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1. Introduction

1.1 Product revision status

The rxpy identifier indicates the revision status of the product described in this manual, for
example, rip2, where:

rx Identifies the major revision of the product, for example, ri.
Py Identifies the minor revision or modification status of the product, for
example, p2.

1.2 Intended audience

This manual is for system designers, system integrators, and programmers who are designing or
programming a System on Chip (SoC) that uses the Cortex®-R82 processor.

1.3 Conventions
The following subsections describe conventions used in Arm documents.

Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm Glossary for more information: developer.arm.com/glossary.

Convention Use

italic Citations.

bold Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and program names, and source code.

monospace underline A permitted abbreviation for a command or option. You can enter the underlined text instead of the full
command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC pl5, 0, <Rd>, <CRn>, <CRm>, <Opcode 2>
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Convention

SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,
IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Recommendations. Not following these recommendations might lead to system
failure or damage.

Requirements for the system. Not following these requirements might result in
system failure or damage.

Warning

Requirements for the system. Not following these requirements will result in system
failure or damage.

o
* An important piece of information that needs your attention.

Note

A useful tip that might make it easier, better or faster to perform a task.

A reminder of something important that relates to the information you are reading.

Remember

Timing diagrams
The following figure explains the components used in timing diagrams. Variations, when they occur,
have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the
shaded area at that time. The actual level is unimportant and does not affect normal operation.
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Figure 1-1: Key to timing diagram conventions
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Signals
The signal conventions are:

Signal level

The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW.
Asserted means:

e HIGH for active-HIGH signals.
e LOW for active-LOW signals.

Lowercase n
At the start or end of a signal name, n denotes an active-LOW signal.

1.4 Useful resources

This document contains information that is specific to this product. See the following resources for
other useful information.

Access to Arm documents depends on their confidentiality:

o Non-Confidential documents are available at developer.arm.com/documentation. Each
document link in the following tables goes to the online version of the document.

e Confidential documents are available to licensees only through the product package.

Arm product resources Document ID Confidentiality
Arm® Cortex®-R82 Processor Configuration and Integration Manual 102671 Confidential
Arm® CoreSight™ ELA-600 Embedded Logic Analyzer Technical Reference Manual 101088 Non-Confidential
Arm architecture and specifications Document Confidentiality
ID
AMBA® APB Protocol Specification IHI 0024 Non-
Confidential
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Arm architecture and specifications Document Confidentiality
ID
AMBA® AX| and ACE Protocol Specification [HI 0022 Non-
Confidential
AMBA® AX|-Stream Protocol Specification IHI 0051 Non-
Confidential
AMBA® Low Power Interface Specification IHI 0068 Non-
Confidential
Arm® Architecture Reference Manual Supplement Armv8, for R-profile AArché4 architecture DDI 0600 Non-
Confidential
Arm® AMBA® 4 ATB Protocol Specification ATBv1.0 and ATBv1.1 IHI 0032 Non-
Confidential
Arm® Architecture Reference Manual for A-profile architecture DDI 0487 Non-
Confidential
Arm® CoreSight™ Architecture Specification v3.0 IHI 0029 Non-
Confidential
Arm® Embedded Trace Macrocell Architecture Specification ETMv4 IHI 0064 Non-
Confidential
Arm® Generic Interrupt Controller Architecture Specification, GIC architecture version 3 and version 4 IHI 0069 Non-
Confidential
Arm® Power Policy Unit Architecture Specification DEN 0051 [Non-
Confidential
Arm® Architecture Reference Manual Supplement Reliability, Availability, and Serviceability (RAS), for A-profile DDI 0587  |[Non-
architecture Confidential

o Arm tests its PDFs only in Adobe Acrobat and Acrobat Reader. Arm cannot
* guarantee the quality of its documents when used with any other PDF reader.

Hote Adobe PDF reader products can be downloaded at http:/www.adobe.com
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2. The Cortex®-R82 processor

This chapter provides an overview of the Cortex®-R82 processor and its features.

2.1 About the Cortex®-R82 processor

The Cortex®-R82 processor is a mid-performance, multi-core, in-order, superscalar processor for
use in real-time embedded applications. The Cortex®-R82 processor implements the Arm®v8-R
AArché4 architecture.

The Arm®v8-R AArché4 architecture is a 64-bit R-profile Arm® architecture with only AArché4
Execution state. Therefore, the Cortex®-R82 processor does not support the AArch32 Execution
state. The Cortex®-R82 processor supports all the mandatory features from the Arm®v8.4
architecture as well as the prefetch speculation protection, the debug over powerdown, the
Reliability, Availability, and Serviceability (RAS) Extension, and the Performance Monitors Extension.

The Cortex®-R82 processor is targeted at mobile modem and storage controller applications that
require minimized latencies. The Cortex®-R82 processor has one to eight cores, each implementing
a single Arm®v8-R AArché4 compliant Processing Element (PE). In the context of the Cortex®-R82
processor, the PE and core are conceptually the same.

The Cortex®-R82 processor supports multiple Protected Memory System Architecture (PMSA)
and Virtual Memory System Architecture (VMSA) contexts to execute on the same core and uses
virtualization technology to isolate them in memory space. Similarly, the Cortex®-R82 processor
enables the real-time performance of different contexts to be isolated in time, which limits the
impact of one context on the response time and determinism of a more critical context.

The following figure shows an example Cortex®-R82 processor system.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 18 of 2039



Arm® Cortex”-R82 Processor Technical Reference Manual Document ID: 102670_0101_02_en
Issue: 02
The Cortex®-R82 processor

Figure 2-1: Example processor system
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2.2 Features

The Cortex®-R82 processor has the following features:

Processor features

e 64-bit capability based on the Arm®v8-R AArché4 architecture.

e Up to eight cores with in-cluster hardware coherency.

e Ab4 instruction set for the Arm®v8-R AArché4 architecture.

e AArché4 Execution state at ELO, EL1, and EL2 Exception levels (without EL3).

o Eight-stage, in-order superscalar pipeline with direct and indirect branch prediction.

e Support for Protected Memory System Architecture (PMSA) at EL1 and EL2 and optional support
for Virtual Memory System Architecture (VMSA) at EL1.
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Secure state operation only at all Exception levels (no Non-secure operation).

Compatible with Arm® TrustZone® technology, that is, support for accesses to both Secure and
Non-secure physical memory address space.

Optional Advanced Single Instruction Multiple Data (SIMD) and floating-point architecture
support with two 64-bit data engine pipelines.

Generic Interrupt Controller (GIC) CPU interface to connect to an external interrupt distributor.

Generic Timer interface supporting 64-bit count input from an external system counter.

Memory system features

Separate L1 data cache and L1 instruction cache that are private to each core.

Two optional Tightly Coupled Memories (TCMs) that are private to each core, an ITCM for
instructions and literal pool data and a DTCM for data.

An optional, shared (between all cores), and unified (instructions and data) L2 cache.
Partial L2 cache powerdown support.
A shared AXI5 256-bit Main Manager (MM) port for instruction and data access.

An optional and shared AXI5 256-bit Low-latency RAM (LLRAM) port for instruction and data
access.

A shared ACE5-Lite 128-bit Main Accelerator Coherency Port (MACP) for external access to MM
address ranges.

A shared ACE5-Lite 128-bit ACE-Lite Subordinate (ACELS) port for external access to TCMs and
also LLRAM port.

An optional and shared AXI5 64-bit Shared Peripheral Port (SPP) for peripheral access.
An optional and per-core AXI5 32-bit Low-latency Peripheral Port (LLPP) for peripheral access.

Optional Error Correcting Code (ECC), Single Error Correct Double Error Detect (SECDED) or
Double Error Detect (DED) protection for all of the instantiated cache tag and data RAMs and
the TCM RAMs.

Debug features

Arm®v8-R AArché4 debug logic with debug over powerdown support.
Reliability, Availability, and Serviceability (RAS) Extension support.
Embedded Trace Macrocell (ETM), compliant with ETMv4.5, for instruction and data trace.

Performance Monitors Extension support for software profiling and performance debugging
based on the PMUv3 architecture.

Cross Trigger Interface (CTI) for multiprocessor debugging.

Optional support for integrating CoreSight™ Embedded Logic Analyzer, ELA-600 for advanced
debug capability and signal observability. The CoreSight™ ELA-600 is a separately licensable
product.

A production Memory Built-In Self-Test (MBIST) for testing memories at boot time.
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2.3 Configuration options

You can configure the Cortex®-R82 processor during the rendering and integration stages to meet
your functional requirements.
To configure the Cortex®-R82 processor, you must decide the values of:

o Configuration parameters when the Cortex®-R82 processor RTL is rendered before the
implementation.

e Top-level configuration inputs when the Cortex®-R82 processor is integrated in the system
after the implementation.

All top-level configuration inputs are sampled in the PERIPHCLK domain, just
after the Cortex®-R82 processor comes out of Cold processor reset.

2.3.1 Configuration parameters
The configuration parameters affect the global and per-core RTL parameters.

Global parameters apply to the entire cluster while per-core parameters can be configured
differently for different cores within the cluster.

Some memories and interfaces are optional so that you can configure the memory system
according to your system requirements. When you choose to exclude:

e An optional memory:

o For the Instruction Tightly Couple Memory (ITCM) and Data Tightly Coupled Memory (DTCM),
the logic is removed.

o For the L2 memory, the logic is always present but the RAM size is O.

e An optional interface, the logic is removed.

The following table shows the main configuration parameters.

To successfully use a Cortex®-R82 processor core configured without Advanced
SIMD and floating-point support (Neon_Fp<m> = 0), you must ensure that software
binaries running on this core do not use any Advanced SIMD or floating-point

instructions. Advanced SIMD or floating-point instructions can be introduced in a
number of ways:

Warnin
. By explicitly using them in assembly code.

e By using float or double data types or SIMD intrinsics in C or other high-level
languages.
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By the compiler if Advanced SIMD/floating-point code generation is not

disabled (such as auto-vectorization flags are enabled).

By software libraries that are linked either explicitly by the user or implicitly by

the compiler such as the GCC compiler (independently of whether Advanced
SIMD/floating-point code generation is enabled for the source being compiled).

Table 2-1: Configuration parameters

Parameter name

Scope Permitted values

Description

NUM_CORES Global [1,2,3,4,5,6,7,8 Controls the maximum number of logical cores
RAM PROTECTION Global |0, 1 Controls the inclusion of structures that are required to support internal RAM
protection functionality
0 Not included
1 Included
ELA Global |0, 1 Controls the inclusion of the CoreSight™ Embedded Logic Analyzer, ELA-600
0 Not included
1 Included
Note:
The ELA-600 is a separately licensable product
ELA ATB FIFO DEPTH |Global|4, 8, 16,32, 64 Configures the ELA-600 ATB FIFO depth in powers of two. See  Arm®

CoreSight™ ELA-600 Embedded Logic Analyzer Technical Reference Manual — for
more information.
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L2 CACHE SIZE

Scope Permitted values

Global

0, 96, 128, 192, 256,
384 512, 768, 1024,
1536, 2048, 3072,
4096

Document ID: 102670 0101 02 en
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Description

Controls the size of the L2 cache
0: L2 cache logic is present but RAM size is O
96: 96KB cache

128: 128KB cache

192: 192KB cache

256: 256KB cache

384: 384KB cache

512: 512KB cache

768: 768KB cache

1024: 1024KB cache

1536: 1536KB cache

2048: 2048KB cache

3072: 3072KB cache

4096: 4096KB cache

L2 DATA WR_LATENCY |Global|O, 1,2 L2 cache data RAM input latency
0]
1 cycle input delay from L2 data RAMs
1
2 cycles input delay from L2 data RAMs
2
2 cycles input delay plus 1 cycle hold from L2 data RAMs
L2 DATA RD LATENCY |Global|O, 1 L2 cache data RAM output latency
0
2 cycles output delay from L2 data RAMs
1
3 cycles output delay from L2 data RAMs
L2 DATA RD SLICE Global |0, 1 L2 cache data RAM output register slice
0 No register slice
1 Register slice included
L2 DATA STRETCH CLK |Global |0, 1 L2 cache data RAMs clock pulse stretch

0 Not stretched
1 Stretched
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Description

L2 SLICES Global |1, 2 Controls the number of slices and RAM partitions the L2 cache implements
1
The L2 cache implements a single slice and a single RAM partition
2
The L2 cache implements two slices and two RAM partitions
CPU_SLICE Global |0, 1 Controls whether extra register slices exist between the cores and the cluster
logic.
0
No additional register slices exist between the cores and cluster logic
1
One additional register slice exists between the cores and cluster logic
Note:
Depending on your target frequency, setting CPU_SLICE to 1 may help
with the timing closure.
PPU RST STATE Global |0, 1 Power on reset state for the Power Policy Units (PPUs)
0 Cluster and all core PPUs reset to off
1 Cluster and all core PPUs reset to on
ACELS_ID WIDTH Global | Any integer value Defines the width of the ACE-Lite Subordinate (ACELS) port ID signals
between 8 and 24 AWIDS, BIDS, ARIDS, and RIDS.
MACP_ID WIDTH Global | Any integer value Defines the width of the Main Accelerator Coherency Port (MACP) ID signals
between 8 and 24 AWIDA, BIDA, ARIDA, and RIDA.
UB_ID WIDTH Global | Any integer value Defines the width of the Utility bus port ID signals AWIDU, BIDU, ARIDU,
between 1 and 24 and RIDU.
LLPP Global |0, 1 Controls the existence of cores' Low-latency Peripheral Port (LLPP)
0
No LLPP regions and ports exist. All related AXI inputs and outputs as
well as the CFGLLPPIMP and CFGLLPPBASEADDR pins are rendered
out by the configuration script
1
All cores include logic to support LLPP regions and ports. They can be
enabled or disabled by the CFGLLPPIMP pin
SPP Global |0, 1 Controls the existence of the cluster Shared Peripheral Port (SPP)

0

No SPP region and port exists. All related AXI inputs and outputs as
well as the CFGSPPIMP and CFGSPPBASEADDR pins are rendered
out by the configuration script

The processor includes logic to support the SPP region and port. It
can be enabled or disabled by the CFGSPPIMP pin
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Parameter name Scope Permitted values Description
LLRAM Global |0, 1 Controls the existence of the cluster Low-latency RAM (LLRAM) interface
0

No LLRAM region, port and coherency logic exists. All related AXI
inputs and outputs as well as the CFGLLRAMIMP, CFGLLRAMEN and
CFGLLRAMBASEADDR pins are rendered out by the configuration

script
1
The processor includes logic to support the LLRAM region, port,
and coherency. It can be enabled or disabled by the CFGLLRAMIMP
pin and its behavior out of reset can be further defined by the
CFGLLRAMEN pin
DENSE CS ADDR MAP Global |0, 1 Controls how CoreSight™ components are mapped in the Utility bus and the
Debug port
0
Sparse memory map. Each component occupies 64KB. The Utility bus
has 23-bit address signals. The Debug port has 24-bit address signals
1
Dense memory map. Each component occupies 4KB. The Utility bus
has 17-bit address signals. The Debug port has 18-bit address signals
NUM Per- |0, 16, 32 Controls the number of EL2 Memory Protection Unit (MPU) regions. <m> is
EL2 MPU REGIONS<m> |core the core number
NUM Per- |0, 16, 32 Controls the number of EL1 MPU regions. <m> is the core number.

EL1_MPU_REGIONS<m> |core

Value O is only supported when the core instance includes support for Virtual
Memory System Architecture (VMSA).

NEON_FP<m> Per- 10,1 Controls the inclusion of Advanced SIMD and floating-point support. <m> is
core the core number.

0 No Advanced SIMD and no floating-point support included
1 Advanced SIMD and half-precision, single-precision, and double-
precision floating-point functionality included

LOW_LATENCY SP<m> Per- 10,1 Controls the inclusion of an additional single-precision floating-point pipeline
core which has lower result latencies than the default floating-point pipeline. <m>
is the core number.

0 Default floating-point pipeline only
1 Low-latency single-precision pipeline included

VMSA<m> Per- 10,1 Controls the inclusion of VMSA functionality. <m> is the core number.
core
0 Not included
1 Included
L1 ICACHE SIZE<m> |Per- [16,32, 64,128 Controls the size of the L1 instruction cache. <m> is the core number.
core

16: 16KB cache

32: 32KB cache

64: 64KB cache

128: 128KB cache

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 25 of 2039



Arm” Cortex”-R82 Processor Technical Reference Manual

Parameter name

L1 DCACHE SIZE<m>

Scope Permitted values

Per-
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16, 32, 64
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Description

Controls the size of the L1 data cache. <m> is the core number.
16: 16KB cache
32: 32KB cache

64: 64KB cache

ITCM SIZE<m>

Per-
core

0,16, 32, 64, 128,

256,512, 1024

Controls the size of the Instruction Tightly Coupled Memory (ITCM). <m> is the
core number.

0: ITCM logic is removed and RAM size is O
16: 16KB cache

32: 32KB cache

64: 64KB cache

128: 128KB cache

256: 256KB cache

512: 512KB cache

1024: 1024KB cache

ITCM WAIT<m>

Per-
core

0,123

Controls the number of wait states that are incurred by accesses to the
ITCM. <m> is the core number.

ITCM STRETCH CLK<m>

Per-
core

01

ITCM RAMs clock pulse stretch. <m> is the core number.

0 Not stretched
1 Stretched

DTCM_SIZE<m>

Per-
core

0, 16,32, 64, 128,

256,512, 1024

Controls the size of the Data Tightly Coupled Memory (DTCM). <m> is the core
number.

0: DTCM logic is removed and RAM size is O
16: 16KB cache

32: 32KB cache

64: 64KB cache

128: 128KB cache

256: 256KB cache

512: 512KB cache

1024: 1024KB cache

DTCM WATT<m>

Per-
core

0,123

Controls the number of wait states that are incurred by accesses to the
DTCM. <m> is the core number.
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Parameter name Scope Permitted values Description
DTCM_STRETCH CLK<m> |Per- |0, 1 DTCM RAMs clock pulse stretch. <m> is the core number.
core
0 Not stretched
1 Stretched

2.3.2 Integration-time configuration options

The following table shows the integration-time configuration options that you can configure by
setting the top-level inputs.

Manager (MM) and Low-latency RAM (LLRAM) broadcast signal behavior as defined
by the AMBA® specification. See Arm® Cortex®-R82 Processor Configuration and
Integration Manual for more information on the Cortex®-R82 processor signals.

*o In addition to the features in the following table, you can also configure the Main

Note

Table 2-2: Integration-time configuration options

Feature Scope Permitted Description

values

Low-latency RAM (LLRAM) Global |0, 1 Implemented with CFGLLRAMIMP

manager interface
0 Not implemented.

1 Implemented.

LLRAM base address Global | Aligned to Configured with CFGLLRAMBASEADDR[39:28]

256MB

LLRAM enable out of reset Global |0, 1 Configured with CFGLLRAMEN
0 LLRAM disabled out of reset.

1 LLRAM enabled out of reset.

LLRAM shared Global |0, 1 Configured with CFGLLRAMSHARED. If set to 1, it indicates that there are
multiple clusters connected to the same LLRAM and share data across the
cluster.

0

LLRAM not shared.
1

LLRAM shared.
Caution:

This feature is not available in the Cortex®-R82 processor. You must tie
CFGLLRAMSHARED LOW.
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Feature Scope Permitted Description
values
Poison support for Main Global |0, 1 Configured with CFGMMPOISON
Manager (MM) port 0
MM port does not support poison.
1
MM port supports poison.
Low-latency Peripheral Port (LLPP) |Global |0, 1 Implemented with CFGLLPPIMP
manager interface
0 Not implemented.
1 Implemented.
LLPP base address Global [Aligned to Configured with CFGLLPPBASEADDR[39:27]
128MB
Shared Peripheral Port (SPP) Global |0, 1 Implemented with CFGSPPIMP
manager interface
0 Not implemented.
1 Implemented.
SPP base address Global [Aligned to Configured with CFGSPPBASEADDR[39:27]
128MB
Base address of the TCMs Global |Aligned to Configured with CFGACELSTCMBASEADDR[39:24]
on the ACE-Lite Subordinate 16MB
(ACELS) interface
Value of Multiprocessor Affinity |Global |- Configured with CFGMPIDRAFF2[7:0]
Register affinity level 2
Value of Multiprocessor Affinity |Global |- Configured with CFGMPIDRAFF3[7:0]
Register affinity level 3
GIC CPU interface disable Global |0, 1 Configured with GICCDISABLE
0 GIC CPU interface enabled.
1 GIC CPU interface disabled.
RAM protection enable out of Global |0, 1 Configured with CFGRAMPROTEN
reset
0 RAM protection disabled out of reset
1 RAM protection enabled out of reset
L2 cache POP EVA feature Global |0, 1 Configured with CFGL2EVAIMP
0 L2 cache data RAMs do not implement the POP Eviction-Allocation
optimization
1 L2 cache data RAMs implement the POP Eviction-Allocation
optimization, and this is enabled out of reset
ITCM base address Per- |Size-aligned to |Configured with CFGITCMBASEADDRmM[39:14] where m is the core number
core |ITCM SIZE<m> |from Oto NUM_CORES-1.
ITCM enable out of reset Per- 10,1 Configured with CFGITCMENmM where m is the core number from O to
core NUM_CORES-1.
0 ITCM disabled out of reset.
1 ITCM enabled out of reset.
DTCM base address Per- |Size-aligned to | Configured with CFGDTCMBASEADDRM[39:14] where m is the core number
core |DICM SIZE<m> |from Oto NUM_CORES-1.
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Feature Scope Permitted Description
values
Data endianness Per- |0, 1 Configured with CFGENDm where m is the core number from O to
core NUM_CORES-1. Controls the out of reset value of the SCTLR_EL2.EE bit.
0 Little-endian.
1 Byte-invariant big-endian.
Reset vector base address Per- |Aligned to 4B Configured with CFGRVBARADDRmM[39:2] where m is the core number

core

from O to NUM_CORES-1. Controls the out of reset value of the
RVBAR_EL2.RVBARADDR field.

2.4 Supported standards and specifications

The Cortex®-R82 processor complies with, or implements, the relevant Arm architectural standards
and protocols, and relevant external standards.

This book complements architecture reference manuals, architecture specifications, protocol
specifications, and relevant external standards. It does not duplicate information from these sources
except for some system register content.

Arm architecture
The Cortex®-R82 processor implements the Arm®v8-R AArché4 architecture. This includes:

e AArché4 Execution state only. There is no support for AArch32 Execution state.

e Support for Exception levels ELO, EL1, and EL2. There is no support for EL3.
e Ab4 instruction set for the Arm®v8-R AArché4 architecture.

e Advanced SIMD and floating-point functionality that complies with ANSI/IEEE Std 754-2008,
IEEE Standard for Binary Floating-Point Arithmetic.

See the Arm® Architecture Reference Manual Supplement Armv8, for R-profile AArché4 architecture for

more information.

Bus architecture

The Cortex®-R82 processor is compliant with the following:

e AMBA 5 AXI and ACE protocol (Issue H). See the AMBA® AXI and ACE Protocol Specification .
e AMBA AXI5-Stream protocol (Issue B). See the AMBA® AXI-Stream Protocol Specification.
AMBA APB5 protocol (Issue D). See the AMBA® APB Protocol Specification.

e  AMBA 4 ATB protocol (Issue B). See the  Arm® AMBA® 4 ATB Protocol Specification ATBv1.0

and ATBv1.1

Generic Interrupt Controller (GIC) architecture CPU interface
The Cortex®-R82 processor supports the GICv3.2 architecture.
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See the Arm® Generic Interrupt Controller Architecture Specification, GIC architecture version 3 and
version 4 .

Generic Timer architecture
The Cortex®-R82 processor implements the Arm® Generic Timer architecture.

See the Arm® Architecture Reference Manual Supplement Armv8, for R-profile AArché4 architecture.

Debug architecture

The Cortex®-R82 processor implements the Arm®v8-R AArché4 debug architecture including
debug features up to Arm®v8.4 architecture, the Armv8.3-DoPD extension, and the Arm®v8.3
debug over powerdown support.

For more information, see the:

o Arm® Architecture Reference Manual Supplement Armv8, for R-profile AArché4 architecture.

e Arm® CoreSight™ Architecture Specification v3.0.

e Arm® CoreSight™ ELA-600 Embedded Logic Analyzer Technical Reference Manual .

Embedded Trace Macrocell (ETM) architecture
The Cortex®-R82 processor implements the ETMv4.5 architecture.

See the Arm® Embedded Trace Macrocell Architecture Specification ETMv4 for more information.

Performance Monitoring Unit (PMU)

The Cortex®-R82 processor implements the PMUV3 architecture with the Arm®v8.4 PMU
extension.

See the Arm® Architecture Reference Manual Supplement Armv8, for R-profile AArché4 architecture for
more information.

Reliability, Availability, and Serviceability (RAS)
The Cortex®-R82 processor implements the Arm®v8.4 RAS extension.

See the Arm® Architecture Reference Manual Supplement Reliability, Availability, and Serviceability
(RAS), for A-profile architecture for more information.
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2.5 Design process

The Cortex®-R82 processor is delivered as a synthesizable RTL description in SystemVerilog
Hardware Description Language (HDL). Before the Cortex®-R82 processor can be used in a product,
it must go through the following processes:

Implementation
The implementer configures and synthesizes the RTL to produce a hard macrocell. This
process includes integrating the cache, TCM, duplicate tag, and branch predictor RAMs into
the design.

Integration
The integrator connects the macrocell into a SoC. This process includes connecting the
macrocell to a memory system and peripherals.

Programming

In the final process, the system programmer develops the software to configure and initialize
the Arm processor and tests the application software.

Each process can be performed by a different party. Implementation and integration choices affect
the behavior and features of the Cortex®-R82 processor.

The operation of the final device depends on the following:

Build configuration

The implementer chooses the options that affect how the RTL source files are rendered.
These options usually include or exclude logic that affects one or more of the area, maximum
frequency, and features of the resulting macrocell.

Configuration inputs

The integrator configures some features of the processor by tying inputs to specific values.
These configuration settings affect the start-up behavior before any software configuration is
made. They can also limit the options available to the software.

Software configuration

The programmer configures the processor by programming particular values into registers.
These configuration choices affect the behavior of the processor.

2.6 Documentation

The Cortex®-R82 processor documentation describes the functionality of the processor and
explains how to configure, integrate, and implement it.

The Cortex®-R82 processor documentation includes a Technical Reference Manual and a
Configuration and Integration Manual.
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Technical Reference Manual

The Technical Reference Manual (TRM) describes the functionality and the key features

of the processor. It is a helpful reference at all stages of the design flow. Some behavior
described in the TRM might not be relevant because of the particular way that the Cortex®-
R82 processor is implemented and integrated. If you are programming the Cortex®-R82
processor, you need additional information from:

e The implementer about the build configuration of the implementation.
e The integrator about the signal configuration of the device that you are using.

Configuration and Integration Manual
The Configuration and Integration Manual (CIM) describes the Cortex®-R82 processor

deliverables and how to use them to perform implementation and integration of the
processor.

The Configuration and Integration Manual (CIM) describes:

e How to configure the RTL source files with the build configuration options.

e How to integrate RAM arrays.

e How to validate the RTL.

e How to run delivered tests.

o Considerations for floorplanning.

e How to integrate the processor into a SoC. This includes describing the signals that must
be tied off to configure the macrocell.

e The integration kit description.
e The processes to sign off the configured design.
If you are integrating an already-implemented macrocell of the Cortex®-R82 processor

you need additional information from the implementer about the build configuration of the
implementation.

The Arm product deliverables include reference scripts and information on how to use them
to implement your design. The methodology flows supplied by Arm are example reference
implementations. For EDA tool support, contact your EDA vendor.

The CIM is a confidential manual that is available only to licensees.

2.7 Product revisions

The following product revisions have been released.

rip0
First limited access release for r1p0O
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ripl
First early access release for ripl
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3. Technical overview

This chapter describes the Cortex®-R82 processor components and interfaces.

3.1 Terminology
In this manual, the following terms refer to the descriptions that are provided below.

Core

A core includes all the logic related to the data processing unit, memory system and
management, power management, and core-level debug and trace logic. In the context of the
Cortex®-R82 processor, CPU and core are used interchangeably.

In this manual, NUM_CORES refers to the number of cores within the Cortex®-R82
processor and <m> refers to the core instance number.

Cluster
In the context of the Cortex®-R82 processor, the cluster refers to the CPU Bridge (System
side) (CBS), the Shared Bridge (SB), all cores, and the logic that is shared among cores. Shared
logic includes the CPU Bridge (CPU side) (CBC), the L2 cache, and the coherency logic that
maintains coherency between the caches in the cores and the L2 cache and the Low-latency
RAM (LLRAM) memory. There is also shared debug logic at the cluster level.

Processor
In the context of the Cortex®-R82 processor, the processor is the top-level unit that contains
the cluster and the Power Policy Units (PPUs).

DebugBlock

DebugBlock is a dedicated debug component separate from the Cortex®-R82 processor.
The DebugBlock is instanced as a separate top-level unit to allow you to implement the
debug components in an always On power domain. Although instanced as a separate unit,
the DebugBlock still forms part of the Cortex®-R82 processor.

3.2 Components

The Cortex®-R82 processor system includes two top-level modules:

e The Cortex®-R82 processor
e The DebugBlock

The DebugBlock is separated from the Cortex®-R82 processor to allow you to implement the
debug components in an always On power mode, enabling debug over powerdown.

The following figure shows the main components of the Cortex®-R82 processor.
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Figure 3-1: Functional block diagram
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Power Policy Unit

The Cortex®-R82 processor includes several Power Policy Units (PPUs) that control power

modes and resets. The PPUs can be programmed to directly select a specific power mode or to
autonomously switch between power modes within a specified range, based on the requirements
of the processor.

The PPUs can be programmed using the Utility bus, either by a System Control Processor (SCP) or by
the Cortex®-R82 processor (through a loopback connection).

For more information on the PPUs, see /. Power and reset control with PPUs on page 86.

Shared Bridge

The Shared Bridge (SB) decouples the DebugBlock and other components in the system from
the CPU bridge in each core. The SB includes clock and power control logic for the cluster and
interacts with the L2 coherency logic for SCLK clock gating.

CPU Bridge (System side) Unit

There is one CPU bridge (System side) Unit (CBS) in the cluster. The CPU bridge controls buffering
between the cores and the Cortex®-R82 processor.
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CPU Bridge (CPU side) Unit

There is one CPU Bridge (CPU side) Unit (CBC) for all the cores in the cluster. The CPU bridge
controls buffering between the cores and the Cortex®-R82 processor.

System Router Unit

The System Router Unit (RTS) is instantiated in the cluster as a single unit. The RTS controls the
packet traffic at the cluster level such as routing the Generic Interrupt Controller (GIC) packets
between the SB in the cluster and the CPU Router Units (RTPs) within the cores.

Shared MBIST Unit

The Shared MBIST Unit (SMU) provides production MBIST for the LLRAM Coherency Unit (LCU) and
L2 cache RAMs.

LLRAM Coherency Unit

The LLRAM Coherency Unit (LCU) provides coherent access to the Low-latency RAM (LLRAM) port
for up to eight cores. The LCU also provides coherent access to LLRAM port for an external agent
that needs I/O coherency with the Cortex®-R82 processor. The LCU also provides access to the
Shared Peripheral Port (SPP).

L2

The L2 consists of the L2 cache RAMs and the L2 coherency logic. The L2 is required to interface
the cores to an AXI interconnect.

For more information on the L2 memory system, see 2.4 L2 memory system on page 126.

L2 cache

The L2 cache is unified (it can cache both instructions and data) and shared by all the cores
in the cluster. The L2 cache is 8-way, set-associative with a configurable size of OKB, 128KB,
256KB, 512KB, 1MB, 2MB, or 4MB. Cache lines have a fixed length of 64 bytes.

L2 coherency logic

The L2 coherency logic maintains coherency between all the cores and caches within the
cluster for the Main Manager (MM) port accesses.

The L2 coherency logic contains buffers that can handle direct cache-to-cache transfers
between cores without having to read or write data to the L2 cache. Cache line migration
enables dirty cache lines to be moved between cores. There is no requirement to write back
transferred cache line data to the L2 cache.

Shared AXI Subordinate Unit

The Shared AXI Subordinate Unit (SAXIS) enables external read and write access to the ACE-Lite
Subordinate (ACELS) port. These reads and writes are then routed to the Primary AX| Subordinate
Unit (PAXIS) or the LCU.

Shared Embedded Logic Analyzer Unit

The Shared Embedded Logic Analyzer Unit (SELA) provides support for a cluster level CoreSight™
ELA-600 Embedded Logic Analyzer to monitor the signals related to the shared logic.
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CPU Embedded Logic Analyzer Unit

The CPU Embedded Logic Analyzer Unit (PELA) provides support for per-core CoreSight™ ELA-600 to
monitor the signals relate to the core. The configuration option to pre-integrate ELAs is global.

The CoreSight™ ELA-600 is a separately licensable product.

Embedded Trace Macrocell Unit

Each core has an Embedded Trace Macrocell (ETM) unit that enables per-core ETM instruction and
data trace on separate ATB buses:

e An ATB4 32-bit bus for instruction.
e An ATB4 128-bit bus for data and ELA.

The trace is generated per-core but the ATB buses are shared between the cores.
For more information on the ETM, see 16. ETM on page 264.

CPU Router Unit

There is one CPU Router Unit (RTP) that is instantiated within each core. The RTPs are connected to
the RTS in the cluster.

Each RTP controls the packet traffic within the core such as routing packages between the RTP and
the Data Processing Unit (DPU) in the core.

Bus Interface Unit

The Bus Interface Unit (BIU) is responsible for driving the L2 and LCU read and write interfaces. The
BIU receives the read and write requests from the Load Store Unit (LSU), Data Cache Unit (DCU),
Translation Lookaside Buffer (TLB), Instruction Fetch Unit (IFU), and Store Unit (STU).

Store Unit

The Store Unit (STU) merges and forwards (as appropriate) stores to Instruction Tightly Coupled
Memory (ITCM), Data Tightly Coupled Memory (DTCM), L1 caches, Low-latency Peripheral Port (LLPP),
Shared Peripheral Port (SPP), Low-latency RAM (LLRAM), and Main Manager (MM).

Primary AXI Subordinate Unit

The Primary AXI Subordinate Unit (PAXIS) enables the read and write access to the Tightly Coupled
Memories (TCMs). The reads and writes both directly route to the TCM Unit (TCU) from the PAXIS.

Memory Management System Unit (MMS)

The Cortex®-R82 processor implements Protected Memory System Architecture (PMSA) and optional
Virtual Memory System Architecture (VMSA).
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Hypervisor software running at EL2 selects between PMSA and VMSA on a per-operating system
basis.

Memory Protection Unit

The Memory Protection Unit (MPU) implements the PMSA and determines the attributes
for each memory location including permissions, type, and cacheability. Two programmable
MPUs are provided, controlled from EL1 and EL2 respectively.

Access permissions determine which levels of privilege are permitted to access a location and
whether write access or instruction execution are permitted. Memory type and cacheability
affect how the Cortex®-R82 processor handles particular accesses, for example, if the
processor permits two stores to be merged into a single write access. These attributes and
their meanings are defined by the Arm architecture.

Memory Management Unit

The Memory Management Unit (MMU) implements the VMSA and provides memory system
control through a set of virtual-to-physical address mappings and memory attributes that are
held in translation tables. This information is cashed in the Translation Lookaside Buffer (TLB)
when an address is translated. The TLB entries include global and Address Space Identifiers
(ASIDs) to prevent context switch TLB flushes. They also include Virtual Machine IDentifiers
(VMIDs) to prevent TLB flushes on virtual machine switches by the hypervisor.

For more information on the memory management, see 10. Memory management on page 191.

TCM Control Unit

The Tightly Coupled Memory Control Unit (TCU) is responsible for arbitration between all requests to
the Instruction Tightly Coupled Memories (ITCMs) and Data Tightly Coupled Memories (DTCMs). The
TCU contains two arbitration pipelines for managing requests to ITCMs and DTCMs.

Each core within the Cortex®-R82 processor has:

e An optional Instruction Tightly Coupled Memory (ITCM) with configurable size O or from 16KB to
1MB in powers of 2. ITCM provides lowest-latency access for instructions and data. Optional
here means that the logic is always present but the size can be O.

ITCM is unified, that is, although it is optimized for instruction use, it is also
available for data.

e An optional Data Tightly Coupled Memory (DTCM) with configurable size O or from 16KB to
1MB in powers of 2. DTCM provides lowest-latency access for data only. Optional here means
that the logic is always present but the size can be O.

DTCM is for data only and it cannot be used to fetch instructions from.
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For more information on the TCMs, see 9.2 TCM memories on page 112.

Core MBIST Unit
The Core MBST Unit (CMU) provides production MBIST for the core RAMs.

Load Store Unit

The Load Store Unit (LSU) is responsible for execution of all instructions that affect the L1 data
memory system.

Instruction Fetch Unit

The Instruction Fetch Unit (IFU) speculatively fetches instructions from the Instruction Tightly
Coupled Memory (ITCM), L1 instruction cache, or the main memory.

The IFU predicts the outcome of branches in the instruction stream and passes the instructions to
the Data Processing Unit (DPU) for processing.

Data Processing Unit

The Data Processing Unit (DPU) includes the instruction decoders, the integer execution pipelines,
and the control logic of the Cortex®-R82 processor. It receives instructions from the IFU. The DPU
executes the integer instructions and works in conjunction with the FPU and LSU to execute FP/
SIMD instructions and instructions which require data transfer to or from the memory system.

The DPU interfaces with IFU, LSU, STU, DCU, TCU, LCU, RTP, ETM, and CBC.

The DPU implements the Generic Interrupt Controller (GIC) CPU interface as well as the Performance
Monitoring Unit (PMU).

Floating-point Unit

The Floating-point Unit (FPU) is responsible for decoding and executing the Advanced SIMD and
floating-point instructions.

Supporting Advanced SIMD and floating-point instructions is optional and can be configured
separately per-core by the Neon Fp parameter.

Advanced SIMD is a media and signal processing architecture that adds instructions primarily for
audio, video, 3D graphics, image, and speech processing. The floating-point architecture provides
support for half-precision, single-precision, and double-precision floating-point operations.

The Advanced SIMD architecture, its associated implementations, and supporting
software, are also referred to as Arm® Neon™ technology.

For more information on the Advanced SIMD and floating-point support, see 17/. Advanced SIMD
and floating-point support on page 274.
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Data Cache Unit

The Data Cache Unit (DCU) is responsible for all operations accessing the L1 Data cache. The DCU
arbitrates between the requests and is responsible for responding to snoop requests to maintain
coherency.

DebugBlock

The DebugBlock transfers trigger events to/from the Cortex®-R82 processor.

The DebugBlock is separated from the Cortex®-R82 processor to facilitate the following system
design options:

e The DebugBlock is placed in a separate power domain, to ensure that it is possible to maintain
the connection to a debugger while the cores and cluster are powered down.

e The DebugBlock is physically placed with the other CoreSight logic in the SoC, rather than
close to the cluster.

The separate power domains allow the cores and the cluster to be powered down while
maintaining essential state that is required to continue debugging. Separating the logical power
domains into physical domains is optional and might not be available in individual systems.

APB Decoder

The APB Decoder is responsible for gathering the external CoreSight component signals such
as Debug Access Port (DAP) inputs and the debug events from the Cortex®-R82 processor.

It then generates the internal select signals to activate the appropriate internal component
within the DebugBlock.

CPU Debug

The CPU Debug handles all core related accesses from both the external CoreSight
component and the Cortex®-R82 processor and generates all the necessary transactions to a
core within the Cortex®-R82 processor.

There is one CPU Debug module for each core within the Cortex®-R82 processor.

Cluster Debug

The Cluster Debug handles all cluster related accesses from both the external CoreSight
component and the Cortex®-R82 processor and generates all the necessary transactions to
relevant cluster components such as the cluster PMU and cluster ELA.

There is one Cluster Debug module for all the cluster components.

CTland CTM

The DebugBlock implements Embedded Cross Trigger (ECT). A Cross Trigger Interface (CTI) is
allocated to each core within the Cortex®-R82 processor. An additional CTl is allocated to
the cluster PMU and, if present, to the cluster ELA.

The CTls enable the debug logic, ETM, and other CoreSight components to interact with
each other.

The CTls are interconnected through the Cross Trigger Matrix (CTM). A single external channel
interface is implemented to allow cross-triggering to be extended to the SoC.
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Debug ROM Table

The Debug ROM table contains a list of components in the system. Debuggers can use the
Debug ROM table to determine which CoreSight components are implemented.

3.3 Interfaces

The Cortex®-R82 processor has several interfaces to connect it to a SoC.

The following figure shows the interfaces of the Cortex®-R82 processor.

NUM_CORES is the number of logical cores from 1 to 8.
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4———APBS Cluster to DebugBlock: APB Clock state
APB5 DebugBlock to Cluster: control Q-Channel
P Q Q-Channels
CLUSTERPPUIR WFE t EVENTIACK, EVENTOREQ———»
. s even s
<4¢——COREPPUIRQ[NUM_CORES-1:04— e EVENTIREQ, EVENTOACK—
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ACE-Lite
< AXIS RAM (LLRAM .
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——————Instruction ATB4m———— Uiility bus
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Y E— .
4———Data/ELAATB: (transmitter) (subordinate)
ELA PMU | NCLUSTERPMUIRQ— »

The following table describes the interfaces of the Cortex®-R82 processor.

Table 3-1: Processor interfaces

Purpose Protocol Notes
Low-latency AMBA® Each core within the Cortex®-R82 processor has an optional private LLPP manager for minimum
Peripheral Port AXI5 latency access to memory and devices outside the cluster.
(LLPP) (Issue H)
32-bit
Generic Interrupt AMBA® AXI5-Stream interface for interrupts from the Cortex®-R82 processor to the GIC.
Controller (GIC) AXI5-
Stream interface Stream
(processor to GIC)  |[(Issue B)
32-bit
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Purpose Protocol Notes
GIC Stream AMBA® AXI5-Stream interface for interrupts from the GIC to the Cortex®-R82 processor.
interface (GIC to AXI5-
processor) Stream
(Issue B)
32-bit
Cortex®-R82 AMBA® | APB interface from the Cortex®-R82 processor to the DebugBlock.
processor to APB5
DebugBlock (Issue D)
32-hit
DebugBlock to AMBA® APB interface from the DebugBlock to the Cortex®-R82 processor.
Cortex®-R82 APB5
processor (Issue D)
32-bit
Low-latency RAM AMBA® The Cortex®-R82 processor has an optional LLRAM for low latency access to memory shared between
(LLRAM) AXI5 cores within the cluster.
(Issue H)
256-hit
Trace AMBA® The Cortex®-R82 processor has two transmitter ATB interfaces for instructions and data. An
ATB4 instruction trace funnel funnels all the processor ETM instruction trace streams into a single ATB trace
(Issue B) bus. A data trace funnel funnels all the processor ETM data trace streams and all the ELA trace streams
32-bit into a single ATB trace bus.
instruction
ATB trace
128-bit
data ATB
trace
Utility bus AMBA® The Cortex®-R82 processor has a subordinate Utility bus that manages power states and provides
AXI5 access to Power Policy Units (PPUs) registers and Reliability, Availability, and Serviceability (RAS) registers in
(Issue H)  |each core and the cluster.
64-bit
ACE-Lite Subordinate | AMBA® The Cortex®-R82 processor has a subordinate ACELS bus that enables external agents to access to the
(ACELS) ACES5-Lite |[TCMs and LLRAM port.
(Issue H)
128-bit
WEFE event signaling |- Signals for Wait For Event (WFE) wake-up events.
Clock state control  |Q- Q-Channels for clock gating control.
Channel
Power state control |P-Channel |P-Channels for Cortex®-R82 processor power management.
Main Accelerator AMBA® The Cortex®-R82 processor has a subordinate MACP that provides access to the MM port to external
Coherency Port ACES5-Lite |managers.
(MACP) (Issue H)
128-bit
Shared Peripheral AMBA® The Cortex®-R82 processor has an optional shared SPP manager for minimum latency access to
Port (SPP) AXI5 memory and devices.
(Issue H)
64-bit
Main Manager (MM) | AMBA® The Cortex®-R82 processor has a shared MM port for accesses to high-latency memory and non-
AXI5 critical peripherals.
(Issue H)
256-hit
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Purpose Protocol  Notes

Generic Timer - Input for the Generic Timer counter value. The counter value is distributed to all cores. Each core
outputs timer events.

Design for Test (DFT) |- Interface to support access for Automatic Test Pattern Generation (ATPG) scan-path testing.

DebugBlock interfaces
The following figure shows the interfaces of the DebugBlock.

Figure 3-3: DebugBlock interfaces

DebugBlock
External APB > APB APB <4—+APB Processor to DebugBIloCk=—
(completer) (completer)
DBGEN »> Debug APB A
SPIDEN »| authentication (requester) APB DebugBlock to Processor=——p-
CTI[NUM_CO CTIIRQ[NUM_CORES:0]——p
PCLK » Clock and RES:0] |¢=~CTIRQACK[NUM_CORES:0]—
nPRESET > reset
CTM < CTI Channe|=——p
PCLK Q-Channel > P
————PWR Q-Channel > ower
management
<4-CLUSTERDBGPWRUPREQ

The following table describes the external interfaces of the DebugBlock.

Table 3-2: DebugBlock interfaces

Purpose Protocol Notes
External APB AMBA® APB5 |Completer interface to external debug component, for example a Debug Access Port (DAP).
(Issue D) Allows access to Debug registers and resources.

Cortex®-R82 processor |AMBA® APB5 |APB interface from the Cortex®-R82 processor to the DebugBlock.
to DebugBlock (Issue D)

DebugBlock to Cortex®- |AMBA® APB5 |APB interface from the DebugBlock to the Cortex®-R82 processor.
R82 processor (Issue D)

Cross-trigger channel CTI Allows cross-triggering to be extended to external SoC components.

interface

Power management Q-Channel Enables communication to an external power controller to control clock gating and
powerdown.
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4. Programmers' model

This chapter provides a brief description of the Arm®v8-R AArché4 architecture for programmers.

For a complete description of the programmers' model, refer to the Arm® Architecture Reference
Manual Supplement Armv8, for R-profile AArché4 architecture.

4.1 About the programmers' model

The Cortex®-R82 processor implements the Arm®v8-R AArché4 architecture. This includes:

e AArché4 Execution state only. There is no support for AArch32 Execution state.
e Support for Exception levels ELO, EL1, and EL2. There is no support for EL3.

e Secure state operation only at all Exception levels using the Secure-EL2 security model. There
is no support for Non-secure state at any EL.

e Full implementation of the Arm®v8-A Aé4 instruction set with Arm®v8-R AArché4 Instruction
Set Architecture (ISA) extensions.

e Protected Memory System Architecture (PMSA) at EL1 and EL2.
e Optional Virtual Memory System Architecture (VMSA) only at EL1.

e Arm®v8-R AArché4 debug architecture including debug features up to Arm®v8.4 architecture
and the debug over powerdown support.

e Generic Interrupt Controller (GIC) with the GICv3.2 architecture.
e Advanced SIMD and floating-point operations in the A64 instruction set.

4.2 Arm®v8-R AArché4 architecture concepts

The following sections provide an introduction to the main architectural concepts and terminology
used throughout the rest of this document.

See the Arm® Architecture Reference Manual Supplement Armv8, for R-profile AArché4 architecture for
more information.

An understanding of the terminology defined in this section is a prerequisite for
understanding the remainder of this manual.
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4.2.1 Architecture requirements

The Cortex®-R82 processor supports all the mandatory features from the Arm®v8.4 architecture
and some optional features from the Arm®v8.5 and Armv8.6 architectural extensions.

The following table shows the architectural features that are implemented by the Cortex®-R82
Processor.

Table 4-1: Architectural features implemented by the processor

Feature name Description Implemented by the processor
FEAT GICv3 Generic Interrupt Controller v3 Yes
FEAT GICv3.1 Generic Interrupt Controller v3.1 Yes
FEAT GICv4 Generic Interrupt Controller v4 No
FEAT GICv4.1 Generic Interrupt Controller v4.1 No
FEAT _PMUvV3 PMU extensions Yes
FEAT ETMv4 Embedded Trace Macrocell v4.0 Yes
FEAT ETMv4.1 Embedded Trace Macrocell v4.1 Yes
FEAT ETMv4.2 Embedded Trace Macrocell v4.2 Yes
FEAT ETMv4.3 Embedded Trace Macrocell v4.3 Yes
FEAT ETMv4 4 Embedded Trace Macrocell v4.4 Yes
FEAT ETMv4.5 Embedded Trace Macrocell v4.5 Yes
FEAT ETMv4.6 Embedded Trace Macrocell v4.6 No
FEAT_RAS Reliability, Availability, and Serviceability extension Yes
FEAT SPE Statistical Profiling Extension No
FEAT SVE Scalable Vector Extension No
FEAT AMUv1 Activity Monitors No
FEAT_MPAM Memory Partitioning and Monitoring No
FEAT PCSRv8 PC Sample-based Profiling extension Yes
FEAT_SHA1 Advanced SIMD SHA1 instructions No
FEAT SHA256 Advanced SIMD SHA256 instructions No
FEAT AES Advanced Encryption Standard No
FEAT PMULL Advanced SIMD PMULL instructions No
FEAT DoublelLock Double Lock No
FEAT_SSBS Speculative Store Bypass Safe Yes
FEAT _SSBS2 MRS and MSR instructions for SSBS Yes
FEAT_CSV2 Cache Speculation Variant 2: Implementation of CSV2 without SCXTNUM | Yes
registers
FEAT_CSV2_1p1 Cache Speculation Variant 2: Implementation of CSV2 without SCXTNUM | Yes
registers
FEAT_CSV2_1p2 Cache Speculation Variant 2: Implementation of CSV2 without SCXTNUM [No
registers
FEAT CSV2 2 Cache Speculation Variant 2: Implementation of CSV2 without SCXTNUM |No
registers
FEAT CSV3 Cache Speculation Variant 3 Yes
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Feature name Description Implemented by the processor

FEAT _SB Speculation Barrier Yes

FEAT _SPECRES Speculation restriction instructions Yes

FEAT_CP15SDISABLE2 | Prevents writes to a set of Secure CP15 registers No

FEAT FP Floating Point Extensions Yes, when NEON_FP<m> == 1

FEAT AdvSIMD Advanced SIMD Extensions Yes, when NEON_FP<m> ==

FEAT_DGH Data Gathering Hint Yes

FEAT ETS Enhanced Translation Synchronization No

FEAT nTLBPA Intermediate caching of translation table walks Yes, nTLBPA set to 1

FEAT _CRC32 CRC32 Instructions Yes

FEAT _LSE Large System Extensions Yes

FEAT_RDM Rounding Double Multiply Accumulate Yes, when NEON_FP<m> ==

FEAT HPDS Hierarchical Permission Disables Yes, when VMSA<m> == 1

FEAT VHE Virtualization Host Extensions No, but CONTEXTIDR_EL2
implemented

FEAT PAN Privileged Access-Never Yes

FEAT_LOR Limited Ordering Regions No

FEAT HAFDBS Translation Table Hardware Management Yes, when VMSA<m> == 1

FEAT_VMID16 16-bit VMID No

FEAT_PMUv3p1l Armv8.1 PMU extensions Yes

FEAT_Debugv8p1l Armv8 debug with VHE No

FEAT TTCNP Translation Table Common Not Private translations Yes, when VMSA<m> == 1

FEAT_XNX Translation Table Stage 2 Unprivileged Execute-Never Yes

FEAT UAO PSTATE override of Unprivileged Load/Store Yes

FEAT PAN2 AT S1E1Rand AT S1E1W instruction variants Yes

FEAT DPB Data Cache clean to Point of Persistence Yes

FEAT_Debugv8p2 Armv8.2 Debug extensions Yes

FEAT_ASMv8p2 Armv8.2 changes to the Aé64 Instruction Set Architecture Yes

FEAT_IESB Implicit Error Synchronization Barrier Yes

FEAT AA32HPD AArch32 Hierarchical Permission Disables No

FEAT HPDS2 Translation Table Page Based Hardware Attributes No

FEAT_LSMAQOC Load/Store Multiple Atomicity and Ordering Controls No

FEAT_FP16 Half-precision floating-point data processing Yes, when NEON_FP<m> ==

FEAT_LVA Large VA support No

FEAT_LPA Large PA and IPA support No

FEAT _VPIPT VMID-aware PIPT instruction cache No

FEAT_PCSRv8p2 Armv8.2 PC Sample-based Profiling extension Yes

FEAT DotProd Dot Product instructions Yes, when NEON_FP<m> ==

FEAT_FHM Floating-point Half-precision Multiplication instructions Yes, when NEON_FP<m> ==
FEAT_SHA3 Advanced SIMD EOR3, RAX1, XAR, and BCAX instructions No
FEAT SHA512 Advanced SIMD SHA512 instructions No
FEAT SM3 Advanced SIMD SM3 instructions No
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Feature name Description Implemented by the processor
FEAT SM4 Advanced SIMD SM4 instructions No

FEAT EVT Enhanced Virtualization Traps No

FEAT DPB2 Cache Clean to Point of Deep Persistence Yes

FEAT BF16 BFloat16 extension No

FEAT AA32BF16 AArch32 BFloat1é extension No

FEAT I8MM Int8 Matrix Multiplication No

FEAT AA32I18MM AArch32 Int8 Matrix Multiplication No

FEAT_F32MM Single-precision Matrix Multiplication No

FEAT_F64MM Double-precision Matrix Multiplication No

FEAT PAuth Pointer Authentication Yes

FEAT_PAuth2 Enhanced Pointer Authentication functionality Yes

FEAT_FPAC Faulting on AUT* instructions Yes

FEAT JSCVT JavaScript Conversion instruction Yes, when NEON_FP<m> ==
FEAT NV Nested Virtualization No

FEAT LRCPC Weaker release consistency Yes

FEAT_FCMA Floating-point Complex Number support Yes, when NEON_FP<m> ==
FEAT CCIDX Cache extended number of sets No

FEAT_SPEvip1l Armv8.3 Statistical Profiling Extensions No

FEAT_DoPD Armv8.3 debug over powerdown Yes

FEAT SEL2 Secure EL2 Yes

FEAT_NV2 Enhanced support for Nested Virtualization No

FEAT S2FWB Stage 2 Forced Write-Back Yes

FEAT_DIT Data Independent Timing Yes

FEAT_IDST ID Space Trap handling Yes

FEAT_FlagM Armv8.4 Condition flag Manipulation Yes

FEAT _LSE2 Armv8.4 Large System Extensions Yes

FEAT LRCPC2 Armv8.4 enhancements to weaker release consistency Yes

FEAT TLBIOS TLB invalidate instructions in Outer Shareable domain Yes

FEAT TLBIRANGE TLB invalidate range instructions Yes

FEAT TTL Translation Table Level Yes, when VMSA<m> == 1
FEAT_BBM Change in size of page table mappings Yes, when VMSA<m> == 1
FEAT_CNTSC Generic Counter Scaling Yes

FEAT_RASv1p1 RAS extensions for Armv8.4 Yes

FEAT DoubleFault Double Fault Extension No

FEAT_Debugv8p4 Armv8.4 Debug relaxations and extensions Yes

FEAT_PMUv3p4 Armv8.4 PMU extensions Yes

FEAT TRF Armv8.4 Self-hosted Trace extensions Yes

FEAT TTST Small translation tables Yes, when VMSA<m> ==
FEAT_FlagM2 Armv8.5 Condition flag Manipulation No

FEAT_FRINTTS Floating-point to integer No
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Feature name Description Implemented by the processor
FEAT_EXS Context synchronization and exception handling No

FEAT GTG Guest Translation Granule size No

FEAT BTI Branch Target Identification No

FEAT EOPD Preventing ELO access to halves of the address map Yes, when VMSA<m> == 1
FEAT RNG Random Number Generator No

FEAT_MTE Memory Tagging extension No

FEAT_PMUv3p5 Armv8.5 PMU extensions No

FEAT_ECV Enhanced Counter Virtualization No

FEAT FGT Fine-Grained Traps No

FEAT_TWED Trapping of WFE No

FEAT_AMUv1p1l Armv8.6 AMU extensions No

FEAT_MPAMVOp1 Arm v8.6 MPAM extension No

FEAT_MPAMv1p1 Arm v8.6 MPAM extension No

FEAT MTPMU Multi-threaded PMU extensions No

4.2.2 Execution state

The Arm®v8-R AArché4 architecture has only one Execution state, AArché4.

The Execution state defines the processor execution environment, including:

e Supported register widths.

e Supported instruction sets.

e Significant aspects of:

o

o

o

o

The execution model.
Protected Memory System Architecture (PMSA).
Virtual Memory System Architecture (VMSA).

The programmers' model.

4.2.3 Exception levels

In the Arm®v8-R AArché4 architecture, execution occurs at one of three Exception levels, ELO,
EL1, and EL2. The Exception level determines the level of privilege where:

o ELO has the lowest software execution privilege. Execution at ELO is called unprivileged
execution.

e Moves to a higher Exception level, such as from ELO to EL1, indicate increased software
execution privilege.

e EL2 provides support for processor virtualization.
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The architecture does not specify what software runs at each Exception level, and such choices are
outside the scope of the architecture. However, the following is a common usage model for the
Exception levels:

ELO Application.
EL1 Operating System.
EL2 Hypervisor.

Unlike AArch32, the AArché4 execution state does not sub-divide any of the
Exception levels into different modes.

Changing Exception levels

When an exception is taken, the processor changes to the Exception level that supports the
handling of the exception.

Taking an An exception is generated when the processor first responds to an exceptional

exception condition. The processor state at this time is the state the exception is taken
from. The processor state immediately after taking the exception is the state
the exception is taken to.

