
Orhan Gazi
A.Çağrı Arlı

State
Machines
using VHDL
FPGA Implementation of Serial
Communication and Display Protocols

State Machines using VHDL

Orhan Gazi • A. Çağrı Arlı

State Machines using
VHDL
FPGA Implementation of Serial
Communication and Display Protocols

Orhan Gazi
Çankaya University
Ankara, Turkey

A. Çağrı Arlı
Electra IC
Ankara, Turkey

ISBN 978-3-030-61697-7 ISBN 978-3-030-61698-4 (eBook)
https://doi.org/10.1007/978-3-030-61698-4

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-61698-4

v

Preface

The invention of state machines enabled the development of digital electronic
devices. State machines can be considered as mathematical modeling of systems,
and these systems can vary from biological organisms, mechanical and electronic
devices to human societies. Systems are organized units and get information from
environment and process or interpret the information and usually produce a
response. Even the universe can be thought as a large state machine made up of state
machines large and small.

Electronic engineers are interested in systems designed using digital electronic
components. With the evolution of technology in time, the complexity of the sys-
tems increased tremendously. Manual design of digital electronic devices used to be
performed in past; however, in today’s technology, it is almost impossible to design
complex systems manually. Even computer programs used for graphical design are
useless. Recently hardware design languages such as VHDL and Verilog gained
popularity in electronic world. Using hardware design languages, it is possible to
design digital electronic devices even consisting of millions of digital gates. In
today’s technology, the trend is to the use of reconfigurable high-speed digital elec-
tronic devices. At the time this book was being written, 5G communication technol-
ogy was to be adopted by many countries, and for 5G standard many of the digital
systems were designed using VHDL hardware design language and FPGAs devices.
It is not exaggerating to say that the FPGAs will be the most dominant components
of the future digital electronic devices, and especially they will be vital parts of
high-speed communication devices. State machines are very widely used to imple-
ment algorithms or circuits in VHDL. A digital design engineer should have strong
knowledge of state machines and its implementation using hardware design lan-
guages. This can even be considered as a vital skill for hardware design engineers.

In this book, we provide information about state machines and VHDL program-
ming using state machines. In Chap. 1, state machine concept is explained, and
variety of examples are provided for the mathematical modeling of systems using
state machines. We suggest the reader to study the Chap. 1 before proceeding to the
other chapters. In Chap. 2, first, we deliver and explain the templates used for the
implementation of state machines in VHDL, and then provide example implementa-
tions. The examples written for the VHDL implementation of state machines in
Chap. 2 contain both theoretical problems and practical applications. We also pro-
vided test benches for some of the examples to simulate the written programs in

vi

hardware language development platforms. Asynchronous serial communication
implementation is given as an example for the implementation of practical
applications.

VHDL implementation using timed state machine is explained in Chap. 3. Timed
state machines can be considered as a general form of classical state machines.
Many of the interfacing design made using VHDL are nothing but applications of
timed state machines to practical problems. For this reason, we advise the reader to
comprehend the implementation of timed state machines explained in Chap. 3.
Once the reader has full comprehension of the timed state machines and their imple-
mentations, it is quite straight to perform its applications for interface designs using
VHDL.

In Chaps. 4 and 5, the implementation of synchronous serial communication
protocols, serial peripheral interface (SPI), and inter-integrated circuit (I2C) com-
munication, in VHDL are explained. The examples provided in this chapter can be
considered as the use of timed state machines for the implementation of serial com-
munication protocols developed by some electronic companies for device to devices
short distance communication. The readers can use the VHDL codes of this chapter
with some modifications for their works. At the end of the Chaps. 4 and 5, we pro-
vided practical examples for the implementation of SPI and I2C protocols.

In Chap. 6, different from Chaps. 4 and 5, we consider the implementation of
video graphics array (VGA) display protocol developed for computer to monitor
image/video transmission. We did not use the state machines for the implementation
of VGA display protocol, although they can be used. In Chap. 6, we also considered
the data transmission using a high definition multimedia interface (HDMI) which is
used for the transmission of video and audio data. The components of HDMI are
implemented in VHDL and used for the transmission of image data and VGA dis-
play control signals.

The subjects provided in this book can be studied by anyone independently or
they can be taught in one semester’s course. This book is not a preliminary VHDL
tutorial book. We assume that the reader has a basic knowledge of VHDL program-
ming and FPGAs.

Ankara, Turkiye Orhan Gazi
Ankara, Turkiye A. Çağrı Arlı

Preface

vii

Acknowledgments

There is no doubt to say that state machines are the souls of digital electronic
devices. I delivered courses related to VHDL circuit design and state machines for
years. The writing of this book became possible after collecting lecture notes and
examples from the delivered courses over many years. I would like to thank those
students who showed great will in participating in my lectures, their interests moti-
vated me for the writing of this book. I would like to thank Dr. Ahmet Çağrı Arlı
who provided and tested many of the VHDL examples and wrote some parts of this
textbook. I am dedicating this book to my lovely daughter Vera Gazi who was 7+
years old when this book is being written. Her love was a motivating factor for all
my studies.

Dr. Orhan Gazi
I hope this book will be useful to prospective engineers and engineers around the

world. I have no doubt that the subject of the book is up-to-date and will teach read-
ers basic interface protocols. As the greatest effort in creating the book, I would like
to thank my esteemed teacher, Orhan Gazi, for the way and efforts he made in writ-
ing the book. I thank my father Fahrettin, who is also a textbook author, for the
inspiration he gave to me. In addition, I am grateful to my grandfather Ahmet, who
is also an author, for being an example to me with his disciplined work with his suc-
cessful creation of our family memories. I would like to thank my mother, Devrim,
who, I know, was always there for me. Finally, I am grateful to my love, Görkem,
for her supports during the writing of this book.

Dr. Ahmet Çağrı Arlı

ix

Abbreviations

ACK Acknowledgement
ADC Analog to digital converter
CEC Consumer electronics control
CLK Clock
CPHA Clock phase
CPOL Clock polarity
CRT Cathode ray tubes
DAC Digital to analog converter
DCL Data clock
DDC Display data channel
DVI Digital visual interface
FPGA Field-programmable gate array
HACTIVE Horizontal active
HDMI High-definition multimedia interface
HSYNC Horizontal synchronization
I2C Inter integrated circuit
LED Light emitting diode
MISO Master-input slave-output
MOSI Master-output slave-input
NS Next state
PS Present state
SCLK Serial clock
SDA Serial data
SI Serial input
SO Serial output
SPI Serial peripheral interface
SS Slave select
TB Test-bench
TMDS Transition-minimized differential signaling
VACTIVE Vertical active
VGA Video graphics array
VHDL Very high speed integrated circuit hardware description language
VSYNC Vertical synchronization

xi

Contents

 1 State Machines and Modeling of Mathematical and Physical
Problems by State Machines . 1
 1.1 State . 1

 1.1.1 State Diagrams and Mealy and Moore Models 2
 1.1.2 State Names . 4
 1.1.3 State Machine Inputs and Outputs . 5

 1.2 Modeling of Mathematical and Real-Life Problems
by State Machines . 5
 1.2.1 Some Applications of Finite State Machines 12
 1.2.2 Mealy or Moore . 24

 1.3 Conversion Between Mealy and Moore State
Diagrams/Machines . 26
 1.3.1 Conversion from Mealy to Moore State

Diagrams/Machines . 26
 1.3.2 Conversion from Moore to Mealy State Machines 32

 1.4 Modeling the Behavior of Electronic Circuits Using
State Machines . 35
 1.4.1 Flip-Flops, Characteristic, and Excitation Tables 35
 1.4.2 State Tables and State Diagrams of Sequential Circuits 38

Problems . 52

 2 VHDL Implementation of Finite State Machines
and Practical Applications . 55
 2.1 Implementation of Finite State Machines in VHDL 55

 2.1.1 VHDL Implementation of Moore State Machines. 56
 2.1.2 VHDL Implementation of Mealy State Machines 59

 2.2 Examples for VHDL Implementations of State Machines 60
 2.2.1 Three-Bit Binary Counter in VHDL 60
 2.2.2 Counter State Machine Program Flow Analysis 64
 2.2.3 Predefined Encoding Types . 67
 2.2.4 Mealy State Diagram Implementation Example 68
 2.2.5 Parity Generator Implementation Example 72
 2.2.6 Non-overlapping Sequence Detector Implementation

Example . 75

xii

 2.2.7 Arbiter Implementation Example . 78
 2.2.8 VHDL Implementation of RS232 Asynchronous

Serial Communication Protocol . 82
 2.2.9 VHDL Implementation of FIFO . 103
 2.2.10 VHDL Implementation of Buffered RS232 Receiver 106

Problems . 112

 3 Timed Finite State Machines in VHDL . 115
 3.1 Timed State Machine Models . 115
 3.2 VHDL Implementation of Timed Moore State Machines 116

 3.2.1 Timed Moore State Machine VHDL Implementation
Example . 121

 3.3 Analysis of the Timed Moore State Machine 125
 3.4 Seven-Segment Display as a Timed State Machine 129
 3.5 The Implementation of Timed Mealy State Machines

in VHDL. 133
 3.5.1 Example for the VHDL Implementation

of Timed Mealy State Machine . 134
 3.6 Digital Transmitter Implementation Using Timed

State Machines . 136
Problems . 141

 4 Serial Peripheral Interface . 143
 4.1 Synchronous Communication . 143
 4.2 Serial Peripheral Interface (SPI) Communication 145

 4.2.1 MOSI and MISO Bit Transmission . 148
 4.2.2 SPI Operation Modes . 150

 4.3 VHDL Implementation of SPI Communication 154
 4.3.1 Implementation of SPI Protocols Only

in Transmit Mode . 154
 4.3.2 Implementation of SPI Protocols Both in Transmit

and Receive Mode . 169
 4.4 SPI VHDL Implementation Examples for Electronic Devices 175

 4.4.1 VHDL Implementation of SPI Protocol for 12-bit
DAC MCP4921 . 175

 4.4.2 Sine Signal Generation and SPI Protocol Development
in VHDL for Digital Analog Converter (DAC),
AD7303 . 177

 4.4.3 SPI Protocol Development in VHDL for Digital
Output MEMS Accelerometer, ADXL362 186

Problems . 192

 5 Inter Integrated Circuit (I2C) Serial Communication in VHDL 193
 5.1 Master-Slave Connections and I2C Port Circuit 193
 5.2 START, STOP, and IDLE Control Signals of I2C Protocol 196
 5.3 Generation of Shifted Clock and Determination

of the Transmission Instants. 197

Contents

xiii

 5.4 I2C Read and Write Operations . 201
 5.4.1 I2C Write Operation. 201
 5.4.2 I2C Read Operation . 201

 5.5 Data Transfer Formats . 202
 5.5.1 Write Operation . 202
 5.5.2 Master Reads the Slave Immediately 202
 5.5.3 Combined Format Involving Repeated START 203

 5.6 VHDL Implementation of I2C Protocol . 205
 5.7 VHDL Implementation of FPGA and ADT7420 I2C

Interfacing . 218
 5.7.1 VHDL Implementation of I2C Communication

Between FPGA and ADT7420. 219
Problems . 235

 6 Video Graphic Array (VGA) and HDMI Interfacing 237
 6.1 Video Graphic Array (VGA) . 237

 6.1.1 Graphic Controller . 238
 6.1.2 VGA Monitors . 239
 6.1.3 Pixel Clock . 240

 6.2 Basic VGA Format . 240
 6.2.1 Hsync Signal . 242
 6.2.2 Vsync Signal . 243
 6.2.3 VGA Resolution Modes . 245

 6.3 VGA Connector . 246
 6.4 VHDL Design for VGA Interface . 247
 6.5 VHDL Implementation Examples . 248

 6.5.1 Generation and Display of Letter “I” 248
 6.5.2 Generation and Display of Square Shape 252
 6.5.3 Generation and Display of Moving Square 263
 6.5.4 Generation and Display of a Filled-Circle and a Ring 270
 6.5.5 Generation and Display of Radar Screen 282

 6.6 High-Definition Multimedia Interfacing (HDMI) and VHDL
Implementation of HDMI . 286
 6.6.1 TDMS Communication Channel . 287
 6.6.2 8b/10b Encoder . 288
 6.6.3 Implementation of TMDS Encoder in VHDL 291
 6.6.4 Serializer in TMDS Communication Channel

and Its VHDL Implementation . 296
 6.6.5 VHDL Implementation of HDMI . 297

Problems . 307

 Bibliography . 309

 Index . 311

Contents

1© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
O. Gazi, A. Ç. Arlı, State Machines using VHDL,
https://doi.org/10.1007/978-3-030-61698-4_1

1State Machines and Modeling
of Mathematical and Physical Problems
by State Machines

State machines are used to characterize the behavior of a system which can be an
electronic circuit, or a real-life event, and a physical event. Even the psychology of
a human can be modeled by a state machine. The invention of state machines was a
reason for the development of computers. State machines are widely used in indus-
try. For instance, they are used in factories for control applications. Communication
technology heavily relies on the state machines. Without the availability of state
machines, the existence of today’s technology would not be possible. In this chap-
ter, we provide information about the state machines, and state machine modeling
of physical and abstract events.

1.1 State

The behavior of a circuit involving memory units can be expressed using states. The
outputs of the memory elements can be considered as states. On the other hand,
states are also defined as systems used in real-life. The state change occurs if an
input is applied to the system. The human body can also be considered as a system.
When you receive a good news, your mode changes to happiness which can be con-
sidered as a state, on the other hand, when you receive a bad news, your mode
changes to sorry which can be considered as another state.

The states used for digital electronic circuits are changed in a controlled manner.
The controller is the clock course. When an input is applied, state change does not
occur immediately, but a clock pulse application waits. Upon the application of a
clock pulse, state change occurs.

The changes between states can be illustrated using flow charts, state tables, or
state diagrams. The most common representation is the state diagram.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61698-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-61698-4_1#DOI

2

1.1.1.1 Mealy and Moore Machines
Finite state machines can be divided into two main categories which are named as
Mealy state machines and Moore state machines.

The outputs of the Moore state machines depend solely only on the present state
values, on the other hand, the outputs of the Mealy machines depend on both present
states and external inputs. The general structure of Moore state machines is depicted
in Fig. 1.2.

1.1.1 State Diagrams and Mealy and Moore Models

State diagrams are used to express the behavior of sequential circuits graphically.
State diagrams contain the same information as state tables. The information avail-
able in a state table can be expressed using state diagrams. Transitions between
states are shown considering the inputs and outputs of the circuit as depicted in
Fig. 1.1. Transitions between states occur upon the application of a clock pulse.

State-0 State-1

State-2State-3

Inputs/Outputs

Inputs/Outputs

Inputs/Outputs

Inputs/Outputs
Inputs/Outputs Inputs/Outputs

Fig. 1.1 A typical Mealy state diagram

Logic

Circuit

State

RegisterExternal

Inputs

Moore

Output

Logic

Outputs

Fig. 1.2 The general structure of Moore state machines

1 State Machines and Modeling of Mathematical and Physical Problems by State…

3

The general structure of Mealy state machines is depicted in Fig. 1.3.

Logic

Circuit

State

RegisterExternal

Inputs

Mealy

Output

Logic

Outputs

Fig. 1.3 The general structure of Mealy state machines

State-A

Output

Input

Input

Input

State-B

Output

Fig. 1.4 Generic model for Moore state machine

State-A

Input/Output

State-B

Input/Output Input/Output

Input/Output

Fig. 1.5 Generic Model for Mealy state machine

We can implement a sequential circuit using Mealy or Moore machines, and a state
diagram for a Mealy machine can be converted to a state diagram of Moore machine
and vice versa. If we want to explicitly emphasize the type of the state machine,
then for Moore machines the outputs of the circuits are written under the name of
the state identity as in Fig. 1.4.

The general state diagram for a Mealy state machine is depicted in Fig. 1.5.

1.1 State

4

Example 1.1 In Fig. 1.6, state diagram of a Mealy state machine is depicted.

State-A State-B

0/0

1/1

0/0 1/0

Fig. 1.6 Mealy state diagram for Example 1.1

State-A

0

State-B

0

0

State-I

1

1

1

1

0

0

Fig. 1.7 Moore conversion result

The Mealy state diagram of Fig. 1.6 can be converted to a Moore state diagram as
in Fig. 1.7.

Note that different circuits are synthesized for Moore and Mealy state machines
even though they do the same task.

1.1.2 State Names

The names are assigned to the states in Mealy and Moore models. Since, in the
Moore models the outputs are indicated below the state names, for the simplicity of
illustration, the state names can be omitted, and in this case state outputs are also
used for the names of the states. For Mealy models, state names cannot be
omitted.

Example 1.2 The Moore state diagram in Fig. 1.8a can also be drawn as in
Fig. 1.8b.

1 State Machines and Modeling of Mathematical and Physical Problems by State…

5

1.1.3 State Machine Inputs and Outputs

The inputs and outputs in a state diagram can also be indicated using letters or
words. If a letter word has an apostrophe, it indicates that the input value indicated
by letter or word equals to 0, otherwise it is equal to 1.

Example 1.3 Two Moore state diagrams which employ letters and words for inputs
or outputs are depicted in Fig. 1.9.

0

1

0 1

State-A

000

State-B

111

0

1

0 1

000 111

(A)

(B)

Fig. 1.8 Moore state diagram representations

x’

x

x x

State-A

000

State-B

111

Turn

Left

Obj-Right

Turn

Right

Obj-Left

Obj-Right

Obj-Left

Fig. 1.9 Two Moore state diagrams

1.2 Modeling of Mathematical and Real-Life Problems by
State Machines

In this section, we provide examples for the modeling of mathematical and real-life
problems by state machines. We will consider both Mealy and Moore state diagrams
for modeling.

1.2 Modeling of Mathematical and Real-Life Problems by State Machines

6

The state names with their outputs and inputs of the Moore state diagram of Fig. 1.11
can be expressed using words in a meaningful manner as in Fig. 1.12.

Example 1.4 The block diagram of an obstacle avoidance robot is shown in
Fig. 1.10. When an object on the right is detected, only the right motor works and
the robot turns left. In a similar manner, when an object on the left is detected, only
the left motor works and the robot turns right.

L-Sensor

R-Sensor

Central
Control

Motor
R

Motor
L

Fig. 1.10 The block diagram of obstacle avoidance robot

ST2

LRM=1

ST0

RM=1

RS=1

ST1

LM=1

LS=1RS=1

LS=1

RS=1

LS=1

LS=0, RS=0

LS=0, RS=0

LS=0, RS=0

RS�Right Sensor
LS�Left Sensor
LM�Left Motor
RM�Right Motor
LRM�Left, Right motor

Fig. 1.11 State diagram of obstacle avoidance robot

The operation of the obstacle avoidance robot can be described using Moore state
machine in Fig. 1.11.

1 State Machines and Modeling of Mathematical and Physical Problems by State…

7

Example 1.5 Obtain the Moore state diagram of the electronic counter circuit
which works as follows. When the external input is 0, the counter follows the count
sequence 0–2–4–6. On the other hand, when the external input is 1, the counter fol-
lows the count sequence 1–3–5–7–0.

Solution 1.5 Considering the given information, we can construct the Moore state
diagram as in Fig. 1.13 where x denotes the external input, and state names are the
same as the state outputs, i.e., circuit outputs.

Move

Straight

Turn Left

Obs-Right

Turn

Right

Obs-Left

Obs-Right

Obs-Left

Obs-Right

Obs-Left

Obs-Free

Obs-Free

Obs-Free

Fig. 1.12 State diagram of obstacle avoidance robot

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

x

x

1 1

0 2

46

000 010

100110

1

57

0

3 001 011

101111

000

Fig. 1.13 Moore state diagram for counter

1.2 Modeling of Mathematical and Real-Life Problems by State Machines

8

Example 1.6 Obtain the state diagram of the circuit which detects three consecu-
tive 1’s in a bit string. Overlapping is allowed.

Solution 1.6 The Mealy state diagram of three 1’s detector is depicted in Fig. 1.14
where it is indicated that the circuit output equals to 1 when three consecutive 1’s
are detected otherwise circuit output equals to 0.

State-0 State-1

State-2State-3

0

1

0

1/1

0

1

1/1

Reset
0

Fig. 1.14 Mealy state diagram for three consecutive 1’s detector

0

0

0

1 11

1

0

0 0 0

1 1

1Input

Output

Fig. 1.15 Non-return to zero inverted (NRZI) encoding

For instance, for the input stream 10111 10111 001 the circuit output is 00001
10001 000.

Example 1.7 Obtain the state diagram of non-return to zero inverted (NRZI)
encoding technique. In this technique, the circuit inputs a bit string and performs
encoding operation. The encoding is done in a way such that, if the input is a 0, then
no change is performed on the output signal, otherwise complement of the output is
taken.

Solution 1.7 In Fig. 1.15, the operation of NRZI technique is illustrated.

1 State Machines and Modeling of Mathematical and Physical Problems by State…

9

The corresponding Mealy state diagram is depicted in Fig. 1.16.

State-A State-B

1/0

1/1

0/0 0/1

Fig. 1.16 Mealy state diagram for NRZI encoding

0

Stuffed bit

Input

Output
0

0

0

0

0

0

11 1 11

1 1111

Fig. 1.17 Bit stuffing waveforms

State-0 State-1

State-2State-3

0/0

1/1

0/0

1/10

0/0

1/1

1/1Reset

0/0

Fig. 1.18 Mealy state diagram of the bit stuffing operation

Example 1.8 The bit stuffing circuit inserts a 0 whenever three consecutive 1’s are
detected in a bit string. Obtain the state diagram of the circuit.

Solution 1.8 The circuit output equals 0 whenever three consecutive 1’s are
detected, otherwise, the circuit output is the same as the input bit. For instance, for
the input stream 110 111 1111 0110 the circuit output is 110 111 0 111 0 1 0110.

The bit stuffing operation is graphically illustrated in Fig. 1.17.

Considering the given information, we can draw the Mealy state diagram of the bit
stuffing circuit as in Fig. 1.18.

1.2 Modeling of Mathematical and Real-Life Problems by State Machines

10

The Moore state diagram of the bit stuffing circuit is depicted in Fig. 1.19.

State-0

0

State-1

1

State-2

1

State-3

10

0

1

0

1

0

1

Reset

0

1

Fig. 1.19 Moore state diagram of the bit stuffing operation

Input

Output

0

1 1

1

1

0

00 0

1

0

0

00

0 0

0

0

Fig. 1.20 Input/output waveforms of edge detector

State-A State-B

1/1

0/0 1/0

0/0

Fig. 1.21 Mealy state diagram for edge detector

Example 1.9 The rising edge detector generates logic-1 when a transition from 0
to 1 is detected. Obtain the state diagram of the edge detector.

Solution 1.9 The operation of the edge detector is graphically illustrated in
Fig. 1.20.

Considering the given information, we can draw the Mealy state diagram of the
edge detector as in Fig. 1.21.

1 State Machines and Modeling of Mathematical and Physical Problems by State…

11

Example 1.10 An elevator is used between two floors. The elevator has up and
down buttons, and inside the elevator there are one green and one red light. At down
floor only green light is on and at up floor only red light is on. Obtain the state dia-
gram for the elevator machine.

Solution 1.10 The inputs of the elevator are the up and down buttons, and the out-
puts are the green and red lights. Considering the given information, we can draw
the state machine of the elevator as in Fig. 1.22 where letters are used to denote the
inputs and outputs, and if a letter has an apostrophe, it indicates that 0 is the value
of the letter, otherwise, it has value 1.

Floor-D Floor-U

D/R’G U/RG’

D: Down

U: Up

G: Green

R: Red D/R’G

U/RG’

Fig. 1.22 Mealy state diagram of the elevator machine

1 1 00

0

1

Input

Output

Fig. 1.23 Manchester encoding waveforms

Example 1.11 Obtain the state diagram of the Manchester encoding illustrated in
Fig. 1.23.

1.2 Modeling of Mathematical and Real-Life Problems by State Machines

12

Since pulse levels are expressed using two bits, the clock frequency, i.e., the clock
speed of the state machine, is twice that of the bit clock.

1.2.1 Some Applications of Finite State Machines

Some practical application of state machines can be seen in: Vending Machines,
Traffic Lights, Video Games, Memory Controllers, Communication Protocols,
Speech Processing, Channel Encoding, Industrial Control, etc.

The following example illustrates the use of state machines in asynchronous
serial communication.

Example 1.12 RS232 signaling shown in Fig. 1.26 is used for asynchronous data
transmission. Obtain the state diagram of the RS232 transmission waveform.

11 11 0000

01

10

Input

Output
0 1 1 0 1 0 0 1

Fig. 1.24 Manchester encoding

State-0 State-1

State-2State-3

0/0

0/11/11/0 0/0

1/1

CLKSM CLF Kf f= 2´

00/01

11/10

State-BState-A

11/10 00/01

(A) (B)

Fig. 1.25 State diagrams for Manchester encoding

Solution 1.11 Pulse levels can be expressed using two binary digits as shown in
Fig. 1.24.

Considering Fig. 1.24, the state diagram of the Manchester encoding can be drawn
as in Fig. 1.25a which can also be drawn as in Fig. 1.25b.

1 State Machines and Modeling of Mathematical and Physical Problems by State…

13

Solution 1.12 The transmission waveform shown in Fig. 1.26 can be expressed
using Moore state machine as in Fig. 1.27 where transmission of each pulse is con-
sidered as a separate state.

Start Bit-0 Bit-1 Bit-2 Bit-3 Bit-4 Bit-5 Bit-6 Bit-7 Stop

Fig. 1.26 RS232 transmission waveform

TX0

op=bit0

TX1

op=bit1

TX2

op=bit2

TX3

op=bit3

TX4

op=bit4

TX5

op=bit5

TX6

op=bit6

TX7

op=bit7

TX

op=stop

TX

op=start

IDLE

No Data in

Buffer

Data in the Buffer

Data in the Buffer

No Data in

Buffer

op → output

Fig. 1.27 State diagram of RS232 transmission waveform

TX

Bit-0

TX

Bit-1

TX

Bit-2

TX

Bit-3

TX

Bit-4

TX

Bit-5

TX

Bit-6

TX

Bit-7

TX

STOPTX

START
IDLE

No Data in

Buffer

Data in the Buffer

Data in the Buffer

No Data in

Buffer

Fig. 1.28 Alternative representation of state diagram of RS232 transmission waveform

The Moore state diagram of Fig. 1.27 can be drawn as in Fig. 1.28 where inside
states we only use a single word, and each of these words imply the detailed infor-
mation shown in the states of Fig. 1.27.

Example 1.13 Design a simple sequence detector for the detection of the sequence
011. Include three outputs that indicate how many bits have been received in the
correct sequence.

(Each output is connected to a LED.) Draw the state diagram for Moore state
machine.

1.2 Modeling of Mathematical and Real-Life Problems by State Machines

14

Solution 1.13 We will use Moore state machines for this example. The initial state
is shown in Fig. 1.29 where the state output written below the state name indicates
whether the sequence is detected or not. When the sequence is detected, state output
equals to logic-1.

State-A

0

Fig. 1.29 Starting state

State-A

0

State-B

0

x=0

x=

1

State-A

0

State-B

0

x=0

Fig. 1.30 Transitions from “State-A”

x=1

State-A

0

State-B

0

x=0

x=0

State-C

0

x=1

Fig. 1.31 Transitions from “State-B”

If the first input bit is 0, a transition is made to “State-B”, on the other hand, if the
first input bit is 1, a transition to “State-A” itself is made as shown in Fig. 1.30.

The transitions from “State-B” considering different input values are drawn as in
Fig. 1.31.

1 State Machines and Modeling of Mathematical and Physical Problems by State…

15

The transitions from “State-C” considering different input values are drawn in
Fig. 1.32 where it is clear that when “State-D” is reached, the sequence 011 is
detected, and output value equals to 1.

If the input bit is 0 at “State-D”, a transition is made to “State-B” as shown in
Fig. 1.33.

x=1

State-A

0

State-B

0

x=0

x=0

State-C

0

x=1x=0

State-D

1

x=1

Fig. 1.32 Transitions from ‘State-C’

x=1

State-A

0

State-B

0

x=0

x=0

State-C

0

x=1x=0

State-D

1

x=1

x=0

Fig. 1.33 Transitions from “State-D”

1.2 Modeling of Mathematical and Real-Life Problems by State Machines

16

If the input bit is 1 at “State-D”, a transition is made to the initial state “State-A” as
shown in Fig. 1.34 which is the complete state diagram.

Example 1.14 Design a sequence detector that searches the pattern 01[0 ∗]1, where
[0 ∗] is any number of consecutive zeroes, in a bit stream. The output become equal
to 1 every time the pattern is detected.

Draw the Mealy state diagram for this sequence detector.

Solution 1.14 From every state, there are two outgoing transitions corresponding
to inputs 0 and 1. Considering this, the transitions from the starting state can be
drawn as in Fig. 1.35.

The transitions for the inputs 0 and 1 from the state “First” are drawn as in Fig. 1.36.
The state names except for “Delay” indicate the number of bits found correctly for
the pattern 01[0 ∗]1.

x=1

State-A

0

State-B

0

x=0

x=0

State-C

0

x=1x=0

State-D

1

x=1

x=0

x=1

Fig. 1.34 Moore state machine diagram for the detection of 011 sequence

Start

First

0/0

1/0

Fig. 1.35 Transitions from state ‘Start’

1 State Machines and Modeling of Mathematical and Physical Problems by State…

17

The transitions for the inputs 0 and 1 from the state “Second” are drawn as in
Fig. 1.37.

Second

Start

First

0/0

0/0

1/0

1/0

Fig. 1.36 Transitions from state “First”

Second

Start

First

0/0

0/0

1/0

Delay 0/0

1/1

1/0

Fig. 1.37 Transitions from state “Second”

1.2 Modeling of Mathematical and Real-Life Problems by State Machines

18

The transitions for the inputs 0 and 1 from the state “Delay” are drawn as in Fig. 1.38
where the state “Success” indicates that the pattern is found.

Second

Start

First

0/0

0/0

1/0

Delay 0/0

1/1

Success

1/1

1/0

0/0

Fig. 1.38 Transitions from state “Delay”

The transitions for the inputs 0 and 1 from the state “Success” are drawn as in
Fig. 1.39.

1 State Machines and Modeling of Mathematical and Physical Problems by State…

19

Example 1.15 Design a sequence detector that searches the pattern 01[0 ∗]1, where
[0 ∗] is any number of consecutive zeroes, in a bit stream. The output become equal
to 1 every time the pattern is detected.

Draw the state diagram for Moore machine implementation.

Solution 1.15 The state machines detects the sequence 010[0 ∗]1 where [0 ∗] indi-
cates a sequence of zeros. The shortest sequence to be detected is 011. When the
sequence is detected the state output equals to 1. Otherwise, the state output equals
to 0. In our Moore model, the state names except for “Delay” indicate the numbers
of 1’s to be detected in the required bit sequence.

0/0

Second

Start

First

0/0

0/0

1/0

Delay 0/0

1/1

Success

1/1

0/0

1/1

1/0

Fig. 1.39 Complete state diagram of sequence detector

1.2 Modeling of Mathematical and Real-Life Problems by State Machines

20

The transitions from the state “First” for input 0 and 1 are indicated in Fig. 1.41.

The initial state and the transitions from the initial state for input 0 and 1 are indi-
cated in Fig. 1.40.

Second

0

Start

0

First

0

x=0

x=1

x=0

x=1

Fig. 1.41 Transitions from state “First”

Start

0

Start

0

First

0

x=0

x=1

Fig. 1.40 Transitions from state “Start”

1 State Machines and Modeling of Mathematical and Physical Problems by State…

21

The transitions from the state “Second” for input 0 and 1 are indicated in Fig. 1.42
where the “Success” state is reached when the input pattern is 011.

Second

0

Start

0

First

0

x=0

x=0

x=1

Delay

0

x=0

Success

1

x=1

x=1

Fig. 1.42 Transitions from state “Second”

1.2 Modeling of Mathematical and Real-Life Problems by State Machines

22

x=0

Second

0

Start

0

First

0

x=0

x=1

x=0

x=1

Delay

0

x=0

Success-1

1

x=1
Success-2

1

x=1

Fig. 1.43 Transitions from state “Delay”

The transitions from the state “Delay” for input 0 and 1 are indicated in Fig. 1.43
where an extra “Success-2” is defined, and this state is reached for the pattern
01[0 ∗]1.

1 State Machines and Modeling of Mathematical and Physical Problems by State…

23

The transitions from the state “Success-2” for input 0 and 1 are indicated in Fig. 1.44.

x=0

Second

0

Start

0

First

0

x=0

x=1

x=0

x=1

Delay

0

x=0

Success-1

1

x=1
Success-2

1

x=1

x=0

x=1

Fig. 1.44 Transitions from state “Success-2”

1.2 Modeling of Mathematical and Real-Life Problems by State Machines

24

The transitions from the state “Success-1” for input 0 and 1 are indicated in Fig. 1.45.

x=1

x=0

Second

0

Start

0

First

0

x=0

x=0

x=1

Delay

0

x=0

Success-1

1

x=1
Success-2

1

x=1

x=0

x=1

x=0

x=1

Fig. 1.45 Complete state diagram for Moore model

1.2.2 Mealy or Moore

The Moore machine lags one clock cycle to generate the same output sequence. The
Mealy machine can change asynchronously with the input. The Mealy Machine
requires one less state than the Moore machine. Mealy machine makes use of more
information, i.e., inputs, than Moore machine while forming the outputs. Having a
smaller number of states reduces the design cost. In some cases, more than one state
reduction is also possible.

However, Mealy machines may face “glitch” problem. Glitches are unwanted
temporary outputs appearing for very short time interval, and glitches can be haz-
ardous for electronic devices. To prevent the glitch problems, we need an extra flip-
flop in Mealy machines, and in this case, both machines can use the same number
of flip-flops.

1 State Machines and Modeling of Mathematical and Physical Problems by State…

25

Example 1.16 Obtain the Moore and Mealy state diagrams for the sequence detec-
tor which detects the sequences 0010 or 0001. Overlapping patterns are allowed.

Solution 1.16 Considering the allowance of overlapped patterns, we can draw the
Mealy state diagram as in Fig. 1.46.

State-0 State-1 State-2 State-30/0Reset

State-4

0/00/0

0/0

1/0

1/0

1/0

1/0

1/1

0/1

Fig. 1.46 Mealy state diagram for sequence detector

State-0

0

State-1

0

State-2

0

State-3

0

0Reset

State-4

0

00

0

1

1

1

0

1

State-5

1

State-6

1

0 0

1

1

Fig. 1.47 Moore state diagram for sequence detector

The Moore state diagram can be obtained as in Fig. 1.47. In fact, once you have the
Mealy state diagram, you can convert it to Moore state diagram directly.

For the input sequence x = “10011000010010111010010”, the output of the Mealy
and Moore machines can be calculated as

x: 1 0 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 0 1 0 0 1 0
y Mealy: 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1
y Moore: 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1

1.2 Modeling of Mathematical and Real-Life Problems by State Machines

26

where it is seen that Mealy and Moore state diagrams produce the same output
sequence for the same input sequence, however, the output of the Moore state dia-
gram is delayed by one clock cycle.

1.3 Conversion Between Mealy and Moore State Diagrams/
Machines

In this section, we will consider the conversion operation between Mealy and Moore
state machines/diagrams.

1.3.1 Conversion from Mealy to Moore State Diagrams/
Machines

The conversion of a state in a Mealy model to a state in Moore model is depicted in
Fig. 1.48.

State

x/0
x/0

x/1

y/0

y/0

y/1

State

0

State

1

x

y

y

y/1

x/0

x

y/1

Mealy Moore

x/0

Fig. 1.49 Mealy to Moore conversion example

State

x/0
w/0

x/1

y/0

y/1

z/1

State

0

State

1

x

y

y

z/1

w/0

x

z/1

Meally Moore

w/0

Fig. 1.48 Mealy to Moore conversion operation

Example 1.17 The conversion of a Mealy state to a Moore state is illustrated in
Fig. 1.49.

1 State Machines and Modeling of Mathematical and Physical Problems by State…

27

Example 1.18 Convert the Mealy state machine in Fig. 1.50 to a Moore state
machine.

State-A

0/0

State-A

X

0

0

State-A

0

Fig. 1.51 Conversion operation

Solution 1.18 First, let us convert “State-A” as in Fig. 1.51 where it is seen that the
output of the initial state is unknown.

Example 1.19 Convert the Mealy state machine in Fig. 1.52 to a Moore state
machine.

Solution 1.19 Assume that starting state is “State-A”, i.e., when reset signal is
applied to the state machine, starting state happens to be “State-A”. First, let us
convert “State-A” as in Fig. 1.53.

State-A

0/0

Fig. 1.50 A self-transition state

State-A State-B

1/1

1/0

0/0 0/1

Fig. 1.52 Example Mealy state diagram

State-A

0

State-B

1/0

0 0/0

State-A

X

0

1/0

1/1

Fig. 1.53 Conversion of “State-A”

1.3 Conversion Between Mealy and Moore State Diagrams/Machines

28

The unknown output of “State-A” in Fig. 1.53 can be determined considering the
incoming transition from “State-B” as in Fig. 1.54.

If we convert “State-B”, we get the Moore state machine as in Fig. 1.55. Although
“State-B” in Fig. 1.55 has self-transitions, it is not the starting state, and for this
reason, we do not have two Moore states for “State-B” as in the conversion of
“State-A”.

Lastly, we can assign different names to each state as in Fig. 1.56.

State-A

0

State-B

0

1

1

0 0

State-C

1

0

1

Fig. 1.56 Conversion result

State-A

0

State-B

0

1

1

0 0

State-A

1

0

1

Fig. 1.55 Conversion of “State-B”

State-A

0

State-B

1

1/0

0 0/0

State-A

1

0

1/0

Fig. 1.54 Determination of unknown output

1 State Machines and Modeling of Mathematical and Physical Problems by State…

29

When Mealy and Moore state machines/diagrams are compared, we see that Moore
machine has one more state. This means that Moore state machine requires one
more flip-flop for its hardware implementation.

Example 1.20 Convert the Mealy state machine shown in Fig. 1.57 to a Moore
state machine.

State-2
State-4

State-3
State-1

State-0

x/0

x/1

y/0
y/1

x/0

Reset

y/0

x/0

y/0

y/1

x/0

Fig. 1.57 Example Mealy state diagram

State-2

State-4

State-3

State-1
x/0

x/1

y/0

y/1

x

y/0

x/0

y/0

y

x/0

State-0

0

State-0

1

x/0

y/0

Reset

Fig. 1.58 Conversion of “State-0”

Solution 1.20 First, we convert “State-0” for Moore model as in Fig. 1.58.

1.3 Conversion Between Mealy and Moore State Diagrams/Machines

30

In the second step, “State-1” is converted for Moore model as in Fig. 1.59.

State-2

State-4

State-3State-1

0
x

x/1

y/0

y/1

x

y/0

x/0

y/0

y

x/0

State-0

0

State-0

1

x

y/0

Reset

Fig. 1.59 Conversion of “State-1”

State-2

State-4

State-3

0

State-1

0
x

x/1

y/0

y/1

x

y/0

x

y

y

x

State-0

0

State-0

1

x

y/0

Reset

Fig. 1.60 Conversion of “State-3”

Conversions of “State-3” and “State-4” are easier than the conversion of “State- 2”.
For this reason, in the third step, we convert “State-3” for Moore model as in
Fig. 1.60.

1 State Machines and Modeling of Mathematical and Physical Problems by State…

31

In the fourth step, we convert “State-4” for Moore model as in Fig. 1.61.

State-2 State-4

0

State-3

0

State-1

0
x

x/1

y/0

y/1

x

y

x

y

y

x

State-0

0

State-0

1

x

y/0

Reset

Fig. 1.61 Conversion of “State-4”

Lastly, we convert “State-2” for Moore model as in Fig. 1.62.

State-2

1

State-4

0

State-3

0

State-1

0
x

x
y

y

x

y

x

y

y

x

State-0

0

State-0

1

x

y
State-2

0

x
y

Reset

Fig. 1.62 Conversion of “State-2”

1.3 Conversion Between Mealy and Moore State Diagrams/Machines

32

We can assign different names to the new states as in Fig. 1.63.

State-2

1

State-4

0

State-3

0

State-1

0
x

x
y

y

x

y

x

y

y

x

State-0

0

State-6

1

x

y
State-5

0

x
y

Reset

Fig. 1.63 Conversion result of Example 1.20

State

t

x

y

z

State

x/t

y/t

z/t

MeallyMoore

Fig. 1.64 Moore to Mealy conversion operation

1.3.2 Conversion from Moore to Mealy State Machines

The conversion of a Moore state to a Mealy state is depicted in Fig. 1.64.

1 State Machines and Modeling of Mathematical and Physical Problems by State…

33

Example 1.21 Convert the Moore state machine in Fig. 1.65 to a Mealy state
machine.

Solution 1.21 First, we convert “State-A” as in Fig. 1.66.

The conversion of “State-B” to a Mealy state is depicted in Fig. 1.67.

State-A State-B

1

1/0
0/0 0/0

State-C

1

0/0

1/0

Fig. 1.67 Conversion of “State-B”

State-A

State-B

0

1

1
0/0

0

State-C

1

0/0

1

Fig. 1.66 Conversion of “State-A”

State-A

0

State-B

0

1

1

0 0

State-C

1

0

1

Fig. 1.65 Example state machine for conversion

1.3 Conversion Between Mealy and Moore State Diagrams/Machines

34

The conversion of “State-C” to a Mealy state is depicted in Fig. 1.68.

y

x

x

x

Reset y x
State-0

0

State-1

0

State-2

1

State-3

1

State-4

0

y

x

y

y

Fig. 1.70 Moore state machine for Example 1.22

When Fig. 1.68 is inspected, we see that for the same inputs, “State-A” and “State-C”
produce the same outputs, and these two states are equivalent states and they can be
merged. When the equivalent states are merged, we get the final form of the Mealy
state machine as in Fig. 1.69.

Example 1.22 Convert the Moore state machine shown in Fig. 1.70 to an equiva-
lent Mealy state machine.

State-A State-B

1/1

1/0
0/0 0/0

Fig. 1.69 Conversion result after state merging

State-A State-B

1/1

1/0
0/0 0/0

State-C

0/0

1/0

Fig. 1.68 Conversion of “State-C”

1 State Machines and Modeling of Mathematical and Physical Problems by State…

35

y/0

x/0

x/1

x/0

Reset
y/0 x/1State-0

State-1

State-2

State-3

State-4
y/1

x/0

y/1

y/0

Fig. 1.71 Mealy conversion result for Example 1.22

Solution 1.22 Following the Moore to Mealy conversion rule depicted in Fig. 1.64,
we get the Mealy state diagram shown in Fig. 1.71.

1.4 Modeling the Behavior of Electronic Circuits Using State
Machines

Flip-flops are the memory units, i.e., cells, used for the construction of electronic
circuits involving memory elements, and these circuits are controlled by a clock
source and their operations are sequential. The outputs of the memory cells are
considered as states.

1.4.1 Flip-Flops, Characteristic, and Excitation Tables

The commercially available flip-flops can be listed as D, T, JK, and SR. State tables
are used to illustrate the behavior of clocked sequential circuits involving flip-flops.
The black box representation of commercially available positive and negative edge
triggered D, T, JK, and SR flip-flops are depicted in Figs. 1.72 and 1.73.

1.4 Modeling the Behavior of Electronic Circuits Using State Machines

36

The behavior of the commercially available flip-flops can be explained using the
characteristic and excitation tables of Tables 1.1 and 1.2 where Q(t) is the present
state, and Q(t + 1) is the next state, i.e., state after the application clock pulse.

Table 1.2 Excitation tables of SR, JK, D, and T flip-flops

Q(t) Q(t + 1) S R Q(t) Q(t + 1) J K

0 0 0 × 0 0 0 ×
0 1 1 0 0 1 1 ×
1 0 0 1 1 0 × 1
1 1 × 0 1 1 × 0

Q(t) Q(t + 1) D Q(t) Q(t + 1) T

0 0 0 0 0 0
0 1 1 0 1 1
1 0 0 1 0 1
1 1 1 1 1 0

Q

'Q

D

CLK

Q

'Q

D

CLK

Fig. 1.72 Positive and negative edge triggered D flip-flops

1S Q

'Q

J Q

'Q

T Q

'QR K

1S Q

'Q

J Q

'Q

T Q

'QR K

Fig. 1.73 Positive and negative edge triggered SR, JK, and T flip-flops

Table 1.1 Characteristic tables of SR, JK, D, and T flip-flops

J K Q(t + 1) S R Q(t + 1) D Q(t + 1) T Q(t + 1)
0 0 Q(t) 0 0 Q(t) 0 0 0 Q(t)
0 1 0 0 1 0 1 1 1 Q′(t)
1 0 1 1 0 1
1 1 Q′(t) 1 1 X

1 State Machines and Modeling of Mathematical and Physical Problems by State…

37

Example 1.23 The characteristic table of AB flip-flop is given in Table 1.3. Find
the excitation table of AB flip-flop.

