from the other port to the same memory address is not recommended. The read data may be unknown in this situation.

Also, simultaneous write access to the same address from both ports is not recommended. When this occurs, the data stored in the address becomes undetermined when one port tries to write a 'H' and the other tries to write a 'L'. It is recommended that control logic be implemented to identify this situation if it occurs and do one of the following:

- 1. Implement status signals to flag the read data as possibly invalid, or
- 2. Implement control logic to prevent simultaneous access from both ports.

References

- LatticeECP3 Family Devices web page
- Boards, Demos, IP Cores, and Reference Designs for LatticeECP3 Family Devices web page
- Lattice Diamond Software web page
- Lattice Insights for Lattice Semiconductor Training Series and Learning Plans

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

For frequently asked questions, refer to the Lattice Answer Database at www.latticesemi.com/Support/AnswerDatabase.

©2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

Revision History

Revision 1.9, March 2024

Section	Change Summary
All	• Changed document number from TN1179 to FPGA-TN-02188.
	Updated document template.
Disclaimers	Added this section.
Acronyms in this Document	Added this section.
References	Added this section.
Technical Support Assistance	Added the link to Lattice Answer Database.

Revision 1.8, April 2014

Section	Change Summary	
Memory Modules	Removed Reset Mode attribute in the following tables:	
	Table 4.3., Single-Port RAM Attributes of LatticeECP3 Devices	
	Table 4.6., True Dual-Port RAM Attributes for LatticeECP3 Devices	
	Table 4.9., Pseudo Dual-Port RAM Attributes for LatticeECP3 Devices	
	Updated the following figures:	
	Figure 4.16., PSEUDO DUAL PORT RAM Timing Diagram – without Output Registers	
	• Figure 4.17., PSEUDO DUAL PORT RAM Timing Diagram - with Output Registers	
Distributed ROM	Updated the following figures:	
(Distributed_ROM) – PFU-Based	• Figure 9.2., PFU Based Distributed ROM Timing Waveform – without Output Registers	
	• Figure 9.3., PFU Based Distributed ROM Timing Waveform – with Output Registers	
Technical Support Assistance	Updated Technical Support Assistance information.	

Revision 1.7, February 2012

Section	Change Summary
All	Updated document with new corporate logo.

Revision 1.6, July 2011

Section	Change Summary
All	Added the setup and hold requirements for addresses to EBR-based memories.

Revision 1.5, January 2010

Section	Change Summary
All	Added Read Before Write mode for Single Port and True Dual Port RAM modules for
	LatticeECP3-xxEA devices.

Revision 1.4, November 2009

Section	Change Summary
Memory Modules	Updated Reset Mode based on device support.

Revision 1.3, June 2009

Section	Change Summary	
All	• Text and screenshots were updated to match the latest ispLEVER software.	
	 Added updated timing waveforms for EBR and Distributed RAMs. 	
	Removed RAM-Based Shift Register.	

^{©2024} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Revision 1.2, June 2009

Section	Change Summary
All	Number of bits of RAM contained in each EBR block corrected to read 18,432.

Revision 1.1, May 2009

Section	Change Summary
All	References to 9K memories corrected to read 18K throughout the document.

Revision 1.0, February 2009

Section	Change Summary
All	Initial release.

©2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

www.latticesemi.com