Returning To return from an exception, the processor must execute an exception return
from an instruction. The processor state when an exception return instruction is
exception committed for execution is the state the exception returns from. The processor

state immediately after the execution of that instruction is the state the
exception returns to.

Execution can move between different Exception levels only on taking an exception, or on
returning from an exception. Movement between Exception levels follows these rules:

e On taking an exception, the Exception level either increases or remains the same. An exception
cannot be taken to a lower Exception level.

e On returning from an exception, the Exception level either decreases or remains the same. An
exception cannot return to a higher Exception level.

e Thereis no exception handling at level ELO. Exceptions must be handled at a higher Exception
level.

The Exception level that execution changes to or remains in, on taking an exception, is called the
target Exception level of the exception, and:

e FEvery exception type has a target Exception level that is either:
o Implicit in the nature of the exception.
o Defined by configuration bits in the system registers.

e An exception cannot target ELO.
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4.2.4 Instruction set architecture

The Arm®v8-R AArché4 architecture supports the Aé4 instruction set with Arm®v8-R AArché4
Instruction Set Architecture (ISA) extensions.

Arm®v8-R AArché4 ISA extensions add the following modifications to the original Aé4 ISA.

Table 4-2: Arm®v8-R AArché4 ISA extensions

Instructions Change from A64

DFB New instruction
DSB Redefined

DMB Redefined
DCPS3 Not supported
SMC Not supported

The A64 instruction set provides access to 64-bit wide integer registers and data operations.
Instruction opcodes, however, are still 32-bit long, not 64-bit long.

The Arm®v8-R AArché4 architecture does not support the A32 or T32 instruction sets.

4.2.5 Data types
The Arm®v8-R AArché4 architecture supports the following integer data types:

e Byte (8 bits).

e Halfword (16 bits).

o Word (32 bits).

e Doubleword (64 bits).

The Arm®v8-R AArché4 architecture also supports half-precision, single-precision, and double-
precision floating-point data types as well as 64-bit and 128-bit wide vectors.

4.2.6 Arm®v8-R AArché4 registers

The Arm®v8-R AArché4 architecture has the following registers.

General-purpose registers

The Arm®v8-R AArché4 architecture provides thirty-one 64-bit general-purpose registers for
instruction processing. General-purpose registers are accessible at all times and at all Exception
levels. Each register can be accessed as:

o A 64-bit general-purpose register named X0 to X30.
o A 32-bit general-purpose register named WO to W30.

The X30 general-purpose register is used as the procedure call link register.
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In addition to the thirty-one general-purpose registers, there are also following special registers:
o Three 64-bit dedicated Stack Pointer (SP) registers for Exception levels ELO, EL1, and EL2.

e A 64-bit Program Counter (PC) holding the address of the current instruction. Software cannot
write directly to the PC.

o Two Exception Link Registers (ELR) holding the exception return address for Exception levels EL1
and EL2.

e Two Saved Program Status Registers (SPSR) holding the state on taking exceptions for Exception
levels EL1 and EL2.

e If the Cortex®-R82 processor is configured with Neon™ technology, thirty-two 128-bit
Advanced SIMD and floating-point registers. These registers can be accessed as 32-bit registers
S0O-S31, or as 64-bit registers DO-D31, or as 128-bit registers Q0-Q31, but these are different
views of the same data.

Process state, PSTATE

Process state or PSTATE is an abstraction of process state information. PSTATE holds information
including:

e Flags that can be set by certain instructions and that determine the behavior of other
instructions.

e Status bits that reflect the current Exception level and other states of the processor.

e Control bits that determine, for example, interrupt masking and data endianness.

System registers

System registers provide system control or status reporting. For example, a register might provide
syndrome information about an abort exception that the core has taken, or provide a control to
enable or disable a cache.

The System registers use a standard naming format, <register_name>.<bit_field_name>, to identify
specific registers and the control and status bits within a register. Bits can also be described by
their numerical position in the form <register_name>[x:y] or the generic form bits[x:y].

The System registers include:

e |D registers.

e General system control registers.

e Debug registers.

o Generic Timer registers.

e Performance Monitors Registers.

e GIC CPU interface registers.
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4.2.7 Memory model

The Cortex®-R82 processor views memory as a linear collection of bytes numbered in ascending
order from zero. For example, bytes 0-3 hold the first stored word, and bytes 4-7 hold the second
stored word.

The Cortex®-R82 processor can access halfwords, words, and doublewords in memory as either:
e Big-endian format.

e Little-endian format.

See the Arm® Architecture Reference Manual Supplement Armv8, for R-profile AArché4 architecture for
more information about big-endian and little-endian memory systems.

Some performance optimizations in the Cortex®-R82 processor memory system
are only activated when memory is accessed in little-endian format. For best
performance, Arm recommends using the Cortex®-R82 processor in little-endian.

Instructions are always little-endian.

4.2.7.1 Memory types

The Arm®v8 architecture provides mutually exclusive memory types. System registers in Memory
Protection Unit (MPU) define the memory types and attributes for each region in the memory map.

The memory types are:

Normal This is generally used for bulk memory, both read/write and read-only.

Device This is generally used for peripherals, which might be read-sensitive or write-
sensitive. The Arm architecture restricts how accesses to Device memory may
be ordered, merged, or speculated.

The Arm®v8 architecture divides Device memory into several subtypes. These relate to the
following attributes:

G Gathering. The capability to gather and merge requests together into a single
transaction.

R Reordering. The capability to reorder transactions.

E Early Write Acknowledgement. The capability to accept early

acknowledgement of transactions from the interconnect.
The following table describes the Arm®v8 architecture memory types.
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Table 4-3: Arm®v8 architecture memory types

Memory Comment
type

GRE Similar to Normal non-cacheable, but does not permit speculative accesses.

nGRE Treated as nGnRE inside the Cortex®-R82 processor, but can be reordered by the external interconnect.

nGnRE Corresponds to Device in the Armv7 architecture.

nGnRNE | Corresponds to Strongly Ordered in Arm® Armv7 architecture. Treated the same as nGnRE inside the Cortex®-R82 processor,
but reported differently on the bus sideband signals.

4.2.7.2 Memory system architecture
The Arm®v8-R AArché4 architecture supports the following memory system architectures:

e Protected Memory System Architecture (PMSA) at both EL1 and EL2. This is mandatory.
e Virtual Memory System Architecture (VMSA) at EL1. This is optional.

The Arm®v8-R AArché4 architecture allows either of the following memory system configurations
for an implementation:

e PMSAat EL1 and PMSA at EL2.
e PMSA and VMSA at EL1 and PMSA at EL2.

Hypervisor running at EL2 can select the memory system architecture for each guest OS. This
enables the hypervisor to support multiple guest operating systems utilizing either PMSA or VMSA
on a per guest basis.

The Arm®v8-R AArché4 architecture supports two translation regimes:
e EL1 MPU or MMU handles stage 1 translation of EL1 and ELO translation regime.

e EL2 MPU handles stage 1 translation of EL2 translation regime and stage 2 translation of EL1
and ELO translation regime.

If an implementation only supports PMSA at EL1, the Virtual Address (VA), Intermediate Physical
Address (IPA), and Physical Address (PA) are all the same and translation operation reduces to
memory attribute and permission checks.

4.2.8 Security model

The Arm®v8-R AArché4 architecture does not support the EL3 Exception level and therefore there
is no Secure Monitor to support switching between accesses to Secure and Non-secure physical
memory address space. The Arm®v8-R AArché4 architecture always operates in Secure state at all
Exception levels.

The Arm®v8-R AArché4 architecture supports two Secure translation regimes that determine
whether the output address is in Secure or Non-secure physical memory address space. This means
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that the Cortex®-R82 processor always operates in Secure state but the Cortex®-R82 processor
can access both Secure and Non-secure physical memory address space.

4.3 Advanced SIMD and floating-point

Advanced SIMD is a media and signal processing architecture.

Floating-point performs half-precision, single-precision, and double-precision floating-point
operations.

The Advanced SIMD architecture, its associated implementations, and supporting
software, are also referred to as Arm® Neon™ technology.

See the Arm® Architecture Reference Manual Supplement Armv8, for R-profile AArché4 architecture for
more information.
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5. Clocks and resets

This chapter describes the clocks and resets of the Cortex®-R82 processor.

5.1 Clocks and clock enables

The Cortex®-R82 processor requires clock signals for the cores, internal logic, and external
interfaces. The Cortex®-R82 processor provides clock enables on some interfaces allowing them to
operate at an integer division of the main processor clock.

The Cortex®-R82 processor is organized as a single up-to-8-core cluster that runs synchronously
to the external memory system.

All clocks can be driven fully asynchronously to each other. The Cortex®-R82 processor contains all
the necessary synchronizing logic for crossing between clock domains. There are no clock dividers
and no latches in the design. The entire design uses the rising edge of the clock.

The following table describes the Cortex®-R82 processor clock input and output signals.

Table 5-1: Clock signals

Signal Description

SCLK The main system clock for all cluster and core logic including the memory system interfaces and the GIC interface.
PCLK The clock for the DebugBlock and the debug APB interface in the cluster.
Note:

The DebugBlock and the Cortex®-R82 processor both have PCLK inputs. You might choose to connect these to the same
clock. Alternatively, you might choose to place an asynchronous bridge between the two components, in which case they
might be different clocks.

ATCLK The clock for the ATB trace bus outputs from the cluster.

PERIPHCLK | The clock for Utility bus and peripheral logic inside the cluster such as timers, clock management logic, and power
management logic.

The Cortex®-R82 processor provides clock enable inputs for the following interfaces to allow
implementation of external logic to run at a lower synchronous frequency.

e Main Manager (MM) interface.
e Main Accelerator Coherency Port (MACP) subordinate interface.
e low-latency RAM (LLRAM) manager interface.
e ACE-Lite Subordinate (ACELS) interface.
e Shared Peripheral Port (SPP) manager interface.
e low-latency Peripheral Port<m> (LLPP<m>) manager interface.
e Generic Interrupt Controller (GIC) AXI5-Stream interface.
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e« Timers interface.

These interfaces can be timed as multicycle paths when they operate at an integer division of the
main clock by using clock enable signals.

The following table describes the clock enable input signals and their scope.

Table 5-2: Clock enable signals

Signal Scope

ACLKENM MM interface

ACLKENA MACP subordinate interface
ACLKENL LLRAM manager interface
ACLKENS ACELS interface

ACLKEND SPP manager interface
ACLKENP<m> LLPP<m> manager interface
ACLKENG GIC AXI5-Stream interface
CNTCLKEN Timers clock enable.

While there is no functional requirement for the clocks to have any relationship with each other,
the Cortex®-R82 processor is designed with the following assumptions to achieve optimal
performance and minimize latency:

e SCLK should be set to the maximum achievable frequency for the optimal system performance.

e SCLK can run at synchronous 2:1 frequency with the external interconnect, avoiding the need
for an asynchronous bridge between them.

e SCLK can run at synchronous 2:1 frequency with the external GIC, avoiding the need for an
asynchronous bridge between them.

e PCLK and ATCLK can run at the same frequency as the relevant SoC components that they
connect to. This would typically be approximately 25% of the maximum SCLK frequency.

e PERIPHCLK contains the architectural timers, and software performance can be impacted if
reads to these registers take too long. Therefore, Arm® recommends that PERIPHCLK is run at
least 25% of the maximum SCLK frequency.

DCLS clock restrictions

When Lock-mode and Hybrid-mode execution modes are used, then the following additional clock
restrictions apply:

e Due to DCLS timeout mechanisms, there is a constraint on the maximum clock ratio that is
supported between any two clocks. This maximum supported clock frequency ratio is 20:1. For
more details, see the table of the supported clock domain crossings below.

e The PERIPHCLK must have an equal or lower frequency than all other clocks.

e When the Q-Channel of a given clock domain is in the Q_STOPPED state, then the clock must
be either available or gated throughout this state. Because clock gating transitions within the
Q_STOPPED state might break lock-step.
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e  When the QACTIVE of given clock domain is asserted while the Q-Channel is in the
Q_STOPPED state, then the clock must be provided within a reasonable amount of time. Arm
recommends a time period of up to 32 clock cycles of the relevant clock. Externally clock gating
the clock for longer than this time period after a QACTIVE assertion can break lock-step.

Table 5-3: R82 clock domain crossings

Launching clock  Capturing clock

SCLK PERIPHCLK
PCLK PERIPHCLK
ATCLK PERIPHCLK
PERIPHCLK SCLK
PERIPHCLK PCLK
PERIPHCLK ATCLK

5.2 Clock domains

Most of the Cortex®-R82 processor logic, including logic within each core, operates in a single
clock domain, SCLK.

The following figure shows the Cortex®-R82 processor clock domains and clock enable signals.
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Figure 5-1: Clock domains and clock enable signals
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However, the DebugBlock can be placed in a different clock domain provided
asynchronous bridges are inserted on the APB interfaces between the DebugBlock
and the cluster.

*o The DebugBlock is shown in a common PCLK domain with the cluster debug logic.

Note

Each clock domain shown in the figure also outputs a clock enable signal. The clock enable signal is
output from the Power Policy Unit (PPU) and indicates if the clock is required for that clock domain
or not. For example, if the power domain associated with that clock domain is OFF, then the clock
can be gated and Q-Channels ignored.

The following table describes the relationship between the clock enable signals, Q-Channel and the

final clock.
XCLKEN Q-state Final clock
0 X (do not care) 0
1 Q STOPPED 0
1 Q RUN 1
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5.3 Resets

The Cortex®-R82 processor provides two cold (powerup) and active-LOW reset inputs and

four cold (powerup) and active-LOW reset outputs. The Cortex®-R82 processor also provides
programmable resets to allow resetting of individual parts of the design through integrated Power
Policy Units (PPUs).

The following table describes the Cortex®-R82 processor reset signals.

Table 5-5: Reset signals

Signal Direction Description

nRESET

Input A global processor-wide Cold reset signal for all resettable registers in the SCLK domain excluding the
DebugBlock.

NMBISTRESET |Input A global processor-wide Cold reset signal for all resettable registers required for MBIST functionality (SCLK

domain). It is intended for use by an external MBIST controller and allows it to avoid controlling the reset logic
in the SoC.

nPRESET Output | A reset signal for all resettable registers in the DebugBlock (PCLK domain).
NSRESET Output | A reset signal for all resettable registers in the SCLK domain.
NATRESET Output | A reset signal for all resettable registers in the ATCLK domain.

All reset inputs can be asserted (HIGH to LOW) and deasserted (LOW to HIGH) asynchronously
for a minimum of 10 or more PERIPHCLK cycles. Reset synchronization logic inside the Cortex®-
R82 processor ensures that reset deassertion is synchronous for all resettable registers inside those
reset domains. The clock does not need to be present for reset assertion and only PERIPHCLK

(for the cluster) or PCLK (for the DebugBlock nPRESET) needs to be present for reset deassertion.
However, the reset might not take effect in other clock domains until the relevant clock for that
domain is active.

You can use the Cortex®-R82 processor reset output signals which are driven from

. the PPUs to reset any external logic that is in the same clock domain as the relevant
parts of the cluster. For example, the nPRESET input to the DebugBlock can be

* connected to the nPRESET output of the cluster that is driven by the cluster PPU.

Note This prevents the possible out of synchronization problems. All the Cortex®-R82
processor reset outputs are generated in the PERIPHCLK domain and therefore
must be synchronized before use in the destination component.

The Cortex®-R82 processor allows you to reset individual parts of the processor by programming
the integrated PPUs. The following table describes the programmable resets. See 5.4 Resetting
with PPUs on page 61 on programming the PPU to control resets.

Table 5-6: Programmable resets

Programmable Affected clock Description

reset

Core Cold
reset

domains

SCLK Per-core Cold reset for all resettable registers in a specific core.
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Programmable Affected clock Description
reset domains
Core Warm SCLK Per-core Warm reset for all resettable registers in a specific core, except the Debug registers, ETM
reset registers, and RAS registers.
Cluster Cold  |SCLK, PCLK, Cold reset for all resettable registers in the Cortex®-R82 processor and the DebugBlock, except the
reset ATCLK, PPU.
PERIPHCLK
Cluster Warm | SCLK Warm reset for all resettable registers in the Cortex®-R82 processor, except the DebugBlock, the

reset

PPU, and the logic for the Utility bus, debug, ETM, and RAS functionality.

The Cortex®-R82 processor has per-core CPUHALT<m> input pins. When a core comes out of
reset and is ready to start fetching from the reset vector, it checks the value of its corresponding
CPUHALT<m> input pin:

While CPUHALT<m> is HIGH, the core waits and does not start fetching from the reset vector.

While CPUHALT<m> is LOW, the core starts fetching from the reset vector and thereafter
ignores CPUHALT<m>.

You can use the CPUHALT<m> pins to load the Instruction Tightly Coupled Memories (ITCMs) so that
the cores can boot from them.

5.4 Resetting with PPUs

The Power Policy Units (PPUs) control the power management features of the cluster and cores
using a software interface. There is one PPU for the cluster and one for each core within the
Cortex®-R82 processor.

Certain power state changes, for example, powering up the cluster from a powered down state,

includes implicit resets to internal logic. This internal reset is managed by the PPU controlling the
transition between the two state modes and does not require an external signal to be asserted or
explicit programming of the PPU. For more information on what internal reset actions result from
power mode changes, see /.7 Explicit resetting of cluster and cores and debug recovery on page

94.
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6. Power management

This chapter describes the power domains and the power modes in the Cortex®-R82 processor.

6.1 About power management

The Cortex®-R82 processor provides mechanisms to minimize both dynamic and static power
dissipation.

The dynamic power management is achieved through local, regional, and architectural clock gating.

The static power management is achieved through dynamic retention capabilities enabled by
multiple power domains and modes.

6.2 Voltage domain
The Cortex®-R82 processor has one voltage domain.

The DebugBlock typically resides in the same voltage domain as the Cortex®-R82 processor.
However, you can place the DebugBlock in a separate voltage domain if necessary. In this case, the
implementer has to place appropriate bridges on the APB interfaces between the DebugBlock and
the Cortex®-R82 processor.

6.3 Clock gating

The Cortex®-R82 processor includes extensive clock gating to reduce dynamic power
consumption.

Clock gating includes:
e local clock gating inferred by the synthesis tools.

e Regional clock gating with instantiated clock gates covering a larger region of logic. As a subset
of this, the Cortex®-R82 processor implements architectural clock gating, defined as clock
gating the majority of a core's logic when that core is in a low-power state, such as the Wait for
Interrupt (WFI) state.

e Hierarchical clock gating which is performed externally to the Cortex®-R82 processor when all
components on a clock domain are idle.
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6.3.1 Local and regional clock gating
The local and regional clock gating is performed automatically and needs no external support.

The Cortex®-R82 processor has been designed to enable synthesis tools to automatically infer
local clock gates for groups of flip-flops. These clock gates disable the clock and therefore reduce
the dynamic power that is consumed by the flip-flops and logic local to the clock gate.

Regional clock gating in the Cortex®-R82 processor allows the clock for larger regions of logic
to be disabled when idle, which further reduces dynamic power consumption. The Cortex®-R82
processor contains regional clock gates for all components within the cluster. The Cortex®-R82
processor automatically enables and disables the regional clock gates according to its functional
requirements.

The Cortex®-R82 processor also implements architectural clock gating for the clock to a core when
that core is in a low-power state, such as when executing a Wait for Interrupt (WFI) or Wait for Event
(WFE) instruction. The architectural clock gates for each core are implemented within the CPU
Bridge unit.

6.3.2 Hierarchical clock gating

The Cortex®-R82 processor allows further power savings by supporting the clock to be gated off

higher up in the clock tree. To do this, the Cortex®-R82 processor provides Q-Channels for SCLK,
ATCLK, and PCLK clock domains that can be used by an external clock controller to gate the clock
when all components in that clock domain are idle.

There are two Q-Channels to hierarchically gate PCLK components, one for the
cluster logic and one for the DebugBlock. This is because the DebugBlock can be
implemented in a separate power domain and can be independently powered off
and on.

The exception to this is the PERIPHCLK, because the PERIPHCLK is expected to drive the logic
that is always ON and that is responsive to the events such as timers.

The Cortex®-R82 processor has several interfaces that connect to other components in the SoC
that are likely to be in the same clock domains. For example, the Cortex®-R82 processor Generic

Interrupt Controller (GIC) CPU interface signals might be in the same clock domain as the external
GIC distributor, and the Cortex®-R82 processor ATB interface signals might be in the same clock
domain as the external trace infrastructure. Hierarchical clock gating of these components when

they are idle allows further power reduction.

Most of the Cortex®-R82 processor, including the logic within each core, operates in a single clock
domain, SCLK. When all cores and all cluster components are inactive, a Q-Channel allows an
external clock controller to gate the whole SCLK domain.

The hierarchical clock gates are implemented within the Shared Bridge (SB) unit.
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6.3.2.1 Wait for Interrupt and Wait for Event

Wait for Interrupt (WFI) and Wait for Event (WFE) are architectural features that are used to put
each core in the Cortex®-R82 processor in a low-power Standby mode by hierarchically disabling
the clock at the top of the clock tree.

To reduce dynamic power, each core in the Cortex®-R82 processor can request entry into a low-
power state using the wr1 and wrE instructions. In the low-power state, most of the clocks in a
core are disabled while keeping the core powered up. This reduces the power drawn to the static
leakage current, leaving a small clock power overhead to enable the core to wake up.

In addition to the per-core wr1 and wre low-power states, the clock to (almost all) the L2 and
LLRAM Coherency Unit (LCU) logic is automatically disabled when the cluster is sufficiently idle.
A wWrI or wrE instruction completes when:

e All outstanding load instructions are completed.

e All store instructions are completed.

e All bus traffic is completed.

While a core is in the low-power state, the clocks in the core are temporarily enabled under the
following conditions:

e A snoop request from the L2 cache that must be serviced by the L1 data cache.

e An APB access to the debug, trace, or core Performance Monitoring Unit (PMU) registers residing
in the core power domain.

e An access request from the Generic Interrupt Controller (GIC) distributor to the GIC CPU
interface.

e Anaccess from the Utility bus to Reliability, Availability, and Serviceability (RAS) registers.

While the clocks in the core are temporarily enabled, the core remains in the wrz or wre low-power
state.

WFE wake up event signaling

e A Send Event (sEv) instruction signals a wre wake up event to other clusters by asserting the
EVENTOREQ output.

e The EVENTIREQ input indicates that another cluster or system component has signaled a wrr
wake up event.

System global exclusive monitor signaling

Any global exclusive monitor in the system must be able to generate an event when it is cleared.
This event must be signaled to the cluster using the EVENTIREQ input.
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6.4 Power domains

The Cortex®-R82 processor supports several different power domains. However, you do not need
to implement all the available power domains. The implementation choices, such as the number
of cores or L2 cache implementation, determine the number and type of power domains that are
implemented.

The Cortex®-R82 processor supports PDTOP, PDCLUSTER, PDL2RAMO, PDL2RAM1,
PDCPU<m>, and PDADVSIMD<m> power domains.

PDADVSIMD<m> is present if the core <m> is configured to support Advanced
SIMD and floating-point (NeoN_Fp<m> = 1).

The following figure shows the supported power domains. Each box with blue boundaries indicates
a separate power domain.

Figure 6-1: Processor power domains
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The Cortex®-R82 processor has a top-level power domain, PDTOP, that allows the whole
processor to be turned off. PDTOP is expected to be in the same power domain as other SoC
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components. The only cluster logic in PDTOP power domain is the Power Policy Units (PPUs) which
will typically be almost always On. This is because the PPUs need to power down the other power
domains including PDCLUSTER while remaining active.

The PDTOP power domain must be powered up before any of the other power domains are
powered up. It must only be powered down after the other power domains have been powered
down.

The DebugBlock is designed to be included in a separate Debug power domain with other Debug
components.

PDCLUSTER

The whole cluster, excluding the PPUs, belongs to a single power domain, PDCLUSTER. This allows
the Cortex®-R82 processor to be put in several power states while the PPUs stay operational to
handle power transitions.

PDL2RAMO and PDL2RAM1

PDL2RAMO and PDL2RAM1 power domains enable the independent power control of the L2
cache RAMs. PDL2RAMO and PDL2RAM1 power domains allow:

e The L2 cache to support operation with only half of the RAMs active, when multiple cores are
turned off or in retention.

PDL2RAMO and PDL2RAM1 can be controlled individually only if 1.2 st1cEs is
set to 2.

e The Cortex®-R82 processor to turn off or put in retention all the L2 cache RAMs.

PDCPU<m>

Each core within the Cortex®-R82 processor has its own power domain, PDCPU<m>, to allow the
cores to be powered down individually.

PDADVSIMD<m>

The Advanced SIMD and floating-point block in each core within the Cortex®-R82 processor is
also part of the power domain for that core. However, to support independent retention control,
each Advanced SIMD and floating-point block also has its own power domain, PDADVSIMD<m>,
for isolating it from the surrounding domain. This allows the Advanced SIMD and floating-point
block to be put in retention while the rest of the core is active.

Clamping and isolation cells between power domains are inferred from the supplied UPF files
rather than instantiated in the RTL.

The following table shows the power domains that the Cortex®-R82 processor supports.
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Table 6-1: Power domain description

Power domain Description

PDTOP This domain contains all cluster logic including the Power Policy Units (PPUs).

PDCLUSTER This domain contains the Shared Bridge (SB), CPU Bridge (CB) (both system side and CPU side CBs), trace and debug
routing infrastructure, LLRAM Coherency Unit (LCU), Shared AXI Subordinate Unit (SAXIS), L2 coherency logic, and L2
cache RAMs. It excludes the PPUs.

PDL2RAMO This domain contains the first half of the L2 cache RAMs.

PDL2RAM1 This domain contains the second half of the L2 cache RAMs.

PDCPU<m> This domain contains all core logic including the optional Advanced SIMD and floating-point block, the Tightly Coupled

Memories (TCMs) and L1 cache RAMs, and Debug registers that are associated with the core <m> where m is the core
number in the range of O-7.

If a core is not present, the corresponding power domain is not present.

PDADVSIMD<m> |This is a power domain for Advanced SIMD and floating-point block in core <m> to implement functional retention.

<m> is the core number in the range of O-7. If the Advanced SIMD and floating-point block is not present in core <m>,
the PDADVSIMD<m> power domain is not present.

6.5 Power mode control

Power mode control is distributed between power management software, the cluster, and the
Power Policy Units (PPUs) integrated within the cluster.

A component in the SoC such as a System Control Processor (SCP) can program the PPUs over the
Utility bus to set the appropriate power policy. If your system does not have an SCP component,
the Utility Bus can be connected to one of the Cortex®-R82 processor ports or to your SoC
interconnect, and one of the cores in the Cortex®-R82 processor can program the PPUs.

If your system does not need to perform any power transitions, the Cortex®-R82 processor can
also be configured so that the PPUs are powered on at reset and never require any programming.
See /.9 Implications of not having a System Control Processor on page 99 for more information
on Cold reset state for the PPUs.

The PPUs control the low-level details of powering up, powering down, or resetting domains as
necessary to implement the requested policy. The hardware performs any actions necessary to
reach the requested power mode, such as gating clocks, flushing caches, or disabling coherency.

The power mode of each core can be changed independently of other cores in the cluster,
however the cluster power mode is linked to the state of the cores. There is no requirement on the
order that cores are powered on or off.

The PPUs and cluster logic perform all the logical functions needed to enter or exit a power
mode. However, there are some steps related to the physical state such as controlling power
switches or retention states. The logic to carry out these steps is not included in the Cortex®-R82
processor, because it varies depending on the technology process, library, and internal design rules.
Therefore the implementer must provide a Power Control State Machine (PCSM) that sequences
these implementation-specific steps.
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The PPU interfaces to the PCSM via a P-Channel interface, where the PPU can initiate a request
to a new power mode. The PCSM accepts that request when it has completed all of its required
actions.

Software sets the operating requirements by writing to the following System registers:

Cluster Power Control Register (IMP_CLUSTERPWRCTLR_EL1)
To request partial L2 cache powerup or powerdown and to enable RAM retention
capabilities.

Cluster Powerdown Register (IMP_CLUSTERPWRDN_EL1)
To request the power mode that the cluster is to enter after all cores have powered off. For
example, memory retention mode.

CPU Power Control Register IMP_CPUPWRCTLR_EL1)

To request core powerdown and to enable Advanced SIMD and floating-point retention
capabilities.

6.6 Debug over powerdown

The Cortex®-R82 processor supports debug over powerdown which allows a debugger to retain
its connection with the Cortex®-R82 processor even when the Cortex®-R82 processor is powered
down. This behavior enables debug to continue through powerdown scenarios rather than having
to re-establish a connection each time the Cortex®-R82 processor is powered up.

The debug over powerdown logic is part of the DebugBlock which is external to the Cortex®-
R82 processor. The DebugBlock is provided as a separate component to allow implementation in
a separate power domain from the processor. Having a separate debug power domain allows the
connection to a debugger be maintained while the cores and cluster are powered down.

6.7 Core power modes and transitions

Each core within the Cortex®-R82 processor has a defined set of power modes and permitted
transitions between these modes. The power mode of each core can be independent of other
cores in the Cortex®-R82 processor.

The following table shows the supported core power modes.

Table 6-2: Core power modes

Power Short name Description

mode

On ON The core is powered up and active.
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Power Short name Description
mode
Functional |[FUNC_RET | The core is fully powered and operational, but the Advanced SIMD and floating-point logic is in retention.
retention
All'instructions except for Advanced SIMD and floating-point ones can execute normally. When an Advanced
SIMD or floating-point instruction is encountered, the pipeline stalls until the core can transition to ON to
execute the instruction.
Full FULL RET The core and all the RAMs are in retention.
retention
In this mode, only power that is required to retain register and RAM state is available.
The core must be in Wait for Interrupt (WFI) or Wait for Event (WFE) low-power state before it enters this mode.
Off OFF The core is powered down.
Emulated |OFF_EMU Emulated off mode permits you to debug the powerup and powerdown cycle without changing the software.
off
In this mode, the core powerdown is normal, except:
e The clock is not gated and power is not removed when the core is powered down.
e Only the Warm reset is asserted. The debug logic is preserved in the core and remains accessible by the
debugger.
Note:
Emulated off mode operation for the shared logic is identical to the operation for a core.
Debug DBG_RECQV | Debug recovery mode is used for applying a reset to the core, while preserving memory and optionally
recovery Reliability, Availability, and Serviceability (RAS), Debug, and Trace registers for debug purposes. The L1 cache
state is preserved when transitioning from DBG_RECOV mode to ON mode. Debug recovery mode is typically
used in debugging a watchdog timeout.
Caution:
This mode must not be used during normal system operation.
Warm WARM_RST |Warm reset is a best effort to recover from system level issues while keeping the state for the trace logic and
reset the Debug and RAS registers.

Caution:
This mode must not be used during normal system operation.

The following diagram shows the supported power modes for each core and the permitted
transitions between them.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 69 of 2039



Arm® Cortex”-R82 Processor Technical Reference Manual Document ID: 102670_0101_02_en
Issue: 02
Power management

Figure 6-2: Core power mode transitions
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OFF

ON
In this mode, the core is on and fully operational.

The core can be initialized into the On mode. When a transition to the ON mode completes, all
caches are accessible and coherent. Other than the normal architectural steps to enable caches, no
additional software configuration is required.

FUNC_RET

In this mode, the Advanced SIMD and floating-point logic is in retention (inoperable but with state
retained) and the remainder of the core logic is operational.

This means that if an Advanced SIMD and floating-point instruction is executed while in this mode,
it is stalled until the core enters the ON mode.

When the Advanced SIMD and floating-point logic is in retention, the clock to the logic is
automatically gated outside of the retained domain.

You can control the FUNC_RET by setting the IMP_CPUPWRCTLR_EL1.FPURET register bits.
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FULL_RET

In this mode, all core logic and RAMs are in retention, that is the domain is inoperable but with core
state retained.

This mode is typically used when the core is in Wait for Interrupt (WFI) or Wait for Event (WFE) state
for an extended period of time.

When the core is in FULL_RET, there is support for Snoop and debug access so the core transitions
to the ON state to process the access. The core, then, transitions back to FULL_RET without the
core leaving WFI or WFE state.

The core dynamic retention can be enabled and disabled separately for WFI and WFE by software
running on the core. You can program separate timeout values for entry into this mode from WFI
and WFE mode:

e Use the IMP_CPUPWRCTLR_EL1I.WFIRET register bits to program timeout values for entry into
core FULL_RET mode from WFI mode.

e Usethe IMP_CPUPWRCTLR_EL1.WFERET register bits to program timeout values for entry
into core FULL_RET mode from WFE mode.

OFF

In this mode, all core logic and RAMs are unused and can be powered down. The domain is
inoperable and all core state is lost.

When the core is in OFF, any attempted debug access returns an error response on the internal
debug interface indicating the core is not available.

The core can enter the OFF mode by setting the IMP_CPUPWRCTLR_EL1.PWRDN register bit.

OFF_EMU

In this mode, all core logic and RAMs are kept physically powered on. However, core Warm reset
can be asserted externally to emulate OFF scenario while keeping core debug state and allowing
debug access.

All Debug registers retain their state and are accessible from the external debug interface. All other
functional interfaces behave as if the core were OFF.

DBG_RECOV
Debug recovery mode can be used to assist debug of external watchdog-triggered reset events.

In DBG_RECQOV mode, the core logic including the L1 cache RAMs is powered up.

All powered-on cores and the cluster need to be put into DBG_RECOV mode. When this
happens, the processor applies either a Warm reset or a Cold reset, depending on the
PPU_PTCR.DBG_RECOV_PORST_EN value. Following this, the powered-on cores and cluster
should be put into the ON power mode. See /.7 Explicit resetting of cluster and cores and debug
recovery on page 94 for more information.
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Normally, the Cortex®-R82 processor performs the following when there is a transition to ON
power mode:

Invalidates the L1 cache, L2 duplicate L1 tag RAM, and LLRAM Coherency Unit (LCU) duplicate
L1 tag RAM (when there is a core transition from OFF, OFF_EMU, or WARM_RST to ON mode
and a Warm reset or a Cold reset applies).

Resets the register file and System registers which have an UNKNOWN reset value (when there
is a core transition from OFF, OFF_EMU, or WARM_RST to ON mode and a Warm reset or a
Cold reset applies).

Resets the Debug, Trace and Reliability, Availability, and Serviceability (RAS) state (when there is a
transition from OFF to ON mode and a Cold reset applies).

In contrast, when the Cortex®-R82 processor transitions a core from DBG_RECOV to ON power
mode:

The L1 cache, L2 duplicate L1 tag RAM, and LCU duplicate L1 tag RAM are not invalidated.
The register file is not reset.

System registers which have a defined reset value are reset, but System registers which have an
UNKNOWN reset value are preserved.

If PPU_PTCR.DBG_RECOV_PORST_EN =1, the Debug, Trace and RAS state is reset. If
PPU_PTCR.DBG_RECOV_PORST_EN = 0O, the Debug, Trace and RAS state is preserved.

Debug recovery mode can be entered from any other mode. The cluster Power Policy Unit (PPU)
controls entry into this mode.

e The system must be able to program the PPUs over the Utility bus to use Debug
recovery. For example, the system may have a System Control Processor (SCP), or
the debug subsystem may connect to the Utility bus.

e Debug recovery mode is strictly for debug purposes. It must not be used for
functional purposes, because correct operation of the caches is not guaranteed
when entering this mode. To go back to functional mode, the system has to go
through a full Cold reset.

e Debug recovery mode can occur at any time with no guarantee of the state of
the core. A P-Channel request of this type is accepted immediately, therefore its
effects on the core, cluster, or the wider system are UNPREDICTABLE, and a wider
system reset might be required. In particular, if there were outstanding memory
system transactions or shared System registers being accessed at the time of the
reset, then these transactions might complete after the reset when the core is
not expecting them and cause a system deadlock.

e No debug access to the core should be made in this power mode. Debug access
should only be made in the ON or OFF_EMU power mode.

e |f the system sends a snoop to the cluster during debug recovery mode, then
depending on the cluster state, the snoop might get a response and disturb
the contents of the caches, or it might not get a response and cause a system
deadlock.
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WARM_RST
A Warm reset resets all state except for the trace logic and the debug and RAS registers.

A Warm reset invalidates the caches and snoop filters and resets the register file and System
registers with UNKNOWN reset values.

e Ifany coreis put into Warm reset mode, then the cluster must also be put into
Warm reset mode and the other cores must go into Warm reset mode, Off
mode, or Emulated off mode. Therefore, using the core Warm reset mode has
the end result of resetting the cores and the shared logic.

e The system must be able to program the PPUs over the Utility bus to use Warm
reset. For example, the system may use an SCP.

e Warm reset is a best effort to recover from system level issues while keeping
debug and RAS registers and should not be used for functional purposes.

e No debug access to the core should be made in this power mode. Debug access
should only be made in the ON or OFF_EMU power mode.

e Warm reset state can occur at any time for an ON core with no further
guarantees of its state. A request of this type is accepted immediately by an
ON core, therefore its effects on the core, cluster, or the wider system are
UNPREDICTABLE, and a wider system reset might be required. In particular, if
there were outstanding memory system transactions or shared System registers
being accessed at the time of the reset, then these transactions might complete
after the reset when the core is not expecting them and cause a system
deadlock.

6.8 Core powerdown
You must follow a specific powerdown sequence to trigger core powerdown.

To trigger core powerdown:
1. Save all architectural state.

2. Configure the Generic Interrupt Controller (GIC) distributor to disable or reroute interrupts away
from the core.

GIC distributor can be either of the following:

e An Arm GIC distributor, such as GIC-625, that connects to the GIC Stream
processor ports.

e Any other interrupt controller that might be driving the nFIQ, nIRQ, nVFIQ,
or nVIRQ processor inputs.

3. Set the IMP_CPUPWRCTLR_EL1.PWRDN bit to 1 to indicate to the power controller that a
powerdown is requested.
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4. Execute an Instruction Synchronization Barrier (ISB) instruction.

5. Execute a wrz instruction.

After executing WFI and then receiving a powerdown request from the power controller, the
hardware:

e Disables and flushes the L1 caches.

e Removes the core from coherency.

When the IMP_CPUPWRCTLR_EL1.PWRDN bit is set, executing a wrz instruction automatically
masks all interrupts and wakeup events in the core. As a result, applying reset is the only way to
wake up the core from the wr1.

No software steps are required to bring a core into coherence after reset.

6.9 Cluster power modes

The Cortex®-R82 processor supports various cluster level low-power modes and includes
hardware to handle power mode transitions with minimal software support.

The following table shows the supported power modes for the shared logic in the Cortex®-R82
processor.

Table 6-3: Cortex®-R82 processor shared logic power modes

Power  Short name Description

mode

On ON On mode is the normal mode of operation where all shared logic functionality is available.

Memory [MEM_RET In Memory retention mode, only the L2 cache RAMs are placed in retention. The rest of the cluster including

retention the L2 logic and the cores are powered down.

Emulated [MEM_RET_EMU [In Emulated memory retention mode, the cluster behaves logically as if it were in the MEM_RET mode,

memory except that the shared RAMs and the cluster logic remain powered. The debug state is retained and is

retention accessible.

Off OFF In Off mode, power is removed from the cluster logic and all the RAMs. Only the Power Policy Units (PPUs)
remain powered.

Emulated [OFF_EMU In Emulated off mode, the cluster behaves logically as if it were in the OFF mode, except that the logic

off remains powered. The debug state is retained and accessible.

Debug DBG_RECOV Debug recovery mode is used for applying a reset to the cluster, while preserving memory and optionally
recovery Reliability, Availability, and Serviceability (RAS), Debug, and Trace registers for debug purposes. The L2 cache
state is preserved when transitioning from DBG_RECOV mode to ON mode. Debug recovery mode is
typically used in debugging a watchdog timeout.

Caution:
This mode must not be used during normal system operation.
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Short name Description

WARM_RST The Warm reset mode provides a Warm reset to all the shared cluster logic apart from the Power Policy Units
(PPUs).

Warm reset is a best effort to recover from system level issues while keeping the state for the trace logic and
the Debug and RAS registers.

Caution:
This mode must not be used during normal system operation.

ON
In this mode, the cluster is on and fully operational.

When a transition to the ON mode completes, the L2 cache is accessible and coherent without
needing any configuration from software other than the normal architectural steps to enable
caches.

MEM_RET

In Memory retention mode, the L2 cache RAMs are placed in retention while the shared logic and
the cores are powered down.

It is quicker for the cluster to enter and exit MEM_RET mode as compared with going from OFF
to ON mode or ON to OFF mode, for example in powerup or powerdown. This is because, the L2
cache RAMs do not need to be cleaned and the data later reloaded. Placing the L2 cache RAMs in
retention also saves on energy required to write dirty data back to main memory.

The Cortex®-R82 processor remains in coherence when in MEM_RET mode.
Therefore, when using this mode, beware that if other external coherent agents
are active, it takes considerable time for them to access to the L2 cache RAMs.
Although it is possible for external agents in the system to access the L2 cache
RAMs while in retention, it comes at considerable time cost because the Cortex®-
R82 processor needs to be temporarily powered up to service the access.

MEM_RET_EMU

In Emulated memory retention mode, the cluster behaves logically as if it were in the MEM_RET
mode except that the cluster shared logic remains powered. This means the L2 cache RAMs, L2

duplicate L1 tag RAMs, LLRAM Coherency Unit (LCU) duplicate L1 tag RAMs, and the rest of the

cluster logic remains powered. Therefore, debug accesses can be made.

OFF

In the OFF mode, all the shared cluster logic including the L2 duplicate L1 tag RAMs, LCU duplicate
L1 tag RAMs, L2 cache RAMs, and the cores are powered down. The PDCLUSTER domain is
inoperable and all state is lost.
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In the OFF mode, power is removed from PDCLUSTER power domain but the PDTOP power
domain is still powered up including all the Power Policy Units (PPUs).

The Cortex®-R82 processor can be initialized into this mode on a Cold reset.

OFF_EMU

In this mode, the cluster behaves logically as if it were in the OFF mode. However, the cluster
shared logic remains powered including the L2 cache RAMs, L2 duplicate L1 tag RAMs, and LCU
duplicate L1 tag RAMs. Therefore, debug accesses to the cluster can still be made.

In this mode, the cluster behaves as if it were powered off for functional logic, but it allows the
cluster to maintain debug access. On entering this mode, a Warm reset is applied to the cluster,
resetting the functional logic but not resetting the debug logic. From the perspective of software
running on the core, the cluster appears to be powered off.

DBG_RECOV

The Debug recovery mode can be used to assist debug of external watchdog-triggered reset
events.

In DBG_RECOV mode, all the Cortex®-R82 processor shared logic including the L2 cache RAMs is
powered up.

All powered-on cores and the cluster need to be put into DBG_RECOV mode. When this
happens, the processor applies either a Warm reset or a Cold reset, depending on the
CLUSTERPPU_PTCR.DBG_RECOV_PORST_EN value. Following this, the powered-on cores and
cluster should be put into the ON power mode. See 7.7 Explicit resetting of cluster and cores and
debug recovery on page 94 for more information.

Normally, the Cortex®-R82 processor performs the following when there is a transition to ON
power mode:

e Invalidates the L2 cache, L2 duplicate L1 tag RAMs, and LCU duplicate L1 tag RAMs (when
there is a cluster power mode transition from OFF, OFF_EMU, or WARM_RST to ON mode and
a Warm reset or a Cold reset applies)

e Resets the Debug, Trace and Reliability, Availability, and Serviceability (RAS) state (when there is a
cluster power mode transition from OFF to ON mode and a Cold reset applies).

In contrast, when the Cortex®-R82 processor transitions the cluster from DBG_RECOV to ON
mode:

e The L2 cache, L2 duplicate L1 tag RAMs, and LCU duplicate L1 tag RAMs are not invalidated.

e System registers which have a defined reset value are reset, but System registers which have an
UNKNOWN reset value are preserved.

e |f CLUSTERPPU_PTCR.DBG_RECOV_PORST_EN = 1, the Debug, Trace and RAS state is reset.
If CLUSTERPPU_PTCR.DBG_RECOV_PORST_EN = 0O, the Debug, Trace and RAS state is
preserved.
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Debug recovery mode can be entered from any other mode. The cluster Power Policy Unit (PPU)
controls entry into this mode.

The system must be able to program the PPUs over the Utility bus to use Debug
recovery. For example, the system may have a System Control Processor (SCP),
or the debug subsystem may connect to the Utility bus.

Debug recovery mode is strictly for debug purposes. It must not be used for
functional purposes because correct operation of the cluster is not guaranteed
when entering this mode. To go back to functional mode, the system has to go
through a full Cold reset.

No debug access to the cluster should be made in this power mode. Debug
access should only be made in the ON or OFF_EMU power mode.

Debug recovery mode can occur at any time with no guarantee of the state of

the cluster. A request of this type is accepted immediately, therefore its effects
on the core, cluster, or the wider system are unpredictable and a wider system

reset might be required. In particular, if there were outstanding memory system
transactions or shared System registers being accessed at the time of the reset,
then these transactions might complete after the reset when the cluster is not

expecting them and cause a system deadlock.

If the system sends a snoop to the cluster during this mode, then depending on
the cluster state:

o The snoop might get a response and disturb the contents of the caches.

o The snoop might not get a response and cause a system deadlock.

In the following cases, it might not be possible to enter DBG_RECQOV without a
Cold reset of the cluster:

o When the cluster is in middle of a power transition which cannot complete
because of the system hanging or trying to debug.

o When the cluster is in the middle of a clock gating transition on the SCLK Q-
Channel which cannot complete because of the system hanging or trying to
debug.

o The cluster is in Warm reset.

You must choose the correct operating mode corresponding to the L2 cache
partitions and L2 cache slices that were in use before Debug recovery mode.

WARM_RST

A Warm reset resets all state except for the trace logic and the debug and RAS registers.

A Warm reset invalidates the caches and snoop filters and resets the register file and System
registers with UNKNOWN reset values.
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e If any core is put into Warm reset mode, then the cluster must also put into
Warm reset mode and the other cores must go into Warm reset mode, Off
mode, or Emulated off mode. Therefore, using cluster Warm reset mode has the
end result of resetting the cores and the shared logic.

e The system must be able to program the PPUs over the Utility bus to use Warm
reset. For example, the system may use an SCP.

e« Warm reset is a best effort to recover from system level issues while keeping
debug and RAS registers and should not be used for functional purposes.

e No debug access to the cluster should be made in this power mode. Debug
access should only be made in the ON or OFF_EMU power mode.

e Warm reset mode is only expected to be used for resets triggered by a system
level issue, such as a watchdog timeout, and therefore a Cold system reset
might be required. In particular, if there were outstanding memory system
transactions or shared System registers being accessed at the time of the reset,
then these transactions might complete after the reset when the cluster is not
expecting them and cause a system deadlock.

e The warm reset power mode can occur at any time with no further guarantees
for the state of the cluster. A request of this type is accepted immediately
by the cluster, therefore its effects on the core, cluster, or the wider system
are UNPREDICTABLE, and a wider system reset might be required. In particular,
if there were outstanding memory system transactions or shared System
registers being accessed at the time of the reset, then these transactions might
complete after the reset when the core is not expecting them and cause a
system deadlock.

6.10 Cluster operating modes

An operating mode is a component-specific configuration of the power modes. For the Cortex®-
R82 processor, the operating modes differ in the amount of L2 cache RAM that is active.

The cluster Power Policy Unit (PPU) provides programming access to control the operating modes
and the power modes.

The Cortex®-R82 processor supports three operating modes.

The following table shows the operating modes for the L2 cache RAMs.

Table 6-4: Operating modes for L2 cache RAMs

Operating mode Short Description

name
L2 duplicate L1 tag RAM and LLRAM Coherency Unit (LCU) duplicate |DL1ONLY [ The L2 cache partition in each cache slice is powered
L1 tag RAM only down
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Description

Half L2 cache

2 RAM

One half of the L2 cache partition in each active slice is
powered up

Note:

This mode is possible only if L2 SLICES is set to 2.

Full L2 cache

FULL
RAM

All of the L2 cache partition in each active slice is
powered up

6.11 Cluster PPU mode transitions

The Cortex®-R82 processor supports transitions between cluster power modes and cluster
operating modes. Each combination of cluster power mode with an L2 cache RAM operating mode
forms a Power Policy Unit (PPU) mode, for example, FULL RAM ON. Individual power modes such
as ON, OFF, and OFF_EMU are also considered to be PPU modes.

The cluster PPU controls transitions between the PPU modes. Therefore, a System Control Processor
(SCP) or any core within the Cortex®-R82 processor through a Utility bus loopback connection

can program up the PPU to go to any PPU mode and the PPU would automatically schedule the
necessary transitions to achieve that PPU mode.

The following figure shows the supported PPU mode transitions for the Cortex®-R82 processor.
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Figure 6-3: Cortex®-R82 cluster PPU mode transitions
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The following figure shows the supported PPU mode transitions for the Cortex®-R82 processor
where the L2 cache is not implemented.
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Figure 6-4: Cortex®-R82 cluster PPU mode transitions, no L2

From any To any ON
ON mode WARM_RST mode
From any To any
mode DBG_RECOV ON mode
OFF_EMU
Y
OFF
A A
DL1ONLY
ON
FULL RAM ON

In this PPU mode, all the shared logic including the L2 cache RAMs, L2 duplicate L1 tag RAMs,
LLRAM Coherency Unit (LCU) duplicate L1 tag RAMs, and PPUs is powered up and fully operational.
When a transition to the On mode is completed the L2 cache, L2 duplicate L1 tag RAMs, and LCU
duplicate L1 tag RAMs are accessible and coherent without requiring any software configuration.

1/2 RAM ON

In this PPU mode, the Cortex®-R82 processor shared logic, L2 duplicate L1 tag RAMs, and LLRAM
Coherency Unit (LCU) duplicate L1 tag RAMs are powered up but half of the L2 cache RAMs remain
powered down.

DL1ONLY ON

In this PPU mode, the Cortex®-R82 processor shared logic, L2 duplicate L1 tag RAMs, and LCU
duplicate L1 tag RAMs are powered up but the L2 cache RAMs remain powered down.
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FULL RAM MEM_RET, 1/2 RAM MEM_RET

In this PPU mode, the L2 cache RAMs are in retention, but the rest of the Cortex®-R82 processor
shared logic is powered down, apart from the PPUs. This is also known as Dormant mode. The L2
cache still contains data and if another agent in the system needs to snoop the cluster to access
that data then the cluster needs to transition to an On mode before the snoop can proceed. As this
transition takes a significant amount of time, Arm recommends that MEM_RET is only used when
other coherent agents are also idle.

DL1ONLY MEM_RET

In this PPU mode, the L2 cache RAMSs are powered down and their content is not retained.
Therefore this operating mode is equivalent to OFF mode. DL1IONLY MEM_RET is provided for
consistency so that a system can choose to go to the MEM_RET state without needing to know
the current operating mode.

DL1ONLY MEM_RET_EMU, FULL RAM MEM_RET_EMU, 1/2 RAM MEM_RET_EMU

In this PPU mode, the cluster logic including the L2 cache RAMs, L2 duplicate L1 tag RAMs, LCU
duplicate L1 tag RAMs remains powered.

Individual cluster power modes such as ON, OFF, OFF_EMU, MEM_RET_EMU, DBG_RECQV, and
WARM_RST are also considered to be PPU modes. See 6.9 Cluster power modes on page /74
for more information on the description of these power modes.

6.11.1 Rules governing cluster PPU mode transitions

For the cluster Power Policy Unit (PPU) mode transitions, there is a set of rules that governs the
transitions from each PPU mode. The PPUs are aware of these rules, so there is no requirement for
the System Control Processor (SCP) or a core within the Cortex®-R82 processor through a Utility bus
loopback connection to explicitly program these rules into the PPU.

The following rules govern all transitions between the PPU modes:
e When transitioning from OFF to ON, any supported operating mode can be targeted.
e Transitions between operating modes only happen in the ON power mode.

e Switching between DL1ONLY and FULL RAM ON can be direct or through %> RAM ON.

e The operating mode is maintained when moving from ON to MEM_RET power mode.

6.11.2 PPU mode transition behavior

Where there is a transition between the Power Policy Unit (PPU) modes, the Cortex®-R82 processor
cluster logic automatically performs a series of actions before accepting a new PPU mode.

The following table shows the allowed transitions between the cluster PPU modes and the
associated actions.
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For each of the PPU mode transitions shown in the following table, additional
actions (which are technology and implementation dependent) must be performed.
These actions are carried out by partner implemented logic as part of the Power
Control State Machine (PCSM).

Table 6-5: Cluster PPU transition behavior

Start PPU mode End PPU mode Cortex®-R82 processor behavior

OFF MEM RET No functional change.
OFF / ON The L2 cache, L2 duplicate L1 tag RAMs, and LLRAM Coherency Unit (LCU) duplicate L1 tag RAMs are
OFF_EMU initialized, and the cluster is brought into coherency with the rest of the system.

Cluster System register fields (except the debug, trace, and RAS register fields) which reset to
architecturally UNKNOWN values are initialized to fixed values.

OFF_EMU OFF No functional change.

OFF_EMU MEM_RET_EMU [No functional change.

MEM _RET / ON The L2 duplicate L1 tag RAMs and LCU duplicate L1 tag RAMs are initialized.

MEM_RET_EMU Cluster System register fields (except the debug, trace, and RAS register fields) which reset to

architecturally UNKNOWN values are initialized to fixed values.

MEM_RET_EMU |MEM_RET No functional change.

ON OFF / If there is any ongoing memory access, the request is denied. L2 cache allocation disabled, L2 cache
OFF_EMU cleaned and invalidated. The cluster is removed from system coherency.

ON MEM_RET / If there is any ongoing memory access, the request is denied.
MEM_RET_EMU

ON WARM_RST Cluster System registers (excluding the debug, trace, and RAS registers) are reset.

WARM RST ON Relevant ways in L2 cache are invalidated.

Cluster System register fields (except the debug, trace, and RAS register fields) which reset to
architecturally UNKNOWN values are initialized to fixed values.

Any mode DEBUG_RECQV [Transition accepted immediately. Warm reset or Cold reset is applied depending on the value of
DBG_RECOV_PORST_EN

DEBUG_RECOV |ON Reset is deasserted. MACP and ACELS interfaces are enabled.

DL1ONLY % RAM L2 cache tag RAM ways 0-3 invalidated.

Cache lookup and allocation enabled for ways 0-3.
DL1ONLY FULL RAM L2 cache tag RAM ways O-7 invalidated.

Cache lookup and allocation enabled for ways 0-7.
% RAM DL1ONLY L2 cache tag RAM ways 0-3 allocation is prevented.

Ways 0-3 are cleaned of any dirty lines and then cache lookup is disabled.
% RAM FULL RAM L2 cache tag RAM ways 4-7 invalidated.

Cache lookup and allocation enabled for ways 4-7.
FULL RAM % RAM L2 cache tag RAM ways 4-7 allocation is prevented.

Ways 4-7 are cleaned of any dirty lines and then cache lookup is disabled.
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Start PPU mode End PPU mode Cortex®-R82 processor behavior

FULL RAM DL1ONLY L2 cache tag RAM ways O-7 allocation is prevented.

Ways O-7 are cleaned of any dirty lines and then cache lookup is disabled.

6.11.3 DebugBlock power modes

The DebugBlock supports only two power modes, ON and OFF. There is no Power Policy Unit (PPU)
in the Cortex®-R82 processor for the DebugBlock. Instead, the DebugBlock has a Q-Channel
interface for providing power control to the DebugBlock power domain.

When the DebugBlock is in the OFF mode, the DebugBlock does not initiate any accesses and all
APB accesses to the DebugBlock receive a PSLVERR response.

6.12 Cluster powerdown

The cluster is taken out of coherency automatically when it is powered down. No software
sequence is required.

After receiving the request to enter powerdown mode from the power controller, the Cortex®-
R82 processor cleans and invalidates the L2 cache. All cores must be in the OFF mode before the
cluster is powered down.

6.13 Cluster power mode and core power mode
dependencies

There are some dependencies between the core and cluster power domains to ensure that correct
operation is maintained.

The core and cluster power mode dependencies are the following:

e Ifacore ON request is made while the cluster is not in an ON mode, then the core request
stalls until the cluster has reached the appropriate state.

e Ifacoreis requested to go from WARM_RST to ON, the core request stalls until the cluster has
transitioned from WARM _RST to ON.

e |facoreisrequested to go from DBG_RECQOV to ON, the core request stalls until the cluster
has transitioned from DBG_RECOV to ON.

e |f the cluster is requested to go to MEM_RET or OFF while not all cores are OFF, then the
cluster request is denied.

e |If the cluster is requested to go from WARM_RST to ON, the cluster request is denied unless all
the cores are in OFF, OFF_EMU, or WARM _RST.
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If the cluster is requested to go from DBG_RECOV to ON, the cluster request is denied unless
all the cores are in OFF, OFF_EMU, or DBG_RECOV.

If the cluster is requested to go to MEM_RET_EMU or OFF_EMU while not all cores are OFF
or OFF_EMU, then the cluster request is denied.
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7. Power and reset control with PPUs

This chapter describes how to control the power modes and reset behavior of the Cortex®-R82
processor by using the Power Policy Units (PPUs).

7.1 The Power Policy Unit

The Power Policy Units (PPUs) enable control over the power modes of the Cortex®-R82 processor.
The cluster PPU allows control over the cluster power and operating modes. Per-core PPUs allow
control over the individual core power modes.

A PPU is a standard component for abstracting the low-level hardware control signaling to
software-controlled power domain policy. This allows the external agent to focus on the power
modes it wants to achieve without being concerned about the intermediate power modes.

The implementation process automatically creates the PPUs for the cluster and each core. Each
PPU has a set of memory-mapped control registers which are accessed using the Utility bus.

The PPUs can provide autonomous control of power modes with a range of modes. A component
in the system such as a System Control Processor (SCP) can program the PPUs over the Ultility bus to
set the appropriate power policy.