Table 1.6 The third line of characteristic table of AB flip-flop

A B Q(t + 1)
0 0 Q′(t)
0 1 1
1 0 0
1 1 Q(t)

Table 1.3 The characteristic table of AB flip-flop

A B Q(t + 1)
0 0 Q′(t)
0 1 1
1 0 0
1 1 Q(t)

Table 1.4 Possible outputs of the flip-flops before and after clock application

Q(t) Q(t + 1) A B

0 0
0 1
1 0
1 1

Table 1.5 The last line of characteristic table of AB flip-flop

A B Q(t + 1)
0 0 Q′(t)
0 1 1
1 0 0
1 1 Q(t)

Solution 1.23 First we construct the excitation table as in Table 1.4 containing only
output values.

For Q(t) = 0 and Q(t + 1) = 0, we can have =1, B = 1, since Q(t + 1) = Q(t) as indi-
cated in Table 1.5.

Besides for Q(t + 1) = 0 we can have A = 1, B = 0 as illustrated in Table 1.6.

1.4 Modeling the Behavior of Electronic Circuits Using State Machines

38

We conclude that for Q(t) = 0 and Q(t + 1) = 0 we have =1, B = ×. Then, the first line
of the excitation table happens to be as in Table 1.7.

Proceeding in a similar manner, we obtain the excitation table of the AB flip-flop as
in Table 1.8.

Table 1.7 The first line of the excitation table of the AB flip-flop

Q(t) Q(t + 1) A B

0 0 1 ×
0 1
1 0
1 1

Table 1.8 Excitation table of the AB flip-flop

Q(t) Q(t + 1) A B

0 0 1 ×
0 1 0 ×
1 0 × 0
1 1 × 1

1.4.2 State Tables and State Diagrams of Sequential Circuits

The header of the state table contains the parameters representing the external
inputs, flip-flops’ inputs, external outputs, and flip-flops’ outputs. The outputs of the
flip-flops are decided upon the application of clock pulses considering their input
values.

Example 1.24 Obtain the state table of the circuit shown in Fig. 1.74.

DQ

CLK

2x1

MUX

0

1

x
f

y

Fig. 1.74 Sequential circuit for Example 1.24

1 State Machines and Modeling of Mathematical and Physical Problems by State…

39

Solution 1.24 In the state table, we first write all the possible combinations of the
external inputs and present states as shown in Table 1.9.

Table 1.9 State table construction

x y Q(t) f Q(t + 1)
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Table 1.10 State table

x y Q(t) f Q(t + 1)
0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 1 1
1 0 0 1 1
1 0 1 1 1
1 1 0 0 0
1 1 1 1 1

The multiplexer output can be written as

f y x yQ t= + ()′

which goes to the input of the D flip-flop, i.e., D = f. Upon the application of the
clock pulse, the output of the flip-flop is determined as Q(t + 1) = D. That means that

Q t y x yQ t+() = + ()′1 .

We can complete the state table as in Table 1.10.

1.4 Modeling the Behavior of Electronic Circuits Using State Machines

40

Example 1.25 Obtain the state table of the circuit shown in Fig. 1.76.

Exercise Obtain the state table of the circuit shown in Fig. 1.75.

Half

Adder

A

DQ

'Q

B

T Q

'Q

x 0

1

S

C

y

CLK

Fig. 1.76 Sequential circuit for Example 1.25

DQ

CLK

2x1

MUX

0

1

x
f

y

z

'Q

Fig. 1.75 Sequential circuit for exercise

1 State Machines and Modeling of Mathematical and Physical Problems by State…

41

Table 1.11 All possible values of external inputs and flip-flop outputs

x y Qa(t) Qb(t) D T Qa(t + 1) Qb(t + 1)
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Table 1.12 Filled D and T columns

x y Qa(t) Qb(t) D T Qa(t + 1) Qb(t + 1)
0 0 0 0 0 1
0 0 0 1 0 1
0 0 1 0 0 1
0 0 1 1 0 1
0 1 0 0 0 1
0 1 0 1 0 1
0 1 1 0 0 0
0 1 1 1 0 0
1 0 0 0 1 1
1 0 0 1 1 1
1 0 1 0 0 1
1 0 1 1 0 1
1 1 0 0 1 1
1 1 0 1 1 1
1 1 1 0 0 0
1 1 1 1 0 0

Solution 1.25 First, all the possible values of the external inputs and flip-flop out-
puts are tabulated as in Table 1.11.

In the next step, we write the flip-flop inputs in terms of the external inputs and flip-
flop outputs as in

D x Q t T y Q ta a= ⊕ () = + ()′′ ′ .

Using the above equations, we fill the D and T columns of the state table as in
Table 1.12.

1.4 Modeling the Behavior of Electronic Circuits Using State Machines

42

Upon the application of the clock pulse, the output of the D flip-flop is calculated as
Q(t + 1) = D, and the output of the T flip-flop is calculated using Q(t + 1) = T ⊕ Q(t)
leading to Table 1.13.

Table 1.13 State table completed

x y Qa(t) Qb(t) D T Qa(t + 1) Qb(t + 1)
0 0 0 0 0 1 0 1
0 0 0 1 0 1 0 0
0 0 1 0 0 1 0 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 0 0
0 1 1 0 0 0 0 0
0 1 1 1 0 0 0 1
1 0 0 0 1 1 1 1
1 0 0 1 1 1 1 0
1 0 1 0 0 1 0 1
1 0 1 1 0 1 0 0
1 1 0 0 1 1 1 1
1 1 0 1 1 1 1 0
1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 1

Table 1.14 State table for Example 1.26

x Qa(t) Qb(t) Qa(t + 1) Qb(t + 1) y

0 0 0 0 1 0
0 0 1 0 0 0
0 1 0 0 0 1
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 1 0 0

The information available in a state table can be expressed using the state diagrams,
i.e., a state table can be converted to a state diagram. In the next example, we illus-
trate this concept.

Example 1.26 The state table of a sequential circuit is given as in Table 1.14.
Obtain the state diagram of this circuit using the state table.

1 State Machines and Modeling of Mathematical and Physical Problems by State…

43

Solution 1.26 Let us construct the state diagram using the state table part-by-part.
The shaded regions corresponding to Qa(t)Qb(t) = 00, x = 0 and x = 1 depicted on the
left side of Fig. 1.77 can be shown by a state diagram as indicated on the right side
of Fig. 1.77.

x)(1+tQa)(1+tQb

0 1

10

0

0

0

1

1

1

1

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1 1

1

1

0 0

0

0

0

0

0

0

01

1 1 1

1

)(tQa)(tQb

00 01

10

00 /

01/

)()(tQtQ ba
)()(11 ++ tQtQ ba

yx /
y

Fig. 1.77 State transitions when present state is 00

x)(1+tQa)(1+tQb

0 1

10

0

0

0

1

1

1

1

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1 1

1

1

0 0

0

0

0

0

0

0

01

1 1 1

1

)(tQa)(tQb

00 01

00 /

01/

)()(tQtQ ba)()(11 ++ tQtQ ba yx /

11

y

Fig. 1.78 State table to state diagram conversion operation

In a similar manner, the dark regions corresponding to Qa(t)Qb(t) = 01, x = 0 and
x = 1 depicted on the left side of Fig. 1.77 can be shown by the state diagram on the
right side of Fig. 1.78.

Proceeding in a similar manner we can construct the state table as in Fig. 1.79.

00 /

01/01/

01/

11/

10 / 01/

00 /

00 01

1110

Fig. 1.79 Complete state diagram for Example 1.26

1.4 Modeling the Behavior of Electronic Circuits Using State Machines

44

If we employ the letters for the states as A = 00, B = 01, C = 10, D = 11, we can draw
the state diagram as in Fig. 1.80.

Table 1.15 State table for Example 1.27

x Qa(t) Qb(t) Qa(t + 1) Qb(t + 1)
0 0 0 1 1
0 0 1 1 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 0 1
1 1 1 0 0

Example 1.27 Using the state table in Table 1.15, obtain the state diagram of the
circuit.

Solution 1.27 Using the information available in the state table, we can obtain the
state diagram as in Fig. 1.81.

00 01

0

1

1110

0

1

0

0

1

1

Fig. 1.81 State diagram of Table 1.15

00 /

01/01/

01/

11/

10 / 01/

A B

DC

00 /

Fig. 1.80 State diagram with letter names

1 State Machines and Modeling of Mathematical and Physical Problems by State…

45

Example 1.28 In Fig. 1.82, a shift circuit with its initial value is depicted. Obtain
the state diagram of this circuit.

Table 1.16 State table for exercise

x Qa(t) Qb(t) Qa(t + 1) Qb(t + 1)
0 0 0 0 0
0 0 1 0 1
0 1 0 1 0
0 1 1 0 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 1
1 1 1 1 1

1000 0100

0010

1001

1000

0001

0011

0111

1111

1110

1101
1010

0101

1011

0110

1100

Fig. 1.83 State diagram of Example 1.28

Exercise Using the state table given in Table 1.16, obtain the state diagram.

Solution 1.28 Considering the operation of the shift register, we can construct the
Moore state diagram of the circuit as in Fig. 1.83.

1 0 00

CLK

Fig. 1.82 Digital circuit with a shift register

1.4 Modeling the Behavior of Electronic Circuits Using State Machines

46

Example 1.29 Let us try to find the state diagram of the convolutional encoder
shown in Fig. 1.84.

Since there are two cells in the convolutional encoder, the contents, i.e., outputs, of
both memory cells can be one of the bit pairs 00, 01, 10, and 11. This means that
there are four states of this convolutional encoder. Let us denote the pairs 00, 01, 10,
and 11 by the symbols S0, S1, S2, and S3 respectively.

Initially, the contents of the registers are all zeros as depicted in Fig. 1.85.

When 0 is applied as external input, i.e., when x = 0, the outputs of the convolutional
encoder can be calculated as shown in Fig. 1.86.

+

+

+

0 0
0x =

0

0

0

0

2
y

1
y

Fig. 1.86 Calculation of encoder outputs and next state for state S0 and x = 0

+

+

+

0 0

2
y

1
y

x

Fig. 1.85 Initial values of cells

+

+

+
2
y

1
y

x

Fig. 1.84 Convolutional encoder

1 State Machines and Modeling of Mathematical and Physical Problems by State…

47

0

Present State Input Output Next State

0 00S =

iS x 2 1y y iS
0 0S

2S 3S

1S
0 / 00

00

Fig. 1.87 State table and state diagram formation, step-1

0

Present State Input Output Next State

0 00S =

iS x 2 1y y iS
0 0S

2S 3S

1S

0 / 00

0 00S =00

Fig. 1.88 State table and state diagram formation, step-2

0

Present State Input Output Next State

0 00S =

iS x 2 1y y iS
0

1

2S 3S

1S

0 / 00

0 00S =00

0 00S = 11
1/11 0S

Fig. 1.90 State table and state diagram formation, step-3

And we can trace the behavior of the convolutional encoder by a state table or a state
diagram as indicated in Fig. 1.87.

Upon the application of clock pulse, the next state can be calculated using Fig. 1.86
for the input x = 0 as 00, i.e., S0. We can update the state table and diagram shown
in Fig. 1.87 as in Fig. 1.88.

When logic-1 is applied as external input, i.e., for x = 1, the outputs of the convolu-
tional encoder can be calculated as shown in Fig. 1.89 when present state is S0.

The behavior of the convolutional encoder can be illustrated by a state table or a
state diagram for present state S0 and external input x = 0 as indicated in Fig. 1.90.

+

+

+

0 0
1x =

1

1

1

1

2
y

1
y

Fig. 1.89 Calculation of encoder outputs and next state for state S0 and x = 1

1.4 Modeling the Behavior of Electronic Circuits Using State Machines

48

Present State Input Output Next State

0 00S =

iS x 2 1y y iS

0

0

1
0 00S =00

11
2 10S =

1 01S =

0 00S =

2 10S =
3S

1S

00

0 / 00

0

0S

2S

0 / 00

1/11

Fig. 1.93 State table and state diagram formation, step-5

For present state S1 and external input x = 0, the output of the circuit can be found
as y2y1 = 00 as illustrated in Fig. 1.92, and upon clock pulse the next state happens
to be S2 = 10.

The behavior of the circuit for the present state S1 and external input x = 0 is
expressed using state table and state diagram as in Fig. 1.93.

+

+

+

0

0

1

0x = 1

1

1

2
y

1
y

0

Fig. 1.92 Calculation of encoder outputs and next state for state S1 and x = 0

0

Present State Input Output Next State

0 00S =

iS x 2 1y y iS
0

1

0S

2S 3S

1S

0 / 00

0 00S =00

0 00S = 11 1/11
2 10S =

Fig. 1.91 State table and state diagram formation, step-4

For present state S0 and external input x = 1, we can find the next state upon the
application of clock pulse using Fig. 1.89 as 10, i.e., S2. We can update the state
table and diagram shown in Fig. 1.90 as in Fig. 1.91.

1 State Machines and Modeling of Mathematical and Physical Problems by State…

49

3S

1S

0 / 00

0

0S

2S

0 / 00

1/11

Present State Input Output Next State

0 00S =

iS x 2 1y y iS

0

0

1

1
0 00S =00

11
2 10S =

1 01S =

1 01S =

0 00S =

2 10S =

11 0 00S =

1/11

00

Fig. 1.95 State table and state diagram formation, step-6

For present state S1 and external input x = 1, the output of the circuit can be found
as y2y1 = 11 as illustrated in Fig. 1.94, and upon clock pulse the next state happens
to be S0 = 00.

The behavior of the circuit for the present state S1 and external input x = 1 is
expressed using state table and state diagram as in Fig. 1.95.

For present state S2 and external input x = 0, the output of the circuit can be found
as y2y1 = 01 as illustrated in Fig. 1.96, and upon clock pulse the next state happens
to be S3 = 11.

+

+

+

0

0

1

1x =

1

1

0

1

2
y

1
y

Fig. 1.94 Calculation of encoder outputs and next state for state S1 and x = 1

+

+

+

0

1

1

0x =

0

1

1

1

2
y

1
y

Fig. 1.96 Calculation of encoder outputs and next state for state S2 and x = 0

1.4 Modeling the Behavior of Electronic Circuits Using State Machines

50

For present state S2 and external input x = 1, the output of the circuit can be found
as y2y1 = 10 as illustrated in Fig. 1.98, and upon clock pulse the next state happens
to be S1 = 01.

0
00S =

iS x 2 1
y y iS

0

0

0

1

1

0
00S =00

11
2

10S =

1
01S =

1
01S =

0
00S =

2
10S =

11 0
00S =

2
10S = 01

3
11S =

2
10S = 10 1

01S =1

00

3
S

1
S

0 / 00

0

0
S

2
S

0 / 00

1/11

1/11

0 / 01

1/10

Fig. 1.99 State table and state diagram formation, step-8

The behavior of the circuit for the present state S2 and external input x = 1 is
expressed using state table and state diagram as in Fig. 1.99.

+

+

+

0
1x =

1

1

0

1

0

0

2
y

1
y

Fig. 1.98 Calculation of encoder outputs and next state for state S2 and x = 1

3S

1S

0 / 00

0

0S

2S

0 / 00

1/11

1/11

Present State Input Output Next State

0 00S =

iS x 2 1y y iS

0

0

0

1

1
0 00S =00

11
2 10S =

1 01S =

1 01S =

0 00S =

2 10S =

11 0 00S =

2 10S = 01
3 11S = 0 / 01

00

Fig. 1.97 State table and state diagram formation, step-7

The behavior of the circuit for the present state S2 and external input x = 0 is
expressed using state table and state diagram as in Fig. 1.97.

1 State Machines and Modeling of Mathematical and Physical Problems by State…

51

The behavior of the circuit for the present state S3 and external input x = 0 is
expressed using state table and state diagram as in Fig. 1.101.

Present State Input Output Next State

0 00S =

iS x 2 1y y iS

0

0

0

0

1

1
0 00S =00

11
2 10S =

1 01S =

1 01S =

0 00S =

2 10S =

11 0 00S =

2 10S = 01
3 11S =

2 10S = 10 1 01S =1

3 11S = 01
1 01S =

00

3S

1S
0 / 00

0

0S

2S

0 / 00

1/11

1/11

0 / 01

1/10
0 / 01

Fig. 1.101 State table and state diagram formation, step-9

For present state S3 and external input x = 0, the output of the circuit can be found
as y2y1 = 01 as illustrated in Fig. 1.100, and upon clock pulse the next state happens
to be S1 = 01.

For present state S3 and external input x = 1, the output of the circuit can be found
as y2y1 = 10 as illustrated in Fig. 1.102, and upon clock pulse the next state happens
to be S3 = 11.

+

+

+

1
1x =

1

1

1

0

1

0

2
y

1
y

Fig. 1.102 Calculation of encoder outputs and next state for state S3 and x = 1

+

+

+

1
0x =

0

1

0

0

1

2
y

1
y

Fig. 1.100 Calculation of encoder outputs and next state for state S3 and x = 0

1.4 Modeling the Behavior of Electronic Circuits Using State Machines

52

The state diagram shown in Fig. 1.103 expresses the behavior of the circuit and
it can be used to find the code-word for any input sequence.

 Problems

 1. Obtain the state diagram of the counter which repeats the count sequence 0, 3, 6,
7.

 2. Obtain the Mealy and Moore state diagrams of the sequence detector which
detects the sequence 0110. Overlapping patterns are allowed.

 3. Obtain the state diagram of the convolutional encoder shown in Fig. P1.1.

Present State Input Output Next State

0 00S =

iS x 2 1y y iS

0

0

0

0

1

1

1
0 00S =00

11
2 10S =

1 01S =

1 01S =

0 00S =

2 10S =

11 0 00S =

2 10S = 01
3 11S =

2 10S = 10 1 01S =1

3 11S = 01
1 01S =

3 11S = 3 11S =

00

10

3S

1S
0 / 00

0

0S

2S

0 / 00

1/11

1/11

0 / 01

1/10
0 / 01

1/10

Fig. 1.103 State table and state diagram formation, step-10

The behavior of the circuit for the present state S3 and external input x = 1 is
expressed using state table and state diagram as in Fig. 1.103.

+

+

+

2
y

1
y+

x

Fig. P1.1 Convolutional encoder

1 State Machines and Modeling of Mathematical and Physical Problems by State…

53

 4. Convert the Mealy state diagram shown in Fig. P1.2 to Moore state diagram.

State-2

1

State-4

0

State-3

0

State-1

0
x

y

y

x

y

x

y

x

State-0

0

State-5

1

x

y

x

y

Reset

Fig. P1.3 Mealy state diagram for P5

 5. Convert the Moore state diagram shown in Fig. P1.3 to Mealy state diagram.

State-0 State-1

State-2State-3

0/0

1/1

0/0

1/10

0/0 1/1

1/1
0/0

Fig. P1.2 Mealy state diagram for P4

Problems

54

 6. Obtain the state diagram of the sequential circuit shown in Fig. P1.4.

 7. Draw the Mealy state diagram for RS232 transmission waveform.

Q

CLK

2x1

MUX

0

1

x
f

y

z

'Q

T

Fig. P1.4 Sequential circuit for P6

1 State Machines and Modeling of Mathematical and Physical Problems by State…

55© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
O. Gazi, A. Ç. Arlı, State Machines using VHDL,
https://doi.org/10.1007/978-3-030-61698-4_2

2VHDL Implementation of Finite State
Machines and Practical Applications

In this chapter, we explain the VHDL implementation of finite state machines. We
assume that the reader has the fundamental knowledge of VHDL programming. We
do not aim to teach the fundamentals of VHDL programming in this chapter. We
first explain the templates used in the implementation of state machines and then
solve a variety of examples including some practical ones for the VHDL implemen-
tations. To be able to write VHDL programs for state diagrams, one should have the
knowledge of primary concepts of state machines. For this reason, we suggest the
reader to study Chap. 1 to have an idea of state machines before proceeding to this
chapter.

2.1 Implementation of Finite State Machines in VHDL

A sequential circuit includes both memory elements, i.e., flip-flops, clock sources,
and combinational logic units such as multiplexers, gates, decoders, encoders, etc.
The general structure of a sequential logic circuit is depicted in Fig. 2.1.

A state machine can be implemented using sequential logic circuits. In other words,
we can say that a state machine is nothing but a sequential logic circuit in practice.

Combinational

Logic Circuit

Sequential

Logic Circuit

CLK

Inputs Outputs

Feedback

Fig. 2.1 General structure of a sequential circuit

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61698-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-61698-4_2#DOI

56

State machines can be divided into two main categories which are Moore and
Mealy. In Moore state machines, the outputs of the circuit depend on the current val-
ues of the outputs of the memory elements. In other words, the outputs depend on the
present states. A Moore state machine can have external inputs; however, the immedi-
ate changes of the external inputs have no immediate effects on the circuit outputs.

In Mealy state machines, the outputs of the circuit depend on the external inputs.
When external inputs change, the outputs of the circuit may change before the com-
pletion of the current clock pulse.

A VHDL program written for the implementation of a state machine consists of
mainly an entity part and two processes. One of the processes is written for the
update of the current state upon the application of a clock pulse, and the other pro-
cess is written for the determination of circuit outputs and deciding on the next state
value. In addition, we can write a single process merging both processes, however,
in this case, program readability decreases due to having many programming lines
in a single process.

2.1.1 VHDL Implementation of Moore State Machines

The template for the entity and declarative part of the architecture unit of the Moore
FSM is written in PR 2.1.

library ieee;
use ieee.std_logic_1164.all;

entity fsm_circuit is
port(clk, rst: in std_logic;

inp1, inp2,….,inpN: in data_type;
outp1, outp2,….,outM: out data_type);

end entity;

architecture logic_flow of fsm_circuit is

type state is (st0, st1, st2, ...);

signal present_state, next_state: state;

begin

PR 2.1 Program 2.1

In PR 2.1, we define the circuit inputs and outputs in the entity unit. In the declara-
tive part of the architecture, we introduce a new data type named state and using
this new data type we declare two signal objects. Inside the body of the architecture
unit, we have two processes. One of them is used for the update of the present state,
and a template for this unit is given in PR 2.2.

2 VHDL Implementation of Finite State Machines and Practical Applications

57

The sensitivity list of the process in PR 2.2 contains clock and reset signals, and at
the rising edge of each clock pulse, present state update operation is performed. The
template process unit for the determination of circuit outputs and next states is given
in PR 2.3.

-- Circuit outputs and next states for Moore machines

p2: process(present_state, inp1, inp2,….)

begin

case present_state is

when st0 =>

outp1<=oval1; outp2<=oval2; …. outpN<=ovalN;

if(inp1=ival1) then
next_state<=st1;

⋮
else
next_state<=stM;

end if;

when st1 =>

outp1<=oval3; outp2<=oval4; …. outpN<=ovalK;

if(inp1=ival1) then
next_state<=st3;

⋮
else
next_state<=stM;

end if;

when …
⋮

end case;

end process p2;

PR 2.3 Program 2.3

-- Update of the present state

p1: process(clk, rst)

begin
if(rst='1') then
present_state<=st0;

elsif(clk'event and clk='1') then
present_state<=next_state;

end if;
end process p1;

PR 2.2 Program 2.2

2.1 Implementation of Finite State Machines in VHDL

58

The sensitivity list of the process in PR 2.3 contains present state and input values.
Whenever there is a change in the present state, the process “p2” in PR 2.3 is acti-
vated. This means that after the completion of process “p1” in PR 2.2, assuming that
present state is updated, the process “p2” in PR 2.3 runs.

When all the parts are integrated, our template for Moore state machine happens
to be as in PR 2.4.

library ieee;
use ieee.std_logic_1164.all;

entity fsm_circuit is
port(clk, rst: in std_logic;

inp1, inp2,….,inpN: in data_type;
outp1, outp2,….,outM: out data_type);

end entity;

architecture logic_flow of fsm_circuit is
type state is (st0, st1, st2,...);

signal present_state, next_state: state;

begin
--- Update of the present state

p1: process(clk, rst)

begin
if (rst='1') then

present_state<=st0;

elsif (clk'event and clk='1') then
present_state<=next_state;

end if;
end process;

-- Circuit outputs and next state values for Moore machines

p2: process(present_state, inp1, inp2,….)

begin
case present_state is

when st0 =>

outp1<=oval1; outp2<=oval2;….; outpN<=ovalN;

if(inp1=ival1) then
next_state<=st1;

⋮
else
next_state<=stM;

end if;
when st1 =>

outp1<=oval3; outp2<=oval4;….; outpN<=ovalK;

if(inp1=ival1) then
next_state<=st3;

⋮
else
next_state<=stM;

end if;
when …
⋮

end case;

end process;

end architecture;

PR 2.4 Program 2.4

2 VHDL Implementation of Finite State Machines and Practical Applications

59

It is important to note that in PR 2.4 the processes “p1” and “p2” runs in a sequential
manner following the order of run “p1-p2-p1-p2…”, and any change made on the
value of “present_state” in process “p1” is seen by the process “p2” after the com-
pletion of process “p1”.

2.1.2 VHDL Implementation of Mealy State Machines

The entity and declarative part of the architecture for the Mealy state machines are
the same as that of PR 2.1 written for Moore state machines. Besides, the process
for the update of the present state is also the same as PR 2.2 written for Moore state
machines.

The only difference occurs in the implementation of the process written for the
determination of circuit outputs and next states. In Mealy machines, the circuit out-
puts are determined considering the values of external inputs. For this reason, we
should determine the outputs of the circuits after checking the values of external
inputs by an if statement as in PR 2.5.

-- Circuit outputs and next states for Mealy machines

process(present_state, inp1, inp2,….)

begin

case present_state is

when st0 =>

if(inp1=ival1) then
outp1<=oval1; outp2<=oval2; …. outpN<=ovalN;

next_state<=st1;

⋮
else
next_state<=stM;

end if;

when st1 =>

if(inp1=ival2) then
outp1<=oval3; outp2<=oval4; …. outpN<=ovalK;

next_state<=st3;

⋮
else
next_state<=stM;

end if;

when …
⋮

end case;

end process;

PR 2.5 Program 2.5

2.1 Implementation of Finite State Machines in VHDL

60

When PR 2.5 is inspected, we see that the assignments to the output ports are per-
formed after if statement.

2.2 Examples for VHDL Implementations of State Machines

In this section, we will provide a number of examples for the VHDL implementa-
tion of state machines.

2.2.1 Three-Bit Binary Counter in VHDL

We explain the implementation of 3-bit counter in VHDL via an example.

Example 2.1 Implement a 3-bit binary counter in VHDL.

Solution 2.1 Counters can be implemented using Moore state machines. Since
they do not take external inputs other than clock and reset signals. For a 3-bit coun-
ter, we have 3 flip-flops, and hence 8 states in total.

Moore state diagram of the 3-bit binary counter can be drawn as in Fig. 2.2.

State0

000 State1

001

State5

101

State3

011

State6

110

State2

010

State4

100

State7

111

Fig. 2.2 Moore state diagram for 3-bit binary counter

2 VHDL Implementation of Finite State Machines and Practical Applications

61

We can write the entity unit and define the states in the declarative part of the archi-
tecture unit as in PR 2.6.

library ieee;
use ieee.std_logic_1164.all;

entity fsm_3bit_counter is
port(clk, rst: in std_logic;

outp: out std_logic_vector(2 downto 0));

end entity;

architecture logic_flow of fsm_3bit_counter is

type state is (st0, st1, st2, st3, st4, st5, st6, st7);

signal present_state, next_state: state;

begin

p1: process(clk, rst)

begin
if(rst='1') then

present_state<=st0;

elsif(clk'event and clk='1') then
present_state<=next_state;

end if;
end process;

PR 2.7 Program 2.7

In the next step, we write the process for the present state update operation, and our
program happens to be as in PR 2.7.

library ieee;
use ieee.std_logic_1164.all;

entity fsm_3bit_counter is
port(clk, rst: in std_logic;

outp: out std_logic_vector(2 downto 0));

end entity;

architecture logic_flow of fsm_3bit_counter is

type state is (st0, st1, st2, st3, st4, st5, st6, st7);

signal present_state, next_state: state;

begin

PR 2.6 Program 2.6

2.2 Examples for VHDL Implementations of State Machines

62

In the third step, we write the second process for the determination of circuit outputs
and next states as in PR 2.8 where it is seen that the sensitivity list of the process
contains the “present_state” signal object. This implies that the second process is
activated only after the completion of the first process assuming that present state is
updated in the first process.

When all the program units are integrated, our complete 3-bit counter program hap-
pens to be as in PR 2.9.

-- Circuit outputs and

-- next states

p2: process(present_state)

begin
case present_state is

when st0 =>

outp<="000";

next_state<=st1;

when st1 =>

outp<="001";

next_state<=st2;

when st2 =>

outp<="010";

next_state<=st3;

when st3 =>

outp<="011";

next_state<=st4;

when st4 =>

outp<="100";

next_state<=st5;

when st5 =>

outp<="101";

next_state<=st6;

when st6 =>

outp<="110";

next_state<=st7;

when st7 =>

outp<="111";

next_state<=st0;

end case;

end process;

State0

000 State1

001

State5

101

State3

011

State6

110

State2

010

State4

100

State7

111

PR 2.8 Program 2.8

2 VHDL Implementation of Finite State Machines and Practical Applications

63

library ieee;
use ieee.std_logic_1164.all;

entity fsm_3bit_counter is
port(clk, rst: in std_logic;

outp: out std_logic_vector(2 downto 0));

end entity;

architecture logic_flow of fsm_3bit_counter is
type state is (st0, st1, st2, st3, st4, st5, st6, st7);

signal present_state, next_state: state;

begin
p1: process(clk, rst)

begin
if(rst='1') then

present_state<=st0;

elsif(clk'event and clk='1') then
present_state<=next_state;

end if;
end process;

-- Circuit outputs and next states

p2: process(present_state)

begin
case present_state is

when st0 =>

outp<="000";

next_state<=st1;

when st1 =>

outp<="001";

next_state<=st2;

when st2 =>

outp<="010";

next_state<=st3;

when st3 =>

outp<="011";

next_state<=st4;

when st4 =>

outp<="100";

next_state<=st5;

when st5 =>

outp<="101";

next_state<=st6;

when st6 =>

outp<="110";

next_state<=st7;

when st7 =>

outp<="111";

next_state<=st0;

end case;

end process;

State0

000 State1

001

State5

101

State3

011

State6

110

State2

010

State4

100

State7

111

PR 2.9 Program 2.9

2.2 Examples for VHDL Implementations of State Machines

64

The VHDL implementation in PR 2.9 can be tested using the test-bench program
given in PR 2.10.

2.2.2 Counter State Machine Program Flow Analysis

In this section, we will analyze the flow of the VHDL implementation written for
the counter state machine in Example 2.1, i.e., the previous example. Let us explain
the operation of the PR 2.9 considering its state diagram. First, assume that reset
signal is sent to FPGA device, then the process “p1” is activated, and the present
state is initialized to “st0” as illustrated in Fig. 2.3.

library ieee;
use ieee.std_logic_1164.all;

entity fsm_3bit_counter_tb is
end;

architecture bench of fsm_3bit_counter_tb is

component fsm_3bit_counter

port(clk, rst: in std_logic;

outp: out std_logic_vector(2 downto 0));

end component;

signal clk, rst: std_logic;

signal outp: std_logic_vector(2 downto 0);

constant clock_period: time:=10 ns;

signal stop_the_clock: boolean;

begin

pm: fsm_3bit_counter port map(clk => clk,

rst => rst,

outp => outp);

ps: process --stimulus

begin
rst<='1';

wait for clock_period;

rst<='0';

wait for clock_period*7;

stop_the_clock<=true;

wait;
end process;

pc: process --clock generation

begin
while not stop_the_clock loop

clk<='0';

wait for clock_period / 2;

clk<='1';

wait for clock_period / 2;

end loop;

wait;
end process;

end;

PR 2.10 Program 2.10

clk

reset

PS=st0

O/P=xx

After Process

Execution

NS=xx

p1:

Fig. 2.3 Initialization at reset

2 VHDL Implementation of Finite State Machines and Practical Applications

65

When the execution of process “p1” finishes, the change on the signal object “pres-
ent_state” can be seen by the other processes.

This is a critical point such that if you change the value of a signal object inside
a process, the change is not immediately seen by the other program units. For the
change to be seen by the other program units such as processes, the execution of the
current process should be completed.

Since the sensitivity list of the process “p2” contains the signal object “present_
state”, after run of process “p1”, the change on the signal object “present_state”
triggers the process “p2”, that is, after the run of process “p1”, the process “p2”
starts running. The process “p2” checks the value of the “present_state” and accord-
ingly determines the circuit outputs and next state, as illustrated in Fig. 2.4.

After the application of “reset” signal, we consider the rising edge of the first incom-
ing pulse at which the process “p1” runs, and when the process “p1” runs the pres-
ent state is updated by the statement “present_state<=next_state”. The update of the
present state is illustrated in Fig. 2.5.

clk

reset

PS=st0

O/P=xx

After Process

Execution

NS=xx

p1:

PS=st0

O/P=000

NS=st1

p2:

Fig. 2.4 “p2” activation after “p1”

clk

reset

PS=st0

O/P=xx

After Process

Execution

NS=xx

p1:

PS=st0

O/P=000

NS=st1

p2:

PS=st1

O/P=000

NS=st1

p1:

Fig. 2.5 “p1” activation at the first rising edge

2.2 Examples for VHDL Implementations of State Machines

66

From Fig. 2.5, it is seen that at the rising edge of the first clock pulse, the process
“p1” is activated and present state value is changed to “st1”; however, next state and
output values are kept the same. After the execution of process “p1”, the process
“p2” starts running, since the sensitivity list of the process “p2” contains the signal
object “present_state”. When the execution of process “p2” is completed, the next
state and output values are recalculated as illustrated in Fig. 2.6.

After the execution of process “p2”, at the rising edge of the successor incoming
pulse, the process “p1” is executed and the value of present state is updated as illus-
trated in Fig. 2.7.

After the run of process “p1”, process “p2” is executed and circuit outputs and next
state are determined as illustrated in Fig. 2.8.

clk

reset

PS=st0

O/P=xx

After Process

Execution

NS=xx

p1:

PS=st0

O/P=000

NS=st1

p2:

PS=st1

O/P=000

NS=st1

p1:

PS=st1

O/P=001

NS=st2

p2:

Fig. 2.6 “p2” activation after “p1” at the first rising edge

clk

reset

PS=st0

O/P=xx

After Process

Execution

NS=xx

p1:

PS=st0

O/P=000

NS=st1

p2:

PS=st1

O/P=000

NS=st1

p1:

PS=st1

O/P=001

NS=st2

p2:

PS=st2

O/P=001

NS=st2

p1:

Fig. 2.7 “p1” activation at the second rising edge

2 VHDL Implementation of Finite State Machines and Practical Applications

67

In a similar manner, considering the other rising edges of the other clock pulses, the
complete execution of the state machine can be illustrated as in Fig. 2.9.

2.2.3 Predefined Encoding Types

The states of a logic machine can be represented by binary strings. Different repre-
sentations result in different circuit syntheses. For this reason, it is important to
assign the correct string to the states. The optimized assignments to the states are
summarized as:

“Sequential”: In this encoding method, the minimum number of bits is employed,
and the states are encoded in ascending order of decimal values. For instance,
A = “000” (= 0 decimal), B = “001” (= 1), C = “010” (= 2), D = “011” (= 3), and
E = “100” (= 4).

clk

reset

PS=st0

O/P=xx

After Process

Execution

NS=xx

p1:

PS=st0

O/P=000

NS=st1

p2:

PS=st1

O/P=000

NS=st1

p1:

PS=st1

O/P=001

NS=st2

p2:

PS=st2

O/P=001

NS=st2

p1:

PS=st2

O/P=010

NS=st3

p2:

Fig. 2.8 “p2” activation after “p1” at the second rising edge

clk

reset

PS=st0

O/P=xx

After Process

Execution

NS=xx

p1:

PS=st0

O/P=000

NS=st1

p2:

PS=st1

O/P=000

NS=st1

p1:

PS=st1

O/P=001

NS=st2

p2:

PS=st2

O/P=001

NS=st2

p1:

PS=st2

O/P=010

NS=st3

p2:

PS=st3

O/P=010

NS=st3

p1:

PS=st3

O/P=011

NS=st4

p2:

PS=st4

O/P=011

NS=st4

p1:

PS=st4

O/P=100

NS=st5

p2:

PS=st5

O/P=100

NS=st5

p1:

PS=st5

O/P=101

NS=st6

p2:

PS=st6

O/P=101

NS=st6

p1:

PS=st6

O/P=110

NS=st7

p2:

PS=st7

O/P=110

NS=st7

p1:

PS=st7

O/P=111

NS=st0

p2:

Fig. 2.9 “p1” and “p2” activations at rising edges

2.2 Examples for VHDL Implementations of State Machines

68

“gray”: In gray coding, the code-words of the adjacent states differ by exactly one
bit. An M-bit “gray” code can represent 2M states. For instance, A = “000”,
B = “001”, C = “011”, D = “010”, and E = “110”.

“johnson”: In johnson coding, M-bit encoding is used, and adjacent states differ by
exactly one bit. For instance, A = “000”, B = “100”, C = “110”, D = “111”, and
E = “011”.

“one-hot”: In one-hot coding, N bits, where N is the number of states, are used in
enumeration type. Each code word contains only one different code bit (that is,
all bits are ‘0’, except one, or vice versa). For instance, A = “00001”, B = “00010”,
C = “00100”, D = “01000”, and E = “10,000”.

Although manual assignment of encoding types to states is possible, it is not much
used in VHDL programming. Since FPGA development platforms, such as
VIVADO, perform optimization for synthesis in which optimum encoding methods
are used for states.

Example 2.2 In the code-segment below, the states are encoded using the “gray”
coding approach.

type states is (start, first, second, delay, success_1,
success_2);
 attribute enum_encoding: string;
 attribute enum_encoding of states: type is "gray";

2.2.4 Mealy State Diagram Implementation Example

In this section, we explain the VHDL implementation of a Mealy state diagram with
an example.

Example 2.3 Implement the Mealy state machine whose state diagram is given in
Fig. 2.10 where x/y indicates the input/output pair.

S0 S1

S2 S3

0/0
1/0

0/0

0/1
1/0

1/1 1/1

0/1

Fig. 2.10 Mealy state diagram

2 VHDL Implementation of Finite State Machines and Practical Applications

69

Solution 2.3 The entity and architecture declarative parts of the FSM can be writ-
ten as in PR 2.11.

library ieee;
use ieee.std_logic_1164.all;

entity state_machine is
port(clk: in std_logic;

reset: in std_logic;

inp: in std_logic;

outp: out std_logic);

end state_machine;

architecture logic_flow of state_machine is
type state is (st0, st1, st2, st3); --type of state machine.

signal present_state, next_state: state;

begin

PR 2.11 Program 2.11

The present state update part of the FSM can be written as in PR 2.12.

--Present state update part

p1: process(clk, reset)

begin
if(reset='1') then
present_state<=st0; --default state on

reset.

elsif(rising_edge(clk)) then
present_state<=next_state; --state change.

end if;

PR 2.12 Program 2.12

2.2 Examples for VHDL Implementations of State Machines

70

The combinational logic part of the FSM can be written as in PR 2.13.

--Circuit output, and next state

p2: process (present_state, inp)

begin
case present_state is
when st0 =>

--when current state is "st0"

if(inp='0') then
outp<= '0';

next_state<=st1;

else
outp<='1';

next_state<=st2;

end if;

when st1 =>

--when current state is "st1"

if(inp='0') then
outp<='0';

next_state<=st3;

else
outp<='0';

next_state<=st1;

end if;

when st2 =>

--when current state is "st2"

if(inp='0') then
outp<='1';

next_state<=st2;

else
outp<='0';

next_state<=st3;

end if;

when st3 =>

--when current state is "st3"

if(inp ='0') then
outp<='1';

next_state<=st3;

else
outp<='1';

next_state<=st0;

end if;
end case;

end process;

end logic_flow;

S0 S1

S2 S3

0/0
1/0

0/0

0/1
1/0

1/1 1/1

0/1

PR 2.13 Program 2.13

2 VHDL Implementation of Finite State Machines and Practical Applications

71

library ieee;
use ieee.std_logic_1164.all;
entity state_machine is

port(clk, reset: in std_logic;
inp: in std_logic;
outp: out std_logic);

end state_machine;

architecture logic_flow of state_machine is
type state is (st0, st1, st2, st3);
signal present_state, next_state: state;

begin

--present state update part
p1: process(clk, reset)
begin

if(reset='1') then
present_state<= st0; --default state on reset.

elsif(rising_edge(clk)) then
present_state<=next_state; --state change.

end if;
end process;
--Circuit outputs and next state
p2: process (present_state, inp)

begin
case present_state is

when st0 => --when current state is "s0"
if(inp='0') then

outp<='0';
next_state<=st1;

else
outp<='1';
next_state<=st2;

end if;

when st1 => --when current state is "st1"

if(inp='0') then
outp<='0';
next_state<=st3;

else
outp<='0';
next_state<=st1;

end if;

when st2 => --when current state is "st2"

if(inp='0') then
outp<='1';
next_state<=st2;

else
outp<='0';
next_state<=st3;

end if;

when st3 => --when current state is "st3"

if(inp='0') then
outp<='1';
next_state<=st3;

else
outp<='1';
next_state<=st0;

end if;
end case;

end process;

end logic_flow;

PR 2.14 Program 2.14

Combining all the program units, we get overall program as in PR 2.14.

2.2 Examples for VHDL Implementations of State Machines

72

library ieee;
use ieee.std_logic_1164.all;

entity state_machine_tb is
end;

architecture bench of state_machine_tb is

component state_machine

port(clk, reset: in std_logic;

inp: in std_logic;

outp: out std_logic);

end component;

signal clk, reset: std_logic;

signal inp: std_logic;

signal outp: std_logic;

constant clock_period: time:= 10 ns;

signal stop_the_clock: boolean;

begin

pm: state_machine port map (clk => clk,

reset => reset,

inp => inp,

outp => outp);

ps: process --stimulus

begin

reset<='1'; reset<='0';

inp<='1';

wait for clock_period;

inp<='1';

wait for clock_period;

inp<='1';

wait for clock_period;

inp<='0';

wait for clock_period;

stop_the_clock<=true;

wait;

end process;

pc: process --clock generation

begin
while not stop_the_clock loop

clk<='0';

wait for clock_period / 2;

clk<='1';

wait for clock_period / 2;

end loop;

wait;
end process;

end;

PR 2.15 Program 2.15

2.2.5 Parity Generator Implementation Example

In this section, we explain the VHDL implementation of parity generator with an
example.

Example 2.4 Design a state machine for an even parity generator which is used for
a sequence consisting of N bits. Implement your state machine in VHDL.

The VHDL implementation in PR 2.14 can be tested using the test-bench program
given in PR 2.15.

2 VHDL Implementation of Finite State Machines and Practical Applications

73

Solution 2.4 The state diagram of the even detector can be drawn as in Fig. 2.11.

The entity and architecture declarative parts of the FSM can be written as in PR
2.16.

library ieee;
use ieee.std_logic_1164.all;

entity fsm_parity_generator is
port(clk, reset: in std_logic;

inp: in std_logic;

parity: out std_logic);

end fsm_parity_generator;

architecture logic_flow of fsm_parity_generator is
type state is (st0, st1);

signal present_state, next_state: state;

begin

PR 2.16 Program 2.16

The present state update part of the FSM can be written as in PR 2.17.

p1: process(clk, reset) --Present state update

begin
if(reset='1') then
present_state<=st0; --default state on reset.

elsif(rising_edge(clk)) then
present_state<=next_state; --state change.

end if;
end process;

PR 2.17 Program 2.17

St0

(even)

0

St1

(odd)

1

reset

0 0

1

1

Fig. 2.11 State diagram of even parity generator

2.2 Examples for VHDL Implementations of State Machines

74

The process unit for the determination of circuit outputs and next state based on
Moore state machine logic can be written as in PR 2.18.

library ieee;
use ieee.std_logic_1164.all;
entity fsm_parity_generator is

port(clk, reset: in std_logic;

inp: in std_logic;

parity: out std_logic);

end fsm_parity_generator;

architecture logic_flow of fsm_parity_generator is
type state is (st0, st1);

signal present_state, next_state: state;

begin
--Present state update part

p1: process (clk, reset)

begin
if(reset='1') then

present_state<=st0; --default state on reset.

elsif(rising_edge(clk)) then
present_state<=next_state; --state change.

end if;
end process;

--- Moore State Machine

p2: process(present_state, inp)

begin
case present_state is

when st0 => --when current state is "st0"

parity<='0';

if(inp='0') then
next_state<=st0;

else
next_state<=st1;

end if;
when st1 => --when current state is "st1"

parity<='1';

if(inp='0') then
next_state<=st1;

else
next_state<=st0;

end if;
end case;

end process;

end logic_flow;

PR 2.19 Program 2.19

Combining all the program units, we get our overall program as in PR 2.19.

-- Moore State Machine

p2: process (present_state, inp)

begin
case present_state is

when st0 => --when current state is "st0"

parity<='0';

if(inp ='0') then
next_state<=st0;

else
next_state<=st1;

end if;
when st1 => --when current state is "st1"

parity<=1';

if(inp ='0') then
next_state<=st1;

else
next_state<=st0;

end if;
end case;

end process;

end logic_flow;

PR 2.18 Program 2.18

2 VHDL Implementation of Finite State Machines and Practical Applications

75

The VHDL implementation in PR 2.19 can be tested using the test-bench in PR
2.20.

library ieee;
use ieee.std_logic_1164.all;

entity fsm_parity_generator_tb is
end;

architecture bench of fsm_parity_generator_tb

is

component fsm_parity_generator

port(clk, reset: in std_logic;

inp: in std_logic;

parity: out std_logic);

end component;

signal clk, reset: std_logic;

signal inp: std_logic;

signal parity: std_logic;

constant clock_period: time:= 10 ns;

signal stop_the_clock: boolean;

begin

pm: fsm_parity_generator

port map (clk => clk,

reset => reset,

inp => inp,

parity => parity);

ps: process --stimulus

begin

reset<='1'; reset<='0';

inp<='1';

wait for clock_period;

inp<='0';

wait for clock_period;

inp<='1';

wait for clock_period;

inp<='0';

wait for clock_period;

stop_the_clock<=true;

wait;
end process;

pc: process --clock generation

begin
while not stop_the_clock loop
clk<='0';

wait for clock_period / 2;

clk<='1';

wait for clock_period / 2;

end loop;

wait;
end process;

end;

PR 2.20 Program 2.20

2.2.6 Non-overlapping Sequence Detector Implementation
Example

In this section, we explain the VHDL implementation of a non-overlapping sequence
detector with an example.

Example 2.5 Design the state machine for non-overlapping sequence detector
which detects the sequence 010. Implement your design in VHDL.

Solution 2.5 The state machine for the detection of the binary sequence 010 can be
designed as in Fig. 2.12.

2.2 Examples for VHDL Implementations of State Machines

76

The entity and architecture declarative parts of the FSM presented in Fig. 2.12 can
be written as in PR 2.21.

library ieee;
use ieee.std_logic_1164.all;

entity non_overlapping_detector is
port(clk, reset: in std_logic;

inp: in std_logic;

outp: out std_logic);

end non_overlapping_detector;

architecture logic_flow of non_overlapping_detector is
type state is (st0, st1, st2);

signal present_state, next_state: state;

begin

PR 2.21 Program 2.21

p1: process (clk, reset) --Present state update

begin
if(reset='1') then
present_state<=st0; --default state on reset.

elsif(rising_edge(clk)) then
present_state<=next_state; --state change.

end if;
end process;

PR 2.22 Program 2.22

St0
reset

St1 St2

1/ 0 0 / 0

0 /1

1/ 0

0 / 0 1/ 0

Fig. 2.12 State diagram of non-overlapping sequence detector

The present state update part of the FSM can be written as in PR 2.22.

2 VHDL Implementation of Finite State Machines and Practical Applications

77

-- Mealy State Machine

p2: process (present_state, inp)

begin
case present_state is
when st0 =>

--when current state is 'st0'

if(inp='0') then
outp<='0';

next_state<=st1;

else
outp<='0';

next_state<=st0;

end if;

when st1 =>

--when current state is 'st1'

if(inp='0') then
outp<='0';

next_state<=st1;

else
outp<='0';

next_state<=st2;

end if;
when st2 =>

--when current state is 'st2'

if(inp='0') then
outp<='1';

next_state<=st0;

else
outp<='0';

next_state<=st0;

end if;
end case;

end process;

end logic_flow;

St0
reset

St1 St2

1/ 0 0 / 0

0 /1

1/ 0

0 / 0 1/ 0

PR 2.23 Program 2.23

The process unit for the determination of circuit outputs and next state based on
Mealy model can be written as in PR 2.23.

2.2 Examples for VHDL Implementations of State Machines

78

2.2.7 Arbiter Implementation Example

In this section, we explain the VHDL implementation of an arbiter with an
example.

Example 2.6 An arbiter is an electronic device which manages the access to shared
resources. The task of the arbiter is explained in Fig. 2.13 where three peripherals
P1, P2, and P3 use a common bus to access to a common resource. It is shown in
Fig. 2.13 that the arbiter has the inputs r1, r2, r3, and outputs g1, g2, and g3.

The bus can be used only for one peripheral at a time. The peripheral PX, which
appeals the use of the bus, issues a request to the arbiter, i.e., the signal ri is made
“1”, and if the bus is free, then the arbiter authorizes the peripheral PX to use the
bus. For example, if P1 wants to use the bus, then it issues the signal r1=‘1’, and if
the bus is idle at the time of the request, then the arbiter authorizes the peripheral P1
to use the bus informing the peripheral making g1=‘1’.

If multiple requests are received at the same time by the arbiter, then the access
is granted based on preestablished priorities if the line is idle, otherwise, the periph-
eral holding the bus continues with its process.

library ieee;
use ieee.std_logic_1164.all;
entity non_overlapping_detector is
port(clk, reset: in std_logic;

inp: in std_logic;

outp: out std_logic);

end non_overlapping_detector;

architecture logic_flow of non_overlapping_detector

is
type state is (st0, st1, st2);

signal present_state, next_state: state;

begin
--Present state update part

p1: process(clk, reset)

begin
if(reset='1') then
present_state<=st0; --default state on reset.

elsif(rising_edge(clk)) then
present_state<=next_state; --state change.

end if;
end process;

-- Mealy State Machine

p2: process(present_state, inp)

begin
case present_state is
when st0 => --when current state is "st0"

if(inp ='0') then

outp<='0';

next_state<=st1;

else
outp<='0';

next_state<=st0;

end if;

when st1 => -- current state is "st1"

if(inp='0') then
outp<='0';

next_state<= st1;

else
outp<='0';

next_state<=st2;

end if;
when st2 => -- current state is "st2"

if(inp='0') then
outp<='1';

next_state<=st0;

else
outp<='0';

next_state<=st0;

end if;
end case;

end process;

end logic_flow;

PR 2.24 Program 2.24

Combining all the program units, we get our overall program as in PR 2.24.

2 VHDL Implementation of Finite State Machines and Practical Applications

79

Considering the given information and assuming that the priorities are provided as
P1 > P2 > P3, design a finite state machine and implement it in VHDL.

Solution 2.6 In accordance with the provided information, the state diagram of the
Moore machine for the arbiter can be drawn as in Fig. 2.14.

Arbiter

P1 P2 P3
Common

Resources

r3 g3r2 g2r1 g1

Fig. 2.13 Arbiter block diagram

St0

(IDLE)

000

reset

St1

100

St2

010

St3

001

1xx

10x

01x

x1x

000

000 01x

001
xx1 010

001

001

1x0
000 1xx

*Input = r1r2r3

*Output = g1g2g3

Fig. 2.14 Arbiter state diagram

2.2 Examples for VHDL Implementations of State Machines

80

The entity and declarative part of the architecture for the FSM shown in Fig. 2.14
can be written as in PR 2.25.

The process performing the state update of the FSM is written in PR 2.26.

library ieee;
use ieee.std_logic_1164.all;

entity arbiter is
port(clk, reset in std_logic;

inp_r: in std_logic_vector (2 downto 0);

outp_g: out std_logic_vector (2 downto 0));

end arbiter;

architecture logic_flow of arbiter is
type state is (st0, st1, st2, st3);

signal present_state, next_state: state;

begin

PR 2.25 Program 2.25

--Present state update part

p1: process(clk, reset)

begin
if(reset='1') then

present_state<=st0; --default state on

reset.

elsif(rising_edge(clk)) then
present_state<=next_state; --state change.

end if;

PR 2.26 Program 2.26

2 VHDL Implementation of Finite State Machines and Practical Applications

81

-- Circuit outputs and next state

p2: process(present_state, inp_r)

begin
case present_state is

when st0 => --- idle state

outp_g<="000";

if(inp_r="000") then
next_state<=st0;

elsif(inp_r(2)='1') then
next_state<=st1;

elsif(inp_r(1)='1') then
next_state<=st2;

elsif(inp_r(0)='1') then
next_state<=st3;

end if;

when st1 =>

outp_g<="100";

if(inp_r(2)= '1') then
next_state<=st1;

elsif(inp_r(1)='1') then
next_state<=st2;

elsif(inp_r(0)='1') then
next_state<=st3;

else
next_state<=st0;

end if;

when st2 =>

outp_g<="010";

if(inp_r(1)='1') then
next_state<=st2;

elsif(inp_r(2)='1') then
next_state<=st1;

elsif(inp_r(0)='1') then
next_state<=st3;

else
next_state<=st0;

end if;

when st3 =>

outp_g<="001";

if(inp_r(0)='1') then
next_state<=st3;

elsif(inp_r(2)='1') then
next_state<=st1;

elsif(inp_r(1)='1') then
next_state<=st2;

else
next_state<=st0;

end if;

end case;

end process;

end logic_flow;

PR 2.27 Program 2.27

The process for the determination of circuit outputs and next state based on Moore
model can be written as in PR 2.27.

2.2 Examples for VHDL Implementations of State Machines

82

2.2.8 VHDL Implementation of RS232 Asynchronous Serial
Communication Protocol

Although in the current technology, most of the electronic devices use USB stan-
dard for serial communication, it is not confusing to see devices still employing
RS232 serial communication. Besides, to comprehend the logic of serial communi-
cation and developing an interface between an electronic device having RS232 port
and FPGA, we see it useful to implement the RS232 for FPGA devices.

library ieee;
use ieee.std_logic_1164.all;

entity arbiter is
port(clk, reset: in std_logic;

inp_r: in std_logic_vector(2 downto 0);
outp_g: out std_logic_vector(2 downto 0));

end arbiter;

architecture logic_flow of arbiter is
type state is (st0, st1, st2, st3);

signal present_state, next_state: state;

begin

--Present state update part

p1: process (clk, reset)

begin
if(reset='1') then

present_state<=st0; --default state on reset.

elsif(rising_edge(clk)) then
present_state<=next_state; --state change.

end if;
end process;

-- Circuit outputs and next state

p2: process(present_state, inp_r)
begin

case present_state is
when st0 => --- idle state

outp_g<="000";

if(inp_r="000") then
next_state<=st0;

elsif(inp_r(2)='1') then
next_state<=st1;

elsif(inp_r(1)='1') then
next_state<=st2;

elsif(inp_r(0)='1') then
next_state<=st3;

end if;

when st1 =>

outp_g<="100";

if(inp_r(2)='1') then
next_state<=st1;

elsif(inp_r(1)='1') then
next_state<=st2;

elsif(inp_r(0)='1') then
next_state<=st3;

else
next_state<=st0;

end if;

when st2 =>

outp_g<="010";

if(inp_r(1)='1') then
next_state<=st2;

elsif(inp_r(2)='1') then
next_state<=st1;

elsif(inp_r(0)='1') then
next_state<=st3;

else
next_state<=st0;

end if;

when st3 =>

outp_g<="001";

if(inp_r(0)='1') then
next_state<=st3;

elsif(inp_r(2)='1') then
next_state<=st1;

elsif(inp_r(1)='1') then
next_state<=st2;

else
next_state<=st0;

end if;

end case;

end process;

end logic_flow;

PR 2.28 Program 2.28

Combining all the program units, we get the complete implementation in PR 2.28.

2 VHDL Implementation of Finite State Machines and Practical Applications

83

0D 3D1D 7D2D 6D5D4D
Logic-1

Logic-0
Start Stop

12V

-12V

Fig. 2.15 RS232 transmitter waveform

TX0

Bit-0

TX1

Bit-1

TX2

Bit-2

TX3

Bit-3

TX4

Bit-4

TX5

Bit-5

TX6

Bit-6

TX7

Bit-7

TXS

STOP
TXR

START

IDLE

--No Data in
Buffer

Data in the Buffer

Data in the Buffer

No Data in
Buffer

Fig. 2.16 RS232 transmitter state diagram

Universal asynchronous receiver-transmitter, i.e., UART, is an electronic device
consisting of some registers, and its main function is to convert parallel data to serial
and serial data to parallel depending on the direction of communication. If the data
is sent from the computer to an electronic device, the parallel data in computer reg-
isters are converted to serial via UART and it is transmitted through RS232 port.

RS232 serial communication is an asynchronous communication technique. An
8-bit ASCII code representing a symbol can be transmitted with RS232 standard in
an asynchronous manner. The asynchronous transmitting waveform of RS232 stan-
dard is depicted in Fig. 2.15 where it is seen that least significant bit (LSB) is sent
first and most significant bit (MSB) is sent last.

A parity bit can be inserted between D7 and “Stop” in the transmitted stream shown
in Fig. 2.15.

Moore state diagram for the transmission waveform of Fig. 2.15 can be drawn as
in Fig. 2.16.

In Fig. 2.16, the state names are written above the dashed line, and the outputs are
written below the dashed line.

Example 2.7 RS232 transmission waveform for the letter “J” whose ASCII code is
0x4A, i.e., 01001010 in binary, is depicted in Fig. 2.17.

0 11 00 100

Logic-1

Logic-0
Start Stop

12V

-12V

Fig. 2.17 RS232 transmitter waveform example

In Fig. 2.17, we should pay attention that the least significant bit is transmitted first.

2.2 Examples for VHDL Implementations of State Machines

84

2.2.8.1 VHDL Implementation of RS232 Transmitter
In this section, we explain the VHDL implementation of the RS232 serial commu-
nication protocol via examples. We first consider the transmission of data from
FPGA to computer using RS232 communication protocol, i.e., first, we implement
RS232 data transmission in VHDL, and in the successor examples, we implement
RS232 receiver and RS232 transmitter-receiver structures in VHDL.

Example 2.8 For the RS232 asynchronous communication protocol parameters

• 9600 bit per second baud rate
• 8-bit data
• 1 stop bit
• No parity

write a VHDL program using finite state machine to transmit the character “A”
represented by “01000001” in ASCII from FPGA to computer and observe it on a
terminal program of windows. The system for this data transmission is depicted in
Fig. 2.18.

Solution 2.8 Considering the asynchronous transmission waveform shown in
Fig. 2.19 the Moore state diagram for the transmission scheme can be drawn as in
Fig. 2.20 where “trig” signal is used to check the availability of new data to be
transmitted.

We should keep in our mind that in this asynchronous transmission method, the
least significant bit of the character “A” is sent first.

FPGAD
B

9

C
o

n
n

e
c
to

r

Tx

Fig. 2.18 FPGA to computer data transmission via RS232 protocol

0 1 0 0 0 0 1 0 11 0

idle start st0 st1 st2 st3 st4 st5 st6 stopst7

Fig. 2.19 RS232 transmission waveform for Example 2.8

2 VHDL Implementation of Finite State Machines and Practical Applications

85

Idle

xx

StartTx

0

reset St0

bit-0

St1

bit-1

St2

bit-2

St3

bit-3

St4

bit-4

St5

bit-5

St6

bit-6

St7

bit-7

Stop

1

trig=1

trig=0

trig=0

trig=1

Fig. 2.20 State diagram of RS232 transmitter for Example 2.8

The speed of the transmission is 9600 bits per second, and for this speed of trans-
mission, we need a clock frequency of 9600 Hz. Since FPGA boards have clock
frequencies in MHz range, we need a frequency divider to get 9600 Hz frequency.

In PR 2.29, input and output ports and control signals are defined. State machine
consists of 11 states, and states st0, st1, …, st7 are used for data transmission,
“start” and “stop” states are considered to start and to stop the transmission, and
“idle” state is used for port listening. To get the desired transmission frequency, we
define a signal object “count” to be used in frequency division operation.

2.2 Examples for VHDL Implementations of State Machines

86

It is known that using a counter with repeating sequence 1, ⋯, K − 1, we can obtain
a frequency of

f

K2

from an FPGA clock source of frequency f Hz considering that a signal object is
used for counter index.

According to this information, and considering the availability of 100 MHz
FPGA clock, the counter parameter K can be calculated as

100 10

2
9600 5209

6�
� � �

K
K (2.1)

which is used to initialize the “count” signal object defined in the declarative part of
the architecture in PR 2.29. The clock divider, used to get a frequency of 9600 Hz,
is implemented in process “cdiv” in PR 2.30.

library ieee;
use ieee.std_logic_1164.all;

entity uart_tx is
port(clk, rst, trig: in std_logic;

data_to_send: in std_logic_vector(7 downto 0);

tx: out std_logic);

end entity;

architecture logic_flow of uart_tx is
type state is (idle, start_tx, st0, st1, st2, st3, st4, st5, st6, st7, stop);

signal present_state, next_state: state:=idle;

signal clk_9600Hz: std_logic:='0';

signal count: positive range 1 to 5208:=1;

begin

PR 2.29 Program 2.29

2 VHDL Implementation of Finite State Machines and Practical Applications

87

library ieee;
use ieee.std_logic_1164.all;

entity uart_tx is
port(clk, rst, trig: in std_logic;

data_to_send: in std_logic_vector(7 downto 0);

tx: out std_logic);

end entity;

architecture logic_flow of uart_tx is
type state is (idle, start_tx, st0, st1, st2, st3, st4, st5, st6, st7, stop);

signal present_state, next_state: state:=idle;

signal clk_9600Hz: std_logic:='0';

signal count: positive range 1 to 5209:=1;

begin

cdiv: process(clk, rst) -- clock divider (cdiv)

begin
if(rst='1') then
count<=1;

elsif(rising_edge(clk)) then
count<=count+1;

if(count=5209) then
clk_9600Hz<=not clk_9600Hz;

count<=1;

end if;
end if;

end process;

PR 2.30 Program 2.30

Present state update operation at every rising edge of the artificially generated clock
clk_9600Hz is implemented in PR 2.31 in process “p1” which follows the clock
divider process.

2.2 Examples for VHDL Implementations of State Machines

88

library ieee;
use ieee.std_logic_1164.all;

entity uart_tx is
port(clk, rst, trig: in std_logic;

data_to_send: in std_logic_vector(7 downto 0);

tx: out std_logic);

end entity;

architecture logic_flow of uart_tx is

type state is (idle, start_tx, st0, st1, st2, st3, st4, st5, st6, st7, stop);

signal present_state, next_state: state:=idle;

signal clk_9600Hz: std_logic:='0';

signal count: positive range 1 to 5209:=1;

begin

cdiv: process(clk, rst) -- clock divider (cdiv)

begin
if(rst='1') then
count<=1;

elsif(rising_edge(clk)) then
count<=count+1;

if(count=5209) then
clk_9600Hz<=not clk_9600Hz;

count<=1;

end if;
end if;

end process;

p1: process(clk_9600Hz, rst)
begin
if(rst='1') then
present_state<=idle;

elsif(rising_edge(clk_9600Hz)) then
present_state<=next_state;

end if;
end process;

PR 2.31 Program 2.31

The complete program for the asynchronous data transmission from FPGA to com-
puter including the process for determination of the next state is depicted in PR 2.32
where “clk_out” port signal is added to observe frequency divider result in
simulations.

2 VHDL Implementation of Finite State Machines and Practical Applications

89

A variety of terminal programs are available for computer to computer asynchro-
nous serial communication. Tera Term VT is such a program which can be used to
display the received characters, sent from FPGA side, on the computer screen as
shown in Fig. 2.21.

The binary string used for the data transmission is 01000001 assigned to the
parameter “data_to_send”, and the trigger signal is activated four times.

library ieee;
use ieee.std_logic_1164.all;

entity uart_tx is
port(clk, rst, trig: in std_logic;

data_to_send: in std_logic_vector(7 downto 0);

tx, clk_out: out std_logic);

end entity;

architecture logic_flow of uart_tx is

type state is (idle, start_tx, st0, st1, st2, st3, st4, st5, st6,

st7, stop);

signal present_state, next_state: state:=idle;

signal clk_9600Hz: std_logic:='0';

signal count: positive range 1 to 5209:=1;

begin

clk_out<=clk_9600Hz;

cdiv: process(clk, rst) -- clock divider (cdiv)

begin
if(rst='1') then

count<=1;

elsif(rising_edge(clk)) then
count<=count+1;

if(count=5209) then
clk_9600Hz<=not clk_9600Hz;

count<=1;

end if;
end if;

end process;

p1: process(clk_9600Hz, rst)
begin

if(rst ='1') then
present_state<=idle;

elsif(rising_edge(clk_9600Hz)) then
present_state<=next_state;

end if;
end process;

p2: process(present_state, trig)

begin
case present_state is

when idle =>

tx<='1';

if(trig='1') then
next_state<=start_tx;

else
next_state<=idle;

end if;
when start_tx =>

tx<='0';

next_state<=st0;

when st0 =>

tx<=data_to_send(0);

next_state<=st1;

when st1=>

tx<=data_to_send(1);

next_state<=st2;

when st2=>

tx<=data_to_send(2);

next_state<=st3;

when st3=>

tx<=data_to_send(3);

next_state<=st4;

when st4=>

tx<=data_to_send(4);

next_state<=st5;

when st5=>

tx<=data_to_send(5);

next_state<=st6;

when st6=>

tx<=data_to_send(6);

next_state<=st7;

when st7=>

tx<=data_to_send(7);

next_state<=stop;

when stop=>

tx<='1';

if(trig='0') then
next_state<=idle;

else
next_state<=start_tx;

end if;
end case;

end process;
end logic_flow;

PR 2.32 Program 2.32

2.2 Examples for VHDL Implementations of State Machines

90

The VHDL implementation in PR 2.32 can be tested using the test-bench given in
PR 2.33.

library ieee;
use ieee.std_logic_1164.all;

entity uart_tx_tb is
end;

architecture bench of uart_tx_tb is

component uart_tx

port(clk, rst, trig: in std_logic;

data_to_send: in std_logic_vector(7 downto 0);

tx,clk_out: out std_logic);

end component;

signal clk, rst, trig: std_logic;

signal data_to_send: std_logic_vector(7 downto 0);

signal tx,clk_out: std_logic:='0';

constant clock_period: time := 10 ns;

signal stop_the_clock: boolean;

begin

pm: uart_tx port map (

clk => clk,

rst => rst,

trig => trig,

data_to_send => data_to_send,

tx=> tx,

clk_out => clk_out);

ps: process --stimulus

begin

rst<='1'; trig <= '0'; rst<='0';

wait for clock_period*2*5208;

trig <= '1';

wait for clock_period*2*5208;

data_to_send<="10010001";

wait for clock_period*8*2*5208;

stop_the_clock<=true;

wait;
end process;

pc: process --clock generation

begin
while not stop_the_clock loop

clk<='0';

wait for clock_period / 2;

clk<='1';

wait for clock_period / 2;

end loop;

wait;
end process;

end;

PR 2.33 Program 2.33

Fig. 2.21 Received data at Tera Term VT

2 VHDL Implementation of Finite State Machines and Practical Applications

91

2.2.8.2 VHDL Implementation of RS232 Receiver
In the previous example, we considered the transmission of data from FPGA to
computer using RS232 protocol, i.e., FPGA is the transmitter and computer is the
receiver. In the next example, we consider just the opposite scenario. That is, FPGA
is the receiver and computer is the transmitter.

Example 2.9 Implement the RS232 receiver using a finite state machine on FPGA
side using VHDL. That is, the computer side is the transmitter and the FPGA side is
the receiver. The communication protocol parameters to be used are chosen as

• 9600 bit per second baud rate
• 8-bit data
• 1 stop bit
• No parity.

The received data on FPGA is displayed on LEDs of the FPGA board. The hardware
setup is depicted in Fig. 2.22.

FPGAD
B

9

C
o

n
n

e
c
to

r

Rx

Fig. 2.22 Computer to FPGA data transmission via RS232 protocol

Solution 2.9 The state diagram for the VHDL implementation of the asynchronous
receiver is depicted in Fig. 2.23 where it is seen that a control signal Rx is employed
to start and stop the transmission process. Start and stop states are considered
together not to lose any transmitted bit. Since the receiver side does not produce any
output, the Moore states have only names, i.e., no outputs are written below the state
names.

Start/stop
St0

--

reset St1

--

St2

--

St3

--

St4

--

St5

--

St6

--

St7

--

Rx=1

Rx=0

Fig. 2.23 RS232 receiver state diagram

2.2 Examples for VHDL Implementations of State Machines

92

In PR 2.34, input and output ports of the design and related states and signals are
defined. We use “count” signal object in frequency divider to get the frequency of
9600 Hz as in previous example.

The state machine consists of nine states, and eight of them consisting of st0, st1,
…, st7 are used for data retrieval. The state “start_stop” state is employed to start or
stop data acquisition.

PR 2.35 includes the clock divider process to get the 9600 Hz clock frequency. The
clock divider (frequency divider) process in PR 2.35 is the same as the one used in
the previous example. The counter counts from 1 to 5208 according to the calcu-
lated value in (2.1), and it is assumed that FPGA has 100 MHz clock signal.

library ieee;
use ieee.std_logic_1164.all;

entity uart_rx is
port(clk, rst: in std_logic;

outp: out std_logic_vector(7 downto 0);

rx: in std_logic);

end entity;

architecture logic_flow of uart_rx is
type state is (start_stop, st0, st1, st2, st3, st4, st5, st6, st7);

signal present_state, next_state: state:=start_stop;

signal clk_9600Hz: std_logic:='0';

signal count: positive range 1 to 5208:=1;

begin

PR 2.34 Program 2.34

2 VHDL Implementation of Finite State Machines and Practical Applications

93

The process “p1” used to update the present state is included in PR 2.36 where it is
seen that the sensitivity list of the process contains the signals “clk_9600Hz” and
“rst”.

library ieee;
use ieee.std_logic_1164.all;

entity uart_rx is
port(clk, rst: in std_logic;

outp: out std_logic_vector(7 downto 0);

rx: in std_logic);

end entity;

architecture logic_flow of uart_rx is
type state is (start_stop, st0, st1, st2, st3, st4, st5, st6, st7);

signal present_state, next_state: state:=start_stop;

signal clk_9600Hz: std_logic:='0';

signal count: positive range 1 to 5208:=1;

begin

cdiv: process(clk, rst) -- cdiv means clock divider

begin
if(rst='1') then

count<= 1;

elsif(rising_edge(clk)) then
count<=count+1;

if(count=5208) then
clk_9600Hz<=not clk_9600Hz;

count<=1;

end if;
end if;

end process;

PR 2.35 Program 2.35

2.2 Examples for VHDL Implementations of State Machines

94

Adding the process used for the determination of the next state values, we get the
overall VHDL implementation as in PR 2.37 where we defined a new port signal
“clk_out” to observe the “clk_9600Hz” signal in simulations.

97

PR 6-7

library ieee;
use ieee.std_logic_1164.all;

entity uart_rx is
port(clk, rst: in std_logic;

outp: out std_logic_vector(7 downto 0);
rx: in std_logic);

end entity;

architecture logic_flow of uart_rx is
type state is (start_stop, st0, st1, st2, st3, st4, st5, st6, st7);
signal present_state, next_state: state:=start_stop;
signal clk_9600Hz: std_logic:='0';
signal count: positive range 1 to 5208:=1;

begin

cdiv: process(clk, rst) -- cdiv means clock divider
begin

if(rst='1') then
count<=1;

elsif(rising_edge(clk)) then
count<=count+1;
if(count=5208) then

clk_9600Hz<=not clk_9600Hz;
count<=1;

end if;
end if;

end process;

p1: process(clk_9600Hz, rst)
begin

if(rst = '1') then
present_state<=start_stop;

elsif(rising_edge(clk_9600Hz)) then
present_state<=next_state;

end if;
end process;

PR 2.36 Program 2.36

2 VHDL Implementation of Finite State Machines and Practical Applications

95

The VHDL program in PR 2.37 can be tested using the test-bench program in PR
2.38.

library ieee;
use ieee.std_logic_1164.all;

entity uart_rx is
port(clk, rst: in std_logic;

outp: out std_logic_vector(7 downto 0);

rx: in std_logic;

clk_out: out std_logic);

end entity;

architecture logic_flow of uart_rx is
type state is (start_stop, st0, st1, st2, st3, st4, st5,

st6, st7);

signal present_state, next_state: state:=start_stop;

signal clk_9600Hz: std_logic:='0';

signal count: positive range 1 to 5208:=1;

begin
clk_out<=clk_9600Hz;

cdiv: process(clk, rst) -- cdiv means clock divider

begin
if(rst='1') then

count<= 1;

elsif(rising_edge(clk)) then
count<=count+1;

if(count=5208) then
clk_9600Hz<=not clk_9600Hz;

count<=1;

end if;
end if;

end process;

p1: process(clk_9600Hz, rst)
begin

if(rst = '1') then
present_state<=start_stop;

elsif(rising_edge(clk_9600Hz)) then
present_state<=next_state;

end if;
end process;

p2: process(present_state, rx)

begin
case present_state is

when start_stop =>

if(rx='1') then
next_state<=start_stop;

else
next_state<=st0;

end if;
when st0 =>

outp(0)<=rx;

next_state<=st1;

when st1=>

outp(1)<=rx;

next_state<=st2;

when st2=>

outp(2)<=rx;

next_state<=st3;

when st3=>

outp(3)<=rx;

next_state<=st4;

when st4=>

outp(4)<=rx;

next_state<=st5;

when st5=>

outp(5)<=rx;

next_state<=st6;

when st6=>

outp(6)<=rx;

next_state<=st7;

when st7=>

outp(7)<=rx;

next_state<=start_stop;

end case;

end process;

end logic_flow;

PR 2.37 Program 2.37

2.2 Examples for VHDL Implementations of State Machines

96

2.2.8.3 VHDL Implementation of RS232 Transceiver
In the previous two examples, VHDL realizations of RS232 transmitter and receiver
units were made. In the next example, we combine RS232 transmitter and receiver
VHDL codes in the main program. For this purpose, we add new parameters to the
transmit and receive programs and use “components” to utilize the transmit and
receive programs in main program.

library ieee;
use ieee.std_logic_1164.all;

entity uart_rx_tb is
end;

architecture bench of uart_rx_tb is

component uart_rx

port(clk, rst: in std_logic;

outp: out std_logic_vector(7 downto 0);

rx: in std_logic;

clk_out: out std_logic);

end component;

signal clk, rst: std_logic;

signal outp: std_logic_vector(7 downto 0);

signal rx: std_logic;

signal clk_out: std_logic;

constant clock_period: time:=10 ns;

signal stop_the_clock: boolean;

begin

pm: uart_rx port map(clk => clk,

rst => rst,

outp => outp,

rx => rx,

clk_out => clk_out);

ps: process --stimulus

begin

rst<='1'; rst<='0'; rx<='1';

wait for clock_period*2*5208;

rx<='0';

wait for clock_period*2*5208;

rx<='1';

wait for clock_period*2*5208;

rx<='0';

wait for clock_period*2*5208;

rx<='1';

wait for clock_period*2*5208;

rx<='0';

wait for clock_period*2*5208;

rx<='1';

wait for clock_period*2*5208;

rx<='0';

wait for clock_period*2*5208;

rx<='1';

wait for clock_period*2*5208;

rx<='0';

wait for clock_period*2*5208;

stop_the_clock<=true;

wait;
end process;

pc: process --clock generation

begin
while not stop_the_clock loop

clk<='0';

wait for clock_period / 2;

clk<='1';

wait for clock_period / 2;

end loop;

wait;
end process;

end;

PR 2.38 Program 2.38

2 VHDL Implementation of Finite State Machines and Practical Applications

97

Example 2.10 In this example, both transmit and receive VHDL codes are utilized
in a main VHDL program. We consider the scenario such that the serial data sent by
computer is received by FPGA, and it is sent back to the computer, and on the ter-
minal of the computer, the received character is displayed, i.e., the transmission
scenario can be modeled as

TX RX TX RXComputer FPGA FPGA Computer→ → → .

We use components in main program. We take the serial communication protocol
parameters as

• 9600 bit per second baud rate
• 8-bit data
• 1 stop bit
• No parity.

The character, sent from PC keyboard, is seen on a serial terminal window. In this
scenario, FPGA can be considered as a bouncer. The hardware interfacing is
depicted in Fig. 2.24 where it is seen that the FPGA part first receives the character
sent by the computer side, and then it bounces it back to the computer, i.e., it sends
it back to the computer side.

FPGAD
B

9

C
o

n
n

e
c
to

rRx

Tx

Fig. 2.24 RS232 transceiver for FPGA

Solution 2.10 The implementation consists of three units which are receiver, trans-
mitter, and clock divider. The block diagram of the design is depicted in Fig. 2.25.

2.2 Examples for VHDL Implementations of State Machines

98

Transmitter and receiver blocks have additional flags denoted by “rx_done” and
“tx_done” considering the transmitter and receiver programs of the previous two
examples.

When a character is received, “rx_done” flag is used to indicate that the retrieval
was successfully completed, i.e., “rx_done” is made “1”, and the transmitter starts
sending the received character. “tx_done” flag has no connection in this example,
and it can be used for successful transmission of the transmission for improved
implementations.

Since the same communication speed is used for both transmitter and receiver,
only one clock divider is used in a separate block. We need two separate finite state
machines for the receiver and transmitter as indicated in Fig. 2.26 where Rx=0 indi-
cates the availability of data at the receiver port. It should not be forgotten that
FPGA first performs the data acquisition operation, then sends the received data to
the computer.

u1:uart_rx

u3:clock_divider

u2:uart_tx

clk

reset

clk_out

trig

rx_done

received_data (7:0) data_to_send(7:0)

clk

reset
rx

reset

clk

reset

Rx

Tx Tx

clk

main:uart_rx_tx

Tx_done

Fig. 2.25 RS232 transceiver block diagram

2 VHDL Implementation of Finite State Machines and Practical Applications

99

We write VHDL programs for receiver, transmitter, and clock divider separately,
and use these programs in the main VHDL program using “components” for overall
implementation.

First, the VHDL code for the receiver is written as shown in PR 2.39 where dif-
ferent from the previous examples, no process for clock division operation is used.
“rx_done” flag is used for control purposes such that “rx=0” indicates the availabil-
ity of data at the receiver port, and “rx_done=1” indicates the successful completion
of the data acquisition.

Start/stop

Rx_done=0

St0

--

reset

St1

--

St2

--

St3

--

St4

--

St5

--

St6

--

St7

Rx_done=1

Idle

--

StartTx

0

reset

St0

bit-0

St1

bit-1

St2

bit-2

St3

bit-3

St4

bit-4

St5

bit-5

St6

bit-6

St7

bit-7

Stop

1

Rx=1

Rx=0

Rx_done=0

Rx_done=1

Receiver Transmitter

Fig. 2.26 RS232 transceiver state diagram

2.2 Examples for VHDL Implementations of State Machines

100

library ieee;
use ieee.std_logic_1164.all;

entity uart_rx is
port(clk, reset: in std_logic;

rx_done: out std_logic;

rx: in std_logic;
received_data: out std_logic_vector(7 downto 0));

end uart_rx;

architecture logic_flow of uart_rx is
type state is (start_stop, st0, st1, st2, st3, st4, st5, st6, st7);

signal present_state, next_state: state:=start_stop;

begin
p1: process(clk, reset)

begin
if(reset='1') then

present_state<=start_stop;

elsif(rising_edge(clk)) then
present_state<=next_state;

end if;
end process;

p2: process(present_state,rx)

begin
case present_state

when start_stop =>

rx_done<='0';

if(rx='1') then
next_state<=start_stop;

else
next_state<=st0;

end if;

when st0 =>

received_data(0)<=rx;

rx_done<='0';

next_state<=st1;

when st1=>

received_data(1)<=rx;

rx_done<='0';

next_state<=st2;

when st2=>

received_data(2)<=rx;

rx_done<='0';

next_state<=st3;

when st3=>

received_data(3)<=rx;

rx_done<='0';

next_state<=st4;

when st4=>

received_data(4)<=rx;

next_state<=st5;

rx_done<='0';

when st5=>

received_data(5)<=rx;

next_state<=st6;

rx_done<='0';

when st6=>

received_data(6)<=rx;

next_state<=st7;

rx_done<='0';

when st7=>

received_data(7)<=rx;

rx_done<='1';

next_state<=start_stop;

end case;

end process;

end logic_flow;

PR 2.39 Program 2.39

Second, the VHDL code for the transmitter is written as shown in PR 2.40 where
different from previous examples, no process for clock division operation is used,
and “tx_done” flag is used to indicate the completion of the transmission.

2 VHDL Implementation of Finite State Machines and Practical Applications

101

library ieee;
use ieee.std_logic_1164.all;

entity uart_tx is
port(clk, rst, trig: in std_logic;

data_to_send: in std_logic_vector(7 downto 0);

tx, tx_done: out std_logic);

end uart_tx;

architecture logic_flow of uart_tx is

type state is (idle, start_tx, st0, st1, st2, st3, st4, st5,

st6, st7, stop);

signal present_state, next_state: state:=idle;

begin

p1: process(clk,rst)

begin
if(rst = '1') then

present_state<=idle;

elsif(rising_edge(clk)) then
present_state<=next_state;

end if;
end process;

p2: process(present_state, trig)

begin
case present_state is

when idle =>

tx<='1';

tx_done<='0';

if(trig='1') then
next_state<=start_tx;

else
next_state<=idle;

end if;

when start_tx =>

tx<='0';

next_state<= st0;

when st0 =>

tx<=data_to_send(0);

next_state<=st1;

when st1=>

tx<=data_to_send(1);

next_state<=st2;

when st2=>

tx<=data_to_send(2);

next_state<=st3;

when st3=>

tx<=data_to_send(3);

next_state<=st4;

when st4=>

tx<=data_to_send(4);

next_state<=st5;

when st5=>

tx<=data_to_send(5);

next_state<=st6;

when st6=>

tx<= data_to_send(6);

next_state<=st7;

when st7=>

tx<=data_to_send(7);

next_state<=stop;

when stop=>

tx<='1';

tx_done<='1';

next_state<=idle;

end case;

end process;

end logic_flow;

PR 2.40 Program 2.40

In the third step, we implement the clock divider in a separate VHDL program, PR
2.41. Using clock (frequency) divider, we get 9600 Hz clock signal from a 100 MHz
clock source.

2.2 Examples for VHDL Implementations of State Machines

102

Lastly, we write the main program as in PR 2.42 where component declarations for
receiver, transmitter, and clock divider units are made in the declarative part of the
architecture. We first initiate the receiver unit using the port map command and
then initiate the transmitter part using the port map command. Initiation of the
clock divider is performed last.

However, keep in your mind that the sequence of initiations is not important,
since all the lines in the body of the architecture unit are performed in parallel.

library ieee;

use ieee.std_logic_1164.all;

entity clock_divider is
port (clk, rst: in std_logic;

clk_out: out std_logic);

end clock_divider;

architecture logic_flow of clock_divider is
signal temp_clk_out: std_logic:='0';

signal count: positive range 1 to 5208:=1;

begin
process(clk, rst)

begin
if(rst='1') then

count<=1;

elsif(rising_edge(clk)) then
count<=count+1;

if(count=5208) then
temp_clk_out<=not temp_clk_out;

count<=1;

end if;
end if;

end process;

clk_out<=temp_clk_out;

end logic_flow;

PR 2.41 Program 2.41

2 VHDL Implementation of Finite State Machines and Practical Applications

103

In the next example, we improve the structure of the RS232 receiver implemented
in VHDL. For this purpose, we consider the use of a buffer in the receiver system.

2.2.9 VHDL Implementation of FIFO

In this section, we explain the implementation of First-in First-out (FIFO) buffer in
VHDL via an example.

library ieee;
use ieee.std_logic_1164.all;

entity uart_rx_tx is
port(clk, reset: in std_logic;

rx: in std_logic;

tx: out std_logic);

end uart_rx_tx;

architecture logic_flow of uart_rx_tx is

signal data: std_logic_vector(7 downto 0);

signal rx_done, tx_done: std_logic;

signal clk_9600Hz: std_logic;

signal received_data: std_logic_vector(7 downto 0);

component uart_rx

port(clk, rst: in std_logic;
rx: in std_logic;

received_data: out std_logic_vector(7 downto 0);

rx_done: out std_logic);

end component;

component uart_tx

port(clk, rst, trig: in std_logic;

data_to_send: in std_logic_vector(7 downto 0);

tx, tx_done: out std_logic);

end component;

component clock_divider

port(clk, rst: in std_logic;

clk_out: out std_logic);

end component;

begin
u1: uart_rx port map(clk_9600Hz, rst, rx, received_data, rx_done);

u2: uart_tx port map(clk_9600Hz, rst, rx_done, received_data, tx, tx_done);

u3: clock_divider port map(clk, rst, clk_9600Hz);

end logic_flow;

PR 2.42 Program 2.42

2.2 Examples for VHDL Implementations of State Machines

104

Example 2.11 Design a First-in First-out (FIFO) data structure that is used to buf-
fer incoming data for a predefined size. Use generic data types for data length and
depth of the FIFO.

Solution 2.11 FIFOs are an indispensable design component used for buffering
data for continuous data flow. It can be considered as a kind memory unit with read
and write capabilities. A FIFO has empty and full control flags for the starting and
stopping of data flow. The block diagram of a typical FIFO is given in Fig. 2.27.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity fifo_module is
generic(data_width: natural:= 4;

fifo_depth: integer:= 4);

port(clk, rst: in std_logic;

wr_en: in std_logic;

wr_data: in std_logic_vector(data_width-1 downto 0);

full: out std_logic;

rd_en: in std_logic;

rd_data: out std_logic_vector(data_width-1 downto 0);

empty: out std_logic);
end fifo_module;

PR 2.43 Program 2.43

The entity unit part of the architecture is given in PR 2.43 where port control and
data signal objects for read and write operations are defined. Besides, generic defi-
nitions for input data and buffer sizes are used. For this example, although FIFO
input data and buffer sizes are set to 4, it should be kept in mind that it is not an
obligatory to choose FIFO data and buffer sizes the same.

FIFO

clk
rst

wr_en

wr_data

rd_en

empty

full

rd_data

Fig. 2.27 FIFO buffer block diagram

2 VHDL Implementation of Finite State Machines and Practical Applications

105

The signal objects to be used for the implementation of FIFO are defined in the
declarative part of the architecture as in PR 2.44.

The process written for FIFO read and write operations are given in PR 2.45.

Combining all the program units, we explained we get the overall implementation
of PR 2.46.

architecture logic_flow of fifo_module is

type fifo_array_type is array (0 to fifo_depth-1) of std_logic_vector(data_width-1 downto 0);

signal fifo_array: fifo_array_type:= (others => (others => '0'));

signal wr_index: integer range 0 to fifo_depth-1:=0;

signal rd_index: integer range 0 to fifo_depth-1:=0;

signal fifo_line: integer range -1 to fifo_depth+1:=1;

signal full_sig: std_logic;

signal empty_sig: std_logic;

begin

PR 2.44 Program 2.44

process(clk, rst)

begin
if(rst ='1') then

fifo_line<=0;

wr_index<=0;

rd_index<=0;

elsif(rising_edge(clk)) then

if(wr_en='1' and rd_en='0') then
fifo_array(wr_index)<=wr_data;

fifo_line<=fifo_line + 1;
if(wr_index=fifo_depth-1) then

wr_index<=0;

else
wr_index<=wr_index + 1;

end if;

end if;

if (wr_en='0' and rd_en='1') then
fifo_line<=fifo_line-1;

if(rd_index=fifo_depth-1) then
rd_index<=0;

else
rd_index<=rd_index + 1;

end if;
end if;

end if;

end process;

rd_data<=fifo_array(rd_index) when wr_en='0' else x"0";

full_sig<='1' when fifo_line=fifo_depth else '0';

empty_sig<='1' when fifo_line=0 else '0';

full<=full_sig;

empty<=empty_sig;

end logic_flow;

PR 2.45 Program 2.45

2.2 Examples for VHDL Implementations of State Machines

106

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity fifo_module is
generic(data_width: natural:= 4;

fifo_depth: integer:= 4);

port(clk, rst: in std_logic;

wr_en: in std_logic;

wr_data: in std_logic_vector(data_width-1 downto 0);

full: out std_logic;

rd_en: in std_logic;

rd_data: out std_logic_vector(data_width-1 downto 0);

empty: out std_logic);
end fifo_module;

architecture logic_flow of fifo_module is

type fifo_array_type is array (0 to fifo_depth-1) of std_logic_vector(data_width-1 downto 0);

signal fifo_array: fifo_array_type := (others => (others => '0'));

signal wr_index: integer range 0 to fifo_depth-1:=0;

signal rd_index: integer range 0 to fifo_depth -1:=0;

signal fifo_line: integer range -1 to fifo_depth +1:=1;

signal full_sig: std_logic;

signal empty_sig: std_logic;

begin

end if;
if(wr_en='0' and rd_en='1') then
fifo_line<=fifo_line-1;

if(rd_index=fifo_depth-1) then
rd_index<=0;

else
rd_index<=rd_index + 1;

end if;
end if;

end if;

end process;

rd_data<=fifo_array(rd_index) when wr_en='0' else x"0";

full_sig<='1' when fifo_line=fifo_depth else '0';

empty_sig<='1' when fifo_line=0 else '0';

full<=full_sig;

empty<=empty_sig;

end logic_flow;

process(clk, rst)

begin
if (rst ='1') then
fifo_line<=0;

wr_index<=0;

rd_index<=0;

elsif(rising_edge(clk)) then

if(wr_en='1' and rd_en='0') then
fifo_array(wr_index)<=wr_data;

fifo_line<=fifo_line + 1;
if(wr_index=fifo_depth-1) then
wr_index<=0;

else
wr_index<=wr_index + 1;

end if;

PR 2.46 Program 2.46

2.2.10 VHDL Implementation of Buffered RS232 Receiver

In this section, we explain the VHDL implementation of buffered RS232 receiver
via an example. We will employ components for our design. With this example, we
aim how to make large implementations using component utility of VHDL
programming.