If your system does not have an SCP component, the Utility bus can be connected to one of

the Cortex®-R82 processor ports or to your SoC interconnect, and one of the cores within the
Cortex®-R82 processor can program the PPUs. For information on the loopback address mapping
through the interconnect, see 9.11 Utility bus on page 171. For information on potential
limitations of not using an SCP or not implementing a Utility bus loopback connection, see /.9
Implications of not having a System Control Processor on page 99.

The PPUs control the low-level details of powering up, powering down, or resetting domains as
necessary to implement the requested policy. The hardware performs any actions necessary to
reach the requested power mode, such as gating clocks, flushing caches, or disabling coherency.

The following figure shows the Cortex®-R82 processor PPU interfaces. All interfaces are external
to the Cortex®-R82 processor apart from the Device Control interface.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 86 of 2039



Arm® Cortex”-R82 Processor Technical Reference Manual Document ID: 102670_0101_02_en

Issue: 02
Power and reset control with PPUs

Figure 7-1: PPU interfaces
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The cluster PPU and per-core PPUs have the following main interfaces:
Software interface

The programming interface for the PPUs is accessed through the Utility bus. A set of PPU
registers controls setting high-level policy control and configuration.

Device Control interface

The Device Control interface is the internal interface that connects to each of the cluster
and core power domains. The Device Control interface provides low-level power control and
ensures device quiescence.

The Device Control interface includes:
e« The device interface that consists of one or more P-Channels.

e The control interface that includes resets and isolation control.

Some of the Device Control interface signals are exported outside of the

Cortex®-R82 processor to allow the control of other components that may be
in the same power domain.

PCSM interface

The Power Control State Machine (PCSM) interface is an external interface for controlling low-
level technology specific power switch and retention controls. There are separate PSCM
interfaces for the cluster and each core instantiated in the Cortex®-R82 processor.
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The PCSM interface is always present even if your system does not
implement some Cortex®-R82 power domains for cluster or core. For
information on how to connect P-Channel signals in such cases, see P-
Channel signals in Arm® Cortex®-R82 Processor Configuration and Integration

Manual.

The following figure shows a high-level illustration of how the PPU and PCSM controls connect to
each other and to a power-gated domain. The dotted lines indicate the implementation-dependent
components and signal connections.

Figure 7-2: PPU connections to a power-gated domain

System
controller

—Ultility bus=—

& Interrupt = poywer Policy Unit |«

<+ PERIPHCLK—»

(PPU)

1
[ RESEtS =T

Power Control T vDD
__ P-Channel, |State Machine
pcsm_* (PCSM)
T
Retention
control
P—Channel—l—»

1
1
1
1
1
Cores or the cluster 1
1
1
1
1
1

<+—nNRESET—» <«+— SCLK —»
1
L ____]Powerdomain,
@ Isolation enables —» _ Isolation _:
PR §-oC

Domain outputs

All the PPUs within the Cortex®-R82 processor are pre-built and are based on the Corelink
PCK600 Power Policy Units.

The CorelLink PCK600 does not require a separate license. It is delivered as part of
the Cortex®-R82 processor.
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7.2 PPU operation

The Power Policy Unit (PPU) controls all of the Cortex®-R82 processor cluster and core power
modes (ON, OFF, OFF_EMU, FUNC_RET, FULL_RET, MEM_RET, MEM_RET_EMU, WARM_RST,
and DBG_RECQV). It has extensive support to reflect the various combinations of logic and
memory power states into which a domain can be set.

Your software can program a PPU to set a PPU mode in one of two ways:
Static policy

A request to enter a PPU mode directly.
Dynamic policy

Sets a minimum mode, so the PPU can autonomously change the PPU mode above this
mode depending on hardware inputs.

Each PPU contains a state machine representation of its supported PPU mode transitions.
Therefore, a PPU can be programmed to target any supported PPU mode and the route taken
follows the permissible route, passing through any intermediate PPU modes.

Each of the PPUs has an interrupt output signal that indicates events such as the completion of
power mode transitions and the completion of operating mode transitions. For the cluster, this

is CLUSTERPPUIRQ and for the cores these are COREPPUIRQ[<m>], where <m> is the core
instance number. These interrupts can be targeted to the agent which programs the PPUs to avoid
polling status registers.

A System Control Processor (SCP) or a core in the Cortex®-R82 processor programs the PPU
through the Utility bus based on its current system requirements. The PPU modes are programmed
using registers within the PPU. When a PPU mode is programmed into the PPU registers, this

PPU mode is requested internally within the Cortex®-R82 cluster. The relevant cluster logic takes
the necessary steps to enter this mode such as cleaning dirty cache lines from the caches when
powering off. When the logic is ready to enter the required mode, the change in power state is
requested on the relevant Power Control State Machine (PCSM) interface. When the power state
transition is complete, the PCSM is responsible for changing the power state for the relevant logic
and signaling to the PPU.

If the relevant logic is required to be isolated or removed from isolation this is signaled using

the relevant ISOLATE signals (CLUSTERISOLATEN, L2ZRAMISOLATEN, FPSIMDISOLATEN, and
COREISOLATERN). As the isolation signals do not have an acknowledge signal, the state of the
isolation cells is changed at a software-dependent time later after a change of the ISOLATE signals.
The latency time on the ISOLATE signal change can be configured by PPU registers. The PPU

logic ensures that the isolation and power state change are requested in the required order for the
requested PPU mode transition.

7.2.1 Implicit resets from PPU mode change

Transitions between power down modes and powered modes include an implicit internal reset
of the powered off logic. This internal reset is managed by the Power Policy Unit (PPU) mode
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controlling the transition between the two modes and does not require an external signal to be
asserted or explicit programming of the PPU.

A transition from an Off mode to a power mode includes a Cold reset of the logic that was
powered off, where both functional logic and debug logic is reset.

A transition from an Emulated off mode to a power mode includes a Warm reset of the logic
that was emulated as powered off, where the functional logic is reset but the Debug, Trace and
Reliability, Availability, and Serviceability (RAS) state is not reset.

7.3 Utility bus accesses

All of the Power Policy Unit (PPU) control and data registers are accessed using the memory mapped
Utility bus. The Utility bus is implemented as a 64-bit AMBA® 5 AXI| subordinate port.

Accesses to PPU registers over the Utility bus must match the size of the register they are
accessing, either 32 bits or 64 bits. Any access with sizes other than 32-bit or 64-bit gets an
SLVERR response from the Utility bus.

Cores within the Cortex®-R82 processor cannot access to the PPU registers directly. Instead,

you must either use a System Control Processor (SCP), or configure your interconnect to provide a
loopback address mapping for the cores to access the Utility bus. See 7.9 Implications of not having
a System Control Processor on page 99 for information on how to program the PPUs from

within the Cortex®-R82 processor.

The registers for the cluster PPU and each of the core PPUs are grouped on separate 64KB page
boundaries allowing access control to be enforced by the memory management.

Only secure accesses are allowed on the Utility bus to access PPU registers. Any Non-secure
access gets an SLVERR response from the Utility bus.

7.4 Encodings for cluster power modes and operating
modes

The cluster Power Policy Unit (PPU) power policy register CLUSTERPPU_PWPR uses power
mode and operating mode encodings to set various power conditions for the cluster.

For example, the values at the register bitfields CLUSTERPPU_PWPR.PWR_POLICY and
CLUSTERPPU_PWPR.OP_POLICY set the power mode and operating mode of the cluster.

The following table shows the Cortex®-R82 processor cluster level power mode encodings.
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o o Priority is an architectural concept as defined in Arm® Power Policy Unit
* Architecture Specification.

o INPUTDOMAINPSTATE[3:0] and OUTPUTDOMAINPSTATE[3:0] encodings are
the same as the CLUSTERPPU_PWPR.PWR_POLICY[3:0] encodings.

Table 7-1: Power mode enumeration for the cluster

Power mode CLUSTERPPU_PWPR.PWR_POLICY[3:0] CLUSTERPCSMPSTATE[3:0] CLUSTERPPUHWSTAT[15:0] Priority

OFF 0x0 0x0 0x0001 Low
OFF_EMU 0x1 0x8 0x0002 -
MEM_RET 0x2 0x2 0x0004 -
MEM_RET_EMU |0x3 0x8 0x0008 -
ON 0x8 0x8 0x0100 -
WARM_RST 0x9 0x8 0x0200 -
DBG_RECOV OxA 0x8 0x0400 High

The following table shows the Cortex®-R82 processor cluster operating mode encodings for
CLUSTERPCSMPSTATE[5:4] and CLUSTERPPUHWSTAT([23:16].

Table 7-2: Operating mode enumeration for the cluster

Operating Short CLUSTERPPU_PWPR.OP_POLICY CLUSTERPCSMPSTATE[5:4] CLUSTERPPUHWSTAT[23:16] Priority

mode name

L2 duplicate DL1ONLY [0x0 0x0 0x01 Low
L1 tag RAM
and LLRAM
Coherency
Unit (LCU)
duplicate L1
tag RAM only

Half L2 cache [|% RAM 0x1 0x1 0x02 Medium

Full L2 cache [FULL 0x2 0x2 0x04 High
RAM

For information on these registers, see Arm® Power Policy Unit Architecture Specification.

7.5 Encodings for core power modes

The core Power Policy Unit (PPU) power policy registers PPU_PWPR use power mode encodings to
set various power modes for the cores.

The following table shows the power mode encodings for the cores in the Cortex®-R82 processor.
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In the following table <m> is the core instance number and Priority is an
architectural concept as defined in Arm® Power Policy Unit Architecture Specification.

Table 7-3: Power mode enumeration for the cores

Power mode PPU_PWPR.PWR_POLICY CORE<m>PCSMPSTATE[3:0] CORE<m>PPUHWSTAT[15:0] Priority
OFF 0x0 0x0 0x0001 Low
OFF_EMU O0x1 0x8 0x0002

FULL_RET 0x5 0x5 0x0020

FUNC_RET 0x6 0x7 0x0080

ON 0x8 0x8 0x0100

WARM_RST 0x9 0x8 0x0200

DBG_RECOV 0xA 0x8 0x0400 High

7.6 Programming sequences for the cluster and the core

Each request for a change in Power Policy Unit (PPU) mode triggers a power state request on the
Power Control State Machine (PCSM) interface for the respective core or cluster. The PCSM must
accept the change request in power state before the PPU mode can change.

A request on the PCSM interface can be accepted automatically for designs where:
e There is no active power management at all.

o The cluster is being analyzed in a non-power aware environment.

7.6.1 Programming sequence to bring the cluster and cores from Off to On
mode

Use the following steps to program the Power Policy Unit (PPU) for the cluster and each core to
request a change in PPU mode from Off to On.

About this task
This task uses the PPU static policy to request a single mode transition. <m> is the core instance
number.

Procedure
1. Write to the cluster register CLUSTERPPU_PWPR, address 0x010000, value 0x00020008.
This sets the power mode policy to ON and the operating mode policy to FULL RAM.

2. Poll the cluster CLUSTERPPU_PWSR register, address 0x01 0008, until the value read matches
the value written to the PPU_PWPR register.
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Alternatively, you can enable the PPU interrupt and wait for the interrupt from the PPU to read
the cluster CLUSTERPPU_PWSR register.

The Power Control State Machine (PCSM) for the cluster must respond back to the PPU mode
request before the mode is accepted.

Write to the core PPU_PWPR register, for core <m>, address 0x<m>40000, value
0x00000008.

Poll the core PPU_PWSR register for core <m>, address 0x<m>40008, until the value read
matches the value written to the PPU_PWPR register.

Alternatively, you can enable the PPU interrupt and wait for the interrupt from the PPU to read
the core PPU_PWSR register.

Each core PCSM must respond back to the PPU mode request before the mode is accepted.

7.6.2 Programming sequence to bring the cluster and cores from On to Off

mode

Use the following steps to program the Power Policy Unit (PPU) for the cluster and each core to
request a change in PPU mode from On to Off.

About this task
This task uses the PPU static policy to request a single mode transition. <m> is the core instance

number.

Procedure

1. Software running on the core sets the IMP_CPUPWRCTLR_EL1.PWRDN bit to 1, then
executes a wrI instruction. For the full sequence see, 6.8 Core powerdown on page 73.

2. Write to the core PPU_PWPR for core <m>, address 0x<m>40000, value 0x00000000.

3. Poll the core PPU_PWSR register for core <m>, address 0x<m>40008, until the value read
matches the value written to the PPU_PWPR register.
Alternatively, you can enable the PPU interrupt and wait for the interrupt from the PPU to read
the core PPU_PWSR register.
The core Power Control State Machine (PCSM) must respond back to the PPU mode request
before the mode is accepted.

4. Write to the cluster CLUSTERPPU_PWPR register, address 0x010000, value 0x00000000.

5. Poll the cluster CLUSTERPPU_PWSR register, address 0x010008, until the value read matches

the value written to the CLUSTERPPU_PWPR register.
Alternatively, you can enable the PPU interrupt and wait for the interrupt from the PPU to read
the cluster CLUSTERPPU_PWSR register.

The cluster PCSM must respond back to the PPU mode request before the mode is accepted.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 93 of 2039



Arm® Cortex"-R82 Processor Technical Reference Manual Document ID: 102670_0101_02_en
Issue: 02
Power and reset control with PPUs

7.6.3 Programming sequence for an interrupt controller to bring cores and
cluster to On or Off mode

The following sequence makes it possible for the cluster and cores in the Cortex®-R82 processor
to automatically power down when software running on the processor has nothing more to do. It
also enables the cluster and cores to automatically power up when they receive the asserted signal
COREWAKEREQUEST[<m>] from an interrupt controller.

About this task
This task uses the PPU dynamic policy to request automatic transitions. <m> is the core instance
number.

Procedure

1. Write to the cluster CLUSTERPPU_PWPR register, address 0x010000, value 0x01000100.
2. Write to the core PPU_PWPR for core <m>, address 0x<m>40000, value 0x00000100.

3. To power up core <m> or power down core <m>, see the following steps.

Choice Step
To power up core <m> Assert the COREWAKEREQUEST[<m>] signal.
To power down core <m> Software on the core sets the

IMP_CPUPWRCTLR_EL1.PWRDN bit to 1, then executes
a WFI instruction. The full power down sequence in 6.8
Core powerdown on page 73 should be respected.

When all cores are powered off, the cluster will power off
with no additional action needed.

The signal COREWAKEREQUEST[<m>] is level sensitive.

7.7 Explicit resetting of cluster and cores and debug
recovery

You can reset part or all of the Cortex®-R82 processor in various ways. This section describes the
sequences to reset part or all of the Cortex®-R82 processor.

e You must follow the sequences exactly.

e The Power Policy Units (PPUs) and associated logic prevents unsupported
transactions from occurring.

e The examples that refer to addresses of PPU registers, assume that the
parameter DENSE_Cs ADDR MAP = 0O

e The WARM_RST and DBG_RECOV power modes do not have an associated
operating mode. Therefore before entering these power modes, the current
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cluster operating mode must be saved. This ensures that the same operating
mode can be restored when leaving the power states.

Powerup (Cold) reset

This reset must be done the first time that the cluster is powered up. It resets all the
Cortex®-R82 processor including the PPUs.

This procedure can be achieved by either programming the PPUs over the
Utility bus or configuring the ppu_rsT_staTe parameter to 1.

Assert the nRESET signal for a minimum of 10 or more PERIPHCLK cycles.
Deassert the nRESET signal.

Program the PPU for the cluster to On mode, see /.6.1 Programming sequence to bring
the cluster and cores from Off to On mode on page 92.

4. Program the PPU for each core to On mode, see /7.6.1 Programming sequence to bring
the cluster and cores from Off to On mode on page 92.

Steps 3 and 4 are not needed if the Cortex®-R82 processor is configured
with ppu_srT state = 1. See 7.9 Implications of not having a System Control
Processor on page 99 for more information.

Software initiated Warm reset of an individual core

e This procedure does not require any access on the Utility bus.

e Interrupts and other external accesses are expected to be redirected or

paused from the point this procedure is initiated until the core restarts
execution.

1. Use software running on the core to program the RMR_EL2.RR register bit.
2. Execute awrz instruction.

Software initiated Cold or Warm reset of the cluster (excluding the PPUs)
For the Cold reset case, power is also removed from the cluster during this sequence.

This procedure requires an external SCP connected via the Utility bus.

1. Use software running on each core to set the IMP_CPUPWRCTLR_EL1.PWRDN bit.
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Use software running on each core to execute a wr1 instruction.

Program the core's PPU, and then the cluster PPU, to Off mode (Cold reset) or Emulated
off mode (Warm reset) as per 7.6.2 Programming sequence to bring the cluster and cores
from On to Off mode on page 93.

¢ The cluster Off mode can only be entered if all the cores are in Off
mode.

e To use Emulated off in the cluster, core, or both a value of
0x00000001 should be written to CLUSTERPPU_PWPR and
PPU_PWPR respectively.

4. To transition from Emulated off mode back to On, first program the cluster PPU to ON.
Then program the Core PPUs to ON.

5. To transition from Off mode to On mode, see 7.6.1 Programming sequence to bring the
cluster and cores from Off to On mode on page 92.

Using WARM_RST mode to reset the cluster (excluding the PPUs)
This procedure can be used to recover from a watchdog timeout or similar situations.

This procedure can be achieved by the System Control Processor (SCP) over
the Utility bus. If your system does not have an SCP, you have to enable an
external agent such as debugger that has memory mapped access to the
Utility bus.

1. Ensure that the cluster is in On mode and the cores are either in On mode, Off mode, or
Emulated off mode. Read the PPU_PWSR for the cluster to determine the current cluster
operating mode.

2. For any of the cores that are in On mode, write to the core PPU_PWPR for core <n>,
address 0x<n>40000, value 0x00000009. This sets the core to the WARM_RST power
mode.

3. Write to the cluster PPU_PWPR, address 0x010000, value 0x00000009. This sets the
cluster to the WARM_RST power mode.

4. Write to the cluster PPU_PWPR, address 0x010000, value 0x000<p>0008, where <p>
is the operating mode value read in step 1. This sets the cluster to the ON power mode.

5. For each core that is in WARM_RST, write to the core PPU_PWPR register, for core <n>,
address 0x<n>40000, value 0x00000008. This puts each core back to the ON power
mode.

After each of the *PPU_PWPR is configured, the corresponding
*PPU_PWSR should be polled until the value read matches the value
written to the *PPU_PWPR register. Alternatively, you can enable the
PPU interrupt and wait for the interrupt from the PPU to read the
cluster *PPU_PWSR register. Addresses for these can be found in B.1
Registers accessed over the Utility bus on page 1331. The corresponding
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PCSM must respond back to the PPU mode request before the mode is
accepted.

Reset of the cluster (excluding the PPUs), retaining cache contents for debug

This can be either a Warm reset or Cold reset, depending on the setting of the
PPU_PTCR.DBG_RECOV_PORST_EN bit.

This procedure can be achieved by the System Control Processor (SCP) over
the Utility bus. If your system does not have an SCP, you have to enable an
external agent such as debugger that has memory mapped access to the
Utility bus.

The value in PPU_PTCR.DBG_RECOV_PORST_EN bit must be the same for all
PPUs (the cluster and all the cores). Otherwise the results are UNPREDICTABLE.

1. Read the PPU_PWSR for the cluster and each core to determine which cores are
powered up and what is the current cluster operating mode.

2. Forany cores that are already OFF, you must ensure they are in a static OFF, or in a
LOCKED OFF (PPU_PWPR.LOCK_EN = 1 for core <m>, address 0x<m>40000, bit 12)
state to ensure they do not power up during this process.

3. Check the cluster operating mode and ensure it is in a static configuration so that the
operating mode does not change after this step.

4. Write to the core PPU_PWPR for core <n>, address 0x<n>40000, value 0x0000000A.
This sets the core to the DBG_RECOV power mode.

o |f PPU_PTCR.DBG_RECOV_PORST_EN = 1, any core not in the OFF mode must be
put in the DBG_RECOV mode.

o |f PPU_PTCR.DBG_RECOV_PORST_EN =0, any core not in the OFF or OFF_EMU
mode must be put in the DBG_RECOV mode.

5. Write to the cluster PPU_PWPR, address 0010000, value 0x0000000A. This sets the
cluster to the DBG_RECOV power mode.

6. Write to the cluster PPU_PWPR, address 0x010000, value 0x000<p>0008, where <p>
is the operating mode value read in step 1. This sets the cluster to the ON power mode.

7. For each core thatis in DBG_RECOV, write to the core PPU_PWPR register, for core <n>,
address 0x<n>40000, value 0x00000008. This sets each core back to the ON power
mode.

e After each of the *PPU_PWPR is configured, the corresponding
*PPU_PWSR should be polled until the value read matches the value
written to the *PPU_PWPR register. Alternatively, you can enable the
PPU interrupt and wait for the interrupt from the PPU to read the
cluster *PPU_PWSR register. Addresses for these can be found in B.1
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Registers accessed over the Utility bus on page 1331. The corresponding
PCSM must respond back to the PPU mode request before the mode is
accepted.

e If your system does not have a System Control Processor (SCP), some of
the sequences above might not be available. For information on potential
limitations of not using an SCP or not implementing a Utility bus loopback
connection, see 7.9 Implications of not having a System Control Processor
on page 99.

e To control transitions through in and out of DBG_RECOV and WARM_RST
power modes, it is expected that a debugger will have memory mapped
access to the Utility bus. Therefore, even if your system does not have an
SCP, it should provide memory mapped access to the Utility bus for debug
control.

7.8 ECC errors during power transitions

It is possible to get Error Correcting Code (ECC) errors in the RAMs during a power transition. These
ECC errors could happen during the software sequence shortly before the hardware sequence
starts. Alternatively, these ECC errors could happen during the hardware sequence when the L1 or
L2 cache is cleaned and invalidated as part of the On to Off power mode transition for a core or
the cluster.

If the Reliability, Availability, and Serviceability (RAS) interrupts are enabled and if RAS errors occur
which cause RAS interrupts while the cluster is powering down, then the RAS interrupts prevent
the core or the cluster from powering down to prevent loss of information.

The RAS interrupts can be disabled. If the RAS interrupts are disabled, then even though a
RAS error occurs during a power down transition, the core or cluster can still continue with the
powering down.

If the RAS interrupts are enabled, then you must ensure that your system has either of the
following:

* An external system level error manager which has the ability to read and write RAS records
through the Utility bus.

e Nominated one (or more) Cortex®-R82 processor core to be responsible for handling the RAS
interrupts. In this case, the nominated core and the cluster must be always powered on and
available to handle the RAS interrupts. The nominated core must also have access to the RAS
records through a Utility bus loopback.

In systems where the RAS interrupts are enabled, if there is no external system

level error manager and if the nominated core for handling the RAS interrupts is
powered down, this can lead to an incomplete state. This is because a denied power
transaction will leave the nominated core powered on but stuck in WFI. In this case,
the RAS interrupts will remain active but not be serviced.

Warning
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Although the ECC errors are reported in the RAS error record registers, once the cluster or core
is powered down, the RAS registers are no longer accessible. If the RAS registers are reporting an
error and the RAS interrupts are enabled, the following sequence happens:

1. The RAS interrupt signals (hnCOREERRIRQ, nCOMPLEXERRIRQ, nCOREFAULTIRQ,
NCOMPLEXFAULTIRQ or n"COMPLEXCRITIRQ) for the appropriate core or cluster are asserted.

2. If the Power Policy Unit (PPU) is requesting a transition to an OFF power mode, then the request
to OFF power mode is denied.

3. The error interrupts must be sent to either an external system level error manager or a
nominated Cortex®-R82 processor core which is always on. The external system level error
manager or a nominated core then reads and writes the relevant RAS error record registers
through the Utility bus in order to clear the record of the reported fault or error. Once the error
record has been cleared, the PPU will be able to request the OFF power mode again.

7.9 Implications of not having a System Control Processor

The global pru_rsT staTe parameter defines the Cold reset state for the core and cluster Power
Policy Units (PPUs).

PPU RST STATE supports the following values:

0] Cluster PPU and all core PPUs reset to Off.
1 Cluster PPU and all core PPUs reset to On.

Setting the ppu_rsT sTaTE to O ensures the whole Cortex®-R82 processor is Off until a System
Control Processor (SCP) powers it On. You must use this option only if your system includes an SCP
that is connected to the Cortex®-R82 processor Utility bus.

Setting the pru_rsT staTE to 1 allows all the PPUs to transition from Off to On automatically
after reset deassertion, without any programming by the SCP. If required, any core within the
Cortex®-R82 processor can still access the PPUs through the Main Manager (MM) port or the
Shared Peripheral Port (SPP) that is connected via a loopback to the Utility bus. For an example of a
loopback address mapping, see 2.11 Utility bus on page 171.

You must consider the following when configuring the ppu_RST STATE:
o If your system has an SCP, ppu_rsT_ STATE can be configured to either O or 1.

e If your system does not have an SCP, configure the ppu rsT staTE to 1. Configuring the
ppu RST sTATE to O will leave your Cortex®-R82 cluster permanently to an Off state, if no
agent is able to program the PPUs.

If your system does not have an SCP or a loopback connection to the Utility bus, there is no way to
program the PPUs. This means several things such as dynamic OPMODE transitions will not work.
Also, some of the sequences in 7.7 Explicit resetting of cluster and cores and debug recovery on
page 94 cannot happen. For some of those cases you have to enable an external agent such as
debugger that is connected to the Utility bus in your system to enable the cluster and cores to On
mode to avoid a system deadlock.
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7.10 PPU and reset management register summary
The register summary tables provide an overview of all the relevant registers.

You can find the register summary tables for the core and cluster Power Policy Unit (PPU) registers
in B.1.1.2 External PPU registers summary on page 1334 and B.1.1.3 External CLUSTERPPU
registers summary on page 1335.
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8. Initialization

This chapter describes considerations for initializing the Cortex®-R82 processor.

8.1 Initializing the Cortex®-R82 processor

You need to consider several things before you can run any program on the Cortex®-R82
processor. This includes, initializing all programmer-visible registers, enabling the Memory Protection
Unit (MPU), enabling the Floating Point Unit (FPU), invalidating the caches, and programming the
Power Policy Units (PPUs).

Initializing the registers

Most of the architectural registers in the Cortex®-R82 processor, such as X0-X30 and SO-S31 and
D0-D31 when Advanced SIMD is included, do not have an architecturally defined reset value, that
is they have an UNKNOWN value after reset. The Cortex®-R82 processor includes hardware that
automatically initializes all programmer-visible registers to a fixed value out of reset, including those
which do not have an architecturally defined reset value.

The Process State (PSTATE) and some System register fields are given a known value
on reset, see the Arm® Architecture Reference Manual Supplement Armv8, for R-profile
AArché4 architecture for more information.

Each core within the Cortex®-R82 processor includes hardware that initializes all core
programmable-visible registers after a core reset, unless the reset is for debug recovery.

Similarly, the Cortex®-R82 processor includes hardware that initializes all cluster programmer-
visible registers after a cluster reset, unless the reset is for debug recovery.

You must not assume that these initialization values can be depended on. The
initialization values must still be considered as UNKNOWN, and that they could
change in subsequent processor releases. This means that software must always
initialize the programmer-visible registers that are defined as having UNKNOWN reset
values before using them.

In addition, before you run an application, remember to:
e Program particular values into various registers, for example, Stack Pointers.
e Enable various features, for example, error reporting.

o Enable Region Registers controlling Data Tightly Coupled Memory (DTCM), Tightly Coupled
Memory (ITCM), Low-latency Peripheral Port (LLPP), and Low-latency RAM (LLRAM) regions.

e Program particular values into memory, for example, the TCMs.
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Enabling the MPU
To make use of the programmable regions in the Memory Protection Unit (MPU), you must configure

and enable any regions you wish to use. The Cortex®-R82 processor supports direct programming
through System register operations.

Before you can use an MPU, you must:

e Program the required regions for your memory map

e Enable the programmed regions

o Enable translation in the System Control Register (SCTLR), SCTLR_EL1.M and SCTLR_EL2.M

Do not enable an MPU unless at least one MPU region is programmed and active. If an MPU is
enabled, before using the TCM you must program MPU regions to cover the TCM regions to give
access permissions to them.

Enabling the MMU
To use Memory Management Unit (MMU) at EL1/0 you must:

e Configure the pagetables in the memory

e Configure the TTBR register to point to the pagetables

o Configure the VTCR_EL2.MSA bit to select VMSA in EL1/0
e Configure the HCR_ELZ if virtualization needs to be enabled
o Enable the System Control Register (SCTLR) SCTLR_EL1.M

Enabling the FPU

You must enable the Floating Point Unit (FPU) before floating-point or Advanced SIMD instructions
can be executed.

Enable the FPU as follows:

e Enable access to the FPU in the Architectural Feature Access Control Register (CPACR_EL1) by
setting the FPEN field.

e Disable trapping of FPU instructions in the Architectural Feature Trap Register (CPTR_EL2) by
resetting the TFP bit.

Invalidating the caches

The Cortex®-R82 processor L1 instruction and L1 data caches and, if implemented, L2 cache are
automatically invalidated after a reset.

This operation can never report any ECC errors.

Each core within the Cortex®-R82 processor includes hardware that invalidates all

core caches after a core reset, only if the reset is not because of an MBIST request
or for debug recovery and the core power mode transitions from any OFF mode to
any ON mode.
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Similarly, the Cortex®-R82 processor includes hardware that invalidates the L2
cache, L2 duplicate L1 tag RAMs, and LLRAM Coherency Unit (LCU) duplicate L1 tag
RAMs after a cluster reset, only if the reset is not because of an MBIST request or
for debug recovery and the cluster power mode transitions from:

e Any OFF mode to any ON mode
e DL1ONLY ON to % RAM ON
e % RAM ON to FULL RAM ON

Programming the PPUs

The PPUs control the power modes and reset behavior of the Cortex®-R82 processor.

You can control the cluster and core PPUs to reset to off or on with the global ppu rST sTATE
parameter. Depending on the value of the ppu_rRsT staTe parameter, an external System Control
Processor (SCP) or core O within the Cortex®-R82 processor programs the PPUs through the Utility
bus and brings the Cortex®-R82 processor out of reset.

For more information on ppu_RsT STATE parameter, see /.9 Implications of not having a System
Control Processor on page 99. For more information on the PPU programming sequences, see /.6
Programming sequences for the cluster and the core on page 92.

8.2 Initializing TCMs

Each core within the Cortex®-R82 processor has two optional Tightly Coupled Memories (TCMs), an
Instruction Tightly Coupled Memory (ITCM) and a Data Tightly Coupled Memory (DTCM).

You can configure the Cortex®-R82 processor to:
e Enable the ITCM out of reset.
e Boot out of an initialized ITCM.

A core's TCMs can be initialized by that core directly or by an external agent. If an external agent
is used, the Cortex®-R82 processor supports enabling initialization of a core's TCMs before that
core completes its reset exception sequence and setting the reset vector address to point into the
initialized ITCM.

Before initializing the TCMs, ensure that both PDCLUSTER and PDCPU<m> power
domains are ON, either by configuring the processor with PPU_RST_STATE =1 or
by programming the Power Policy Units (PPUs).
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8.2.1 Preloading TCMs

You can write data to the Tightly Coupled Memories (TCMs) by using either store instructions or the
ACE-Lite Subordinate (ACELS) interface.

Depending on the method you choose, you might require:
e Particular hardware on the SoC that you are using, such as a DMA engine.
e Boot code.

e A debugger connected to the processor.

The methods to preload the TCMs include:

Memory copy with running boot code

The boot code includes a memory copy routine that reads data from an external memory,
and writes it into the appropriate TCM. You must enable the TCM to do this.

Copy data from the Debug Communications Channel

The boot code includes a routine to read data from the Debug Communications Channel (DCC)
and write it into the TCM. The debug host feeds the data for this operation into the DCC by
writing to the appropriate registers on the processor APB debug interface.

Execute code in debug halt state

The debug host puts the Cortex®-R82 processor into debug halt state and then feeds
instructions into it through the External Debug Instruction Transfer Register (EDITR). The
Cortex®-R82 processor executes these instructions, as an alternative to using boot code in
either of the two methods previously described.

DMA into TCM

The SoC includes a DMA device that reads data from a ROM and writes it to the TCMs
through the ACELS interface.

8.2.2 Preloading TCMs with ECC

Before a RAM location is read with Error Correcting Code (ECC) protection enabled, the error code
bits must be initialized.

If you included the internal RAM protection functionality in the Cortex®-R82 processor, the error
code bits in the TCM RAM are present and not initialized by the Cortex®-R82 processor.

The Cortex®-R82 processor has separate controls of whether ECC checking is enabled and
whether detected ECC errors are recorded and reported to the appropriate Reliability, Availability,
and Serviceability (RAS) registers. For more information on the relevant registers see the
MEMPROTEN fields in A.2.2.39 IMP_MEMPROTCTLR_EL1, Memory Protection Control Register
on page 479 and A.2.2.52 IMP_CLUSTERMEMPROTCTLR_EL1, Cluster Memory Protection
Control Register on page 519 and ED field in B.1.2.1.2 ERR<n>CTLR, Error Record Control
Register, n =0 - 9 on page 1340.
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To update a TCM location without detecting an error, either the ECC checking or RAS reporting
must be disabled or the write must be of the same width and aligned to the data chunk that the
error scheme protects as described in this section.

The reset values of IMP_MEMPROTCTLR_EL1.MEMPROTEN and ERR<n>CTLR.ED
fields imply that errors are detected and, if possible, corrected, but are not recorded
to RAS registers.

You can use the CFGITCMEN<m> signal to enable the Instruction Tightly Coupled Memory (ITCM)
when leaving reset.

To initialize the TCM RAM without causing any spurious errors to be reported, follow these rules:

e |f the ACE-Lite Subordinate (ACELS) interface is used to initialize a TCM with ECC enabled, AXI-
Lite subordinate transactions must start at 128-bit aligned addresses, writing continuous blocks
of memory of at least 64 bytes each and all bytes in the block enabled.

« If initialization is done by running code on the Cortex®-R82 processor, this is best done by a
loop of stores that write to the whole of the TCM memory. For both TCMs use Store Pair (sp)
instruction to 128-bit aligned addresses.

e |f you are initializing the ITCM with your program code, ensure that:
o At least 128 bytes past the end of your program are also initialized to a known value.

o Any remaining uninitialized parts of the ITCM should be marked as Execute-never, by
programming the appropriate Memory Protection Unit (MPU) regions or appropriate Memory
Management Unit (MMU) pages.

8.2.3 Using TCMs from reset

You can use the CFGITCMENM signal to enable the Instruction Tightly Coupled Memory (ITCM)
from reset, the CFGITCMBASEADDRmM signal to select the ITCM base address, and the
CFGRVBARADDRM to select the reset vector address to fall within the ITCM address range. This
enables you to configure the processor to boot from Tightly Coupled Memories (TCMs) but, to do
this, the TCMs must first be preloaded with the boot code.

The Cortex®-R82 processor has CPUHALTm input for each core that, when asserted, prevents
the core from starting to execute instructions out of reset. This enables the TCMs to be preloaded
before the core boots. If an external debug request is made before this input is deasserted, then
the core waits until CPUHALTm has been deasserted, and then enters debug halt state before
executing any instructions.

ECC error reporting in the TCMs is suppressed when the processor core is in HALT
(CPUHALTmM = 1), except where an explicit read request targeting the TCMs has
been received on the ACE-Lite Subordinate (ACELS) port.
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The CPUHALTm input can be asserted while the processor is in reset to prevent the processor
from fetching and executing instructions after coming out of reset. While the processor is halted
in this way, the TCMs can be preloaded with the appropriate data. When the CPUHALTm input is
deasserted, the processor starts fetching instructions from the reset vector address in the normal
way.

When CPUHALTm has been deasserted to start the processor fetching, it must not
be asserted again except when the core is under core warm or powerup reset.

8.3 Initializing LLRAM

The Cortex®-R82 processor has an optional Low-latency RAM (LLRAM) manager interface that is
shared among the cores within the cluster.

You can configure the Cortex®-R82 processor to:
e Enable the LLRAM out of reset.
e Boot out of an initialized LLRAM.

The LLRAM can be initialized by any core in the cluster directly or by an external agent. If an
external agent is used, the Cortex®-R82 processor supports enabling initialization of LLRAM before
a core in the cluster completes its reset exception sequence and setting the reset vector address to
point into the initialized LLRAM.

Before initializing the LLRAM:

e Ifusing a DMA, ensure that the PDCLUSTER power domain is ON or
PPU RST STATE is set to 1.

e |f using memory copy or debugger, ensure that both PDCLUSTER and
PDCPU<m> power domains are ON or PPU_RST_STATE is set to 1.

8.3.1 Preloading LLRAM

You can write data to the memory that is connected to the Low-latency RAM (LLRAM) port by using
either store instructions or the ACE-Lite Subordinate (ACELS) interface.

Depending on the method you choose, you might require:

e Particular hardware on the SoC that you are using, such as a DMA engine.

e Boot code.

e A debugger connected to the processor.
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The methods to preload the memory that is connected to the LLRAM port include:

Memory copy with running boot code

The boot code includes a memory copy routine that reads data from an external memory,
and writes it into the memory that is connected to the LLRAM port. You must enable the
LLRAM to do this.

Copy data from the Debug Communications Channel

The boot code includes a routine to read data from the Debug Communications Channel (DCC)
and write it into the memory that is connected to the LLRAM port. The debug host feeds the
data for this operation into the DCC by writing to the appropriate registers on the processor

APB debug interface.

Execute code in debug halt state

The debug host puts the Cortex®-R82 processor into debug halt state and then feeds
instructions into it through the External Debug Instruction Transfer Register (EDITR). The
Cortex®-R82 processor executes these instructions, as an alternative to using boot code in
either of the two methods previously described.

DMA into LLRAM

The SoC includes a DMA device that reads data from a ROM and writes it to the memory
that is connected to the LLRAM port through the ACELS interface.

8.3.2 Using LLRAM from reset

You can use the CFGLLRAMEN signal to enable the Low-latency LLRAM (LLRAM) from reset, the
CFGLLRAMBASEADDR signal to select the LLRAM base address, and the CFGRVBARADDRmM

to select the reset vector address to fall within the LLRAM address range. This enables you to
configure the processor to boot from LLRAM but, to do this, the memory that is connected to the
LLRAM port must first be preloaded with the boot code.

The Cortex®-R82 processor has CPUHALTm input for each core that, when asserted, prevents the
core from starting to execute instructions out of reset. This enables the LLRAM to be preloaded
before the core boots. If an external debug request is made before this input is deasserted, then
the core waits until CPUHALTm has been deasserted, and then enters debug halt state before
executing any instructions.

If the PDCPU<m> power domain is ON, the CPUHALTm input can be asserted while the processor
is in reset to prevent the processor from fetching and executing instructions after coming out of
reset. While the processor is halted in this way, the memory that is connected to the LLRAM can
be preloaded with the appropriate data.

When the CPUHALTm input is deasserted, the processor starts fetching instructions from the reset
vector address in the normal way.
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When CPUHALTmM has been deasserted to start the processor fetching, it must not
be asserted again except when the core is under core warm or powerup reset.

8.4 Disabling EL2

The Cortex®-R82 processor always boots into EL2.

If you do not need to use EL2 after the bootup process is complete, you can program the Cortex®-
R82 processor and switch to EL1 so that it can never return to EL2 until the next reset. This
involves setting all exceptions to be taken at EL1 and disabling svc and the EL2-controlled Memory
Protection Unit (MPU).

To disable EL2 and enter EL1:

Program the ACTLR_ELZ register because it defaults to only allowing EL2 accesses.
ACTLR_ELZ2 controls whether EL1 can access various processor resources. Other registers
default to allowing accesses at EL1 from reset.

Program the CPTR_EL2 register because it resets to UNKNOWN values. CPTR_EL2 controls
whether various EL1 architectural features are trapped.

Program the following EL2 generic timer registers to appropriate values because their fields
reset to UNKNOWN values.

o CNTHCTL_EL2 fields can control whether various ELO and EL1 timer register accesses are
trapped to EL2.

o CNTHPS _CTL_EL2 fields control timer interrupts for the EL2 physical timer.

Program the VTCR_EL2 register because it resets to UNKNOWN values. VTCR_EL2 controls the
memory system translations.

Program the rest of the HCR_ELZ2 register fields because they reset to UNKNOWN values.
For example, disable all traps to EL2, disable stage 2 address translation, disable default
cacheability, route interrupts to EL1, disable virtual interrupts.

Set VBAR_EL1 to the correct location for the vector table.
Disable the nvc instruction by setting HCR_EL2.HCD to 1.

Set ELR_EL2 and SPSR_EL2 to point to the entry point and the desired state of the EL1 code
and call ERET.
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9. Memory system

This chapter describes the various memories and memory interfaces of the Cortex®-R82 processor.

9.1 About the memory system

The Cortex®-R82 processor memory system provides various memories and interfaces each
tailored to different requirements.

The memory system includes memories and interfaces either private to each core or shared among
the cores. Some memories and interfaces are optional so that you can configure the memory
system according to your system requirements.

e When you choose to exclude the optional ITCM and DTCM, the logic is
removed.

When you choose to exclude the optional L2 memory, the logic is always
present but the RAM size is O.

e« When you choose to exclude the optional LLRAM, SPP, and LLPP interfaces, all
the associated logic is removed. See 2.3.1 Configuration parameters on page 21
for more information.

The memory system consists of:
e Memories private to each core:
° An L1 instruction cache.
> An L1 data cache.
o An optional Instruction Tightly Coupled Memory (ITCM) for instructions and data.
o An optional Data Tightly Coupled Memory (DTCM) for data.
e An optional, per-core AXI5 32-bit Low-latency Peripheral Port (LLPP) manager interface.
e An optional, shared, and unified L2 cache.
e A shared Main Manager (MM) interface implemented as AXI5 256-bit port.
e An optional and shared AXI5 64-bit Shared Peripheral Port (SPP) manager interface.
e An optional and shared AXI5 256-bit Low-latency RAM (LLRAM) manager interface.

e A shared ACE5-Lite 128-bit Main Accelerator Coherency Port (MACP) subordinate interface for
external access to MM address ranges.

e Ashared 128-bit ACE-Lite Subordinate (ACELS) interface used for two purposes:

o As an LLRAM Accelerator Coherency Port (ACP) that enables coherent external access to the
LLRAM.
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> As a TCM subordinate that enables external access such as Direct Memory Access (DMA) to
the TCMs within the cores.

The following figure shows the Cortex®-R82 processor memory system and external interfaces.

Figure 9-1: Memory system
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The TCM, LLPP, SPP, and LLRAM base addresses are configurable through top-level “BASEADDR
pins. See 2.3.2 Integration-time configuration options on page 27 for more information on

these pins. Software has read-only access to those base addresses through related region
registers. See A.2.2.32 IMP_ITCMREGIONR_EL1, ITCM Region Register on page 450,

A.2.2.33 IMP_DTCMREGIONR_EL1, DTCM Region Register on page 453, A.2.2.34
IMP_LLPPREGIONR_EL1, LLPP Region Register on page 456, A.2.2.36 IMP_SPPREGIONR_EL1,
SPP Region Register on page 460, and A.2.2.35 IMP_LLRAMREGIONR_EL1, LLRAM Region
Register on page 458 for more information on these registers.
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The Cortex®-R82 processor provides optional Error Correcting Code (ECC) protection for all
functional RAMs providing Single Error Correct Double Error Detect (SECDED) scheme where
correction is required or Double Error Detect (DED) scheme otherwise.

SECDED ECC is provided for TCMs, the L1 data cache data RAMs, L1 data cache
tag RAMs, L1 data cache dirty RAMs, L2 cache tag and data RAMs, L2 cache data
buffers, and L2 and LCU duplicates of L1 tag RAMs. DED ECC is provided for the
L1 instruction cache data RAMs and L1 instruction cache tag RAMs. L2 cache
replacement RAM and branch predictor RAMs are not protected.

The Cortex®-R82 processor memory system provides various memories and interfaces each
tailored to different requirements. The aim is that some memories and interfaces are used for more
critical real-time requirements and some for less critical real-time requirements. However, the more
real-time critical context is also able to access the less real-time critical interfaces and memories
although such an access might not be desirable depending on the system design.

The Cortex®-R82 processor memories and interfaces can be ordered as follows in terms of
meeting critical real-time requirements:

1. TCMs are the most deterministic.

2. LLRAM, cached through the L1 caches, is more deterministic than the MM but less
deterministic than the TCMs.

3. MM, cached through the L1 and L2 caches, is the least deterministic.

The TCMs provide the most deterministic timing for memory accesses. The ITCM enables low-
latency access for instructions and data. The DTCM provides low-latency access for data only. The
ITCM and the DTCM are private to each core and their contents are not cached.

The TCM interface includes a full crossbar switch that allows concurrent access from three
requesters (instruction side, data side, and ACELS) to the ITCM and concurrent access from two
requesters (data side and ACELS) to the DTCM. If one or more requesters attempt to access the
same TCM, the TCM interface arbitrates between the requests on a fixed priority scheme with
Quality of Service (QoS) mechanisms. See 9.14.3 Quality of Service on page 190 for information
on QoS.

The TCMs support memory testing via Memory Built-In Self Test (MBIST).

Where access timing determinism is less critical but fast access is still required, L1 instruction
cache and L1 data cache can be used. L1 instruction cache and L1 data cache are used to cache
instructions and data respectively from the MM port and the LLRAM port. The cache behavior
depends on the memory attributes. The L1 memories support cache maintenance operations
according to the Arm® architecture and memory testing via MBIST,

The LLRAM interface is optimized for deterministic, low-latency access. Accesses from the
LLRAM interface can be cached in the L1 cache if the memory attributes are cacheable. These
accesses are only cached Write-Through to improve the LLRAM determinism by avoiding waiting
for evictions. The LLRAM port is expected to be connected directly to an SRAM controller for
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optimal performance. Under this assumption, the LLRAM is expected to have better real-time
characteristics compared to the MM port. However, a real-time context is also able to access the
MM port, although such an access might not be desirable depending on the system design.

The L2 cache is unified and therefore it can cache both instructions and data. L2 can cache
instructions and data only from the MM port but not the LLRAM port. Accesses from the MM port
are only cached Write-Back in the L1 and L2 caches to limit the bandwidth to the main memory.

The following table shows which accesses are allowed in the Protected Memory System Architecture
(PMSA) and Virtual Memory System Architecture (VMSA) contexts.]

Table 9-1: Accesses in PMSA and VMSA

Memory PMSA VMSA
system

ITCM Allowed |Not allowed (aborted)
and
DTCM

LLRAM | Allowed | Page table walk accesses are not allowed. Generates synchronous External abort on translation table walk or
hardware update of translation table. The level depends on the current level of the pagewalk.

General accesses are allowed.

MM Allowed |Allowed
LLPP Allowed |Allowed
SPP Allowed |Allowed

9.2 TCM memories

The Tightly Coupled Memories (TCMs) have the most deterministic memory access timing. They are
expected to store the most critical real-time code and data, such as interrupt handlers and memory
stacks.

Each core within the Cortex®-R82 processor has two optional TCMs, Instruction Tightly Coupled
Memory (ITCM) and Data Tightly Coupled Memory (DTCM), implemented as RAMs. Optional here
means that the logic is always present but the size can be OKB.

ITCMs are unified and can be used for both instructions and data. They are typically used for
instruction side accesses such as storing critical code and exception handlers, but also available
for data side read and write accesses such as accessing literal pools or initializing program code.
DTCMs are dedicated for data side accesses only, such as stack operations and inter-thread data
sharing.

» Both ITCM and DTCM are optimized to allow concurrent accesses from multiple
* sources. Each TCM is organized in two logical banks. Core instruction-side read

accesses (for the ITCM only), core data-side read/write accesses, and external read/
Note write accesses from ACE-Lite Subordinate (ACELS) interface can simultaneously
access a TCM in the same cycle if the accesses are on different TCM banks.
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Simultaneous requests to the same bank are arbitrated in a fair way to minimize the
core stalls.

You can implement each TCM independently to sizes of OKB, 16KB, 32KB, 64KB, 128KB, 256KB,
512KB, or 1IMB. A size of OKB indicates that the TCM is not implemented.

The base address and the size of each TCM and whether it is enabled is visible in the respective
TCM region register (A.2.2.32 IMP_ITCMREGIONR_EL1, ITCM Region Register on page 450 and
A.2.2.33 IMP_DTCMREGIONR_EL1, DTCM Region Register on page 453).

If the CFGITCMENmM input for core m is asserted at reset, the ITCM in that core is enabled. The
ITCM base address is set by the CFGITCMBASEADDRmM configuration inputs of core m.

The DTCM remains disabled unless a write to IMP_DTCMREGIONR_EL1 enables it. The DTCM
base address is set by the CFGDTCMBASEADDRmM configuration inputs of core m.

If the TCMs are implemented and not enabled, accesses to the TCM regions generate aborts.

Both TCMs are accessible by the software running at EL1 or ELO only if it operates in a Protected
Memory System Architecture (PMSA) context.

TCM accesses are not supported in Virtual Memory System Architecture (VMSA)
context.

Warning

Software running at EL2 can always access the TCMs. Writes to TCM region registers from EL1
can be trapped to the hypervisor, running at EL2, by setting the register bit HCR_EL2.TIDCP=1 or
ACTLR_EL2.REGIONS=0.

The TCMs can be accessed for reads and writes by external agents through the ACE-Lite
Subordinate (ACELS) port, implemented as a ACE5-Lite 128-bit shared subordinate interface.

You can implement each TCM independently with a wait state of O to 3 cycles on access, meaning
that accesses to that TCM incur that many cycles of latency. If you implement some, but not all
TCMs with wait cycles, the performance of the TCMs might differ from each other.

ITCMs provide up to 128-bit per cycle of bandwidth to the instruction side, up to 128-bit per

cycle of bandwidth to the data side and up to 128-bit per cycle of bandwidth to the external agent
through the ACELS. They allow for 256-bit per cycle of total bandwidth when two of these sources
concurrently access oppositely 128-bit-aligned locations.

DTCMs provide up to 128-bit per cycle of bandwidth to the data side and up to 128-bit per cycle
of bandwidth to the external agent through the ACELS. This allows 256-bit per cycle of total
bandwidth when the core and an external agent through the ACELS concurrently access oppositely
128-bit-aligned data locations. Instruction side accesses to DTCMs are not allowed.
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Load and store exclusive accesses performed to the TCMs are handled by the local exclusive
monitor.

TCMs are private to each core without any internal mechanism for one core to access another
core’s TCMs. However, the Cortex®-R82 processor enables any core within the processor to access
all the TCMs, except its own, via an interconnect loopback. For more information on the loopback
address mapping, see 92.10.4 TCM subordinate on page 167.

The Cortex®-R82 processor supports optional SECDED ECC protection with 64-bit chunk for the
ITCM and optional SECDED ECC protection with 32-bit chunk for the DTCM.

For more information on TCM memory protection behavior, see 11.2 Memory protection behavior
on page 215.

TCM attributes and permissions

Enabled TCMs always behave as Non-cacheable Non-shareable Normal memory. This is
irrespective of the memory type attributes defined in the Memory Protection Unit (MPU) for a
memory region containing addresses that are held in the TCM. Access permissions for TCM
accesses are the same as the permission attributes that the MPU assigns to the same address.

9.3 L1 memory system

Each core within the Cortex®-R82 processor has separate L1 instruction and L1 data caches. You
can configure the L1 instruction and data caches within a core independently from each other and
also from the L1 caches in other cores during rendering.

The L1 instruction cache size can be configured to 16KB, 32KB, 64KB, or 128KB. The L1 data
cache size can be configured to 16KB, 32KB, or 64KB.

L1 caches improve the average performance of programs that do not use the Tightly Coupled
Memories (TCMs). Because the performance of an individual transaction depends on whether the
cache hits or misses, performance from L1 caches is less deterministic than the TCMs.

Both the L1 instruction and L1 data cache can cache data from the Main Manager (MM) port and
the Low-latency RAM (LLRAM) port. The L1 data cache supports Write-Back caching for MM
locations and Write-Through caching for LLRAM locations.

The L1 caches fetch critical-word first. Linefills support write streaming and are non-blocking to
subsequent cache accesses. The Memory Protection Unit (MPU) and the Memory Management Unit
(MMU) control the cacheability of accesses. The MPU and MMU also provide allocation hints,
although these may be automatically overridden to improve the performance when write streaming
is detected. For more information on write streaming see, 9.3.2.4 Write Streaming Mode on page
120.

The Cortex®-R82 processor includes both instruction side and data side prefetchers to improve the
cache hit rate, and therefore, the performance. The prefetchers can anticipate several variants of
cache access patterns, and request linefills to the L1 caches and also to the shared L2 cache.
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The Cortex®-R82 processor does not include any address translation that could generate aliasing
issues, so cache maintenance is not required on context switches.

The L1 caches are automatically invalidated after a core reset, unless the reset is because of an
MBIST request or for debug recovery.

The Cortex®-R82 processor provides an optional Error Correcting Code (ECC) scheme for detecting
and correcting errors. L1 instruction cache RAMs and L1 data cache tag RAMs are protected with
Double Error Detect (DED) scheme. L1 data cache data RAMs are protected with Single Error Correct
Double Error Detect (SECDED) scheme. ECC codes are generated and checked automatically when
ECC is enabled. Errors are corrected when possible. Otherwise an abort is taken by the Cortex®-
R82 processor if the error is about to be consumed or a poison code is written to the cache. The
caches are tolerant to a limited number of hard errors.

In implementations with core cache RAM protection, DED ECC bits protect the
L1 instruction cache data and tag RAMs by enabling the detection of any single or
double bit error. If an error is detected, the line is invalidated and fetched again.

For more information on L1 memory protection behavior, see 11.2 Memory protection behavior on
page 215.

L1 instruction side memory system

The L1 instruction side memory system provides an instruction stream to the Data Processing Unit
(DPU). Its key features are:

e 64-byte instruction side cache line length.

e 4-way set associative L1 instruction cache.

e 128-bit read interface to the shared L2 memory system.

e Instruction side prefetcher that prefetches cache lines ahead of the current point of execution
from the MM or LLRAM interfaces and allocates them into the L1 instruction cache.

The Cortex®-R82 processor uses extensive branch prediction to improve Instructions Per Cycle (IPC)
and power efficiency.

L1 data side memory system

The L1 data side memory system responds to load and store requests from the DPU. It also
responds to L2 coherency logic snoop requests from other cores or external agents. Its key features
are:

e 64-byte data side cache line length.

e 4-way set associative L1 data cache.

o Read buffer that services both the Data Cache Unit (DCU), and the Instruction Fetch Unit (IFU).
e 128-bit read path from the data L1 memory system to the datapath.

o 128-bit write path from the datapath to the L1 memory system.
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e Merging store buffer capability which writes to all types of memory (Device, Normal Cacheable
and Normal Non-cacheable).

o Data side prefetcher that prefetches data cache lines ahead of the current point of execution
from the MM or LLRAM interfaces and allocates them into the L1 data cache. Data side
prefetcher is capable of detecting both constant and patterns of strides.

The L1 data side memory system includes forwarding paths to reduce load-to-use time where
possible. These are only supported when data accesses are made in little-endian format.

9.3.1 L1 instruction memory system
The L1 instruction cache is organised as a Virtually Indexed Physically Tagged (VIPT) cache.

The L1 instruction side memory system provides an instruction stream to the Data Processing Unit
(DPU).

9.3.1.1 Instruction cache disabled behavior

If the SCTLR_EL1.I bitis set to O, load and store instructions at EL1 and ELO do not access any of
the L1 instruction or L2 caches. If the SCTLR_EL2.I bit is set to O, load and store instructions at EL2
do not access any of the L1 instruction or L2 caches.

The SCTLR_EL1.I and SCTLR_ELZ.I bits control whether accesses from the core can look up and
allocate into the L1 instruction cache and unified L2 cache. L1 instruction cache maintenance
operations execute normally, regardless of how the SCTLR_EL1.I and SCTLR_ELZ2.I bits are set.

If the instruction cache is disabled, all instruction fetches to cacheable memory are treated as if
they were non-cacheable. This means that instruction fetches might not be coherent with caches in
other cores and software must take account of this.

The Cortex®-R82 processor does not allocate lines into the instruction cache when the instruction
cache is disabled or the memory is marked as non-cacheable.

See the Arm® Architecture Reference Manual Supplement Armv8, for R-profile AArché4 architecture for
more information.

9.3.1.2 Instruction cache speculative memory accesses

Instructions that are fetched may get discarded and in that sense are speculative, as there can be
several unresolved branches in the pipeline.

A branch instruction or exception in the code stream can cause a pipeline flush, discarding the
currently fetched instructions. Instruction fetches to Device type memory take a synchronous
prefetch abort.
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Device memory areas must be marked with the translation table descriptor attribute bit Execute-
never (XN). The device and code address spaces must be separated in the physical memory map.
This separation prevents speculative fetches to read-sensitive devices.

For load and store instructions, if the instruction cache is enabled and if the instruction fetches
miss in the L1 instruction cache, instruction fetches can still look up and return data from the L2
cache or L1 data cache if appropriate, or from the external interfaces otherwise. Instruction fetches
never result in a line being allocated in the L1 data cache but may result in the line being allocated
into the L2 cache if the L2 cache is enabled.

See the Arm® Architecture Reference Manual Supplement Armv8, for R-profile AArché4 architecture for
more information.

9.3.1.3 Instruction cache invalidate on reset

The Arm®v8-R AArché4 architecture supports the system instructions 1¢ 1arnu and 1¢ 1ALLUIS tO
invalidate the entire instruction cache.

The Cortex®-R82 processor automatically invalidates instruction caches on reset unless suppressed
with the debug recovery P-Channel state or an MBIST request. It is therefore not necessary for
software to invalidate the instruction caches on startup.

9.3.1.4 Branch prediction

The Cortex®-R82 processor contains branch prediction hardware, also known as program flow
prediction.