2 VHDL Implementation of Finite State Machines and Practical Applications

107

Example 2.12 Implement the RS232 receiver system in FPGA using VHDL such that
the data stream is received through Rx line and stored in a First-in First-out (FIFO) buf-
fer. When FIFO is full, display the contents of FIFO on LEDs and empty the FIFO. Design
your FIFO such that received data is displayed in every 0.5 s. New data stream can be
received when FIFO is emptied. The communication protocol parameters used are

• 9600 bit per second baud rate
• 8-bit data
• 1 stop bit
• No parity.

Solution 2.12 The block diagram of the system is depicted in Fig. 2.28.

The design consists of five units which are receiver, FIFO, LED controller, clock
divider, and main program. In Fig. 2.29, the overall system to be implemented is
illustrated.

FPGA
D

B
9

C
o

n
n

e
c
to

r

Rx

F
ir

st
 I

n
 F

ir
st

 O
u
t

S
tr

u
ct

u
re

U
ar

t_
rx

Fig. 2.28 Buffered RS232 receiver

u2:clock_divider

reset

din(7:0)

reset

clk

reset

Rx

clk

main:uart_rx_fifo

u1:uart_rx

u4:led_controller

u3:fifo

clk

rx

rx_enable

received_data(7:0)
clk

rd_en

rst

wr_en

clk_out_2Hz

clk_out_9600Hz

clk

fifo_outp(7:0)

fifo_empty

fifo_full

reset

dout(7:0)

fifo_rd_en

dout(7:0)

empty

full

outp(7:0)

rx_done

Fig. 2.29 Buffered RS232 receiver block diagram

2.2 Examples for VHDL Implementations of State Machines

108

Moore state machines for “uart_rx” and “led_controller” units are shown in
Fig. 2.30. State machine design part for the RS232 receiver is a bit different from
the previous examples.

The receiver is disabled when FIFO is full or while FIFO is emptying. The sig-
nals “rx_enable” or “fifo_read” are generated by “led_controller” unit.

Idle

fifo_read _en =0

FIFO fecth data

fifo_read _en =1

reset

FIFO Full=0 FIFO Empty=0

FIFO

Full=1

FIFO Empty=1

Start/stop

Rx_done=0

St0

--

reset

St1

--

St2

--

St3

--

St4

--

St5

--

St6

--St7

Rx_done=1

Rx=1

Rx=0 &

rx_enable=0

Receiver

Led Controller

Fig. 2.30 Buffered RS232 receiver state diagram

VHDL implementation of the system in Fig. 2.30 consists of five units as indicated
in Fig. 2.29. Four of these parts, receiver, FIFO, clock divider, and led controller, are
implemented in separate VHDL files, and one main program uses these units as
components and implements the overall system.

2 VHDL Implementation of Finite State Machines and Practical Applications

109

library ieee;

use ieee.std_logic_1164.all;

entity uart_rx is
port(clk, rst: in std_logic;

rx_enable, Rx: in std_logic;

received_data: out std_logic_vector(7 downto 0);

rx_done: out std_logic);

end uart_rx;

architecture logic_flow of uart_rx is

type state is (start_stop, st0, st1, st2, st3, st4, st5, st6, st7);

signal present_state, next_state: state:=start_stop;

begin
process(clk, rst)

begin
if (rst = '1') then

present_state<=start_stop;

elsif(rising_edge(clk)) then
present_state<=next_state;

end if;
end process;

process(present_state, Rx)

begin
case present_state is

when start_stop =>

if(Rx='1' and rx_enable='1') then
next_state <= start_stop;

elsif(Rx='0' and rx_enable='0') then
next_state<=st0;

else
next_state<=start_stop;

end if;

when st0=>

received_data(0)<=Rx;

next_state<=st1;

when st1=>

received_data(1)<=Rx;

next_state<=st2;

when st2=>

received_data(2)<=Rx;

next_state<=st3;

when st3=>

received_data(3)<=Rx;

next_state<=st4;

when st4=>

received_data(4)<=Rx;

next_state<=st5;

when st5=>

received_data(5)<=Rx;

next_state<=st6;

when st6=>

received_data(6)<=Rx;

next_state<=st7;

when st7=>

received_data(7)<=Rx;

if(rx_enable='0') then
rx_done<= '1';

else
rx_done<= '0';

end if;
next_state<=start_stop;

end case;

end process;
end logic_flow;

PR 2.47 Program 2.47

The VHDL program for receiver part is depicted in PR 2.47 wherein the entity
part “rx_enable” and “rx_done” signals are defined for control purposes. The rest of
the receiver program is similar to the receiver programs used in the previous
examples.

2.2 Examples for VHDL Implementations of State Machines

110

Two separate clock signals are generated. One of the clocks drives the “uart_rx”
module whereas the other one controls with FIFO data flow and led controller
operation.

Desired clock generations via frequency dividers are implemented in PR 2.49.

library ieee;

use ieee.std_logic_1164.all;

entity led_controller is
port(clk, rst: in std_logic;

fifo_full, fifo_empty: in std_logic;

fifo_outp: in std_logic_vector(7 downto 0);

fifo_rd_en: out std_logic;

dout: out std_logic_vector(7 downto 0));

end led_controller;

architecture logic_flow of led_controller is
type state is (idle, data_out);

signal present_state, next_state: state:=idle;

begin
process(clk, rst)

begin
if (rst = '1') then

present_state<= idle;

elsif(rising_edge(clk)) then
present_state<=next_state;

end if;
end process;

process(present_state, fifo_full, fifo_empty)

begin
case present_state is

when idle=>

if(fifo_full='1') then
next_state<=data_out;

fifo_rd_en<='1';

else
fifo_rd_en<='0';

next_state<= idle;

end if;
when data_out =>

dout<=fifo_outp;

if(fifo_empty='0') then
fifo_rd_en<='1';

next_state<=data_out;

else
fifo_rd_en<='0';

next_state<=idle;

end if;
end case;

end process;

end logic_flow;

PR 2.48 Program 2.48

The led controller is implemented in PR 2.48.

2 VHDL Implementation of Finite State Machines and Practical Applications

111

library ieee;
use ieee.std_logic_1164.all;

entity clock_divider is
port(clk, rst: in std_logic;

clk_out_9600Hz: out std_logic;

clk_out_2Hz: out std_logic);

end clock_divider;

architecture logic_flow of clock_divider is
signal temp_clk_out_9600Hz: std_logic:='0';

signal temp_clk_out_2Hz: std_logic:='0';

signal count1: positive range 1 to 5208:=1;

signal count2: positive range 1 to 25000000:=1;

begin
process(clk, rst)

begin
if(rst='1') then

count1<=1;

elsif (rising_edge(clk)) then
count1<=count1+1;

if (count1=5208) then
temp_clk_out_9600Hz<=not temp_clk_out_9600Hz;

count1<=1;

end if;
end if;

end process;

process(clk, rst)

begin
if(rst='1') then

count2<=1;

elsif(rising_edge(clk)) then
count2<=count2+1;

if(count2=25000000) then
temp_clk_out_2Hz<=not temp_clk_out_2Hz;

count2<=1;

end if;
end if;

end process;

clk_out_9600Hz<=temp_clk_out_9600Hz;

clk_out_2Hz<=temp_clk_out_2Hz;

end logic_flow;

PR 2.49 Program 2.49

For the FIFO buffer implementation, we use the VHDL code of PR 2.46 which is
written for Example 2.11. The main program unit written using components is
depicted in PR 2.50.

2.2 Examples for VHDL Implementations of State Machines

112

 Problems

 1. Consider that the bit sequence “0101010” is transmitted via RS232 protocol.
Draw the asynchronous timing waveform for the transmission of the given bit
sequence.

 2. Draw the timing waveform for the transmission of the character “A” by PS/2
protocol. The receiver is the FPGA and the sender is the computer.

library ieee;

use ieee.std_logic_1164.all;
entity uart_rx_fifo is
port(clk, rst, Rx: in std_logic;

outp: out std_logic_vector(7 downto 0));

end uart_rx_fifo;

architecture logic_flow of uart_rx_fifo is
signal data: std_logic_vector(7 downto 0);

signal fifo_full, fifo_empty, rx_done, fifo_rd_en: std_logic;

signal clk_9600Hz, clk_2Hz: std_logic;

signal received_data: std_logic_vector(7 downto 0);

signal fifo_outp: std_logic_vector(7 downto 0);

signal led_out: std_logic_vector(7 downto 0);

component uart_rx

port(clk, rst :in std_logic;

rx, rx_enable: in std_logic;

received_data: out std_logic_vector(7 downto 0);

rx_done: out std_logic);

end component;

component clock_divider is
port(clk, rst: in std_logic;

clk_out_9600Hz, clk_out_2Hz: out std_logic);

end component;

component fifo

port(clk, rst, wr_en, rd_en: in std_logic;

din: in std_logic_vector(7 downto 0);

dout: out std_logic_vector(7 downto 0);

full, empty: out std_logic);

end component;

component led_controller is
port(clk, rst: in std_logic;

fifo_full, fifo_empty: in std_logic;

fifo_outp: in std_logic_vector(7 downto 0);

fifo_rd_en: out std_logic;

dout: out std_logic_vector(7 downto 0));

end component;
begin

u1: uart_rx port map(clk_9600Hz, rst, rx, fifo_rd_en, received_data, Rx_done);

u2: clock_divider port map(clk, rst, clk_9600Hz, clk_2Hz);

u3: fifo port map (clk_2Hz, rst, received_data, rx_done, fifo_rd_en, fifo_outp, fifo_full, fifo_empty);

u4: led_controller port map(clk_2Hz, rst, fifo_full, fifo_empty, fifo_outp, fifo_rd_en, outp);

end logic_flow;

PR 2.50 Program 2.50

2 VHDL Implementation of Finite State Machines and Practical Applications

113

 3. Generate 100 Hz clock from 100 MHz FPGA clock source.
 4. Draw the state diagram of the counter with the repeating sequence 0-4-7-6-8-8-

0-3 and implement the counter in VHDL.
 5. Draw the state diagram of the counter with the repeating sequence 2-6-7-8-1

such that between successive counts there is a time duration of 10 ms. Implement
the counter in VHDL.

 6. Implement the Mealy state machine shown in Fig. P2.1 in VHDL.

St0
reset

St1 St2

St3

1/0

0/0

0/0

1/0

1/0

0/1

1/0

0/0

Fig. P2.1 Mealy state diagram for P6

 7. Implement the Moore state machine shown in Fig. P2.2 in VHDL.

St0

11

St1

10

St3

01

0

0

1

1

1
0

1

0

St2

00

Fig. P2.2 Moore state diagram for P7

 Problems

115© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
O. Gazi, A. Ç. Arlı, State Machines using VHDL,
https://doi.org/10.1007/978-3-030-61698-4_3

3Timed Finite State Machines in VHDL

In this chapter, we explain timed state machines which can be considered as a gen-
eral form of the state machines described in Chap. 2. In classical state machines,
transition from one state to another occurs at every clock pulse. On the other hand,
in timed state machines, a transition from one state to another occurs after several
clock pulses, i.e., after a duration of time. Different amounts of time may be needed
for the occurrence of transitions between different state pairs. Timed state machines
are used in many practical applications. For instance, a traffic light controller used
in daily life can be implemented using timed state machines.

3.1 Timed State Machine Models

In ordinary finite state machines, at each rising or falling edge of the clock pulse, a
transition from one state to another one occurs. However, in some cases, those tran-
sitions from one state to another occur at multiples of clock period. The state
machines with transitions occurring at multiples of clock period are called “timed
state machines”. The generic models for timed Moore and timed Mealy state
machines are given in Figs. 3.1 and 3.2, respectively.

State0

Output

Input/Time

Input/Time

Input/Time

State1

Output

Fig. 3.1 Generic model for timed Moore state machine

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61698-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-61698-4_3#DOI

116

The “time” value placed along transitions show the number of clocks needed for the
state transition to take place unless otherwise indicated.

Example 3.1 A timed Moore state machine is depicted in Fig. 3.3 where it is seen
that if the present state is St0, when input is 1, after T2 clocks, a transition from
state St0 to St1 occurs, and at state St0 the circuit outputs are 01, and they are 10
for state St1.

State0

Input/Output

Time

State1

Input/Output

Time

Input/Output

Time

Input/Output

Time

Fig. 3.2 Generic model for timed Mealy state machine

3.2 VHDL Implementation of Timed Moore State Machines

The entity and declarative part of the architecture for the timed Moore FSM can be
written as in PR 3.1.

St0

01

St1

10

1
0 /T

2
1/T

4
0 /T

3
1/T

Fig. 3.3 A timed Moore state machine

3 Timed Finite State Machines in VHDL

117

The newly added part of PR 3.1, when compared to the template of classical state
machine, is shown inside a rounded rectangle.

Inside the body of the architecture unit, we have two processes. One of them is
used for the update of the present state value, and a template for this unit is given in
PR 3.2.

library ieee;
use ieee.std_logic_1164.all;

entity fsm_circuit is
port(clk, rst: in std_logic;

inp1, inp2,…, inpN: in data_type;
outp1, outp2,..., outM: out data_type);

end entity;

architecture logic_flow of fsm_circuit is

type state is (st0, st1, st2,...);

signal present_state, next_state: state;

constant t1: natural:=t1_Value;

constant t2: natural:=t2_Value;

⋮
signal timer: natural range 0 to max_count;

signal clk_count: natural range 0 to max_count;

begin

PR 3.1 Program 3.1

--- Update of the present state

p1: process(clk, rst)

begin
if (rst='1') then

present_state<=st0;

clk_count<=0;

elsif (clk'event and clk='1') then
clk_count<= clk_count+1;

if(clk_count=timer-1) then
present_state<=next_state;

clk_count<=0;

end if;
end if;

end process;

PR 3.2 Program 3.2

3.2 VHDL Implementation of Timed Moore State Machines

118

If we use variable object for “clk_count” rather than the signal object, the process
“p1” is written in PR 3.3 where it is seen that “clk_count” is compared to “timer”
rather than “timer-1”. Since the update of the variable objects is immediate. On the
other hand, the update of the signal objects is not immediate, and completion of the
current process is required for the update of the signal objects.

--- Update of the present state

p1: process(clk, rst)

variable clk_count: natural range 0 to max_count;

begin
if (rst='1') then
present_state<=st0;

clk_count<=0;

elsif (clk'event and clk='1') then
clk_count<= clk_count+1;

if(clk_count=timer) then
present_state<=next_state;

clk_count<=0;

end if;
end if;

end process;

PR 3.3 Program 3.3

The template process unit for the determination of circuit outputs and next states is
given in PR 3.4.

3 Timed Finite State Machines in VHDL

119

The sensitivity list of the process unit in PR 3.4 contains “present_state” signal
object and input parameters.

It is also possible to have one process by merging the processes in PR 3.2 and PR
3.4. The process resulting from the merging of both processes is given in PR 3.5
where it is seen that sensitivity list of both processes are combined.

--- Circuit outputs and next states for Moore model

p2: process(present_state, inp1, inp2,…)

begin
case present_state is
when st0 =>

outp1<=oval1; outp2<=oval2;… ; outpN<=ovalN;

if(inp1=ival1) then
next_state<=st1;

timer<=t1;

elsif(inp1=ival2) then
next_state<=st2;

timer<=t2;

⋮
else
next_state<=stN;

timer<=tm;

end if;
when st1 =>

outp1<=oval3; outp2<=oval4;… ; outpN<=ovalK;

if(inp1=ival2) then
next_state<=st1;

timer<=t4;

elsif(inp1=ival4) then
next_state<=st2;

timer<=t5;

⋮
else
next_state<=stN;

timer<=tm;

end if;
when …
⋮

end case;

end process;

PR 3.4 Program 3.4

3.2 VHDL Implementation of Timed Moore State Machines

120

p1_p2: process(clk, rst, present_state, inp1, inp2,...)

begin
if (rst='1') then

present_state<=st0;

clk_count<=0;

elsif (clk'event and clk='1') then
clk_count<= clk_count+1;

if(clk_count=timer-1) then
present_state<=next_state;

clk_count<=0;

end if;
end if;
case present_state is

when st0 =>

outp1<=oval1; outp2<=oval2;...; outpN<=ovalN;

if(inp1=ival1) then
next_state<=st1;

timer<=t1;

elsif(inp1=ival2) then
next_state<=st2;

timer<=t2;

⋮
else
next_state<=stN;

timer<=tm;

end if;
when st1 =>

outp1<=oval3; outp2<=oval4;...; outpN<=ovalK;

if(inp1=ival2) then
next_state<=st1;

timer<=t4;

elsif(inp1=ival4) then
next_state<=st2;

timer<=t5;

⋮
else
next_state<=stN;

timer<=tm;

end if;
when …
⋮

end case;

end process;

PR 3.5 Program 3.5

3 Timed Finite State Machines in VHDL

121

When all the parts are combined, our template for Moore state machine happens to
be as in PR 3.6.

--- Circuit outputs, next states and timer values for

--- Moore model

p2: process(present_state, inp1, inp2,….)

begin
case present_state is

when st0 =>

outp1<=oval1; outp2<=oval2;…;outpN<=ovalN;

if(inp1=ival1) then
next_state<=st1;

timer<=t1;

elsif(inp1=ival2) then
next_state<=st2;

timer<=t2;

⋮
else
next_state<=stN;

timer<=tm;

end if;
when st1 =>

outp1<=oval3; outp2<=oval4;...; outpN<=ovalK;

if(inp1=ival3) then
next_state<=st2;

timer<=t4;

elsif(inp1=ival4) then
next_state<=st2;

timer<=t5;

⋮
else
next_state<=stN;

timer<=tm;

end if;
when …
⋮

end case;

end process;

end;

library ieee;
use ieee.std_logic_1164.all;

entity fsm_circuit is
port(clk, rst: in std_logic;

inp1, inp2,..., inpN: in data_type;
outp1, outp2,..., outM: out data_type);

end entity;

architecture logic_flow of fsm_circuit is

type state is (st0, st1, st2,...);

signal present_state, next_state: state;

constant t1: natural:=t1_Value;

constant t2: natural:=t2_Value;

⋮
signal timer: natural range 0 to max_count;

signal clk_count: natural range 0 to max_count;

begin
--- Update of the present state

p1: process(clk, rst)

begin
if (rst='1') then

present_state<=st0;

clk_coun<=0;

elsif (clk'event and clk='1') then
clk_count<= clk_count+1;

if(clk_count=timer-1) then
present_state<=next_state;

clk_count<=0;

end if;
end if;

end process;

PR 3.6 Program 3.6

3.2.1 Timed Moore State Machine VHDL Implementation
Example

In this section, we provide an example for the VHDL implementation of timed
Moore state machine.

Example 3.2 Implement the timed Moore state machine shown in Fig. 3.4 in
VHDL.

3.2 VHDL Implementation of Timed Moore State Machines

122

library ieee;
use ieee.std_logic_1164.all;

entity timed_Moore_fsm is
port(clk, rst: in std_logic;

inp: in std_logic;
outp: out std_logic_vector(1 downto 0));

end entity;

architecture logic_flow of timed_Moore_fsm is

type state is (st0, st1);
signal present_state, next_state: state;

constant t1: natural:=2;
constant t2: natural:=3;
constant t3: natural:=3;
constant t4: natural:=4;
constant max_count: natural:=4;
signal timer: natural range 0 to max_count;
signal clk_count: natural range 0 to max_count;

begin

PR 3.7 Program 3.7

Solution 3.2 The entity part and the declarative part of the architecture unit can be
written as in PR 3.7.

The entity part of PR 3.7 contains clock, reset, input/output ports, and in the declar-
ative part of the architecture of PR 3.7, state data type is defined and transition times
between states are defined as constant objects. Besides, two more signal objects
“timer” and “clk_count”, to be used in processes, are introduced.

St0

01

St1

10

1
0 /T

2
1/T

4
0 /T

3
1/T

2
3T =

1
2T =

4
4T =

3
3T =

Fig. 3.4 A timed Moore state diagram

3 Timed Finite State Machines in VHDL

123

The process unit for the determination of circuit outputs and next states is given in
PR 3.9.

--- Circuit outputs, next states

--- and timer values

p2: process(present_state, inp)

begin
case present_state is

when st0 =>

outp<="01";

if(inp='0') then
next_state<=st0;

timer<=t1;

elsif(inp='1') then
next_state<=st1;

timer<=t2;

end if;

when st1 =>

outp<="10";

if(inp='0') then
next_state<=st0;

timer<=t4;

elsif(inp='1') then
next_state<=st1;

timer<=t3;

end if;
end case;

end process;

PR 3.9 Program 3.9

The state update process is given in PR 3.8.

p1: process(clk, rst)

begin
if (rst='1') then
present_state<=st0;

clk_count<=0;

elsif (clk'event and clk='1') then
clk_count<=clk_count+1;

if(clk_count=timer-1) then
present_state<=next_state;

clk_count<=0;

end if;
end if;

end process;

PR 3.8 Program 3.8

3.2 VHDL Implementation of Timed Moore State Machines

124

Combining all the program units, we get the complete program as in PR 3.10.

--- Circuit outputs, next states

--- and timer values

p2: process(present_state, inp)

begin
case present_state is

when st0 =>

outp<="01";

if(inp='0') then
next_state<=st0;

timer<=t1;

elsif(inp='1') then
next_state<=st1;

timer<=t2;

end if;

when st1 =>

outp<="10";

if(inp='0') then
next_state<=st0;

timer<=t4;

elsif(inp='1') then
next_state<=st1;

timer<=t3;

end if;
end case;

end process;

end logic_flow;

library ieee;
use ieee.std_logic_1164.all;

entity timed_Moore_fsm is
port(clk, rst: in std_logic;

inp: in std_logic;
outp: out std_logic_vector(1 downto 0));

end entity;

architecture logic_flow of timed_Moore_fsm is

type state is (st0, st1);

signal present_state, next_state: state;

constant t1: natural:=2;

constant t2: natural:=3;

constant t3: natural:=3;

constant t4: natural:=4;

constant max_count: natural:=4;

signal timer: natural range 0 to max_count;

signal clk_count: natural range 0 to max_count;

begin
p1: process(clk, rst)

begin
if (rst='1') then

present_state<=st0;

clk_count<=0;

elsif (clk'event and clk='1') then
clk_count<=clk_count+1;

if(clk_count=timer-1) then
present_state<=next_state;

clk_count<=0;

end if;
end if;

end process;

PR 3.10 Program 3.10

3 Timed Finite State Machines in VHDL

125

The VHDL program in PR 3.10 can be tested using the test-bench program in PR
3.11.

inp<='1';

wait for clock_period*3;

inp<='0';

wait for clock_period*4;

inp<='0';

wait for clock_period*2;

inp<='1';

wait for clock_period*3;

inp<='1';

wait for clock_period*3;

inp<='0';

wait for clock_period*4;

stop_the_clock<=true;

wait;
end process;

pc: process --clock generation

begin
while not stop_the_clock loop
clk<='0';

wait for clock_period / 2;

clk<='1';

wait for clock_period / 2;

end loop;

wait;
end process;

end;

library ieee;
use ieee.std_logic_1164.all;

entity timed_Moore_fsm_tb is
end;

architecture bench of timed_Moore_fsm_tb is

component timed_Moore_fsm

port(clk, rst: in std_logic;

inp: in std_logic;

outp: out std_logic_vector(1 downto 0));

end component;

signal clk, rst: std_logic;

signal inp: std_logic;

signal outp: std_logic_vector(1 downto 0) ;

constant clock_period: time:=10 ns;

signal stop_the_clock: boolean;

begin

pm: timed_Moore_fsm port map(clk => clk,

rst => rst,

inp => inp,

outp => outp);

ps: process --stimulus

begin

rst<='1'; rst<='0';

inp<='1';

wait for clock_period*3;

PR 3.11 Program 3.11

3.3 Analysis of the Timed Moore State Machine

In this section, we will analyze the VHDL implementation of the timed Moore state
machine in PR 3.10. To trace of the flow of the VHDL program, we will assume that
the input sequence is given as 101. We should keep in our mind that, if the value of
a signal object is changed inside a process, this change is not seen outside the pro-
cess unless the process execution finishes completely. Considering this important
information, we can trace the execution of the timed state machines as follows.

3.3 Analysis of the Timed Moore State Machine

126

Upon the application of the reset signal, the process “p1” works and present state
(PS), next state (NS), output (O/P), clock count (clk_cnt), and timer values happen
to be as in Fig. 3.5.

clk

reset

After Process

Execution

PS=st0

O/P=xx

NS=xx

p1:

clk_cnt=0

timer=XX

Fig. 3.5 Operation of “p1” after reset

clk

reset

After Process

Execution

PS=st0

O/P=xx

NS=xx

p1:

PS=st0

O/P="01"

NS=st1

p2:

clk_cnt=0

timer=XX

clk_cnt=0

timer=3

Fig. 3.6 Operations of “p1” and “p2” after reset

The change of the present state triggers the second process “p2”, and NS, O/P, and
timer values are updated as in Fig. 3.6.

3 Timed Finite State Machines in VHDL

127

clk

reset

After Process

Execution

PS=st0

O/P=xx

NS=xx

p1:

PS=st0

O/P="01"

NS=st1

p2:

clk_cnt=0

timer=XX

clk_cnt=0

timer=3

PS=st0

O/P="01"

NS=st1

p1:

clk_cnt=1

timer=3

Fig. 3.7 Operation of “p1” at the first rising edge

clk

reset

After Process

Execution

PS=st0

O/P=xx

NS=xx

p1:

PS=st0

O/P="01"

NS=st1

p2:

clk_cnt=0

timer=XX

clk_cnt=0

timer=3

PS=st0

O/P="01"

NS=st1

p1:

clk_cnt=1

timer=3

PS=st0

O/P="01"

NS=st1

p1:

clk_cnt=2

timer=3

1 2

Fig. 3.8 Operation of “p1” at the second rising edge

At the rising edge of the first clock pulse, “clk_cnt” value is incremented by 1, and
the values of the other parameters stay the same as shown in Fig. 3.7.

At the rising edge of the second clock pulse, clk_cnt value is incremented by 1, and
it is 2; however, this value is seen outside when the process execution finishes. For
this reason, “if(clk_count=timer-1)” statement in process “p1” is not executed. The
values of the other parameters stay the same as shown in Fig. 3.8.

At the rising edge of the third clock pulse, “clk_cnt” value is incremented by 1, and
it becomes 3; however, this value is seen outside the process when the process exe-
cution finishes. Inside the process, its old value, i.e., 2 is seen. For this reason, inside
process “p1”, the Boolean expression in “if(clk_count=timer-1)” is evaluated as
true, and “clk_cnt” value is initialized to 0, and present state value is updated as
shown in Fig. 3.9.

3.3 Analysis of the Timed Moore State Machine

128

The trace of the program for the next four clock pulses is shown in Fig. 3.11 where
we see that state change occurs after four clock pulses.

clk

reset

After Process

Execution

PS=st0

O/P=xx

NS=xx

p1:

PS=st0

O/P="01"

NS=st1

p2:

clk_cnt=0

timer=XX

clk_cnt=0

timer=3

PS=st0

O/P="01"

NS=st1

p1:

clk_cnt=1

timer=3

PS=st0

O/P="01"

NS=st1

p1:

clk_cnt=2

timer=3

PS=st1

O/P="01"

NS=st1

p1:

PS=st1

O/P="10"

NS=st0

p2:

clk_cnt=0

timer=3

clk_cnt=0

timer=4

1 432

Fig. 3.10 Operations of “p1” and “p2” at the third rising edge

PS=st1

O/P="10"

NS=st0

p1:

clk_cnt=0

timer=4

PS=st1

O/P="10"

NS=st0

p1:

clk_cnt=1

timer=4

76543

PS=st1

O/P="10"

NS=st0

p1:

clk_cnt=2

timer=4

PS=st1

O/P="10"

NS=st0

p1:

clk_cnt=3

timer=4

PS=st0

O/P="10"

NS=st0

p1:

PS=st0

O/P="01"

NS=st1

p2:

clk_cnt=0

timer=4

clk_cnt=0

timer=3

p2:

Fig. 3.11 Operations of “p1” and “p2” for the other rising edges

clk

reset

After Process

Execution

PS=st0

O/P=xx

NS=xx

p1:

PS=st0

O/P="01"

NS=st1

p2:

clk_cnt=0

timer=XX

clk_cnt=0

timer=3

PS=st0

O/P="01"

NS=st1

p1:

clk_cnt=1

timer=3

PS=st0

O/P="01"

NS=st1

p1:

clk_cnt=2

timer=3

PS=st1

O/P="01"

NS=st1

p1:

clk_cnt=0

timer=3

1 32

Fig. 3.9 Operation of “p1” at the third rising edge

Since the value of the present state is changed, the second process is triggered, as
shown in Fig. 3.10, and output, timer values are updated as “O/P=10”, “timer=4”,
and next state is determined as “st0” for input bit “0”. It is seen from Fig. 3.10 that
three clock cycles are required for the change of the present state.

3 Timed Finite State Machines in VHDL

129

The trace of the program for the next three clock pulses is shown in Fig. 3.12 where
we see that state change occurs after three clock pulses.

7

PS=st0

O/P="01"

NS=st1

clk_cnt=0

timer=3

8 9 10

PS=st0

O/P="01"

NS=st1

p1:

clk_cnt=1

timer=3

PS=st0

O/P="01"

NS=st1

p1:

clk_cnt=2

timer=3

PS=st1

O/P="01"

NS=st1

p1: p2:

clk_cnt=0

timer=3

p1: p2:

Fig. 3.12 Operations of “p1” and “p2” for the remaining rising edges

3.4 Seven-Segment Display as a Timed State Machine

In this section, we provide an example for the VHDL implementation seven- segment
displays using Moore timed state machine.

Example 3.3 Write a VHDL program that drives a seven-segment display such that
the digits on the seven-segment display are shown in a sequential manner with 1 s
time durations. Assume that FPGA has 100 MHz clock generator.

Solution 3.3 The seven-segment display is an electronic unit used to display the
digits 0, 1, …, 9. The symbolic representation of common-anode seven-segment
(SS) display is depicted in Fig. 3.13.

a

b

c

d

e

f g

Fig. 3.13 SS display symbol

3.4 Seven-Segment Display as a Timed State Machine

130

The VHDL code for the initialization and update of the present state and counter
value can be written as in PR 3.13.

133

library ieee;
use ieee.std_logic_1164.all;

entity ss_display_fsmis
port(clk, rst: in std_logic;

ssd: out std_logic_vector(6 downto 0));

end entity;

architecture logic_flow of ss_display_fsm is

type state is (st0, st1, st2, st3, st4, st5, st6, st7, st8, st9);

signal present_state, next_state: state;

constant t1: natural:=100000000;

constant max_count: natural:=100000000;

signal timer: natural range 0 to max_count;

signal clk_count: natural range 0 to max_count;

begin

PR 3.12 Program 3.12

The BCD codes representing digits and their corresponding seven-segment display
codes are depicted in Table 3.1. Assume that FPGA’s clock frequency is 100 MHz
which corresponds to a period of T = 10 ns. To obtain 1 s time duration, we need 108
clock periods, since 108T → 1 s. For this reason, the value of the constant object “t1”
in PR 3.12 is initialized to 108.

The entity section and the declarative part of the architecture unit can be written
as in PR 3.12.

Table 3.1 BCD to SS conversion table

Digit BCD code Seven segment display code
wxyz abcdefg

0 0000 0000001
1 0001 1001111
2 0010 0010010
3 0011 0000110
4 0100 1001100
5 0101 0100100
6 0110 0100000
7 0111 0001111
8 1000 0000000
9 1001 0000100

3 Timed Finite State Machines in VHDL

131

The calculation of circuit outputs, determination of next state, and update of the
timer can be achieved as in PR 3.14.

when st5 =>

ssd<="0100100";

next_state<=st6;

timer<=t1;

when st6 =>

ssd<="0100000";

next_state<=st7;

timer<=t1;

when st7 =>

ssd<="0001111";

next_state<=st8;

timer<=t1;

when st8 =>

ssd<="0000000";

next_state<=st9;

timer<=t1;

when st9 =>

ssd<="0000100";

next_state<=st0;

timer<=t1;

end case;

end process;

end logic_flow;

p2: process(present_state)

begin
case present_state is
when st0 =>

ssd<=st1;

timer<=t1;

when st1 =>

ssd<="1001111";

next_state<=st2;

timer<=t1;

when st2 =>

ssd<="0010010";

next_state<=st3;

timer<=t1;

when st3 =>

ssd<="0000110";

next_state<=st4;

timer<=t1;

when st4 =>

ssd<="1001100";

next_state<=st5;

timer<=t1;

PR 3.14 Program 3.14

p1: process(clk, rst)

begin
if (rst='1') then
present_state<=st0;

clk_count<=0;

elsif (clk'event and clk='1') then
clk_count<=clk_count+1;

if(clk_count=timer-1) then
present_state<=next_state;

clk_count<=0;

end if;
end if;

end process;

PR 3.13 Program 3.13

3.4 Seven-Segment Display as a Timed State Machine

132

The complete program can be written as in PR 3.15.

135

library ieee;
use ieee.std_logic_1164.all;

entity ss_display_fsm is
port(clk, rst: in std_logic;

ssd: out std_logic_vector(6 downto 0));

end entity;

architecture logic_flow of ss_display_fsm is

type state is (st0, st1, st2, st3, st4, st5, st6, st7, st8, st9);

signal present_state, next_state: state;

constant t1: natural:=100000000;

constant max_count: natural:= 100000000;

signal timer: natural range 0 to max_count;

signal clk_count: natural range 0 to max_count;

begin
p1: process(clk, rst)

begin
if (rst='1') then
present_state<=st0;

clk_count<=0;

elsif (clk'event and clk='1') then
clk_count<=clk_count+1;

when st1 =>

ssd<="1001111";

next_state<=st2;

timer<=t1;

when st2 =>

ssd<="0010010";

next_state<=st3;

timer<=t1;

when st3 =>

ssd<="0000110";

next_state<=st4;

timer<=t1;

when st4 =>

ssd<="1001100";

next_state<=st5;

timer<=t1;

when st5 =>

ssd<="0100100";

next_state<=st6;

timer<=t1;

when st6 =>

ssd<="0100000";

next_state<=st7;

timer<=t1;

when st7 =>

PR 3.15 Program 3.15

To perform the simulation of PR 3.15 at VHDL development platforms, change the
values of constant objects “t1” and “max_count” defined in the declarative part of
the architecture unit as in

 constant t1: natural:=2;
 constant max_count: natural:=2;

and the VHDL program in PR 3.15 can be tested using the test-bench in PR 3.16.

3 Timed Finite State Machines in VHDL

133

3.5 The Implementation of Timed Mealy State Machines
in VHDL

The implementation of timed Mealy state machines is like the implementation of
timed Moore state machines. The only difference occurs in the process unit where
circuit outputs and next states are determined. The second process in the template of
PR 3.4 can be written for timed Mealy state machines as in PR 3.17.

136

library ieee;
use ieee.std_logic_1164.all;

entity ss_display_fsm_tb is
end;

architecture bench of ss_display_fsm_tb is

component ss_display_fsm

port(clk, rst: in std_logic;

ssd: out std_logic_vector(6 downto 0));

end component;

signal clk, rst: std_logic;

signal ssd: std_logic_vector(6 downto 0);

constant clock_period: time:= 500 ms;

signal stop_the_clock: boolean;

begin

ps: process --stimulus

begin
rst<='1'; rst<='0';

wait for 9 sec;

stop_the_clock<=true;

wait;
end process;

pc: process --clock generation

begin
while not stop_the_clock loop
clk<='0';

wait for clock_period / 2;

clk<='1';

wait for clock_period / 2;

end loop;

wait;
end process;

end;

PR 3.16 Program 3.16

3.5 The Implementation of Timed Mealy State Machines in VHDL

134

3.5.1 Example for the VHDL Implementation of Timed Mealy
State Machine

In this section, we provide an example for the VHDL implementation of timed
Mealy state machine.

Example 3.4 Implement the timed Mealy machine, whose state diagram is given
in Fig. 3.14, in VHDL.

p2: process(present_state, inp1, inp2,….)
begin
case present_state is
when st0 =>

if(inp1=ival1) then
next_state<=st1;
timer<=t1;
outp1<=oval1; outp2<=oval2; … outpN<=ovalN;

elsif(inp1=ival2) then
next_state<=st2;
timer<=t2;
outp1<=oval3; outp2<=oval4; … outpN<=ovalM;

⋮
else
next_state<=stN;
timer<=tm;
outp1<=oval5; outp2<=oval6; … outpN<=ovalK;

end if;

when st1 =>

if(inp1=ival3) then
next_state<=st2;
timer<=t4;
outp1<=oval7; outp2<=oval8; … outpN<=ovalL;

elsif(inp1=ival4) then
next_state<=st3;
timer<=t5;
outp1<=ova9; outp2<=oval10; … outpN<=ovalP;

⋮
else
next_state<=stN;
timer<=tm;
outp1<=oval11; outp2<=oval12; … outpN<=ovalR;

end if;
when …

⋮
end case;

end process;

PR 3.17 Program 3.17

3 Timed Finite State Machines in VHDL

135

Solution 3.4 The implementation of the Mealy state machine in Fig. 3.14 is very
similar to the implementation of the Moore state machine in Fig. 3.14, the only
 difference in the implementation arises in the writing of second process, i.e., p2.
The second process for Mealy machine is given in PR 3.18.

0/01

0/01

1/10

1/10

1T

2T

3T

4T

St0 St1

2 3T =1 2T = 4 4T =3 3T =

Fig. 3.14 A timed Mealy state machine/diagram

p2: process(present_state, inp)

begin
case present_state is

when st0 =>

if(inp='0') then
next_state<=st0;

timer<=t1;

outp<="01";

elsif(inp='1') then
next_state<=st1;

timer<=t2;

outp<="10";

end if;
when st1 =>

if(inp='0') then
next_state<=st0;

timer<=t4;

outp<="01";

elsif(inp='1') then
next_state<=st1;

timer<=t3;

outp<="10";

end if;
end case;

end process;

PR 3.18 Program 3.18

3.5 The Implementation of Timed Mealy State Machines in VHDL

136

3.6 Digital Transmitter Implementation Using Timed State
Machines

In this section, we explain the VHDL implementation of a digital transmitter using
Moore timed state machines.

Example 3.5 The state diagram of a Moore machine is given in Fig. 3.15.

State0

Txt WREN

command

ss=0

wr=0

Idle

ss=1

State1

Unselect

Slave

ss=1

8T =

State2

Txt WRT

command

ss=0

8T = 1T = 8T =
State3

Txt address

value

ss=0

24T =
State4

Txt data

value

ss=0

wr=1

1T =1T =

Fig. 3.15 A Moore timed state diagram

The state diagram of Fig. 3.15 belongs to a digital transmitter device. Write- enable
command in state0, write command in state2, address in state3, and data in state4
are given as

 wren="00000000" wrt="11111111"
 addr="111111110000000011111111"
 data="10101010"

The bits are transmitted through an output port “outp” at each clock cycle. The
entity part of the VHDL implementation of the state diagram of Fig. 3.15 is given in
PR 3.19.

Complete the VHDL implementation of timed state diagram/machine given in
Fig. 3.15.

Solution 3.5 Using the state machine given in Fig. 3.15, we can write the declara-
tive part of the architecture as in PR 3.20.

library ieee;
use ieee.std_logic_1164.all;

entity timed_Moore_fsm is
port(clk, rst, wr: in std_logic;

outp, ss: out std_logic);
end entity;

PR 3.19 Program 3.19

3 Timed Finite State Machines in VHDL

137

architecture logic_flow of timed_Moore_fsm is

type state is (idle, st0, st1, st2, st3, st4);

signal present_state, next_state: state;

constant t1: natural:=1;

constant t2: natural:=8;

constant t3: natural:=24;

constant max_count: natural:=24;

signal timer: natural range 0 to max_count;

signal clk_count: natural range 0 to max_count;

constant wren: std_logic_vector(7 downto 0):="00000000";

constant wrt: std_logic_vector(7 downto 0):="11111111";

constant address: std_logic_vector(23 downto 0):="111111110000000011111111";

constant data: std_logic_vector(7 downto 0):="10101010";

begin

PR 3.20 Program 3.20

The first process, “p1”, i.e., state update process is written as in PR 3.21.

p1: process(clk, rst)

begin
if (rst='1') then

present_state<=idle;

clk_count<=0;

elsif (clk'event and clk='1') then
clk_count<=clk_count+1;

if(clk_count=timer-1) then
present_state<=next_state;

clk_count<=0;

end if;
end if;

end process;

PR 3.21 Program 3.21

3.6 Digital Transmitter Implementation Using Timed State Machines

138

The second process can be written as in PR 3.22.

when st2 =>

ss<='0'; timer<=t2;

next_state<=st3;

outp<=wrt(7-clk_count);

when st3=>

ss<='0'; timer<=t3;

next_state<=st4;

outp<=address(23-clk_count);

when st4 =>

ss<='0'; timer<=t2;

next_state<=idle;

outp<=data(7-clk_count);

end case;

end process;

end logic_flow;

p2: process(present_state, clk_count)

begin
case present_state is

when idle =>

ss<='1'; timer<=t1;

if(wr='0') then
next_state<=st0;

else
next_state<=idle;

end if;

when st0 =>

ss<='0'; timer<=t2;

next_state<=st1;

outp<=wren(7-clk_count);

when st1 =>

ss<='1'; timer<=t1;

next_state<=st2;

PR 3.22 Program 3.22

3 Timed Finite State Machines in VHDL

139

library ieee;
use ieee.std_logic_1164.all;

entity timed_Moore_fsm is
port(clk, rst, wr: in std_logic;

outp, ss: out std_logic);
end entity;

architecture logic_flow of timed_Moore_fsm is

type state is (idle, st0, st1, st2, st3, st4);
signal present_state, next_state: state;

constant t1: natural:=1;
constant t2: natural:=8;
constant t3: natural:=24;
constant max_count: natural:=24;
signal timer: natural range 0 to max_count;
signal clk_count: natural range 0 to max_count;

constant wren: std_logic_vector(7 downto 0):="00000000";
constant wrt: std_logic_vector(7 downto 0):="11111111";
constant address: std_logic_vector(23 downto 0):="111111110000000011111111";
constant data: std_logic_vector(7 downto 0):="10101010";

begin
p1: process(clk, rst)
begin

if(rst='1') then
present_state<=idle;
clk_count<=0;

elsif (clk'event and clk='1') then
clk_count<=clk_count+1;
if(clk_count=timer-1) then
present_state<=next_state;
clk_count<=0;

end if;
end if;

end process;
p2: process(present_state, clk_count)
begin

case present_state is
when idle =>

ss<='1'; timer<=t1;
if(wr='0') then
next_state<=st0;

else
next_state<=idle;

end if;

when st0 =>
ss<='0'; timer<=t2;
next_state<=st1;
outp<=wren(7-clk_count);

when st1 =>
ss<='1'; timer<=t1;
next_state<=st2;

when st2 =>
ss<='0'; timer<=t2;
next_state<=st3;
outp<=wrt(7- clk_count);

when st3=>
ss<='0'; timer<=t3;
next_state<=st4;
outp<=address(23-clk_count);

when st4 =>
ss<='0'; timer<=t2;
next_state<=idle;
outp<=data(7-clk_count);

end case;
end process;

end logic_flow;

PR 3.23 Program 3.23

Combining all the program parts, we get the complete program as in PR 3.23.

3.6 Digital Transmitter Implementation Using Timed State Machines

140

The VHDL implementation in PR 3.23 can be tested using the test-bench program
in PR 3.24.

library ieee;
use ieee.std_logic_1164.all;

entity timed_Moore_fsm_tb is
end;

architecture bench of timed_Moore_fsm_tb is

component timed_Moore_fsm

port(clk, rst, wr: in std_logic;

outp, ss: out std_logic);

end component;

signal clk, rst, wr: std_logic;

signal outp, ss: std_logic;

constant clock_period: time:= 10 ns;

signal stop_the_clock: boolean;

begin

pm: timed_Moore_fsm port map (clk => clk,

rst => rst,

wr => wr,

outp => outp,

ss => ss);

ps: process --stimulus

begin
rst<='1'; wr<='1';

rst<='0'; wr<='0';

wait for clock_period*50;

stop_the_clock<=true;

wait;
end process;

pc: process --clock generation

begin
while not stop_the_clock loop

clk<= '0';

wait for clock_period / 2;

clk<= '1';

wait for clock_period / 2;

end loop;

wait;
end process;

end;

PR 3.24 Program 3.24

3 Timed Finite State Machines in VHDL

141

 Problems

 1. Implement the timed state machine shown in Fig. P3.1 in VHDL, simulate your
program using a VHDL development platform such as Vivado, Quartus, or
Modelsim, and verify its operation.

identity

4...0

data-1

7...0 7...0

data-2 halt

4...0

sclk

ss

data

Fig. P3.2 Timing waveform for P3

 2. Convert the Moore state machine shown in Fig. P3.1 to Mealy state machine and
implement the Mealy state machine in VHDL.

 3. The waveforms in Fig. P3.2 are used between two devices for data transmission.
The signals “ss” and “sclk” are used for control purposes, whereas the “data”
waveform indicates the transmission of special bit stream. Obtain the timed state
machine for the waveforms shown in Fig. P3.2 and implement the timed state
machine in VHDL.

St0

01

St1

10

10 /T

21/T

40 /T

31/T

1 5T = 2 7T = 3 5T = 4 6T =

St2

11

5 4T = 6 7T =

50 /T

61/T

Fig. P3.1 Moore timed state diagram for P1

Problems

143© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
O. Gazi, A. Ç. Arlı, State Machines using VHDL,
https://doi.org/10.1007/978-3-030-61698-4_4

4Serial Peripheral Interface

Serial communication can be divided into two main categories, one is the asynchro-
nous communication and the other is the synchronous communication. RS232 com-
munication is an asynchronous communication type in which start and stop bits are
used for the controlling of communication, and the use of controlling bits reduces
the transmission efficiency. In synchronous serial communication both the transmit-
ter and receiver use the same clock signal. For this reason, in synchronous commu-
nication at least two wires, one is used for clock and the other one is used for data,
should be available between transmitter and receiver modules. Serial peripheral
interface (SPI) is a synchronous communication protocol developed by Motorola
company for the synchronous serial communication of 68HC family of microcon-
trollers by its peripherals. Later on, this standard became de-facto for serial com-
munication, and it has been adapted by many companies for their products. In this
chapter, we first give information about synchronous serial communication and SPI
protocol, and then explain how to write VHDL codes to implement SPI protocol for
FPGA devices so that they can communicate with electronic devices utilizing SPI
communication ports.

4.1 Synchronous Communication

In synchronous communication, the transmitter and receiver use the same clock
signals for the transmission and reception of information bits. Bits are placed on to
the bus at the rising/falling edges of the clock pulses and detected at the falling/ris-
ing edges of the clock pulses at the receiver side. For instance, assume that we have
the bit sequence

d � � �d d d d d d d d7 6 5 4 3 2 1 0

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61698-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-61698-4_4#DOI

144

and rising edges of the clock pulses are used to transmit data bits. At the rising edge
of the first clock pulse, the most significant bit of d is placed onto the bus as indi-
cated in Fig. 4.1.

7
d

Fig. 4.1 First data bit placed onto the bus

7
d

6
d

Fig. 4.2 Second data bit placed onto the bus

7
d

6
d

5
d

2
d

1
d4

d
3

d
0

d

Fig. 4.3 All the data bits placed onto the bus

7
d

6
d

5
d

2
d

1
d4

d
3

d
0

d

7
d

6
d

5
d

2
d

1
d

4
d

3
d

0
d

Fig. 4.4 Read operation in synchronous communication

At the rising of the second clock pulse, the information bit d6 is placed onto the bus
as indicated in Fig. 4.2.

In a similar manner, the other bits are placed onto the bus at the rising edge of the
clock pulses in a sequential manner as shown in Fig. 4.3.

At the receiver side, the detections of the transmitted bits are performed at the fall-
ing edges of the clock pulses. For instance, the detection of d7 at the receiver side is
performed at the falling edge of the first clock pulse as shown in Fig. 4.4.

4 Serial Peripheral Interface

145

4.2 Serial Peripheral Interface (SPI) Communication

In SPI communication, there is a master which is the source of clock, and a number
of slaves which get the clock from master and receive the data transmitted by the
master, and they may send data back to master.

An electronic unit may act as only master or as only slave or as both. If an elec-
tronic unit can act as a slave only, then the electronic unit does not have the capabil-
ity of sending its clock to other electronic units. The master unit of the SPI
communication is usually a microcontroller and the slaves are the peripherals which
can be LCDs, sensors, electronic chips, RFID card readers, wireless transmitters
and receivers, and other microcontrollers.

It is possible to transmit data without interruption using any serial synchronous
communication protocol like SPI. SPI communication standard employs four-wire
bus. In Fig. 4.5, the black-box representation of two electronic units having SPI con-
nectors, and their connection for SPI communication are illustrated.

In Fig. 4.5, sclk is the serial clock source, mosi denotes the master output slave
input, miso denotes master input slave output, and ss denotes slave select. Slave-
select output can also be called chip select, i.e., cs.

Example 4.1 If the master is a microcontroller and the slave is a simple digital-to-
analog (D/A) converter, then the SPI connection between these two devices can be
drawn as in Fig. 4.6.

As it is seen from Fig. 4.6 that D/A converter does not have digital output, this
means that miso port of the D/A converter is not available.

sclk

mosi

ss

Microcontroller
D/A

Converter

sclk

si

ss

outv

Fig. 4.6 D/A converter as a slave unit

sclk

mosi

miso

ss

Master Slave

sclk

mosi

miso

ss

Fig. 4.5 Master-Slave connections

4.2 Serial Peripheral Interface (SPI) Communication

146

A master unit can control a number of slaves. In Fig. 4.7, a master is connected to
four slaves.

sclk

mosi

miso

ss1

Master Slave1

sclk

mosi

miso

ss2
ss3
ss4

ss1

Slave2

sclk

mosi

miso

ss2

Slave3

sclk

mosi

miso

ss3

Slave4

sclk

mosi

miso

ss4

Fig. 4.7 A master unit controlling several slaves

4 Serial Peripheral Interface

147

A master with a single slave-select output can be connected to a number of slaves as
shown in Fig. 4.8.

sclk

mosi

miso

ss

Master Slave1

sclk

mosi

miso

ss1

Slave2

sclk

mosi

miso

ss2

Slave3

sclk

mosi

miso

ss3

Slave4

sclk

mosi

miso

ss4

Fig. 4.8 A master with a single slave-select connected to several slaves

Electrically erasable programmable read-only memories (EEPROM)
AT25010B/020B/040B, which are organized as 128/256/512 words of 8 bits each,
possess SPI ports for serial communication and they can be used as slaves by
microcontrollers.

If an electronic unit acts only as a slave, then its black-box representation can be
drawn as in Fig. 4.9. The output of one slave can be connected to the input of
another slave as in Fig. 4.10.

Slave

sclk

si

so

ss

Fig. 4.9 A slave device

4.2 Serial Peripheral Interface (SPI) Communication

148

4.2.1 MOSI and MISO Bit Transmission

The master unit sends the information stream to the slave bit-by-bit in a serial man-
ner through the MOSI port, and the slave unit receives the data sent from the master
using the MOSI port. During the transmission, first, the most significant bit of the
data is sent from the master to the slave or from the slave to the master.

4.2.1.1 The Steps of SPI Data Transmission
 1. First of all, the synchronization clock should be sent from the master to the slave

via sclk pin as shown in Fig. 4.11.

sclk

mosi

miso

ss

Master Slave

sclk

mosi

miso

ss

Fig. 4.11 Synchronization clock sent from master to slave

Slave

sclk

si

so

ss

sclk

mosi

miso
ss

Master

Slave

sclk

si

so

ss

Slave

sclk

si

so

ss

Slave

sclk

si

so

ss

Fig. 4.10 The output of one slave is connected to the input of another slave

4 Serial Peripheral Interface

149

 2. In the next step, the master generates the SS pulse which activates the slave as
shown in Fig. 4.12. SS signal can be produced using either falling or rising edges
of the clock pulses. It is seen in Fig. 4.12 that the SS signal is produced using the
falling edges of the clock pulses.

sclk

mosi

miso

ss

Master Slave

sclk

mosi

miso

ss

Fig. 4.12 SS pulse sent from master to slave

sclk

mosi

miso

ss

Master Slave

sclk

mosi

miso

ss

msb

Fig. 4.13 MSB sent from master to slave

sclk

mosi

miso

ss

Master Slave

sclk

mosi

miso

ss

msb

msb

Fig. 4.14 MSB is sent first

 3. The master transmits the bits using the MOSI port as shown in Fig. 4.13 where
the first transmitted bit arrives in the receiver the first.

 4. The slave can also transmit bit sequences to the master as shown in Fig. 4.14.

4.2.1.2 Properties of SPI Communication
The standard SPI protocol supports up to eight slaves. The maximum distance
between a master and a slave can be up to 3 m, or 10 ft approximately, and the maxi-
mum speed for SPI communication stayed at 10 Mbps for long time. Certainly, the
maximum speed value increases in time.

4.2 Serial Peripheral Interface (SPI) Communication

150

4.2.2 SPI Operation Modes

Before explaining the SPI operation modes, let us give some information about
clock polarity, i.e., CPOL, and clock phase, i.e., CPHA.

4.2.2.1 Clock Polarity (CPOL)
Clock polarity is related to the sensitivity edge of the clock pulse. Pulse sequences
with two different clock polarities are shown in Fig. 4.15 where CPOL = 0 indicates
the sensitivity to the rising edge, whereas CPOL = 1 indicates the sensitivity to the
falling edge.

CPHA=0

ss

sclk

mosi

Data is sampled at the
first clock edge

Fig. 4.16 Illustration of Mod-00 SPI operation

CPOL=0

CPOL=1

Fig. 4.15 CPOL = 0 and CPOL = 1 illustration

4.2.2.2 Clock Phase
Clock phase is accepted as 0 if the sampling operation at the receiver side is per-
formed at the first edge of each clock pulse. In Fig. 4.16, CPHA = 0 case is illus-
trated for clock polarity CPOL = 0.

On the other hand, if the sampling operation is performed at the second edge of the
clock pulse, then the clock phase is accepted as 1. In Fig. 4.17, CPHA = 1 case is
illustrated for clock polarity CPL = 0.

4 Serial Peripheral Interface

151

The case CPHA = 0, CPOL = 0 is indicated as mode-00 operation of SPI, and simi-
larly for CPHA = 1, CPOL = 0, the transmission operation is indicated as mode-10.
When CPOL = 1, we have the transmission schemes shown in Figs. 4.18 and 4.19
for CPHA = 0 and CPHA = 1.

CPHA=1

ss

sclk

mosi

Data is sampled at the

second clock edge

Fig. 4.17 Illustration of Mod-10 SPI operation

CPHA=0

ss

sclk

mosi

Data is sampled at the
first clock edge

Fig. 4.18 Illustration of Mod-01 SPI operation

CPHA=1

ss

sclk

mosi

Data is sampled at the

second clock edge

Fig. 4.19 Illustration of Mod-11 SPI operation

The case CPHA = 0, CPOL = 1 is indicated as mode-01 operation of SPI, and simi-
larly for CPHA = 1, CPOL = 1, the transmission operation is indicated as
mode-11.

4.2 Serial Peripheral Interface (SPI) Communication

152

The operation modes illustrated in Figs. 4.18 and 4.19 are referred to as mod-01 and
mod-11 operation modes.

4.2.2.3 Summary
The operation modes illustrated in Figs. 4.16, 4.17, 4.18, and 4.19 of the SPI serial
communications can be summarized as

CPHA = 0, CPOL = 0 ⟹ mode 00
CPHA = 0, CPOL = 1 ⟹ mode 01
CPHA = 1, CPOL = 0 ⟹ mode 10
CPHA = 1, CPOL = 1 ⟹ mode 11.

A master-slave pair must use the same SPI operation mode to communicate. The
most used operation modes are mode-00 and mode-11. The modes 00 and 10 are
depicted in Fig. 4.20 for comparison purpose.

CPHA=0

ss

sclk

mosi

CPHA=1
mosi

Fig. 4.20 Comparison of Mod-00 and Mod-10 SPI operations

ss

sclk

Fig. 4.21 SS and SCLK waveforms

Example 4.2 (a) Draw the waveforms for SPI serial communication for mode-00
operation for the transmission of bit sequence 11010110.

Solution 4.2 First we draw the ss, sclk waveforms as shown in Fig. 4.21 where it
is seen that sclk includes eight pulses, and 8 is the number of data bits to be
transmitted.

The most significant bit of the sequence 11010110 is 1. In mod-00 operation, the
data bit is read at the first edge of each clock pulse. This means that data bit is placed
onto the bus at the falling edge, and it is read at the receiver at the rising edge of the
clock pulse. Considering this, the transmission of the MSB, i.e., bit-7, is depicted in
Fig. 4.22.

4 Serial Peripheral Interface

153

The transmission of the bit-6 is illustrated in Fig. 4.23.

ss

sclk

mosi 1
msb

Fig. 4.22 MSB transmission

ss

sclk

mosi 1 1
msb

Fig. 4.23 The transmission of the bit-6

ss

sclk

mosi 111 1 100 0
msb

Fig. 4.24 The transmission of all the data bits

Following a similar logic for the rest of the bits, the mosi waveform which depicts
the transmission of the sequence 11010110 together with the ss and sclk waveforms
can be drawn as in Fig. 4.24.

4.3 VHDL Implementation of SPI Communication

154

At the backside of the SPI port, we have several registers, and these registers are
used to determine the communication parameters of the SPI communication. These
parameters are speed in bits/s, mode of operation, values of control, and status bits.
Usually in SPI communication, before the exchange of data between master and
slave, master sends some known bit sequences to the slave to program its registers
for SPI communication.

The most common registers are data, control, and status registers, and these reg-
isters are not fixed in number in every SPI device. They may vary in number and
type according to the manufacturers of the device. For instance, Maxim DS1306
RTC has control and status registers, and FM25L512 FRAM memory owns only a
single status register.

4.3 VHDL Implementation of SPI Communication

In this section, we will explain the VHDL implementation of the SPI communica-
tion protocol. SPI communication can be implemented using state or timed state
machines. For simple applications, classical state machines can be utilized. In gen-
eral, timed state machines are used for the VHDL implementation of SPI communi-
cation. We will explain the subject via examples. First, we will consider the
implementation of SPI protocols which only transmit data, then we will implement
the SPI protocols which both transmit and receive data.

4.3.1 Implementation of SPI Protocols Only in Transmit Mode

In this section, we will implement SPI protocol in VHDL considering only master- to-
slave data transmission scenario. We will explain the subject through an example.

Example 4.3 Draw the state machine diagram for the transmission of the bit
sequence 11010110 using the SPI protocol in mod-00 operation type.

Solution 4.3 SPI waveforms are given in Fig. 4.24. Considering the waveforms in
Fig. 4.24, we can draw the Moore state diagram as in Fig. 4.25.

State-0

ss=0

mosi=txt_bit7

tx_enable=1

Idle

ss=1

State-4

ss=0

mosi=txt_bit3

State-2

ss=0

mosi=txt_bit5

State-6

ss=0

mosi=txt_bit1

State-7

ss=0

mosi=txt_bit0

State-5

ss=0

mosi=txt_bit2

State-3

ss=0

mosi=txt_bit4

State-1

ss=0

mosi=txt_bit6

tx_enable=0

Fig. 4.25 A Moore state machine

4 Serial Peripheral Interface

155

Example 4.4 Implement the transmission of bit sequence 11010110 using the SPI
protocol in mod-00 operation in VHDL. Assume that the clock frequency of SP
equals to the clock frequency of FPGA.

Solution 4.4 SPI protocol can be implemented using state machines. The state dia-
gram for the transmission of bit sequence 11010110 using the SPI protocol is
depicted in Fig. 4.25. Considering Fig. 4.25, first, we write the entity part and
declarative part of the architecture as in PR 4.1.

library ieee;

use ieee.std_logic_1164.all;
entity fsm_spi is
port(clk, rst, tx_enable: in std_logic;

mosi, ss, sclk: out std_logic);

end entity;

architecture logic_flow of fsm_spi is
type state is (st_idle, st_txBit7, st_txBit6, st_txBit5, st_txBit4,

st_txBit3, st_txBit2, st_txBit1, st_txBit0);

signal present_state, next_state: state;

constant data: std_logic_vector(7 downto 0) :="11010110";

signal spi_sclk: std_logic;

begin

PR 4.1 Program 4.1

library ieee;

use ieee.std_logic_1164.all;
entity fsm_spi is

port(clk, rst, tx_enable: in std_logic;

mosi, ss, sclk: out std_logic);

end entity;

architecture logic_flow of fsm_spi is
type state is (st_idle, st_txBit7, st_txBit6, st_txBit5,

st_txBit4, st_txBit3, st_txBit2, st_txBit1, st_txBit0);

signal present_state, next_state: state;

constant data: std_logic_vector(7 downto 0):="11010110";

signal spi_sclk: std_logic;

begin
spi_sclk<=clk;

sclk<=spi_sclk;

p1: process(spi_sclk, rst)

--- present state update

begin
.
.

end process;

p2: process(present_state, tx_enable)

--- outputs and next states

begin
.
.

end process;

end architecture;

PR 4.2 Program 4.2

In PR 4.1, “spi_sclk” is the signal object used for the clock of the SPI protocol, and
for simplicity we assume that “frequency” of “spi_sclk” equals to the clock fre-
quency of FPGA. “sclk” is the clock signal sent to the receiver. If “spi_sclk” is not
equal to the clock frequency of FPGA, we need to use a frequency divider to obtain
“spi_sclk” from FPGA’s clock frequency “clk”.

Our complete program includes two processes, one of them is for the update of
the present state, and the other is for the calculation of the next states and circuit
outputs. The structure of the overall program happens as in PR 4.2.

4.3 VHDL Implementation of SPI Communication

156

The update of the present state is performed in PR 4.3.

--- Circuit outputs and next states

p2: process(present_state, tx_enable)

begin
case present_state is
when st_idle =>

ss<='1'; sclk<='0'; mosi<='X';

if(tx_enable ='1') then
next_state<=st_txBit7;

else
next_state<=st_idle;

end if;

when st_txBit7=>

ss<='0';

mosi<=data(7);

next_state<=st_txBit6;

when st_txBit6=>

ss<='0';

mosi<=data(6);

next_state<=st_txBit5;

when st_txBit5=>

ss<='0';

mosi<=data(5);

next_state<=st_txBit4;

when st_txBit4=>

ss<='0';

mosi<=data(4);

next_state<=st_txBit3;

when st_txBit3=>

ss<='0';

mosi<=data(3);

next_state<=st_txBit2;

when st_txBit2=>

ss<='0';

mosi<=data(2);

next_state<=st_txBit1;

when st_txBit1=>

ss<='0';

mosi<=data(1);

next_state<=st_txBit0;

when st_txBit0=>

ss<='0';

mosi<=data(0);

next_state<=st_idle;

end case;

end process;

PR 4.4 Program 4.4

SPI transmission protocol is implemented in VHDL in PR 4.4.

p1: process(spi_sclk, rst) --present state update
begin

if(rst='1' or (tx_enable ='0')) then
present_state<=st_idle;

elsif(spi_sclk'event and spi_sclk='0') then
present_state<=next_state;

end if;
end process;

PR 4.3 Program 4.3

4 Serial Peripheral Interface

157

The complete program happens to be as in PR 4.5.

library ieee;
use ieee.std_logic_1164.all;
entity fsm_spi is

port(clk, rst, tx_enable: in std_logic;
mosi, ss, sclk: out std_logic);

end entity;

architecture logic_flow of fsm_spi is
type state is (st_idle, st_txBit7, st_txBit6, st_txBit5,

st_txBit4, st_txBit3,st_txBit2,st_txBit1,st_txBit0);
signal present_state, next_state: state;

constant data: std_logic_vector(7 downto 0):="11010110";
signal spi_sclk: std_logic;

begin

spi_sclk<=clk;
sclk<=spi_sclk;

p1: process(spi_sclk, rst) -- The next state logic
begin

if(rst='1' or (tx_enable ='0')) then
present_state<= st_idle;

elsif (spi_sclk'event and spi_sclk='0') then
present_state<=next_state;

end if;
end process;

--- Circuit outputs and next state values
p2: process(present_state, tx_enable)
begin

case present_state is
when st_idle =>

ss<='1'; sclk<='0'; mosi<='X';
if(tx_enable ='1') then
next_state<= st_txBit7;

else
next_state<= st_idle;

end if;

when st_txBit7=>
ss<='0';
mosi<= data(7);
next_state<= st_txBit6;

when st_txBit6=>
ss<='0';
mosi<= data(6);
next_state<= st_txBit5;

when st_txBit5=>
ss<='0';
mosi<= data(5);
next_state<= st_txBit4;

when st_txBit4=>
ss<='0';
mosi<= data(4);
next_state<= st_txBit3;

when st_txBit3=>
ss<='0';
mosi<= data(3);
next_state<= st_txBit2;

when st_txBit2=>
ss<='0';
mosi<= data(2);
next_state<= st_txBit1;

when st_txBit1=>
ss<='0';
mosi<= data(1);
next_state<= st_txBit0;

when st_txBit0=>
ss<='0';
mosi<= data(0);
next_state<= st_idle;

end case;
end process;

end logic_flow;

PR 4.5 Program 4.5

4.3 VHDL Implementation of SPI Communication

158

The program of PR 4.5 can be tested using the test-bench in PR 4.6.

library ieee;
use ieee.std_logic_1164.all;

entity spi_Example_TB is
end spi_Example_TB;

architecture logic_flow of spi_Example_TB is

component fsm_spi

port(clk, rst, tx_enable: in std_logic;

mosi, ss, sclk: out std_logic);

end component;

signal clk1, rst1, tx_enable1: std_logic:='0';

signal mosi1, ss1, sclk1: std_logic:='0';

constant clock_period: time :=10 ns;

signal stop_the_clock: boolean;

begin

pm: fsm_spi port map(clk=>clk1,

rst=>rst1,

tx_enable=>tx_enable1,

mosi=>mosi1,

ss=>ss1,

sclk=>sclk1);

ps: process
begin

rst1<='1';

wait for clock_period;

rst1<='0';

tx_enable1<='1';

wait for clock_period;

wait for clock_period*8;

stop_the_clock<=true;

wait;

end process;

pc: process --clock generations

begin
while not stop_the_clock loop
clk1<='0';

wait for clock_period / 2;

clk1<='1';

wait for clock_period / 2;

end loop;

wait;
end process;

end architecture;

PR 4.6 Program 4.6

Instead of using separate two processes, we can also use a single process for the
implementation of state machines. We can combine the processes in PR 4.3 and PR
4.4 as in PR 4.7 where it is seen that the sensitivity list of the merged process con-
tains more parameters.

4 Serial Peripheral Interface

159

library ieee;
use ieee.std_logic_1164.all;
entity fsm_spi is

port(clk, rst, tx_enable: in std_logic;
mosi, ss, sclk: out std_logic);

end entity;

architecture logic_flow of fsm_spi is
type state is(st_idle, st_txBit7, st_txBit6,st_txBit5,

st_txBit4,st_txBit3,st_txBit2,st_txBit1,st_txBit0);
signal present_state, next_state: state;

constant data: std_logic_vector(7 downto 0):="11010110";
signal spi_sclk: std_logic;

begin

spi_sclk<=clk;
sclk<=spi_sclk;

p1_p2: process(spi_sclk, rst, present_state, tx_enable)
begin

if(rst='1' or (tx_enable ='0')) then
present_state<=st_idle;

elsif (spi_sclk'event and spi_sclk='0') then
present_state<=next_state;

end if;

case present_state is
when st_idle =>

ss<='1'; mosi<='X';
if(tx_enable ='1') then
next_state<=st_txBit7;

else
next_state<=st_idle;

end if;

when st_txBit7=>
ss<='0';
mosi<=data(7);
next_state<=st_txBit6;

when st_txBit6=>
ss<='0';
mosi<=data(6);
next_state<=st_txBit5;

when st_txBit5=>
ss<='0';
mosi<=data(5);
next_state<=st_txBit4;

when st_txBit4=>
ss<='0';
mosi<=data(4);
next_state<=st_txBit3;

when st_txBit3=>
ss<='0';
mosi<=data(3);
next_state<=st_txBit2;

when st_txBit2=>
ss<='0';
mosi<=data(2);
next_state<=st_txBit1;

when st_txBit1=>
ss<='0';
mosi<=data(1);
next_state<=st_txBit0;

when st_txBit0=>
ss<='0';
mosi<=data(0);
next_state<=st_idle;

end case;
end process;

end logic_flow;

PR 4.7 Program 4.7

4.3.1.1 Second Solution
In the previous solution, too many states are used in the program unit. To decrease
the number of program lines, we can consider the use of timed state machines for
the implementation of the SPI protocol for the given bit stream. The state diagram
of the SPI protocol for the transmission of the bit stream 11010110 can be drawn as
in Fig. 4.26.

4.3 VHDL Implementation of SPI Communication

160

library ieee;

use ieee.std_logic_1164.all;
entity fsm_spi is

port(clk, rst, tx_enable: in std_logic;

mosi, ss, sclk: out std_logic);

end entity;

architecture logic_flow of fsm_spi is
type state is (st_idle, st_txmt);

signal present_state, next_state: state;

constant data: std_logic_vector(7 downto 0):="11010110";

constant data_length: natural:=8;

signal timer: natural range 0 to data_length;

signal data_index: natural range 0 to data_length;

signal spi_sclk: std_logic;

begin
spi_sclk<=clk;

sclk<=spi_sclk;

PR 4.8 Program 4.8

Using the state diagram of Fig. 4.26, we can implement the SPI protocol for the
transmission of bit stream 11010110 as follows. First, we write the entity unit and
declarative part of the architecture as in PR 4.8. It is assumed that clock frequency
of the SPI protocol equals to the clock frequency of the FPGA device. Otherwise,
we need to use a clock divider which generates SPI’s clock frequency from FPGA’s
clock frequency.

TxtBits

ss=0

Idle

ss=1

tx_enable=1

tx_enable=0

T=8

Fig. 4.26 State diagram for second solution

4 Serial Peripheral Interface

161

The next state logic of the program can be written as in PR 4.9.

p1: process(spi_sclk, rst)

begin
if (rst='1') then
present_state<=st_idle;

data_index<= 0;

elsif (spi_sclk'event and spi_sclk='0') then
if(data_index=timer-1) then
present_state<=next_state;

data_index<=0;

else
data_index<=data_index +1;

end if;
end if;

end process;

PR 4.9 Program 4.9

The outputs of the SPI protocol using the state machines can be implemented as in
PR 4.10.

--- Circuit outputs and next states

p2: process(present_state, tx_enable, data_index)

begin
case present_state is

when st_idle =>

ss<='1';

mosi<='X';

timer<=1;

if(tx_enable='1') then
next_state<=st_txmt;

else
next_state<=st_idle;

end if;

when st_txmt =>

ss<='0';

timer<=8;

mosi<=data(7-data_index);

next_state<=st_idle;

end case;

end process;

end logic_flow;

PR 4.10 Program 4.10

4.3 VHDL Implementation of SPI Communication

162

The complete program happens to be as in PR 4.11.

library ieee;
use ieee.std_logic_1164.all;

entity fsm_spi is
port(clk, rst, tx_enable: in std_logic;

mosi, ss, sclk: out std_logic);

end entity;

architecture logic_flow of fsm_spi is
type state is (st_idle, st_txmt);

signal present_state, next_state: state;

constant data: std_logic_vector(7 downto 0):="11010110";

constant data_length: natural:=8;

signal timer: natural range 0 to data_length;

signal data_index: natural range 0 to data_length;

signal spi_sclk: std_logic;

begin
spi_sclk<=clk; sclk<=spi_sclk;

p1: process(spi_sclk, rst)

begin
if(rst='1') then

present_state<=st_idle;

data_index<= 0;

elsif(spi_sclk'event and spi_sclk='0') then
if(data_index=timer-1) then
present_state<=next_state;

data_index<=0;

else
data_index<=data_index +1;

end if;
end if;

end process;

p2: process(present_state, tx_enable, data_index)

begin
case present_state is

when st_idle =>

ss<='1'; mosi<='X';

timer<=1;

if(tx_enable='1') then
next_state<=st_txmt;

else
next_state<=st_idle;

end if;
when st_txmt =>

ss<='0'; timer<=8;

mosi<=data(7-data_index);

next_state<=st_idle;

end case;

end process; end;

PR 4.11 Program 4.11

4 Serial Peripheral Interface

163

The VHDL implementation in PR 4.11 can be tested using the test-bench program
given in PR 4.12.

library ieee;
use ieee.std_logic_1164.all;

entity fsm_spi_tb is
end;

architecture bench of fsm_spi_tb is

component fsm_spi
port(clk, rst, tx_enable: in std_logic;

mosi, ss, sclk: out std_logic);
end component;

signal clk, rst, tx_enable: std_logic:='0';
signal mosi, ss, sclk: std_logic:='0';
constant clock_period: time:= 10 ns;
signal stop_the_clock: boolean;

begin
pm: fsm_spi port map(clk => clk,

rst => rst,
tx_enable => tx_enable,
mosi => mosi,
ss => ss,
sclk => sclk);

ps: process --stimulus
begin
rst<='1';
wait for clock_period;

rst<='0';
tx_enable<='1';
wait for clock_period;

wait for clock_period*8;

tx_enable<='0';
stop_the_clock<=true;
wait;

end process;

pc: process --clock generation
begin
while not stop_the_clock loop
clk<='0';
wait for clock_period / 2;
clk<='1';
wait for clock_period / 2;

end loop;
wait;

end process;
end;

PR 4.12 Program 4.12

Instead of two processes, we can also use a single process for the implementation of
state machine. We can combine the processes in PR 4.12 in PR 4.13.

4.3 VHDL Implementation of SPI Communication

164

p1_p2: process(spi_sclk, present_state, rst, tx_enable, data_index)

begin

if(rst='1') then
present_state<=st_idle;

data_index<= 0;

elsif (spi_sclk'event and spi_sclk='0') then
if(data_index=timer-1) then

present_state<=next_state;

data_index<=0;

else
data_index<=data_index +1;

end if;
end if;

case present_state is
when st_idle =>

ss<='1';

mosi<='X';

timer<=1;

if(tx_enable='1') then
next_state<=st_txmt;

else
next_state<=st_idle;

end if;

when st_txmt =>

ss<='0';

timer<=8;

mosi<=data(7- data_index);

next_state<=st_idle;

end case;

end process;

PR 4.13 Program 4.13

Example 4.5 Assume that a master unit, connected to a slave device, sends a 4-bit
control sequence followed by an 8-bit data sequence using SPI communication pro-
tocol. Implement the SPI transmission protocol in VHDL. Use mod-00.

Solution 4.5 The timing waveforms for the SPI protocol can be drawn as in
Fig. 4.27.

4 Serial Peripheral Interface

165

The state diagram of the SPI transmission protocol can be drawn as in Fig. 4.28.

ss

sclk

mosi

Transmit 4 control bits Transmit 8 data bits

Fig. 4.27 The timing waveforms for the SPI protocol for Example 4.5

library ieee;

use ieee.std_logic_1164.all;
entity fsm_spi is

port(clk, rst, tx_enable: in std_logic;

mosi, ss, sclk: out std_logic);

end entity;

architecture logic_flow of fsm_spi is
type state is (st_idle, st0_txmt, st1_txmt);

signal present_state, next_state: state;

constant control: std_logic_vector(3 downto 0):="1110";

constant data: std_logic_vector(7 downto 0):="11010110";

constant max_length: natural:=8;

signal timer: natural range 0 to max_length;

signal data_index: natural range 0 to max_length;

signal spi_sclk: std_logic;

begin

PR 4.14 Program 4.14

First, we write the entity unit and declarative part of the architecture as in PR 4.14.

State0

Txt-4Bits

ss=0

tx_enable=1

Idle

ss=1

State1

Txt-8Bits

ss=0
tx_enable=0

T=8

T=4

Fig. 4.28 The state diagram of SPI protocol for Example 4.5

4.3 VHDL Implementation of SPI Communication

166

The next state logic of the program can be written as in PR 4.15.

--- Circuit outputs and next states

p2: process(present_state, tx_enable, data_index)

begin
case present_state is
when st_idle =>

ss<='1';

mosi<='X';

timer<=1;

if(tx_enable ='1') then
next_state<=st0_txmt;

else
next_state<=st_idle;

end if;

when st0_txmt =>

ss<='0';

timer<=4;

mosi<=control(3- data_index);

next_state<=st1_txmt;

when st1_txmt =>

ss<='0';

timer<=8;

mosi<=data(7- data_index);

next_state<=st_idle;

end case;

end process;

end logic_flow;

PR 4.16 Program 4.16

The outputs of the SPI protocol using the state machines can be implemented as in
PR 4.16.

p1: process(spi_sclk, rst)

begin
if(rst='1') then

present_state<=st_idle;

data_index<=0;

elsif (spi_sclk'event and spi_sclk='0') then
if(data_index=timer-1) then

present_state<=next_state;

data_index<=0;

else
data_index<= data_index +1;

end if;
end if;

end process;

PR 4.15 Program 4.15

4 Serial Peripheral Interface

167

Combining all the program parts, we get the overall program as in PR 4.17.

library ieee;
use ieee.std_logic_1164.all;
entity fsm_spi is

port(clk, rst, tx_enable: in std_logic;

mosi, ss, sclk: out std_logic);

end entity;

architecture logic_flow of fsm_spi is
type state is (st_idle, st0_txmt, st1_txmt);

signal present_state, next_state: state;

constant control: std_logic_vector(3 downto 0):="1110";

constant data: std_logic_vector(7 downto 0):="11010110";

constant max_length: natural:=8;

signal timer: natural range 0 to max_length;

signal data_index: natural range 0 to max_length;

signal spi_sclk: std_logic;

begin
spi_sclk<=clk;

sclk<=spi_sclk;

p1: process(spi_sclk, rst)

begin
if(rst='1') then

present_state<=st_idle;

data_index<=0;

elsif(spi_sclk'event and spi_sclk='0') then
if(data_index=timer-1) then
present_state<=next_state;

data_index<=0;

else
data_index<=data_index +1;

end if;
end if;

end process;

p2: process(present_state, tx_enable,

data_index)

begin
case present_state is

when st_idle =>

ss<='1';

mosi<='X';

timer<=1;

if(tx_enable ='1') then
next_state<=st0_txmt;

else
next_state<= st_idle;

end if;
when st0_txmt =>

ss<='0';

timer<=4;

mosi<=control(3-data_index);

next_state<=st1_txmt;

when st1_txmt =>

ss<='0';

timer<=8;

mosi<=data(7-data_index);

next_state<=st_idle;

end case;

end process;

end logic_flow;

PR 4.17 Program 4.17

4.3 VHDL Implementation of SPI Communication

168

The VHDL implementation in PR 4.17 can be tested using the test-bench in PR
4.18.

library ieee;
use ieee.std_logic_1164.all;

entity fsm_spi_tb is
end;

architecture bench of fsm_spi_tb is
component fsm_spi

port(clk, rst, tx_enable: in std_logic;

mosi, ss, sclk: out std_logic);

end component;

signal clk, rst, tx_enable: std_logic;

signal mosi, ss, sclk: std_logic ;

constant clock_period: time:= 10 ns;

signal stop_the_clock: boolean;

begin
pm: fsm_spi port map(clk => clk,

rst => rst,

tx_enable=> tx_enable,

mosi => mosi,

ss => ss,

sclk => sclk);

ps: process -- stimulus

begin
rst<='1';

wait for clock_period;

rst<='0';

tx_enable<='1';

wait for clock_period;

wait for clock_period*12;

tx_enable<='0';

stop_the_clock<=true;

wait;
end process;

pc: process -- clock generation

begin
while not stop_the_clock loop

clk<='0';

wait for clock_period / 2;

clk<='1';

wait for clock_period / 2;

end loop;

wait;
end process;

end;

PR 4.18 Program 4.18

4 Serial Peripheral Interface

169

In PR 4.17, instead of using two processes, we can also use single process as in PR
4.19 where it is seen that the body part of two processes are combined, and their
sensitivity lists are merged.

p1_p2: process(spi_sclk, rst, present_state,

tx_enable, data_index)

-- Circuit outputs and next state values

begin

if(rst='1') then
present_state<=st_idle;

data_index<= 0;

elsif (spi_sclk'event and spi_sclk='0') then
if(data_index=timer-1) then

present_state<=next_state;

data_index <=0;

else
data_index<=data_index +1;

end if;
end if;

case present_state is
when st_idle =>

ss<='1';

mosi<='X';

timer<=1;

if(tx_enable='1') then
next_state<=st0_txmt;

else
next_state<=st_idle;

end if;

when st0_txmt =>

ss<='0';

timer<=4;

mosi<=control(3-data_index);

next_state<=st1_txmt;

when st1_txmt =>

ss<='0';

timer<=8;

mosi<=data(7-data_index);

next_state<=st_idle;

end case;

end process;

PR 4.19 Program 4.19

4.3.2 Implementation of SPI Protocols Both in Transmit
and Receive Mode

Up to now, we considered the VHDL implementation of the SPI protocols dealing
with only data transmission from master to slave. In this section, we will consider
the implementation of SPI protocols which both transmit and receive data. We will
explain the subject through examples.

Example 4.6 Assume that you have a serial flash memory having SPI communica-
tion utility. The flash memory can be read and written. The read operation can be
performed using the timing waveforms shown in Fig. 4.29 where “rd_enable” is the
control signal for read operation. First READ command is sent for the read opera-
tion, and this is followed by a 24 bits of address information, and the incoming bits
are read byte-by-byte till the SS signal is asserted high.

4.3 VHDL Implementation of SPI Communication

170

Implement the described SPI protocol in VHDL. Use any values for the 8-bit READ
command and 24-bits address value and read a single 8-bit data. Assume that
FPGA’s clock frequency is 100 MHz, and SPI serial clock is 1 MHz.

Solution 4.6 We can achieve the VHDL implementation of the time waveforms
using the timed state machines. The diagram of the timed state machine for the read
operation can be drawn as in Fig. 4.30.

State0

Txt READ

command

ss=0

tx_enable=1

Idle

ss=1

State1

Txt address

value

ss=0

State2

Rxt data

value

ss=0
tx_enable=0

T=8

T=8

T=24

Fig. 4.30 SPI state diagram involving transmit and receive operations

ss

sclk

mosi

Transmit 8-bit

READ command

Transmit 24-bit

address data

Read data until SS

is asserted high

rd_enable T=8

Fig. 4.29 SPI protocol waveforms involving transmit and receive operations

The serial clock of the SPI can be generated from the clock of FPGA using a fre-
quency divider.

4 Serial Peripheral Interface

171

The entity part of the timed state machine can be written as in PR 4.20.

library ieee;

use ieee.std_logic_1164.all;
entity fsm_spi is

port(clk_100MHz, rst, tx_enable, miso: in std_logic;

mosi, ss, sclk_1MHz: out std_logic;

data_read: out std_logic_vector(7 downto 0));

end entity;

architecture logic_flow of fsm_spi is
type state is (st_idle, st0_txRead, st1_txAddress, st2_rxData);

signal present_state, next_state: state;

constant read_cmd: std_logic_vector(7 downto 0):="11101100";

constant address: std_logic_vector(23 downto 0):="110101101101011011010110";

constant max_length: natural:=24;

signal data_index: natural range 0 to max_length;

signal timer: natural range 0 to max_length;

signal count: natural range 1 to 50;

signal spi_sclk: std_logic;

begin

PR 4.20 Program 4.20

The serial clock of SPI can be obtained using the clock divider process in PR 4.21.

p_cdiv: process(clk_100MHz)

begin
if(rising_edge(clk_100MHz)) then
count<=count + 1;

if(count=50) then
spi_sclk<=not spi_sclk;

count<=1;

end if;
end if;

end process;

sclk_1MHz<=spi_sclk;

PR 4.21 Program 4.21

4.3 VHDL Implementation of SPI Communication

172

The next state logic of the program can be written as in PR 4.22.

--- Circuit outputs and next state values
p2: process(present_state, tx_enable, data_index)
begin

case present_state is
when st_idle =>

ss<='1';
mosi<='X';
timer<=1;
if(tx_enable ='1') then
next_state<=st0_txRead;

else
next_state<=st_idle;

end if;

when st0_txRead =>
ss<='0';
timer<=8;
mosi<=read_cmd(7- data_index);
next_state<=st1_txAddress;

when st1_txAddress =>
ss<='0';
timer<=24;

mosi<=address(23-data_index);
next_state<=st2_rxData;

when st2_rxData =>
ss<='0';
timer<=8;
next_state<=st_idle;

end case;

end process;

p3: process(spi_sclk)
begin

if(spi_sclk'event and spi_sclk='1') then
if(present_state=st2_rxData) then

data_read(7-data_index)<=miso;
end if;

end if;
end process;

PR 4.23 Program 4.23

Data sending and data receiving operations were implemented in PR 4.23 with the
processes “p2” and “p3”.

p1: process(spi_sclk, rst)

begin
if(rst='1') then
present_state<=st_idle;

data_index<=0;

elsif(spi_sclk 'event and spi_sclk='0') then
if(data_index=timer-1) then
present_state<=next_state;

data_index<=0;

else
data_index<=data_index +1;

end if;
end if;

end process;

PR 4.22 Program 4.22

4 Serial Peripheral Interface

173

Combining all the parts, we get the overall program in PR 4.24.

p_cdiv: process(rst, clk_100MHz)
begin

if(rst='1') then
count<=1;

end if;
if(rising_edge(clk_100MHz)) then
count<=count + 1;
if(count= 50) then
spi_sclk<=not spi_sclk; count<=1;

end if;
end if;

end process;
sclk_1MHz<= spi_sclk;
p1: process(spi_sclk, rst)
begin

if(rst='1') then
present_state<=st_idle; data_index<= 0;

elsif(spi_sclk'event and spi_sclk='0') then
if(data_index=timer-1) then
present_state<=next_state; data_index<=0;

else
data_index<=data_index +1;

end if;
end if;

end process;
p3: process(spi_sclk)
begin

if(spi_sclk'event and spi_sclk='1') then
if(present_state=st2_rxData) then
data_read(7-data_index)<=miso;

end if;
end if;

end process;

library ieee;
use ieee.std_logic_1164.all;
entity fsm_spi is

port(clk_100MHz, rst, tx_enable, miso: in std_logic;
mosi, ss, sclk_1MHz: out std_logic; data_read: out std_logic_vector(7 downto 0));

end entity;

architecture logic_flow of fsm_spi is
type state is (st_idle, st0_txRead, st1_txAddress, st2_rxData);
signal present_state, next_state: state;

constant read_cmd: std_logic_vector(7 downto 0):="11101100";
constant address: std_logic_vector(23 downto 0):="110101101101011011010110";

constant max_length: natural:=24;
signal data_index, timer: natural range 0 to max_length;
signal count: natural range 1 to 50;
signal spi_sclk: std_logic:='0';

begin

p2: process(present_state, tx_enable, data_index)
begin

case present_state is
when st_idle =>
ss<='1';
mosi<='X';
timer<=1;
if(tx_enable='1') then
next_state<=st0_txRead;

else
next_state<=st_idle;

end if;
when st0_txRead =>
ss<='0';
timer<=8;
mosi<=read_cmd(7-data_index);
next_state<=st1_txAddress;

when st1_txAddress =>
ss<='0';
timer<=24;
mosi<=address(23-data_index);
next_state<=st2_rxData;

when st2_rxData =>
ss<='0';
timer<=8;
next_state<=st_idle;

end case;
end process;

end logic_flow;

PR 4.24 Program 4.24

4.3 VHDL Implementation of SPI Communication

174

The VHDL implementation in PR 4.24 can be tested using the test-bench program
given in PR 4.25.