Branch prediction increases overall performance and reduces power consumption. With branch
prediction disabled, all taken branches incur a penalty that is associated with flushing the pipeline.
To avoid this penalty, the branch prediction hardware predicts:

e |f a conditional or unconditional branch is to be taken.

e The address to which the branch goes, known as the branch target address.

For conditional branches, the hardware predicts if the branch is to be taken and also the branch
target address. For unconditional branches, only the branch target address is predicted.

The hardware contains the following functionality:

e A Branch Target Address Cache (BTAC) holding the branch target address of previously taken
indirect branches.

e A dynamic branch predictor.
e The return stack, a stack of nested subroutine return addresses.

e A static branch predictor.
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Predicted and non-predicted instructions

Unless otherwise specified, the following list applies to R64 instructions. As a rule, the flow
prediction hardware predicts all branch instructions regardless of the addressing mode, and
includes:

e Conditional branches.
e Unconditional branches.

e Indirect branches that are associated with procedure call and return instructions.
Exception return and exception generating instructions are not predicted.

Return stack
On execution of Branch with Link instructions, the return stack stores the address that is equal to

the link register value stored in X30.

The following instructions cause a return stack push:
e BL

e BIR

¢ BLRAA, BLRAAZ, BLRAB, BLRABZ

The return instructions cause a return stack pop. These include:
o RET

e RETAA, RETAB

The exception return instructions (EreT, ERETA, and ERETAB) and exception generating instructions
(svc, mve, BRK, and HLT) are not predicted because they can change the privilege mode. Prefetching
stops when any of these instructions are encountered until they are committed. Then the fetch
resumes from the appropriate point in the program flow.

Similarly, certain barrier instructions such as sB and 1sB also cause prefetching to stop, to help
lower the attack surface of various side-channel attacks.

9.3.1.5 Instruction prefetching

The Cortex®-R82 processor includes an instruction side prefetcher that prefetches cache lines
ahead of the current point of execution from the Main Manager (MM) or Low-latency RAM (LLRAM)
interfaces and allocates them into the L1 instruction cache.

The Cortex®-R82 processor has IMP_CPUACTLR_EL1 system register controls for the instruction
side prefetcher to:

e Enable or disable the prefetcher with or without power-aware throttling mechanisms.

o Configure how far ahead from the current point of execution to prefetch, that is, 1 to 4 cache
lines ahead of the current line.
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o Configure whether the prefetcher always prefetches ahead or only starts prefetching ahead on
an L1 instruction cache miss.

9.3.2 L1 data memory system

The L1 data cache is organized as a Physically Indexed Physically Tagged (PIPT) cache.

9.3.2.1 Data cache disabled behavior

If the SCTLR_EL1.C bit is set to O, load and store instructions at EL1 and ELO do not access any of
the L1 data or L2 caches. If the SCTLR_EL2.C bit is set to O, load and store instructions at EL2 do
not access any of the L1 data or L2 caches.

The SCTLR_EL1.C and SCTLR_EL2.C bits control whether accesses from the core can look up
and allocate into the L1 data cache and unified L2 cache. L1 data cache maintenance operations
execute normally, regardless of how the SCTLR_EL1.C and SCTLR_EL2.C bits are set.

If the L1 data and L2 caches are disabled at the current Exception level, then the following applies:

e All load and store instructions to cacheable memory are treated as if they were non-cacheable.
Therefore, they are not coherent with the caches in this core or the caches in other cores, and
software must take this into account.

The L1 data and L2 caches cannot be disabled independently.

9.3.2.2 Data cache maintenance considerations
The pc 1vac instruction performs an invalidate of the target address.
If the data is dirty, a clean is performed before the invalidate.

The pc 1sw, pc csw, and pc c1sw instructions perform both a clean and invalidate of the target set/
way. The value of HCR_EL2.SWIO has no effect and it is implemented as res1 in the Cortex®-R82
processor.

There might be implications to real-time characteristics of Low-latency RAM (LLRAM)
accesses when pc 1sw or pc csw instructions are executed. See 9.14 Real-time
considerations on page 184 for more information.
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9.3.2.3 Data cache coherency

The Cortex®-R82 processor uses the MESI protocol to maintain data coherency between multiple
cores.

MESI describes the state that a shareable line in a L1 data cache can be in:

M Modified/UniqueDirty (UD). The line is in only this cache and is dirty.

E Exclusive/UniqueClean (UC). The line is in only this cache and is clean.

S Shared/SharedClean (SC). The line is possibly in more than one cache and is
clean.

I Invalid/Invalid (I). The line is not in this cache.

The Data Cache Unit (DCU), the L2, and the LLRAM Coherency Unit (LCU) store the MESI state of
the cache lines in the tag, dirty, and the L1 duplicate tag RAMs.

The names UniqueDirty, SharedDirty, UniqueClean, SharedClean, and Invalid are the
AMBA names for the cache states. The Cortex®-R82 processor does not use the
SharedDirty AMBA state.

9.3.2.4 Write Streaming Mode

A cache line is allocated to the L1 cache on either a read miss or a write miss.

However, there are some situations where allocating on writes is not desirable. For example, when
executing the C standard library memset () function to clear a large block of memory to a known
value. Writes of large blocks of data can pollute the cache with unnecessary data. It can also waste
power and performance if a linefill must be performed only to discard the linefill data because the
entire line was subsequently written by the memset ().

To counter this, the Store Unit (STU) includes logic to detect when the core has written at least a
byte in all the four chunks of the cacheline, before the linefill completes. The granularity of a chunk
is 128 bits. The granularity of a cacheline is 512 bits.

If this situation is detected on a configurable number of consecutive linefills, then it switches into
write streaming mode. This is sometimes referred to as read allocate mode.

When in write streaming mode:
e Loads behave as normal and can still cause linefills.

o Writes still lookup in the cache but if they miss then, they write out to L2 cache rather than
starting a linefill.
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More than the specified number of linefills might be observed on the AXI manager
interface, before the STU detects that the programmed number of full cache lines
have been written and switches to write streaming mode.

The STU continues in write streaming mode until it detects either a cacheable write burst that is
not a full cache line, or there is a load from the same line as is currently being stored to.

In the Cortex®-R82 processor:

e |IMP_CPUACTLR_EL1.DLIWS configures the L1 write streaming mode threshold.

e |IMP_CPUACTLR_EL1.DL2WS configures the L2 write streaming mode threshold.

9.3.2.5 Data cache invalidate on reset

The Arm®v8-R AArché4 architecture does not support an operation to invalidate the entire data
cache.

The Cortex®-R82 processor automatically invalidates data caches on reset unless suppressed with
the debug recovery P-Channel state or an MBIST request. It is therefore not necessary for software
to invalidate the data caches on startup.

If software requires this function later after the startup, it must be constructed by iterating over the
cache geometry and executing a series of individual invalidate by set/way instructions.

9.3.2.6 Instructions implemented by the L1 memory system

This section describes the instructions implemented by the L1 memory system.

Atomic instructions
The Cortex®-R82 processor supports the atomic instructions added in the Arm®v8.1 architecture.

Accesses targeting the Main Manager (MM) interface perform all the atomics either in the L1
data cache or in the interconnect outside the Cortex®-R82 processor. MM atomic instructions to
cacheable memory can be performed as either near atomics or far atomics, depending on where
the cache line containing the data resides:

o (Cacheable MM atomics are executed near if BROADCASTATOMICM is LOW.

e Cacheable MM atomics are executed near if they hit in the cache in a unigue state.

e Unaligned cacheable MM atomics are always executed near.

e Unaligned atomics on the Tightly Coupled Memories (TCMs) are always executed near.

e Unaligned atomics to Low-latency RAM (LLRAM) port, Shared Peripheral Port (SPP), and Low-
latency Peripheral Port (LLPP) are not supported.
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e Non-cacheable/Device MM atomics are always executed far, unless BROADCASTATOMICM s
LOW in which case they are aborted by the Cortex®-R82 processor.

e Unaligned Non-cacheable/Device atomics to all ports are aborted by the Cortex®-R82
processor as they cannot be executed near.

e Cacheable MM atomics which miss in the cache are executed far if BROADCASTATOMICM is
HIGH.

e Cacheable MM atomics which hit in the cache in a shared state execute far if
BROADCASTATOMICM is HIGH.

The Cortex®-R82 processor MM supports sending atomics externally to Device or Non-cacheable
memory, however this depends on the interconnect also supporting atomics. If such an atomic
instruction is executed when the interconnect does not support them (BROADCASTATOMICM

is LOW), it results in a synchronous Data Abort for both load atomics and store atomics. If there

is an external abort on an atomic, it results in a synchronous Data abort for load atomics and an
asynchronous Data abort for store atomics.

The behavior of the atomic instructions can be modified by the IMP_CPUACTLR_EL1
register settings. For more information on the IMP_CPUACTLR_EL1 register, see A.2.2.37/
IMP_CPUACTLR_EL1, CPU Auxiliary Control Register on page 463.

Low-latency RAM (LLRAM) manager interface performs all aligned atomics within the LLRAM
Coherency Unit (LCU) at the shared level rather than in the L1 memory system or external memory.
Because the Write-Through caching requires the results to be written outside the Cortex®-R82
processor, it is faster to always send the results to LCU.

The Cortex®-R82 processor LLRAM performs atomics to device or Non-cacheable memory within
the LCU without requiring interconnect support. This is built on the assumption that the LLRAM
port is connected directly to an external memory and the LLRAM manager cannot access data that
is shared with other agents in the system. The Cortex®-R82 processor can perform atomics on the
LLRAM port assuming that no external agents are able to modify the memory location between the
read and write operation, and caches shareable data without any support for cache coherency with
external agents.

LDAPR instructions

The Cortex®-R82 processor supports load-acquire and store-release instructions with the RCpc
consistency semantic introduced in the Armv8.4-RCpc extension, however the implementation
does not make use of the ordering relaxations. Armv8.4-RCpc load-acquire and store-release
instructions will still be ordered when targeting different addresses.

The instruction support is reflected in register ID_AA64ISAR1_EL1 where bits[23:20] are set to
0b0010 to indicate that the processor supports LpaPUR*, STLUR*, and LDAPR* instructions.

For more information on the ID_AA64ISAR1_EL1 register, see A.2.1.35 ID_AA64ISART_EL1,
AArché4 Instruction Set Attribute Register 1 on page 348.
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Transient memory region

The Cortex®-R82 processor has a specific behavior for memory regions that are marked as Write-
Back cacheable and transient for MM and Write-Back transient or Write-Through transient for
LLRAM, as defined in the Arm®v8-R AArché4 architecture.

For both MM and LLRAM, any load that is targeted at a memory region that is marked as transient,
the following occurs:

e |f the memory access misses in the L1 data cache, the returned cache line is allocated in the
L1 data cache but is marked as transient. Where an L1 data cache allocation needs to evict an
existing entry, transient locations are prioritized for eviction where possible.

For MM, any load that is targeted at a memory region that is marked as transient, the following
occurs:

e On eviction, if the line is clean and marked as transient, it is not allocated into the L2 cache but
is marked as invalid.

For MM, for stores that are targeted at a memory region that is marked as transient, the following
occurs:

e [If the store misses in the L1 data cache, the line is allocated into the L2 cache.

Non-temporal loads

Non-temporal loads indicate to the caches that the data is likely to be used for only short periods.
For example, when streaming single-use read data that is then discarded. In addition to non-
temporal loads, there are also prefetch-memory (prrm) hint instructions with the strm qualifier.

Non-temporal loads cause allocation into the L1 data cache, with the same performance as normal
loads. However, when a later linefill is allocated into the cache, the cache line marked as non-
temporal has higher priority to be replaced. To prevent pollution of the L2 cache, a non-temporal
line that is evicted from L1, is not allocated to L2 as would happen for a normal line.

The line is only marked as non-temporal in the cache if the core has the line in a
unigue state. If shared with other cores, the line is treated normally.

Non-temporal stores are treated the same as stores to a memory region that is marked as transient.

9.3.2.7 Local exclusive monitor

The Cortex®-R82 processor L1 memory system has an architecturally defined local exclusive
monitor.

This monitor is a 2-state, open and exclusive, state machine that manages Load-Exclusive or Store-
Exclusive accesses and Clear-Exclusive (cLrex) instructions. You can use these instructions to
construct semaphores, ensuring synchronization between different processes running on the
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core, and also between different cores that are using the same coherent memory locations for
the semaphore. A Load-Exclusive instruction tags a small block of memory for exclusive access.
CTR_ELO.ERG defines the size of the tagged block as 16 words, one cache line.

A load/store exclusive instruction is any instruction that has a mnemonic starting
with LDX, LDAX, STX, Of STLX.

If a Load-Exclusive instruction is performed to non-cacheable shareable or device memory and is to
a region of memory in the SoC that does not support exclusive accesses, the external exclusive-fail
response causes a Data Abort exception with a Data Fault Status Code of ob110101.

See the Arm® Architecture Reference Manual Supplement Armv8, for R-profile AArché4 architecture for
more information about these instructions.

93271 Treatment of intervening STR operations

Where there is an intervening store operation between an exclusive load and an exclusive store
from the same core, the intermediate store does not produce any direct effect on the local
exclusive monitor.

After the exclusive load, the local monitor is in the Exclusive Access state. It remains in the
Exclusive Access state after the store, and then returns to the Open Access state only after an
exclusive store, a cLrEX instruction, or an exception return.

However, if the exclusive code sequence accessed address is in cacheable memory, any eviction

of the cache line containing that address clears the monitor. Arm recommends that no load or
store instructions are placed between the exclusive load and the exclusive store, because these
additional instructions can cause a cache eviction. Any data cache maintenance instruction can also
clear the exclusive monitor.

9.3.2.7.2 Exclusive monitor

In the exclusive state machine, the IMPLEMENTATION DEFINED transitions are as follows:

o |f the monitor is in the exclusive state, and a store exclusive is performed to a different
cacheline, then the store exclusive fails and does not update memory.

e |f the monitor is in the exclusive state and a store exclusive is performed to a same cacheline
but a different address, then the store exclusive passes and updates memory.

e If a normal store is performed to a different address, it does not affect the exclusive monitor.

e |f a normal store is performed from a different core to the same address for Sharable Cacheable
locations, it clears the exclusive monitor. If the store is from the same core then it does not
clear the monitor.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 124 of 2039


https://developer.arm.com/documentation/ddi0600/latest/

Arm® Cortex”-R82 Processor Technical Reference Manual Document ID: 102670_0101_02_en
Issue: 02
Memory system

e |f a normal store is performed from a different core to the same address for Sharable Non-
cacheable locations, then the global exclusive monitor in the SoC clears the exclusive monitor.
If the store is from the same core then it does not clear the monitor.

If you are using load/store exclusive instructions to build semaphores, Arm
recommends that you use a full cacheline per semaphore.

9.3.2.8 Data prefetching

The following section describes the software and hardware data prefetching behavior of the
Cortex®-R82 processor.

Hardware data prefetcher

The Cortex®-R82 processor has a data prefetch mechanism that looks for cache line fetches with
regular patterns. If the data prefetcher detects a pattern, then it signals to the memory system that
memory accesses from a specified address are likely to occur soon. The memory system responds
by starting new linefills to fetch the predicted addresses ahead of the instruction stream.

The Cortex®-R82 processor can track multiple streams in parallel.

Prefetch streams end when either:
e The pattern is broken.
e A DpsB instruction is executed.

e A wrI instruction or wrE instruction is executed.

For read streams, the prefetcher is based on the addresses. A given stream is allowed to prefetch
addresses through multiple Memory Protection Unit (MPU) regions as long as they are cacheable and
with read permissions. For more information see, 10.2.1 MPU regions on page 193.

For some types of pattern, when the prefetcher is confident in the stream, it can start progressively
increasing the prefetch distance ahead of the current accesses. These accesses start to allocate

to the L2 cache rather than L1. Allocating to the L2 cache allows better utilization of the larger
resources available at L2. Also, utilizing the L2 cache reduces the amount of pollution of the L1
cache if the stream ends or is incorrectly predicted. If the prefetching to L2 was accurate, the line
will be removed from L2 and allocated to L1 when the stream reaches that address.

The IMP_CPUACTLR_EL1 register allows you to:
e Enable or disable the prefetcher, for each target interface separately.

e Control the maximum number of prefetch streams that can be active at once.
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Preload instructions

The Cortex®-R82 processor supports prp and preM instructions. prp and preM instructions perform
a lookup in the L1 cache and, in the case of a cache miss, initiate a linefill request to bring the line
into the L1 cache. The preMsS also enables targeting of a prefetch to the L2 cache. A request is sent
to L2 to start a linefill, and then the instruction can retire without any data being returned to L1.
PLI, PLIL1KEEP and PLIL1STRM are implemented as a prefetch to L2.

Use the pLp or prrM instruction for software data prefetching where short sequences or irregular
pattern fetches are required. For more information about prefetch memory and preloading caches,
see the Arm® Architecture Reference Manual Supplement Armv8, for R-profile AArché4 architecture.

Data Cache Zero

The Data Cache Zero by Virtual Address (pc zva) instruction enables a block of 64-bytes in
memory, which is aligned to 64-bytes in size, to be set to 0. The DCZID_ELO register passes this
value.

The pc zva instruction allocates this value into the data cache using the same method as a normal
store instruction.

9.4 L2 memory system

The Cortex®-R82 processor has an optional unified L2 cache that is shared by all the cores in the
cluster. L2 cache improves the average performance of programs that use memory within the Main
Manager (MM) address range.

The L2 memory is unified and therefore it can cache both instructions and data. The L2 can cache
instructions and data only from the MM port but not the Low-latency RAM (LLRAM) port. The L2
cache supports Write-Back caching for MM locations.

Because the performance of an individual transaction depends on whether the L1 and L2 caches
hit or miss, performance from the L2 cache is less deterministic than the Tightly Coupled Memories
(TCMs) or LLRAM. The L2 cache fetches critical-word first, and linefills support streaming. This
prevents the blocking of subsequent cache accesses.

The Memory Protection Unit (MPU) and the Memory Management Unit (MMU) control the
cacheability of accesses. They also provide allocation hints although these may be automatically
overridden to improve the performance when streaming is detected.

The L2 memory subsystem consists of:

e An optional 8-way, set-associative L2 cache with a configurable size of OKB, 96KB, 128KB,
192KB, 256KB, 384KB, 512KB, 768KB, 1MB, 1.5MB, 2MB, 3MB, or 4MB. Cache lines have a
fixed length of 64 bytes.

e Optional Error Correcting Code (ECC) protection for tag, data, and L2 data buffer RAM
structures.
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For information on L2 memory protection behavior, see 11.2 Memory protection
behavior on page 215.

The main features of the L2 memory system are:

e Shared and unified L2 cache.

e Organized as a Physically Indexed Physically Tagged (PIPT) cache.
e Duplicate PIPT L1 tag RAMs.

e Pseudo-exclusive with L1 data cache.

e Pseudo-inclusive with L1 instruction cache.

e Configurable cache slice and RAM partitions that the L2 cache implements.

The Cortex®-R82 processor respects cacheability attributes when determining whether or not to
cache data in the L2 cache.

The Cortex®-R82 processor does not support cache stashing from external agents on the Main
Manager (MM) interface or ACE-Lite Subordinate (ACELS) interface. The L2 cache supports stashing
requests from the Main Accelerator Coherency Port (MACP).

The L2 cache is invalidated automatically at reset unless the reset is because of an MBIST request
or for debug recovery.

9.4.1 L2 cache slice integration

The Cortex®-R82 processor L2 cache is implemented as either a single cache slice or a dual cache
slice, depending on the configuration.

1.2_sLICES parameter controls the number of slices and RAM partitions the L2 cache implements.

A cache slice consists of data RAMs, tag RAMs, replacement RAMs, duplicate L1 tag RAMs, L2 data
buffer RAMs, and associated logic.

When two cache slices are implemented, the overall cache is divided across the two slices. There is
associated logic for each of the cache slices. The following figure shows the differences between a
single slice configuration and a dual slice configuration.
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Figure 9-2: Comparison between a single and dual L2 cache slice configuration
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Splitting the cache into two slices improves the physical floorplan when implementing the
macrocell, particularly for larger cache sizes. It also gives increased bandwidth because the two
slices can be accessed in parallel.

When a dual slice configuration is implemented, the L2 cache data RAM is further divided into two
partitions in order to facilitate powering down of half the data RAM when bandwidth requirements
are low.

9.4.1.1 Cache slice selection

For a dual cache slice implementation, requests are sent to a particular slice depending on the
address and the memory attributes of the request:

e For Cacheable and Non-cacheable requests, addresses are interleaved between slice O and slice
1, based on address bit 6 of the request.

e Device and DVM requests are always sent to slice O.

9.4.1.2 Non-power-of-two L2 cache implementation

The Cortex®-R82 processor supports the following non power-of-two L2 cache sizes: 96KB,
192KB, 384KB, 768KB, 1.5MB, 3MB.

When configured with a non power-of-two size, the number of L2 cache ways remains unchanged
at 8 ways, but the overall number of sets is reduced compared to the equivalent power-of-two
configuration.

The following figure shows a non power-of-two L2 cache implementation, highlighting the
reduction in available sets across all slices and partitions when compared to the equivalent power-
of-two size.
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Figure 9-3: Non-power-of-two L2 cache implementation
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9.4.2 L2 cache allocation policy
The L2 cache data allocation policy changes depending on the pattern of data usage.

Exclusive allocation is used when data is allocated in only one core. Inclusive allocation is used
when data is shared between cores.

For example, an initial request from core O allocates data in the L1 caches but is not allocated in
the L2 cache. When data is evicted from core O, the evicted data is allocated in the L2 cache. The
allocation policy of this cache line is still exclusive. If core O refetches the line, it is allocated in the
L1 caches of core O and removed from the L2 cache, keeping the line exclusive. If core 1 then
accesses the line for reading, it remains cached in core O and is also allocated in both core 1 and L2
caches. In this case, the line has inclusive allocation.

9.4.3 L2 cache partitioning

The L2 cache supports a partitioning scheme that alters the victim selection policy to prevent one
core (or a group of cores) from using the entire cache at the expense of another core.

Cache partitioning is intended for specialized software where there are distinct classes of processes
running with different cache accessing patterns. For example, two processes A and B run on
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separate cores in the same cluster and therefore share the L2 cache. If process A is more data-
intensive than process B, then process A can cause all the cache lines that process B allocates to be
evicted. Evicting these allocated cache lines can reduce the performance of process B.

To avoid this, the Cortex®-R82 processor supports L2 cache partitioning to enable differentiation
between groups of cores with varying types of workload.

The L2 cache implements eight ways. When configured as a single slice, these all fall within a single
partition, whereas a dual slice configuration implements four ways per partition as shown in the

following figure.

Figure 9-4: L2 cache slice structure
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To implement the cache way partitioning, the Cortex®-R82 processor groups pairs of ways into
Way Groups and associates these with the different cores via Scheme |Ds.

The eight cache ways are arranged into groups as follows:

e Way Group O0: Way 0 and Way 4

e Way Group 1: Way 1 and Way 5

e Way Group 2: Way 2 and Way 6

e Way Group 3: Way 3 and Way 7

Eight combinations of these Way Groups can then be defined via the Cluster Partition Control

Register, IMP_CLUSTERPARTCR_EL1. Each grouping is known as a Scheme ID. The Cluster
Partition Control Register can be programmed as follows:

e Each way group can be assigned as private to one or more scheme IDs.

e Each way group can be left unassigned and therefore shared between all scheme IDs.
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e Multiple way groups can be assigned as private to a single scheme ID.

These Scheme IDs can then be configured for use as follows:

e Each core is assigned to a scheme ID with the Cluster Scheme ID register,
IMP_CLUSTERSID_EL1 which is banked per-core.

e Main Accelerator Coherency Port (MACP) transactions are assigned to a scheme ID with the
Cluster MACP Scheme ID register IMP_CLUSTERACPSID_EL1.

Accesses from a given core or the MACP can allocate into any cache way that is assigned as private
to the allocated Scheme ID, or to any cache way that is shared between all Scheme IDs.

If some cache ways are powered down, the number of ways in each partition are
reduced. If there are insufficient ways available to a process, performance might be
reduced. Therefore Arm recommends that using cache partitioning and cache way
powerdown at the same time is done with care.

9.4.4 L2 cache stashing

Cache stashing is the ability of an external agent to request that a line is brought in (or stashed) to a
cache in the cluster.

Cache stashing can be performed over the Main Accelerator Coherency Port (MACP). All stash
requests target only the L2 cache.

Cache stashing is not supported on the ACE-Lite Subordinate (ACELS) interface or the Main Manager
(MM) interface.

9.4.5 L2 cache data RAM latency

The L2 cache data RAM input and output latency is configurable in order to meet a variety of
potential frequency targets.

For more information on the L2 cache data RAM latency, see the Arm® Cortex®-R82 Processor
Configuration and Integration Manual.

The Arm® Cortex®-R82 Processor Configuration and Integration Manual is a
confidential document that is only available to Cortex®-R82 processor IP licensees.
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9.5 LLPP manager interface

The Low-latency Peripheral Port (LLPP) provides minimum latency access to memory and devices
outside the cluster. Each core within the Cortex®-R82 processor has an optional AXI5 32-bit LLPP
manager interface.

The LLPP is expected to be connected to a limited number of latency-critical peripherals that are
private to a core. No other core can access to the peripherals connected to a core's LLPP. Similarly,
the ACE-Lite Subordinate (ACELS) interface cannot access to the LLPP.

You can also connect the LLPP to a wider, shared interconnect, but its latency
advantages would be reduced.

You can connect the LLPP to memory instead of peripherals although this is not optimal. This

is because the LLPP always applies Device non-Gathering, non-Reordering, with no Early Write
Acknowledgement (Device-nGnRnE) memory type and attributes. This means that the Cortex®-
R82 processor never speculatively accesses the LLPP, reorders accesses to the LLPP, forwards data
from the LLPP, or merges writes to the LLPP.

Any accesses to the LLPP must follow the rules of the Device memory. The LLPP treats Normal
memory accesses as if they are Device memory accesses.

If you connect an ideal memory system to the LLPP, then the core can sustain one
store word transaction (generated by basic STR instructions) each cycle to the LLPP
indefinitely resulting a throughput of 32-bit of store data per cycle.

You can connect the LLPP to AXI4 subordinates, AXI5 subordinates, and AXI5-Lite subordinates.

The LLPP does not support exclusive or atomic transactions. Any exclusive or atomic accesses
to the LLPP cause a synchronous External Data Abort that is generated internally rather than
requiring the SoC to do so.

Unlike Main Manager (MM) accesses, the LLPP accesses are never shared or merged with accesses
from a different context, even for Normal type memory. Therefore, it is always possible for the
subordinate device to use the Virtual Machine |Dentifier (VMID) signaled on the LLPP to restrict
accesses to a particular context.

The LLPP signals the VMID of the context that initiated a transaction on dedicated AXI User signals
for all transactions. The LLPP supports only single-beat burst INCR transactions.
The IMP_LLPPREGIONR_EL1 System register holds the information about:
e Whether the LLPP is implemented or not.
e LLPP region size which is fixed to 128MB if the LLPP is implemented and O otherwise.
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e The LLPP base address.
e Whether the LLPP is enabled or not.

L1.PP configuration parameter controls whether the LLPP interface is implemented or not. If the
system does not implement the LLPP interface (LLep = O), the cores in the Cortex®-R82 processor
do not include the logic to support LLPP regions and ports. All related AXI signals, CFGLLPPIMP,
and CFGLLPPBASEADDR pins are rendered out by the configuration script.

If the system implements the LLPP interface (LLep = 1), all cores in the Cortex®-R82 processor
include logic to support the LLPP regions and ports. The LLPP interfaces can be enabled or
disabled by the CFGLLPPIMP pin. If the LLPP interface is implemented, the LLPP region has a fixed
size of 128MB.

The LLPP base address is set via the configuration signal CFGLLPPBASEADDR and is the same for
all cores in a cluster.

The LLPP is disabled at reset. IMP_LLPPREGIONR_EL1.ENABLEEL2 controls whether the LLPP is
enabled for access at EL2 and IMP_LLPPREGIONR_EL1.ENABLEEL10 controls whether the LLPP is
enabled for access at ELO and EL1.

For more information about the IMP_LLPPREGIONR_EL1, see A.2.2.34 IMP_LLPPREGIONR_EL1,
LLPP Region Register on page 456.

If the LLPP is implemented and enabled, data accesses to an address in the LLPP region are
performed through the LLPP. If the LLPP is implemented and not enabled, data accesses to the
LLPP region generate a synchronous External abort. If the LLPP is not implemented, then data
accesses to the LLPP region are performed through other parts of the memory system.

If the LLPP is implemented, instruction accesses to an address in the LLPP region cause a
synchronous External abort. If the LLPP is not implemented, instruction accesses are performed
through other parts of the memory system.

The following table shows the LLPP attributes.

Table 9-2: LLPP attributes

Attribute Value Comments

Write issuing capability 8 Each core can issue a maximum of eight write requests.
Read issuing capability 4 Each core can issue a maximum of four LLPP read requests.
Combined issuing capability 12 Each core can issue a maximum of 12 requests.

Exclusive thread capability 0 Exclusive accesses are not supported.

Write ID capability 1 All writes use the same ID.

Write ID width 1

Read ID capability 1 All reads use the same ID.

Read ID width 1

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 133 of 2039



Arm” Cortex”-R82 Processor Technical Reference Manual Document ID: 102670_0101_02_en
Issue: 02
Memory system

9.5.1 LLPP features

The following table shows the Low-latency Peripheral Port (LLPP) AXI properties the Cortex®-R82
processor supports or requires the cluster interconnect and system to support.

Table 9-3: LLPP features

AXI property Supported by the Cortex®-R82 processor  Interconnect support required
LLPP
Multi_Copy_Atomicity Yes Yes
Ordered_Write_Observation Yes Yes
Atomic_Transactions No No
Poison No No
Check_Type No No
QoS_Accept No No
Trace_Signals No No
Loopback_Signals No No
Wakeup_Signals Yes Yes
Untranslated_Transactions No No
NSAccess_ldentifiers No No

9.5.2 LLPP memory attributes

The LLPP uses the ARCACHEPmM and AWCACHEPM signals to indicate the memory attributes of
transactions.

The following table shows the encoding that is used for the ARCACHEPmM and AWCACHEPmM
signals of the LLPP manager interface. Because the LLPP is optimized for peripherals, all accesses
propagate Device Non-bufferable attributes, regardless of the attributes that are returned by the
memory management system translation. All other encodings are unused.

Table 9-4: ARCACHEPmM and AWCACHEPmM encodings

Encoding Meaning
0b0000 Device Non-bufferable

9.5.3 LLPP transfers
The LLPP only issues INCR bursts of length one and transfers of up to 32 bits per transfer.

The LLPP read-channel can post:

e Two 32-bit outstanding transactions when a single instruction requests 64 bits of data from a
64-bit aligned location.

o Four 32-bit outstanding transactions when a single instruction requests 128 bits of data from a
128-bit aligned location.
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The LLPP does not post two read transactions on the bus for two separate instructions or for data
within two separate 64-bit aligned locations.

The LLPP write-channel generates up to eight 32-bit transactions on the bus from one or more
instructions. All transactions use the same ID to ensure that ordering is maintained.

9.5.4 LLPP AXI transfer restrictions

The LLPP conforms to the AMBA® 5 AX| specification, but it does not generate all the AXI
transaction types that the specification permits.

This section describes the types of AXI transactions that the LLPP generates. If you are designing
an AXI Subordinate interface to work only with the Cortex®-R82 LLPP, you can take advantage of
these restrictions and the interface attributes to simplify the subordinate.

This section also contains tables that show some examples of the types of AXI burst that the
Cortex®-R82 processor generates. However, because a particular type of transaction is not shown
here does not mean that the Cortex®-R82 processor does not generate such a transaction.

You can connect the LLPP to both AXI4 subordinates and AXI5-Lite subordinates in addition to
AXI5 subordinates.

An AXlI4 subordinate device that is connected to the LLPP must be capable of handling every kind
of transaction that the AXI4 specification permits, except where there is an explicit statement in
this chapter that such a transaction is not generated. You must not infer any additional restrictions
from the example tables given.

An AXI5-Lite subordinate device that is connected to the LLPP must be capable of handling every
kind of transaction that the AXI5-Lite specification permits, except where there is an explicit
statement in this chapter that such a transaction is not generated. You must not infer any additional
restrictions from the example tables given.

Restrictions on AXI peripheral transfers describes restrictions on the type of transfers that the LLPP
generates. If a core exists and is powered up, BREADYPm and RREADYPm are always asserted. You
must not make any assumptions about the AX| handshaking signals, except that they conform to
the AXI5 specification.

The LLPP applies the following restrictions to the AXI transactions it generates:

e A burst never transfers more than four bytes.

e The burst length is never more than one transfer.

e No transaction ever crosses a 4-byte boundary in memory.

e All transactions are incrementing (INCR) bursts.

e Transactions to Device memory are always to addresses that are aligned to the transfer size.

» No exclusive accesses are generated.

e No atomic accesses are generated.
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A load or store instruction to or from Device memory always generates AXI transactions of the

same size as the instruction implies.

The following table shows the values of ARADDRPm, ARBURSTPm, ARSIZEPm, and ARLENPm for
LDRB from bytes 0-3 in Device memory.

Table 9-5: 1L.DRB transfers

Address[1:0] ARADDRPmM[7:0] ARBURSTPm ARSIZEPm ARLENPmM

0x0 (byte 0) 0x00 INCR 8-bit 1 data transfer
0x1 (byte 1) 0x01 INCR 8-bit 1 data transfer
0x2 (byte 2) 0x02 INCR 8-bit 1 data transfer
0x3 (byte 3) 0x03 INCR 8-bit 1 data transfer

The following table shows the values of ARADDRPm, ARBURSTPm, ARSIZEPm, and ARLENPm for
Lora from halfwords O-1 in Device memory.

Table 9-6: 1.DRH transfers

Address[1:0] ARADDRPmM ARBURSTPm ARSIZEPm ARLENPmM
0x0 (halfword 0) 0x00 INCR 16-bit 1 data transfer
0x2 (halfword 1) 0x02 INCR 16-bit 1 data transfer

The following table shows the values of ARADDRPm, ARBURSTPm, ARSIZEPm, and ARLENPm for
an LDr in Device memory.

Table 9-7: LDR transfers

Address[1:0]
0x0 (word 0)

ARADDRPmM
0x00

AWBURSTPm
INCR

ARSIZEPm
32-bit

ARLENPmM

1 data transfer

The following table shows the values of ARADDRPm, ARBURSTPm, ARSIZEPm, and ARLENPm for
an nop that transfers two 64-bit registers, an L.op <xt1>, <xt2>, in Device memory.

All accesses using 1.op instructions to Device memory occur as one or multiple 32-bit transactions.

Table 9-8: 1.DP transfers

Address[2:0] ARADDRPmM ARBURSTPm ARSIZEPm ARLENPmM

0x0 (word O) 0x00 INCR 32-bit 1 data transfer
0x04 INCR 32-bit 1 data transfer
0x08 INCR 32-bit 1 data transfer
0x0C INCR 32-bit 1 data transfer

0x4 (word 1) 0x04 INCR 32-bit 1 data transfer
0x08 INCR 32-bit 1 data transfer
0x0C INCR 32-bit 1 data transfer
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ARLENPmM

1 data transfer

The following table shows the values of AWADDRPmM, AWBURSTPmM, AWSIZEPmM, AWLENPmM, and
WSTRBPm for an strs from bytes O-3 in Device memory.

Table 9-9: STRB transfers

Address[1:0] AWADDRPm AWBURSTPm AWSIZEPm AWLENPmM WSTRBPm
0x0 (byte 0) 0x00 INCR 8-bit 1 data transfer 0b0001
0x1 (byte 1) 0x01 INCR 8-hit 1 data transfer 0b0010
0x2 (byte 2) 0x02 INCR 8-bit 1 data transfer 000100
0x3 (byte 3) 0x03 INCR 8-bit 1 data transfer 0b1000

The following table shows the values of AWADDRPmM, AWBURSTPmM, AWSIZEPmM, AWLENPm, and
WSTRBPm for an strs from halfwords O-1 in Device memory.

Table 9-10: STRH transfers

Address[1:0] AWADDRPmM AWBURSTPm AWSIZEPm AWLENPmM WSTRBPm
0x0 (halfword 0) 0x00 INCR 16-bit 1 data transfer 0b0011
0x2 (halfword 1) 0x02 INCR 16-bit 1 data transfer 0b1100

The following table shows the values of AWADDRPmM, AWBURSTPm, AWSIZEPmM, AWLENPmM, and
WSTRBPm for an sTr to Device memory.

Table 9-11: STR transfers

Address[1:0]
0x0 (word O)

AWADDRPmM

0x00

AWBURSTPm

INCR

AWSIZEPm
32-bit

AWLENPmM

1 data transfer

WSTRBPm
Obl111

The following table shows the values of AWADDRPmM, AWBURSTPmM, AWSIZEPmM, AWLENPmM, and
WSTRBPm for an ste that writes two 64-bit registers, an stp <xt1>, <xt2>, to Device memory.

Table 9-12: sTP transfers

Address[2:0] AWADDRPmM AWBURSTPm AWSIZEPm AWLENPmM WSTRBPm

0x0 (word 0) 0x00 INCR 32-bit 1 data transfer 0bl111
0x04 INCR 32-bit 1 data transfer 0b1111
0x08 INCR 32-bit 1 data transfer 0b1111
0x0C INCR 32-bit 1 data transfer 0bl111

0x4 (word 1) 0x04 INCR 32-bit 1 data transfer 0bl111
0x08 INCR 32-bit 1 data transfer 0b1111
0x0C INCR 32-bit 1 data transfer 0b1111
0x10 INCR 32-bit 1 data transfer 0bl111
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e Aload of a halfword from Device memory addresses 0x1 or 0x3 generates an
alignment fault.

e Aload of a word from Device memory addresses 0x1, 0x2, or 0x3 generates an
alignment fault.

e A load-pair from Device memory addresses 0x1, 0x2, 0x3, 0x5, 0x6, or 0x7
generates an alignment fault.

e A store of a halfword from Device memory addresses 0x1, or 0x3 generates an
alignment fault.

e A store of a word to Device memory addresses 0x1, 0x2, or 0x3 generates an
alignment fault.

o A store-pair to Device memory address 0x1, 0x2, 0x3, 0x5, 0x6, or 0x7
generates an alignment fault.

9.6 SPP manager interface

The Shared Peripheral Port (SPP) provides minimum latency access to memory and devices outside
the cluster. The Cortex®-R82 processor has an optional AXI5 64-bit SPP manager interface that is
shared among the cores within the cluster.

The SPP is expected to be connected to a limited number of latency-critical peripherals that are
shared among cores. Each core can access to the peripherals connected to SPP. The ACE-Lite
Subordinate (ACELS) interface cannot access to the SPP.

You can also connect the SPP to a shared interconnect but its latency advantages
would be reduced.

You can connect the SPP to memory instead of peripherals although this is not optimal. It is
because the SPP always applies Device non-Gathering, non-Reordering, with no Early Write
Acknowledgement (Device-nGnRnE) memory type and attributes. This means that the Cortex®-
R82 processor never speculatively accesses the SPP, reorders accesses to the SPP, forwards data
from the SPP, or merges writes to the SPP. The SPP does not support exclusives and atomics.

If you connect an ideal memory system to the SPP, then the Cortex®-R82 processor
sustains one store doubleword transaction (generated by basic STR instructions)
each cycle to the SPP indefinitely resulting a throughput of 64-bit of store data per
cycle.

To guarantee the minimum latency characteristics of the SPP, you need to reserve certain buffers

in the Cortex®-R82 processor. For more information, see 9.14 Real-time considerations on page
184.
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You can connect the SPP to AXI4 subordinates, AXI5 subordinates, and AXI5-Lite subordinates. If
you choose to connect the SPP to the AXI5-Lite subordinates, you must implement a bridge in your
system to split the 2-beat bursts that SPP is capable of generating.

Unlike the Main Manager (MM) accesses, the SPP accesses are never shared or merged with
accesses from a different context, even for Normal type memory. Therefore, it is always possible for
the subordinate device to use the Virtual Machine IDentifier (VMID) signaled on the SPP to restrict
accesses to a particular context.

The SPP signals the VMID of the context that initiated a transaction on dedicated AXI User signals
for all transactions to the SPP.

The SPP supports only INCR transactions and is capable of both single-beat and 2-beat bursts. For
example, 128-bit load-store pair can be sent out as a 2-beat 64-bit INCR burst.

The SPP does not have exclusives or atomics support.

The IMP_SPPREGIONR_EL1 System register holds the information about:

e Whether the SPP is implemented or not.

e SPP region size which is fixed to 128MB if the SPP is implemented and O otherwise.
e The SPP base address.

e Whether the SPP is enabled or not.

spp configuration parameter controls whether the SPP interface is implemented or not. If the
system does not implement the SPP interface (spp = 0), the Cortex®-R82 processor does not
include the SPP region and ports. All related AXI signals, CFGSPPIMP, and CFGSPPBASEADDR
pins are rendered out by the configuration script.

If the system implements the SPP interface (spp = 1), the Cortex®-R82 processor includes the SPP
region and ports. The SPP interface can be enabled or disabled by the CFGSPPIMP pin. If the SPP
interface is implemented, the SPP region has a fixed size of 128MB.

The SPP base address is set via the configuration signal CFGSPPBASEADDR.

The SPP is disabled at reset. IMP_SPPREGIONR_EL1.ENABLEEL2 controls whether the SPP is
enabled for access at EL2 and IMP_SPPREGIONR_EL1.ENABLEEL10 controls whether the SPP is
enabled for access at ELO and EL1.

For more information about the IMP_SPPREGIONR_EL1, see A.2.2.36 IMP_SPPREGIONR_EL1,
SPP Region Register on page 460.

If the SPP is implemented and enabled, data accesses to an address in the SPP region are
performed through the SPP. If the SPP is implemented and not enabled, data accesses to the SPP
region generate a synchronous External abort. If the SPP is not implemented, then data accesses to
the SPP region are performed through other parts of the memory system.
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If the SPP is implemented, instruction accesses to an address in the SPP region cause a
synchronous External abort. If the SPP is not implemented, instruction accesses are performed
through other parts of the memory system.

The following table shows SPP attributes where NUM_CORES is the number of logical cores. See
2.3.1 Configuration parameters on page 21 for permitted values.

Table 9-13: SPP attributes

Attribute Value Comments

Write issuing capability NUM_CORES * 8 |Each core can issue a maximum of eight write requests.

Read issuing capability NUM_CORES Each core can issue one SPP read request.

Combined issuing capability |NUM_CORES * 9 |Each core can issue a maximum of nine requests with up to eight writes and one read.
Exclusive thread capability |0 No Exclusive access support.

Write ID capability

11D per core

All writes use the same ID per core.
Note:

Write ID capability is the same as the Read ID capability for the same core.

Write ID width 3 bits Unused bits tied to zero if less than three bits required.
Read ID capability 11D per core All reads use the same ID per core.
Read ID width 3 bits Unused bits tied to zero if less than three bits required.

9.6.1 SPP features

The following table shows the Shared Peripheral Port (SPP) AXI properties the Cortex®-R82

processor supports or requires the cluster interconnect and system to support.

Table 9-14: SPP features

AXI property Supported by the Cortex®-R82 processor | Interconnect support required
SPP
Multi_Copy_Atomicity Yes Yes
Ordered_Write_Observation Yes Yes
Atomic_Transactions No No
Poison No No
Check_Type No No
QoS_Accept No No
Trace_Signals No No
Loopback_Signals No No
Wakeup_Signals Yes Yes
Untranslated_Transactions No No
NSAccess_ldentifiers No No
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9.6.2 SPP memory attributes

The Cortex®-R82 processor does not implement AMBA® AXI5 ARCACHE and AWCACHE signals
for the Shared Peripheral Port (SPP). The SPP uses the default values for these signals to indicate the
memory attributes of transactions.

The following table shows the default encoding that is used for the ARCACHE and AWCACHE
signals. Because the SPP is optimized for peripherals, all accesses propagate Device Non-bufferable
attributes, regardless of the attributes that are returned by the memory management system
translation. All other encodings are unused.

Table 9-15: ARCACHE and AWCACHE encodings

Encoding
0b0000

Meaning

Device Non-bufferable

9.6.3 SPP transfers

The SPP only issues INCR transactions of single-beat and 2-beat bursts and transfers of up to 128
bits per transfer.

The SPP read-channel can post one, up to 128-bit outstanding transaction per core when a single
instruction requests 128 bits of data from a 128-bit aligned location. The SPP does not post two
read transactions per core on the bus for two separate instructions or for data within two separate
128-bit aligned locations.

The SPP write-channel generates up to eight write requests per core with up to 128-bit
transactions on the bus from one or more instructions. All transactions use the same ID per core to
ensure that ordering is maintained.

9.6.4 SPP AXI transfer restrictions

The SPP conforms to the AMBA® 5 AXI| specification, but it does not generate all the AXI
transaction types that the specification permits.

This section describes the types of AXI transactions that the SPP generates. If you are designing an
AXI subordinate interface to work only with the Cortex®-R82 SPP, you can take advantage of these
restrictions and the interface attributes to simplify the subordinate.

This section also contains tables that show some examples of the types of AXI| burst that the
Cortex®-R82 processor generates. However, because a particular type of transaction is not shown
here does not mean that the Cortex®-R82 processor does not generate such a transaction.

You can connect the SPP to both AXI4 subordinates and AXI5-Lite subordinates in addition to AXI5
subordinates.
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An AXI4 subordinate device that is connected to the SPP must be capable of handling every kind of
transaction that the AXI4 specification permits, except where there is an explicit statement in this
chapter that such a transaction is not generated. You must not infer any additional restrictions from
the example tables given.

An AXI5-Lite subordinate device that is connected to the SPP must be capable of handling every
kind of transaction that the AXI5-Lite specification permits, except where there is an explicit
statement in this chapter that such a transaction is not generated. You must not infer any additional
restrictions from the example tables given.

If you connect the SPP to AXI5-Lite subordinates, then you must implement a
bridge in your system to split the 2-beat bursts that SPP is capable of generating.

Restrictions on AXI peripheral transfers describes restrictions on the type of transfers that the SPP
generates. You must not make any assumptions about the AXI handshaking signals, except that
they conform to the AXI5 specification.

The SPP applies the following restrictions to the AXI transactions it generates:

e A burst never transfers more than 16 bytes.

e The burst length is never more than two transfers.

e No transaction ever crosses a 16-byte boundary in memory.

o All transactions are incrementing (INCR) bursts.

e Transactions to Device memory are always to addresses that are aligned to the transfer size
(not to the transaction size).

e Does not support exclusive accesses and atomics.

9.6.4.1 SPP transactions

This section describes the Cortex®-R82 processor Shared Peripheral Port (SPP) transactions. The
SPP Device memory and Normal memory transactions are the same.

The following table shows the values of ARADDRD, ARBURSTD, ARSIZED, and ARLEND for LprB
from bytes O-7.

Table 9-16: LDRB transfers

Address[2:0] ARADDRD ARBURSTD ARSIZED ARLEND

0x0 (byte 0) 0x00 INCR 8-bit 1 data transfer
0x1 (byte 1) 0x01 INCR 8-bit 1 data transfer
0x2 (byte 2) 0x02 INCR 8-bit 1 data transfer
0x3 (byte 3) 0x03 INCR 8-bit 1 data transfer
0x4 (byte 4) 0x04 INCR 8-bit 1 data transfer
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Address[2:0] ARADDRD ARBURSTD ARSIZED ARLEND

0x5 (byte 5) 0x05 INCR 8-bit 1 data transfer
0x6 (byte 6) 0x06 INCR 8-bit 1 data transfer
0x7 (byte 7) 0x07 INCR 8-bit 1 data transfer

The following table shows the values of ARADDRD, ARBURSTD, ARSIZED, and ARLEND for Lporu
from halfwords O-3.

Table 9-17: LDRH transfers

Address[2:0] ARADDRD ARBURSTD ARSIZED ARLEND

0x0 (halfword 0) 0x00 INCR 16-bit 1 data transfer
0x2 (halfword 1) 0x02 INCR 16-bit 1 data transfer
0x4 (halfword 2) 0x04 INCR 16-bit 1 data transfer
0x6 (halfword 3) 0x06 INCR 16-bit 1 data transfer

The following table shows the values of ARADDRD, ARBURSTD, ARSIZED, and ARLEND for an

LDR transfer.

Table 9-18: LDR transfers

Address[2:0] ARADDRD AWBURSTD ARSIZED ARLEND

0x0 (word O) 0x00 INCR 32-bit 1 data transfer
0x4 (word 1) 0x04 INCR 32-bit 1 data transfer
0x0 (doubleword 0) 0x00 INCR 64-bit 1 data transfer

The following table shows the values of ARADDRD, ARBURSTD, ARSIZED, and ARLEND for an

LDP.

All accesses using Lop instructions to memory occur as one or multiple 32-bit transactions or one
or multiple 64-bit transactions.

Table 9-19: LDP transfers for two 32-bit registers

Address[2:0] ARADDRD ARBURSTD ARSIZED ARLEND
0x0 (word O) 0x00 INCR 32-bit 1 data transfer
0x04 INCR 32-bit 1 data transfer
0x08 INCR 32-bit 1 data transfer
0x0C INCR 32-bit 1 data transfer
0x4 (word 1) 0x04 INCR 32-hit 1 data transfer
0x08 INCR 32-bit 1 data transfer
0x0C INCR 32-bit 1 data transfer
Table 9-20: LDP transfers for two 64-bit registers
Address[2:0] ARADDRD ARBURSTD ARSIZED ARLEND
0x0 (quadword) 0x00 INCR 64-bit 2 data transfers
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The following table shows the values of AWADDRD, AWBURSTD, AWSIZED, AWLEND, and
WSTRBD for an strs from bytes O-7 in memory.

Table 9-21: STRB transfers

Address[2:0] AWADDRD AWBURSTD AWSIZED AWLEND WSTRBD

0x0 (byte 0) 0x00 INCR 8-bit 1 data transfer 000000001
0x1 (byte 1) 0x01 INCR 8-bit 1 data transfer 0b00000010
0x2 (byte 2) 0x02 INCR 8-bit 1 data transfer 00000b0100
0x3 (byte 3) 0x03 INCR 8-bit 1 data transfer 000001000
0x4 (byte 4) 0x04 INCR 8-hit 1 data transfer 000010000
0x5 (byte 5) 0x05 INCR 8-bit 1 data transfer 0b00100000
0x6 (byte 6) 0x06 INCR 8-bit 1 data transfer 0b01000000
0x7 (byte 7) 0x07 INCR 8-bit 1 data transfer 0b10000000

The following table shows the values of AWADDRD, AWBURSTD, AWSIZED, AWLEND, and
WSTRBD for an strs from halfwords O-3 in memory.

Table 9-22: STRH transfers

Address[2:0] AWADDRD AWBURSTD AWSIZED AWLEND WSTRBD

0x0 (halfword O) 0x00 INCR 16-bit 1 data transfer 0b00000011
0x2 (halfword 1) 0x02 INCR 16-bit 1 data transfer 0b00001100
0x4 (halfword 2) 0x04 INCR 16-bit 1 data transfer 000110000
0x6 (halfword 3) 0x06 INCR 16-bit 1 data transfer 0b11000000

The following table shows the values of AWADDRD, AWBURSTD, AWSIZED, AWLEND, and
WSTRBD for an sTr to memory.

Table 9-23: STR transfers

Address[2:0] AWADDRD AWBURSTD AWSIZED AWLEND WSTRBD

0x0 (word 0) 0x00 INCR 32-bit 1 data transfer 0b00001111
0x4 (word 1) 0x04 INCR 32-bit 1 data transfer 011110000
0x0 (doubleword 0) 0x00 INCR 64-bit 1 data transfer O0b11111111

The following table shows the values of AWADDRD, AWBURSTD, AWSIZED, AWLEND, and
WSTRBD for an stpe that writes two 64-bit registers, an stp <xt1>, <xt2>, to memory.

Table 9-24: STP transfers for two 64-bit registers

Address[2:0]

AWADDRD AWBURSTD AWSIZED
0x0 (quadword) 0x00 INCR 64-bit

AWLEND

2 data transfer

WSTRBD
Obl11111111
Obl1111111

The following table shows the values of AWADDRD, AWBURSTD, AWSIZED, AWLEND, and
WSTRBD for an stp that writes two 32-bit registers, an sTp <rt1>, <rt2>, to memory.
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Table 9-25: STP transfers for two 32-bit registers

Address[2:0] AWADDRD AWBURSTD AWSIZED AWLEND WSTRBD

0x0 0x00 INCR 64-bit 1 data transfer 0b11111111
0x4 0x04 INCR 32-bit 2 data transfer 011110000
0x6 0p00001111

For the Shared Peripheral Port (SPP) transactions:

A load of a halfword from memory addresses 0x1 or 0x3 generates an
alignment fault.

A load of a word from memory addresses 0x1, 0x2, or 0x3 generates an
alignment fault.

A load of a doubleword from memory addresses 0x1, 0x2, 0x3, 0x4, 0x5, 0x6,
or 0x7 generates an alignment fault.

A 32-bit load-pair from memory addresses 0x1, 0x2, 0x3, 0x5, 0x6, or 0x7
generates an alignment fault.

A 64-bit load-pair from memory addresses 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, or
0x7 generates an alignment fault.

A store of a halfword from memory addresses 0x1, or 0x3 generates an
alignment fault.

A store of a word to memory addresses 0x1, 0x2, or 0x3 generates an
alignment fault.

A store of a doubleword from memory addresses 0x1, 0x2, 0x3, 0x4, 0x5,
0x6, or 0x7 generates an alignment fault.

A 32-bit store-pair to memory address 0x1, 0x2, 0x3, 0x5, 0x6, or 0x7
generates an alignment fault.

A 64-bit store-pair to memory address 0x1, 0x2, 0x3, 0x4 0x5, 0x6, or 0x7
generates an alignment fault.

9.7 MM interface

The Main Manager (MM) interface is the default memory interface of the Cortex®-R82 processor.
The MM interface is optimized for highest average performance for contexts where determinism
is less critical. However, a real-time context is also able to access the MM port, although such an
access might not be desirable depending on the system design.

The MM interface is used for all the memory space that is not associated with another interface.

The MM interface is used for accesses to high-latency memory such as DDR and non-critical
peripherals that are shared between cores within the cluster and other agents in the system.

You are expected to connect the MM port to an interconnect.
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The Cortex®-R82 processor has a 256-bit AMBA® 5 AX| manager interface that can be connected
to either an AMBA® 4 AXI or an AMBA® 5 AXI| subordinate interface.

The MM port is accessible by external agents through the Main Accelerator Coherency Port (MACP)
subordinate interface.

Accesses to the MM port can be cached in both the L1 (data caches and instruction caches) and
L2 cache as determined by memory type and attributes. The Cortex®-R82 processor supports only
Write-Back caching of MM addresses. MM addresses that are marked as Write-Through cacheable
are treated as Non-cacheable.

The Cortex®-R82 processor includes hardware coherency logic for addresses in the MM address
ranges so that software does not need to maintain cache coherency for shared data. The Cortex®-
R82 processor coherency hardware automatically updates the contents of L1 data and L2 caches
within the cluster to ensure all cores within the cluster have the same coherent view of memory
(full coherency).

The coherency hardware also provides coherency with non-cached external agents accessing the
MM port through the MACP subordinate interface. The coherency hardware automatically updates
the contents of caches within the cluster but is not able to update the content of managers
connected to the MACP (I/0O coherency).

The Cortex®-R82 processor MM interface supports atomic instructions and performs all the
atomics either in the L1 data cache or in the interconnect outside the Cortex®-R82 processor if the
interconnect supports the atomics.

9.7.1 AXI manager interface

The AXI Main Manager (MM) port is a 256-bit AMBA® 5 AX| manager that can be connected to
either an AMBA® 4 AX| or an AMBA® 5 AXI| subordinate interface.

The MM port implements the atomic operation signal, BROADCASTATOMICM, that is specified in
AXI5 but not in AXI4. This signal is used to enable or disable broadcasting of atomic instructions on
the MM interface.

The Cortex®-R82 processor includes coherency hardware that automatically manages the contents
of caches within the cluster to ensure all cores have a coherent view of AXI MM addresses.

The MM port does not support:

e Barriers on AR and AW channels.

e Cache maintenance requests on AR channel.

e Snoop capabilities.
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9.7.1.1 MM AXI features

AMBA® defines a set of interface properties for the AXI interconnect. The following table shows
which of these properties the Cortex®-R82 processor Main Manager (MM) interface supports or
requires the cluster interconnect and system to support.

Table 9-26: AXI interconnect properties for the Cortex®-R82 processor

AXI property Supported by the Cortex®-R82 processor | Interconnect support required
MM
Multi_Copy_Atomicity Yes Yes
Ordered_Write_Observation Yes Yes
Atomic_Transactions No No
Poison Yes Yes
Check_Type No No
QoS_Accept No No
Trace_Signals No No
Loopback_Signals No No
Wakeup_Signals Yes Yes
Untranslated_Transactions No No
NSAccess_ldentifiers No No

9.7.1.2 MM AXI attributes

The following table lists the
interface.

read and write issuing capabilities for the Main Manager (MM) AXI

Table 9-27: AXI manager interface attributes

Attribute  Value Comments
Write Configuration dependent The maximum number of writes is:
Issung. e 16, if less than four cores are present.
capability

e 32, if four or more cores are present.
Read e (NUM_CORES * 8) + 4, if L2 | The maximum number of reads is:
issuing cache is not implemented e 68if L2 cache is not implemented
capability

e (NUM_CORES * 10) + 4, if
L2 cache is implemented

84 if L2 cache is implemented

Note:
Two-part Distributed Virtual Memory (DVM) messages use the same ID for both parts,
and therefore can have two outstanding transactions on the same ID.