PR 4.25 Program 4.25

library ieee;

use ieee.std_logic_1164.all;

entity fsm_spi_tb is
end;

architecture bench of fsm_spi_tb is

component fsm_spi

port(clk_100MHz, rst, tx_enable, miso: in std_logic;

mosi, ss, sclk_1MHz: out std_logic;

data_read: out std_logic_vector(7 downto 0));

end component;

signal clk_100MHz, rst, tx_enable, miso: std_logic:='0';

signal mosi, ss, sclk_1MHz: std_logic:='0';

signal data_read: std_logic_vector(7 downto 0);

constant clock_period: time := 10 ns; -- 100MHz clock frequency

signal stop_the_clock: boolean;

begin
pm: fsm_spi port map (clk_100MHz => clk_100MHz,

rst => rst,

tx_enable => tx_enable,

miso => miso,

mosi => mosi,

ss => ss,

sclk_1MHz => sclk_1MHz,

data_read => data_read);

ps: process -- stimulus:

begin

rst<='1'; tx_enable<='0';

wait for 1 us;-- wait for clock_period*100;

rst<='0'; tx_enable<='1';

wait for 1 us;

wait for 8 us; wait for 24 us;

4 Serial Peripheral Interface

175

4.4 SPI VHDL Implementation Examples for Electronic
Devices

In this section, we will provide examples for VHDL implementation of SPI protocol
to communicate with some electronic devices commercially available.

4.4.1 VHDL Implementation of SPI Protocol for 12-bit DAC
MCP4921

The first devices we consider are MCP4921/4922 which are 12-bit DACs with SPI
interface. MCP4922 contains two channel outputs. The black-box representation of
MCP4921 is shown in Fig. 4.31.

miso<='1'; wait for 1 us; miso<='0'; wait for 1 us;
miso<='1'; wait for 1 us; miso<='0'; wait for 1 us;
miso<='1'; wait for 1 us; miso<='0'; wait for 1 us;
miso<='1'; wait for 1 us; miso<='0'; wait for 1 us;

wait for 16 us;
stop_the_clock<=true;
wait;
end process;

pc: process -- clocking
begin

while not stop_the_clock loop
clk_100MHz <= '0';
wait for clock_period / 2;
clk_100MHz <= '1';
wait for clock_period / 2;

end loop;
wait;

end process;
end;

PR.4.25 (continued)

4.4 SPI VHDL Implementation Examples for Electronic Devices

176

MCP4921 is a digital-to-analog converter (DAC) which get 12 bits of digital input
and produces an analog voltage proportional to the magnitude of the digital input.
SPI interface of the MCP4921 consists of chip select CS , i.e., SS, serial clock SCK,
i.e., SCLK, serial data input SDI, i.e., MOSI.

The device does not have MISO output port, i.e., it does not have digital output.
It only accepts digital input and produces analog output. VDD is supply voltage
which takes values from 2.7 to 5.5 V. VOUTA is the output voltage. VREFA is the voltage
reference input which ranges from AVSS, the analog ground input, to VDD.

The MCP4921 supports mode-00 and mode-11 transmission types. In both types,
data are read at the receiver side at the rising edges of the clock pulses, and bits are
placed onto the bus at the falling edges of the clock pulses. This is illustrated in
Fig. 4.32.

SCK

SDI

4 Config Bits 12 Data Bits

CS
Mode00

Mode11

SHDNGA 11D
4D 3D

5D6D
7D8D9D10D 0D1D2DA/B BUF

LDAC

Fig. 4.32 SPI transmission waveforms for MCP4921

When CS is low, the four control bits and 12 data bits are samples at DAC at the
rising edges of the clock pulses. When CS is raised high the data is latched onto the
DAC’s input registers. When LDAC pin achieves low state, the values held in the
DAC’s input registers are sent to the DCA’s output registers.

In Fig. 4.32, it is seen that the first 4 bits are the configuration bits, and the next
12 bits are the data bits. The SPI frame, sent by the Master, consists of 16 bits. The
first 4 bits are the configuration bits of the chip, and these bits are

MCP4921

1

2

3

4

8

7

6

5

DDV

CS

SCK

SDI

OUTAV

SSAV

REFAV

LDCA

Voltage

Output

Fig. 4.31 The black-box representation of MCP4921

4 Serial Peripheral Interface

177

A B/ : channel select (used by MCP4922)
BUF: VREF input buffer control bit
GA : gain control
SHDN : shutdown bit, turns off the output

and the other 12 bits represent the DAC value. The chip does not have MISO line as
we mentioned before. An FPGA device can be connected to MCP4921. The VHDL
implementation of the SPI protocol depicted in Fig. 4.32 for this device can be
achieved easily as in Example 4.5.

4.4.2 Sine Signal Generation and SPI Protocol Development
in VHDL for Digital Analog Converter (DAC), AD7303

In this section, we will consider the generation of sine signal in VHDL and imple-
ment the SPI protocol for digital-to-analog converter (DAC), AD7303. The gener-
ated sine signal is sent to AD7303. The output of the AD7303 can be observed on
an oscilloscope screen.

We will explain the subject through examples. First, let us give some information
about AD7303.

4.4.2.1 8-Bit Digital-to-Analog Converter, AD7303
The AD7303 is a dual port, 8-bit DAC that operates from a single +2.7 to +5.5 V
supply. It has mosi pin and does not have miso pin as shown in Fig. 4.33. Maximum
SPI communication speed is 30 MHz for AD7303. SPI mode utilized for the DAC
chip is mode-00. Each transmission with AD7303 includes 8-bit control and 8-bit
DAC data with a total of 16 bits.

The black-box representation of AD7303 is depicted in Fig. 4.33.

In Fig. 4.33, VOUT A and VOUT B are the output voltages. VDD is the input power
supply. REF is the reference input which ranges from 1 V to VDD/2. SCLK is the
serial clock. GND is the ground. DIN is the serial data input. AD7303 has 16-bit
registers where 8 bits are used for data and 8 bits reserved for control operation.
Data is read into the register at the rising edge of the clock input.

AD7303

1

2

3

4

8

7

6

5

Voltage

Output
OUT

V A
OUT

V B

REF

DD
V

GND

SYNC

SCLK

DIN

Voltage

Output

Fig. 4.33 AD7303 black-box representation

4.4 SPI VHDL Implementation Examples for Electronic Devices

178

SYNC is used to control the input. When SYNC is low, data is loaded into the shift
register at the rising edge of the clock pulses. The value of the output voltage at the
terminals A or B equals to

V V

N
0 2

256
� � ��

�
�

�
�
�REF

where VREF is the voltage at the REF pin or VDD/2 when internal reference is chosen
and N is the decimal equivalent of the 8-bit data, ranging from 0 to 255, loaded into
DAC.

Data is sent into AD7303 with frames consisting of 16 bits of which the most
significant 8 of them are used for control operation, and the least significant 8 bits
are used for DAC. The control bits are used to select the outputs DAC A or DAC B,
and they are used for various data loading functions, and for selecting between
internal and external REF sources. For detailed information about the use of control
bits, the reader can refer to the datasheet of AD7303.

Example 4.7 When the 8-bit data 11111111 is loaded into the registers of AD7303,
the output voltage of the DAC can be calculated as

2

255

256
2� � � �V VREF REF

which is equal to VDD when VREF = VDD/2. Note that VDD ranges from 2.7 to 5.5 V.

4.4.2.2 Sine Signal Generation in VHDL
Next example illustrates how to generate a sine signal in VHDL.

Example 4.8 Write a VHDL code to generate sine signal.

Solution 4.8 We will consider the sine signal with frequency of 1 Hz, and generate
the samples of 1 Hz sine signal for its one period, i.e., one cycle. Once we have the
samples of 1 Hz sine signal for its one period, generation of any other sine signal with
frequency f0 Hz from an FPGA’s output port can be achieved by transmitting f0 cycles
of sine signal through the port in 1 s. First, we will generate the samples of sine signal
for its one cycle in MATLAB, and then use these samples in VHDL program.

The amplitude values of sine signal, sin(2πf0t) ranges from −1 to 1. We will gen-
erate 100 samples from one period of sine signal and these values will be repre-
sented by the integers in the range 0 to 255. An 8-bit DAC can handle integers
ranging from 0 to 255.

In PR 4.26, 100 samples for sine signal for its one period are generated using
MATLAB, and the generated values are mapped to integers ranging from 0 to 255,
and the integer values are written into a file. The frequency of the sine signal is set
to 1 Hz.

4 Serial Peripheral Interface

179

y=[136, 144, 152, 160, 167, 175, 182, 189, 196, 203, 209, 215, 221, 226, 231, 235,
239, 243, 246, 249, 251, 253, 254, 255, 255, 255, 254, 253, 251, 249, 246, 243, 239,

235, 231, 226, 221, 215, 209, 203, 196, 189, 182, 175, 167, 160, 152, 144, 136, 128,

120, 112, 104, 96, 89, 81, 74, 67, 60, 53, 47, 41, 35, 30, 25, 21, 17, 13, 10, 7, 5, 3, 2,

1, 1, 1, 2, 3, 5, 7, 10, 13, 17, 21, 25, 30, 35, 41, 47, 53, 60, 67, 74, 81, 89, 96, 104,

112, 120, 128]

PR 4.27 Program 4.27

The integer sine samples obtained from PR 4.26 are depicted in PR 4.27.

When the integer vector in PR 4.27 is plotted using MATLAB, we obtain the graph
shown in Fig. 4.34.

Fig. 4.34 Sine signal having integer amplitude values

clc; clear all;

t=1:100;

f=1;

y=sin(2*pi*f*t/100)*127+128;

plot(t,y)

y=round(y);

fprintf('SINROM<=(')

fprintf('%.0f,' , y(1:end-1));

fprintf('%.0f' , y(end));

fprintf(')')

PR 4.26 Program 4.26

4.4 SPI VHDL Implementation Examples for Electronic Devices

180

The MATLAB generated sine samples can be used in a VHDL program as illus-
trated in PR 4.28.

type sinlut is array(0 to 99) of integer range 0 to 255;
signal sinrom: sinlut;

begin
sinrom<=(136, 144, 152, 160, 167, 175, 182, 189, 196, 203, 209, 215,

221, 226, 231, 235, 239, 243, 246, 249, 251, 253, 254, 255, 255,
255, 254, 253, 251, 249, 246, 243, 239, 235, 231, 226, 221, 215,
209, 203, 196, 189, 182, 175, 167, 160, 152, 144, 136, 128, 120,
112, 104, 96, 89, 81, 74, 67, 60, 53, 47, 41, 35, 30, 25, 21, 17, 13,
10, 7, 5, 3, 2, 1, 1, 1, 2, 3, 5, 7, 10, 13, 17, 21, 25, 30, 35, 41, 47,
53, 60, 67, 74, 81, 89, 96, 104, 112, 120, 128);

PR 4.28 Program 4.28

FPGAAD7303

Ossiloscope

Digital Analog

Conversion
DigitalAnalog

SCLK

MOSI

SS

Fig. 4.35 FPGA to AD7303 SPI connections

Example 4.9 AD7303 is a serial input, dual channel output 8-Bit DAC. Generate
sine signal in FPGA using VHDL and transmit the sine samples from FPGA to
AD7303 through SPI port.

Assume that the output of the AD7303 is connected to an oscilloscope where
sine signal is observed.

Solution 4.9 The connections between FPGA, DAC, and scope are shown in
Fig. 4.35 where it is seen that there is no MISO line.

FPGA controls DAC through 3-wire SPI line. We need to send control commands
and sine signal samples. AD7303 supports Mod-00 SPI communication. In the data-
sheet of AD7303, SPI communication waveforms of AD7303 are drawn as in
Fig. 4.36.

4 Serial Peripheral Interface

181

The data to be transmitted are the 8-bit sine samples. The sine samples can be gener-
ated using MATLAB as in the previous example and can be directly used in VHDL
code.

There are 100 sine samples generated, and each 8-bit sample is transmitted with
an 8-bit control command as depicted in Fig. 4.37 where it is seen that 16 bits are
transmitted in each transmission session, consisting of 8-bit control and 8-bit data
integers, and between two transmission sessions “ss” signal is set to “1”. There are
100 transmission sessions.

ss

sclk

mosi

Transmit 8-bit control

command
Transmit 8-bit data

Fig. 4.36 Mod-00 SPI communication for AD7303

ss

sclk

mosi

Transmit 1st 8-bit of

Sine loop-up table
Transmit 2nd 8-bit of

Sine loop-up table

Transmit 100th 8-bit

of Sine loop-up table

8-bit control

command

8-bit control

command

8-bit control

command

Fig. 4.37 Transmission of 100 sine samples using SPI protocol for AD7303

AD7303 SPI serial clock frequency can have values up to 30 MHz. In our applica-
tion, we choose the serial clock frequency of the SPI as 1 MHz. FPGA’s clock fre-
quency is accepted as 100 MHz. The serial clock of SPI is obtained from the clock
of FPGA using a frequency divider process. The state diagram of data transmission
via SPI communication can be drawn as in Fig. 4.38.

4.4 SPI VHDL Implementation Examples for Electronic Devices

182

The entity unit and declarative part of the architecture are given in PR 4.29. In entity
part, SPI port signals are defined. In the declarative part of the architecture unit, the
signal object “count”, to be used for frequency division operation, is defined. The
signal object “sinrom” is used to store the sine sample values generated by
MATLAB.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity AD7303_driver is
port(clk_100MHz, reset: in std_logic;

ss, mosi, sclk: out std_logic);

end AD7303_driver;

architecture logic_flow of AD7303_driver is
type state is (st_idle, st_DacSent, st_Stop);

signal present_state, next_state: state;

signal spi_sclk: std_logic;

signal count: positive range 1 to 500:=1;

signal data: std_logic_vector(15 downto 0);

signal control: std_logic_vector(7 downto 0):="00000000";

type sinlut is array(0 to 99) of integer range 0 to 255;

signal sinrom: sinlut;

constant data_length: natural:=16;

constant max_length: natural:=15;

signal data_index: integer range 0 to 15;

signal timer: natural range 0 to data_length;

signal sample_index : integer range 0 to 100:=0;

PR 4.29 Program 4.29

State-0

ss=0

TXT Control

Command

Idle

ss=1

State-2

ss=1

STOP

Set SS

State-1

ss=0

TXT 8-bit

Data

1T = 8T =

8T =
1T =

Fig. 4.38 State diagram of SPI protocol for AD7303

4 Serial Peripheral Interface

183

In PR 4.30, sine sample values are assigned to “sinrom” signal object, and genera-
tion of 1 MHz serial clock of SPI bus is achieved using a frequency divider
process.

begin
sinrom<=(136, 144, 152, 160, 167, 175, 182, 189, 196, 203, 209, 215,

221, 226, 231, 235, 239, 243, 246, 249, 251, 253, 254, 255, 255,

255, 254, 253, 251, 249, 246, 243, 239, 235, 231, 226, 221, 215,

209, 203, 196, 189, 182, 175, 167, 160, 152, 144, 136, 128, 120,

112, 104, 96, 89, 81, 74, 67, 60, 53, 47, 41, 35, 30, 25, 21, 17, 13,

10, 7, 5, 3, 2, 1, 1, 1, 2, 3, 5, 7, 10, 13, 17, 21, 25, 30, 35, 41, 47,

53, 60, 67, 74, 81, 89, 96, 104, 112, 120, 128);

p1: process(clk_100MHz, reset)

begin
if(reset='1') then

count<= 1;

elsif(rising_edge(clk_100MHz)) then
count<=count+1;

if(count=50) then
spi_sclk<=not spi_sclk;

count<=1;

end if;
end if;

end process;

sclk<=spi_sclk;

PR 4.30 Program 4.30

186

p2: process(spi_sclk, reset)

begin
if(reset='1') then
present_state<=st_idle;

data_index<=0;

sample_index<=0;

elsif(spi_sclk'event and spi_sclk ='0') then
if(data_index=timer-1) then
present_state<=next_state;

data_index<=0;

if(timer>1)then
if(sample_index=99) then

sample_index<= 0;

else
sample_index<=sample_index +1;

end if;
data<= control&conv_std_logic_vector(sinrom(sample_index),8);

end if;
else
data_index<=data_index +1;

end if;
end if;

end process;

p3: process(present_state)

begin
case present_state is

when st_idle =>

ss<='1';

mosi<='X';

timer<=1;

next_state<=st_DacSent;

when st_DacSent =>

ss<='0';

timer<=16;

mosi<=data(15-data_index);

next_state<=st_Stop;

when st_Stop =>

ss<='1';

mosi<='X';

timer<=1;

next_state<=st_idle;

end case;

end process;

end logic_flow;

PR 4.31 Program 4.31

SPI protocol can be implemented using the processes in PR 4.31.

4.4 SPI VHDL Implementation Examples for Electronic Devices

184

For the transmission of a single sine sample, we need 8 clock cycles for the trans-
mission of control command, another 8 clock cycles for the transmission of sine
sample, and 2 clock cycles for the stop and idle states. In total, we need 8 + 8 + 2 = 18
clock cycles for the transmission of a single sine sample. The frequency of sine
signal generated by VHDL can be calculated as

f �

�
�

1

100 18
555 555

MHz
Hz.

The sine signal generated using PR 4.31 is viewed on the screen of a digital oscil-
loscope as in Fig. 4.39.

Fig. 4.39 Sine wave displayed on oscilloscope screen

4 Serial Peripheral Interface

185

188

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity AD7303_driver is

port (clk_100MHz, reset: in std_logic;
ss, mosi, sclk: out std_logic);

end AD7303_driver;

architecture logic_flow of AD7303_driver is

type state is (idle_st, dac_st);
signal present_state: state:=idle_st;
signal clk_1MHz: std_logic:='0';
signal count: positive range 1 to 50:=1;
signal data: std_logic_vector(15 downto 0);
type sinlut is array(0 to 99) of integer range 0

to 255;
signal sinrom: sinlut;

begin
sinrom<=(136, 144, 152, 160, 167, 175, 182,

189, 196, 203, 209, 215, 221, 226,
231, 235, 239, 243, 246, 249, 251,
253, 254, 255, 255, 255, 254, 253,
251, 249, 246, 243, 239, 235, 231,
226, 221, 215, 209, 203, 196, 189,
182, 175, 167, 160, 152, 144, 136,
128, 120, 112, 104, 96, 89, 81, 74,
67, 60, 53, 47, 41, 35, 30, 25, 21, 17,
13, 10, 7, 5, 3, 2, 1, 1, 1, 2, 3, 5, 7,
10, 13, 17, 21, 25, 30, 35, 41, 47, 53,
60, 67, 74, 81, 89, 96, 104, 112, 120,
128);

p_cdiv: process(clk_100MHz, reset)
begin

if(reset='1') then
count<=1;

elsif(rising_edge(clk_100MHz)) then
count<=count+1;
if(count=50) then

clk_1MHz<=not clk_1MHz;
count<=1;

end if;
end if;

end process;

sclk<= clk_1MHz;

p1_p2: process(clk_1MHz, reset)
variable bit_index: integer range 0 to 16:=0;
variable sample_index: integer range 0 to

100:=0;
begin

if(reset='1') then
ss<='1';
present_state<=idle_st;

elsif(falling_edge(clk_1MHz)) then
case present_state is

when idle_st =>
ss<='1';
present_state<=dac_st;

when dac_st =>
if(bit_index=16) then
ss<= '1';
bit_index:=0;
sample_index:=sample_index + 1;
if(sample_index = 100) then

sample_index:=0;
end if;
data<=x"00"&conv_std_logic_vector

(sinrom(sample_index),8);
present_state<=dac_st;

else
ss<='0';
mosi<=data(15-bit_index);
bit_index:=bit_index+1;
present_state<=dac_st;

end if;

when others =>

end case;
end if;

end process;

end logic_flow;

PR 4.32 Program 4.32

4.4.2.3 Second Solution
Instead of using two separate process, we can achieve the implementation using a
single process as in PR 4.32.

4.4 SPI VHDL Implementation Examples for Electronic Devices

186

4.4.3 SPI Protocol Development in VHDL for Digital Output
MEMS Accelerometer, ADXL362

The ADXL362, which works at exceptionally low power consumption levels, is a
complete 3-axis acceleration measurement device. It measures both dynamic accel-
eration and static acceleration. Motion or shock yields dynamic acceleration, and
tilt cause static acceleration. Acceleration is informed digitally, and the device com-
municates via the SPI protocol.

The black-box representation of the ADXL362 is depicted in Fig. 4.40 where SPI
pins are shown in red color.

4.4.3.1 SPI Protocol of ADXL362
There are five different types of SPI communications that ADXL362 supports.
These communication types are “Register Read”, “Register Write”, “Burst Read”,
“Burst Write”, and “FIFO Read”. In all types of SPI communications, first instruc-
tion is sent, then address is sent, and lastly data is sent or received.

In this section, we will only consider “Register Read” SPI communication type
of ADXL362. For the other SPI communication types, the reader can refer to the
datasheet of ADXL362. SPI waveforms corresponding to “Register Read” type of
communication is shown in Fig. 4.41 where it is seen that first “read instruction”,
followed by the transmission of register address to be read, is sent, and then 8-bit
data is received. Each of “Read instruction”, “Register address”, and “Read data”
contains 8-bit.

ADXL362

1

2

3

4

876

5

NC

9

10

11

12

13

141516

RESERVED

SCLK

RESERVED

G
N D

N
C

V
s

INT1

GND

GND

RESERVED

INT2

M
O

S
I

M
IS

O

C
S

VDD I/O

Fig. 4.40 The black-box representation of the ADXL362

4 Serial Peripheral Interface

187

Now, we consider the development of SPI protocol in VHDL so that data communi-
cation between ADXL362 and FPGA can be achieved. We will explain the subject
through an example.

Example 4.10 ADXL362 is a 3-Axis digital output MEMS accelerometer that
communicates through SPI. Read 8-bit device identification (ID) of the chip and
show this device ID on LEDs of your FPGA board. Figure 4.42 shows the master,
FPGA, and slave, ADXL362, connections.

C7 C6 C5 C4 C3 C2 C1 C0

Transmit ‘Read Instruction’

A7 A6 A5 A4 A3 A2 A1 A0

Transmit Address

D7 D6 D5 D4 D3 D2 D1 D0

Receive ‘Read Data’

miso

mosi

sclk

ss

Fig. 4.41 SPI waveforms for ADXL362

Solution 4.10 When the register map of the ADXL362 is inspected device, it is
seen that ID is put in 0x00 address by the manufacturer. Its default value is hexa-
decimal 0xAD. SPI read from ADXL362 can be accomplished in three steps.

 1. Set SS to “0” and send 8-bit Read command through MOSI line.
 2. Send 8-bit Address information through MOSI line.
 3. Read data in this address through MISO line and set SS to “1”.

Timing waveforms for serial communication are shown in Fig. 4.43. After equating
SS to 0, read command, i.e., 0x0B, is transmitted starting from its the most signifi-
cant bit. Read command bits are denoted by C7, C6, …, C0, and its binary equiva-
lent is 00001011. In the second step, address bits, 00000000, denoted by A7, A6, …,
A0 are transmitted. In the last step, slave device, ADXL362, sends the data stored in
the 0x00 register via MISO line. The data transmitted is the device ID of the
ADXL362 which is 0xAD.

FPGA
ADXL362

(3-Axis

Acceloremeter)

SCLK

MOSI

SS

MISO

Fig. 4.42 SPI lines between ADXL362 and FPGA

The “Read instruction/command” for SPI protocol of ADXL362 is the 8-bit string
00001011.

4.4 SPI VHDL Implementation Examples for Electronic Devices

188

In PR 4.33, ports are defined in the entity part, and in the declarative part of the
architecture signal object definitions are made, and state data type is introduced.
The value of the signal object “rdid” contains the “read” command 0 × 0B and
device ID address 0 × 00. “spi_sclk” and “count” signal objects are to be used for
clock division operation. The clock frequency of SPI communication is 2 MHz.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity adxl362_read is

port (clk_100MHz,reset in std_logic;
miso: in std_logic;
cs,mosi,sclk; out std_logic;
led: out std_logic_vector (7 downto 0));

end adxl362_read;

architecture logic_flow of adxl362_read is
signal rdid: std_logic_vector(15 downto 0):=x"0B00";
type state is (st_idle,st_rxmt,st_read,st_stop);
signal present_state, next_state: state;

begin

constant data_length: natural:=24;
signal timer: natural range 0 to data_length;
signal data_index: natural range 0 to data_length;
signal spi_sclk,transition_done:std_logic;
signal count : integer range 0 to 50:=0;
signal read_data : std_logic_vector(7 downto 0);

p1:process(clk_100MHz,reset)
begin
 if (falling_edge(clk_100MHz)) then
 count<=count+1;
 if (count=24) then
 spi_sclk<=not spi_sclk;
 count<=0;
 end if;
 end if;
end process;

PR 4.33 Program 4.33

C7 C6 C5 C4 C3 C2 C1 C0

Transmit Read Command

A7 A6 A5 A4 A3 A2 A1 A0

Transmit Address

D7 D6 D5 D4 D3 D2 D1 D0

Receive Read Data

miso

mosi

sclk

ss

C7 C6 C5 C4 C3 C2 C1 C0

Read Command 0x0B

A7 A6 A5 A4 A3 A2 A1 A0

Read Address 0x00

D7 D6 D5 D4 D3 D2 D1 D0

Read Data (0xAD)

miso

mosi

sck

ss

Fig. 4.43 SPI protocol data receive and transmit operations for ADXL362

4 Serial Peripheral Interface

189

There are three processes written in PR 4.34. The process “p2” is used to update the
present state. The process “p3” is used to receive the data sent by slave, and the last
process “p4” is used to transmit data, which contains “read” command and address
information, from master to slave.

led<=read_data;

sclk<= spi_sclk when transition_done = '0' else '0';

p2: process(spi_sclk, reset)

begin
if(reset='1') then

present_state<=st_idle;

data_index<=0;

elsif(spi_sclk'event and spi_sclk='0') then
if(data_index=timer-1) then

present_state<=next_state;

data_index<=0;

else
data_index <=data_index +1;

end if;
end if;

end process;
p3: process(spi_sclk)

begin
if(spi_sclk'event and spi_sclk='1') then
if(present_state=st_read) then

read_data(7-data_index)<=miso;

end if;
end if;

end process;

p4: process(present_state, data_index)

begin
case present_state is
when st_idle =>

transition_done<='0';

cs<='1';

mosi<='X';

timer<=1;

next_state<=st_rxmt;

when st_rxmt =>

cs<='0';

timer<=16;

mosi<=rdid(15-data_index);

next_state<=st_read;

when st_read =>

cs<='0';

timer<=8;

next_state<=st_stop;

when st_stop =>

cs<='1';

timer<=1;

transition_done<='1';

next_state<=st_stop;

end case;

end process;

PR 4.34 Program 4.34

Combining all the program parts, we get the overall implementation.

Example 4.11 ADXL362 is a 3-Axis digital output MEMS accelerometer that
communicates with SPI protocol. First, write the data 0xBC to the register address
0x20 of ADXL362, and then read the content of this register address information
and show this content on LEDs of your FPGA kit.

Solution 4.11 Writing data to ADXL362’s register can be achieved via the steps

 1. Reset SS to “0” and send 8-bit write command through MOSI line.
 2. Send 8-bit address information (0x20) through MOSI line.
 3. Send 8-bit data (0xBC) through MOSI line and Set SS to “1”.

After write operation, read operation is performed. The read operation can be
achieved through the steps.

 1. Reset SS to “0” and send 8-bit read command through MOSI line.
 2. Send 8-bit address information (0x20) through MOSI line.
 3. Read data that comes from MISO line and set SS to “1”.

4.4 SPI VHDL Implementation Examples for Electronic Devices

190

The timing waveforms for write and read operations are illustrated in Fig. 4.44.

PR 3-7

library ieee;

use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity adxl362_write_read is
port (clk, reset: in std_logic;

cs, mosi, sclk: out std_logic;

miso: in std_logic;

led: out std_logic_vector (7 downto 0));

end adxl362_write_read;

architecture logic_flow of adxl362_write_read is

signal wrid: std_logic_vector(23 downto 0):=x"0A20BC";

signal rdid: std_logic_vector(15 downto 0):=x"0B20";

type state is (st_idle, st_txmt, st_stop1, st_rxmt, st_read, st_stop2);

signal present_state, next_state: state;

constant data_length: natural:=24;

signal timer: natural range 0 to data_length;

signal data_index: natural range 0 to data_length;

signal spi_sclk, transition_done: std_logic;

signal count: integer range 0 to 50:=0;

signal read_data: std_logic_vector(7 downto 0);

begin

PR 4.35 Program 4.35

ss

sck

mosi

Write Command 0x0A

C7 C6 C0C1C2C3C6

C7 C6 C5 C4 C3 C2 C1 C0

A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0

miso

Write Address 0x20 Data to Write 0xBC

Read Command 0x0B

A7 A6 A5 A4 A3 A2 A1 A0

Read Address 0x20

D7 D6 D5 D4 D3 D2 D1 D0

Read Data (0xBC)

miso

mosi

sck

ss

Fig. 4.44 SPI protocol waveforms for Example 4.11

Considering the waveforms in Fig. 4.44, we write the entity part and define signal
objects in the declarative part of the architecture as in PR 4.35.

4 Serial Peripheral Interface

191

The process written for the generation of 2 MHz clock frequency is given in PR 4.36.

led<=read_data;
sclk<=spi_sclk when transition_done='0' else '0';

p2: process(spi_sclk, reset)
begin
if(reset='1') then

present_state<=st_idle;
data_index<=0;

elsif(spi_sclk'event and spi_sclk='0') then
if(data_index=timer-1) then

present_state<=next_state;
data_index<=0;

else
data_index<=data_index +1;

end if;
end if;

end process;
p3: process(spi_sclk)
begin
if(spi_sclk'event and spi_sclk='1') then
if(present_state=st_read) then

read_data(7-data_index)<=miso;
end if;

end if;
end process;

p4: process(present_state, data_index)
begin
case present_state is
when st_idle =>

transition_done<='0';

cs<='1';
mosi<='X';
timer<=1;
next_state<=st_txmt;

when st_txmt =>
cs<='0';
timer<=24;
mosi<=wrid(23-data_index);
next_state<=st_stop1;

when st_stop1 =>
cs<='1';
timer<=1;
next_state<=st_rxmt;

when st_rxmt =>
cs<='0';
timer<=16;
mosi<=rdid(15-data_index);
next_state<=st_read;

when st_read =>
cs<='0';
timer<=8;
next_state<=st_stop2;

when st_stop2 =>
cs<='1';
timer<=1;
transition_done<='1';
next_state<=st_stop2;

end case;
end process;
end logic_flow;

PR 4.37 Program 4.37

There are three processes written in PR 4.37 to send and receive data with SPI pro-
tocol. The process “p2” is used to update the present state. The process “p3” is used
to receive the data sent by slave. The last process “p4” is used to transmit “write”,
“read” commands, and “address” and “data” bits.

p1: process(clk, reset)

begin
if(falling_edge(clk)) then

count<=count+1;

if(count=24) then
spi_sclk<=not spi_sclk;

count<=0;

end if;
end if;

end process;

PR 4.36 Program 4.36

4.4 SPI VHDL Implementation Examples for Electronic Devices

192

Exercise AD9528 is a clock generator that is used for reference clock sources in
high-performance wireless transceivers, LTE and multicarrier GSM base stations,
wireless and broadband infrastructure, and medical instrumentation. It supports
both 3-wire and 4-wire SPI communication protocols. Refer to the datasheet of
AD9528 and write a VHDL program for 3-wire SPI mode to read chip’s Vendor ID
and show the result on LEDs of your FPGA kit.

 Problems

 1. Draw the SPI waveforms for the transmission of bit sequence 0111011 in mode-
00 transmission scheme and implement it in VHDL.

 2. The state diagram of an SPI protocol involving transmit and receive operations
is depicted in Fig. P4.1. Implement SPI protocol diagram in VHDL. Use a serial
bus clock of 1 MHz for SPI protocol. Use dummy values for the transmit and
received data bits.

T=8

T=8

T=1

Txt-8Bits

ss=0

Idle

ss=1

tx_enable=1

Unselect

ss=1

Rxt-8Bits

ss=0

tx_enable=0

Fig. P4.1 State diagram for P2

 3. In synchronous communication, both receive and transmit operations are per-
formed at the rising edge of clock pulses. Is this statement correct or not? If it
is not correct, then give an example violating the statement in the sentence.

 4. What is the difference between Mod-00 and Mod-01 SPI transmission opera-
tion modes.

 5. What is the maximum clock frequency for SPI communication?
 6. What does SPI mean?
 7. Refer to the datasheet of AD9528 and decide which SPI operation mode is sup-

ported by SPI protocol of AD9528.
 8. List several electronic components having SPI communication ports.
 9. How many process units are available in a VHDL implementation of SPI proto-

col if the protocol handles only transmit operation.
 10. How many process units are available in a VHDL implementation of SPI proto-

col if the protocol handles both transmit and receive operations.

4 Serial Peripheral Interface

193© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
O. Gazi, A. Ç. Arlı, State Machines using VHDL,
https://doi.org/10.1007/978-3-030-61698-4_5

5Inter Integrated Circuit (I2C) Serial
Communication in VHDL

Inter integrated circuit (I2C) is a synchronous serial communication protocol. It is
developed for serial communication between electronic devices. I2C is an 8-bit ori-
ented communication protocol. I2C communication employs two wires for com-
munication. I2C synchronous communication protocol has been developed by the
Philips company in 1982. It is widely used for connecting low-speed peripheral
devices to more complex electronic devices such as processors and microcontrollers
for short-distance or intra-board communications. Several versions of I2C protocol
have been released in time. In 2007, the version 3.0 was introduced. Version 4,
which adds 5 Mbit/s ultra fast-mode, is introduced in 2012. In 2014, the last revi-
sion, version 6, was released. In this chapter, we first explain the I2C communica-
tion, then provide information about VHDL implementation of I2C communication
protocol. We further explain the subject using clear examples.

5.1 Master-Slave Connections and I2C Port Circuit

A typical I2C bus is depicted in Fig. 5.1 where a single master which is usually a
microcontroller drives a number of slaves which are electronic devices named as
peripherals. The peripherals can be sensors, EEPROMs, LCDs, and other microcon-
trollers as well. In Fig. 5.1, “scl” corresponds to serial clock, and “sda” corresponds
to serial data.

In I2C communication every peripheral has an assigned device address. Whenever
the master wants to transmit some data to a peripheral, it first issues the address of
the device onto the bus and then transmits the data targeted to the device.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61698-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-61698-4_5#DOI

194

As it is seen from Fig. 5.1 that pull-up resistors are connected to the SCL and SDA
lines. The values of the pull-up resistors are calculated considering the capacitance
of SCL and SDA wires. Typical values of pull-up resistors range from 1 to 47 kΩ.
Pull-up resistors are used due to the open-drain structure of the SCL/SDA port cir-
cuits. The port circuit structure of SCL and SDA is depicted in Fig. 5.2.

Slave1

scl

sda

Master

Slave2

scl sda

Slave3

scl sda

Slave4

scl sdascl sda
2p

R

ccV

1p
R

Fig. 5.1 Master connected to several slaves

Logic

circuit

ccV

pR
Master/Slave Unit

SCL or SDA

Fig. 5.2 SLC or SDA port circuit

5 Inter Integrated Circuit (I2C) Serial Communication in VHDL

195

When master (or slave) wants to transmit logic-0, it activates the transistor shorting
the port output to the ground, and the receiver releases the bus making the open-
drain collector output high impedance, i.e., Z logic as shown in Fig. 5.4.

Logic
circuit

ccV

pRMaster Unit

SCL or SDA Logic
circuit

Slave Unit

Fig. 5.3 Master-slave connection

Logic
circuit

ccV

pRMaster Unit

Logic
circuit

Slave Unit

Fig. 5.4 Transmission of logic-0

Master and slave devices are connected as in Fig. 5.3 where instead of two lines a
single line is drawn for the simplicity of illustration.

5.1 Master-Slave Connections and I2C Port Circuit

196

After the transmission of start signal, data transmission takes place followed by a
“Stop” signal which is depicted in Fig. 5.7.

When master (or slave) wants to transmit the logic-1, it releases the bus by turning
off the transistor. This leaves the bus floating and the pull-up resistor raises the volt-
age of the bus to the Vcc level, and this will be interpreted as the high logic. This is
illustrated in Fig. 5.5 where master transmits logic-1 to slave which acts as receiver.

Logic
circuit

ccV

pRMaster Unit

Logic
circuit

Slave Unit

Fig. 5.5 Transmission of logic-1

5.2 START, STOP, and IDLE Control Signals of I2C Protocol

The I2C bus is “Idle” if both SCL and SDA lines are at high logic. To initiate the
data transmission, a start signal depicted in Fig. 5.6 is sent. The start signal is gener-
ated when SDA makes a high to low transition while SCL is high as it is seen in
Fig. 5.6.

Start

SDA

SCL

Idle

SDA

SCL

Fig. 5.6 “Idle” and “start” signals

5 Inter Integrated Circuit (I2C) Serial Communication in VHDL

197

Start

SDA

SCL

Stop

Data transmission

Fig. 5.8 Data transmission between “start” and “stop” signals

SCL

DCL

SDA

1 1 1 10 0 0 0

Fig. 5.9 I2C transmission waveforms

The data transmission takes place after sending the start signal, and when the trans-
mission of the last bit is complete, the stop signal is issued as indicated in Fig. 5.8.

5.3 Generation of Shifted Clock and Determination
of the Transmission Instants

The information bits are placed onto the SDA line when SCL is low. It is important
to note that new bits are never placed onto the bus when SCL is high. This concept
is illustrated in Fig. 5.9.

Stop

SDA

SCL

Idle

SDA

SCL

Fig. 5.7 “Stop” and “idle” signals

5.3 Generation of Shifted Clock and Determination of the Transmission Instants

198

In Fig. 5.9, we also drew a reference clock denoted by DCL, called data-clock,
which is a shifted version of the SCL to indicate the time instants at which transmis-
sion of the information bits over SDA line occur. As it is clear from Fig. 5.9 that new
information bits are placed onto the SDA line at the rising edges of the data-clock,
DCL.

Master device can transmit data to the slave, and slave can also transmit data to
the master. The transmission of the data from master to slave is named as the write
operation, and the transmission of data from slave to master is named as the read
operation. To comprehend the subject better, let us solve an example to illustrate the
use of timing waveforms for I2C communication.

Example 5.1 Draw the timing waveforms of the I2C protocol for the transmission
of the bit stream 10001101.

Solution 5.1 Let us first draw a clock waveform including ten pulses from which
eight of them will be utilized for the data transmission, and the other two will be
used for the START and STOP signaling. The clock waveform is depicted in
Fig. 5.10.

SCL

Fig. 5.10 Serial clock waveform

SCL

DCL

T

T/4

Fig. 5.11 Generation of data-clock

In the next step, we draw data-clock, DCL, waveform such that if the pulse with of
the SCL waveform is T, the reference clock waveform is shifted to the left by T/4.
The data-clock waveform together with the original clock waveform is shown in
Fig. 5.11.

In the next step, we draw vertical lines to the centers of the 0 levels of the SCL
waveform, and these lines pass through the rising edges of the DCL waveform as
depicted in Fig. 5.12.

5 Inter Integrated Circuit (I2C) Serial Communication in VHDL

199

DCL waveform can be obtained from SCL clock waveform and START signal can
be chosen as the first pulse of the DCL clock as shown in Fig. 5.13.

SCL

DCL

Fig. 5.12 The relationship between serial clock and data-clock

SCL

DCL

START

Signal

SDA

Fig. 5.13 Generation of “start” signal

SCL

DCL

START

Signal

SDA
1

MSB

Fig. 5.14 Transmission of MSB

Following the START signal, the transmissions of data bits take place. The most
significant bit of the data byte which is “1” for our example is transmitted as in
Fig. 5.14 where it is seen that the bit “1” is transmitted at the rising edge of the data-
clock, and it has one clock duration, and the transmission duration corresponds to
the mid-points of the low-logic of the SCL waveform.

5.3 Generation of Shifted Clock and Determination of the Transmission Instants

200

The next bit to be transmitted is “0”, and the transmission waveform for this bit is
depicted in Fig. 5.15.

SCL

DCL

START

Signal

SDA
1

MSB

0

(Bit-7) Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0

10 0010

Fig. 5.16 I2C data transmission

SCL

DCL

START

Signal

SDA
1

MSB

0

(Bit-7) Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0

10 0010

STOP

Signal

Complement

Fig. 5.17 Obtaining “stop” signal from data-clock

SCL

DCL

START

Signal

SDA
1

MSB

0

Bit-6

Fig. 5.15 Transmission of bit-6

Considering the transmission of the other information bits, we obtain the transmis-
sion waveform of Fig. 5.16.

After the transmission of last data bit, stop signal, which is formed by taking the
complement of the DCL, is sent as shown in Fig. 5.17.

5 Inter Integrated Circuit (I2C) Serial Communication in VHDL

201

5.4 I2C Read and Write Operations

In this section, we provide more information about the I2C read and write
operations.

5.4.1 I2C Write Operation

As it is mentioned before, data transmission from master to slave is called “write”
operation. The write operation can be performed using the steps:

 1. Master transmits the START signal.
 2. Master places the device address concatenated with WRITE flag and data onto

the SDA line.
 3. Master halts the transmission sending the STOP signal.

5.4.2 I2C Read Operation

If master requests some data from slave, the set of operations until slave data is
received by master is called read operation. Read operation is a more involved pro-
cess. The read operation for I2C protocol can be summarized as:

 1. Master transmits the START signal.
 2. Master places the device address and data onto the SDA line.
 3. If the peripheral needs some information for the data to be transmitted to the

master, the master first sends some commands each followed by an acknowledg-
ment (ACK) signal sent by the slave. Then, the master sends the START signal
and device address again, and the slave transmits the data requested by the mas-
ter. When the reading is complete, the master sends the STOP signal again.

In the second type of read operation, the slave does not need any command. The
master sends the device’s address with READ flag after START signaling, then the
slave transmits the data needed by master followed by the STOP signal. Reading
temperature from a sensor can be given as an example to this type of I2C
communication.

Example 5.2 Reading data from an EEPROM can be given as an example. The
master first transmits START signal, then transmits the device address with WRITE
flag, then transmits the register address to be read, and gets the ACK signal from the
slave. Next, the master sends the START signal and device address with READ flag,
and it reads the data transmitted by the slave until it terminates the reading operation
sending the STOP signal.

Considering the above discussion, we explain standard I2C data transfer formats
as follows.

5.4 I2C Read and Write Operations

202

5.5 Data Transfer Formats

In this section, we explain the data transfer formats available in the datasheet of I2C
standard. The slave peripherals can have 7-bit or 10-bit addresses. The frame for-
mats explained in this section are used when slaves use 7-bit address. For 10-bit
addressing frame formats, we advise the reader to refer to “UM10204, I2C-bus
specification and user manual”.

5.5.1 Write Operation

As it is stated before, data transmission from master to the slave receiver is also
called write operation. The data transfer format of the write operation is depicted in
Fig. 5.18.

Start Slave Receiver Address R/W

'0' (Write)

ACK Data ACK Data Stop

Data transfer

N (Byte ACK)× +

From master to slave

From slave to master

ACK

ACK

Acknowledge (SDA LOW)

Not acknowledge (SDA HIGH)

ACK

Fig. 5.18 Frame format for “write” operation

In Fig. 5.18, it is seen that each received byte is acknowledged by the slave. In
Fig. 5.18, although we only showed ACK signals in the frame format, ACK signals
can also be sent by the slave.

5.5.2 Master Reads the Slave Immediately

The master reads the data transferred by the slave immediately after issuing the
slave address and read request flag. The data transfer format of this type of com-
munication is depicted in Fig. 5.19.

5 Inter Integrated Circuit (I2C) Serial Communication in VHDL

203

It is seen from Fig. 5.19 that each byte is acknowledged by the master except the last
one just before the STOP signal. The master sends negative-acknowledge, ACK ,
just before the STOP signal.

5.5.3 Combined Format Involving Repeated START

In combined format, if a change of direction within a transfer occurs, then the
START signal and the slave address are both sent again, but with the R/W bit
reversed. If a master-receiver sends a repeated START signal, it sends negative-
acknowledge, ACK , just before the repeated START signal.