Note:
In some cases, the L2 cache may be able to exceed this read acceptance capability.
However this is rare and should not be used when sizing your interconnect.
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Attribute  Value Comments

Combined |Configuration dependent The maximum combined issuing capability is 116 (Eight cores and L2 cache implemented).
issuing (NUM_CORES and L2 cache

capability |implemented or not)

Exclusive  |Number of hardware threads, Each hardware thread can have one exclusive access sequence in progress.

thread maximum eight threads (one per

capability |core)

Write ID Configuration dependent The maximum write ID capability is:

capability

e 57, if less than four cores are present.

e 89, if four or more cores are present.

Only Device memory types with nGnRnE or nGnRE can have more than one outstanding
transaction with the same AXI ID. All other memory types use a unique AXI ID for every
outstanding transaction.

Write ID 13 The ID encodes the source of the memory transaction. See the Encodings for
width AWIDM[12:0] table.

Read ID Configuration dependent The maximum read ID capability is:

capability

e 185, if less than four cores are present.

e 345, if four or more cores are present.

Only Device memory types with nGnRnE or nGnRE can have more than one outstanding
transaction with the same AXI ID. All other memory types use a unique AXI ID for every
outstanding transaction.

Two part DVMs use the same ID for both parts, and therefore can have two outstanding
transactions on the same ID.

Read ID 13 The ID encodes the source of the memory transaction. See the Encodings for
width ARIDM[12:0] table.

. The issuing capability described here is the maximum possible for the whole
% cluster. This can be used to size interconnect capabilities if you want to achieve

the maximum performance available. However, this maximum may not be reached
Note depending on the Cortex®-R82 processor configuration and characteristics of your
system.

The following table shows the encodings for AWIDM[12:0], ARIDM[12:0].

Table 9-28: Encodings for AWIDM[12:0]

Attribute Value Issuing capability per Description Comments
ID
Write ID | 0b00nnn00000000 |1 System domain store exclusives, excluding Device non- nnn = Core ID
Reordering
0bl1lsss00000000 |15 Non-Reordering Device writes sss = Subordinate
ID
0b01nnnr000mmmm |1 Atomic requests nnn = Core ID
r = Slice ID
mmmm = L2DB ID
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Attribute Value Issuing capability per Description Comments
ID
0b10sss0r00mmmm |- All other writes sss = Subordinate
ID
r = Slice ID

mmmm = L2DB 1D

The following table shows the Encodings for ARIDM[12:0].

Table 9-29: Encodings for ARIDM[12:0]

Attribute Value Issuing capability Description Comments
per ID
Read ID |0b00nnn00000000 |1 Load exclusives, excluding Device Non-Reordering nnn = Core ID
0bllsss00000000 |17 Non-Reordering Device reads sss = Subordinate 1D
0b01nnnr000mmmm |1 Atomic requests nnn = Core ID
r = Slice ID

mmmm = L2DB ID

0b10sss0r00mmmm |256 READONCE and Main Accelerator Coherency Port sss = Subordinate ID
(MACP) reads r = Slice ID

mmmm = L2DB ID

0bO0lssscrpppppp |1 All other reads sss = Subordinate 1D
r = Slice ID

pepppp = Internal
request ID

nnn is the core number 0b000-0b111 in binary.

These ID and transaction details are provided for information only. Arm strongly
recommends that all interconnects and peripherals are designed to support any type
Note and number of transactions on any 1D, to ensure compatibility with future products.

For more information about the AXI signals described in this manual, see the AMBA® AX| and ACE
Protocol Specification .

9.7.1.3 MM AXI transactions

The Cortex®-R82 processor does not generate any FIXED bursts and a burst does not cross a
cache line boundary.

The cache linefill fetch length is always 64 bytes.

The Cortex®-R82 processor generates only a subset of all possible AXI transactions on the
manager interface.
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For Write-Back Cacheable transfers, the supported transfers are:
e  WRAP 2 256-bit for read transfers (linefills).

e INCR 2 256-bit for write transfers (evictions).

e INCR 2 256-bit for read transfers (linefills).

e INCR 1 256-bit for read transfers.

For Normal Non-cacheable or Device transactions:

e INCR 2 256-bit read transfers.

e INCR 2 256-bit write transfers.

o« WRAP 2 256-bit read transfers.

e INCR 1 8-bit, 16-bit, 32-bit, 64-bit, and 256-bit read transfers.

e INCR 1 8-bit, 16-bit, 32-bit, 64-bit, and 256-bit write transfers.

o INCR 1 8-bit, 16-bit, 32-bit, 64-bit, and 256-bit exclusive read transfers.
e INCR 1 8-bit, 16-bit, 32-bit, 64-bit, and 256-bit exclusive write transfers.

The following points apply to AXI transactions:

e WRAP bursts are only 256-bit size.

e INCR burst, more than one transfer, are only 256-bit size.
e No transaction is marked as FIXED.

e Write transfers with none, some, or all byte strobes LOW can occur.

9.7.1.4 Support for memory types
The Cortex®-R82 processor simplifies the coherency logic by downgrading some memory types.

Normal memory that is marked as both Inner Write-Back Cacheable and Outer Write-Back
Cacheable is cached in the core data caches and the L2 cache.

All other Normal memory types are treated as Non-cacheable and are sent on the MM port as
Normal Non-cacheable.

9.7.1.5 Write response

The AXI manager always accepts write responses without delay by holding BREADYM HIGH.
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9.7.1.6 AXI4 compatibility mode

The Cortex®-R82 processor implements an AX14 compatibility mode that enables you to use the
Cortex®-R82 processor in a standalone environment where the AMBA® AXI5 interface is not
required.

To enable this mode, you must ensure that the BROADCASTATOMICM signal is LOW.

If the Cortex®-R82 processor is configured to include RAM protection, it may be necessary to
prevent poison from being propagated on the Main Manager (MM) interface. This can be achieved
by tying CFGMMPOISON to O during the integration of the Cortex®-R82 processor into your
system.

9.7.1.7 MM AXI privilege information

The Main Manager (MM) interface provides information to indicate whether the request is
Privileged or Unprivileged on the ARPROTM[0] and AWPROTMIO] signals.

Where a request cannot be merged (Loads and Stores to Device memory, or Non-cacheable Store
Exclusives) the ARPROTM[O] and AWPROTMIO] reflect the privilege state of the requestor. Where
requests might have been merged, including all Non-cacheable and cacheable loads and stores, the
ARPROTMIO] and AWPROTMI[O] indicate that the request is privileged.

The MM interface provides information about the Secure or Non-secure access on the
ARPROTMI1] and AWPROTM[1] signals. The values of O indicates the access is Secure and the
value of 1 indicates the access is Non-secure.

The MM interface indicates whether a request is for a data or instruction fetch via the
ARPROTMI2] and AWPROTM[2] signals.

9.8 LLRAM manager interface

The Low-latency RAM (LLRAM) port provides deterministic, low-latency access to external memory
shared between cores within the cluster. The Cortex®-R82 processor has an optional LLRAM
manager interface that is shared among the cores within the cluster.

The LLRAM manager interface is a 256-bit AMBA® 5 AX| manager that can be connected to either
an AMBA® 4 AX| or an AMBA® 5 AXI subordinate interface.

The LLRAM port does not implement any signals that are not specified in AXI5.

The Cortex®-R82 processor LLRAM port is built on the assumption that there are no external
agents accessing the LLRAM port and that the LLRAM port is connected directly to an external
memory. The LLRAM port performs read-modify-write operations and atomic operations and allow
LLRAM data to be cached under the assumption that there are no agents in the system sharing the
data. Under this assumption, the LLRAM port is expected to have better real-time characteristics
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compared to the Main Manager (MM) port. Because the LLRAM port is shared among the cluster
cores, it is expected to have worse real-time characteristics compared to Tightly Coupled Memories
(TCMs) of individual cores.

To guarantee the deterministic, low-latency characteristics of the LLRAM port, you need to
reserve certain buffers in the Cortex®-R82 processor. For more information, see 9.14 Real-time
considerations on page 184.

The LLRAM interface supports accesses to peripherals and also connecting to an interconnect.
However, it is not optimized for such accesses. The LLRAM port is mainly used for:

o Code or read/write data shared among cores within the cluster.
e Data sharing between cores within the cluster (producer-consumer).

o Data sharing between cores within the cluster and external agents such as DMA through the
LLRAM Accelerator Coherency Port (LLRAM ACP, implemented by the ACE-Lite Subordinate
(ACELS) port).

Accesses to the LLRAM port can only be cached in the L1 data caches and L1 instruction caches
as determined by memory type and attributes. The Cortex®-R82 processor L1 data caches support
only Write-Through caching for LLRAM addresses. LLRAM addresses that are marked as Write-
Back cacheable are treated as Write-Through.

Accesses to the LLRAM port cannot be cached in the L2 cache.

LLRAM configuration parameter controls whether the LLRAM interface is implemented or not. If
the system does not implement the LLRAM interface (Lram = 0), the Cortex®-R82 processor does
not include the LLRAM region, port, and coherency logic. All related AXI signals, CFGLLRAMIMP,
CFGLLRAMEN, and CFGLLRAMBASEADDR pins are rendered out by the configuration script.

If the system implements the LLRAM interface (rLram = 1), the Cortex®-R82 processor includes
the LLRAM region, port, and coherency logic. The LLRAM interface can be enabled or disabled by
the CFGLLRAMIMP pin and its behavior can be further defined by the CFGLLRAMEN pin. If the
LLRAM interface is implemented, the LLRAM region has a fixed size of 256MB.

If the LLRAM is not implemented (LLram =0) or it is implemented but disabled
(Lrram = 1 and CFGLLRAMIMP tied LOW), associated LLRAM Coherency Unit (LCU)
duplicate L1 tag RAMs are not needed to be integrated. See Arm® Cortex®-R82
Processor Configuration and Integration Manual for more information.

The LLRAM interface has a size-aligned base address that is set by the configuration signal
CFGLLRAMBASEADDR. For more information, see A.2.2.35 IMP_LLRAMREGIONR_EL1, LLRAM
Region Register on page 458.

The Cortex®-R82 processor includes hardware coherency logic for addresses in the LLRAM
address range so that software does not need to maintain cache coherency for the shared data.
The Cortex®-R82 processor coherency hardware automatically updates the contents of L1 data
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caches within the cluster to ensure all cores within the cluster have the same coherent view of
memory (full coherency).

The coherency hardware also provides coherency with non-cached external agents accessing the
LLRAM port through the LLRAM ACP subordinate interface implemented by the ACELS port. The
coherency hardware automatically updates the contents of L1 data caches within the cluster but is
not able to update the content of managers connected to the LLRAM ACP (I/O coherency).

The LLRAM port is accessible by external agents through the LLRAM ACP subordinate interface.
Although it is possible to use interconnect, this removes the need to add an interconnect between
the LLRAM port and the SRAM controller in systems that connect the LLRAM port directly to an
SRAM controller. The LLRAM ACP shares the same physical port, ACELS, as the TCM subordinate
port.

If the LLRAM is implemented and not enabled, data accesses to the LLRAM region generate a
synchronous External abort.

The LLRAM manager interface performs all atomics within the LCU at the shared level rather than
in the L1 memory system or external memory. Because the Write-Through caching requires the
results to be written outside the Cortex®-R82 processor, it is faster to always send the results to
the LCU.

Although the LLRAM region can be accessed by EL1 Virtual Memory System
Architecture (VMSA) contexts, page tables are not allowed to be stored in the
LLRAM, and must be stored in memory connected to the MM port instead. If
the operating system you are running cannot guarantee that page tables are not
placed in the LLRAM region, then you must ensure that the LLRAM region is either
disabled or that the operating system does not use the LLRAM region at all. For

example, in Linux you can use the Device Tree (DT) to specify that the address space
occupied by the LLRAM region is reserved memory.

Warning

9.8.1 LLRAM features

The Low-latency RAM (LLRAM) manager interface is a 256-bit AMBA® 5 AX| manager. The
following table shows LLRAM AXI properties the Cortex®-R82 processor supports or requires the
cluster interconnect and system to support.

Table 9-30: LLRAM features

AXI property Supported by the Cortex®-R82 processor  Interconnect support required
LLRAM

Multi_Copy_Atomicity Yes Yes

Ordered_Write_Observation Yes Yes
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AXI property Supported by the Cortex®-R82 processor | Interconnect support required
LLRAM

Atomic_Transactions No No
Note:

The Cortex®-R82 processor supports
atomic transactions internally on the
LLRAM but atomic transactions do not
appear on the LLRAM port. For more
information, see 9.13 Exclusives and
atomics support on page 182.

Poison Yes Yes
Check_Type No No
QoS_Accept No No
Trace_Signals No No
Loopback_Signals No No
Wakeup_Signals Yes Yes
Untranslated_Transactions No No
NSAccess_|ldentifiers No No
Max_Transaction_Bytes Yes (64 bytes) No

9.8.2 LLRAM attributes

The following table lists the read and write issuing capabilities for an eight-core Cortex®-R82
processor.

Table 9-31: LLRAM attributes

Attribute  Value Comments

Write 8 The maximum number of writes is 8.
issuing
capability This value can be used by system components to size buffers when bridging to other interface protocols, for

example PCle. Normal Non-cacheable transactions can be removed from this limit by setting the control bit in the
IMP_CLUSTERACTLR_EL1.

Read 6 The maximum number of reads is 6.
issuing

capability

Combined |8 The combined issuing capability is 8.
issuing

capability

Exclusive Number | Each hardware thread can have 1 exclusive access sequence in progress.
thread of cores

capability

Write ID 8 The maximum write ID capability is 8.
capability

Only Device memory types with nGnRnE or nGnRE can have more than one outstanding transaction with the
same AXI ID. All other memory types use a unique AXI ID for every outstanding transaction.
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Attribute  Value  Comments

Write 1D 8 The ID encodes the source of the memory transaction. See the Encodings for AWIDL[7:0] table.
width

Read ID 8 The maximum read ID capability is 8.

capability

Read ID 8 The 1D encodes the source of the memory transaction. See the Encodings for ARIDL[7:0] table.
width

. The issuing capability described here is the maximum possible for the whole

cluster. This can be used to size interconnect capabilities if you want to achieve
* the maximum performance available. However, this maximum may not be reached
Note depending on the Cortex®-R82 processor configuration and characteristics of your
system.

The following table shows the encodings for AWIDL[7:0] and ARIDL[7:0].

Table 9-32: Encodings for AWIDL[7:0] and ARIDL[7:0]

Attribute

Value Comments

Write ID and | Obnnnnmrrr |nnnn is the core number 0b0000-0b0111 in binary. If the nnnn is equal to the number of cores then it is

Read ID

for ACE-Lite Subordinate (ACELS) interface.

mis 1 for read or write associated with atomics or exclusives. Otherwise m is O.

rrr is the internal buffer ID.

These ID and transaction details are provided for information only. Arm strongly
recommends that all interconnects and peripherals are designed to support any type
Note and number of transactions on any 1D to ensure compatibility with future products.

For more information about the AXI signals described in this manual, see the AMBA® AX| and ACE
Protocol Specification .

9.8.3 LLRAM transactions

The Cortex®-R82 processor does not generate bursts which cross a cache line boundary.

The cache linefill fetch length is always 64 bytes.

The Cortex®-R82 processor generates only a subset of all possible AXI transactions on the LLRAM
interface.

For all modifiable requests (AxCACHES[1] = 1) received via the LLRAM Accelerator Coherency Port
(LLRAM ACP), the LLRAM supports all legal burst and transaction sizes.

For all non-modifiable requests (AXCACHES[1] = O) received via the LLRAM ACP, the LLRAM
supports all legal burst types and transaction sizes, except any burst with AXLENS > O.
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The following points apply to AXI transactions that are generated by the core:
e WRAP bursts are only 256-bit size.

e INCR burst, when performing more than one transfer, are only 256-bit size.
e No transaction is marked as FIXED.

o Write transfers with none, some, or all byte strobes LOW can occur.

The following points apply to AXI transactions that are generated by the LLRAM ACP:

LLRAM ACP is implemented by the ACELS port.

e Non-modifiable reads are not modified. The request on the LLRAM port is the same as the
initial request received via the ACE-Lite Subordinate (ACELS) port.

e Reads and writes to Normal memory that are larger than 512 bits, are split into two or more
512-bit transactions.

*  When a Device bufferable access is performed from the LLRAM ACP, the corresponding
LLRAM access is Device Non-bufferable. In other words, the LLRAM ACP receiving any Device
access always issues a Device Non-bufferable access.

9.8.4 Support for memory types
The Cortex®-R82 processor simplifies the coherency logic by downgrading some memory types.

The Low-latency RAM (LLRAM) port supports only Write-Through caching. LLRAM addresses that
are marked as Write-Back cacheable are treated as Write-Through.

Accesses to the LLRAM port can only be cached in the L1 data caches and L1 instruction caches as
determined by memory type and attributes. Accesses to the LLRAM port cannot be cached in the
L2 cache.

Only the following memory types can be cached in the L1 data caches:

e Normal memory that is marked as both Inner Write-Through Cacheable and Outer Write-
Through Cacheable.

e Normal memory that is marked as both Inner Write-Through Cacheable and Outer Write-Back
Cacheable which is treated as Inner and Outer Write-Through.

e Normal memory that is marked as both Inner Write-Back Cacheable and Outer Write-Back
Cacheable which is treated as Inner and Outer Write-Through.

e Normal memory that is marked as both Inner Write-Back Cacheable and Outer Write-Through
Cacheable which is treated as Inner and Outer Write-Through.
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All other Normal memory types are treated as Non-cacheable and are sent on the LLRAM port as
Normal Non-cacheable.

Device memory is always treated as non-Gathering, non-Reordering, with no Early Write
Acknowledgement (nGnRnE).

9.8.5 LLRAM write response

The Low-latency RAM (LLRAM) manager always accepts write responses without delay by holding
BREADYL HIGH.

9.8.6 AXI4 compatibility mode
The Cortex®-R82 processor implements an AXI4 compatibility mode that enables you to use the
Cortex®-R82 processor in a standalone environment where the AMBA® AXI5 interface is not

required.

The Low-latency RAM (LLRAM) manager interface performs all atomics within the cluster at the
shared level, rather than in the L1 memory system or external memory.

To enable AXI4 compatibility mode, you must ensure that the RPOISONL response signal is LOW.

CFGLLRAMSHARED and BROADCASTATOMICL signals must always be tied LOW.

While the LLRAM port also includes the WPOISONL output signal, this will never be driven HIGH
by the Cortex®-R82 processor and can be safely left unconnected in AXI4 compatibility mode.

9.8.7 LLRAM privilege information

The Low-latency RAM (LLRAM) manager interface provides information to indicate whether the
request is Privileged or Unprivileged on the ARPROTL[O] and AWPROTL[O] signals.

Where a request cannot be merged (Loads and Stores to Device memory, or Non-cacheable Store
Exclusives) the ARPROTL[O] and AWPROTL[O] reflect the privilege state of the requestor. Where
requests might have been merged, including all Non-cacheable and cacheable loads and stores, the
ARPROTL[O] and AWPROTL[O] indicate that the request is privileged.

The LLRAM interface provides information about the Secure or Non-secure access on the
ARPROTL[1] and AWPROTL[1] signals. The values of O indicates the access is Secure and the value
of 1 indicates the access is Non-secure.
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The LLRAM interface indicates whether a request is for a data or instruction fetch via the
ARPROTL[2] and AWPROTL[2] signals.

9.9 MACP subordinate interface

The Main Accelerator Coherency Port (MACP) is a 128-bit subordinate interface that conforms
to a subset of the ACE5-Lite specification. MACP is a single port attached to the shared L2 and
therefore can access data that is shared between all cores in the Cortex®-R82 processor.

The MACP subordinate interface allows external agents to access memory through the Main
Manager (MM) interface of the Cortex®-R82 processor. The MACP subordinate interface provides
I/O coherency for external agents with the Cortex®-R82 processor L1 data and L2 caches (even if
the L2 cache size parameter, 12_cacur_s1zE is configured O).

The MACP is optimized for cache line length accesses.

To maintain cache coherency, accesses are checked in all cached locations in the cluster. That
is, the L1 data caches in each core and the L2 cache. L1 instruction caches are not checked for
coherency because they should be coherent with the external memory.

The MACP supports stash requests from external agents. All stashing requests target the L2 cache
and are always cacheline-sized.

9.9.1 MACP features

The Cortex®-R82 processor Main Accelerator Coherency Port (MACP) supports the following
features.

Table 9-33: MACP features for the Cortex®-R82 processor

MACP property Supported by the Cortex®-R82 processor

Port_Type Accelerator
Continuous_Cache_Line Read Data Yes
Multi_Copy_Atomicity Yes
Ordered_Write_ Observation No
WriteEvict_Transaction No
DVM_v8 No
Atomic_Transactions Yes
DVM_v8.1 No
Cache_Stash_Transactions Yes
DeAllocation_Transactions No
Persistent. CMO No
Poison No
Check_Type No

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 158 of 2039



Arm® Cortex"-R82 Processor Technical Reference Manual Document ID: 102670_0101_02_en
Issue: 02
Memory system

MACP property Supported by the Cortex®-R82 processor

QoS_Accept No
Trace_Signals No
Loopback_Signals No
Wakeup_Signals Yes
Untranslated_Transactions No
NSAccess_ldentifiers No

9.9.2 MACP attributes

For optimum performance, use the following guidelines for the Main Accelerator Coherency Port
(MACP) transactions.

WriteUniguePtl transactions always incur a read-modify write sequence.

L2 resources are shared between the MACP and the cores. Therefore, heavy traffic on the MACP
might, in some cases, reduce the performance of the cores.

Write transactions use the Write-Allocate bit of the memory type (AWCACHEA[3]) to decide
whether to allocate to the L2 cache. Compared to WriteUniqueFull, a WriteUniqueFullStash that
targets allocation to the L2 cache is optimized to reduce the latency of a core read request that
occurs shortly after the write request.

The following table describes the MACP attributes.

Table 9-34: MACP attributes

Attribute Value Description

Write acceptance capability 5 The MACP can accept up to five write
transactions.

Read acceptance capability 5 The MACP can accept up to five read
transactions.

Combined acceptance capability 6 The MACP can accept up to six transactions
with:

e One read transaction and one write
transaction

e Up to four read transactions or write
transactions

Write ID width 8 to 24 bits Unused bits tied to zero if fewer bits
required.

Read 1D width 8 to 24 bits Unused bits tied to zero if fewer bits
required.
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9.9.3 MACP transaction types

The Main Accelerator Coherency Port (MACP) supports read and write transaction types with the
same transfer size and length combinations.

The following table describes the MACP read and write transactions.

e xinthe signal names is used to refer to both read and write signals. For
example, AXLENA refers to both ARLENA and AWLENA signals.

e Forall the write transactions, WSTRBA, any combination of bytes, including no
bytes, are valid.

Table 9-35: Read and write transactions

Transaction AxLENA AXSIZEA AxADDRA

1-byte INCR O (one beat) 0 (single byte) -

2-byte INCR O (one beat) 1 (two bytes) 0b0 (Address aligned to 2-byte
boundary)

4-byte INCR O (one beat) 2 (four bytes) 0b00 (Address aligned to 4-byte
boundary)

8-byte INCR O (one beat) 3 (eight bytes) 0b000 (Address aligned to 8-
byte boundary)

16-byte INCR 0 (one beat) 4 (16 bytes) 0b0000 (Address aligned to 16-
byte boundary)

32-byte INCR 1 (two beats) 4 (16 bytes) 0b00000 (Address aligned to
32-byte boundary)

64-byte INCR 3 (four beats) 4 (16 bytes) 0b000000 (Address aligned to
64-byte boundary)

The AMBA 5 ACE-Lite transaction types WriteUniqueFull and WriteUniquePtl were
known in AMBA 4 ACE-Lite as WriteLineUnique and WriteUnique, respectively.

The following table lists the transaction types that are supported by the MACP:

Table 9-36: MACP supported transaction types

Transaction group Transaction type

Read ReadOnce

ReadNoSnoop

Write WriteUniquePtl
WriteUniqueFull
WriteUniqueFullStash
WriteUniquePtIStash
WriteNoSnoop
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Transaction group Transaction type

StashOnceUnique
StashOnceShared

Cache maintenance CleanShared

Cleanlnvalid
Makelnvalid
Atomics AtomicStore*

AtomicLoad*

AtomicSwap

AtomicCompare

9.9.3.1 MACP transaction restrictions

The Main Accelerator Coherency Port (MACP) conforms to a subset of the ACE5-Lite specification.
The ACE5-Lite is described in the AMBA® AX| and ACE Protocol Specification .
All transactions can be Secure or Non-secure.

All requests can specify Outer Shareable and Non-shareable using the AWDOMAINA and
ARDOMAINA signals.

ARQOS and AWQOS signals are not present.

The Cortex®-R82 processor has the following additional restrictions on MACP. The requests that
do not meet these restrictions generate a SLVERR response on RRESPA or BRESPA:

e Accesses to Device memory requests less than or equal to 16-bytes are supported.
e Exclusive accesses are not supported. ARLOCK and AWLOCK signals are not present.

e Barriers are not supported. The BRESPA response for any write transaction indicates global
observability for the transaction.

e ARSIZEA and AWSIZEA signals are present. Only combinations of transaction address, burst
length and burst size resulting in the following will be supported:

o The total amount of data transferred is a power of 2, from one byte to a maximum of 64
bytes (one Cortex®-R82 processor cache line).

o The burst address is aligned to the total amount of data transferred.
e The values of ARLENA and AWLENA are restricted to:

0 One beat
1 Two beats
3 Four beats

e ARBURST and AWBURST signals are present. Only a value of 0b01 (INCR) is supported.
e Only the following Atomic sizes and lengths are supported:
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o For AtomicStore*, AtomicLoad™, and AtomicSwap: 1 byte, 2 bytes, 4 bytes, and 8 bytes
o For AtomicCompare: 2 bytes, 4 bytes, 8 bytes, 16 bytes, and 32 bytes

9.10 ACELS interface

The ACE-Lite Subordinate (ACELS) interface is a 128-bit ACE5-Lite subordinate interface that is
shared between all cores in the Cortex®-R82 processor. It provides external access to the Tightly
Coupled Memories (TCMs) and the Low-latency RAM (LLRAM) port.

The ACELS interface is used for two purposes:

e Asa TCM subordinate enabling agents outside the cluster to access TCMs within the cores.
The TCM subordinate also enables the cores within the Cortex®-R82 processor to access the
TCMs of other cores through an interconnect loopback.

e As an LLRAM Accelerator Coherency Port (LLRAM ACP) enabling coherent external access to the
LLRAM port.

Both of these functions are provided by the same physical port, ACELS, that responds to two
different ranges of address, one for the TCM subordinate and one for the LLRAM ACP. However,
they are described as separate concepts in this chapter.

The Cortex®-R82 processor TCM subordinate and LLRAM ACP address regions must not overlap.
The Cortex®-R82 processor ACELS interface generates SLVERR error response to access requests
that fall within both the TCMs and the LLRAM ACP addresses.

The ACELS interface uses base addresses for routing the access to the 16MB TCM region and
256MB LLRAM ACP region:

e The 16MB TCM region is divided into eight 2MB blocks, one for each core. TCMs (ITCM and
DTCM) within a core are mapped into two 1MB regions.

e The LLRAM ACP address region is the same as the LLRAM address region visible to the cores
within the Cortex®-R82 processor.

The following figure shows how each TCM and the LLRAM ACP are mapped into the ACELS
interface address space.
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Figure 9-5: ACELS memory map
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The ACELS port is typically connected to an interconnect, through which various system agents
can access the TCMs and LLRAM port.

Even though the TCM subordinate and LLRAM ACP share the ACELS port, they operate largely
independently. The ACELS port supports out-of-order completion between accesses to each core's
TCM subordinates and accesses to the LLRAM port. The ACELS transactions with different ACE
IDs are able to complete out-of-order.

For any request that is targeting the TCM subordinate and LLRAM ACP, the total amount of data
transferred is a power of 2 and can be greater than 64 bytes that is one Cortex®-R82 processor
cache line.

The Cortex®-R82 processor ACELS port does not create ordering dependencies between the
ACELS reads and writes, or between the ACELS reads with different IDs, or between the ACELS
writes with different IDs.

The Cortex®-R82 processor ACELS AXI ID signals are 8 to 24 bits wide and configured with the
aceLs 1D wipTH parameter. In order for an AX| or ACE-Lite manager with an ACE ID width larger
than the Cortex®-R82 processor ACELS AXI ID width to access the ACELS port, that manager
must be connected through logic that compresses the AXI ID signals. The Cortex®-R82 processor
does not provide such logic.

The ACELS port contains enough buffering to support 128-bit per cycle sustained transfers to/
from TCM or LLRAM port memory with no wait state. However, the ACELS port might be unable
to immediately accept a transaction request and might instead apply back-pressure on the port
when many transactions to TCM or LLRAM port memory with wait states are outstanding.

The ACELS port includes ARLOCK and AWLOCK pins, but only supports single beat exclusives
to the LLRAM ACP. Exclusives targeting the LLRAM ACP with AXLENS not set to O are not
supported and will return a subordinate error. Furthermore, exclusives are not supported to the
TCM subordinate and all exclusive requests targeting the TCM subordinates will not return an
EXOKAY response and will therefore fail the exclusive access.
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The ACELS port includes the AWATOP pins to ease integration with an AXI or ACE manager that
includes atomic support. The ACELS port only supports atomics for the LLRAM ACP. Any atomic
request targeting the TCM subordinate will return a SLVERR response.

For atomics with a load component (AtomicLoad, AtomicStore and AtomicCompare), the read
response and write response are not guaranteed to be consistent. For example, the read response
might return OKAY if the read completed successfully while the write might return an error
response if the write component fails. It is recommended the manager connected to the ACELS
port consumes both the read and write response in order to determine if the atomic has completed
successfully.

9.10.1 ACELS features

The Cortex®-R82 processor ACE-Lite Subordinate (ACELS) interface supports the following features.

Table 9-37: ACELS features for the Cortex®-R82 processor

ACELS property Supported by the Cortex®-R82 processor

Port_Type Accelerator

Continuous_Cache_Line_Read Data | Yes

Multi_Copy_Atomicity Yes
Ordered_Write_Observation No
WriteEvict_Transaction No
DVM_v8 No
Atomic_Transactions Yes
Note:

Atomics are supported for LLRAM ACP but not for the TCM subordinate. Atomic requests
targeting TCM subordinate will return a SLVERR response.

DVM v8.1 No
Cache_Stash_Transactions No
DeAllocation_Transactions No
Persistent CMO No
Poison No
Check_Type No
QoS_Accept No
Trace_Signals No
Loopback_Signals No
Wakeup_Signals Yes
Untranslated_Transactions No
NSAccess_ldentifiers No
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For optimum performance, use the following guidelines for ACE-Lite Subordinate (ACELS) interface

transactions.

WriteUniquePtl transactions are sent out on the ACE-Lite bus.

Some L1 and LLRAM Coherency Unit (LCU) memory system resources are shared between the
ACELS interface and the cores. Therefore, heavy traffic on the ACELS interface might, in some
cases, reduce the performance of the cores.

The following table describes the ACELS attributes where NUM_CORES is the number of logical

cores from 1 to 8.

Table 9-38: ACELS attributes

Attribute

Write acceptance capability

Value
(8 * NUM_CORES) + 10

Description

The write acceptance capability is
dependent on the number of cores. For
example, an MP4 configuration has a
theoretical acceptance capability of 42 write
transactions.

Read acceptance capability

(7 * NUM_CORES) + 10

The read acceptance capability is
dependent on the number of cores. For
example, an MP4 configuration has a
theoretical acceptance capability of 38 read
transactions.

Combined acceptance capability

Write acceptance capability + Read
acceptance capability - (4 * NUM_CORES)

The combined acceptance capability is
dependent on the number of cores. For
example, an MP4 configuration has a
theoretical acceptance capability of 44
transactions.

Write ID width 8 to 24 bits Unused bits tied to zero if fewer bits
required.
Read ID width 8 to 24 bits Unused bits tied to zero if fewer bits

required.

9.10.3 ACELS transaction types

The ACE-Lite Subordinate (ACELS) interface conforms to the ACE5-Lite specification.

The Cortex®-R82 processor ACELS interface supports the majority of ACE5-Lite burst types and
lengths. See 9.10.3.1 ACELS transaction restrictions on page 166 for the restrictions that apply
to the ACELS interface.

For more information on the ACE5-Lite, see the AMBA® AXI and ACE Protocol Specification .

The following table lists the transaction types that are supported by the ACELS.
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Table 9-39: ACELS supported transaction types

Transaction group Transaction type

Read ReadOnce
ReadNoSnoop

Write WriteUniquePtl
WriteUniqueFull
WriteUniquePtlStash
WriteNoSnoop
StashOnceUnique
StashOnceShared

Atomics AtomicStore

Note: -

. . . ) Atomicload
Atomics are supported for LLRAM ACP but not for the TCM subordinate. Atomic requests targeting TCM
subordinate will return a SLVERR response. AtomicSwap

AtomicCompare

9.10.3.1 ACELS transaction restrictions

The following transactions cause SLVERR or DECERR error on the ACE-Lite Subordinate (ACELS)
interface.

The following cases generate a SLVERR response on RRESPS or BRESPS:

e Non-modifiable bursts (ARCACHES[1] or AWCACHES[1] is set to 0) when ARLENS > O or
AWLENS > 0.

e ARSNOOPS or AWSNOOPS is 1.

e Non-secure access to the TCM subordinate when ARPROTS[1] or AWPROTS[1] is set to 1.
e Atomic requests to the TCM subordinate.

« Non-single-beat exclusive requests to the LLRAM ACP (ARLENS > 0)

e [IMP_CLUSTERACELSCTLR EL1[x] is set to O, where x is the (core number * 2) that the
accessed TCM belongs to.

e IMP_CLUSTERACELSCTLR_EL1[X] is set to O and ARPROTS[O] or AWPROTSI[O] is set to O,
where x is the (core number * 2) + 1 that the accessed TCM belongs to.

e« TCM subordinate access to a powered off core.

e Double bit error on a read to the Tightly Coupled Memories (TCMs).

e SLVERR response from the Low-latency RAM (LLRAM) interface as a response to an access from
the LLRAM ACP.

The following cases generate a DECERR response on RRESPS or BRESPS:

e Access to the region of ACELS memory map if the address falls outside both the LLRAM and
TCM regions.
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e Access to the region of ACELS memory map if the address falls into both the LLRAM and TCM
regions.

e Access to the gap in ACELS memory map between TCMs.
e DECERR response from the LLRAM interface as a response to an access from the LLRAM ACP.

The following cases generate an OK response on RRESPS or BRESPS:

e An exclusive (locked) read access to the TCM region, except where a SLVERR or DECERR
occurs.

e An exclusive (locked) write access to the TCM region, except where a SLVERR or DECERR
occurs.

9.10.4 TCM subordinate

The Cortex®-R82 processor TCM subordinate enables agents outside the cluster to access all the
TCMs within the Cortex®-R82 cluster. It also enables any core within the Cortex®-R82 processor
to access all the TCMs within the cluster, except its own, via an interconnect loopback, that is
assuming the ACE-Lite Subordinate (ACELS) port is connected to the interconnect and the Cortex®-
R82 processor is able to access the ACELS port through regular Main Manager (MM) memory
accesses to the address region starting at CFGACELSTCMBASEADDR.

The following figure shows an example of a loopback address mapping for a core access to the
ACELS through the interconnect.

Figure 9-6: Loopback address mapping

Processor
Core 0 Core 1 Core 2 Core 3
ACE-Lite Subordinate Main Manager (MM)
(ACELS) interface interface
A

Interconnect \ 4

Address Map
Decoder

The Cortex®-R82 processor TCM subordinate is capable of sustaining 128 bits per cycle of:

e Read bandwidth when reading from any number of TCMs with no wait states. This assumes no
contention for accessing the TCMs.
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e Write bandwidth when writing to any number of TCMs with no wait states. This assumes no
contention for accessing the TCMs.

As the TCMs are banked for efficient sharing between the core and the TCM subordinate, the
Cortex®-R82 processor TCM subordinate bandwidth tends towards 128 bits per cycle when both a
core and the TCM subordinate access the same TCM with no wait state sequentially.

The Cortex®-R82 processor TCM subordinate address space is a 16MB region located at a 16MB-
aligned base address set by the configuration input signal CFGACELSTCMBASEADDR[39:24],
providing access to all TCM memories within the processor. The base address set by the
configuration input signal CFGACELSTCMBASEADDR[39:24] must match the address the ACELS
port in the system memory map.

The 16MB region is divided into eight 2MB blocks, one for each core. Each 2MB block is
subdivided into two 1MB regions. TCMs (ITCM and DTCM) within a core are mapped into two
1MB regions. The lower 1MB is mapped to the ITCM and the upper 1MB to the DTCM. If the
size of any TCM is less than the maximum 1MB, the remaining upper part will be inaccessible and
return a DECERR response.

The memory map is the same regardless of the number of cores configured, and the sizes and
number of TCMs present. Regions associated with cores that are not present generate a DECERR
response. If a TCM is accessed outside of its configured range, the TCM subordinate generates a
DECERR error response. Such accesses include addresses that map to cores which have not been
implemented, addresses which do not map to any TCM, and addresses that map to a TCM but are
too high for the implemented size of that TCM.

For each core, access control checks can be enabled for the TCM subordinate transactions by
programming IMP_CLUSTERACELSCTLR.TCMACCLVL. Access control allows either all transactions
or only privileged transactions to access the TCM. If a transaction is not permitted, the TCM
subordinate generates a SLVERR response.

For transaction requests that target cores which have been powered down, the TCM subordinate
generates a SLVERR error response.

If the Cortex®-R82 processor TCM subordinate accesses TCMs in a core which is in WFI or WFE
low-power state but not in a retention or power down state, then the access proceeds. In this case,
the clocks to the core are re-enabled if necessary.

9.10.4.1 Accessing TCMs configured with ECC

When a Tightly Coupled Memory (TCM) implements Error Correcting Code (ECC), the ECC is
generated within the core before writing to the TCM.

If the core detects an error on reads or writes the behavior is:
Writes

o |f awrite to TCM requires a read-modify-write, and a correctable error is detected when
reading the TCM, the ECC is recalculated.
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e If awrite to TCM requires a read-modify-write, and a non-correctable error is detected
when reading the TCM, a SLVERR response is returned.

Reads

e Fora correctable error, the core corrects the data and returns corrected data with OKAY
response.

e For anon-correctable error, a SLVERR response is returned.

9.10.4.2 TCM subordinate attributes
This section describes the capabilities and attributes of the TCM subordinate interface.

The TCM subordinate interface does not support:

o Exclusive transactions, therefore, AmLOCK is not used.

o Data and instruction transaction signaling, therefore, AmPROTI[2] is not used.

e QoS is not supported, therefore, AmQOS is not used.

e Multiple address region signaling is not supported, therefore, AMREGION is not used.

The following table shows the TCM subordinate interface attributes where NUM_CORES is the
number of logical cores from 1 to 8.

Table 9-40: TCM subordinate interface attributes

Attribute Value Comments

Write acceptance capability NUM_CORES * 8 [The maximum number of outstanding write transactions that a subordinate can
accept.

Read acceptance capability NUM_CORES * 7 |The maximum number of outstanding read transactions that a subordinate can
accept.

Combined acceptance NUM_CORES * The maximum number of outstanding transactions that a subordinate can accept.

capability 15

Write ID width 8 to 24 bits Unused bits tied to zero if fewer bits required.

Read ID width 8 to 24 bits Unused bits tied to zero if fewer bits required.

9.10.5 LLRAM ACP

The Low-latency RAM Accelerator Coherency Port (LLRAM ACP) enables agents outside the cluster
to access the LLRAM port coherently. The ACE-Lite Subordinate (ACELS) interface routes accesses
to addresses within the LLRAM ACP address region to the LLRAM ACP. The LLRAM ACP address
region is the same as the LLRAM address region visible to the cores within the Cortex®-R82
processor.

The Cortex®-R82 processor includes coherency hardware that automatically manages the contents
of the L1 data caches within the cluster to ensure all cores within the cluster and uncached agents
connected to the LLRAM ACP have a coherent view of LLRAM addresses.
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The LLRAM ACP is capable of sustaining 128 bits per cycle of:

e Read bandwidth when reading from the LLRAM. This assumes no contention for accessing the
LLRAM.

e Write bandwidth when writing to the LLRAM. This assumes no contention for accessing the
LLRAM.

The LLRAM ACP interface provides information to indicate whether the request is Privileged or
Unprivileged on the ARPROTL[0] and AWPROTL[O] signals.

e A Cacheable transaction from the Cortex®-R82 processor or ACELS interface is
always indicated as Privileged (ARPROTL[O] = 1 and AWPROTL[O] = 1).

e A Non-cacheable or Device transaction from the Cortex®-R82 processor is
indicated as Privileged if it is made from EL2 or EL1, or if the transaction is
merged with another transaction.

e« A Non-cacheable or Device transaction from the ACELS interface has the
incoming ARPROTL[O] and AWPROTLI[O] values.

The LLRAM ACP provides information about the security attributes of accesses on the
ARPROTL[1] and AWPROTL[1] signals. The value of O indicates the access is Secure and the value
of 1 indicates the access is Non-secure.

The LLRAM ACP interface indicates whether a request is for a data or instruction fetch via the
ARPROTL([2] and AWPROTL[2] signals.

9.10.5.1 LLRAM ACP attributes

This section describes the capabilities and attributes of the Cortex®-R82 processor Low-latency
RAM Accelerator Coherency Port (LLRAM ACP).

The Cortex®-R82 processor LLRAM ACP does not support:

e QoS is not supported, therefore, AmMQOS is not used.

e Multiple address region signaling is not supported, therefore, AMREGION is not used.

o Barriers are not supported. The write response for any write request indicates global

observation of that write.

The following table shows the Cortex®-R82 processor LLRAM ACP attributes.

Table 9-41: LLRAM ACP attributes

Attribute Value Comments

Write acceptance capability 12 The maximum number of outstanding write transactions that a subordinate can accept.
Read acceptance capability 12 The maximum number of outstanding read transactions that a subordinate can accept.
Combined acceptance 14 The maximum number of outstanding read and write transactions that a subordinate can
capability accept.
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Attribute Value Comments

Write ID width 8to 24 Unused bits tied to zero if fewer bits required.
bits

Read ID width 8to 24 Unused bits tied to zero if fewer bits required.
bits

9.11 Utility bus

The Utility bus provides access to control registers for various system components in the Cortex®-
R82 processor. The Utility bus is implemented as a 64-bit AMBA® 5 AXI subordinate port.

The Utility bus provides memory-mapped access to the following register families:
e Per-core and the cluster Power Policy Units (PPUs) registers.
o Per-core Reliability, Availability, and Serviceability (RAS) registers.

If your system has a System Control Processor (SCP), the Ultility bus enables the SCP to manage the
power policy and the error handling of the Cortex®-R82 processor.

If your system does not have an SCP or the SCP is limited in its scope, you can connect the Utility
bus to the system interconnect. A core within the Cortex®-R82 processor, then, can access all

the PPUs and the RAS registers through the Main Manager (MM) port which is connected via a
loopback to the Utility bus.

The following figure shows an example of a loopback address mapping for a core access to the
Utility bus through the interconnect.

Figure 9-7: Loopback address mapping

Processor
Core 0 Core 1 Core 2 Core 3
Utility bus | |Main Manager (MM) interface
A
Interconnect v
Address Map

Decoder
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The Cortex®-R82 processor supports the loopback address mapping between the
following ports:

e The MM port to the Utility bus.
e The Shared Peripheral Port (SPP) to the Utility bus.
e« The MM port to the ACE-Lite Subordinate (ACELS) port.

9.11.1 Utility bus accesses

Transactions on the Utility bus comply with a subset of the AXI 5 bus protocol. Accesses must be
either 32-bits or 64-bits. Any other sized access generates a SLVERR response from the Utility bus.

You must observe the following requirements when accessing Utility bus:

Only ReadNoSnoop and WriteNoSnoop transaction types are supported.

Only 32-bit accesses or 64-bit accesses are supported. Therefore, ARSIZEU or AWSIZEU
must be either 0b010 for 32-bit sized accesses, or 0b011 for 64-bit sized accesses. Any other
access size generates a SLVERR response from the Utility bus.

Only single beat bursts are supported. Therefore, ARLENU or AWLENU must be 0b00000000.
Any other burst length generates a SLVERR response from the Utility bus.

All system components control registers only support Secure accesses and data accesses on
the Utility bus. Any accesses to these registers with the Non-secure bit set generate a SLVERR
response.

No exclusives supported. The Utility bus treats them as plain accesses and does not abort
them.

No atomics supported.

Arm recommends the following when accessing the Utility bus:

ARCACHEU or AWCACHEU is either 00000 or 0b0001, although other values are accepted
and ignored.

ARBURSTU or AWBURSTU is 0b01, although other values are accepted and ignored.
ARLOCKU or AWLOCKU is tied LOW, as there is no exclusive monitor present.

The following table describes the Utility bus attributes.

Table 9-42: Utility bus attributes

Attribute Value Description

Write acceptance capability 1 The Utility bus can accept one write
transaction.

Read acceptance capability 1 The Utility bus can accept one read
transaction.

Combined acceptance capability 2 The Utility bus can accept up to two
transactions.
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Attribute Value Description

Write ID width 1 to 24 bits Unused bits tied to zero if fewer bits
required.

Read ID width 1 to 24 bits Unused bits tied to zero if fewer bits
required.

9.11.2 Base addresses for system components

Each set of system registers is grouped on separate 64KB page boundaries allowing access control
to be enforced by the memory management.

See B.1 Registers accessed over the Utility bus on page 1331 for information on the base
addresses for each set of system component registers that the external agents can access using the
Utility bus.

9.12 Direct access to internal memories

The Cortex®-R82 processor provides a mechanism to read the internal memories that are used by
the L1 and L2 caches and LLRAM Coherency Unit (LCU) duplicate L1 tag RAMs and TLB structures
through IMPLEMENTATION DEFINED System registers.

This functionality enables direct reading of cache RAMs by software and can be useful when
investigating issues where the coherency between the data in the cache and data in the system
memory is broken.

9.12.1 Direct access to L1 memory

The Cortex®-R82 processor provides a mechanism to read the internal memories that are used by
the L1 caches and TLB structures through IMPLEMENTATION DEFINED System registers.

The appropriate memory block and location are selected using one of several system instructions.
The data is read from read-only registers after performing the appropriate Read Operation system
instruction. These operations are available both in EL1 and EL2 but EL1 accesses can be trapped
using ACTLR_EL2.CDBG. In ELO, executing these instructions results in an Undefined Instruction
exception.

The following table shows the system registers and system instructions to access L1 memory.

Table 9-43: System registers and system instructions used to access L1 memory

Register name Function Access Operation Register Data
IMP_CDBGDRO_EL1 |Cache Debug Data Register O Read-only MRS <Xt>, S3 2 cl15 c0 0 |Data
IMP_CDBGDR1_EL1 |Cache Debug Data Register 1 Read-only MRS <Xt>, S3 2 cl15 c0 1 |Data

SYS IMP_CDBGDCT

L1 Data Cache Tag Read Operation

System instruction

SYS S1 2 cl5 c2 0, <Xt> |Set/Way
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Register name Function Access Operation Register Data
SYS IMP_CDBGICT | L1 Instruction Cache Tag Read Operation | System instruction |SYS S1 2 ¢15 c2 1, <Xt> |Set/Way

SYS IMP_CDBGTT | TLB Tag Read Operation System instruction |SYS S1 2 cl15 c2 2, <Xt> |Index/Way

SYS IMP_CDBGDCD |L1 Data Cache Data Read Operation System instruction |SYS S1 2 cl15 c4 0, <Xt> [Set/Way/Offset
SYS IMP_CDBGICD | L1 Instruction Cache Data Read Operation |System instruction |SYS S1 2 ¢15 c4 1, <Xt> |Set/Way/Offset
SYSIMP_CDBGTD | TLB Data Read Operation System instruction |SYS S1 2 cl15 c4 2, <Xt> |Index/Way

Execution of one of the SYS IMP_CDBGDCT, SYS IMP_CDBGICT, SYS IMP_CDBGDCD or

SYS IMP_CDBGICD operations must be followed by a read of IMP_CDBGDRO_EL1 register,

and if necessary by a subsequent read of IMP_CDBGDR1_EL1 register. Similarly, a read from
IMP_CDBGDRO_EL1 or IMP_CDBGDR1_EL1 registers must have been preceded by execution of
one of the SYS IMP_CDBGDCT, SYS IMP_CDBGICT, SYS IMP_CDBGDCD or SYS IMP_CDBGICD
operations.

9.12.1.1 Encoding for tag and data in the L1 data cache

The Cortex®-R82 L1 data cache is a 4-way set associative structure.

The size of the configured cache determines the number of sets in each way. The following table
shows the encoding (set in xt in the appropriate sys instruction) used to locate the cache data
entry for tag and data memory. It is similar for both the tag and data RAM access.

Data RAM access includes an extra field to locate the appropriate word in the cache line. The set-
index range parameter (S) is:

Table 9-44: L1 Data Cache Tag and Data location encoding

Bitfield of Xt Description

For a 16KB cache.
For a 32KB cache.
For a 64KB cache.

[31:30] Cache Way

[29:S] Unused

[S-1:6] Set index

[5:3] Cache data element offset
[2:0] Unused (Zero)

Data is returned via Cache Debug Data Register O and Cache Debug Data Register 1.

Use the format that is shown in the following table.
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L1 Data Cache Tag data format

Bitfield of Data Description

Register 0 and 1

DRO[63] Port (from tag contents, not stored in RAM):
0b0 Main Manager
Obl LLRAM AXI Manager
DRO[62:61] MESI State (from tag RAM):
0b00 Invalid
0b01 Shared
0bl0 Unigue non-transient
0bl1l Unique transient
DRO[60] Non-secure state (NS) (from tag RAM)
DRO[59:32] Tag address [39:12] (from tag RAM)
DRO[31:5] Unused (Zero)
DRO[4] Dirty bit (from Dirty RAM)
0b0 Clean
0Obl Modified/Dirty
DRO[3] Shareability (from Dirty RAM)
DRO[2:1] Age (from Dirty RAM)
DRO[0] Outer Allocation Hint (from Dirty RAM)
L1 data cache reads are always 128 bits. The high 64 bits of cache data returns in Data Register 1
and the low 64 bits of cache data returns in Data Register O.
9.12.1.2 Encoding for tag and data in the L1 instruction cache
The L1 instruction cache is different from the L1 data cache. This is shown in the encodings and
data format used in the cache debug operations that are used to access the tag and data memories.
The following table shows the encoding that is required to select a given cache line.
The set-index range parameter (S) is:
$=12 For a 16KB cache
$=13 For a 32KB cache
S=14 For a 64KB cache
$=15 For a 128KB cache
Table 9-46: L1 Instruction Cache Tag and Data location encoding
[31:30] Cache Way
[29:S] Unused
[S-1:6] Set index
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Bitfield of Xt Description

(5:2] Cache data element offset (Data Register
only)

(1:0] Unused

The following table shows the tag, instruction, and valid data for the selected cache line using only
Data Register.

Table 9-47: L1 Instruction Cache Tag data format
Bitfield of Data Description

Register O

(63:30] Unused

[29] Valid

[28] Non-secure state (NS)
(27:0] Tag address [39:12]

L1 instruction cache reads are always 128 bits. The high 64 bits of cache data returns in Data
Register 1 and the low 64 bits of cache data returns in Data Register O.

9.12.1.3 Encoding for the L2 TLB

The Cortex®-R82 processor L2 TLB is built from a 4-way set associative RAM-based structure and
contains the data for the main TLB RAM and the walk cache.

To read the individual entries into the data registers, software must write to the TLB Tag Read
Operation Register and to the TLB Data Read Operation Register.

Table 9-48: TLB Data Read Operation Register location encoding

[(63:32] RESO
[31:30] TLB way
[29:15] RESO
[14:6] TLB index
[5:0] RESO

The TLB index is used to select the index from the TLB and walk cache.

Table 9-49: TLB index

Bitfield of Rd Description

0x000-0x0FF Main TLB
0x100-0x107 Walk cache

The TLB uses an encoding for the descriptor that is returned using the following Data Registers:
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0[31:0]

Data Register

1[31:0]

Data Register

2[31:0]

TLB Descriptor[31:0]

TLB Descriptor[63:32]

TLB Descriptor[88:64]

9.12.1.4 Main TLB RAM descriptor fields
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The Main TLB RAM is divided into two parts, where one part for storing the tag and the other for
storing the data. The following tables list the descriptor fields.

Table 9-50: Main TLB descriptor fields for tag RAM

Field Width Bits Description

Valid 1 [0] Indicates that the entry is valid.

ASID 16 [16:1] |Indicates the Address Space Identifier (ASID). This field is O for a global entry.

VMID 8 [24:17] | Indicates the virtual machine identifier.

nG [25] Indicates the non-global bit. When clear, the ASID is ignored in hit comparison.

AP 2 [27:26] | Access permissions from stage 1 translation.

Note:
With MMU off, AP field gives full permission.

Size 3 [30:28] |Indicates the page size of stage 1 (without combining with stage 2). Also records the
translation levels. 1GB block (AArché4-4K granule) is saved as 512MB block entry.
0b000 4KB
0b001 16KB
0b010 64KB
0Oblll 2MB
0b100 2MB
0b011 32MB
0b110 512MB
0b101 512MB

Address Sign bit 1 [31] Indicates the VA sign bit, VA[48] for tagging compare.

VA 28 [59:32] | Indicates the virtual address.

NS (descriptor) 1 [60] The Security state allocated to this memory region as set in the page descriptor. Used for
Security state check for memory access.

Note:
Even though the Cortex®-R82 processor always executes in Secure state, the NS bit is
used for propagation to the external memory system.

Double Error Detect (DED) 7 [67:61]|7-bit DED ECC code

Error Correcting Code (ECC)
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Table 9-51: Main TLB descriptor fields for data RAM

Field Width Bits Description

UXN 1 [0] Executable in stage 1 user mode.
PXN 1 [1] Executable in stage 1 non-user mode.
Memory type and Shareability 10 [11:2] Defines the memory attribute

PA 28 [39:12] The Physical Address

DED ECC 6 [45:40] 6-bit DED ECC code

9.12.1.5 Walk cache descriptor fields

The following table shows the walk cache descriptor data fields for Tag and Data RAMs.

Table 9-52: Walk cache descriptor fields for Tag RAM

Valid 1 [0] Indicates that the entry is valid
ASID 16 [16:1] Address Space Identifier
VMID [24:17] Virtual Machine Identifier
Granule [26:25] 0b00 4KB
0b01 16KB
0b10 64KB
Address Sign Bit 1 [27] Address sign bit, VA[48] for tagging compare
VA 25 [52:28] VA is stored in walk cache.
Unused lower bits (Architecture dependent) must be zero.
Unused 8 [60:53] Unused (0)
Double Error Detect (DED) Error Correcting Code (ECC) |7 [59:53] DED ECC protection for the Tag RAM.

Table 9-53: Walk cache descriptor fields for Data RAM

Field Width Bit Description
Position

APTable |2 [1:0] Stores the stage 1 access permission information up to last level, starts from full access (0b01) and combined
with APTable bits from stage 1 descriptors up to last level.

XNTable |1 [2] Stores the stage 1 execution permission information up to last level, starts from executable (0b0) and
combined with XNTable bits from stage 1 descriptors up to last level.

PXNTable | 1 [3] Stores the stage 1 privilege execution permission information up to last level, starts from executable (0b0)
and combined with PXNTable bits from stage 1 descriptors up to last level.

NSTable |1 4] Combined NSTable bits from stage 1 descriptors up to last level.

PA 28 [32:5] | The physical base address of L3 descriptor.
Note:
This is the actual physical address, but a stage 2 lookup will still be required to obtain the combined
attributes.

Unused |7 [39:33] |unused (0)
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Field Width Bit Description

Position
DED 6 [50:45] |DED ECC protection for the Data RAM.
ECC

9.12.2 Direct access to L2 and LCU memory

The Cortex®-R82 processor provides a mechanism to read the internal memories that are used by
the L2 cache and the LLRAM Coherency Unit (LCU) and TLB structures through IMPLEMENTATION
DEFINED System registers.

The appropriate memory block and location are selected using one of several system instructions.
The data is read from read-only registers after performing the appropriate Read Operation system
instruction. These operations are available both in EL1 and EL2 but EL1 accesses can be trapped

using ACTLR_EL2.CDBG. In ELO, executing these instructions results in an Undefined Instruction

exception.

The following table shows the system registers and system instructions to access L2 and LCU
memories.

Table 9-54: System registers and system instructions used to access L2 and LCU memories

Register name Function Access Operation Register Data
IMP_CLUSTERCDBGDRO_EL1 |Cluster Cache Debug Data Register O Read-only MRS <Xt>, S3_ Data
2 cl5 c3 0
SYS IMP_CLUSTERCDBGL2D |L2 Cache Data Read Operation System SYS S1 2 cl5 c4 3, Set/Way
instruction <Xt>
SYS L2 Cache Duplicate L1 Tag Read System SYS S1 2 cl5 c3 3, Set/Way
IMP_CLUSTERCDBGL2DT Operation instruction <Xt>
SYS IMP_CLUSTERCDBGL2T |L2 Cache Tag Read Operation System SYS S1 2 c¢l5 c2 3, Index/Way
instruction <Xt>
SYS LCU Duplicate L1 Tag Read Operation |System SYS S1 2 cl5 c3 4, Set/Way/
IMP_CLUSTERCDBGLCUDT instruction <Xt> Offset

Execution of one of the SYS IMP_CLUSTERCDBGL2D, SYS IMP_CLUSTERCDBGL2DT,

SYS IMP_CLUSTERCDBGL2T or SYS IMP_CLUSTERCDBGLCUDT operations must

be followed by a read of IMP_CLUSTERCDBGDRO_EL1 register. Similarly, a read from
IMP_CLUSTERCDBGDRO _EL1 register must have been preceded by execution of one of the SYS
IMP_CLUSTERCDBGL2D, SYS IMP_CLUSTERCDBGL2DT, SYS IMP_CLUSTERCDBGL2T or SYS
IMP_CLUSTERCDBGLCUDT operations.
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9.12.2.1 Encoding for tag and data in the L2 cache and LCU

The Cortex®-R82 L2 cache (tag and data) supports up to 8-way set associative structure. The
Cortex®-R82 L2 Duplicate L1 tag and LLRAM Coherency Unit (LCU) Duplicate L1 tag support up to
4-way set associative structure.

The size of the configured cache determines the number of sets in each way. The following tables
show the encoding (set in Xt in the appropriate SYS instruction) used to locate the cache data entry
for tag and data memory. It is similar for both the tag and data RAM access.

Table 9-55: L2 Cache Tag and Data location encoding

Bitfield of Xt Description

[31:29] Cache Way
Note:
The cache way supports up to eight ways
for the L2 Cache Tag and L2 Cache Data
opcodes and up to four ways for the L2
Cache Duplicate L1 Tag opcode.

[28.27] Opcode:
0b00 L2 Cache Duplicate L1 Tag
0b01 L2 Cache Tag
0b10 L2 Cache Data
O0bl1l Reserved

[26:19] RESO

[18:6] Set index
Note:
The set index width depends on the
implemented cache size. The unused bits
are RESO.

[5:3] Cache data element offset
Note:
The Cache data element offset is used only
for the L2 Cache Data opcode. For other
opcodes, the cache data element offset
bits are RESO.

[2:0] CPUID
Note:
The CPU ID is used only for the L2 Cache
Duplicate L1 Tag opcode. For other
opcodes, the CPU ID bits are RESO.

Table 9-56: LCU Duplicate L1 Tag location encoding

Bitfield of Xt Description

[31:30]

Cache Way

[29:14]

RESO
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Data is returned via Cache Debug Data Register O and Cache Debug Data Register 1.

Use the format that are shown in the following tables for the L2 Cache Tag, L2 Duplicate L1 Tag,

and LCU Duplicate L1 Tag data format.

Table 9-57: L2 Cache Tag data format

Bitfield of Data Description
Register 0 and 1
DRO[63:33] RESO
DRO[32] Source
DRO[31] Outer Allocation Hint
DRO[30] Shareability
DRO[29] Valid
DR0O[28.27] MESI State (from tag RAM):
0b00 Invalid
0b01 Shared clean
0bl10 Unique dirty
0bl1l Unique clean
DRO[26] Non-secure state (NS) (from tag RAM)
DRO[25:0] Tag address (from tag RAM)
Note:
The tag width depends on the
implemented cache size. The unused bits
are RESO.

Table 9-58: L2 Duplicate L1 Tag data format

Bitfield of Data Description
Register 0 and 1
DR0O[63:32] RESO
DRO[31:29] MESI State (from tag RAM):
0b00 Invalid
0b01 Shared clean
0b10 Unique dirty
0bll Unique clean
DRO[28] Non-secure state (NS) (from tag RAM)
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Description

Register 0 and 1

DRO[27:0]

Tag address (from tag RAM)

Note:

The tag width depends on the
implemented cache size. The unused bits
are RESO.

Table 9-59: LCU Duplicate L1 Tag data format

Bitfield of Data Description
Register 0 and 1
DRO[63:18] RESO
DRO[17] Non-secure state (NS) (from tag RAM)
DRO[16:1] Tag address (from tag RAM)
Note:
The tag width depends on the
implemented cache size. The unused bits
are RESO. The LLRAM base address is
excluded from the stored address bits.
DRO[O] Valid

L2 cache data reads are always 128 bits. The high 64 bits of cache data returns in Data Register 1
and the low 64 bits of cache data returns in Data Register O.

9.13 Exclusives and atomics support

The Cortex®-R82 processor supports load/store exclusive and atomic instructions on some
interfaces and not on others.

The Cortex®-R82 processor does not support exclusives and atomics for the following cases:

Software running from a core within the Cortex®-R82 processor executing load/store exclusive
or atomic instructions accessing the Low-latency Peripheral Port (LLPP) region. A synchronous
External abort is taken if software executes an exclusive or atomic targeting the LLPP.

Software running from a core within the Cortex®-R82 processor executing load/store exclusive
or atomic instructions accessing the Shared Peripheral Port (SPP) region. A synchronous External
abort is taken if software executes an exclusive or atomic targeting the SPP.

Incoming atomic or exclusive transactions on the TCM subordinate implemented by the
ACE-Lite Subordinate (ACELS) interface. A SLVERR response is returned if software executes
an atomic request targeting the TCM subordinate. An OK response is returned if software
executes an exclusive request targeting the TCM subordinate, failing any exclusive requests.

Incoming non-single-beat exclusive transactions on the LLRAM Accelerator Coherency Port
(LLRAM ACP) implemented as ACE-Lite Subordinate (ACELS) interface. A SLVERR response is
returned if software executes an exclusive request with ARLENS>O targeting the LLRAM ACP.
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e Incoming cacheable atomic or exclusive transactions on the Main Accelerator Coherency Port
(MACP). A SLVERR response is returned if software executes a cacheable atomic request
targeting the MACP but Non-cacheable atomics are supported. The MACP cannot receive
exclusive requests (AxLock is not implemented) and can therefore only return an OK response,
failing any exclusive requests.

e Incoming atomic or exclusive transactions on the Utility bus. The Utility bus cannot receive
exclusive requests (AxLock is not implemented) and can therefore only return an OK response,
failing any exclusive requests. The Ultility bus cannot receive atomic requests (AWATOP is
not implemented) and therefore cannot receive atomic requests. It is the responsibility of the
system to abort any atomics targeting the Utility bus.

You can build systems that do not require support for exclusives or atomics outside the Cortex®-
R82 processor. However, if your system requires support for exclusives outside the Cortex®-R82
processor, the system must implement a global exclusive access monitor. The global access monitor
must signal to the Cortex®-R82 processor through the EVENTIREQ input when it is cleared.

The following table describes the support for exclusives for the software running from a core within
the Cortex®-R82 processor executing load/store exclusive instructions accessing the Low-latency
RAM (LLRAM) region.

Table 9-60: Exclusives support for LLRAM

Exclusives

Shareability Access to LLRAM region
Non-shareable Executed in cluster
Inner Shareable Executed in cluster
Outer Shareable Executed in cluster

The following table describes the support for atomics for the software running from a core within
the Cortex®-R82 processor executing load/store atomic instructions accessing the LLRAM region.

Table 9-61: Atomics support for LLRAM

Atomics

Shareability BROADCASTATOMICL Access to LLRAM region
Non-shareable HIGH Executed in cluster

LOW Executed in cluster
Inner Shareable HIGH Executed in cluster

LOW Executed in cluster
Outer Shareable HIGH Executed in cluster

LOW Executed in cluster

The following table describes the support for exclusives and atomics for the following cases:

e Software running from a core within the Cortex®-R82 processor executing load/store exclusive
or atomic instructions accessing the Main Manager (MM) region.

e Incoming transactions on the Main Accelerator Coherency Port (MACP).
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7

Note

Xin the following table means that the value does not have any effect on the

exclusives or atomics.

Table 9-62: Exclusives and atomics support for MM and MACP

Type

Shareability BROADCAST signals
INNERM OUTERM ATOMICM

Atomic Access to MM region

Incoming MACP transaction

Exclusives [ Non- X X X X Executed in cluster SLVERR
shareable
Inner HIGH X X X Output to MM, if Non- SLVERR
Shareable cacheable or Device.
Otherwise executed in cluster.
LOW X X X Executed in cluster SLVERR
Outer X HIGH X X Output to MM, if Non- SLVERR
Shareable cacheable or Device.
Otherwise executed in cluster.
X LOW X X Executed in cluster SLVERR
Atomics |X X X X Near |Executed in cluster Cannot happen. Atomics from
MACP always treated as far.
X X HIGH Far Output to MM Forward to MM
Note:
Non-cacheable atomics are
supported. Cacheable atomic
transactions return SLVERR.
X X LOW Far SLVERR SLVERR

9.14

Real-time considerations

The Cortex®-R82 processor provides mechanisms and registers to ensure that your system can

meet various real-time requirements.

This section describes the conditions, mechanisms, and register controls for the Cortex®-R82
processor so that your system can achieve:

e Bounded interrupt latency response under the best-case and worst-case conditions

e Hierarchical real-time requirements on interfaces and memories

e Quality of service capabilities to prioritize a core or a complete cluster.

7

Note

The pc 1sw instruction for the L1 instruction cache and pc csw instruction for the
L1 data cache are serialized through the L2 cache. To ensure that Low-latency RAM
(LLRAM) accesses cached through the L1 caches have higher real-time response
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than the Main Manager (MM) accesses, Arm recommends that you do not use these
instructions for critical software sections.

9.14.1 Interrupt latency

The Cortex®-R82 processor guarantees a bounded interrupt latency response provided that your
system and software meet certain conditions.

The Cortex®-R82 processor has an interrupt latency of 60 SCLK cycles under best-case interrupt
latency conditions and 120 SCLK cycles under worst-case interrupt latency conditions.

Interrupt latency refers to the number of SCLK cycles from the assertion of a Shared Peripheral
Interrupt (SPI) pin to the cycle in which the instruction before the first non-generic instruction

in the interrupt handler retires. This includes the time for the execution of the instructions for
identifying the interrupt, branching to the specific interrupt handler, stacking the relevant registers,
and clearing the interrupt mask.

This section describes the conditions that your system and software should fulfill for the Cortex®-
R82 processor to achieve the best-case and worst-case interrupt latency cycles.

9.14.1.1 Interrupt handler

The interrupt handler code can greatly affect the interrupt latency of your system.

The Cortex®-R82 processor accepts and processes interrupts within 60 and 120 SCLK cycles, if
your interrupt handler meets the following conditions:

e Theinterrupt is handled by the target Exception level. In other words, the interrupt is not
trapped by the hypervisor to route it to a virtual machine which can handle the interrupt.

e The related exception vector and interrupt handler code belong to Memory Protection Unit
(MPU) regions of 4KB or larger.

e Thereis a first, generic part of the handler, that is common for all interrupts. This part is written
in Assembly. The code is optimized to take advantage of the processor multi-issuing capabilities.

e Thereis a second, non-generic part of the handler, that depends on the interrupt ID. This part
may be written either in Assembly or a higher-level language, such as C.

e The generic handler stacks general-purpose registers. The generic handler does not stack
NEON/FP registers. It is assumed that the non-generic handler does not use NEON/FP
instructions.

e The generic handler acknowledges the highest-priority interrupt and reads its interrupt 1D.

e The generic handler re-enables (unmasks) interrupts as soon as possible, so that higher-priority
interrupts can be taken.

e The generic handler looks up the interrupt ID from a table in memory and finds out which non-
generic handler function must be called.

e The generic handler calls the non-generic handler to service the specific interrupt.
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e The generic handler is executed from the Instruction Tightly Coupled Memory (ITCM).

e The generic handler uses the handler-specific stack which is in the Data Tightly Coupled Memory
(DTCM).

e The generic handler does not perform any access to the Main Manager (MM) port, Low-latency
RAM (LLRAM) port, Low-latency Peripheral Port (LLPP), and Shared Peripheral Port (SPP).

e The generic handler does not perform any exclusive or atomic memory access.

An example of such a generic handler for EL1 IRQs, from the vector entry up to the function call of
the non-generic handler, is given in D.1 Generic handler example, part 1 on page 2037.

An example of the remainder of the generic handler, from the return of the non-generic handler
function up to the exception return is given in D.2 Generic handler example, part 2 on page 2038.

Using this example handler as a reference, the best-case and worst-case interrupt latency is
measured from the cycle when the SPI'IRQ pin of the GIC is asserted, up to the cycle when the
first instruction of the function called by the BLX X3 instruction has retired.

9.14.1.2 Best-case interrupt latency conditions

Under best-case interrupt latency conditions, the interrupt is accepted as soon as it is received by
the core within the Cortex®-R82 processor. There cannot be ongoing interrupts or operations such
as Device, atomic, or exclusive operations that would delay the interrupt handling.

The Cortex®-R82 processor accepts and processes the interrupt within 60 SCLK cycles if your
system and software meet the following conditions:

e The Generic Interrupt Controller (GIC) distributor used is GIC-625.

e The GIC distributor is clocked at half the frequency as the Cortex®-R82 cluster, with no bus
bridges between the two.

e The GIC redistributor has enabled combined packets (GICR_FCTLR.ECP field is set to 1).

o The Shared Peripheral Interrupt (SPI) which is asserted is a low-latency targeted SPI (the related
GICD_IROUTER<n>.IRM field is set to O).

e Interrupt configuration (routing, priority, group assignment, per-interrupt enables, group
enables, exception vector) is static.

e The level interrupts are not deasserted before they are serviced.

e Any number of SPIs are allowed to be asserted at the same time for the same core with any
priority structure. Interrupts are not delivered to any other cores in the cluster.

o Data memory barrier instructions and instructions that write to memory with release semantics
do not delay interrupts. That is, either of the following applies:

o An ELO or EL1 source context takes an interrupt to an EL2 destination context.
e Such instructions are not being present in the source context.
o IMP_CPUACTLR_EL1.DMB bit is set which enables such instructions to be interruptible.

e The memory translation regime at the target Exception level uses PMSAv8-64.
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e There are no ongoing accesses to debug or trace functions, Reliability, Availability, and
Serviceability (RAS) registers, Performance Monitoring Unit (PMU), or timer registers.

e The targeted core is not in the process of correcting an Error Correcting Code (ECC) error.

e The cluster and the targeted core are powered up and that the core clock SCLK is running. In
other words, the core is not executing a wr1 or wrk instruction.

e Exception-handling software is not using implicit error synchronization events, that is
SCTLR_ELx.IESB is assumed to be 0b0.

« No core in the cluster is sending Software Generated Interrupts (SGI).

« No external agent (such as a DMA engine) is accessing the targeted core's Tightly Coupled
Memories (TCMs) through the ACE-Lite Subordinate (ACELS) port.

« No external agent (such as a DMA engine) is accessing the targeted core's Low-latency RAM
(LLRAM) interface through the ACELS port.

e The targeted core is not in the process of handling another interrupt.
e No core in the cluster is performing any Device memory accesses.
e No core in the cluster is performing any atomic operations.

e No core in the cluster is performing any exclusive operations.

9.14.1.3 Worst-case interrupt latency conditions
Worst-case interrupt latency conditions allow for the interrupt recognition to be delayed.

This may occur because:
e The core is executing a Device, atomic or exclusive operation.
e The core currently handling an interrupt and therefore masking new interrupts.

e Interrupts are being delivered to other cores in the cluster.

The Cortex®-R82 processor accepts and processes the interrupt within 120 SCLK cycles if your
system and software meet the following conditions:

e The GIC distributor used is GIC-625.

e The GIC distributor is clocked at half the frequency as the Cortex®-R82 cluster, with no bus
bridges between the two.

e PERIPHCLK is clocked at 25% or higher of the SCLK frequency.
e The Shared Peripheral Interrupt (SPI) which is asserted is a low-latency targeted SPI.

e Interrupt configuration (routing, priority, group assignment, per-interrupt enables, group
enables, exception vector) is static.

e The level interrupts are not deasserted before they are serviced.

e Data memory barrier instructions and instructions that write to memory with release semantics
do not delay interrupts. That is, either of the following applies:

o An ELO or EL1 source context takes an interrupt to an EL2 destination context.
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e Such instructions are not being present in the source context.

o IMP_CPUACTLR_EL1.DMB bit is set which enables such instructions to be interruptible.
e The memory translation regime at the target Exception level uses PMSAv8-64.
e There are no ongoing accesses to debug or trace functions, RAS registers, or PMU registers.
o The targeted core is not in the process of correcting an ECC error.

e Any core in the cluster can be executing a wr1 or wrk instruction, in which case they may have
their clock being architecturally gated. However, the Cortex®-R82 processor SCLK must be
active. This can be achieved by setting IMP_CLUSTERACTLR_EL1.SCLKQ to 0b1.

e Exception-handling software is not using implicit error synchronization events, that is
SCTLR_ELx.IESB is assumed to be 0b0.

e Cores in the cluster are allowed to send Software Generated Interrupts (SGI).

e External agents (such as a DMA engine) are allowed to be accessing any core's TCM memories
through the ACE-Lite Subordinate (ACELS) port.

e External agents (such as a DMA engine) are allowed to be accessing any core's Low-latency RAM
(LLRAM) interface through the ACELS port.

e Cores are allowed to perform Device memory accesses. Device memory accesses are only
performed through the Low-latency Peripheral Port (LLPP) or the Shared Peripheral Port (SPP) and
not through the LLRAM or Main Manager (MM) ports. Device memory accesses do not span the
128-bit boundary for the LLPP and 64-bit boundary for the SPP.

e Cores are allowed to perform Atomic operations. Atomic operations may be performed through
the LLRAM or MM ports but they must be configured to perform them as near atomics. This is
done by setting the IMP_CPUACTLR_EL1.ATOM bit field to 0b0O1.

e Cores are allowed to perform Exclusive operations. Exclusive operations may be performed
through the LLRAM or MM ports, but they must be configured to be cacheable within the
cluster (The Memory Protection Unit (MPU) regions are programmed as cacheable and Inner
Shareable).

e Atomic and exclusive operations are allowed to be performed to the Tightly Coupled Memories
(TCMs). Such operations cannot be used for inter-core communication because the TCM
regions are private to each core.

e The system components attached to the Cortex®-R82 processor manager ports respond in a
timely fashion. That is, the components are clocked synchronously to SCLK with a 2:1 clock
ratio; the components can handle pipelined transactions; and the components respond within 3
clock cycles.

e There can be any number of cores in the cluster (up to the maximum of eight cores). Interrupts
can be under delivery to any number of cores in the cluster.

e SPIs can be asserted at the same time which target any number of cores within the cluster.

e Ongoing accesses to timer registers are allowed.

e The new interrupt, for which the latency is measured, has higher priority than any other
ongoing interrupt that is being processed.

The worst-case interrupt latency conditions assume that the software running on the Cortex®-R82
processor fulfills the conditions set above for getting 120 SCLK cycle interrupt response. To ensure
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these conditions are met, the hypervisor running at EL2 can enforce the EL1 and ELO software to
achieve some of those conditions.

e Setting the IMP_INTLATENCY_EL2.DEV bit to 0b1 forces any Device access on the LLRAM or
MM ports to abort.

e Setting the IMP_INTLATENCY_EL2.DEV bit to 0b1 forces any Device memory access where all
bytes are not within a 128-bit aligned region on the LLPP or a 64-bit aligned region on the SPP
to abort.

e Setting the IMP_INTLATENCY_EL2.ATOM bit to 0b1 forces atomics either to be near or to
abort if they cannot be executed near.

e Setting the IMP_INTLATENCY_EL2.EXCL bit to 0b1 forces exclusives that cannot be contained
in the cluster to abort.

e The EL2 MPU region programming can also override EL1 MPU region programming.

See the A.2.2.63 IMP_INTLATENCY_EL2, Interrupt Latency Register on page 543 for more
information.

9.14.2 Real-time hierarchy

The Cortex®-R82 processor provides various memories and interfaces each tailored to different
real-time requirements. The aim is that some memories and interfaces are used for more critical
real-time requirements and some for less critical real-time requirements.

The more real-time critical context is also able to access the less real-time critical
interfaces and memories although such an access might not be desirable depending
on the system design.

The Cortex®-R82 processor memories and interfaces can be ordered as follows in terms of
meeting the critical real-time requirements:

1. The Tightly Coupled Memories (TCMs) and the Low-latency Peripheral Port (LLPP) are suitable for
meeting the most critical real-time requirements.

2. The Low-latency RAM (LLRAM) port, cached through the L1 caches, and the Shared Peripheral
Port (SPP) are suitable for meeting the medium critical real-time requirements. They are more
deterministic than the Main Manager (MM) but less deterministic than the TCMs and the LLPP.

3. MM, cached through the L1 and L2 caches, is suitable for meeting the least critical real-time
requirements. MM is the least deterministic.

To ensure that the LLRAM and the SPP accesses meet higher real-time requirements compared
to the MM accesses, the Cortex®-R82 processor provides a mechanism to reserve buffers for
the LLRAM and SPP accesses. Reserving certain buffers specifically for LLRAM and SPP accesses
avoids the cases where all the buffers are in use for the MM accesses while the software tries

to access the LLRAM or the SPP, therefore avoids the need to wait for ongoing MM accesses to
complete.
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If the Cortex®-R82 processor has the LLRAM port and the SPP implemented and if your system
always requires the LLRAM and SPP accesses to have higher real-time response than the MM
accesses:

e The EL1 software should set the IMP_CPUACTLR_EL1.LCURES to 0b1 to reserve buffer slots
and linefill descriptors to ensure that the LLRAM and SPP accesses do not have increased worst
case latency caused by MM accesses.

e Hypervisor software running at EL2 can also set the IMP_INTLATENCY_EL2.LCURES to 0b1 to
ensure that the EL1 software treats the IMP_CPUACTLR_EL1.LCURES as 0b1 regardless of its
actual value.

The default values for IMP_CPUACTLR_EL1.LCURES and IMP_INTLATENCY_EL2.LCURES bits
are 0b0. If your system requires the LLRAM and SPP accesses to be always prioritized over MM
accesses, consider setting some of these bits to 0b1, according to your needs.

See A.2.2.37 IMP_CPUACTLR_EL1, CPU Auxiliary Control Register on page 463 and A.2.2.63
IMP_INTLATENCY_ELZ, Interrupt Latency Register on page 543 for more information.

9.14.3 Quality of Service

You can prioritize memory accesses from a specific core over accesses from the other cores within
the Cortex®-R82 processor. Similarly, you can also prioritize the Cortex®-R82 cluster over the
other clusters within your system.

You can set priority options for a core or for the whole cluster with the IMP_CLUSTERQOSR_EL1
register.

Setting the IMP_CLUSTERQOSR_EL1.COREQOSEN to 0b1 enables Quality of Service (QOS) within
the Cortex®-R82 processor. When this bit is set to 0b1, you can set which core is prioritized by
setting the IMP_CLUSTERQOSR_EL1.COREQQOSID bits. The COREQOSID bitfield has no effect if
the COREQOSEN is 0b0.

When QOS is enabled for a specific core, the Low-latency RAM (LLRAM), the Shared Peripheral Port
(SPP), and the L2 cache accesses from that core have higher priority over the accesses from the
other cores within the Cortex®-R82 processor.

IMP_CLUSTERQOSR_EL1.CLQOS controls the priority over other clusters within your system. This
field is driven by the Main Manager (MM) ARQOSM and AWQOSM QOS signals. Your interconnect
should support prioritization of clusters if your system requires the QOS to be set for the whole
cluster.

See A.2.2.50 IMP_CLUSTERQOSR_EL1, Cluster Quality of Service Register on page 513 for
more information.
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10. Memory management

This chapter describes how the memory space of the Cortex®-R82 processor is managed.

10.1 About the memory management

The Cortex®-R82 processor memory management system determines various attributes for each
memory location including access permissions, memory types, and Cacheability.

Access permissions indicate which levels of privilege are permitted to access a location and
whether write access or instruction execution are permitted. Memory type and Cacheability
attributes affect the way the Cortex®-R82 processor handles particular accesses, for example,
whether or not it permits two stores to be merged into a single write access.

Each core within the Cortex®-R82 processor has two programmable Memory Protection Units
(MPUs) and an optional Memory Management Unit (MMU):

e The EL1 MPU is controlled by operating system software running at EL1. The EL1 MPU
enables isolation between applications running at ELO.

e The EL2 MPU is controlled by hypervisor software running at EL2. The EL2 MPU enables
isolation between operating systems running at EL1.

e Optional EL1 MMU is controlled by operating system software running at EL1. The EL1 MMU
enables address translation and isolation between applications running at ELO.

The MPU implements the Protected Memory System Architecture (PMSA) and MMU implements the
Virtual Memory System Architecture (VMSA).

PMSA has no address translation capabilities. Therefore the physical address is always the same as
the virtual address for the MPU.

VMSA has address translation capabilities and is responsible for translating virtual addresses into
physical addresses.

Virtual address refers to the address before the translation process as generated by
the instruction. Physical address refers to the address after the translation process
as visible on the bus.

EL2 software typically goes through one stage of EL2 MPU translation. EL1 and ELO software
typically go through one stage of either EL1 MPU or EL1 MMU translation followed by one stage
of EL2 MPU translation.
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e |fthe EL1 MMU is not included, then the EL1 MPU has non zero regions. If the
EL1 MMU is included, then the EL1 MPU is optional.

e The EL2 MPU is optional. The value O for MPU region indicates that the core
does not include support for MPU.

The Cortex®-R82 processor memory management architecture enables virtualization of operating
systems. Hypervisor software running on EL2 selects between the MPU and MMU on a per-
operating system basis.

The Cortex®-R82 processor always operates in Secure state and all translation regimes are Secure.
However, the Cortex®-R82 processor is able to access both Secure and Non-secure address space.
The Cortex®-R82 processor MPU regions and MMU pages include configurable attributes that
determine whether accesses to addresses within a region or page are to the Secure or Non-secure
address space.

Memory management system translation results are cached to reduce translation costs on
performance and power. Each core within the Cortex®-R82 processor includes an L1 instruction
cache structure (L1I MMS) and an L1 data cache structure (L1D MMS) that contain the results of
memory management system lookups. An access that hits in the L1 MMS or L1D MMS incurs no
extra latency.

Each core within the Cortex®-R82 processor that supports VMSA includes a L2 Translation
Lookaside Buffer (TLB) that contains the results of page table walks.

10.2 MPU

Each core within the Cortex®-R82 processor has two programmable Memory Protection Units
(MPUs), controlled from EL1 and EL2. Each MPU supports a 40-bit physical address range that
allows up to 1TB memory address range to be subdivided into regions.

Each memory region is defined by a base address, limit address, access permissions, and memory
attributes.

For data accesses, the MPU checks that the type of access (read or write) to a region is allowed for
the current translation regime. For instruction accesses, the MPU checks if an access is allowed to

the region and that the translation regime allows execution. For both data and instruction accesses,
if access is allowed, the MPU assigns the memory attributes defined for the region. If access is not

allowed, a permission fault is taken. A translation fault is taken for the following reasons:

e If an access hits in more than one region in one of the MPUs.

e If an access does not hit in any MPU region and the Background region cannot be used (based
on the MPU configuration and current privilege level).
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A translation fault is only taken when the MPU is enabled in software.

As a result of pipelined operation, the Cortex®-R82 processor tries to predict program flow and
future data accesses, and so it fetches data and instructions ahead of their use. These transactions
are known as speculative transactions until the pipeline completes execution of the corresponding
instruction. This might result in the Cortex®-R82 processor generating addresses either outside
permitted regions or not having privilege to attempt the access. In these cases, speculative
accesses are prevented from generating bus transactions by the MPU but do not raise a translation
or permission fault.

Each core within the Cortex®-R82 processor has an EL1-controlled MPU and an EL2-controlled
MPU with O, 16, or 32 programmable regions. The value O indicates that the core does not include
support for MPU. For EL1-controlled MPU, the value O is supported only when the core includes
support for Memory Management Unit (MMU).

When the EL2-controlled MPU and virtualization are enabled, all transactions using the ELO/EL1
translation regime perform a lookup in both MPUs. The resulting attributes are combined so that
the least permissive attributes are taken. These two stages of protection allow the hypervisor to
retain control over the ELO/EL1 translation regime and therefore enables support for virtualization.
When software executes using the EL2 translation regime, only the EL2-controlled MPU is used.

For more information on the MPU, see the Arm® Architecture Reference Manual Supplement Armv8,
for R-profile AArché4 architecture.

10.2.1 MPU regions

A region is a contiguous range of addresses starting at a base address, extending up to and
including a limit address.

The Cortex®-R82 processor Memory Protection Unit (MPU) region address ranges are defined as
a pair with base and limit addresses. These addresses are arbitrary except for a minimum 64-byte
resolution. This provides flexibility and reduces the number of regions that are required to fully
describe a memory map compared to older versions of the Arm architecture.

The base address is configured by PRBAR_EL1 (PRBAR_EL2 for EL2-controlled MPU) and the limit
address is configured by PRLAR_EL1 (PRLAR_EL2 for EL2-controlled MPU). The base address

is aligned on a 64-byte boundary and the limit address is aligned to the byte below a 64-byte
boundary. For the remainder of this section, short terms such as PRBAR are used to describe any
of the EL1 or EL2 MPU registers (PRBAR_EL1, PRBAR_EL2, PRBAR<n>_EL1, PRBAR<n>_EL2).

Both base and limit addresses are inclusive, meaning that an address within a region is given by:

PRBAR.BASE: 0000000 <= address <= PRLAR.LIMIT:0b111111
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Where : is a bit concatenation operator.

The minimum size for a region is 64 bytes.

The Cortex®-R82 processor implements a 40-bit physical address space. Any BASE or LIMIT
address bits programmed beyond this 40-bit maximum are RESO and are ignored.

Even though the minimum resolution that can be programmed in the MPU region
is 64 bytes, the Cortex®-R82 processor is optimized for a minimum region size
of 4KB. Any region smaller than 4KB may incur additional cycles of latency for
instruction fetches, loads, and stores.

The Cortex®-R82 processor MPU regions support programming through System register
operations. Both an indirect method (for example through PRSELR_EL1/PRBAR_EL1/PRLAR_EL1)
and a direct method (for example through PRBAR<n>_EL1/PRLAR<n>_EL1) are provided. This
allows software to be optimized for either code density or faster reprogramming and context
switching.

PRBAR and PRLAR also hold the access permissions (PRBAR.AP), Shareability (PRBAR.SH), the
Execute-never bit (PRBAR.XN), and memory attribute index (PRLAR.Attrindx).

Memory attributes are determined by indexing the Memory Attribute Indirection Registers
(MAIR_ELx) with PRLAR.Attrindx.

A region is enabled or disabled by setting or clearing the region enable bit (PRLAR.EN). In the EL1-
controlled and EL2-controlled MPUs, regions can also be enabled or disabled by writing to the
Hypervisor MPU Region Enable Register (PRENR_EL1 or PRENR_EL2).

Speculative memory accesses can occur as a result of prefetching instructions or predicting data
accesses. The Cortex®-R82 processor only speculates on Normal memory, and does not speculate
on Device memory. If your system needs to avoid speculative accesses for certain address regions,
ensure that the combined effect from MPU programming, Background region, and the related
system control bits result in these address regions either producing a fault or assigning a Device
memory attribute.

10.2.1.1 EL1-controlled MPU Background region
When the EL1-controlled Memory Protection Unit (MPU) is disabled (SCTLR_EL1.M=0):

e |f SCTLR_EL1.BR =1, the EL1 default memory map (MPU Background region) is used as it is
shown in Table 10-1: EL1-controlled MPU Background region - instruction access and data
access on page 195.

e |f SCTLR_EL1.BR =0, the Arm®v8-A AArché64 Memory View is used (the same memory
attributes as those defined by the VMSAV8-64 when stage 1 translation is disabled).
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When the EL1-controlled MPU is enabled (SCTLR_EL1.M=1), the MPU Background region can be
enabled by setting SCTLR_EL1.BR. In this case, accesses from the EL1 translation regime that do
not hit any programmable regions use the EL1-controlled MPU Background region.

The complete EL1-controlled MPU Background region is always Secure that is Non-secure (NS) bit
is O.

The following table shows the EL1-controlled MPU Background region for both instruction access
and data access.

Table 10-1: EL1-controlled MPU Background region - instruction access and data access

Region

Address range Attributes Execute-never (XN) bit

0x00000000-0%x3FFFFFFF Normal, 0
Inner Write-Back,
Inner Read-Allocate,
Inner Write-Allocate,
Outer Write-Back,
Outer Read-Allocate,
Outer Write-Allocate,

Outer Shareable

0x40000000-0x7FFFFFFF Normal, 0
Inner Write-Through,
Inner Read-Allocate,
Inner Write-Allocate,
Quter Write-Through,
Outer Read-Allocate,
Outer Write-Allocate,

Outer Shareable

0x80000000-0xXFFFFFFFF Normal, 1
Inner Non-cacheable,
Outer Non-cacheable,

Outer Shareable

0x000100000000-0x00FFFFFFFEFF Device-nGnRnE 1
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Access permission for all regions and address ranges is 0b00. Access permission 0b00 implies
that the EL1 MPU Background region provides both read and write access to accesses from EL1
translation regime that hit any region in the EL1 MPU Background region.

Any accesses from ELO that hit in EL1 MPU Background region have no read/write access and
generate permission fault.

10.2.1.2 EL2-controlled MPU Background region
When the EL2-controlled Memory Protection Unit (MPU) is disabled (SCTLR_EL2.M=0):

e |f SCTLR_EL2.BR =1, the EL2 default memory map (MPU Background region) is used as it is
shown in Table 10-2: EL2-controlled MPU Background region - instruction access and data
access on page 196.

e |If SCTLR_EL2.BR =0, the Arm®v8-A AArch64 Memory View is used (the same memory
attributes as those defined by the VMSAV8-64 when stage 1 translation is disabled).

When the MPU is enabled (SCTLR_EL2.M=1), the MPU Background region can be enabled by
setting SCTLR_EL2.BR. In this case, accesses from the EL2 translation regime that do not hit any
programmable regions use the EL2-controlled MPU Background region.

The complete EL2-controlled MPU Background region is always Secure that is Non-secure (NS) bit
is O.

The following table shows the EL2-controlled MPU Background region for both instruction access
and data access.

Table 10-2: EL2-controlled MPU Background region - instruction access and data access

Region Address range Attributes Execute-never (XN) bit

0 0x00000000-0x3FFFFFFF Normal, 0
Inner Write-Back,
Inner Read-Allocate,
Inner Write-Allocate,
Outer Write-Back,
Outer Read-Allocate,
Outer Write-Allocate,

Outer Shareable
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Region Address range Attributes Execute-never (XN) bit

1 0x40000000-0x7FFFFFFF Normal, 0
Inner Write-Through,
Inner Read-Allocate,
Inner Write-Allocate,
Outer Write-Through,
Outer Read-Allocate,
Outer Write-Allocate,

Outer Shareable

2 0x80000000-0xXFFFFFFFF Normal, 1
Inner Non-cacheable,
Outer Non-cacheable,

Outer Shareable
3 0x000100000000-0x00FFFFFFFFFF Device-nGnRnE 1

Access permission for all regions and address ranges is 0b00. Access permission 0b00 implies
that the EL2 MPU Background region provides both read and write access to accesses from EL2
translation regime that hit any region in the EL2 MPU Background region.

Any accesses from EL1 that hit in EL2 MPU Background region have no read/write access and
generate permission fault.

10.2.1.3 Default Cacheability

When default Cacheability is enabled (HCR_EL2.DC=1), transactions using the EL1-controlled
MPU Background region have Normal, Inner Write-Back, Outer Write-Back, Non-shareable
attributes applied with both Read-Allocate and Write-Allocate hints enabled. Instruction accesses
that hit in the Background region when HCR_EL2.DC=1 are always executable.

The default attributes are the most permissive, meaning that when combined with any attribute
from the EL2-controlled MPU the resulting attribute is the same as the EL2-controlled MPU
attribute. This allows the EL2-controlled MPU to effectively make the EL1-controlled MPU
transparent to transactions from the EL1 translation regime that hit in the Background region.
When HCR_EL2.DC=1, all translations from the ELO/EL1 translation regime perform a two-stage
MPU lookup and the Cortex®-R82 processor behaves as if HCR_EL2 VM is set.
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10.2.1.4 Combined MPU Checking flowchart

The following figure shows EL1 Memory Protection Unit (MPU) checking flowchart.

The figure is not exhaustive. Other System register fields might influence the
Effective value of the ones mentioned on the figure, or some instructions might
behave differently. For more information on the detailed description of the System
register fields, see A. AArché4 registers on page 276.
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The following figure shows EL2 MPU checking flowchart.

The figure is not exhaustive. Other System register fields might influence the
Effective value of the ones mentioned on the figure, or some instructions might

behave differently. For more information on the detailed description of the System
register fields, see A. AArch64 registers on page 276.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 200 of 2039



Arm” Cortex”-R82 Processor Technical Reference Manual Document ID: 102670_0101_02_en

Issue: 02
Memory management

Figure 10-2: EL2 MPU check
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10.2.2 Virtualization support
To support virtualization, two stages of MPU lookup are performed.

Virtualization allows processes running at EL1 and ELO (typically one or more guest operating
systems and their applications) to be managed by processes running at EL2 (typically a single
hypervisor).

The EL1-controlled MPU checks transactions from processes running at ELO or EL1 and

is programmed by processes running at EL1 or EL2. The EL2-controlled MPU also checks
transactions executed from the ELO/EL1 translation regime when virtualization is enabled and
programmed by software at EL2. Transactions executed under the EL2 translation regime use the
EL2-controlled MPU only.

When virtualization is enabled (HCR_EL2VM=1) and the EL2-controlled MPU is enabled
(SCTLR_EL2.M=1), transactions permitted by the EL1-controlled MPU are checked by the EL2-
controlled MPU as part of a two stage lookup. If both MPUs permit the transaction, memory
attributes from stage 1 are combined with attributes from the matching region in stage 2 and the
stricter of the two sets of attributes are applied to the transaction.

10.2.2.1 Combining MPU memory attributes

When a two-stage lookup is performed, the memory type, Cacheability, and Shareability attributes
from each MPU are combined.

Combining the memory type attribute

The following table shows how the memory type assignments are combined under typical
conditions as part of a two-stage lookup.

Table 10-3: Combining the memory type assignments

Assignment in EL1-controlled MPU Assignment in EL2-controlled MPU Resultant type

Device-nGnRnE Any Device-nGnRnE

Device-nGnRE Device-nGnRnE Device-nGnRnE
Not Device-nGnRnE Device-nGnRE

Device-nGRE Device-nGnRnE Device-nGnRnE
Device-nGnRE Device-nGnRE
Not (Device-nGnRnE or Device-nGnRE) Device-nGRE

Device-GRE Device-nGnRnE Device-nGnRnE
Device-nGnRE Device-nGnRE
Device-nGRE Device-nGRE
Device-GRE or Normal Device-GRE

Normal Any type of Device Device type assigned at stage 2
Normal Normal
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The attributes from the stage 1 and stage 2 translation regimes are typically combined to be the

most restrictive of the two. For example, if the stage 1 translation regime returns a Device attribute
and the stage 2 translation regime returns Normal memory attributes, the final combined attributes
become the stricter of the two, which is Device.

However, if HCR_EL2.FWB bit is set, the Hypervisor forces the final attributes to be Normal,
Inner and Outer Write-Back when the EL2 translation regime returns Normal, Inner and Outer
Write-Back. This implies that the stage 1 translation regime attributes are ignored even if they
were marked as Device. This is particularly useful when the Hypervisor wants to limit the interrupt
latency window by relaxing the Device attributes.

Note

o
% Forcing Device attribute to Normal memory allows the Cortex®-R82 processor to
make speculative accesses to peripherals, which may be undesirable.

Combining the Cacheability attribute
The following table shows how the Cacheability assignments are combined as part of a two-stage

lookup.

Table 10-4: Combining the Cacheability assignments

Assignment in EL1-controlled MPU

Non-cacheable

Assignment in EL2-controlled MPU
Any

Resultant Cacheability

Non-cacheable

Any

Non-cacheable

Non-cacheable

Write-Through Cacheable

Write-Through or Write-Back Cacheable

Write-Through Cacheable

Write-Through or Write-Back Cacheable

Write-Through Cacheable

Write-Through Cacheable

Write-Back Cacheable

Write-Back Cacheable

Write-Back Cacheable

Combining the Shareability attribute
The following table shows how the Shareability assignments are combined as part of a two-stage

lookup.

Table 10-5: Combining the Shareability assignments

Assignment in EL1-controlled MPU
Outer Shareable

Assignment in EL2-controlled MPU
Any

Resultant Cacheability
Outer Shareable

Inner Shareable

Outer Shareable

Outer Shareable

Inner Shareable

Inner Shareable

Non-shareable

Inner Shareable

Non-shareable

Outer Shareable

Outer Shareable

Inner Shareable

Inner Shareable

Non-shareable

Non-shareable
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10.2.3 MPU register access

The MPU base and limit registers can be accessed indirectly or directly.

Indirectly

A region is selected by writing to the PRSELR_EL1 (PRSELR_EL2 for EL2 MPU). The selected
region is programmed by writing to the PRBAR_EL1 and PRLAR_EL1 (PRBAR_EL2 and
PRLAR_EL2 for EL2 MPU).

Directly

You can directly access only a group of 16 MPU region registers at a time by setting the
PRSELR_ELx.REGION[7:4].

If the Cortex®-R82 processor is implemented with 32 MPU regions, then you can

directly access the first group of 16 MPU region registers from O-15 by setting the
PRSELR_ELX.REGIONI[7:4] to 0b0000. Then you can directly access the second group of 16
MPU region registers from 16-31 by setting the PRSELR_ELX.REGION[7:4] to 0b0001. You
cannot access both groups of MPU region registers directly at the same time.

The base and limit registers for region n, where n is O-15, are directly accessed by encoding
the region number into CRm and opcode? of the following system register access
instructions:

CRm = oblrrr, where rrr = region_number[3:1].

op2 = 0br00 for PRBAR_ELx where ris n[O] and n is region_number 0-15 for the currently
enabled group.

op2 = 0br01 for PRLAR_ELx where ris n[O] and n is region_number O-15 for the currently
enabled group.

Writing base and limit registers:

PRBARO_EL1 MSR PRBAR<n> EL1, <Xt>

PRBAR15_EL1
PRLARO_EL1 MSR PRLAR<n>_EL1, <Xt>

PRLAR15_EL1
PRBARO_EL2 MSR PRBAR<n> EL2, <Xt>

PRBAR15_EL2
PRLARO_EL2 MSR PRLAR<n>_EL2, <Xt>

PRLAR15_EL2

Reading base and limit registers:
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PRBARO_EL1 MRS PRBAR<n> EL1, <Xt>

PRBAR15_EL1
PRLARO_EL1 MRS PRLAR<n>_EL1, <Xt>

PRLAR15_EL1
PRBARO_EL2 MRS PRBAR<n> EL2, <Xt>

PRBAR15_EL2
PRLARO_EL2 MRS PRLAR<n>_EL2, <Xt>

PRLAR15_EL2

10.3 MMU

The Memory Management Unit (MMU) is responsible for translating addresses of code and data
Virtual Addresses (VAs) to Physical Addresses (PAs) in the real system. The MMU also controls
memory access permissions, memory ordering, and cache policies for each region of memory.

The three main functions of the MMU are to:

o Control the table walk hardware that accesses translation tables in main memory.

e Translate Virtual Addresses (VAs) to Physical Addresses (PAS).

e Provide fine-grained memory system control through a set of virtual-to-physical address

mappings and memory attributes that are held in translation tables.

Each stage of address translation uses a set of address translations and associated memory
properties that are held in memory mapped tables that are called translation tables. Translation
table entries can be cached into a Translation Lookaside Buffer (TLB).

Pagetables must be placed on the Main Manager (MM) port. A fault is raised if a
pagewalk occurs to a different port.

The following table describes the MMU components.

Table 10-6: MMU components

Component Description

L1 instruction TLB 15 entries, fully associative

L1 data TLB 16 entries, fully associative

L2 TLB 1024 entries, 4-way set associative
Walk cache RAM 32 entries, 4-way set associative
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A TLB entry refers to the information needed to perform a translation for a single page. The TLB
entries contain either one or both of a global indicator and an Address Space Identifier (ASID) to
allow context switches without requiring the TLB to be invalidated.

The TLB entries also contain a Virtual Machine Identifier (VMID) to allow virtual machine switches by
the hypervisor without requiring the TLB to be invalidated.

The Cortex®-R82 processor is optimized for 16KB or larger pages. There will be a
performance impact if 4KB pages are used in VMSA.

The Cortex®-R82 processor supports a 40-bit physical address range, which allows 1TB of physical
memory to be addressed.

10.3.1 TLB organization

The Translation Lookaside Buffer (TLB) is a cache of recently executed page translations within the
Memory Management Unit (MMU).

The Cortex®-R82 processor implements a two-level TLB structure. The L2 TLB stores all page sizes
and is responsible for breaking these down into smaller pages when required for the data side or
instruction side L1 TLB.

TLB lockdown is not supported.

After reset, an Invalidate All operation is executed and all entries in the TLB are invalidated.

10.3.1.1 L1 TLB

The first level of caching for the translation table information is an L1 Translation Lookaside Buffer
(TLB), implemented on each of the instruction and data sides.

The Cortex®-R82 L1 instruction TLB supports 4KB pages only for a single entry.

The Cortex®-R82 L1 data TLB supports 4KB pages only for a single entry.

L1 instruction TLB and L1 data TLB can still hold 16KB or larger pages as multiple
entries. For example, an 16KB page is hold as four 4KB entries. There is no
performance impact with pages larger than 4KB.

Any other page sizes are fractured after the L2 TLB and the appropriate page size sent to the L1
TLB.
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All TLB maintenance operations affect both the L1 instruction and data TLBs and cause them to be
invalidated.

A hit in the L1 instruction TLB provides a single SCLK cycle access to the translation, and returns
the PA to the instruction cache for comparison. It also checks the access permissions to signal an
Instruction Abort.

A hit in the L1 data TLB provides a single SCLK cycle access to the translation, and returns the PA
to the data cache for comparison. It also checks the access permissions to signal a Data Abort.

A miss in the L1 data TLB or a hitin the L2 TLB has a penalty compared to a hit in the L1 data TLB.
This penalty can be increased depending on the arbitration of pending requests. The best case hit
penalty is 4 cycles and the worst case hit penalty is 9 cycles.

10.3.1.2 L2 TLB

A unified L2 Translation Lookaside Buffer (TLB) handles any misses from the L1 instruction and data
TLBs.

The L2 TLB is a 4 way set-associative with 256 sets. Therefore it can cache up to 1024 translation
results. The L2 TLB supports all Virtual Memory System Architecture (VMSA) block sizes, except

for 1GB. See VMSAVS in the Arm® Architecture Reference Manual Supplement Armv8, for R-profile
AArché4 architecture for more information.

If a 1GB block is fetched, it is split into 512MB blocks and the appropriate block for the lookup is
stored.

Accesses to the L2 TLB take a variable number of cycles, based on:
e Competing requests from the L1 TLBs.
e TLB maintenance operations in flight.

o Different page size mappings in use.

10.3.1.3 Walk cache RAM

The walk cache RAM holds the result of a stage 1 translation up to, but not including, the last level.

10.3.2 TLB match process

The Arm®v8-R AArché4 architecture provides support for multiple Virtual Address (VA) spaces that
are translated differently.

Translation Lookaside Buffer (TLB) entries store the context information that is required to facilitate a
match and avoid the need for a TLB flush on a context or virtual machine switch.

Each TLB entry contains a:
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o VA,
e Physical Address (PA).

e Set of memory properties that includes type and access permissions.

Each entry is either associated with a particular Address Space Identifier (ASID) or is global. In
addition, each TLB entry contains a field to store the Virtual Machine Identifier (VMID) in the entry
applicable to accesses from Non-secure ELO and EL1 Exception levels.

Each TLB entry is associated with a particular translation regime:
e ELOor EL1 in Secure state

A TLB match entry occurs when the following conditions are met:

¢«  When VA[48:N] matches the requested address, where N is log, of the block size for that
translation that is stored in the TLB entry, moderated by the page size.

e The ASID matches the current ASID held in the CONTEXTIDR, TTBRO, or TTBR1 register, or
the entry is marked global.

e The VMID matches the current VMID held in the VITBR_EL2 register.

10.3.3 Translation table walks

When an access to an address is requested, the Memory Management Unit (MMU) searches for the
requested Virtual Address (VA) in the Translation Lookaside Buffers (TLBs). If it is not present, then it

is a miss and the translation proceeds by looking up the translation table during a translation table
walk.

When the Cortex®-R82 processor generates a memory access, the MMU:

1. Performs a lookup for the requested VA and current translation regime in the relevant
instruction or data L1 TLB.

2. lIf thereis a miss in the relevant L1 TLB, the MMU performs a lookup for the requested VA,
current ASID, current VMID, and translation regime in the L2 TLB.

3. |If thereis a miss in the L2 TLB, the MMU performs a hardware translation table walk.

In the case of an L2 TLB miss, the hardware does a translation table walk as long as the MMU is
enabled and the translation using the base register has not been disabled.

If the translation table walk is disabled for a particular base register, the Cortex®-R82 processor
returns a translation fault.

If the TLB finds a matching entry, it checks the access permission bits and the domain to determine
if the access is permitted. If the matching entry does not pass the permission checks, the MMU
signals a permission fault.

See the Arm® Architecture Reference Manual Supplement Armv8, for R-profile AArché4 architecture for
details of Permission faults, including:
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e A description of the various faults
e The fault codes.

e Information regarding the registers where the fault codes are set.
In translation table walks the descriptor is fetched from the L2 memory system.
The following figure shows the translation table walk process:

Figure 10-3: Translation table walks

L1 data TLB L1 instruction TLB

Miss Miss

L2 TLB

Miss

Translation Table Walk

10.3.4 MMU memory accesses

During a translation table walk, the Memory Management Unit (MMU) generates accesses. This
section describes the specific behaviors of the Cortex®-R82 processor for MMU memory accesses.

10.3.4.1 Configuring MMU accesses

Translation table walk can be performed in Cacheable or Non-cacheable regions. This is determined
by the translation table walk memory attributes, which can be affected by several different
configurations:

e |RGN and ORGN bits in the TCR_EL1 registers which define the memory type for translation
table walk.

e SCTLR_ELx.C and HCR_EL2.CD which affect the table walk to Cacheable or Non-cacheable
memory.

e Stage 2 memory attributes for stage 1 translation table walk, which affect the stage 1
translation table walk memory attribute.
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Only when the final translation table walk memory attribute is Inner Write-Back and Outer Write-
Back and the cache is enabled, the translation table walk accesses the cacheable memory.

For more information on the control fields, see the Arm® Architecture Reference Manual Supplement
Armv8, for R-profile AArché4 architecture.

10.3.4.2 Hardware management of the Access flag

The Cortex®-R82 processor includes the option to perform hardware updates to the translation
tables.

This feature is enabled in register TCR_EL1.

The Cortex®-R82 processor supports hardware updates to the Access flag only when the
translation tables are held in Inner Write-Back and Outer Write-Back Normal memory regions. The
Cortex®-R82 processor does not support hardware management of dirty state.

If software requests a hardware update in a region that is not Inner Write-Back or Outer Write-
Back Normal memory, then the Cortex®-R82 processor returns an abort with the following
encoding:

e ESRELXx.DFSC = 00110001 for Data Aborts.
e ESR.ELX.IFSC =0b110001 for Instruction Aborts.

For more information about hardware updates of the Access flag , see the Arm® Architecture
Reference Manual Supplement Armv8, for R-profile AArché4 architecture.

10.3.5 Responses

Certain faults and aborts can cause an exception to be taken because of a memory access.

10.3.5.1 MMU responses

When one of the following translations is completed, the Memory Management Unit (MMU)
generates a response to the requester:

e An L1 instruction or L1 data Translation Lookaside Buffer (TLB) hit.

e An L2 TLB hit.

e A translation table walk.

The response from the MMU contains the following information:
e The Physical Address (PA) corresponding to the translation.
e A set of permissions.

e Secure or Non-secure state information.
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The Secure or Non-secure state information is the security state of the
descriptor and not the security state of the Cortex®-R82 processor. The
Cortex®-R82 processor always operates in Secure state but can access both
Secure and Non-secure physical memory address space.

e All the information that is required to report aborts.

See the Arm® Architecture Reference Manual Supplement Armv8, for R-profile AArché4 architecture for
more details.

10.3.5.2 MMU aborts

The Memory Management Unit (MMU) can detect faults that are related to address translation and
can cause exceptions to be taken to the individual core within the Cortex®-R82 processor.

Faults can include address size, translation, access flags, and permissions. See the Arm® Architecture
Reference Manual Supplement Armv8, for R-profile AArché4 architecture for more information about
aborts.

10.3.5.3 External aborts

External aborts are aborts that occur in the memory system that are different than the Memory
Management Unit (MMU) detects. External aborts are caused by errors flagged by the external
memory interfaces or are generated because of an uncorrected ECC error in the L1 data cache or
L2 cache arrays.

When an External abort to the external interface occurs on a translation table walk access, the
MMU returns a synchronous External abort. For a Load pair or a Store pair operation, the address
captured in the fault register is that of the address that generated the synchronous external abort.

10.3.5.4 Misprogramming contiguous hints

A programmer might misprogram the translation tables so that:

e The block size being used to translate the address is larger than the size of the input address.

e The address range translated by a set of blocks that is marked as contiguous, by use of the
contiguous bit, is larger than the size of the input address.

If there is this kind of misprogramming, the Cortex®-R82 processor does not generate a translation
fault.
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10.3.5.5 Conflict aborts

Conflict aborts are generated from the L1 instruction or data Translation Lookaside Buffer (TLB). If
a conflict abort is detected in the L2 TLB, it chooses one valid translation. The L2 TLB does not
generate a conflict abort.

10.3.6 Memory behavior and supported memory types
The Cortex®-R82 processor support all the Arm®v8-R AArché64 memory types.

These device memory types have the following three attributes:

G - Gathering
The capability to gather and merge requests together into a single transaction.

R - Reordering
The capability to reorder transactions.

E - Early Write Acknowledgement
The capability to accept early acknowledge of transactions from the interconnect.

The permitted combinations are described in the following table:

Table 10-7: Supported Arm®v8-R AArch64 Device memory types

Memory type Description

Device-GRE Device Gathering, Reordering, Early Write Acknowledgement.

Device-GRE is similar to Normal Non-cacheable but does not permit Speculative accesses.

Device-nGRE | Device non-Gathering, Reordering, Early Write Acknowledgement.
Transactions might be reordered within the L2 memory system or in the system interconnect.

The use of barriers is required to order accesses to Device-nGRE memory.

Device-nGnRE | Device non-Gathering, non-Reordering, Early Write Acknowledgement.
Device-nGnRE is equivalent to the Device memory type in earlier versions of the architecture.

Device-nGnRE is treated the same as nGnRnE inside the Cortex®-R82 processor but is reported differently on the bus
interface.

Device- Device non-Gathering, non-Reordering, No Early Write Acknowledgement.
nGnRnE

See the Arm® Architecture Reference Manual Supplement Armv8, for R-profile AArché4 architecture for
more information.

Write-Through and Mixed inner and outer Cacheability not included.
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10.3.7 Page-based hardware attributes

Page-Based Hardware Attributes (PBHA) is not supported by the Cortex®-R82 processor.
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11. RAS Extension support

This chapter describes the Reliability, Availability, and Serviceability (RAS) features implemented in
the Cortex®-R82 processor.

11.1 RAS Extension support in the processor

The Cortex®-R82 processor reports and records errors in memories and system ports according to
the Reliability, Availability, and Serviceability (RAS) Extension for the Arm®v8.4 architecture.

The RAS Extension is always present in the Cortex®-R82 processor, however most of the features
are only supported when RAM protection is configured.

If RAM protection is configured, all memory errors are recorded in the appropriate RAS registers
unless all such Error Record registers are already full with errors of higher severity. The Cortex®-
R82 processor records all memory errors regardless of whether they are encountered during
speculative execution or not. Errors are recorded both by the node that detects them (for example,
a first cache discovering a corrupted line and poisoning the location) and by the node that
consumes them (for example, a second cache snooping the first cache for a critical read). Bus
protection is not available in the Cortex®-R82 processor.

Errors detected on speculative accesses are recorded but no exceptions
(synchronous or asynchronous) are generated. If the Cortex®-R82 processor
attempts to consume a poisoned location later, an exception will be taken at that
time.

In particular, the Cortex®-R82 processor RAS implementation supports:

e Cache protection with Single Error Correct Double Error Detect (SECDED) on the RAMs that
contain dirty data or coherency state. This includes the Instruction Tightly Coupled Memory
(ITCM), Data Tightly Coupled Memory (DTCM), RAMs, L1 data cache data and dirty RAMs,
L2 cache tag and data RAMs, L2 cache data buffers, L2 duplicate L1 tag RAMs, and LLRAM
Coherency Unit (LCU) duplicate L1 tag RAMs,

e Cache protection with Double Error Detect (DED) on the RAMs that only contain clean data or,
in the case of the L1 data cache tag RAM, data that can be corrected via the duplicate L1 tag
RAMs. This includes the L1 instruction cache tag and data RAMs, L1 data cache tag RAM, and
the L2 Translation Lookaside Buffer (TLB) tag and data RAMs.

e The Error Synchronization Barrier (£sB) instruction. When an esB instruction is executed, the core
ensures that all unrecoverable SError Interrupts that are generated by instructions before the
ESB are either taken by the core or pended in DISR_EL1.

e The implicit ESB instruction as described in the Arm®v8 architecture RAS extension.
e Poison attribute on bus transfers.
e Core and cluster Error Record registers.
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o Fault Handling Interrupts (FHIs).
e Error Recovery Interrupts (ERIs).
e Critical Error Interrupt (CEI).

e FError injection.

The L2 cache replacement RAMs and the branch predictor RAMs are out of the scope of RAS, as
they are protected by alternate means. The Cortex®-R82 processor remains robust in the presence
of any errors in these RAMs as well.