The most general form of the combined format is depicted in Fig. 5.20 where it
is seen that the master first performs a read/write operation followed by ACK signal
from slave, then data transfer takes place, and the steps are repeated following a
second start signal till the issue of the STOP signal.

Start Slave Receiver Address R/W

'1' (Read)

ACK Data ACK Data ACK Stop

Data transfer

N (Byte ACK)× +

From master to slave

From slave to master

ACK

ACK

Acknowledge (SDA LOW)

Not acknowledge (SDA HIGH)

Fig. 5.19 Frame format for immediate “read” operation

Start Slave Receiver Address R/W

Read or Write

ACK Data ACK/ACK

Data transfer

N (Byte ACK)× +

From master to slave

From slave to master

ACK

ACK

Acknowledge (SDA LOW)

Not acknowledge (SDA HIGH)

Direction depends on the choice of R/W bits

Start Slave Receiver Address R/W

Read or Write

ACK Data ACK/ACK Stop

Data transfer

N (Byte ACK)× +

Direction of transfer

may change

Fig. 5.20 Frame format for combined read-write operations

A transmission scheme involving a START signal immediately followed by a STOP
signal does not comply with a legal frame format.

Example 5.3 A specific instance of the data transmission format in Fig. 5.20 can
be given as an example in Fig. 5.21 where reading data from an EEPROM by a
microcontroller via I2C protocol is demonstrated.

5.5 Data Transfer Formats

204

Start Slave Receiver Address R/W

'0' (Write)

ACK Data ACK Stop

From master to slave

From slave to master

ACK

ACK

Acknowledge (SDA LOW)

Not acknowledge (SDA HIGH)

Fig. 5.23 Frame format for Example 5.5

Start Slave Receiver Address R/W ACK Register Address ACK

From master to slave

From slave to master

ACK

ACK

Acknowledge (SDA LOW)

Not acknowledge (SDA HIGH)

Start Slave Receiver Address R/W ACK Data ACK Stop

Data transfer

N (Byte ACK)× +'0' (Write) '1' (Read)

ACK Data

Fig. 5.21 Frame format for Example 5.3

Start Slave Receiver Address ACK Data

From master to slave

From slave to master

ACK

ACK

Acknowledge (SDA LOW)

Not acknowledge (SDA HIGH)

Start Slave Receiver Address ACK Stop

'1' (Read) '0' (Write)

ACK DataData ACK Data ACKR/W ACK R/W

Each byte is acknowledged by

the master, except the last one

before the re-start signal

Each byte is acknowledged

by the slave device

Fig. 5.22 Frame format for Example 5.4

In Fig. 5.21, it is seen that the master first performs a write operation, then it per-
forms a read operation.

Example 5.4 In Fig. 5.22, the master first performs a read operation, then in sequel
it performs a write operation, i.e., a read operation is followed by a write
operation.

Example 5.5 Draw the state diagram of I2C communication protocol where a mas-
ter device sends only an 8-bit data to a slave device. Use all zero-bit sequences for
7-bit slave address.

Solution 5.5 This is a simple write operation. The frame structure for this opera-
tion is depicted in Fig. 5.23.

5 Inter Integrated Circuit (I2C) Serial Communication in VHDL

205

The transmission frame format in Fig. 5.23 can be described using Moore state
diagram as in Fig. 5.24.

Reset

TX_SlvAddr

and W’ bit

SCL=SCL_Buss

SDA=slv_add

START

SDA=DCL

IDLE

SCL='1'

SDA='1'

ACK1

SCL=SCL_Buss

SDA='Z'

txData

SCL=SCL_Buss

SDA=data

ACK2

SCL=SCL_Buss

SDA='Z'

STOP

SCL='1'

SDA=NOT DCL

1T =

1T =

1T =

8T =

8T =1T =

1T =

Fig. 5.24 State diagram for Fig. 5.23

5.6 VHDL Implementation of I2C Protocol

The VHDL implementation of I2C protocol can be achieved using the timed state
machines. However, before proceeding to the implementation of I2C protocol via
timed state machines, it is useful to study the implementation of some program units
which are used in VHDL implementation of timed state machines. Considering the
bus speed of the I2C protocol and clock frequency of FPGA device, it is clear that
we need a clock divider to generate the bus frequency, i.e., SCL clock frequency
from FPGA clock frequency. In addition, we need a data-clock which is obtained by
shifting bus-clock SCL.

Once we have the data-clock, DCL, we can generate the START and STOP sig-
nals used at the beginning and at the end of SDA waveform. Assume that SCL fre-
quency is 1 MHz, and FPGA’s clock frequency is 100 MHz. To generate the 1 MHz
SCL signal, we first generate 4 MHz clock waveform, and using 4 MHz clock we
can generate 1 MHz I2C bus-clock SLC and data-clock DCL. We can design a fre-
quency divider that generates a clock frequency of 4 MHz from a clock frequency
of 100 MHz as follows.

Using the formula

f

K2

for the desired frequency, i.e.,

f

K2
4000000=

5.6 VHDL Implementation of I2C Protocol

206

and substituting f = 100 000 000, we get K = 12. Thus, using an 0 to 10 counter, we
can approximately achieve the desired clock frequency as in PR 5.1.

library ieee;
use ieee.std_logic_1164.all;

entity buss_clk_gen is
port (clk_100MHz: in std_logic;

scl: out std_logic);
end entity;

architecture logic_flow of buss_clk_gen is
signal count: natural range 0 to 11:=0;
signal clk_4MHz: std_logic:='0';

begin

process(clk_100MHz)
begin
if(rising_edge(clk_100MHz)) then
count<=count + 1;
if(count=11) then
clk_4MHz<=not clk_4MHz;
count<=0;

end if;
end if;

end process;

end architecture;

PR 5.1 Program 5.1

We can generate 1 MHz bus-clock SCL and 1 MHz reference clock DCL using the
process unit in PR 5.2.

clk1MHz: process (clk_4MHz)

variable count_1: integer range 0 to 3:=0;

begin
if(rising_edge(clk_4MHz)) then

if(count_1=0) then
scl_buss<='0';

elsif(count_1=1) then
dcl_buss<='1';

elsif(count_1=2) then
scl_buss<='1';

else
dcl_buss<='0';

end if;
if(count_1=3) then

count_1:=0;

else
count_1:=count_1 + 1;

end if;
end if;

end process;

PR 5.2 Program 5.2

5 Inter Integrated Circuit (I2C) Serial Communication in VHDL

207

In PR 5.3, the complete program for the generation of I2C bus-clock “scl” and data-
clock “dcl” is given.

library ieee;

use ieee.std_logic_1164.all;

entity buss_clk_gen is
port(clk_100MHz: in std_logic;

scl, dcl: out std_logic);

end entity;

architecture logic_flow of buss_clk_gen is
signal count: natural range 0 to 11;

signal clk_4MHz: std_logic:='0';

signal scl_buss, dcl_buss: std_logic:='0';

begin
scl<=scl_buss; dcl<=dcl_buss;

clk4MHz: process(clk_100MHz)

begin
if (rising_edge(clk_100MHz)) then
count<=count + 1;

if(count=12) then
clk_4MHz<=not clk_4MHz;

count<=0;

end if;
end if;

end process;

clk1MHz: process (clk_4MHz)

variable count_1: integer range 0 to 3:=0;

begin
if(rising_edge(clk_4MHz)) then
if(count_1=0) then
scl_buss<='0';

elsif(count_1=1) then
dcl_buss<='1';

elsif(count_1=2) then
scl_buss<='1';

else
dcl_buss<='0';

end if;
if(count_1=3) then
count_1:=0;

else
count_1:=count_1 + 1;

end if;
end if;

end process;

end;

PR 5.3 Program 5.3

5.6 VHDL Implementation of I2C Protocol

208

library ieee;

use ieee.std_logic_1164.all;

entity buss_clk_gen_tb is
end;

architecture bench of buss_clk_gen_tb is

component buss_clk_gen

port(clk_100MHz: in std_logic;

scl, dcl: out std_logic);

end component;

signal clk_100MHz: std_logic;

signal scl, dcl: std_logic;

constant clock_period: time:= 10 ns;

signal stop_the_clock: boolean;

begin

pm: buss_clk_gen port map(clk_100MHz => clk_100MHz,

scl => scl,

dcl => dcl);

p1: process --stimulus

begin
wait for clock_period*10*100;

stop_the_clock<=true;

wait;
end process;

p2: process --clock generation

begin
while not stop_the_clock loop

clk_100MHz<='0';

wait for clock_period / 2;

clk_100MHz<='1';

wait for clock_period / 2;

end loop;

wait;
end process;

end;

PR 5.4 Program 5.4

The program in PR 5.3 can be tested using the test-bench program given in PR 5.4.

Now, let us consider the VHDL implementation of I2C communication protocol.
We will explain the topic through an example.

5 Inter Integrated Circuit (I2C) Serial Communication in VHDL

209

Example 5.6 Implement the I2C protocol, where a master device sends only an
8-bit data to a slave device, in VHDL. Use all zero-bit sequences for 7-bit slave
address. Use 1 MHz for I2C bus-clock frequency. The frame structure for this oper-
ation is depicted again in Fig. 5.25.

Start Slave Receiver Address R/W

'0' (Write)

ACK Data ACK Stop

From master to slave

From slave to master

ACK

ACK

Acknowledge (SDA LOW)

Not acknowledge (SDA HIGH)

Fig. 5.25 Frame format for Example 5.6

Reset

TX_SlvAddr

and W’ bit

SCL=SCL_Buss

SDA=slv_add

START

SDA=DCL

IDLE

SCL='1'

SDA='1'

ACK0

SCL=SCL_Buss

SDA='Z'

txData

SCL=SCL_Buss

SDA=data

ACK1

SCL=SCL_Buss

SDA='Z'

STOP

SCL='1'

SDA=NOT DCL

1T =

1T =

1T =

8T =

8T =1T =

1T =

wr_enable=1

Fig. 5.26 State diagram for Fig. 5.25

Solution 5.6 We will use PR 5.3 in our program. We will use timed state machine
for our implementation. The timed state diagram for this transmission is shown
again in Fig. 5.26.

5.6 VHDL Implementation of I2C Protocol

210

library ieee;
use ieee.std_logic_1164.all;
entity fsm_i2c is

port(clk, rst, wr_enable: in std_logic;
scl: out std_logic;
sda: inout std_logic);

end entity;

architecture logic_flow of fsm_i2c is
type state is (st_idle, st0_start, st1_txSlaveAddress, st2_ack1, st3_txData, st4_ack2,

st5_stop);
signal present_state, next_state: state;
signal scl_buss, dcl_buss: std_logic;
constant data: std_logic_vector(7 downto 0):="11101100";
constant slave_address_with_wrt_flg: std_logic_vector(7 downto 0):="11101100";
constant max_length: natural:=8;
signal data_index: natural range 0 to max_length -1;
signal timer: natural range 0 to max_length;
signal ack_bits: std_logic_vector(1 downto 0);
signal count: natural range 0 to 11:=0;
signal clk_4MHz: std_logic;

begin

PR 5.5 Program 5.5

Considering Fig. 5.26, we write the entity part of our program as in PR 5.5.

5 Inter Integrated Circuit (I2C) Serial Communication in VHDL

211

If we add the data-clock and bus-clock generator processes given in PR 5.5 in our
program, we get PR 5.6.

library ieee;
use ieee.std_logic_1164.all;
entity fsm_i2c is

port(clk_100MHz, rst, wr_enable: in std_logic;
scl: out std_logic;
sda: inout std_logic);

end entity;

architecture logic_flow of fsm_i2c is
type state is (st_idle, st0_start, st1_txSlaveAddress, st2_ack0, st3_txData, st4_ack1,

st5_stop);
signal present_state, next_state: state;
signal scl_buss, dcl_buss: std_logic;
constant data: std_logic_vector(7 downto 0):="11101100";
constant slave_address_with_wrt_flg: std_logic_vector(7 downto 0):="11101100";
constant max_length: natural:=8;
signal data_index: natural range 0 to max_length -1;
signal timer: natural range 0 to max_length;
signal ack_bits: std_logic_vector(1 downto 0);
signal count: natural range 0 to 11:=0;
signal clk_4MHz: std_logic;

begin

scl<=scl_buss;

clk4MHz: process(clk_100MHz)
begin

if (rising_edge(clk_100MHz)) then
count<= count + 1;
if(count=12) then

clk_4MHz<=not clk_4MHz;
count<=0;

end if;
end if;

end process;

clk1MHz: process (clk_4MHz)
variable count_1: integer range 0 to 3:=0;

begin
if(rising_edge(clk_4MHz)) then

count_1:= count_1 + 1;
if(count_1=0) then

scl_buss<='0';
elsif(count_1=1) then
dcl_buss<='1';

elsif(count_1=2) then
scl_buss<='1';

else
dcl_buss<='0';

end if;
if(count_1=3) then

count_1:=0;
else

count_1:=count_1 + 1;
end if;

end if;
end process;

PR 5.6 Program 5.6

5.6 VHDL Implementation of I2C Protocol

212

Now we need three more processes. One process, “p1”, is used for the update of the
present state. The second one, “p2”, is used to read the data sent by the slave, i.e.,
for this example only acknowledgments bits, and the third one, “p3”, is used for the
determination of next states and output port values.

The first two processes “p1” and “p2” are given in PR 5.7.

p1: process(dcl_buss, rst)

begin
if(rst ='1') then

present_state<=st_idle;

data_index<=0;

elsif (dcl_buss 'event and dcl_buss ='1') then
if(data_index=timer-1) then

present_state<=next_state;

data_index<=0;

else
data_index<=data_index +1;

end if;
end if;

end process;

p2: process(dcl_buss)

begin
if(dcl_buss 'event and dcl_buss ='0') then

if(present_state=st2_ack0) then
ack_bits(0)<=sda;

elsif(present_state=st4_ack1) then
ack_bits(1)<=sda;

end if;
end if;

end process;

PR 5.7 Program 5.7

--- Circuit outputs and next states
p3: process(present_state, wr_enable, data_index, dcl_buss)
begin

case present_state is
when st_idle =>

scl<='1';
sda<='1';
timer<=1;
if(wr_enable='1') then
next_state<= st0_start;

else
next_state<=st_idle;

end if;

when st0_start =>
sda<=dcl_buss; scl<='1';
timer<=1;
next_state<= st1_txSlaveAddress;

when st1_txSlaveAddress =>
sda<=slave_address_with_wrt_flg(7- data_index);
timer<=8; scl<=scl_buss;
next_state<=st2_ack0;

when st2_ack0=>
sda<='Z'; scl<=scl_buss;
timer<=1;
next_state<=st3_txData;

when st3_txData =>
sda<=data(7-data_index);
timer<=8; scl<=scl_buss;
next_state<=st4_ack1;

when st4_ack1=>
sda<= 'Z'; scl<=scl_buss;
timer<=1;
next_state<=st5_stop;

when st5_stop =>
sda<=not dcl_buss;
timer<=1; scl<='1';
next_state<=st_idle;

end case;
end process
end logic_flow;

;

PR 5.8 Program 5.8

The third process “p3” is given in PR 5.8.

5 Inter Integrated Circuit (I2C) Serial Communication in VHDL

213

In PR 5.9, the structure of overall program is depicted.

library ieee;

use ieee.std_logic_1164.all;

entity fsm_i2c is
….
end entity;

architecture logic_flow of fsm_i2c is

begin

clk4MHz: process(clk_100MHz)

….
end process;

clk1MHz: process (clk_4MHz)

….
end process;

p1: process(dcl_buss, rst)

….
end process;

p2: process(dcl_buss)

….
end process;

p3: process(present_state, wr_enable,…)

….
end process;

end logic_flow;

PR 5.9 Program 5.9

5.6 VHDL Implementation of I2C Protocol

214

clk1MHz: process (clk_4MHz)
variable count_1: integer range 0 to 3:=0;

begin
if(rising_edge(clk_4MHz)) then

if(count_1=0) then
scl_buss<='0';

elsif(count_1=1) then
dcl_buss<='1';

elsif(count_1=2) then
scl_buss<='1';

else
dcl_buss<='0';

end if;
if(count_1=3) then
count_1:=0;

else
count_1:=count_1 + 1;

end if;
end if;

end process;
p1: process(dcl_buss, rst)
begin

if(rst ='1') then
present_state<=st_idle;
data_index<=0;

elsif(dcl_buss'event and dcl_buss='1') then
if(data_index=timer-1) then
present_state<=next_state;
data_index<=0;

else
data_index<=data_index +1;

end if;
end if;

end process;

p2: process(dcl_buss)
begin

if(dcl_buss'event and dcl_buss='1') then
if(present_state=st2_ack0) then
ack_bits(0)<=sda;

elsif(present_state=st4_ack1) then
ack_bits(1)<=sda;

end if;
end if;

end process;

library ieee;
use ieee.std_logic_1164.all;
entity fsm_i2c is

port(clk_100MHz, rst, wr_enable: in std_logic;
scl, dcl: out std_logic;
sda: inout std_logic);

end entity;

architecture logic_flow of fsm_i2c is
type state is (st_idle, st0_start, st1_txSlaveAddress, st2_ack0,

st3_txData, st4_ack1, st5_stop);
signal present_state, next_state: state;
signal scl_buss: std_logic:='0';
signal dcl_buss: std_logic:='0';
constant data: std_logic_vector(7 downto 0):="11101100";
constant slave_address_with_wrt_flg:

std_logic_vector(7downto 0):="11101100";
constant max_length: natural:=8;
signal data_index: natural range 0 to max_length -1;
signal timer: natural range 0 to max_length;
signal ack_bits: std_logic_vector(1 downto 0);
signal count: natural range 0 to 11:=0;
signal clk_4MHz: std_logic:='0';

begin

dcl<=dcl_buss;
clk4MHz: process(clk_100MHz)
begin

if(rising_edge(clk_100MHz)) then
count<=count + 1;
if(count=12) then
clk_4MHz<=not clk_4MHz;
count<=0;

end if;
end if;

end process;

PR 5.10 Program 5.10

If we combine all the program parts, we get the overall program as in PR 5.10.

5 Inter Integrated Circuit (I2C) Serial Communication in VHDL

215

--- Circuit outputs and next states
p3: process(present_state, wr_enable, data_index, dcl_buss)
begin

case present_state is
when st_idle =>
scl<='1';
sda<='1';
timer<=1;
if(wr_enable='1') then
next_state<=st0_start;

else
next_state<=st_idle;

end if;

when st0_start =>
sda<=dcl_buss;
timer<=1;
next_state<=st1_txSlaveAddress;
scl<='1';

when st1_txSlaveAddress =>
sda<=slave_address_with_wrt_flg(7-data_index);
timer<=8;
next_state<=st2_ack0;
scl<=scl_buss;

when st2_ack0=>
sda<='Z';
timer<=1;
next_state<=st3_txData;
scl<=scl_buss;

when st3_txData =>
sda<=data(7-data_index);
timer<=8;
next_state<=st4_ack1;
scl<=scl_buss;

when st4_ack1=>
sda<='Z';
timer<=1;
next_state<=st5_stop;
scl<=scl_buss;

when st5_stop =>
sda<=not dcl_buss;
timer<=1;
next_state<=st_idle;
scl<='1';

end case;
end process;

end logic_flow;

PR 5.10 (continued)

5.6 VHDL Implementation of I2C Protocol

216

The program in PR 5.10 can be tested using the test-bench program in PR 5.11.

library ieee;

use ieee.std_logic_1164.all;

entity fsm_i2c_tb is
end;

architecture bench of fsm_i2c_tb is

component fsm_i2c

port(clk_100MHz, rst, wr_enable: in std_logic;

scl, dcl: out std_logic;

sda: inout std_logic);

end component;

signal clk_100MHz, rst, wr_enable: std_logic;

signal scl, dcl: std_logic;

signal sda: std_logic;

constant clock_period: time:= 10 ns;

signal stop_the_clock: boolean;

begin

pm: fsm_i2c port map(clk_100MHz => clk_100MHz,

rst => rst,

wr_enable => wr_enable,

scl => scl,

dcl => dcl,

sda => sda);

p1: process --stimulus

begin
rst<='1'; rst<='0';

wait for clock_period*100;

wr_enable<='0'; wr_enable<='1';

wait for clock_period*22*100;

wr_enable<='0';

stop_the_clock<=true;

wait;
end process;

p2: process --clock generation

begin
while not stop_the_clock loop

clk_100MHz<= '0';

wait for clock_period / 2;

clk_100MHz<= '1';

wait for clock_period / 2;

end loop;

wait;
end process;

end;

PR 5.11 Program 5.11

5 Inter Integrated Circuit (I2C) Serial Communication in VHDL

217

Exercise The frame structure for the data transmitted from master to slave, i.e.,
write operation, is shown in Fig. 5.27.

Start Slave Receiver Address R/W

'0' (Write)

ACK ACK Data StopRegister Address ACK

Fig. 5.27 Frame format for exercise

Reset
1T =

txSlaveAddress

SCL=CLK

SDA=slaveAddress

START

SCL='1'

SDA=DCL

IDLE

SCL='1'

SDA='1'

1T =
ACK1

SCL=CLK

SDA='Z'

8T =

txRegAddress

SCL=CLK

SDA=regAddress

ACK2

SCL=CLK

SDA='Z'

txData

SCL=CLK

SDA=data

ACK3

SCL=CLK

SDA='Z'

STOP

SCL='1'

SDA=NOT DCL

8T =8T =

1T =

1T =1T =

From master to slave

From slave to master

Fig. 5.28 State diagram for Fig. 5.27

Start Slave Receiver Address R/W

'1' (Read)

ACK Data ACK Stop

Data transfer

From master to slave

From slave to master

ACK

ACK

Acknowledge (SDA LOW)

Not acknowledge (SDA HIGH)

Fig. 5.29 I2C communication frame format for the master to read data from the slave

The state diagram for this write operation can be drawn as in Fig. 5.28. Implement
the I2C communication protocol in VHDL. Use dummy values for slave, register
addresses, and data value.

Exercise I2C communication frame format for the master to read data from the
slave is depicted in Fig. 5.29 where a single byte is read from the slave. Draw the
state diagram for this I2C communication scheme and implement it in VHDL. Use
dummy values for slave address and data value.

5.6 VHDL Implementation of I2C Protocol

218

5.7 VHDL Implementation of FPGA and ADT7420 I2C
Interfacing

ADT7420 is a high precision digital temperature sensor used in the industry. It con-
sists of a band-gap reference, a temperature sensor, and a 16-bit ADC for the digiti-
zation of the temperature with 0.0078 °C resolution. The resolution of the ADC, by
default, is set to 13 bits (0.0625 °C). The resolution of ADC can be programmed by
users, and it can be changed through the serial interface.

The operation limits of ADT7420 range from −40 °C to +150 °C. The black-box
representation of ADT7420 is depicted in Fig. 5.30 where A0 and A1 pins are used
for address selection. Using A0 and A1, four possible I2C addresses can be selected.
The CT, and INT pins, which can operate in comparator and interrupt event modes,
are open-drain output pins, and these pins become active when the temperature
exceeds a programmed threshold. SCL and SDA are used for I2C communication.

Chip configuration like selection of resolution, setting hysteresis point, checking
device ID can be done via I2C interface. In Table 5.1, register address map of
ADT7420 is shown. As it is seen from the table, some registers can be both read and
written (indicated by R/ W), whereas some of them can only be read (indicated by
R). Register addresses are represented with 8 bits.

Table 5.1 Register table of ADT7420

Register Address Type Description Power-On Default
0x00 R Temperature value most significant byte 0x00
0x01 R Temperature value least significant byte 0x00
0x02 R Status 0x00
0x03

R/ W
Configuration 0x00

0x04
R/ W

THIGH setpoint most significant byte 0x20

0x05
R/ W

THIGH setpoint least significant byte 0x00

0x06
R/ W

TLOW setpoint most significant byte 0x05

0x07
R/ W

TLOW setpoint least significant byte 0x00

0x08
R/ W

TCRIT setpoint most significant byte 0x49

(continued)

CT

INT

A0

A1

VDD

SCL

SDA

GND

ADT7420

Fig. 5.30 The black-box representation of ADT7420

5 Inter Integrated Circuit (I2C) Serial Communication in VHDL

219

5.7.1 VHDL Implementation of I2C Communication Between
FPGA and ADT7420

The circuit used for FPGA and ADT7420 interfacing is depicted in Fig. 5.31.
Electronic devices supporting I2C protocol have slave addresses. ADT7420 IC has
7-bit slave address in which 5 bits (“10010”) are fixed and the remaining 2 bits are
adjustable, and adjustable bits are determined using A0 and A1. It is seen in Fig. 5.31
that A0 and A1 are connected to the power supply, i.e., A0 and A1 have logic-1. In
this case, the slave address of ADT7420 becomes “1001011”. Furthermore, both
SCL and SDA are of open-drain ports, for this reason, pull-up resistors are
connected.

10kΩ

10kΩ

CT

INT

A0

A1

VDD

SCL

SDA

GND

VDD

VDD

10kΩ 10kΩ

VDD VDD

VDD

VDD

VDD

ADT7420

FPGA
SCL

SDA

Fig. 5.31 ADT7420 and FPGA interfacing

Register Address Type Description Power-On Default
0x09

R/ W
TCRIT setpoint least significant byte 0x80

0x0A
R/ W

THYST setpoint 0x05

0x0B R ID 0xCB
0x0C

R/ W
Reserved 0xXX

0x0D
R/ W

Reserved 0xXX

0x2E
R/ W

Reserved 0xXX

0x2F
R/ W

Software reset 0xXX

Table 5.1 (continued)

5.7 VHDL Implementation of FPGA and ADT7420 I2C Interfacing

220

5.7.1.1 ID Register of ADT7420
It is shown in Table 5.1 that ADT7420 has 8-bit manufacturer ID which is stored in
8-bit register whose address is 0x0B, and the value of manufacturer ID is 0xCB, i.e.,
8-bit register contains 0xCB.

5.7.1.2 VHDL Implementation
Now we will consider the VHDL implementation I2C serial communication
between ADT7420 and FPGA via an example.

Example 5.7 Read the manufacture ID of ADT7420 via I2C interface. Show the
8-bit ID value on your FPGA board’s LEDs. Use the circuit shown in Fig. 5.31
while writing your VHDL program.

Solution 5.7 The complete frame format to read the manufacturer ID of ADT7420
via I2C communication is depicted in Fig. 5.32.

Start Txt Slave Address R/W ACK
Txt Register

Address

From master to slave

From slave to master

ACK

ACK

Acknowledge (SDA LOW)

Not acknowledge (SDA HIGH)

Start Txt Slave Address
R/W

ACK ID ACK Stop

'0' (Write) '1' (Read)

ACK

Fig. 5.32 Frame format for Example 5.7

It is seen from Fig. 5.32 that, first the slave address with W , i.e., “10010110”, is
transmitted from master to slave, and ACK is received by the master. Next, register
address, 0x0B, where manufacture ID value is available, is transmitted. This is fol-
lowed by ACK signal received by master.

In the next stage of the transmission, first a start signal is transmitted. This is fol-
lowed by the transmission of slave address and read bit, i.e., R. Then, master gets
the ACK followed by 8-bit device ID. Master ends the communication sending a
negative acknowledgment signal followed by a stop signal. In Fig. 5.32, communi-
cation logic is illustrated using frames; however, no timing information is provided.
The transmission frame format depicted in Fig. 5.32 is illustrated using the timing
waveforms in Fig. 5.33.

5 Inter Integrated Circuit (I2C) Serial Communication in VHDL

221

State diagram corresponding to the transmission waveforms of Fig. 5.33 can be
drawn as in Fig. 5.34.

Reset
1T =

txSlaveAddress

SCL=SCL_BUSS

SDA=slaveAddress

&Write

START

SCL='1'

SDA=DCL_BUSS

IDLE

SCL='1'

SDA='1'

1T =
ACK1

SCL=SCL_BUSS

SDA='Z'

8T =
txRegAddress

SCL=SCL_BUSS

SDA=regAddress

ACK2

SCL=SCL_BUSS

SDA='Z'

ACK3

SCL=SCL_BUSS

SDA='Z'

STOP

SCL='1'

SDA=NOT

DCL_BUSS

8T =

1T =

From master to slave

From slave to master

txSlaveAddress

SCL=SCL_BUSS

SDA=slaveAddress

&Read

RESTART

SCL='1'

SDA=DCL_BUSS

rxReg

SCL=SCL_BUSSS

DA='Z'

NACK

SCL=SCL_BUSS

SDA=’1'

8T =

8T =

1T =

1T =1T =

1T =

1T =

Fig. 5.34 State diagram for Fig. 5.33

SCL

SDA A7 A6 A5 A4 A3 A2 A1 A0

Register Address to be Read

1 0 0 1 0 A1 A0 0 ACK

by

ADT7420

ACK

by

ADT7420

Slave Address and Write Command

Write

SCL

D7 D6 D5 D4 D3 D2 D1 D0

Read Data

1 0 0 1 0 A1 A0 1 ACK

by

ADT7420

No

ACK

Slave Address and Read Command

Read

SDA

Waveform
continues

on the next
line

Waveform
ends here

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Start Stop

Restart Stop

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Fig. 5.33 Transmission timing waveforms for Fig. 5.32

The operations performed by the master unit in the state diagram of Fig. 5.34 can be
written in sequel as

 1. Send START signal.
 2. Send slave address concatenated with the WRITE flag.
 3. Get ACK.
 4. Send the register address to be read.
 5. Get ACK.
 6. Send START signal again.
 7. Send slave address concatenated with the READ flag.
 8. Get ACK.

5.7 VHDL Implementation of FPGA and ADT7420 I2C Interfacing

222

 9. Read the 8-bit register data.
 10. Send Negative ACK signal.
 11. Send STOP signal.

In PR 5.12, entity part is written and signal, constant and variable object declara-
tions are made in the declarative part of the architecture unit. Slave address concat-
enated with WRITE and READ flags are defined as constant objects. Moreover,
slave register address (0x0b) that contains the device manufacture ID is also defined
as constant object. The other objects defined are used in auxiliary clock signal gen-
eration, clock division operation, holding register indices, and holding ACK
information.

PR 5-5

library ieee;
use ieee.std_logic_1164.all;
entity fsm_i2c_exp1 is

port(clk_100MHz, rst: in std_logic;
scl: out std_logic;
sda: inout std_logic;
led: out std_logic_vector(10 downto 0)

);

architecture logic_flow of fsm_i2c_exp1 is
type state is (st_idle, st0_start, st1_txSlaveAddress, st2_ack1, st3_txAddress,

st4_ack2, st5_restart, st6_txSlaveAddress, st7_ack3,
st8_rd_data, st9_nack, st10_stop);

signal DataOut: std_logic_vector(7 downto 0);
constant Address_tobe_Read: std_logic_vector(7 downto 0):=x"0b";
constant slave_address_with_rd_flg: std_logic_vector(7 downto 0):=x"97";
constant slave_address_with_wrt_flg: std_logic_vector(7 downto 0):=x"96";

signal dcl_buss: std_logic:='0';
constant max_length: integer:=8;
shared variable data_index: integer range 0 to max_length -1;
signal timer: integer range 0 to max_length;
signal clk_400KHz: std_logic:='0';
signal ack_bits: std_logic_vector(2 downto 0);
signal count: integer range 0 to 250:=0;
signal sda_signal, scl_signal: std_logic;
signal rd_flag: std_logic:='0';

begin

end entity;

signal scl_buss: std_logic:='0';
signal present_state,next_state:state ;

PR 5.12 Program 5.12

5 Inter Integrated Circuit (I2C) Serial Communication in VHDL

223

ADT7420 supports up to 400 KHz I2C communication speed. We choose 100 KHz
transmission speed. 100 KHz data and bus-clock signals are generated from
100 MHz FPGA clock frequency using clock dividers in PR 5.13.

clk400KHz: process(clk_100MHz)

begin
if(rst='1') then

clk_400KHz<='0';

count<=0;

elsif(rising_edge(clk_100MHz)) then
if(count=124) then

clk_400KHz<=not clk_400KHz;

count<=0;

else
count<=count + 1;

end if;
end if;

end process;

clk_100KHz: process (clk_400KHz)

variable count_1: integer range 0 to 3:=0;

begin
if(rst='1') then

scl_buss<='1';

dcl_buss<='1';

count_1:=0;

elsif(rising_edge(clk_400KHz)) then
if(count_1=0) then

scl_buss<='0';

elsif(count_1=1) then
dcl_buss<='1';

elsif(count_1=2) then
scl_buss<='1';

else
dcl_buss<='0';

end if;
if(count_1=3) then

count_1:=0;

else
count_1:=count_1 + 1;

end if;
end if;

end process;

PR 5.13 Program 5.13

led(7 downto 0)<= DataOut(7 downto 0);
led(10 downto 8)<= ack_bits;

p2: process(dcl_buss, rst)
begin
if(dcl_buss'event and dcl_buss='0') then
if(present_state=st2_ack1) then

ack_bits(0)<=sda;
elsif(present_state=st4_ack2) then

ack_bits(1)<=sda;
elsif (present_state=st7_ack3) then

ack_bits(2)<=sda;
elsif (present_state=st8_rd_data) then

DataOut(7-data_index) <= sda;
end if;

end if;
end process;

p1: process(dcl_buss, rst)
 begin
 if (rst ='1') then
 present_state<=st_idle;
 data_index:=0;
 elsif (dcl_buss 'event and dcl_buss ='1') then
 if(data_index=timer-1) then
 present_state<=next_state;
 data_index:=0;
 else
 data_index:=data_index +1;
 end if;
 end if;
 end process;

PR 5.14 Program 5.14

The processes “p1” and “p2” written in PR 5.14 are used to update present state, and
to receive the acknowledgment signals sent by the slave.

5.7 VHDL Implementation of FPGA and ADT7420 I2C Interfacing

224

After the transmission of slave address, acknowledgment is got from slave device.
In receiver mode, the master releases the data bus and puts the data line at high
impedance. In PR 5.17, determination of serial data, serial clock, timer, and next
state values for the present state st1_txSlaveAddress are illustrated and written.
Data reception is performed in PR 5.14 at the falling edge of the clock pulse.

The third process “p3” is written for the determination of next states and port out-
puts. The generation of start signal is illustrated on the right of PR 5.15 and its
VHDL implementation is provided on the left of PR 5.15.

SCL

SDA

Idle

scl_buss

dcl_buss

Start

clk_400KHz

scl<=scl_signal;

sda<=sda_signal;

p3: process(present_state, scl_buss, dcl_buss, sda)

begin
case present_state is
when st_idle =>

scl_signal<='1';

sda_signal<='1';

timer<=1;

if (rd_flag='1') then
next_state<=st_idle;

else
next_state<=st0_start;

end if;
when st0_start =>

sda_signal<=dcl_buss;

scl_signal<='1';

timer<=1;

next_state<=st1_txSlaveAddress;

PR 5.15 Program 5.15

In PR 5.16, determination of serial data, serial clock, timer, and next state values for
the present state st1_txSlaveAddress are illustrated and written.

SCL

SDA

Idle

scl_buss

dcl_buss

Start

clk_400KHz

1 0 0 1 0 1 1 0

Slave Address and Write Command: 0x96
Write

when st1_txSlaveAddress =>

sda_signal<=slave_address_with_wrt_flg(7-data_index);

scl_signal<=scl_buss;

timer<=8;

next_state<=st2_ack1;

PR 5.16 Program 5.16

5 Inter Integrated Circuit (I2C) Serial Communication in VHDL

225

SCL

SDA
Idle

scl_buss

dcl_buss

Start

clk_400KHz

1 0 0 1 0 1 1 0

Slave Address and Write Command
0x96

Z� 0

ACK Register Address to be Read
0x0B

0 0 0 0 1 0 1 1 Z� 0
ACK Stop

when st3_txAddress =>
sda_signal<=Address_tobe_Read(7-data_index);
scl_signal<=scl_buss;
timer<=8;
next_state<=st4_ack2;

when st4_ack2=>
sda_signal<='Z';
scl_signal<=scl_buss;
timer<=1;
next_state<=st5_restart;

when st5_restart =>
sda_signal<=dcl_buss;
scl_signal<='1';
timer<=1;
next_state<=st6_txSlaveAddress;

PR 5.18 Program 5.18

SCL

SDA
Idle

scl_buss

dcl_buss

Start

clk_400KHz

1 0 0 1 0 1 1 0

Slave Address and Write Command: 0x96
Write

ACK

Z� 0

when st2_ack1=>
sda_signal<='Z';
scl_signal<=scl_buss;
timer<=1;
next_state<=st3_txAddress;

PR 5.17 Program 5.17

In PR 5.18, the address of register to be read is transmitted to the slave by the mas-
ter. Transmission takes eight clock cycles, and the most significant bit of the address
data is sent first. After reception of the acknowledgment bit, start signal is
retransmitted.

5.7 VHDL Implementation of FPGA and ADT7420 I2C Interfacing

226

After the retransmission of START signal, slave address concatenated with READ
flag is sent and ACK signal is received. These events are implemented in PR 5.19
and PR 5.14.

when st6_txSlaveAddress =>
sda_signal<=slave_address_with_rd_flg(7-data_index);
scl_signal<=scl_buss;
timer<=8;
next_state<=st7_ack3;

when st7_ack3 =>
sda_signal<='Z';
scl_signal<=scl_buss;
timer<=1;
next_state<=st8_rd_data;

SCL

SDA
Idle

scl_buss

dcl_buss

Start

clk_400KHz

1 0 0 1 0 1 1 0

Slave Address and Write Command
0x96

Z� 0

ACK Register Address to be Read
0x0B

0 0 0 0 1 0 1 1 Z� 0
ACK Stop

SCL

SDA

scl_buss

dcl_buss

clk_400KHz

1 0 0 1 0 1 1 1

Slave Address and Read Command
0x97

Z� 0

ACKRead

PR 5.19 Program 5.19

5 Inter Integrated Circuit (I2C) Serial Communication in VHDL

227

SCL

SDA
Idle

scl_buss

dcl_buss

Start

clk_400KHz

1 0 0 1 0 1 1 0

Slave Address and Write Command
0x96

Z� 0

ACK Register Address to be Read
0x0B

0 0 0 0 1 0 1 1 Z� 0
ACK Stop

SCL

SDA

scl_buss

dcl_buss

clk_400KHz

1 0 0 1 0 1 1 1

Slave Address and Read Command
0x97

Z� 0

ACKRead
D7 D6 D5 D4 D3 D2 D1 D0

Read Data
Stop

No
ACK

when st8_rd_data =>
sda_signal<='Z';
timer<=8;
scl_signal<=scl_buss;
next_state<=st9_nack;

when st9_nack=>
sda_signal<='1';
scl_signal<=scl_buss;
timer<=1;
next_state<=st10_stop;

when st10_stop =>
sda_signal<=not dcl_buss;
scl_signal<='1';
timer<=1;
rd_flag<='1';
next_state<=st_idle;
end case;
end process;
end logic_flow;

PR 5.20 Program 5.20

Reading of device ID followed by the transmission of negative acknowledgment
signal and STOP signal are implemented in PR 5.20, and in “p2” of PR 5.14.

5.7 VHDL Implementation of FPGA and ADT7420 I2C Interfacing

228

Combining all program parts, we get the overall VHDL code as in PR 5.21.

231

library ieee;
use ieee.std_logic_1164.all;
entity fsm_i2c_exp1 is

port(clk_100MHz, rst: in std_logic;
scl: out std_logic;
sda: inout std_logic;
led: out std_logic_vector(10 downto 0)

architecture

);
end entity

logic_flow of fsm_i2c_exp1 is
type state is (st_idle, st0_start, st1_txSlaveAddress,

st2_ack1, st3_txAddress, st4_ack2, st5_restart,
st6_txSlaveAddress, st7_ack3, st8_rd_data,
st9_nack, st10_stop);

signal DataOut: std_logic_vector(7 downto 0);
constant Address_tobe_Read:

std_logic_vector(7 downto 0):=x"0b";
constant slave_address_with_rd_flg:

std_logic_vector(7 downto 0):=x"97";
constant slave_address_with_wrt_flg:

std_logic_vector(7 downto 0):=x"96";
signal scl_buss: std_logic:='0';
signal dcl_buss: std_logic:='0';

signal present_state,next_state :state ;
constant max_length: integer:=8;

shared variable data_index: integer range 0 to
max_length -1;

signal timer: integer range 0 to max_length;
signal clk_400KHz: std_logic:='0';
signal ack_bits: std_logic_vector(2 downto 0);
signal count: integer range 0 to 250:=0;
signal sda_signal, scl_signal: std_logic;
signal rd_flag: std_logic:='0';

begin

clk400KHz: process(clk_100MHz)
begin

if(rst='1') then
clk_400KHz<='0';
count<=0;

timer<=1;
next_state<=st3_txAddress;

when st3_txAddress =>
sda_signal<=Address_tobe_Read(7-data_index);
scl_signal<=scl_buss;
timer<=8;
next_state<=st4_ack2;

when st4_ack2=>
sda_signal<='Z';
scl_signal<=scl_buss;
timer<=1;
next_state<=st5_restart;

when st5_restart =>
sda_signal<=dcl_buss;
scl_signal<='1';
timer<=1;
next_state<=st6_txSlaveAddress;

when st6_txSlaveAddress =>
sda_signal<=

slave_address_with_rd_flg(7-data_index);
scl_signal<=scl_buss;
timer<=8;
next_state<=st7_ack3;

when st7_ack3 =>
sda_signal<='Z';
scl_signal<=scl_buss;
timer<=1;
next_state<=st8_rd_data;

when st8_rd_data =>
sda_signal<='Z';
scl_signal<=scl_buss;
timer<=8;next_state<=st9_nack;

when st9_nack=>
sda_signal<='1';
scl_signal<=scl_buss;
timer<=1; next_state<=st10_stop;

when

end case;end process;
end logic_flow;

st10_stop =>
sda_signal<=not dcl_buss;
scl_signal<='1';
timer<=1;
rd_flag<='1';
next_state<=st_idle;

 count<=count + 1;
 end if;
 end if;
 end process;

 clk_100KHz: process (clk_400KHz)
 variable count_1: integer range 0 to 3:=0;
 begin
 if(rst='1') then
 scl_buss<='1'; dcl_buss<='1';
 count_1:=0;
 elsif(rising_edge(clk_400KHz)) then
 if(count_1=0) then
 scl_buss<='0';
 elsif(count_1=1) then
 dcl_buss<='1';
 elsif(count_1=2) then
 scl_buss<='1';
 else
 dcl_buss<='0';
 end if;
 if(count_1=3) then
 count_1:=0;
 else
 count_1:=count_1 + 1;
 end if;
 end if;
 end process;
p1: process(dcl_buss, rst)
 begin
 if (rst ='1') then
 present_state<=st_idle;
 data_index:=0;
 elsif (dcl_buss 'event and dcl_buss ='1') then
 if(data_index=timer-1) then
 present_state<=next_state;
 data_index:=0;
 else
 data_index:=data_index +1;
 end if;
 end if;
 end process;

led(7 downto 0)<=DataOut(7 downto 0);
led(10 downto 8)<=ack_bits;

p2: process(dcl_buss, rst)
begin
 if(dcl_buss'event and dcl_buss='0') then
 if(present_state=st2_ack1) then
 ack_bits(0)<=sda;
 elsif(present_state=st4_ack2) then
 ack_bits(1)<=sda;
 elsif (present_state=st7_ack3) then
 ack_bits(2)<=sda;
 elsif (present_state=st8_rd_data) then
 DataOut(7-data_index)<=sda;
 end if;
 end if;
end process;
scl<=scl_signal;
sda<=sda_signal;
p3: process(present_state, scl_buss, dcl_buss, sda)
begin
 case present_state is
 when st_idle =>
 scl_signal<='1';
 sda_signal<='1';
 timer<=1;
 if(rd_flag='1') then
 next_state<=st_idle;
 else
 next_state<=st0_start;
 end if;
 when st0_start =>
 sda_signal<=dcl_buss;
 scl_signal<='1';
 timer<=1;
 next_state<=st1_txSlaveAddress;
 when st1_txSlaveAddress =>
 sda_signal<=slave_address_with_wrt_flg
 (7-data_index);
 scl_signal<=scl_buss;
 timer<=8;
 next_state<=st2_ack1;
 when st2_ack1=>
 sda_signal<='Z';
 scl_signal<=scl_buss;

PR 5.21 Program 5.21

5 Inter Integrated Circuit (I2C) Serial Communication in VHDL

229

Example 5.8 In this example, we implement the write and the read operations for
ADT7420. Write the value 0xC1 to the register of ADT7420 whose address is 0x04.
After write operation, read the content of register whose address is 0x04.