If RAM protection is not configured, the Cortex®-R82 processor has one RAS node, Node 0, and
one Error Record register, Error Record register O, implemented. Node O is for the shared memory,
non-ECC errors from the L2 cache and LCU. This node corresponds to Error Record register O.

If RAM protection is configured, the Cortex®-R82 processor adds two more RAS nodes, Node 1
and Node 4, and six more Error Record registers, Error Record registers 1 to é:

e Node 1 for per-core memory Error Correcting Code (ECC) errors from the L1 data cache RAMs,
L1 instruction cache RAMs, Tightly Coupled Memories (TCMs) (ITCM and DTCM), and the L2
TLB RAMs. This node corresponds to Error Record registers 1-3.

e Node 4 for shared memory ECC errors from the L2 cache data RAMs, L2 cache tag RAMs, |2
cache data buffer RAMs, L2 cache duplicate L1 tag RAMs, and the LCU duplicate L1 tag RAMs.
This node corresponds to Error Record registers 4-6.

The following table shows per-core and shared nodes and error record registers in the Cortex®-
R82 processor.

Table 11-1: RAS nodes and error record registers

Error Record register Error types recorded RAS node control
0 0 Non-ECC memory errors | Shared ERROCTLR
from L2 cache and LCU
1 1,2,3 Memory errors from L1 Per-core ERRICTLR

instruction cache, L1 data
cache, ITCM, DTCM, L2
TLB

4 4,56 Memory errors from L2 Shared ERR4CTLR
cache and LCU

For more information on the architectural RAS Extension and the definition of a RAS node, see the
Arm® Architecture Reference Manual Supplement Reliability, Availability, and Serviceability (RAS), for A-
profile architecture.

11.2 Memory protection behavior
The Cortex®-R82 processor is robust in the presence of 1-bit or 2-bit errors in any of its RAMs.

The Cortex®-R82 processor employs a variety of error detection and correction schemes. Single
Error Correct Double Error Detect (SECDED) Error Correcting Code (ECC) is used if there is a need
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to produce corrected data from the error data. Double Error Detect (DED) ECC is used when error
detection is sufficient and the corrected data is obtained from a different processor memory. Non-
RAM redundancy is used when error data is corrected by the Cortex®-R82 processor as part of

its normal operation, for example by recomputing the correct data in a redundant, logic-only unit.
Finally, functional correctness by construction is used when error data cannot cause any functional
error and are replaced by correct data over time.

In SECDED and DED schemes, when the datum and code bits are all-zero, or all-one, the
interpretation is that an error has occurred that the ECC scheme cannot correct. However in some
cases it may still be possible to correct, such as when the data is known to be clean and can be
invalidated and refetched.

Regardless of the state of the processor, the Cortex®-R82 processor records the error at the point
when it is detected.

The following table indicates which protection type is applied to each RAM. The ECC granule
specifies how much data is used to compute a single ECC code.

Table 11-2: RAM protection

RAMs Protection scheme Error Action

type
Instruction Tightly SECDED 64 bits 1-bit |Correct the error
(Cl%‘f\’/le)d Memory 2-bit |Poison RAM location

Data Tightly Coupled  |SECDED 32 bits 1-bit |Correct the error

Memory (DTCM)

2-bit |Poison RAM location

L1 instruction cache |DED 64 bits 1- Evict cache line and refetch clean line from L2 cache, LLRAM, or MM
data bit/2-

bit
L1 instruction cache  |DED 30 bits 1- Evict cache line and refetch clean line from L2 cache, LLRAM, or MM
tag bit/2-

bit

L1 data cache data SECDED 32 bits 1-bit |Evict cache line, correcting the error when needed, and refetch clean line from L2

cache, LLRAM, or MM.

2-bit | Poison the location or evict poison to the L2

L1 data cache tag DED Up to 31 1- Evict cache line and refetch clean line, retrieving correct tags from the L2/LCU
bits® bit/2- |duplicate L1 tag memories
bit
L1 data cache dirty SECDED Four 2 1-bit |Correct the error
bits” 2-bit |Assume cache line is clean, dirty data discarded
L2 cache data SECDED 128 bits |1-bit |Correct the error
2-bit |Poison the location
L2 cache tag SECDED Up to 33 |1-bit |Correct the error
bits” 2-bit | Evict cache line and refetch clean line from MM

L Granule size is configuration dependent.
% While the ECC granule is logically 2 bits, there are four granules in a single RAM bank.
° Granule size is configuration dependent.
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Y Protection scheme Error Action
type
L2 cache data buffers |SECDED 144 bits |1-bit |Correct the error
2-bit | Poison the location
L2 duplicate L1 tag SECDED Up to 32 |1-bit |Correct the error
bits” 2-bit |Evict cache line and refetch clean line from MM, unless location is about to be
overwritten
LLRAM Coherency Unit |SECDED Up to 18 |1-bit |Correct the error
(LCV) duplicate L1 tag | pits® 2-bit | Evict cache line and refetch clean line from LLRAM
L2 cache replacement |Functional 1- Cache evicts a line that might be different compared with the replacement policy. No
correctness by bit/2- |error results from selecting a different line. Errant entry replaced with correct data.
construction bit
Branch predictor Non-RAM 1- Error data checked and corrected by core pipeline
redundancy bit/2-
bit
L2 Translation DED 46 bits 1- Discard the translation and repeat the page walk
Lookaside Buffer (TLB) bit/2-
data bit
L2 TLB tag DED 68 bits 1- Discard the translation and repeat the page walk
bit/2-
bit

Error correction

The Cortex®-R82 processor corrects all single bit errors either by correcting the error (inline
correction for caches and TCMs, or overwriting with correct data for branch predictors and L2
cache replacement) or by evicting the related cache line and by re-fetching a clean copy from

a different memory. Therefore, single bit errors do not affect the function of the Cortex®-R82
processor, although they might affect timing. If there are multiple single bit errors in different
RAMs, or in different protection granules in the same RAM, then the Cortex®-R82 processor also
remains functionally correct.

If there is a double bit error in a single RAM in a single protection granule, then the Cortex®-R82
processor detects the error. If the data can be found in a different memory (such as the clean

data in a cache) or can be recomputed (such as branch outcomes or L2 cache replacement), the
Cortex®-R82 processor attempts to correct the error by evicting the cache line and by re-fetching
a clean copy from a different memory. If the data cannot be found elsewhere (such as the TCM
data or dirty data in a cache), then the data is lost. In some cases, such as a double bit error on a
tag RAM of a dirty cache line, the coherency state might be lost, for example because:

e The address of the erroneous cache line has become UNKNOWN and the location cannot be
poisoned, or

e The coherent state of the line has been lost and it is no longer possible to determine if a line is
clean or dirty.

In addition to correcting the data read from protected RAMs, the Cortex®-R82 processor also
either writes the corrected data back into the protected RAMs or it invalidates the erroneous

* Granule size is configuration dependent.
° Granule size is configuration dependent.
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location or poisons the erroneous location. This allows it to avoid the accumulation of errors that
leads to correctable errors combining into uncorrectable errors or double bit errors combining into
triple bit errors.

If there are three or more bit errors in the same protection granule, then depending on the RAM
and the position of the errors in the RAM, the Cortex®-R82 processor might or might not detect
the errors.

The memory protection feature of the Cortex®-R82 processor has a minimal performance impact
when no errors are present.

The Cortex®-R82 processor also includes hard error handling mechanisms to guarantee forward
progress in the presence of a limited number of hard correctable errors. A hard error is a physical
error in the RAM that prevents the correct value being written, for example, due to a permanently
stuck-at bitcell.

A single hard error can be corrected and is guaranteed to make progress. However, if there are
multiple hard errors then in some cases this can cause live-locks as the line could continuously
replay.

The following table describes the hard error avoidance mechanisms for the Cortex®-R82 RAMs.

Table 11-3: RAM hard error avoidance mechanisms

RAMs Mechanism

Instruction Tightly Coupled Memory Single 128-bit correction buffer acts as Write-Through cache

(ITCM)

Data Tightly Coupled Memory (DTCM) Single 128-bit correction buffer acts as Write-Through cache

L1 instruction cache data Cache line has been invalidated; replayed access treated as Non-cacheable

L1 instruction cache tag Cache line has been invalidated; replayed access treated as Non-cacheable

L1 data cache data Cache Line Avoidance Register (CLAR) to mask hits and allocations on most recently affected
cache line

L1 data cache tag CLAR to mask hits and allocations on most recently affected cache line

L1 data cache dirty CLAR to mask hits and allocations on most recently affected cache line

L2 cache data Correct inline to allow current request to proceed

L2 cache tag Replayed access streams from the tag write buffer to avoid the cache RAM

L2 cache data buffers Correct inline to allow current request to proceed

L2 cache replacement RAMs Request proceeds by evicting a cache line that might be different compared with the
replacement policy

L2 duplicate L1 tag Replayed access streams from the tag write buffer to avoid the RAM

LLRAM Coherency Unit (LCU) duplicate L1 | Correct in-line or invalidate and allow current request to proceed

tag

Branch predictor Execution proceeds from the correct branch target

L2 Translation Lookaside Buffer (TLB) data |CLAR to mask affected data

L2 TLB tag CLAR to mask affected data
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The CLAR is a dedicated structure that caches the most recently corrected error. Future requests
to the same location use the CLAR contents instead of reading again from the affected RAM.

11.3 Error containment

The Cortex®-R82 processor supports error containment which makes sure that an error is detected
and not silently propagated.

Error containment also implies support for poisoning to ensure that errors are reported only when
the erroneous data is consumed.

Support for the Implicit Error Synchronization Barrier (IESB) also allows further isolation of imprecise
exceptions and future operations that are reported when poisoned data is consumed.

Using IESB might affect your interrupt latency response. For more information on
interrupt latency, see 9.14.1 Interrupt latency on page 185.

The Cortex®-R82 processor avoids Uncontainable errors with the following exceptions:

e A fatal double bit error on the L1 data cache dirty RAM. When a snoop detects a fatal dirty
RAM error, it cannot determine whether the line is clean or dirty. The data is assumed to be
clean since the coherent state is unknown, and therefore might not drain data to the L2 cache.
An Uncontainable error is raised to the RAS node associated with the core.

e When an uncorrectable error is detected in an L2 cache data RAM, the chunk of data with
the error is marked as poisoned. The poison is stored per 128-bits of data. If the interconnect
supports poisoning, the poison is passed along with the data when the line is evicted or
snooped from the cluster and a Deferred error is reported to the RAS node. No abort is
generated when a line is poisoned, as the abort can be deferred until the point when the
poisoned data is consumed.

If a poisoned cache line is evicted or snooped from the cluster and the interconnect does not
support poisoning the Cortex®-R82 processor generates an interrupt NnCOMPLEXCRITIRQ and
reports an Uncontainable error to the RAS node before transferring the data, since the poison
state is lost. Software can indicate if the interconnect supports poisoning or not by setting the
interconnect data poisoning bit in the cluster control register.

e The L2 Data Buffers (L2DB) are used for temporary storage of data within the L2, and can
forward data on to the L2 cache, the L1 memory system or the Main Accelerator Coherency Port
(MACP). When a read-modify-write is performed on an L2DB and an uncorrectable error is
detected the L2DB will be marked as poisoned. The poison is stored per 128-bits of data. In all
other cases the L2DB itself is not poisoned; if the data request is for an L1, the Main Manager
(MM) port or the MACP then poison will be transferred alongside the data to the destination,
while an L2 cache allocation from the L2DB will transfer the unmodified ECC bits directly into
the L2 cache. A subsequent access to the L2 cache will detect the uncorrectable error and
poison the location. In all cases these errors will be reported Deferred error to the RAS node.
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No abort is generated when a line is poisoned, as the abort can be deferred until the point
when the poisoned data is consumed.

If an uncorrectable error is detected in the L2DBs then the byte strobes associated with the
write may be lost. The poisoned write propagated on the external interface in this scenario may
access bytes not written by the original request in cases where a partial poison granule is being
written.

If an uncorrectable error is transferred from the L2DB to the MM port and the interconnect
does not support poisoning the Cortex®-R82 processor generates an interrupt
NCOMPLEXCRITIRQ and reports an Uncontainable error to the RAS node before transferring
the data, since the poison state is lost. Software can indicate if the interconnect supports
poisoning or not by setting the interconnect data poisoning bit in the cluster control register.

o A fatal double bit error on the L2 cache tag RAM. The hit/miss status and address associated
with the cache line is unknown. To proceed, the line is invalidated in the L2 cache and the
access is replayed. An Uncontainable error is raised to the RAS node associated with the
cluster.

e A fatal double bit error on the L2 duplicate L1 tag RAM. This hit/miss status and address
associated with the cache line is unknown. To proceed, the line is invalidated in both the
L2 duplicate L1 tag RAM and the corresponding L1 cache and the access is replayed. An
Uncontainable error is raised to the RAS node associated with the cluster.

e An uncorrectable error occurred in any RAM that cannot be associated with a specific
instruction (typically an already retired store). The error is considered to be Uncontainable
because later instructions in the program order may have consumed corrupted architectural
state.

Uncontainable errors can lead to UNPREDICTABLE behavior. They can result in further data
corruption, or in software algorithms deadlocking as they can read inconsistent data. Therefore it
is generally not possible to cleanly recover from such errors. Arm recommends that in response to
NCOMPLEXCRITIRQ interrupts a system reset is performed as soon as possible.

In some cases, it is possible for an error to be counted more than once. For example, multiple
accesses might read the location with the error before the line is evicted.

11.4 Fault detection and reporting

When the Cortex®-R82 processor detects a fault, it raises a Fault Handling Interrupt (FHI) exception
through the fault signals. FHIs are reflected in the Error Record registers that are updated in the
node that detects the errors.

Fault handling interrupts

When ERROCTLR.FI is set, all detected non-ECC Deferred errors and Uncorrected errors that
the cluster detects in the L2 cache and LLRAM Coherency Unit (LCU) generate an FHI on the
NCOMPLEXFAULTIRQ signal.
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When ERRICTLR.Fl is set, all detected Error Correcting Code (ECC) Deferred errors and
Uncorrected errors that core n detects in the L1 instruction, L1 data, and TCM RAMs generate an
FHI on the nCOREFAULTIRQI[n] signal.

When ERRACTLR.Fl is set, all detected ECC Deferred errors and Uncorrected errors that the
cluster detects in the L2 cache tag RAMs, L2 cache data RAMs, and LCU duplicate L1 tag RAMs
generate an FHI on the N"COMPLEXFAULTIRQ signal.

When ERROCTLR.CFI, ERR1ICTLR.FI, or ERR4CTLR.CFI or any other CE-counter overflow bits are
set, then all detected Corrected errors also generate a core or cluster FHI respectively.

Error recovery interrupts

When ERROCTLR.Ul is set, all detected non-ECC Uncorrected errors that are not deferred that the
cluster detects generate an error recovery interrupt on the nCOMPLEXERRIRQ signal.

When ERR1ICTLR.Ul is set, all detected ECC Uncorrected errors that are not deferred that core n
detects generate an error recovery interrupt on the nCOREERRIRQIn] signal.

When ERR4CTLR.Ul is set, all detected ECC Uncorrected errors that are not deferred that the
cluster detects generate an error recovery interrupt on the nCOMPLEXERRIRQ signal.

Critical error interrupts

When ERROCTLR.CI, ERRICTLR.CI, or ERRACTLR.Cl is set, all critical errors that the Cortex®-
R82 processor detects generate a critical error interrupt on the nCOMPLEXCRITIRQ signal. All
Uncontainable error cases mentioned in 11.3 Error containment on page 219 generate a critical
error interrupt.

Clearing reported faults

The nCOREFAULTIRQ, nCOREERRIRQ, NnCOMPLEXFAULTIRQ, nCOMPLEXERRIRQ, and
NCOMPLEXCRITIRQ signals remain asserted until software clears them by writing the
ERR<n>STATUS register.

Arm recommends that at least the NnCOMPLEXERRIRQ, NCOMPLEXCRITIRQ, and nCOREERRIRQ
pins are connected to the interrupt controller, so that an interrupt or system error is generated
when the pin is asserted.

11.5 Error detection and reporting

When the Cortex®-R82 processor consumes an error, it raises different exceptions depending on
the error type.

The Cortex®-R82 processor might raise:

« A Synchronous External Abort (SEA) when the error that it detects is an architecturally executed
instruction (typically a load) that has not retired.
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e An Asynchronous External Abort (AEA), reported as an SError Interrupt (SEI) when the error it
detects cannot be associated with a specific instruction (typically an already retired store). The
error is Uncontainable, because it is reported asynchronously and the Cortex®-R82 processor
cannot guarantee that subsequent instructions have not consumed corrupted data.

o A Fault Handling Interrupt (FHI) when it detects an uncorrectable, correctable, or deferred error
through the nCOREFAULTIRQ signal if the error is in the core RAMs or NCOMPLEXFAULTIRQ
if the error is in the cluster RAMs.

e An Error Recovery Interrupt (ERI) when it detects an uncorrectable error through the
NCOREERRIRQ signal if the error is in the core RAMs or n"COMPLEXERRIRQ if the error is in
the cluster RAMs.

e A Critical Error Interrupt (CEI) when it detects an uncontainable error in either the core or the
cluster RAMs through the nNCOMPLEXCRITIRQ signal.

Error reporting registers

The errors detected in the following memories, including corrected and uncorrected errors, are
logged in the ERR<n>STATUS and ERR<n>MISCO registers:

e Instruction Tightly Coupled Memory (ITCM) and Data Tightly Coupled Memory (DTCM) RAMs.
e L1 instruction cache tag and data RAMs.

e |1 data cache tag and data RAMs.

e L1 data cache dirty RAMs.

e |2 cache tag and data RAMs.

e L2 cache data buffers.

e |2 duplicate L1 tag RAMs.

e LLRAM Coherency Unit (LCU) duplicate L1 tag RAMs.

e L2 Translation Lookaside Buffer (TLB) cache data and tag RAMs.

The ERR<n>STATUS registers indicate:
e |f the erroris corrected or uncorrected.
e |f the error is deferred or reported.

e The type of memory where the error occurred.

The ERR<n>MISCO register indicates:

e The way, the index, the level, and the bank of the memory where the error occurred. This
information identifies the RAM and the line within the RAM that contains the error.

e The corrected error counts. One counter is incremented for each corrected error detected.

Error reporting

Any detected error is reported in the Error Record Primary Status Register (ERR<n>STATUS), and
the Error Record Miscellaneous Register O (ERR<n>MISCO). Errors reported include errors that

are successfully corrected and errors that cannot be corrected. If multiple errors occur on the
same clock cycle, the Cortex®-R82 processor serializes them and records them separately. In the
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unusual case when multiple errors from multiple RAMs occur in consecutive clock cycles and the
Cortex®-R82 processor cannot record them in a timely manner, the error type is set appropriately
to indicate that multiple errors have been observed.

Simultaneous errors in different RAMs get serialized and reported but multiple
errors within a single RAM such as multiple DTCM errors, are combined into a
suitable multiple error report.

If the Cortex®-R82 processor is implemented without RAM protection, then, there is one Error
Record register, Error Record register O, provided. If the Cortex®-R82 processor is implemented
with RAM protection, there are seven Error Record registers, Error Record registers O to 6, provided
which can be selected with the ERRSELR_EL1 register:

e Error Record register O is for the cluster and is shared between all cores in the cluster. It records
any non-ECC error in the L2 cache and LCU.

e Error Record registers 1-3 are private to the core, and are updated on any Error Correcting Code
(ECC) error in the core RAMs including L1 data cache RAMs, L1 instruction cache RAMs, TCMs
(ITCM and DTCM), and the L2 TLB RAMs.

e Error Record registers 4-6 are for the cluster and are shared between all cores in the cluster.
They record any ECC error in the L2 cache data RAMs, L2 cache tag RAMs, L2 cache data
buffer RAMs, L2 cache duplicate L1 tag RAMs, and the LCU duplicate L1 tag RAMs.

11.5.1 Error reporting and performance monitoring
All detected memory errors trigger the MEMORY_ERROR event.

The MEMORY_ERROR event is:
e Counted by the PMU counters if it is selected and the counter is enabled.

e Connected to the Embedded Trace Macrocell (ETM) as external event number 28.

11.6 Error injection

Error injection involves inserting an error in the error detection logic to verify the reporting and
recording structure. Error injection does not verify syndrome generation or error detection and
correction hardware.

Error injection uses the ERR<n>PFGCDN_EL1 and ERR<n>PFGCTL_EL1 registers to insert errors.
The Cortex®-R82 processor can inject the following error types:

For Record O (shared memory non-ECC errors): Error injection is not supported.

For Records 1-3 (per-core memory Error Correcting Code (ECC) errors):
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e A Corrected Error (CE). This is reported as a single-bit ECC error on any L1 data cache access.

e A Deferred Error (DE). This is reported as a double-bit ECC error on any L1 data cache access.

e A Recoverable Error (UER) cannot be generated at this node.

e An Unrecoverable Error (UEU) cannot be generated at this node.

e An Uncontainable Error (UC). This is reported as a double-bit ECC error on an L1 data cache
Main Memory eviction.

For Records 4-6 (shared memory ECC errors):

e A Corrected Error (CE). This is reported as a single-bit ECC error on any L2 cache data access.

e A Deferred Error (DE). This is reported as a double-bit ECC error on any L2 cache data access.

e A Recoverable Error (UER) cannot be generated at this node.

e An Unrecoverable Error (UEU) cannot be generated at this node.

e An Uncontainable Error (UC). This is reported as a double-bit ECC error on any L2 cache tag

access.

An error can be injected immediately, subject to the triggering condition associated with each error
type, or when a 32-bit counter reaches zero. You can control the value of the counter through the
ERR<n>PFGCDN_EL1 register. The value of the counter decrements on a per clock cycle basis.

Error injection is a separate source of error within the system and does not create
hardware faults.

An example software sequence to insert an error could look like this:

Select the appropriate RAS node by programming ERRSELR_EL1

Enable error reporting by programming ERXCTLR_EL1

Write a countdown value to ERXPFGCDN _EL1

Select an error to be injected by programming ERXPFGCTL_EL1

Ensure the programming is applied by executing a DSB and then an ISB instruction

After the countdown to complete, error results should be visible by reading ERXSTATUS_EL1
and ERXMISCO_EL1

A R

11.7 RAS register summary
The register summary tables provide an overview of all the relevant registers.

You can find the register summary table for the Cortex®-R82 processor AArché4 Reliability,
Availability, and Serviceability (RAS) registers in A.1.7 AArché4 RAS registers summary on page
288.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 224 of 2039



Arm® Cortex"-R82 Processor Technical Reference Manual Document ID: 102670_0101_02_en
Issue: 02
RAS Extension support

You can find the register summary table for the Cortex®-R82 processor external RAS registers in
B.1.1.1 External RAS registers summary on page 1332.
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12. GIC CPU interface

This chapter describes the Cortex®-R82 processor implementation of the Arm Generic Interrupt
Controller (GIC) CPU interface.

12.1 About the GIC CPU interface

The GIC CPU interface, when integrated with an external GIC distributor, is a resource for
supporting and managing interrupts in a cluster system.

Each core within the Cortex®-R82 processor has a GIC CPU interface that includes registers to
mask, identify, and control states of interrupts forwarded to a core. The GIC CPU interface, among
other functions, turns external GIC distributor interrupt requests into IRQ and FIQ interrupts into
the core.

A core accesses its GIC CPU interface registers via System register operations. Because the GIC
CPU interface resides within the core, it is clock gated during WFI and WFE exceptions or placed
into retention when the rest of the core enters retention. Any communication from the external
GIC distributor causes a temporary wakeup or retention exit.

The Cortex®-R82 processor has a single shared pair of bidirectional AXI5-Stream interfaces that
is internally connected to all cores. The Cortex®-R82 processor can be directly connected to an
external GICv3 interrupt distributor within the system through AXI5-Stream interface.

The GIC AXI5-Stream interfaces operate in the same SCLK clock domain with the
cluster. To support an integer ratio (for example, 2:1) for the GIC distributor, a clock
enable signal ACLKENG is provided.

The external GIC distributor is responsible for receiving interrupts, prioritizing them and routing
them to the associated interrupt input of the associated core within the Cortex®-R82 processor.
The software is responsible for generating interrupts for inter-core communication by writing to the
interrupt controller. Local peripherals, such as the timer, have dedicated interrupts inputs that are
specific to the individual core.

The Cortex®-R82 processor conforms to the Arm GICv3.2 architecture. The Cortex®-R82
processor implements the GIC CPU interface as described in the Arm® Generic Interrupt Controller
Architecture Specification. This chapter describes only features that are specific to the Cortex®-R82
processor implementation.

The Cortex®-R82 processor implementation of GICv3.2 architecture supports:
e Single Security state.

e Interrupt virtualization.

o Software-generated Interrupts (SGls).
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e Message Based Interrupts.

e System register access for the CPU interface.

e Interrupt masking and prioritization.

e Cluster environments, including systems that contain more than eight cores.

e Wake up events in power management environments.

The Cortex®-R82 processor GIC CPU interface includes interrupt grouping functionality that
supports:

e Configuring each interrupt to belong to an interrupt group.
e Signaling Group 1 interrupts to the target core using the IRQ exception request only.
e Signaling Group O interrupts to the target core using the FIQ exception request only.

e A unified scheme for handling the priority of Group O and Group 1 interrupts.
The following figure shows GIC CPU interface.

Figure 12-1: GIC CPU interface
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12.2 Disabling the GIC CPU interface

The Cortex®-R82 processor always includes the Generic Interrupt Controller (GIC) CPU interface,
however you can disable it to meet your requirements.

You can disable the GIC CPU interface by asserting the GICCDISABLE signal HIGH at reset.
Disabling the GIC CPU interface this way enables you to use other GIC architectures other than
the GICv3.

If the Cortex®-R82 processor is not integrated with an external GICv3 interrupt distributor
component in the system, then you need to disable the GIC CPU interface. If you disable the GIC
CPU interface, then:

e The input signals nIRQ, nFIQ, nVIRQ, and nVFIQ can be driven by an external GIC in the
system.

o GIC System register accesses generate UNDEFINED instruction exceptions.

12.3 Bypassing the GIC CPU interface

When the GIC CPU interface is enabled (GICCDISABLE signal LOW at reset), the Cortex®-R82
processor supports interrupt bypassing according to the GICv3 architecture.

You can use the ICC_SRE_EL2.DFB and ICC_IGRPENO_EL1.Enable controls to bypass FIQ handling
by the GIC. If you program the GIC CPU interface to bypass FIQ interrupts, the Cortex®-R82
processor routes the nFIQ and nVFIQ input signals directly to the CPU.

When the GIC CPU interface does not bypass IRQ interrupts, the input signals
NVIRQ and nlIRQ are ignored.

You can use the ICC_SRE_EL2.DIB and ICC_IGRPEN1_EL1.Enable controls to bypass IRQ handling
by the GIC. If you program the GIC CPU interface to bypass IRQ interrupts, the Cortex®-R82
processor routes the nIRQ and nVIRQ input signals directly to the CPU.

When the GIC CPU interface does not bypass FIQ interrupts, the input signals
NVFIQ and nFIQ are ignored.

For more information on programming the GIC CPU interface, see the Arm® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3 and version 4 .
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12.4 GIC CPU interface register summary

The register summary tables provide an overview of all the relevant registers.

You can find the register summary table for the Cortex®-R82 processor Generic Interrupt Controller
(GIC) CPU interface registers in A.1.6 AArché4 GIC system registers summary on page 286.
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13. Generic Timer

This chapter describes the Cortex®-R82 processor implementation of the Arm Generic Timer.

13.1 About the Generic Timer

The Generic Timer can schedule events and trigger interrupts based on an incrementing counter
value. It generates timer events as active-LOW interrupt outputs and event streams.

The Cortex®-R82 processor Generic Timer is compliant with the Arm® Architecture Reference
Manual Supplement Armv8, for R-profile AArché4 architecture.

This chapter describes only features that are specific to the Cortex®-R82 processor
implementation.

13.2 Generic Timer functional description

The Cortex®-R82 processor provides a set of timer registers within each core in the cluster.

The timers are:
e An EL1 physical timer
e A Secure EL2 physical timer

e An EL1 virtual timer

The Cortex®-R82 processor does not include the system counter. This resides in the SoC. The
system counter value is distributed to the Cortex®-R82 processor with a synchronous binary
encoded 64-bit bus, CNTVALUEB[63:0].

When self-hosted trace is enabled, the system generic timer (physical or virtual) is used by the

Embedded Trace Macrocell (ETM) for timestamp trace. When self-hosted trace is disabled, the
CoreSight™ time value is identical to the system physical time value.

13.3 Generic Timer register summary
The register summary tables provide an overview of all the relevant registers.

You can find the register summary table for the Cortex®-R82 processor Generic Timer registers in
A.1.9 AArché4 Generic Timer registers summary on page 290.
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14. Debug

This chapter describes the debug features of the Cortex®-R82 processor and the associated
DebugBlock component.

14.1 About debug methods

The Cortex®-R82 processor supports two methods of invasive debugging to support software
debugging, external debug and self-hosted debug. This section provides a brief introduction to
these methods and outlines their main components.

External debug

External debug is a conventional setup for debug, in which the debugger is external to the core that
is being debugged. The debugger might be either hosted on another core within the Cortex®-R82
processor, or running external to the Cortex®-R82 processor. For example, the debugger might be
hosted on a workstation connected using JTAG to a development system containing the Cortex®-
R82 processor.

External debug is useful for hardware bring-up of a Cortex®-R82 processor-based system, that
is, debugging during development when a system is first powered up and not all of the software
functionality is available.

The following figure shows a typical external debug system.

Figure 14-1: External debug system

Debug target
Processor
Debud host » Protocol N Core[0] Core[NUM_CORES-1]
9 < converter |« DebugBlock Debug Debug
module module
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The debug host is a computer, for example a personal computer, that is running a software
debugger such as the DS-5 Debugger. With the debug host, you can issue high-level
commands, such as setting a breakpoint at a certain location or examining the contents of a
memory address.
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Protocol converter

The debug host sends messages to the debug target using an interface such as Ethernet.
However, the debug target typically implements a different interface protocol such as JTAG
or SWD. A device such as DSTREAM is required to convert between the two protocols.

Debug target

The debug target is the lowest level of the system. An example of a debug target is a
development system with a test chip or a silicon part with a Cortex®-R82 processor. The

debug target implements system support for the protocol converter to access the Cortex®-
R82 Debug modules.

Debug module
The debug modules within the Cortex®-R82 processor help with debugging software that is
running on the processor such as an operating system or application software.
The debug modules enable an external debugger to:
e Stop program execution.
e Examine and alter processor state.
e Examine and alter memory and the state of the input or output peripherals.

e Restart the core.

Self-hosted debug

In self-hosted debug, the core being debugged within the Cortex®-R82 processor hosts debug
monitor software itself. Hardware watchpoints and breakpoints generate debug exceptions on
debug events.

Self-hosted debug is useful in situations in which the Cortex®-R82 processor has been deployed
in a developed system, where there is no direct access to the Cortex®-R82 processor debug
hardware. Self-hosted debug supports:

e Task debugging.

e OS and kernel debugging.

e Hypervisor debugging. Self-hosted debug support for Hypervisor code is limited to software
breakpoint instructions.

For more information, see 14.4 Debug events on page 237. These exceptions are handled by the
debug monitor that typically resides alongside the operating system kernel or the hypervisor.

For details on self-hosted debug, see Arm® Architecture Reference Manual Supplement Armv8, for R-
profile AArché4 architecture.
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14.2 Debug functional description

This section describes the trace, debug, and test features supported by the Cortex®-R82 processor.
It includes Arm®v8-R AArché4 debug, cache debug, and CoreSight™ debug.

Arm®v8-R AArché64 debug architecture support

The Cortex®-R82 processor implements the Arm®v8-R AArché4 debug architecture including
debug features up to Arm®v8.4 and the debug over powerdown Armv8.3-DoPD feature.

The Cortex®-R82 processor allows access to the internal debug functionality and registers either
through a memory-mapped area on the external AMBA® APB5 completer port or by using System
register operations from software running on the Cortex®-R82 processor.

Each core within the Cortex®-R82 processor implements six hardware breakpoints, four
watchpoints, and a Debug Communications Channel (DCC). Four of the breakpoints match

only against virtual address, the other two breakpoints match against either virtual address or
context ID. All watchpoints can be linked to either of the virtual address or context-ID matching
breakpoints to allow a memory request to be trapped in a given process context.

Cache debug

Cache debug allows software to read the content of the L1 cache, L2 cache, L2 duplicate L1 tag
RAMs, and LLRAM Coherency Unit (LCU) duplicate L1 tag RAMs through IMPLEMENTATION DEFINED
System registers.

See 9.12 Direct access to internal memories on page 173 for more information on the mechanisms
the Cortex®-R82 processor provides to read the internal memories.

CoreSight™ debug

The Cortex®-R82 processor integrates several CoreSight™ debug related components to aid system
debug along with CoreSight™ SoC.

These components include:

e Per-core Embedded Trace Macrocell (ETM).

e Per-core and a cluster level Cross Trigger Interface (CTI).

e Cross Trigger Matrix (CTM).

e Per-core and a cluster level Performance Monitoring Unit (PMU).

e Support for per-core and a cluster level CoreSight™ ELA-600 Embedded Logic Analyzer.
e Debug over powerdown support.

e Per-core ROM table, cluster ROM table, and DebugBlock ROM table.

The following figure shows the Cortex®-R82 processor CoreSight™ debug components.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 233 of 2039



Arm® Cortex”-R82 Processor Technical Reference Manual Document ID: 102670_0101_02_en
Issue: 02
Debug

Figure 14-2: Debug system components

Processor
Core [NUM_CORES-1]
Core
ROM
table GIC
Cluster Distributor
ROM
I_ PMU table
52
3
o DebugBlock
|_> ETM Cluster
PMU DebugBlock
ROM table
ELA
Cluster
ELA CTI CT™M
Debug

The debug components are split into two groups. Some components are in the cluster itself and
the rest are in a separate block named the DebugBlock. Separating the DebugBlock from the
Cortex®-R82 processor allows you to put the DebugBlock in a separate power domain and place
it physically with other CoreSight™ logic in the SoC, rather than close to the cluster. It also allows
you to implement the debug components in an always on power domain, enabling debug over
powerdown.

The connection between the cluster and the DebugBlock consists of a pair of APB interfaces,
one in each direction. All debug traffic, except the authentication interface, takes place over this
interface as read or write APB transactions. It includes register reads, writes, and CTlI triggers. For
more information, see 14.5 The DebugBlock on page 238.

All debug components are controlled through the primary Debug APB interface on the
DebugBlock. Requests on this bus are decoded by the APB decoder before being sent to the
appropriate component in the DebugBlock or in the cluster. The per-core CTls are connected to a
CoreSight™ CTM.

Each core within the Cortex®-R82 processor contains an ETM, PMU, optional ELA, and debug
component that are accessed using the debug APB bus. This block conforms to the Arm®v8-R
AArché64 Debug Architecture Specification.

When the Cortex®-R82 processor is configured to include the optional ELA-600 instances, a
number of key internal processor signals become observable. In the unlikely case where a processor
bug is suspected, the Arm support team may provide programming sequences for ELA-600 and
then analyze the captured data streams. Adding the optional ELA capabilities to the existing
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Debug, PMU and Trace logic and combining triggers through the Cross-Trigger Matrix increase the
likelihood of successfully debugging difficult and rare hardware issues.

The CoreSight ELA-600 is a separately licensable product.

The ETM in each core produces two separate instruction and data trace streams. The optional
ELA in each core and the optional cluster ELA also produce data streams. All the core and cluster
streams are combined and are output from the Cortex®-R82 processor using one AMBA® 4 ATB
32-bit interface (for ETM instruction trace streams) and one AMBA® 4 ATB 128-bit interface (for
ETM data trace streams and ELA streams).

14.3 Debug register accesses

The Cortex®-R82 processor implements the Arm®v8-R AArché4 Debug architecture and debug
events.

They are described in the Arm® Architecture Reference Manual Supplement Armv8, for R-profile
AArché4 architecture.

The Debug architecture defines a set of debug registers. The debug registers can be accessed from:
e Software running on the core.

e An external debugger.

14.3.1 Processor accesses

System register access allows the Cortex®-R82 processor to directly access certain Debug registers
through the use of dedicated system instructions (Msr and Mrs instructions).

The external debug interface enables debug agents running on a core within the Cortex®-R82
processor to access the Debug registers. Access to the debug registers is partitioned as follows:

Debug registers

This function is System register based. You can access the core Debug registers by using
the dedicated system registers. See 14.7 Debug register summary on page 244 for more
information on Debug registers.

Performance Monitors registers

This function is System register based. You can access both the core and cluster Performance
Monitors registers by using the dedicated system registers. See 15.6 PMU register summary
on page 263 for more information on Performance Monitors registers.
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Trace registers

This function is System register based. You can access the core trace registers by using
the dedicated system registers. See 16.6 ETM register summary on page 273 for more
information on trace registers.

14.3.2 Effects of resets on Debug registers

Core and cluster Cold resets and Warm resets that are generated by programming the Power Policy
Units (PPUs) affect the Debug related registers.

A core Cold reset affects all resettable registers in a specific core including the debug, Embedded
Trace Macrocell (ETM), and Reliability, Availability, and Serviceability (RAS) registers.

A core Warm reset affects all resettable registers in a specific core except the debug, ETM, and RAS
registers.

A cluster Cold reset affects all resettable registers in the Cortex®-R82 processor and the
DebugBlock except the Power Policy Unit (PPU).

A cluster Warm reset affects all resettable registers in the Cortex®-R82 processor except the
DebugBlock, PPU, Utility bus, debug, ETM, and RAS registers.

See /.7 Explicit resetting of cluster and cores and debug recovery on page 94 for more information
for reset control with the PPUs.

14.3.3 External access permissions to debug registers

External access permission to the Debug registers depends on the conditions at the time of the
access.

The following table describes the Cortex®-R82 processor response to accesses through the
external debug interface for different access conditions.

Table 14-1: External access conditions to registers

Name Condition Effect on access permissions

Off Core power domain is On as Access to this field of the EDPRSR register is Read-As-One (RAO) in accordance with
indicated by reading EDPRSR.PU as | Armv8.3 debug over powerdown.
1

When the core power domain is in a powerup state, the debug registers in the core power
domain can be accessed.

When the core power domain is Off, accesses to the debug registers in the core power
domain, including EDPRSR, return an error.

OSLK  |OSLSR_EL1.0SLKis 1 OS Lock is locked.
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Name Condition Effect on access permissions

EDAD |AllowExternalDebugAccess () |External debug access is disabled for Non-secure accesses to this register. This causes an
== FALSE error for certain reads and writes to Debug registers through the external debug interface.

When an error is returned because of an EDAD condition code, and this is the highest
priority error condition, EDPRSR.SDAD is set to 1. Otherwise SDAD is unchanged.

Default |- None of the conditions apply. This is normal access.

14.3.4 Breakpoints and watchpoints

The Cortex®-R82 processor supports six breakpoints, four watchpoints, and a standard Debug
Communications Channel (DCC).

A breakpoint control register (DBGBCR<n>_EL1) and a breakpoint value register
(DBGBVR<n>_EL1) forms a breakpoint<n> where <n> is O-5. These two registers are referred to as
a Breakpoint Register Pair (BRP).

Four of the breakpoints (BRP 0-3) match only to the virtual address and the other two (BRP 4 and
5) match against either the Virtual Address (VA) or context |D, or the Virtual Machine ID (VMID). All
the watchpoints can be linked to two breakpoints (BRP 4 and 5) to enable a memory request to be
trapped in a given process context.

14.4 Debug events

A debug event can be either a software debug event or a halting debug event.

The Cortex®-R82 processor responds to a debug event in one of the following ways:
e ltignores the debug event.
o It takes a debug exception.

e It enters debug state.

See the Arm® Architecture Reference Manual Supplement Armv8, for R-profile AArché4 architecture for
more information about the debug events.

14.4.1 Watchpoint debug events
Watchpoint debug events are always synchronous in the Cortex®-R82 processor.

Memory hint instructions and cache clean operations, except pc zva and pc 1vac, do not generate
watchpoint debug events. Store exclusive instructions generate a watchpoint debug event even
when the check for the control of exclusive monitor fails. Atomic CAS instructions generate a
watchpoint debug event even when the compare operation fails.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 237 of 2039


https://developer.arm.com/documentation/ddi0600/latest/

Arm® Cortex”-R82 Processor Technical Reference Manual

14.4.2 Debug OS Lock

Document ID: 102670 0101 02 en

Debug OS Lock is set by the core Cold reset and cluster Cold reset.

Issue: 02
Debug

For normal behavior of debug events and Debug register accesses, Debug OS Lock must be cleared
either through self-hosted debug performing a System register access or through external debug.

For more information, see the Arm® Architecture Reference Manual Supplement Armv8, for R-profile

AArché4 architecture.

14.5 The DebugBlock

The DebugBlock combines the functions, registers, and interfaces that are required for debug over

powerdown.

The DebugBlock is provided as a separate component to allow implementation of it in a separate
power domain from the cluster. Having a separate debug power domain allows the connection to
a debugger be maintained while the Cortex®-R82 processor is powered down. The Cortex®-R82

processor also allows powering down the DebugBlock when debug is not in process.

The following diagram shows how the DebugBlock is connected to the cluster.

Figure 14-3: Debug APB connections
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The DebugBlock has three APB interfaces:

External Debug APB (DAP APB)

:Processor power domain

Cluster

APB

—mDebugBlock to Cluster—g»! completer

APB
requester

An AMBA® APB5 completer interface, allowing communication with an external debugger,

for example through a CoreSight™ Debug Access Port (DAP).

All debug register read and write requests from an external debugger are received on this

bus.
DebugBlock to cluster (DC APB)

An AMBA® APB5 requester interface that is connected to the cluster. It sends all debug
register read and write requests to the cluster.

CTl output trigger events are sent to the cluster as trigger event requests on this bus.
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Cluster to DebugBlock (CD APB)

An AMBA® APB5 completer interface that is connected to the cluster. It receives CTl input
trigger event requests from the cluster.

Debug register reads and writes

The DebugBlock holds all the debug registers that are implemented in the Debug power domain.
Registers implemented in the Debug power domain are specified in the Arm® Architecture Reference
Manual Supplement Armv8, for R-profile AArché4 architecture.

Accesses through the DAP APB interface to Debug power domain registers are handled internally
by the DebugBlock. Accesses through the DAP APB interface to processor power domain
(PDCLUSTER or PDCPU<m>) registers are passed on to the cluster through the DC APB interface.

CTlI trigger events
Trigger events are transferred between the DebugBlock and cluster through the CD APB and DC
APB interfaces.
Input trigger events
Input trigger events are sent from the cluster to the CTls through the CD APB as write
transactions.
Output trigger events

Output trigger events are sent from the CTls to the cluster through the DC APB multicast
trigger requests..

DebugBlock power states

The DebugBlock supports two power modes: ON, and OFF. The DebugBlock sends powerup and
powerdown requests to the external power controller on its external Q-Channel interface. In the
OFF mode, the DebugBlock does not initiate any APB accesses and all incoming APB accesses to
the DebugBlock receive a PSLVERR response.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 239 of 2039


https://developer.arm.com/documentation/ddi0600/latest/
https://developer.arm.com/documentation/ddi0600/latest/

Arm® Cortex”-R82 Processor Technical Reference Manual Document ID: 102670_0101_02_en
Issue: 02
Debug

14.5.1 DebugBlock components
The following figure shows the DebugBlock components.

Figure 14-4: DebugBlock block diagram
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The CTls shown in the diagram includes both the CTls attached to each of the
cores [INUM_CORES-1:0] and the cluster CTl. NUM_CORES has a value of the total
number of cores that are implemented.
ECT
The DebugBlock implements the Embedded Cross Trigger (ECT).
DebugBlock ROM table

The DebugBlock ROM table holds the address decoding for each debug component in the
DebugBlock and one entry pointing to the cluster ROM table. The DebugBlock ROM table
complies with the Arm® CoreSight™ Architecture Specification v3.0 and supports the v8 debug
address map.

Event monitor
The event monitor converts changes in CTl output triggers to APB write transactions.

Event triggers
The event triggers convert APB write transactions to CTl input triggers.
APB arbiter

The DC APB transfers both register accesses and CTI output trigger events. The APB arbiter
multiplexes the two sources of transactions.

DAP completer
The DAP completer holds copies of registers in the debug power domain.
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14.6 ECT

The Embedded Cross Trigger (ECT) allows debug events to be sent between the cores within the
Cortex®-R82 processor.

The ECT provides a Cross Trigger Interface (CTI) for each core in the cluster and a CTI at the cluster
level. The CTls are interconnected through a Cross Trigger Matrix (CTM) implemented at the
DebugBlock to send debug and trace events between the cores.

The following diagram shows a conceptual view of the trigger event inputs and outputs between
the cores and ECT.

Figure 14-5: Embedded Cross Trigger concept
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The CTls selectively send trigger events to the CTM on their respective channel outputs. The CTls
receive trigger events from the CTM on their channel inputs.

Trigger events are transferred between CTls over the channel interface. The CTM connects the
channel interface to the channel inputs and channel outputs of the CTls.

External interfaces

The external cross-trigger channel interface, from the CTM, allows cross-triggering between SoC
external devices.

The Debug APB provides access to the CTl registers. This allows an external debugger to configure
the trigger event routing, and send events to cores, for example, to put a core into Debug state.
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CTl registers

Registers in the CTI:

e Control the mapping of the input trigger events to channel outputs.
e Control the mapping of the channel inputs to output trigger events.
o Capture the state of input and output trigger events.

e Set, clear, or pulse output trigger events.

14.6.1 Supported debug and trace trigger events

The CTls each have ten input and output trigger events that are mapped onto the debug and trace
events in the cores and ELAs.

From the CTI to the core
The debug and trace trigger events from the CTI to the core are:
Debug request trigger event
A trigger event sent from the CTI to the core to force the core into Debug state.
Restart request trigger event
A trigger event sent from the CTI to the core to request the core to exit Debug state.
Generic CTl interrupt trigger event
A trigger event sent from the CTI to the GIC.
ETM trace input trigger events
Four trigger events sent from the CTl to the ETM trace in the core.
ELA input trigger events

Two trigger events sent from the CTl to the ELA attached to the core. If there is no ELA, the
ELA trigger events are tied LOW.

From the core to the CTI
The debug and trace events from the core to the CTl are:
Cross-halt trigger event

A trigger event sent from the core to the CTI when the core enters Debug state.
Performance Monitoring Unit (PMU) overflow trigger event

A trigger event sent from the core to the CTI when a PMU counter overflows.
ETM trace output trigger events

Four trigger events sent from the ETM in the core to the CTI.

ELA output trigger events
Two trigger events sent from the ELA (attached to the core) to the CTI.

Similar to core CTls, the cluster CTI has ten input and output trigger events. However, only the
PMU, Generic CTI, and ELA entries are relevant. This is because there is a PMU and an ELA
component at the cluster level, but there are no cluster debug and ETM components.
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From the cluster CTI to the cluster
The trigger events from the cluster CTI to the cluster are:

Generic CTl interrupt trigger event

Cluster ELA input trigger events

From the cluster to the cluster CTI

A trigger event sent from the cluster CTI to the cluster GIC.

Two trigger events sent from the cluster CTI to the cluster ELA.

The trigger events from the cluster to the cluster CTI are:

PMU overflow trigger event

Cluster ELA output trigger events

14.6.2 CTI triggers

A trigger event sent from the cluster to the cluster CTl when the cluster PMU counter
overflows.

Two trigger events from the cluster ELA to the cluster CTI.

The DebugBlock implements a Cross Trigger Interface (CTI) per core and a CTl for the cluster. Each
CTl has 10 CTl inputs and 10 CTI output triggers. All cores in the Cortex®-R82 processor have the
same CTI trigger mapping.

Core CTl input trigger events
The following table shows how events are mapped onto core CTl input triggers.

Table 14-2: Allocation of core CTI trigger inputs

Trigger number  Source Destination Type Event description

0 Core Debug |CTI Pulse |Cross-halt trigger event

1 Core PMU CTI Pulse |Performance Monitoring Unit (PMU) Overflow trigger event

2-3 - Reserved

4-7 Core ETM CTI Pulse |Embedded Trace Macrocell (ETM) trace external output trigger events
8-9 Core ELA CTI Pulse |Embedded Logic Analyzer (ELA) CTTRIGOUT[1:0] trigger events

Core CTI output trigger events
The following table shows how events are mapped onto core CTI output triggers.

Table 14-3: Allocation of core CTI trigger outputs

Trigger number Source Destination Type Event description

0 CTI Core Debug Level Debug Request trigger event

1 CTI Core Debug Pulse Restart Request trigger event

2 CTI GIC Pulse Generic CTl Interrupt trigger event
3 - - - Reserved
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Trigger number Source Destination Type Event description
4-7 CTI ETM Pulse ETM trace external input trigger events
8-9 CTI ELA Pulse ELA CTTRIGIN[1:0] trigger events

Cluster CTl input trigger events
The following table shows how events are mapped onto the cluster CTl input triggers.

Table 14-4: Allocation of cluster CTI trigger inputs

Trigger number Source Destination Type Event description

0 - - - Reserved

1 Cluster PMU CTl Pulse PMU Overflow trigger event
2-7 - - - Reserved

8-9 Cluster ELA CTI Pulse Cluster ELA CTTRIGOUT[1:0]

Cluster CTIl output trigger events
The following table shows how events are mapped onto the cluster CTl output triggers.

Table 14-5: Allocation of cluster CTI trigger outputs

Trigger number Source Destination Type Event description

0-1 - - - Reserved

2 CTI GIC Pulse Generic CTlI Interrupt trigger event
3-7 - - - Reserved

8-9 CTI Cluster ELA Pulse Cluster ELA CTTRIGIN[1:0]

14.6.3 CTI register summary
The register summary tables provide an overview of all the relevant registers.

You can find the register summary table for the Cortex®-R82 processor Cross Trigger Interface (CTI)
registers B.2.1.7 External CTI registers summary on page 1512.

14.7 Debug register summary
The register summary tables provide an overview of all the relevant registers.

You can find the register summary table for the Cortex®-R82 processor AArché64 Debug registers
in A.1.5 AArch64 Debug registers summary on page 285.

You can find the register summary table for the Cortex®-R82 processor external Debug registers in
B.2.1.1 External Debug registers summary on page 1504.
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15. PMU

This chapter describes the Performance Monitoring Unit (PMU).

15.1 About the PMU

The Cortex®-R82 processor includes Performance Monitoring Units (PMUs) to assist software
profiling and performance debugging. The PMUs implement the PMUvV3 architecture and include
Arm®v8.4 PMU extensions.

The PMUs enable you to gather various statistics on the operation of each core and the cluster and
their memory system during runtime.

The Cortex®-R82 processor implements:
e One PMU per core to monitor events local to the core such as L1 cache linefills.

e One PMU at the cluster level to monitor events that are shared by the cores such as L2 cache
linefills or LLRAM Coherency Unit (LCU) accesses.

Some of the events from the per-core PMUs are also exported for use by the respective Trace
units.

Each PMU implements six 64-bit event counters. Each counter in core PMUs can count any of the
events available in that core. Each counter in the cluster PMU can count any of the events available
in the cluster. The absolute counts that are recorded might vary because of pipeline effects. This
has negligible effect except in cases where the counters are enabled for a very short time.

Software running on the cores in the Cortex®-R82 processor can access the PMUs through System
registers. Each core is able to access its own private PMU and the shared cluster PMU. All the core
PMUs and the cluster PMU are accessible to an external agent, such as an external debug host,
through the Debug APB bus.

The cluster PMU is not accessible when the cluster is in Warm reset, such as during the OFF_EMU
power mode.

The following figure shows the major blocks inside the PMU.
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Figure 15-1: PMU block diagram
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15.2 PMU functional description

This section describes the functionality of the PMU.
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Events from units from across the design are provided to the PMU.

System registers and APB interface
You can program the core and cluster PMU registers using the System registers or the external APB

interface.
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The PMU has 32-bit event counters that increment when they are enabled, based on events, and a
64-bit cycle counter.
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15.3 External register access permissions to the PMU
registers

External access permission to the PMU registers is subject to the conditions at the time of the
access.

The following table describes the core response to accesses through the external debug and
memory-mapped interfaces.

Table 15-1: External register conditions

Name Condition Description

Off EDPRSR.PU is O |Access to this field is Read-As-One (RAQ) in accordance with Armv8.3 debug over powerdown.

When the core power domain is in a powerup state, the PMU registers in the core power domain can be
accessed.

When the core power domain is off, accesses to the PMU registers in the core power domain, including
debug registers and EDPRSR, return an error.

OSLK  |OSLSR_EL1.OSLK |OS Lock is locked.
is1

Default

None of the conditions apply, normal access.

15.4 PMU events

This section describes the core and cluster Performance Monitoring Unit (PMU) events of the
Cortex®-R82 processor.

15.4.1 Core PMU events

Performance Monitoring Units (PMUs) private to each core collect events from the units within the
core and use event codes to reference these events.

Core PMU events are architecturally, microarchitecturally, or implementation defined. Architectural,
microarchitectural, and implementation defined core PMU events are the same for each core within
the Cortex®-R82 processor.
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15.4.1.1 Architectural core PMU events

The following table lists the architectural events in each core.

Some events are exported to the Embedded Trace Macrocell (ETM). The ETM can
directly select the events based on their Performance Monitoring Unit (PMU) event
code. You can use these events to build complex triggers.

Event ETM Mnemonic Description

code code

0x0000 |- SW_INCR Instruction architecturally executed, condition code check pass, software increment.

0x0006 |0x09 |LD_RETIRED Instruction architecturally executed, condition code check pass, load. This counts all load
and prefetch instructions. This includes the Arm®v8.1 atomic instructions, other than the
ST* variants.

0x0007 |0x0A |ST_RETIRED Instruction architecturally executed, condition code check pass, store. This counts all
store instructions, and DC ZVA. This includes all the Arm®v8.1 atomic instructions. Store-
exclusive instructions which fail are not counted.

0x0008 | 0x0B |[INST_RETIRED Instruction architecturally executed. This counts all retired instructions, including those
that fail their condition code check.

0x0009 | 0x0C | EXC_TAKEN Exception taken

0x000A | 0x0D |EXC_RETURN Instruction architecturally executed, condition code check pass, exception return

0x000B | 0x0E |CID_WRITE_RETIRED Instruction architecturally executed, condition code check pass, write to
CONTEXTIDR_EL1. Writes to CONTEXTIDR_EL12 are not counted.

0x000C | 0x0F |PC_WRITE_RETIRED Instruction architecturally executed, condition code check pass, software change of the
PC.

0x000D |0x10 |BR_IMMED_RETIRED Instruction architecturally executed, immediate branch. ISBs are not counted.

0x000E |0x11 |BR_RETURN_RETIRED Instruction architecturally executed, condition code check pass, procedure return

0x000F | 0x12 |UNALIGNED_LDST_RETIRED [Instruction architecturally executed, condition code check pass, unaligned load or store

0x001C |0x1E | TTBR_WRITE RETIRED Instruction architecturally executed, condition code check pass, write to TTBRx_EL1.

0x001E |- CHAIN Odd performance counter chain mode

0x0021 |0x21 |BR_RETIRED Instruction architecturally executed, branch. This includes any instruction that is in the

branch pipeline.
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15.4.1.2 Microarchitectural core PMU events

The following table lists the microarchitectural events in each core.

Table 15-3: Microarchitectural core PMU events

Event
code

0x0001

ETM Mnemonic

code

0x04

L1l_CACHE_REFILL

Description

L1 instruction cache refill. Counts any instruction fetch which misses in the cache and starts
a new cache refill. Cache maintenance instructions and prefetches are not counted. Non-
cacheable accesses are not counted. This event counts the sum of MM _L1I CACHE REFILL
and LLRAM_L1I_CACHE_REFILL.

0x0002

0x05

L1I_TLB_REFILL

L1 instruction TLB refill. Counts any refill of the instruction L1-MMS from the L2 MMS. This
includes refills which result in a translation fault. This includes accesses to either the MPUs
or the TLB. TLB maintenance instructions are not counted. This event counts regardless of
whether translation is enabled.

0x0003

0x06

L1D_CACHE_REFILL

L1 data cache refill. Counts any load or store operation or pagewalk access which causes
data to be read from outside the L1, including accesses which do not allocate into L1.
Cache maintenance instructions and prefetches are not counted. Stores of an entire
cache line are not counted, even if they make a coherency request outside the L1. Partial
cache line writes which do not allocate into the L1 cache are not counted. Non-cacheable
accesses are not counted. This event counts the sum of L1D_CACHE_REFILL_RD and
L1D_CACHE_REFILL_WR.

0x0004

0x07

L1D_CACHE

L1 data cache access. Counts any load or store operation or pagewalk access which

looks up in the L1 data cache. In particular, any access which could increment the

L1D CACHE _REFILL event causes this event to count. Cache maintenance instructions and
prefetches are not counted. Non-cacheable accesses are not counted. This event counts the
sum of L1D_CACHE_RD and L1D_CACHE_WR.

0x0005

0x08

L1D_TLB_REFILL

L1 data TLB refill. Counts any refill of the data L1-MMS from the L2 MMS. This includes
refills which result in a translation fault. TLB maintenance instructions are not counted. This
event counts regardless of whether translation is enabled.

0x0010

0x13

BR_MIS_PRED

Mispredicted or not predicted branch speculatively executed. This counts any predictable
branch instruction (in other words, any type of instruction that the IFU can predict) which
is mispredicted (either due to dynamic misprediction, or because the MMU is off and the
branches are statically predicted not taken).

0x0011

CPU_CYCLES

The number of core clock cycles. Counts even when the core is in WFI or WFE state.

0x0012

0x14

BR_PRED

Predictable branch speculatively executed. Counts all predictable branches (superset of
BR_MIS_PRED).

0x0013

0x15

MEM_ACCESS

Data memory access. Counts memory accesses due to load or store instructions. Does
not count instruction fetches, cache maintenance instructions, translation table walks or
prefetches. This event counts the sum of MEM_ACCESS_RD and MEM_ACCESS_WR.

0x0014

0x16

L1I_CACHE

L1 instruction cache access. Counts any instruction fetch which accesses the L1 instruction
cache. Cache maintenance instructions are not counted. Non-cacheable accesses are not
counted. This event is a sum of MM L1l CACHE and LLRAM L1l CACHE.

0x0015

0x17

L1D_CACHE_WB

L1 data cache write-back. Counts any write back of data from the L1 data cache to L2.

This counts both victim line evictions and snoops, including cache maintenance operations.
Invalidations which do not result in data being transferred out of the L1 are not counted.
Does not count any full-line writes which write to L2 without writing L1 (for example, write-
streaming mode).

0x0019

0x1B

BUS_ACCESS

Bus access. Counts for every beat of data transferred over the data channels between the
core and the SCU. If both read and write data beats are transferred on a given cycle, this
event is counted twice on that cycle. This event counts the sum of BUS_ACCESS_RD and
BUS_ACCESS_WR.
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Event ETM Mnemonic Description

code code

0x001A |0x1C |MEMORY_ERROR Local memory error. Counts any Correctable or Uncorrectable memory error (ECC or parity)
in the protected CPU RAMs. Counts only when error recording is enabled.

0x001B |0x1D|INST_SPEC Operation speculatively executed. This event counts every instruction issued from the Iss
pipeline stage.

0x001D |- BUS CYCLES Bus cycles. The event duplicates CPU_CYCLES.

0x001F |0x1F |L1D_CACHE_ALLOCATE |L1 data cache allocation without refill. The counter increments on every attributable write
that writes an entire line into the L1 cache without fetching from outside the L1 cache, for
example: Writes merged to a full cache line in the store buffer or a DC ZVA operation.

0x0020 |0x20 |L2D_CACHE_ALLOCATE |L2 unified cache allocation without refill. The counter increments on every attributable write
that writes an entire line into the L2 cache without fetching from outside the L1 or L2 cache,
for example: Writes merged to a full cache line in the store buffer or a write-back from L1 to
L2 cache or a DC ZVA operation.

0x0022 |0x22 |BR_MIS_PRED_RETIRED |Instruction architecturally executed, mispredicted branch. Counts any branch counted by
BR_RETIRED which is not correctly predicted and causes a pipeline flush.

0x0023|0x23|STALL_FRONTEND No operation issued due to the frontend. Counts on any cycle when no operations
are issued due to the instruction queue being empty. This event is a sum of
STALL_FRONTEND_CACHE and STALL_FRONTEND_TLB.

0x0024 | 0x24 |STALL_BACKEND No operation issued due to backend. Counts on any cycle when no operations are issued due
to a pipeline stall. This event is a sum of all STALL_BACKEND_* events.

0x0025|0x25|L1D_TLB L1 data TLB access. Counts any load or store operation which accesses the data L1-MMS. If
both a load and a store are executed on a cycle, this event counts twice. This event counts
regardless of whether translation is enabled.

0x0026 |0x26 |L1I_TLB L1 instruction TLB access. Counts any instruction fetch which accesses the instruction L1-
MMS. This event counts regardless of whether translation is enabled.

0x002D |0x2A |L2D_TLB_REFILL Attributable L2 unified TLB refill. Counts on any refill of the L2 TLB, caused by either an
instruction or data access. This event does not count if the MMU is disabled. This event
counts only when the MMU is present.

0x002F |0x2B |L2D_TLB Attributable L2 unified TLB access. Counts on any access to the L2 TLB (caused by a refill
of any of the L1 TLBs). This event does not count if the MMU is disabled. This event counts
only when the MMU is present.

0x0036 |0x2C |LL_CACHE_RD Last Level cache access, read, main manager address. If IMP_CPUECTLR_EL1.EXTLLC is set:
Counts SYS_CACHE_RD. If L2 cache is present counts L2_CACHE_RD otherwise counts
L1 CACHE_RD.

0x0037|0x2D |LL CACHE MISS RD Last Level cache miss, read, main manager address. If IMP_CPUECTLR_EL1.EXTLLC is set:
counts SYS_CACHE_MISS_RD. If L2 cache is present counts SYS_CACHE_RD otherwise
counts L1D_CACHE_REFILL_RD.

0x0038|0x19 |REMOTE _ACCESS RD Access to another socket in a multi-socket system, read. Counts any read transaction which
returns a data source of remote.

0x0039 |- L1D_CACHE_LMISS_RD |The counter counts each access counted by L1D_CACHE that incurs additional latency
because it returns data from outside the L1 data cache. This counter does not count: A miss
that does not cause a new cache refill but is satisfied from a previous miss.

0x003A |- OP_RETIRED The counter counts each operation counted by OP_SPEC that would be executed in a simple
sequential execution of the program.

0x003B |- OP_SPEC The counter counts the number of operations executed by the PE, including those that are

executed speculatively and would not be executed in a simple sequential execution of the
program.
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Event ETM Mnemonic Description

code code

0x003C |- STALL The counter counts every Attributable cycle on which no Attributable instruction or
operation was sent for execution on this PE. This event is the union of STALL_FRONTEND
and STALL_BACKEND.

0x003D |- STALL_SLOT_BACKEND | Counts each slot counted by STALL_SLOT where no attributable instruction or operation was
sent for execution because the backend is unable to accept one of: the instruction operation
available for the PE on the slot or any operations on the slot.

0x003E |- STALL_SLOT_FRONTEND | Counts each slot counted by STALL_SLOT where no attributable instruction or operation was
sent for execution because there was no attributable instruction or operation available to
issue from the PE from the frontend for the slot.

0x003F |- STALL_SLOT The counter counts on each attributable cycle the number of instruction or operation slots
that were not occupied by an instruction or operation attributable to the PE.

0x4006 |- L1I_CACHE_LMISS The counter counts each access counted by L1I_CACHE that incurs additional latency
because it returns instructions from outside the L1 instruction cache. This counter does not
count: A miss that does not cause a new cache refill but is satisfied from a previous miss.

0x4020 |- LDST_ALIGN_LAT The counter counts each access counted by MEM_ACCESS that, due to the alignment of the
address and size of data being accessed, incurred additional latency.

0x4021 |- LD_ALIGN_LAT The counter counts each memory-read access counted by LDST_ALIGN_LAT.

0x4022 |- ST _ALIGN_LAT The counter counts each memory-write access counted by LDST_ALIGN_LAT.

15.4.1.3 Implementation defined core PMU events

The following table lists the implementation defined core events and the numbers that the
Performance Monitoring Unit (PMU) in that core uses to reference the events.

Table 15-4: implementation defined core PMU events

Event ETM Mnemonic Description

code code

0x00C1 |- L2D_CACHE_REFILL_PREFETCH A stash request to prefetch a line into the L2 cache initiated from the core.
This includes stash requests to lines that are already in the L2 cache. If
the cluster does not contain an L2 cache, this event does not count as the
prefetcher is implicitly disabled.

0x00C2 |- L1D _CACHE _REFILL PREFETCH L1 data cache refill due to prefetch. Counts any linefills from the prefetcher
which cause an allocation into the L1 data cache.

0x00C3 |- L2D WS MODE .2 cache write streaming mode. Counts for each cycle where the core is in
write-streaming mode and not allocating writes into the L2 cache.

0x00C4 |- L1D WS MODE_ENTRY L1 data cache entering write streaming mode. Counts for each entry into
write-streaming mode.

0x00C5 |- L1D_WS_MODE L1 data cache write streaming mode. Counts for each cycle where the core is
in write-streaming mode and not allocating writes into the L1 data cache.

0x00C9 |- BR_COND_PRED Predicted conditional branch executed. Counts when any branch which can
be predicted by the conditional predictor is retired. This event still counts
when branch prediction is disabled due to the MMU being off.

0x00CA |- BR_INDIRECT_MIS_PRED Indirect branch mis-predicted. Counts when any indirect branch which can

be predicted by the BTAC is retired, and has mis-predicted for either the
condition or the address. This event still counts when branch prediction is
disabled due to the MMU being off.
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Description

Indirect branch mis-predicted due to address mis-compare. Counts when any
indirect branch which can be predicted by the BTAC is retired, was taken and
correctly predicted the condition, and has mis-predicted the address. This
event still counts when branch prediction is disabled due to the MMU being
off.

0x00CC

BR_COND_MIS_PRED

Conditional branch mis-predicted. Counts when any branch which can be
predicted by the conditional predictor is retired, and has mis-predicted the
condition. This event still counts when branch prediction is disabled due to
the MMU being off. Conditional indirect branches which correctly predicted
the condition but mis-predicted on the address do not count this event.

0x00CD

BR_INDIRECT_ADDR_PRED

Indirect branch with predicted address executed. Counts when any indirect
branch which can be predicted by the BTAC is retired, was taken and
correctly predicted the condition. This event still counts when branch
prediction is disabled due to the MMU being off.

0x00CE

BR_RETURN_ADDR_PRED

Procedure return with predicted address executed. Counts when any
procedure return which can be predicted by the CRS is retired, was taken
and correctly predicted the condition. This event still counts when branch
prediction is disabled due to the MMU being off.

0x00CF

BR_RETURN_ADDR_MIS_PRED

Procedure return mis-predicted due to address mis-compare. Counts when
any procedure return which can be predicted by the CRS is retired, was taken
and correctly predicted the condition, and has mis-predicted the address. This
event still counts when branch prediction is disabled due to the MMU being
off.

0x00DO0

L2D_LLWALK_ TLB

L2 TLB last-level walk cache access. This event does not count if the MMU is
disabled. This event counts only when the MMU is present.

0x00D1

L2D_LLWALK_TLB_REFILL

L2 TLB last-level walk cache refill. This event does not count if the MMU is
disabled. This event counts only when the MMU is present.

0x00D2

L2D_L2WALK_TLB

L2 TLB level-2 walk cache access. This event count accesses to the level-2
walk cache where the last-level walk cache has missed. The event only
counts when the translation regime of the pagewalk uses level 2 descriptors.
This event does not count if the MMU is disabled. This event counts only
when the MMU is present.

0x00D3

L2D_L2WALK_TLB_REFILL

L2 TLB level-2 walk cache refill. This event does not count if the MMU is
disabled. This event counts only when the MMU is present.

0x00E1

STALL_FRONTEND_CACHE

No operation issued due to the frontend, cache miss. Counts every cycle the
DPU 1Q is empty and there is an instruction cache miss being processed

0x00E2

STALL_FRONTEND_TLB

No operation issued due to the frontend, TLB miss. Counts every cycle the
DPU 1Q is empty and there is an instruction L1-TLB miss being processed

0x00E4

STALL_BACKEND_ILOCK

No operation issued due to the backend, interlock. Counts every cycle that
issue is stalled due to a dependency. Stall cycles due to a stall in Wr (typically
awaiting load data) are excluded.

0x00E5

STALL_BACKEND_ILOCK_AGU

No operation issued due to the backend, interlock, AGU. Counts every
cycle that issue is stalled due to a load/store instruction waiting for data to
calculate the address in the AGU. Stall cycles due to a stall in Wr (typically
awaiting load data) are excluded.

0x00E6

STALL_BACKEND_ILOCK_FPU

No operation issued due to the backend, interlock, FPU. Counts every cycle
that issue is stalled due to a dependency of an FPU/NEON instruction.
Stall cycles due to a stall in the Wr stage (typically awaiting load data) are
excluded.
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Event ETM Mnemonic Description

code code

0x00E7 |- STALL_BACKEND_LD No operation issued due to the backend, load. Counts every cycle there is a
stall in the Wr stage due to a load.

0x00ES8 |- STALL BACKEND ST No operation issued due to the backend, store. Counts every cycle there is a
stall in the Wr stage due to a store.

0x00EO |- STALL BACKEND LD CACHE No operation issued due to the backend, load, cache miss. Counts every cycle
there is a stall in the Wr stage due to a load which is waiting on data (due to
missing the cache or being Non-cacheable).

0x00EA |- STALL BACKEND LD TLB No operation issued due to the backend, load, TLB miss. Counts every cycle
there is a stall in the Wr stage due to a load which has missed in the L1 TLB.

0x00EB |- STALL BACKEND ST STB No operation issued due to the backend, store, STB full. Counts every cycle
there is a stall in the Wr stage due to a store which is waiting due to the STB
being full.

0x00EC |- STALL_BACKEND_ST_TLB No operation issued due to the backend, store, TLB miss. Counts every cycle
there is a stall in the Wr stage due to a store which has missed in the L1 TLB.

0x00ED |- STALL_BACKEND_LD_RAW No operation issued due to the backend, load, stalled due to a read-after-
write hazard.

0x0300 |- BR_NANO IMM_ACCESS Fetch pipeline accessed nano predictors for an immediate branch.

0x0301 |- BR_NANO_IMM _HIT An immediate branch hit in the nano predictors in the fetch pipeline.

0x0302 |- BR_NANO_IMM MIS PRED An immediate branch mis-predicted in the nano predictors in the fetch
pipeline.

0x0304 |- BR_NANO_COND_ACCESS Fetch pipeline accessed nano predictors for a conditional branch.

0x0305 |- BR_NANO_COND_HIT A conditional branch hit in the nano predictors in the fetch pipeline.

0x0306 |- BR_NANO_COND_MIS_PRED A conditional branch mis-predicted in the nano predictors in the fetch
pipeline.

0x0307 |- BR_NANO_INDIRECT ACCESS Fetch pipeline accessed nano predictors for an indirect branch.

0x0308 |- BR_NANO_INDIRECT HIT An indirect branch hit in the nano predictors in the fetch pipeline.

0x0309 |- BR_NANO_INDIRECT MIS PRED An indirect branch mis-predicted in the nano predictors in the fetch pipeline.

0x030A |- BR_NANO_RETURN_ACCESS Fetch pipeline accessed nano predictors for a return instruction.

0x030B |- BR_NANO_RETURN_HIT A return instruction hit in the nano predictors in the fetch pipeline.

0x030C |- BR_NANO_RETURN_MIS_PRED A return instruction mis-predicted in the nano predictors in the fetch pipeline.

0x030D |- MM L1l PREFETCH ACCESS This event counts accesses to L1 instruction cache initiated by the prefetcher
to an address mapped to the main manager port.

0x030E |- MM L1l PREFETCH REFILL This event counts instruction cache refills initiated by the prefetcher to an
address mapped to the main manager port.

0x030F |- LLRAM_L1I_PREFETCH_ACCESS This event counts accesses to L1 instruction cache initiated by the prefetcher
to an address mapped to the LLRAM port.

0x0310 |- LLRAM_L1I_PREFETCH_REFILL This event counts instruction cache refills initiated by the prefetcher to an
address mapped to the LLRAM port.

0x0320 |- SYS_CACHE_RD This event counts any cacheable read transaction which returns a data source
of interconnect cache or inter-cluster peer.

0x0321 |- SYS_CACHE_MISS_RD This event counts any cacheable read transaction which returns a data source
of DRAM.

0x0322 |- LLPP_ACCESS RD LLPP access, read, counts for every unique read request sent to the LLPP

read address channel.
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code code

0x0323 |- LLPP_ACCESS_WR LLPP access, write, counts for every unique write request sent to the LLPP
write address channel.

0x0324 |- LLPP_ACCESS Counts accesses made on the LLPP. This event is a sum of
LLPP_ACCESS_WR and LLPP_ACCESS_RD.

0x0325 |- MM _ACCESS RD Bus access, read, Counts for every beat of data transferred over the read data
channel between the shared L2 and the core.

0x0326 |- MM_ACCESS_WR Bus access, write. Counts for every beat of data transferred over the write
data channel between the core and the L2.

0x0327 |- MM_ACCESS Counts accesses made on the main manager channel between the core and
the L2. This event is a sum of MM_ACCESS_WR and MM_ACCESS_RD.

0x0328 |- LLRAM_ACCESS_RD Bus access, read, Counts for every beat of data transferred over the read
data channel between the LLRAM coherency unit and the core targeting the
LLRAM port.

0x0329 |- LLRAM_ACCESS_WR Bus access, write. Counts for every beat of data transferred over the write
data channel between the core and LLRAM coherency unit targeting the
LLRAM port.

0x032A |- LLRAM ACCESS Counts accesses made between the core and the LLRAM coherency unit
targeting the LLRAM port. This event is a sum of LLRAM_ACCESS_WR and
LLRAM_ACCESS_RD.

0x032B |- SPP_ACCESS RD Bus access, read, Counts for every beat of data transferred over the read data
channel between the LLRAM coherency unit and the core targeting the SPP
port.

0x032C |- SPP_ACCESS_WR Bus access, write. Counts for every beat of data transferred over the write
data channel between the core and LLRAM coherency unit targeting the SPP
port.

0x032D |- SPP_ACCESS Counts accesses made between the core and the LLRAM coherency unit
targeting the SPP port. This event is a sum of SPP_ACCESS_WR and
SPP_ACCESS_RD.

0x032E |- LLPP_CYCLES Low latency peripheral port bus has outstanding transactions (counted on
SCLK instead of bus clock)

0x032F |- LLPP_ACTIVE Low latency peripheral port cycles

0x0330 |- TCMS_ACCESS RD ACELS access to TCMs, read, counts for every unique read request sent to
the TCMs from the ACELS port to this core.

0x0331 |- TCMS_ACCESS_WR ACELS access to TCMs, write, counts for every unique write request sent to
the TCMs from the ACELS port to this core.

0x0332 |0x1A | TCMS_ACCESS Counts accesses made between the ACELS port and the core. This event is a
sum of TCMS_ACCESS_WR and TCMS_ACCESS_RD.

0x0333|0x18|TCMS_CONTENTION Counts every stall cycle due to contention of accessing ITCM and DTCM via
the ACELS port at the same time.

0x0334 |- MM_SNP_ACCESS Counts every unique snoop request received by the core from the L2. This
includes snoops received from the own core, another core or from outside
the cluster in the CHI configuration.

0x0335 |- LLRAM_SNP_ACCESS Counts every unique snoop request received by the core from the LLRAM
coherency unit. This includes snoops received from the own core or another
core.

0x0336 |- SNP_ACCESS Counts every unique snoop request received by the core. This event is a sum

of MM_SNP_ACCESS and LLRAM_SNP_ACCESS.
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code code

0x0337 |- MM_SNP_ACCESS_EVICT Counts every unique snoop request received by the core from the L2 that
evicts data. This includes snoops received from the own core, another core or
from outside the cluster in the CHI configuration.

0x0338 |- LLRAM SILENT _EVICT Counts every instance of silently evicting a valid LLRAM line in the L1D
cache in order to allocate a main manager address in the same set/way.

0x0339 |- TCMS_SERIALISATION_CONTENTION Counts every stall cycle due to contention of read and write channel
requesting serialization at the same time.

0x0340 |- LLRAM_SNP_ACCESS_EVICT Counts every unique snoop request received by the core from the LCU that
evicts data. This includes only snoops received from the own core.

0x0350 |- MM_L1I_CACHE_REFILL L1 instruction cache refill for an address to the Main Manager (MM) region.
Counts any instruction fetch which misses in the cache and starts a new
cache refill. Cache maintenance instructions and prefetches are not counted.
Non-cacheable accesses are not counted.

0x0351 |- MM_L1I_CACHE L1 instruction cache access targeting the main manager port.

0x0352 |- MM_L1D_CACHE_REFILL_RD L1 data cache refill, read from the main manager port.

0x0353 |- MM L1D_CACHE REFILL WR L1 data cache refill, write from the main manager port.

0x0354 |- MM L1D_CACHE_REFILL L1 data cache refill for the main manager port. This event counts the sum of
MM_L1D_CACHE_REFILL_RD and MM_L1D_CACHE_REFILL_WR.

0x0355 |- MM_L1D_CACHE_RD L1 data cache access, read targeting the main manager address region.

0x0356 |- MM_L1D_CACHE_WR L1 data cache access, write targeting the main manager address region.

0x0357 |- MM_L1D_CACHE L1 data cache access targeting the main manager port. This event counts the
sum of MM_L1D_CACHE_RD and MM_L1D_CACHE_WR.

0x0358 |- LLRAM_L1I_CACHE_REFILL L1 instruction cache refill for an address to the Low-latency RAM (LLRAM)
region. Counts any instruction fetch which misses in the cache and starts
a new cache refill. Cache maintenance instructions and prefetches are not
counted. Non-cacheable accesses are not counted.

0x0359 |- LLRAM_L1I_CACHE L1 instruction cache access targeting the Low-latency RAM (LLRAM) region.

0x0360 |- LLRAM L1D CACHE REFILL RD L1 data cache refill, read from the LLRAM port.

0x0361 |- LLRAM L1D _CACHE REFILL WR L1 data cache refill, write from the LLRAM port.

0x0362 |- LLRAM_L1D_CACHE_REFILL L1 data cache refill from the LLRAM port. This event counts the sum of
LLRAM_L1D_CACHE_REFILL_RD and LLRAM_L1D_CACHE_REFILL_WR.

0x0363 |- LLRAM_L1D_CACHE_RD L1 data cache access, read targeting the LLRAM address region.

0x0364 |- LLRAM_L1D_CACHE_WR L1 data cache access, write targeting the LLRAM address region.

0x0365 |- LLRAM_L1D_CACHE L1 data cache access targeting the LLRAM address region. This event counts
the sum of LLRAM_L1D_CACHE_RD and LLRAM_L1D_CACHE_WR.

0x0366 |- LLRAM_L1D_CACHE_REFILL_MERGED |L1 data cache refill from the LLRAM port merged with a previous ongoing
refill to the same cacheline address.

0x0367 |- LLRAM L1D _CACHE REFILL_FAIL L1 data cache refill from the LLRAM port failed to allocate into the cache.

0x0368 |- LLRAM_L1D_CACHE_REFILL_MM_EVICT | L1 data cache refill from the LLRAM port first requires a main manager line to
be evicted from the cache. This event counts the request sent to L2 to evict
the MM line from L1D cache.

0x0369 |- MM_L1D_CACHE_REFILL_MERGED L1 data cache refill from the main manager port merged with a previous
ongoing refill to the same cacheline address.

0x0370 |- TCM_ACCESS_D_RD | or D TCM accessed from the data side for a read operation.
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0x0371 |- TCM_ACCESS D_WR | or D TCM accessed from the data side for a write operation.

0x0372 |- TCM_ACCESS | ITCM accessed from the instruction pipe.

0x0373 |- ROUTER_STALL More than one router packet needs arbitrating introducing contention.

0x0374 |- MM STB FULL Counts every time the main manager STB slots are full.

0x0375 |- LLRAM_STB_FULL Counts every time the LLRAM STB slots are full. This event also covers
accesses to the SPP region.

0x0376 |- LLPP_STB_FULL Counts every time the LLPP STB slots are full.

0x0377 |- TCMS_STB_FULL Counts every time the TC STB slots are full.

0x0378 |- BARRIER_STB FULL Counts every time the barrier STB slots are full.

0x0379 |- L1 WT _HIT L1 Instruction cache way tracker hit

0x037A |- L1D WT _HIT RD 1 Data cache way tracker hit for a read operation from the data cache.

0x037B |- L1D WT_HIT_WR A lookup into the TLAC hit.

0x0390 |0x29 |VSCTLR_WR_RETIRED Instruction architecturally executed, condition code check pass, write to
VSCTLR_EL2.

0x0391 | 0x28 |DFB_RETIRED Instruction architecturally executed, condition code check pass for data full
barrier instruction.

0x0392 |0x27 |EL2_ENTERED Exception taken to EL2 (hyp mode entry), excluding reset

0x0399 |- L1D TLB REFILL PREFETCHER L1 TLB refill used by the data side prefetcher. Counts any refill of the data
L1-MMS from the L2 MMS. This includes refills which result in a translation
fault. This event counts regardless of whether translation is enabled.

0x039A |- L1D TLB PREFETCHER L1 TLB access by the data side prefetcher.

0x0520 |- L1I_LFD_FULL This event is reserved for testing purposes. Contact Arm for more
information.

0x0521 |- GR_EVICT This event is reserved for testing purposes. Contact Arm for more
information.

0x0522 |- L1I_TLB_REFILL_EVICT This event is reserved for testing purposes. Contact Arm for more
information.

0x0523 |- BR_COND_QUEUE_FULL This event is reserved for testing purposes. Contact Arm for more
information.

0x0524 |- BR_INDIRECT_QUEUE_FULL This event is reserved for testing purposes. Contact Arm for more
information.

0x0525 |- BR_RETURN_OVERFLOW This event is reserved for testing purposes. Contact Arm for more
information.

0x0526 |- L1D_TLB REFILL_EVICT This event is reserved for testing purposes. Contact Arm for more
information.

0x0527 |- L1D_TLB_REFILL_EVICT_PREFETCHER |This event is reserved for testing purposes. Contact Arm for more
information.

0x0528 |- L1D_LFD_FULL This event is reserved for testing purposes. Contact Arm for more
information.

0x0529 |- L1D_RBUF_FULL This event is reserved for testing purposes. Contact Arm for more
information.

0x052A |- L1D _PREFETCH_FULL This event is reserved for testing purposes. Contact Arm for more

information.
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0x052B |- L1D_LF_SET_FULL This event is reserved for testing purposes. Contact Arm for more
information.

0x052C |- L1D CACHE_RD_SKID This event is reserved for testing purposes. Contact Arm for more

information.

15.4.1.4 Recommended implementation defined core PMU events

Arm recommends some implementation defined core PMU events.

The following table shows the recommended implementation defined events that are generated at
the core and the numbers that the Performance Monitoring Unit (PMU) in that core uses to reference

the events.

Table 15-5: Recommended implementation defined core PMU events

Event
code

0x0040

ETM Mnemonic
code

L1D_CACHE_RD

Description

L1 data cache access, read. Counts any load operation or pagewalk access which
looks up in the L1 data cache. In particular, any access which could count the

L1D CACHE _REFILL_RD event causes this event to count. Cache maintenance
instructions and prefetches are not counted. Non-cacheable accesses are not counted.

0x0041

L1D_CACHE_WR

L1 data cache access, write. Counts any store operation which looks up in the L1
data cache. In particular, any access which could count the L1D_CACHE_REFILL_WR
event causes this event to count. Cache maintenance instructions and prefetches

are not counted. Non-cacheable accesses are not counted.This event is a sum of
MM_L1D_CACHE_WR and LLRAM_L1D_CACHE_WR.

0x0042

L1D_CACHE_REFILL_RD

L1 data cache refill, read. Counts any load operation or pagewalk access which causes
data to be read from outside the L1, including accesses which do not allocate into

1. Cache maintenance instructions and prefetches are not counted.Non-cacheable
accesses are not counted. This event is a sum of MM _L1D _CACHE REFILL RD and
LLRAM_L1D_CACHE_REFILL_RD.

0x0043

L1D_CACHE_REFILL_WR

L1 data cache refill, write. Counts any store operation which causes data to be read from
outside the L1, including accesses which do not allocate into L1. Cache maintenance
instructions and prefetches are not counted. Stores of an entire cache line are not
counted, even if they make a coherency request outside the L1. Partial cache line

writes which do not allocate into the L1 cache are not counted. Non-cacheable
accesses are not counted. This event is a sum of MM _L1D _CACHE_REFILL WR and
LLRAM_L1D_CACHE_REFILL_WR.

0x0044

L1D_CACHE_REFILL_INNER

L1 data cache refill, inner main manager address. Counts any L1 data cache linefill (as
counted by L1D_CACHE_REFILL) which hits in the L2 cache, or another core in the
cluster.

0x0045

L1D_CACHE REFILL_ OUTER

L1 data cache refill, outer main manager address. Counts any L1 data cache linefill (as
counted by L1D_CACHE_REFILL) which does not hit in the L2 cache, or another core in
the cluster, and instead obtains data from outside the cluster.

0x0050

L2D_CACHE_RD

L2 cache access, read, main manager address. This event counts any cacheable read
transaction which returns a data source of local cluster or peer CPU.

0x0060

BUS_ACCESS_RD

Bus access, read. Counts for every beat of data transferred over the read data
channel between the core and the SCU. This event is a sum of LLPP_ACCESS RD,
MM_ACCESS_RD, LLRAM_ACCESS_RD, SPP_ACCESS_RD and TCMS_ACCESS_RD.
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0x0061 |- BUS_ACCESS_WR Bus access, write. Counts for every beat of data transferred over the write data
channel between the core and the SCU. This event is a sum of LLPP_ACCESS WR,
MM_ACCESS WR, LLRAM_ACCESS WR, SPP_ACCESS WR and TCMS_ACCESS_WR.

0x0066 |- MEM_ACCESS RD Data memory access, read. Counts memory accesses due to load instructions. Does not
count instruction fetches, cache maintenance instructions, translation table walks or
prefetches.

0x0067 |- MEM_ACCESS WR Data memory access, write. Counts memory accesses due to store instructions. Does
not count instruction fetches, cache maintenance instructions, translation table walks or
prefetches.

0x0070 |- LD_SPEC Operation speculatively executed, load.

0x0071 |- ST_SPEC Operation speculatively executed, store.

0x0072 |- LDST_SPEC Operation speculatively executed, load or store. This event counts the sum of LD_SPEC
and ST_SPEC.

0x0073 |- DP_SPEC Operation speculatively executed, integer data-processing.

0x0074 |- ASE_SPEC Operation speculatively executed, Advanced SIMD instruction.

0x0075 |- VFP_SPEC Operation speculatively executed, floating-point instruction.

0x0076 |- PC_WRITE_SPEC Operation speculatively executed, software change of the Program Counter.

0x0078 |- BR_IMMED_SPEC Branch speculatively executed, immediate branch.

0x0079 |- BR_RETURN_SPEC Branch speculatively executed, procedure return.

0x007A |- BR_INDIRECT_SPEC Branch speculatively executed, indirect branch.

0x0082 |0x33|EXC_SVC Exception taken, supervisor call

0x0086 | 0x32 |EXC_IRQ Exception taken, IRQ

0x0087 |0x31 |EXC FIQ Exception taken, FIQ

0x008A | 0x30 |EXC_HVC Exception taken, Hypervisor Call

0x008E | 0x2F |EXC_TRAP_IRQ Exception taken, IRQ not taken locally

0x008F | 0x2E | EXC_TRAP_FIQ Exception taken, FIQ not taken locally

15.4.2 Cluster PMU events

The cluster Performance Monitoring Unit (PMU) collects events from the shared units and use event
codes to reference these events. Cluster PMU events are implementation defined.

15.4.2.1 Implementation defined cluster PMU events

The following table shows the implementation defined events that are generated at the cluster and
the numbers that the Performance Monitoring Unit (PMU) uses to reference the events.

Table 15-6: Implementation defined cluster PMU events

Event ETM

Mnemonic

Description

code code

0x0419 |-

MM_ACCESS

Main Manager bus access counter. This event is a sum of MM_ACCESS_RD and
MM_ACCESS_WR.
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0x041A |- MM_ACTIVE Main Manager bus has outstanding transactions (counted on SCLK instead of bus clock)

0x041D |- MM _CYCLES Main Manager bus cycles

0x0460 |- MM _ACCESS RD Main Manager access, read. Counts for every beat of data transferred over the read
data channel between the cluster and the interconnect.

0x0461 |- MM_ACCESS_WR Main Manager access, write. Counts for every beat of data transferred over the write
data channel between the cluster and the interconnect.

0x0462 |- MM_ACCESS_SHARED Main Manager access, shared. Counts for every beat of shared data transferred over
the data channels between the cluster and the interconnect.

0x0463 |- MM_ACCESS_NOT_SHARED Main Manager access, not shared. Counts for every beat of not shared data transferred
over the data channels between the cluster and the interconnect.

0x0464 |- MM_ACCESS_NORMAL Main Manager access, normal. Counts for every beat of normal data transferred over
the data channels between the cluster and the interconnect.

0x0465 |- MM_ACCESS_PERIPH Main Manager access, periph. Counts for every beat of device data transferred over the
data channels between the cluster and the interconnect.

0x0466 |- MM_CHI_SNP_ACCESS L2 external snoop access counter. Counts every external snoop request.

0x0467 |- MM_CHI_SNP_EVICT L2 external snoop eviction counter. Counts every external snoop request that causes
an L2 cache eviction.

0x0468 |- MM_CHI_SNP_NO_CPU L2 external No-cpu snoop access counter. Counts every external snoop request that
completes without snooping a core.

0x0469 |- MM_PREFETCH_CPU_ACCESS |L2 prefetch access, CPU counter. Counts every stash transaction originating from a
core.

0x0470 |- MM_PREFETCH_CPU_HIT L2 prefetch data hit, CPU counter. Counts every stash transaction originating from a
core where the stash hit in the cluster.

0x0471 |- MM _PREFETCH_CPU_MISS L2 prefetch data miss, CPU counter. Counts every stash transaction originating from a
core where data was read in from outside the cluster.

0x0472 |- MM_PREFETCH_CPU_MATCH |L2 prefetch matching access, CPU counter. Counts every completed stash transaction
originating from a core that is matched by a compatible read request.

0x0473 |- MM_PREFETCH_CPU_KILL L2 prefetch terminated access, CPU counter. Counts every stash transaction originating
from a core that is terminated due to an incompatible match.

0x0474 |- MM_CHI_STASH_ICN_ACCESS |L2 stash access, ICN counter. Counts every stash transaction originating from the
interconnect.

0x0475 |- MM_CHI_STASH_ICN_HIT L2 stash data hit, ICN counter. Counts every stash transaction originating from the
interconnect where the stash hit in the cluster.

0x0476 |- MM_CHI_STASH_ICN_MISS L2 stash data miss, ICN counter. Counts every stash transaction originating from the
interconnect where data was read in from outside the cluster.

0x0477 |- MM_CHI_STASH_ICN_MATCH | L2 stash matching access, ICN counter. Counts every completed stash transaction
originating from the interconnect that is matched by a compatible read request.

0x0478 |- MM _CHI_STASH_ICN_KILL L2 stash terminated access, ICN counter. Counts every stash transaction originating
from the interconnect that is terminated due to an incompatible match.

0x0484 |- MM_HAZARD_ADDR L2 address hazard. Request flushed and replayed due to address match with earlier
request.

0x0485 |- MM_HAZARD_L2DB L2 data buffer hazard. Request flushed and replayed due to L2DBs not available.

0x0486 |- MM_HAZARD_AFB L2 address forwarding buffer hazard. Request flushed and replayed due to AFB not

available.
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0x0487 |- MM_HAZARD_STU_DRAIN L2 STU drain hazard. Read after Write hazard or Data Buffers full requiring force drain
of the STU.

0x0488 |- MM _MEMORY_ERROR Local memory error. Counts any Correctable or Uncorrectable memory error (ECC or
parity) in the Duplicate Tags, L2 Tag or Data and L2DBs.

0x0119 |- MACP_ACCESS Main Accelerator Coherency Port (MACP) bus access counter. This event is a sum of
MACP_ACCESS_RD and MACP_ACCESS_WR.

0x011A |- MACP_ACTIVE MACP bus has outstanding transactions (counted on SCLK instead of bus clock)

0x011D |- MACP_CYCLES MACP bus cycles

0x0160 |- MACP_ACCESS_RD MACP bus read access counter. Counts for every beat transferred over the read data
channel between the interconnect and the cluster.

0x0161 |- MACP_ACCESS_WR MACP bus write access counter. Counts for every beat transferred over the write data
channel between the interconnect and the cluster.

0x0162 |- MACP_STASH _ACP_ACCESS L2 stash access, ACP counter. Counts every stash transaction originating from the
MACP.

0x0163 |- MACP_STASH ACP_HIT L2 stash data hit, ACP counter. Counts every stash transaction originating from the
MACP where the stash hit in the cluster.

0x0164 |- MACP_STASH_ACP_MISS L2 stash data miss, ACP counter. Counts every stash transaction originating from the
MACP where data was read in from outside the cluster.

0x0165 |- MACP_STASH_ACP_MATCH L2 stash matching access, ACP counter. Counts every completed stash transaction
originating from the MACP that is matched by a compatible read request.

0x0166 |- MACP_STASH_ACP_KILL L2 stash terminated access, ACP counter. Counts every stash transaction originating
from the MACP that is terminated due to an incompatible match.

0x0319 |- ACELS_ACCESS ACE-Lite Subordinate (ACELS) bus access counter. This event is a sum of
ACELS_ACCESS_RD and ACELS_ACCESS_WR.

0x031D |- ACELS CYCLES ACELS bus cycles

0x0360 |- ACELS ACCESS RD ACELS bus read access counter. This event counts accesses on the read address
channel.

0x0361 |- ACELS ACCESS WR ACELS bus write access counter. This event counts accesses on the write address
channel.

0x0362 |- ACELS_HAZARD_ID_RD ACELS request stalled due to ID hazard on the read address channel

0x0363 |- ACELS_HAZARD_ID_WR ACELS request stalled due to ID hazard on the write address channel.

0x0364 |- ACELS_HAZARD_RESP_RD ACELS response on the read channel delayed due to arbitration contention.

0x0365 |- ACELS HAZARD RESP WR ACELS response on the write channel delayed due to arbitration contention.

0x0219 |- SPP_ACCESS Shared Peripheral Port bus access counter. This event is a sum of SPP_ACCESS_RD and
SPP_ACCESS_WR.

0x021A |- SPP_ACTIVE Shared Peripheral Port bus has outstanding transactions (counted on SCLK instead of
bus clock).

0x021D |- SPP_CYCLES Shared Peripheral Port cycles

0x0260 |- SPP_ACCESS_RD Shared Peripheral Port access, read. Counts for every beat of data transferred over the
read data channel on the port.

0x0261 |- SPP_ACCESS_WR Shared Peripheral Port access, write. Counts for every beat of data transferred over the
write data channel on the port.

0x0519 |- L2 CACHE L2 unified cache access counter. Counts every cacheable read or write transaction

issued to the L2. This event is a sum of L2 CACHE RD and L2 CACHE WR.
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0x0520 |- L2 CACHE_RD L2 unified cache access, read counter. Counts every cacheable read transaction issued
to the L2 (excluding prefetches and stashes).

0x0521 |- L2_CACHE_WR L2 unified cache access, write counter. Counts every cacheable write transaction issued
to the L2.

0x0522 |- 2 CACHE REFILL L2 unified cache access refill counter. Counts every cacheable read or write transaction
issued to the interconnect. This event is a sum of L2_CACHE_REFILL_RD and
L2_CACHE_REFILL_WR.

0x0523 |- L2_CACHE_REFILL_RD L2 unified cache access, read refill counter. Counts every cacheable read transaction
issued to the interconnect (excluding prefetches and stashes).

0x0524 |- L2_CACHE_REFILL_WR L2 unified cache access, write refill counter. Counts every cacheable write transaction
issued to the interconnect.

0x0525 |- L2 CACHE WB L2 unified cache write-back counter. Counts every write-back from the L2 cache.

0x0526 |- L2 CACHE_ALLOCATE L2 unified cache allocation without refill counter. Counts every full cache line write into
the L2 cache which does not cause a linefill.

0x0719 |- LLRAM_ACCESS Low-latency RAM (LLRAM) bus access counter. This event is a sum of
LLRAM_ACCESS_RD and LLRAM_ACCESS_WR.

0x071A |- LLRAM _ACTIVE LLRAM bus has outstanding transactions (counted on SCLK instead of bus clock).

0x071D |- LLRAM_CYCLES LLRAM bus cycles

0x0760 |- LLRAM_ACCESS_RD Bus access, read. Counts for every beat of data transferred over the read data channel
between the cluster and the interconnect.

0x0761 |- LLRAM_ACCESS_WR Bus access, write. Counts for every beat of data transferred over the write data channel
between the cluster and the interconnect.

0x0762 |- LLRAM_ACCESS_SHARED Bus access, shared. Counts for every beat of shared data transferred over the data
channels between the cluster and the interconnect.

0x0763 |- LLRAM_ACCESS_NOT_SHARED |Bus access, not shared. Counts for every beat of not shared data transferred over the
data channels between the cluster and the interconnect.

0x0764 |- LLRAM ACCESS NORMAL Bus access, normal. Counts for every beat of normal data transferred over the data
channels between the cluster and the interconnect.

0x0765 |- LLRAM_ACCESS_PERIPH Bus access, periph. Counts for every beat of device data transferred over the data
channels between the cluster and the interconnect.

0x0766 |- LLRAM_HAZARD_ADDR LCU address hazard. Request ordered due to address match with earlier request.

0x0767 |- LLRAM_HAZARD_SET_WAY LCU set/way hazard. Request ordered due to set/way match with earlier request.

0x0768 |- LLRAM_HAZARD_STU_DRAIN |LCU STU drain hazard. Read after Write hazard or LCU Data Buffers full requiring LCU
force drain of the STU.

0x0769 |- LLRAM MEMORY_ERROR Local memory error. Counts any Correctable or Uncorrectable memory error (ECC or
parity) in the Duplicate Tags.

0x0819 |- ROUTER_STALL More than one router packet needs arbitrating introducing contention.

0x0830 |- MM BUFF CPUSUB_FULL This event is reserved for testing purposes. Contact Arm for more information.

0x0831 |- MM_BUFF_AFB_FULL This event is reserved for testing purposes. Contact Arm for more information.

0x0832 |- MM_BUFF_L2DB_FULL This event is reserved for testing purposes. Contact Arm for more information.

0x0833 |- MM_BUFF_SNPSUB_FULL This event is reserved for testing purposes. Contact Arm for more information.

0x0834 |- MM _BUFF_ACPSUB_FULL This event is reserved for testing purposes. Contact Arm for more information.

0x0835 |- LLRAM_BUFF_CPUSUB_FULL |This event is reserved for testing purposes. Contact Arm for more information.
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0x0836 |- LLRAM_BUFF_ACELSUB_FULL |This event is reserved for testing purposes. Contact Arm for more information.
0x0837 |- LLRAM BUFF_IDEXTM_FULL This event is reserved for testing purposes. Contact Arm for more information.
0x0838 |- LLRAM BUFF_GRB_FULL This event is reserved for testing purposes. Contact Arm for more information.
0x083A |- LLRAM BUFF SNP_FULL This event is reserved for testing purposes. Contact Arm for more information.
0x083B |- SPP_BUFF_CPUSUB_FULL This event is reserved for testing purposes. Contact Arm for more information.
0x083C |- SPP_BUFF_GRB_FULL This event is reserved for testing purposes. Contact Arm for more information.

15.4.2.2 Recommended implementation defined cluster PMU events
Arm recommends some implementation defined PMU events at the cluster.

The following table shows the recommended implementation defined events that are generated
at the cluster and the numbers that the Performance Monitoring Unit (PMU) uses to reference the
events.

Table 15-7: Recommended implementation defined cluster PMU events

Event ETM Mnemonic Description

code code

0x0011 |- CYCLES Clock cycles

0x0019 |- BUS_ACCESS Bus access, read or write. Counts for every beat of data transferred over the read or write
data channel between the cluster and the interconnect.

0x001A |- MEMORY_ERROR Local memory error. Counts any Correctable or Uncorrectable memory error (ECC or
parity) in the protected RAMs.

0x001D |- BUS CYCLES Bus clock cycle

0x001E |- CHAIN Odd performance counter chain mode

0x0060 |- BUS ACCESS RD Bus access, read. Counts for every beat of data transferred over the read data channel
between the cluster and the interconnect.

0x0061 |- BUS_ACCESS_WR Bus access, write. Counts for every beat of data transferred over the write data channel
between the cluster and the interconnect.

0x0062 |- BUS_ACCESS_SHARED Bus access, shared. Counts for every beat of shared data transferred over the data
channels between the cluster and the interconnect.

0x0063 |- BUS_ACCESS_NOT_SHARED |Bus access, not shared. Counts for every beat of not shared data transferred over the
data channels between the cluster and the interconnect.

0x0064 |- BUS ACCESS NORMAL Bus access, normal. Counts for every beat of normal data transferred over the data
channels between the cluster and the interconnect.

0x0065 |- BUS_ACCESS_PERIPH Bus access, periph. Counts for every beat of device data transferred over the data

channels between the cluster and the interconnect.
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15.5 PMU interrupts

The Cortex®-R82 processor asserts nCLUSTERPMUIRQ and nPMUIRQ signals when the PMU
generates an interrupt.

The Cortex®-R82 processor asserts:
e The nCLUSTERPMUIRQ signal when the cluster PMU generates an interrupt.
e The nPMUIRQIk] signal where k is the core ID, when the per-core PMU generates an interrupt.

You can route nCLUSTERPMUIRQ and nPMUIRQ signals to an external interrupt controller for
prioritization and masking. This is the only mechanism that signals these interrupts to a core.
NCLUSTERPMUIRQ and nPMUIRQ interrupts are also driven as a trigger input to the cluster Cross
Trigger Interface (CTI) and core CTI respectively.

15.6 PMU register summary
The register summary tables provide an overview of all the relevant registers.

You can find the register summary table for the Cortex®-R82 processor AArché4 Performance
Monitors registers in A.1.3 AArch64 Performance Monitors registers summary on page 280.

You can find the register summary table for the core external Performance Monitors registers
in B.2.1.2 External PMU registers summary on page 1506 and cluster external Performance
Monitors registers in B.2.1.3 External CLUSTERPMU registers summary on page 1507.
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16. ETM

This chapter describes the Embedded Trace Macrocell (ETM) for the Cortex®-R82 processor.

16.1 About the ETM

The Embedded Trace Macrocell (ETM) performs real-time instruction and data flow tracing based on
the ETM architecture ETMv4.5. The Cortex®-R82 processor supports one ETM per core.

The ETM is a CoreSight™ component and is an integral part of the Arm Real-time Debug solution,
DS-5 Development Studio. It enables non-invasive debugging of software running on one or more
cores of the Cortex®-R82 processor.

The following figure shows the main functional blocks of the ETM.

Figure 16-1: ETM block diagram

Processor
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Global Trace ETM
Timestamp
Generator Instruction -
trace Instruction] || ATfB >
Debug Advanced ~APB > generator FIFO intertace | ATDATAI[31:0] —p
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¢ ViewlInst, ViewData
Resources
and filtering
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Core
interface

Core interface

This block connects to the core within the Cortex®-R82 processor. It tracks the execution
information from the core, decodes the control signals, and passes on the information to the
internal interfaces.

Instruction trace generator

This block generates the trace packets which are a compressed form of the instruction execution
information provided by the core. The trace packets are then passed to the instruction FIFO.
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Data trace generator

This block generates the trace packets which are a compressed form of the data transfers (data
address and data value) provided by the core. The trace packets are then passed to the data FIFO.

FIFO

This block buffers bursts of trace packets. Separate FIFOs are provided, one for the instruction
trace stream, and one for the data trace stream.

Resources and filtering logic

These blocks contain resources which the trace software programs to trigger and filter the trace
information. They start and stop trace generation, depending on the conditions that have been set.

ATB interfaces
There are two ATB interfaces:

e Instruction ATB interface: This reads up to four bytes of compressed packet information from
the instruction FIFO and sends them over the instruction ATB interface. All the core ETM
instruction trace streams are funneled into a single 32-bit ATB trace bus.

o Data ATB interface: This reads up to eight bytes of compressed packet information from the
data FIFO and sends them over the data ATB interface. All the core ETM data trace streams
and all the ELA trace streams are funneled into a single 128-bit ATB trace bus.

APB interface
This block implements the interface to the APB that provides access to the programmable registers.

Global timestamping
The ETM reuses the generic timer CNTVALUEB as a reference for timestamp packets.

This provides a 64-bit timestamp that a debugger can use for coarse-grained profiling, and
correlation of trade sources.

Decompression of data trace relies on the presence of a global timestamp count.

16.2 ETM trace unit generation options and resources

The following table shows the resources of the ETM that are implemented.

Table 16-1: ETM trace unit resources implemented

Feature Instance

Address comparators 4 pairs

Data value comparators 2
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Feature Instance

Context ID comparators 1

Virtual machine ID comparators 1

Single-Shot comparator resource 2

Counters 2

Cycle count size 12 bits

Number of sequencer states 4

Processor comparator inputs 0

External inputs 58

External outputs 4

External input selectors 4

Resource selector pairs 8

Instruction trace port size 32-bit

Data trace port size 64-bit

Instruction FIFO® 128 bytes with 32-bit output
Data FIFO 256 bytes with 64-bit output
Claim tag bits 4

The following table shows the optional features of the ETM architecture that the ETM implements.

Table 16-2: ETM trace unit generation options implemented

Feature Implemented

Trace Start/Stop block Yes
Trace all branches option Yes
Trace of conditional instructions Yes
Cycle counting in instruction trace Yes
Data trace supported Yes
Data address comparison Yes
OS Lock mechanism Yes
Secure non-invasive debug Yes
Context ID tracing Yes
Trace output Yes
Timestamp size 64-bit
Memory mapped access to ETM registers No
External debugger access to ETM registers Yes
System instruction access to ETM registers Yes
VMID comparator support Yes
ATB trigger support Yes

© Instruction trace can be configured to take priority over data trace. See bit[10] of the TRCSTALLCTLR.
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16.3 ETM event connectivity

This section describes how the Cortex®-R82 processor Embedded Trace Macrocell (ETM) inputs and
outputs are connected to the Cross Trigger Interface (CTI) and Performance Monitoring Unit (PMU).
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The following table shows the connection of the ETM external inputs that come from the CTl and

PMU.

Table 16-3: ETM External Input connections

Bits Description

ETM External Input O

CTI Trigger Output 4

ETM External Input 1

CTI Trigger Output 5

ETM External Input 2

CTl Trigger Output 6

ETM External Input 3

CTI Trigger Output 7

The ETM external output resources are connected to the CTl, as the following table shows.

Table 16-4: ETM External Output connections to CTI

ETM External Output O CTl Trigger Input 4
ETM External Output 1 CTI Trigger Input 5
ETM External Output 2 CTl Trigger Input 6
ETM External Output 3 CTI Trigger Input 7

16.4 Operation

This section describes the R82 processor Embedded Trace Macrocell (ETM) IMPLEMENTATION DEFINED
features.

See the Arm® Embedded Trace Macrocell Architecture Specification ETMv4 for more information on
the operation.

16.4.1 Precise TraceEnable events

The Viewlnst and ViewData are imprecise under certain conditions, with some implementation-
defined exceptions. The only condition which ensures that Viewlnst and ViewData are precise is
that the enabling event condition is TRUE.

For more information, see the Arm® Embedded Trace Macrocell Architecture Specification ETMv4 .
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16.4.2 Parallel instruction execution

The Cortex®-R82 processor supports parallel instruction execution. The macrocell can trace up to
three instructions per cycle and up to 256 bits of data transfer per cycle.

If Viewlnst is active for a cycle, the ETM:

o Always traces all instructions reported to the ETM on the same cycle up to a branch if present.
e Anvy instructions from the previous cycle that follow a branch instruction.

e (Can trace data for any of the instructions traced.

16.4.3 Comparator features

The ETM implements data address comparison. There are eight address comparators that can be
configured for either instruction or data address comparison.

The ViewData instruction address comparators are sensitive to a batch of instructions which
execute in consecutive cycles. If any instruction in the batch is in an include range and any
instruction is not in an exclude range, then ViewData can be high.

See the Arm® Embedded Trace Macrocell Architecture Specification ETMv4 for a description of data
address comparison.

16.4.4 Trace features
The ETM implements all of the ETMv4.5 trace features.

This means it supports:

o Data value and data address tracing.
e Data suppression.

o Cycle-accurate tracing.

e Timestamping.

See the Arm® Embedded Trace Macrocell Architecture Specification ETMv4 for a description of these
features.

16.4.5 Packet formats

The Cortex®-R82 processor ETM instruction trace interface does not support the following packet
formats:

e Speculation resolution:
o Mispredict packet.
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o Cancel format 2 and 3 packets.

o Conditional tracing:

o All instruction format packets.

o Result format 1 packet.

e Q packets.
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The Cortex®-R82 processor ETM data trace interface supports all data trace packet types except
the P1 Format 6 and 7 packets.

See the Arm® Embedded Trace Macrocell Architecture Specification ETMv4 for the trace packet
format descriptions.

16.4.6 Resource selection

The ETM uses event selectors to control resources.

The ETM controls the following resources:

e Trace events (triggers and markers in the trace stream).

e Timestamp event.

e Viewlnst event.

e ViewData event.

e Counter control.

e Seguencer state transitions.

Each event selector is configured to be sensitive to a resource selector pair, and one resource
selector pair can control more than one event selector.

The ETM provides one fixed resource selector pair, with static values of O and 1, and seven
configurable selector pairs. A resource selector pair provides a bitfield OR selector for resources in
two different groups, with each group and a configurable boolean combination provided.

The following shows the resources that can be selected for the instruction and data trace.

Table 16-5: Instruction and data resource selection

Group Select Resource
0b0000 0-3 External input selector O-3
0b0010 0-1 Counter at zero 0-1

4-7 Sequencer states 0-3
0b0011 1 Single-Shot comparator 0-1
0b0100 0-7 Single address comparator O-7
0b0101 0-3 Address range comparator 0-3
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Group Select Resource
0b0110 0 Context ID Comparator O
0b0111 0 VMID Comparator O

For example, the following figure shows the steps necessary to use a single address comparator
to generate a trigger event and an ATB trigger. This example uses the first single resource selector
that can be user-configured.

Figure 16-2: Trigger event resource selection

TRCACVRO l TRCACATRO Simple instruction
<0xnnn> <0x00> address comparator
TRCRSCTL2 Resource selector
<0x40001> sensitive to SACO
TRCEVENTCTLOR Event selector sensitive
<0x02> to single Resource 2
TRCEVENTCTL1R EventO generates event
<0x801> element and ATB trigger

16.4.7 Trace flush behavior

Events that are observed by the ETM can be confirmed to have reached the trace bus output with
the use of the ATB flush protocol. Both ATB ports must be flushed to determine when the trace
infrastructure finishes capturing all the packets generated by the ETM.

ETM internally flushes instruction and data trace together whenever either flush request is seen
but does not guarantee that the trace data has drained from the ETM. When the processor enters
a low-power state, all trace data is output from the ETM.

16.4.8 Low-power state behavior

When the Cortex®-R82 processor enters a low-power state, there is a delay before the resources
in the ETM become inactive.

This permits the last instruction executed to trigger a comparator, update the counter or sequencer,
and the resultant event packet to be inserted in the specified trace stream. This event packet is
presented on the trace bus before the ETM itself enters a low-power state.

If an event packet is generated for a different reason, it is not guaranteed to be output before the
ETM enters a low-power state, but is traced when the processor leaves the low-power state, if the
ETM logic is not reset before this can occur.
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The TRCEVENTCTL1R.LPOVERRIDE bit controls how a trace unit behaves in a low-power state. If
itis set to 1, trace unit low-power state behavior is overridden, that is, entry to a low-power state
does not affect the trace unit resources or trace generation. In this case, the ETM resources remain
active.

16.4.9 Cycle counter
The Cortex®-R82 processor ETM uses a 12-bit cycle counter.

The ETM cycle counter does not count when the Cortex®-R82 processor is in a low-power state.

16.4.10 Non-architectural exceptions
Non-architectural behavior exceptions are indicated by the ETM.

The ETM indicates exceptions for the following non-architectural behavior that use the following
TYPE encoding:

0b10001 ECC logic requires instruction trace to be replayed. This should not be relied
on as providing trace of ECC behavior.

16.4.11 Trace synchronization

The ETM receives and combines all sources of trace synchronization requests to determine when
synchronization is required. When synchronization is required, information is inserted in both trace
streams as necessary (depending on whether data trace is active).

To decompress the trace streams, synchronization information in the data trace stream determines
the alignment with synchronization information in the instruction stream. If the ETM is configured
to trace only events in the data stream, you must configure the instruction trace stream to contain
sufficient elements to permit the required data trace stream synchronization.

16.5 Modes of operation and execution

This section describes how to control the ETM programming and read and program the ETM
registers.

16.5.1 Use of the ETM main enable bit
When programming the ETM registers, you must enable all the changes at the same time.

For example, if the counter is reprogrammed, it might start to count based on incorrect events,
before the trigger condition has been correctly set up.
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To disable all trace operations during programming use:
e The ETM main enable in the TRCPRGCTLR.
e The TRCSTATR to indicate the ETM status.

The Cortex®-R82 processor does not have to be in Debug state while you program the ETM
registers.

The following figure shows the procedure to use.

Figure 16-3: Programming ETM registers
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16.5.2 Programming and reading ETM registers

To access the ETM registers, use the system register access. This provides a direct method of
programming the ETM.

16.5.3 External register access permissions
Whether access is permitted to a register depends on:

e |f the processor is powered up.

e The state of the OS Lock.

e The state of the debug authentication inputs to the processor.

The behavior that is specific to each register and the type of access to the register is not described

in this document. For a detailed description of these features and their effects on the registers, see
the Arm® Architecture Reference Manual Supplement Armv8, for R-profile AArché4 architecture.

The register descriptions provided in this section describe whether each register is read/write or
read-only.

16.6 ETM register summary
The register summary tables provide an overview of all the relevant registers.

You can find the register summary table for the Cortex®-R82 processor AArché64 Embedded Trace
Macrocell (ETM) registers in A.1.8 AArché4 Trace unit registers summary on page 289.

You can find the register summary table for the core external ETM registers in B.2.1.8 External
ETM registers summary on page 1513.
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17. Advanced SIMD and floating-point
support

This chapter introduces the optional Advanced SIMD and floating-point support.

17.1 About the Advanced SIMD and floating-point
support

The Cortex®-R82 processor supports the Advanced SIMD and scalar floating-point instructions in
the Arm®v8-R AArché4 instruction set without floating-point exception trapping. The Cortex®-R82
processor floating-point implementation includes several features from Armv8.2 and Arm®v8.3.

For more information on the architectural features that are implemented by the Cortex®-R82
processor see, 4.2.1 Architect