Solution 5.8 The timing waveforms of the I2C communication in write operation
for ADT7420 is depicted in Fig. 5.35. Writing to a register of ADT7420 consists of
three main steps as illustrated in Fig. 5.35. In the first step, slave address concate-
nated with WRITE flag is transmitted. In the second step, register address is trans-
mitted. In the last step, data to be written to the register, starting from the most
significant bit, is transmitted. Between every two transmissions, acknowledgment,
sent by slave device, is received by the master (FPGA).

SCL

SDA A7 A6 A5 A4 A3 A2 A1 A0

Register Address to be Write

1 0 0 1 0 A1 A0 0 ACK

by

ADT7420

ACK

by

ADT7420

Slave Address and Write Command

Write

SCL

D7 D6 D5 D4 D3 D2 D1 D0

Write Data

SDA

Waveform
continues

on the next
line

Waveform
ends here

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Start

Stop

1 2 3 4 5 6 7 8 9

ADT7420

ACK

by

Fig. 5.35 Transmission timing waveforms for Example 5.8

Reset
1T =

txSlaveAddress

SCL=SCL_BUSS

SDA=slaveAddress

&Write

START

SCL='1'

SDA=DCL_BUSS

IDLE

SCL='1'

SDA='1'

1T =
ACK1

SCL=SCL_BUSS

SDA='Z'

8T =

txRegAddress

SCL=SCL_BUSS

SDA=regAddress

ACK2

SCL=SCL_BUSS

SDA='Z'

STOP

SCL='1'

SDA=NOT

DCL_BUSS

1T =

From master to slave

From slave to master

8T =1T =

1T =

1T =

WrData

SCL=SCL_BUSS

SDA=data

ACK3

SCL=SCL_BUSS

SDA='Z'

8T =

Fig. 5.36 State diagram for Fig. 5.35

The state diagram corresponding to the I2C waveforms depicted in Fig. 5.35 can be
drawn as in Fig. 5.36.

5.7 VHDL Implementation of FPGA and ADT7420 I2C Interfacing

230

In our previous example, we implemented the read operation for ADT7420. The
state diagram of the read operation is given in Fig. 5.34. We can combine state dia-
gram used for read and write operations. When Figs. 5.34 and 5.36 are inspected, it
is seen that the states “Idle”, “Start”, “txSlaveAddress”, and “ACK1” are used in
both reading and writing operations. Considering this issue, we can combine both
state diagrams as in Fig. 5.37 where a new control signal “write_done” is introduced
to enable the read operation.

Reset
1T =

txSlaveAddress

SCL=SCL_BUSS

SDA=slaveAddress

&Write

START

SCL='1'

SDA=DCL_BUSS

IDLE

SCL='1'

SDA='1'

1T =
ACK1

SCL=SCL_BUSS

SDA='Z'

8T =
txRegAddress

SCL=CLK

SDA=regAddress

ACK2

SCL=SCL_BUSS

SDA='Z'

STOP 1

SCL='1'

SDA=NOT

DCL_BUSS

1T =

From master to slave

From slave to master

1T =

WrData

SCL=SCL_BUSS

SDA=data

ACK3

SCL=SCL_BUSS

SDA='Z'

RESTART

SCL='1'

SDA=DCL_BUSS

txSlaveAddress

SCL=SCL_BUSS

SDA=slaveAddress

&Read

ACK4

SCL=SCL_BUSS

SDA='Z'

rdData

SCL=SCL_BUSS

SDA='Z'

NACK

SCL=SCL_BUSS

SDA='1'

STOP 2

SCL='1'

SDA=NOT

DCL_BUS

8T =

1T =

1T =

1T =1T =1T = 8T = 8T =

8T =1T =

1T =

write_done=1

write_done=0

Fig. 5.37 Combined state diagram

In PR 5.22, entity part is written and signal, constant, and variable object declara-
tions are made. Constant objects are defined for slave address concatenated with
write and read flags having concatenated values of 0x96 and 0x97 respectively, and
for register address 0x04, and for data value 0xC1.

Other object definitions are used in auxiliary clock generation, in clock division
operation, for holding register indices, and for holding ACK information. The pro-
cess “clk400KHz” is used to obtain a clock of 400 KHz from 100 MHz FPGA
clock, and the second process “clk_100KHz” is used to generate 100 KHz serial bus
and data bus-clocks from 400 KHz clock source.

5 Inter Integrated Circuit (I2C) Serial Communication in VHDL

231

235

PR 5-5

library ieee;
use ieee.std_logic_1164.all;
entity fsm_i2c_exp2 is

port(clk_100MHz, rst: in std_logic;
scl: out std_logic;
sda: inout std_logic;
led: out std_logic_vector(11 downto 0));

end;
architecture logic_flow of fsm_i2c_exp2 is

type state is (st_idle, st0_start, st1_txSlaveAddress, st2_ack1, st3_txAddress,
st4_ack2, st5_wr_data, st6_ack3, st7_stop1, st8_restart,
st9_txSlaveAddress, st10_ack4, st11_rd_data, st12_nack, st13_stop2);

signal present_state, next_state: state;

signal DataOut: std_logic_vector(7 downto 0);
constant data_to_write: std_logic_vector(7 downto 0):=x"c1";
constant Address_tobe_Read: std_logic_vector(7 downto 0):=x"04";
constant slave_address_with_rd_flg: std_logic_vector(7 downto 0):=x"97";
constant slave_address_with_wrt_flg: std_logic_vector(7 downto 0):=x"96";
signal scl_buss, dcl_buss: std_logic:='0';
constant max_length: integer:=8;
shared variable data_index: integer range 0 to max_length -1;
signal timer: integer range 0 to max_length;
signal ack_bits: std_logic_vector(3 downto 0);
signal count: integer range 0 to 250:=0;
signal clk_400KHz: std_logic:='0';
signal sda_signal, scl_signal : std_logic;
signal rd_flag: std_logic:='0';

clk400KHz: process(clk_100MHz)
begin
if(rst='1') then

clk_400KHz <='0';
count<=0;
elsif(rising_edge(clk_100MHz)) then

if(count=124) then
clk_400KHz<=not clk_400KHz;
count<=0;

else
count<=count + 1;

end if;
end if;

end process;
clk_100KHz: process (clk_400KHz)

variable count_1: integer range 0 to 3:=0;
begin

if(rst='1') then
scl_buss<='1';

dcl_buss<='1';
count_1:=0;

elsif(rising_edge(clk_400KHz)) then
if(count_1=0) then

scl_buss<='0';
elsif(count_1=1) then

dcl_buss<='1';
elsif(count_1=2) then

scl_buss<='1';
else

dcl_buss<='0';
end if;
if(count_1=3) then

count_1:=0;
else

count_1:=count_1 + 1;
end if;

end if;
end process;

signal write_done: std_logic:='0';
begin

PR 5.22 Program 5.22

5.7 VHDL Implementation of FPGA and ADT7420 I2C Interfacing

232

The process “p1” written in PR 5.23 is used to update the present state, and the
process “p2” written in PR 5.23 is used for the retrieval of acknowledgment and
data.

p2: process(dcl_buss, rst)

begin
if(dcl_buss'event and dcl_buss='0') then

if(present_state=st2_ack1) then
ack_bits(0)<=sda;

elsif(present_state=st4_ack2) then
ack_bits(1)<=sda;

elsif (present_state=st6_ack3) then
ack_bits(2)<=sda;

elsif (present_state=st10_ack4) then
ack_bits(3)<=sda;

elsif (present_state=st11_rd_data) then
DataOut(7-data_index) <= sda;

end if;
end if;

end process;

p1: process(dcl_buss, rst)

begin
if(rst ='1') then

present_state<=st_idle;

data_index<=0;

elsif (dcl_buss 'event and dcl_buss ='1') then
if(data_index=timer-1) then

present_state<=next_state;

data_index<=0;

else
data_index<=data_index +1;

end if;
end if;

end process;

led(7 downto 0)<= DataOut(7 downto 0);

led(11 downto 8)<= ack_bits;

PR 5.23 Program 5.23

5 Inter Integrated Circuit (I2C) Serial Communication in VHDL

233

Reset
1T =

txSlaveAddress

SCL=SCL_BUSS

SDA=slaveAddress

&Write

START

SCL='1'

SDA=DCL_BUSS

IDLE

SCL='1'

SDA='1'

1T =
ACK1

SCL=SCL_BUSS

SDA='Z'

8T =
txRegAddress

SCL=SCL_BUSS

SDA=regAddress

ACK2

SCL=SCL_BUSS

SDA='Z'

STOP 1

SCL='1'

SDA=NOT

DCL_BUSS

1T =

WrData

SCL=SCL_BUSS

SDA=data

ACK3

SCL=SCL_BUSS

SDA='Z'

8T =

1T =

8T =1T =

1T = write_done=0

p3: process(present_state, scl_buss, dcl_buss,

sda, rst)

begin
case present_state is
when st_idle =>

scl_signal<='1';

sda_signal<='1';

timer<=1;

if (rd_flag='1') then
next_state<=st_idle;

else
next_state<=st0_start;

end if;
when st0_start =>

sda_signal<=dcl_buss;

scl_signal<='1';

timer<=1;

next_state<=st1_txSlaveAddress;

when st1_txSlaveAddress =>

sda_signal<=slave_address_with_wrt_flg

(7-data_index);

timer<=8;

scl_signal<=scl_buss;

next_state<=st2_ack1;

when st2_ack1=>

sda_signal<='Z';

scl_signal<=scl_buss;

timer<=1;

next_state<=st3_txAddress;

when st3_txAddress =>

sda_signal<=Address_tobe_Read(7-data_index);

scl_signal<=scl_buss;

timer<=8;

next_state<=st4_ack2;

when st4_ack2=>

sda_signal<='Z';

scl_signal<=scl_buss;

timer<=1;

if(write_done='0') then
next_state<=st5_wr_data;

else
next_state<=st8_restart;

end if;
when st5_wr_data =>

sda_signal<=data_to_write(7-data_index);

scl_signal<=scl_buss;

timer<=8;

next_state<=st6_ack3;

when st6_ack3=>

sda_signal<='Z';

scl_signal<=scl_buss;

timer<=1;

next_state<=st7_stop1;

when st7_stop1 =>

sda_signal<=not dcl_buss;

scl_signal<='1';

timer<=1;

next_state<=st_idle;

write_done<='1';

PR 5.24 Program 5.24

The third process “p3” is used to determine the next states and port outputs. In PR
5.24, the implementation of the write operation is made.

5.7 VHDL Implementation of FPGA and ADT7420 I2C Interfacing

234

The read operation is performed using the first five states and the remaining states
are shown in PR 5.25. The flag “write_done” is used to indicate whether write oper-
ation is completed or not and it is checked in state “st4_ack2” in PR 5.24 to choose
the upper or lower part of the state diagram of Fig. 5.30. In PR 5.24, “write_done”
is assigned to logic-1 at the end of the state in “st7_stop1”.

Reset

1T =
txSlaveAddress

SCL=SCL_BUSS

SDA=slaveAddress

&Write

START

SCL='1'

SDA=DCL_BUSS

IDLE

SCL='1'

SDA='1'

1T =
ACK1

SCL=SCL_BUSS

SDA='Z'

8T =
txRegAddress

SCL=SCL_BUSS

SDA=regAddress

ACK2

SCL=SCL_BUSS

SDA='Z'

STOP 1

SCL='1'

SDA=NOT

DCL_BUSS

1T =

1T =

WrData

SCL=CLK

SDA=data

ACK3

SCL=CLK

SDA='Z'

RESTART

SCL='1'

SDA=DCL_BUSS

txSlaveAddress

SCL=SCL_BUSS

SDA=slaveAddress

&Read

ACK4

SCL=SCL_BUSS

SDA='Z'

rdData

SCL=SCL_BUSS

SDA='Z'

NACK

SCL=SCL_BUSS

SDA='1'

STOP 3

SCL='1'

SDA=NOT

DCL_BUSS

8T =

1T =

1T =1T =1T = 8T = 8T =

write_done=1

write_done=0

when st8_restart =>

sda_signal<=dcl_buss;

scl_signal<='1';

timer<=1;

next_state<=st9_txSlaveAddress;

when st9_txSlaveAddress =>

sda_signal<=slave_address_with_rd_flg

(7-data_index);

scl_signal<=scl_buss;

timer<=8;

next_state<=st10_ack4;

when st10_ack4 =>

sda_signal<='Z';

scl_signal<=scl_buss;

timer<=1;

next_state<=st11_rd_data;

when st11_rd_data =>

sda_signal<='Z';

scl_signal<=scl_buss;

timer<=8;

next_state<=st12_nack;

when st12_nack=>

sda_signal<='1';

scl_signal<=scl_buss;

timer<=1;

next_state<=st13_stop2;

when st13_stop2 =>

sda_signal<=not dcl_buss;

scl_signal<='1';

timer<=1;

rd_flag<='1';

next_state<=st_idle;

end case;

end process;
end logic_flow;

PR 5.25 Program 5.25

5 Inter Integrated Circuit (I2C) Serial Communication in VHDL

235

 Problems

 1. Draw the I2C communication waveforms for the transmission of the single data
byte, “10110101”. For the slave address, use “0000000”.

 2. Master performs an immediate read slave operation. Only a single byte is read
from slave. First draw the frame structure for this operation, then draw the state
diagram of I2C transmission scheme. Use dummy values for slave address and
data value.

 3. Master performs a write operation which is followed by an immediate read oper-
ation. In both operations, a single byte is written and a single byte is read. Draw
the frame structure for this I2C communication, draw the state diagram and
implement it in VHDL. Use dummy values for slave address and data values.

 4. Draw the frame format of I2C communication protocol where first write opera-
tion is performed, second an immediate read operation is performed, and in
sequel another write operation is performed. Only single bytes are written and
read.

 5. Draw the state diagram of Fig. 5.22.
 6. State the differences between SPI and I2C serial communications.
 7. State the difference between RS232 and I2C serial communications.
 8. Write a process to obtain 2 KHz bus and data clocks from 100 MHz FPGA’s

clock.

Problems

237© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
O. Gazi, A. Ç. Arlı, State Machines using VHDL,
https://doi.org/10.1007/978-3-030-61698-4_6

6Video Graphic Array (VGA) and HDMI
Interfacing

VGA is an interface introduced by IBM company in 1987 for the transmission of
display data from computers to monitors. In this standard, only display data trans-
mission is performed. Audio data transmission is not supported by VGA standard.
A VGA connector contains both analog and digital data transmission lines. High-
Definition Multimedia Interface (HDMI) is developed by a number of companies in
the year 2002. It is used for transmitting uncompressed video data and compressed
or uncompressed digital audio data. In this chapter, we will first provide brief infor-
mation about VGA and HDMI interface, and then explain VHDL implementation of
VGA and HDMI interface. VHDL codes are written in a stepwise manner for the
clear understanding of the subject.

6.1 Video Graphic Array (VGA)

Video graphic array (VGA) interfacing is used for connecting computers to moni-
tors. The VGA interfacing circuitry differs at computer and monitor sides. At the
computer side, VGA interfacing circuitry has a graphic controller, on the other
hand, on the monitor side it has a display controller as shown in Fig. 6.1.

Computer VGA Graphic
Controller MonitorVGA Display

Controller

VGA Cable

VGA
Interface

Fig. 6.1 VGA interface between computer and monitor

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61698-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-61698-4_6#DOI

238

6.1.1 Graphic Controller

Graphic controller is an electronic system used to provide synchronization signals
which are used to control the formation of images on monitor’s screen. Besides,
graphic controller also provides color signals which are used to give the colors of
pixels. The signals between graphic controller and monitor are depicted in Fig. 6.2,
and these signals are carried by VGA cables between the computer and monitor.

VGA Graphic
Controller

VGA Display
Controller

VGA Cable

R
G
B

R
G
B

Hsync Hsync
Vsync Vsync

Computer Monitor

Hsync
Vsync

Horizontal Synchroniza�on

Ver�cal Synchroniza�on

Fig. 6.2 VGA connection lines

In Fig. 6.2, R, G, B lines carry analog data, on the other hand, “Hsync” and “Vsync”
lines carry digital data. Inside VGA graphic controller, there is also “dena”, display
enable, and signal. The durations for the control signals “Hsync” and “Vsync” are
controlled by the pixel clock generator, which has a value of 25.175 MHz for
640 × 480 pixel resolution. “Hsync” and “Vsync” control signals are used for the
determination of the positions of new lines and new frames.

Internal part of the graphic controller is shown in Fig. 6.3. Inside the graphic
controller, there are control signal generator, image generator, and digital and ana-
log convert units. Timing of the color signals “R”, “G”, “B” is determined under the
control of “Pixel Clk”, “Hactive”, “Vactive”, and “Dena” signals.

6 Video Graphic Array (VGA) and HDMI Interfacing

239

6.1.2 VGA Monitors

VGA monitors are cathode ray tubes (CRTs) as shown in Fig. 6.4. Using vertical
and horizontal synchronization signals, the coordinates of the target of the cathode
ray is determined. A VGA monitor takes “R”, “G”, “B” analog color information
and digital horizontal and vertical synchronization signals from VGA graphic
controller.

Control Signal
Generator

Image Generator
H

ac
ti

v
e

V
ac

ti
v
e

D
en

a

P
ix

el
 C

lk

Digital to Analog
Converters

R(10:1)

G(10:1)

B(10:1)
B

G

R

Hsync

Vsync

Graphic Controller

Fig. 6.3 VGA graphic controller

Cathode ray

Horizontal and Vertical

Deflection Control

Fig. 6.4 CRT monitor

6.1 Video Graphic Array (VGA)

240

6.1.3 Pixel Clock

The pixels are displayed under the control of pixel clock. For 640 × 480 resolution
with refresh rate 60 Hz, the pixel clock is 25.175 MHz for which the pixel period is
almost 0.4 μs as depicted in Fig. 6.5.

Pixel Clk

Pixel
period
0.4 sµ

Fig. 6.5 Pixel clock pulse train

Stable current

ramp

pixel(1,1) pixel(640,1)

pixel(1,480) pixel(640,480)

Fig. 6.6 The current flow graph on the screen

6.2 Basic VGA Format

In basic VGA format, the monitor screen is considered as a matrix of size 640 × 480
containing pixels in this matrix structure. That is, the monitor has 480 rows and
there are 640 pixels in a row. A series of photos displayed on the monitor is nothing
but videos watched on a monitor, the photos are displayed fast enough so that the
human eye is unaware of the photo changes, and the human brain interprets the
sequential displays as video display.

The screen is refreshed 60 times per second, i.e., the refresh rate of the screen is
60 Hz. The current flow graph on the screen is displayed in Fig. 6.6.

6 Video Graphic Array (VGA) and HDMI Interfacing

241

The current waveform passing through the monitor coils and the corresponding
“Hsync” and “Hactive” signal waveforms are displayed in Fig. 6.7.

Stable current ramp
current waveform through
horizontal deflection coils

pixel(1,1) pixel(640,1)

pixel(1,480) pixel(640,480)

Hpulse

HBP

Hactive

HFP
96 pixels

48 pixels

640 pixels

16 pixels

96
pixels

704 pixels

800 pixels

Hsync

Hactive

Fig. 6.7 Horizontal synchronization signal and current flow graphs

It is seen from Fig. 6.7 that the visible pixels are displayed on the screen for the
“Hactive” portion of the “Hsync” signal. A better view showing the active region of
the monitor screen and the corresponding control signals is depicted in Fig. 6.8.

6.2 Basic VGA Format

242

In Fig. 6.8, “Hsync” signal and its portions are displayed at the top of the screen,
and “Vsync” signal and its portions are shown on the left side of the screen.

6.2.1 Hsync Signal

“Hsync” signal and its portions are depicted for 640 × 480 resolution in Fig. 6.9 in
detail where it is seen that the pulse durations for “Hsync” signal are multiples of
the period of the pixel clock.

ACTIVE VIDEO DISPLAY

Hpulse

96 pixels

HBP

48 pixels

Hactive

640 pixels

HFP

16 pixels

Vpulse

VBP

Vactive

VFP

2 lines

33 lines

480 lines

10 lines

Fig. 6.8 Active video display area and synchronization signals

6 Video Graphic Array (VGA) and HDMI Interfacing

243

6.2.2 Vsync Signal

“Vsync” signal and its portions are depicted for 640 × 480 resolution in Fig. 6.10 in
detail.

Pixel Clk

Pixel

period
0.4 sµ

Hsync
96 pixels 704 pixels

800 pixels

Hactive

Hpulse HBP Hactive HFP

96 pixels 48 pixels

640 pixels

16 pixels

HBP: Horizontal Back Porch

HFP: Horizontal Front Porch

Hactive: Active Horizontal Display

Hpulse: Hsynch pulse

Fig. 6.9 Horizontal synchronization signal and its parts

Vsync
2 lines 523 lines

525 lines

Vac�ve
Vpulse VBP Vac�ve VFP

VBP: Ver�cal Back Porch

VFP: Ver�cal Front Porch

Vac�ve: Ac�ve Ver�cal Display

Vpulse: Vsynch pulse

2 lines 33 lines
480 lines

10 lines

Fig. 6.10 Vertical synchronization signal and its parts

6.2 Basic VGA Format

244

In Fig. 6.11, the relationship between horizontal and vertical synchronization sig-
nals are explained.

Line x (640 pixes) Line x+1 (640 pixes)

x x+1x-10 479

Horizontal

sync

Video

Signal

Video Frame

Lines

Vertical

sync

Next Frame(640x480)

Sync Back

Porch

Horizontal total

blank time

Horizontal

Front

Porch

Sync Back

Porch

Vertical total

blank time

Vertical

One Line

0 639

One Frame

Front

Porch

Fig. 6.11 Relationship between horizontal and vertical synchronization signals

Basic VGA protocol is defined for 640 × 480 pixels and contains five interface
 signals, i.e., horizontal synchronization, vertical synchronization, red signal, green
signal, and blue signal. Among these signals, color signals are analogs while others
are digital. Voltage levels in red-green-blue (RGB) determine what color the pixel
has.

Images are formed by the periodic scan of the monitor screen by the electron
beam. Figure 6.12 illustrates the scanning operation performed by the electron
beam for the resolution of 640 × 480 display on a CRT monitor.

6 Video Graphic Array (VGA) and HDMI Interfacing

245

6.2.3 VGA Resolution Modes

VGA standard supports different resolutions such as SVGA (800 × 600), WVGA
(800 × 480), XVGA (1024 × 768), HD720 (1280 × 720), and HD1080 (1920 × 1080).
For different resolutions, different scanning, waiting, and refreshing times are
defined. In Table 6.1, information about different resolution modes is provided.

Front

Porch
Sync

Back

Porch

Front Porch

Sync

Back Porch

48
0

64016 96 48

10
2
33160

45

Fig. 6.12 Electron beam scan

Table 6.1 VGA resolutions and timing parameters

Video timings
VGA 640 × 480
(60 Hz)

SVGA 800 × 600
(60 Hz)

HD1280 × 720-720p
(60 Hz)

Pixel Clock ~25 MHz 40 MHz 74.25 MHz
TMDS Clock ~250 MHz 400 MHz 742.50 MHz
Horizontal
Timings

Duration in terms of
pixels

Duration in terms of
pixels

Duration in terms of
pixels

Active Pixels 640 800 1280
Front Porch 16 40 110
Snyc Width 96 128 40
Back Porch 48 88 220
Blanking Total 160 256 370
Total Pixels 800 1056 1650

(continued)

6.4 VHDL Design for VGA Interface

246

To display images or movies using VGA, horizontal and vertical synchronization
signals are to be generated. Assume that original VGA (640 × 480) is going to be
implemented. In VGA, 640 rows and 480 columns are needed to be scanned. Thus,
horizontal synchronization signal is asserted after every time all columns are
scanned, i.e., 640 rows. Besides, assertion of vertical synchronization signal is done
when the beginning of scanning and at the end of completion of all rows.

6.3 VGA Connector

VGA connector shown in Fig. 6.13 is a 15-pin connector called DB15. The pins
used in the display operation shown in Fig. 6.13 are red, green, and blue pins which
carry analog signal varying from 0 to 0.7 V. The pins 4, 11, 12, and 15 are used for
monitor identification and are not labeled in Fig. 6.13, since in this chapter we are
only interested in image display operation.

Video timings
VGA 640 × 480
(60 Hz)

SVGA 800 × 600
(60 Hz)

HD1280 × 720-720p
(60 Hz)

Vertical
Timings

Duration in terms of
pixels

Duration in terms of
pixels

Duration in terms of
pixels

Active Lines 480 600 720
Front Porch 10 1 5
Snyc Width 2 4 5
Back Porch 33 23 20
Blanking Total 45 28 30
Total Lines 525 628 750

Table 6.1 (continued)

1 2 3 4 5

6
7 8 9 10

11 12 13 14 15

Red Green Blue NC GND

HSYNC VSYNC NCNC NC

Fig. 6.13 VGA connector

6 Video Graphic Array (VGA) and HDMI Interfacing

247

6.4 VHDL Design for VGA Interface

An image on the monitor is formed by coloring the pixels. In Fig. 6.14, a single
pixel is colored in red. The coordinates of a pixel are determined using “Hsync” and
“Vsync” waveforms whose generations are controlled by pixel clock.

Hpulse

96 pixels

HBP

48 pixels

Hactive

640 pixels

HFP

16 pixels

Vpulse

VBP

Vactive

VFP

2 lines

33 lines

480 lines

10 lines

pixel

Fig. 6.14 Determination of pixel coordinates

Coloring a set of pixels, more complex pictures are formed as shown in Fig. 6.15.

Hpulse

96 pixels

HBP

48 pixels

Hactive

640 pixels

HFP

16 pixels

Vpulse

VBP

Vactive

VFP

2 lines

33 lines

480 lines

10 lines

Fig. 6.15 Image formation using VGA format

6.4 VHDL Design for VGA Interface

248

Example 6.1 In Fig. 6.16, the coordinate calculations to display the letter “I” at the
center of the monitor is illustrated.

Fig. 6.16 Formation of letter “I” using VGA format

Hpulse
96 pixels

HBP
48 pixels

Hactive
640 pixels

HFP
16 pixels

Vpulse

VBP

Vactive

VFP

2 lines

33 lines

480 lines

10 lines

640 pixels

480 lines

60 pixels

360 lines

60 lines

60 lines

290 pixels

290 pixels

The generation of images can be done in several ways. The images to be displayed
on the monitor screen can be generated by a VHDL code, or they can be read from
memory units such as SRAM, EEPROM, or they can be retrieved from real- time
image sources like video cameras. Now let us explain how to display images on a
monitor screen using VHDL programming. We will explain the subject through
examples.

6.5 VHDL Implementation Examples

In this section, we provide examples for generating and displaying shapes using
VGA format.

6.5.1 Generation and Display of Letter “I”

In this section, we will write a VHDL program for the generation and display of
letter “I” using VGA format.

Example 6.2 Write a VHDL code to display the letter “I” at the center of the moni-
tor. Assume that monitor resolution is 640 × 480 and use red color for display. Take
100 MHz for FPGA’s clock frequency.

Solution 6.2 First we write the entity part of the program as in PR 6.1.

6 Video Graphic Array (VGA) and HDMI Interfacing

249

We define constant integers objects to identify specific part of “Hsync” and “Vsync”
waveforms in the declarative part of the architecture unit as in PR 6.2. Besides,
signal objects are defined in PR 6.2 for clock generation and counting operations.

architecture Behavioral of vga_monitor is

constant h1: integer:= 96; -- h_pulse

constant h2: integer:= 144; -- h_pulse+hbp

constant h3: integer:= 784; -- h_pulse + hbp +h_active

constant h4: integer:= 800; -- h_pulse + hbp +h_active+hfp

constant v1: integer:= 2; -- v_pulse

constant v2: integer:= 35; -- v_pulse +vbp

constant v3: integer:= 515; -- v_pulse +vbp+Vactive

constant v4: integer:= 525; -- v_pulse +vbp+Vactive+vfp

signal Hactive, Vactive, dena: std_logic;

signal pixel_clk, pixel_clk1: std_logic;

signal Vcount: positive range 1 to v4;

signal Hcount: positive range 1 to h4;

begin

PR 6.2 Program 6.2

For resolution 640 × 480, the pixel clock frequency is 25 MHz which can be gener-
ated from 100 MHz FPGA’s clock frequency using two simple processes in PR 6.3.

p1: process(clk) -- 100MHz ---> 50MHz

begin
if(clk'event and clk='1') then
pixel_clk1 <= not pixel_clk1;

end if;

end process;

p2: process(pixel_clk1) --50MHz---> 25MHz

begin
if(pixel_clk1'event and pixel_clk1='1') then

pixel_clk<=not pixel_clk;

end if;
end process;

PR 6.3 Program 6.3

library ieee;

use ieee.std_logic_1164.all;

entity vga_monitor is
port(clk, reset: in std_logic;

Hsync, Vsync: buffer std_logic;

r, g, b: out std_logic;

nblanck, nsync: out std_logic);

end vga_monitor;

PR 6.1 Program 6.1

6.5 VHDL Implementation Examples

250

Using pixel clock source, we can generate the “Hsync” signal using the process in
PR 6.4.

Using “Hsync” signal, we can generate the “Vsync” signal using the process in PR 6.5.

Using the coordinate information shown in Fig. 6.16, we can generate the required
image as in PR 6.6.

--Hsync signal generation:

p3: process(pixel_clk)

begin
if(pixel_clk'event and pixel_clk='1') then

Hcount<=Hcount + 1;

if(Hcount=h1) then
Hsync<='1';

elsif(Hcount=h2) then
Hactive<='1';

elsif(Hcount=h3) then
Hactive<= '0';

elsif(Hcount=h4) then
Hsync<='0';

Hcount<=1;

end if;
end if;

end process;

PR 6.4 Program 6.4

--Vsync signal generation:

p4: process(Hsync)

begin
if(Hsync'event and Hsync='0') then

Vcount<=Vcount + 1;

if(Vcount=v1) then
Vsync<='1';

elsif(Vcount=v2) then
Vactive<='1';

elsif(Vcount=v3) then
Vactive<='0';

elsif(Vcount=v4) then
Vsync<='0';

Vcount<=1;

end if;
end if;

end process;

PR 6.5 Program 6.5

6 Video Graphic Array (VGA) and HDMI Interfacing

251

-- Image generator

Img_gen: process(pixel_clk)

begin
if(dena='1') then

if(Hcount>=h2+290 and Hcount<=h2+290+60 and Vcount>=v2+60 and Vcount<=v2+60+360)

then
r<='1'; g<='0'; b<='0';

else
r<='0'; g<='0'; b<='0';

end if;
end if;

PR 6.6 Program 6.6

library ieee;
use ieee.std_logic_1164.all;

entity vga_monitor is
port(clk, reset: in std_logic;

Hsync, Vsync: buffer std_logic;
r, g, b: out std_logic;
nblanck, nsync: out std_logic);

end vga_monitor;

architecture logic_flow of vga_monitor is

constant h1: integer:= 96;
constant h2: integer:= 144;
constant h3: integer:= 784;
constant h4: integer:= 800;
constant v1: integer:= 2;
constant v2: integer:= 35;
constant v3: integer:= 515;
constant v4: integer:= 525;

signal Hactive, Vactive, dena: std_logic;
signal pixel_clk, pixel_clk1: std_logic;
signal Vcount: positive range 1 to v4;
signal Hcount: positive range 1 to h4;

begin
--- Display enable generation:
dena<= Hactive and Vactive;

-- Static signals for DACs:
nblanck<='1'; --no direct blanking
nsync<='0'; --no sync on green

p1: process(clk)--100MHz ---> 50MHz
begin

if(clk'event and clk='1') then
pixel_clk1<=not pixel_clk1;

end if;
end process;

p2: process(pixel_clk1)-- ---> 25MHz
begin

if(pixel_clk1'event and pixel_clk1='1') then
pixel_clk<=not pixel_clk;

end if;
end process;

--Hsync signal generation:
p3: process(pixel_clk)
begin

if(pixel_clk'event and pixel_clk='1') then
Hcount<=Hcount + 1;
if(Hcount=h1) then

Hsync<='1';
elsif(Hcount=h2) then

Hactive<='1';
elsif(Hcount=h3) then

Hactive<='0';
elsif(Hcount=h4) then

Hsync<='0';
Hcount<=1;

end if;
end if;

end process;

--Vsync signal generation:
p4: process(Hsync)
begin

if(Hsync'event and Hsync='0') then
Vcount<=Vcount + 1;
if(Vcount=v1) then

Vsync<='1';
elsif(Vcount=v2) then

Vactive<='1';
elsif(Vcount=v3) then

Vactive<='0';
elsif(Vcount=v4) then

Vsync<='0';
Vcount<=1;

end if;
end if;

end process;
-- Image generator

image_gen: process(pixel_clk)
begin

if(dena='1') then
if(Hcount>=h2+290 and Hcount<=h2+290+60
and Vcount>=v2+60 and Vcount<=v2+60+360)

then
r<='1'; g<='0'; b<='0';

else
r<='0'; g<='0'; b<='0';

end if;
end if;

end process; end logic_flow;

PR 6.7 Program 6.7

Combining all the program units, we get the overall program as in PR 6.7.

6.5 VHDL Implementation Examples

252

6.5.2 Generation and Display of Square Shape

In this section, we will write a VHDL program for the generation and display of a
square shape using VGA format.

Example 6.3 Write a VHDL program to display a square of size 100 × 100 pixel
on the center of the monitor screen. The color of the square is red. Resolution of the
monitor connected to FPGA board via a VGA cable is 640 × 480. The colors of
pixels are determined using 12 bits in which 4 bits are used for red color, the other
4 bits are used for green, and lastly the last 4 bits are used for blue. The clock fre-
quency of the FPGA device is 100 MHz.

Solution 6.3 We will write the VHDL program using components. The compo-
nents to be used in VHDL program are depicted in Fig. 6.17.

Clock

Generator

VGA

Square

VGA Signal

Generation

clk_25MHz
clk_100MHz

vsync

hsync

hpos

vpos

blank

vga_green
vga_red

vga_blue

u1 u2

u3

vga_exp1

Fig. 6.17 Components of VHDL program

As it is seen from Fig. 6.17, we have three components to be implemented. One is
used for the generation of pixel clock which is 25 MHz for 640 × 480 resolution.
The second component is used to generate the control signals such as “vsync”,
“hsync”, and counter parameters “vpos”, “hpos”, and blank control signal. The
image generation is performed by the third component called “VGA square” in
Fig. 6.17.

6 Video Graphic Array (VGA) and HDMI Interfacing

253

The entity part of the VHDL program is written in PR 6.8 where control and color
signals are defined.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity vga_exp1 is
port(clk_100MHz: in std_logic;

hsync,vsync: out std_logic;

vgaRed,vgaGreen,vgaBlue : out std_logic_vector(3 downto 0));

end vga_exp1;

PR 6.8 Program 6.8

architecture logic_flow of vga_exp1 is

signal clk_25MHz: std_logic;
signal blank: std_logic:= '0';
signal hpos, vpos: positive range 1 to 1024;

PR 6.9 Program 6.9

Signal objects for 25 MHz pixel clock and counter parameters are defined in the
declarative part of the architecture in PR 6.9.

We need to add three components to the declarative part of the architecture. The
component for pixel clock generator can be written as in PR 6.10.

component clock_generator is
port (clk_100MHz: in std_logic;

clk_25MHz: out std_logic);

end component;

PR 6.10 Program 6.10

6.5 VHDL Implementation Examples

254

And finally, the component for the generation of the required image is written as in
PR 6.12.

begin
u1: clock_generator port map(

clk_100MHz => clk_100MHz,
clk_25MHz => clk_25MHz);

u2: vga_signal_gen port map(
clk => clk_25MHz,
blank => blank,
hsync => hsync,
vsync => vsync,
hpos => hpos,
vpos => vpos);

u3: vga_square port map(
clk => clk_25MHz,
blank_in => blank,
hpos => hpos,
vpos => vpos,
vga_red => vgaRed,
vga_green => vgaGreen,
vga_blue => vgaBlue);

end logic_flow;

PR 6.13 Program 6.13

component vga_square is
port (clk: in std_logic;

blank_in: in std_logic;
hpos, vpos: in positive range 1 to 1024;
vga_red, vga_green, vga_blue: out std_logic_vector(3 downto 0);
vga_blank: out std_logic);

end component;

PR 6.12 Program 6.12

The components are instantiated in the body of the architecture using the port map
function as in PR 6.13.

The component for the generation of the control signals can be written as in PR
6.11.

component vga_signal_gen is
port (clk: in std_logic;

blank: out std_logic;

hsync,vsync: out std_logic;

hpos,vpos: out positive range 1 to 1024);

end component;

PR 6.11 Program 6.11

6 Video Graphic Array (VGA) and HDMI Interfacing

255

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity vga_exp1 is
port(clk_100MHz: in std_logic;

hsync, vsync: out std_logic;
vgaRed, vgaGreen, vgaBlue: out

std_logic_vector(3 downto 0));
end vga_exp1;

architecture logic_flow of vga_exp1 is

signal clk_25MHz: std_logic;
signal blank: std_logic:= '0';
signal hpos, vpos: positive range 1 to 1024;
component clock_generator is
port(clk_100MHz: in std_logic;

clk_25MHz: out std_logic);
end component;
component vga_signal_gen is
port(clk: in std_logic;

blank: out std_logic;
hsync, vsync: out std_logic;
hpos,vpos: out positive range 1 to 1024);

end component;
component vga_square is
port(clk: in std_logic;

blank_in: in std_logic;
hpos, vpos: in positive range 1 to 1024;
vga_red, vga_green, vga_blue: out

std_logic_vector(3 downto 0);

vga_blank: out std_logic);
end component;

begin
u1: clock_generator port map(

clk_100MHz => clk_100MHz,
clk_25MHz => clk_25MHz);

u2: vga_signal_gen port map(
clk => clk_25MHz,
blank => blank,
hsync => hsync,
vsync => vsync,
hpos => hpos,
vpos => vpos);

u3: vga_square port map(
clk => clk_25MHz,
blank_in => blank,
hpos => hpos,
vpos => vpos,
vga_red => vgaRed,
vga_green => vgaGreen,
vga_blue => vgaBlue);

end logic_flow;

PR 6.14 Program 6.14

Combining all the program parts, we obtain the main VHDL program as in PR 6.14.

After writing the main program as in PR 6.14, we can start writing the VHDL pro-
grams for the components used in the main program. The VHDL program for the
component “clock_generator” can be written as in PR 6.15.

6.5 VHDL Implementation Examples

256

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity clock_generator is
port(clk_100MHz: in std_logic;

clk_25MHz: out std_logic);

end clock_generator;

architecture logic_flow of clock_generator is
signal count: integer range 0 to 3:=0;

signal signal_25MHz: std_logic:='0';

begin
clk_25MHz<=signal_25MHz;

clk25MHz: process(clk_100MHz)

begin
if(rising_edge(clk_100MHz)) then
if(count=3) then
signal_25MHz<=not signal_25MHz;

count<=0;

else
count<=count + 1;

end if;
end if;

end process;

end logic_flow;

PR 6.15 Program 6.15

Next, we explain how to write the VHDL program for the component “vga_sig-
nal_gen” which is used to generate the control signals, such as horizontal synchro-
nization and vertical synchronization.

In PR 6.16, the entity part is written and in the declarative part of the architecture
signal objects “x” and “y”, to be used for counter indices during the generation of
synchronization signals, are defined. Similarly, signal objects “act_pxl_hrzntl” and
“act_pxl_vrtc” are defined for counter indices for the generation of active part of the
synchronization signals.

6 Video Graphic Array (VGA) and HDMI Interfacing

257

The generations of the horizontal synchronization and horizontal active signals are
implemented in PR 6.17, PR 6.18, PR 6.19, PR 6.20 and explained in a stepwise
manner for monitor resolution 640 × 480.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity vga_signal_gen is
port(clk: in std_logic;

blank: out std_logic;

hsync, vsync: out std_logic;

hpos, vpos: out positive range 1 to 1024);

end vga_signal_gen;

architecture logic_flow of vga_signal_gen is
signal x, y: integer range 0 to 1023:=0;

signal act_pxl_hrzntl, act_pxl_vrtcl: positive range 1 to 1024:=1;

signal hsync_sig: std_logic:='0';

signal Hactive,Vactive: std_logic:='0';

begin

PR 6.16 Program 6.16

Horizontal
sync

Sync

96
0 95

horizontal_sync: process(clk)
begin
if(rising_edge(clk)) then
x<=x + 1;
if (x<96) then
hsync_sig<='0'; Hactive<='0';

PR 6.17 Program 6.17

Horizontal

sync

Sync

Back

Porch

96 48
0 95 143

horizontal_sync: process(clk)

begin
if(rising_edge(clk)) then

x <=x + 1;

if(x<96) then
hsync_sig<='0'; Hactive<='0';

elsif (x>=96 and x<144) then
hsync_sig<='1'; Hactive<='0';

PR 6.18 Program 6.18

6.5 VHDL Implementation Examples

258

Horizontal

sync

Sync

Back

Porch

96 48 640

One line of pixels

0 95 143 783

horizontal_sync: process(clk)

begin
if(rising_edge(clk)) then

x<=x + 1;

if(x<96) then
hsync_sig<='0'; Hactive<='0';

elsif (x>=96 and x<144) then
hsync_sig<='1'; Hactive<='0';

elsif (x>=144 and x<784) then
hsync_sig<='1'; Hactive<= '1';

PR 6.19 Program 6.19

Horizontal

sync

Sync

Back

Porch

96 48 640

One line of pixels

16

Front

Porch

0 95 143 783 799

Horizontal

Active

Sync

Back

Porch

96 48 640

One line of pixels

16

Front

Porch

0 95 143 783 799

horizontal_sync: process(clk)

begin
if(rising_edge(clk)) then

x<= x + 1;

if(x<96) then
hsync_sig<='0'; Hactive<='0';

elsif(x>=96 and x<144) then
hsync_sig<='1'; Hactive<='0';

elsif(x>=144 and x<784) then
hsync_sig<='1'; Hactive<='1';

act_pxl_hrzntl<=act_pxl_hrzntl + 1;

elsif(x>=784 and x<800) then
hsync_sig<='1'; Hactive<='0';

else
hsync_sig<='0';

x<=0;

act_pxl_hrzntl<=1;

end if;
end if;
end process;

PR 6.20 Program 6.20

Vertical

sync

Sync

2

0 1

vertical_sync: process(hsync_sig)

begin
if(rising_edge(hsync_sig)) then

y<=y + 1;

if(y<2) then
Vsync<= '0'; Vactive<='0';

PR 6.21 Program 6.21

Generation of vertical synchronization signal can be done in a similar manner. It is
important to state that vertical synchronization signals are generated at every rising
edge of the horizontal synchronization signal. The generation of vertical synchroni-
zation signal is done and explained in a stepwise manner in program parts from PR
6.21, PR 6.22, PR 6.23 and PR 6.24.

6 Video Graphic Array (VGA) and HDMI Interfacing

259

Vertical

sync

Sync

Back

Porch

2 33
0 1 34

vertical_sync: process(hsync_sig)

begin
if(rising_edge(hsync_sig)) then

y<=y + 1;

if (y<2) then
Vsync<='0';Vactive<='0';

elsif (y>=2 and y<35) then
Vsync<='1';Vactive<='0';

PR 6.22 Program 6.22

Vertical

sync

Sync

Back

Porch

2 33 480

One frame of

pixels

0 1 34 514

vertical_sync: process(hsync_sig)

begin
if(rising_edge(hsync_sig)) then

y<=y + 1;

if(y<2) then
Vsync<='0'; Vactive<='0';

elsif(y>=2 and y<35) then
Vsync<='1'; Vactive<='0';

elsif(y>=35 and y<515) then
Vsync<='1';Vactive<='1';

PR 6.23 Program 6.23

Vertical
sync

Sync
Back
Porch

2 33

One frame of
pixels

10

Front
Porch

0 1 34 514 524
480

Vertical
Active

Sync
Back
Porch

2 33

One frame of
pixels

10

Front
Porch

0 1 34 514 524
480

vertical_sync: process (hsync_sig)
begin

if(rising_edge(hsync_sig)) then
y<=y + 1;
if (y<2) then

Vsync<='0'; Vactive<='0';
elsif (y>=2 and y<35) then

Vsync<='1'; Vactive<='0';
elsif (y>=35 and y<515) then

Vsync<='1'; Vactive<='1';
act_pxl_vrtcl<= act_pxl_vrtcl + 1;

elsif (y>=515 and y<525) then
Vsync<='1'; Vactive<='0';

else
Vsync<='0';
y<=0;
act_pxl_vrtcl<=1;

end if;
end if;
end process; end logic_flow;;

PR 6.24 Program 6.24

6.5 VHDL Implementation Examples

260

Combining all the program parts, we get the overall VHDL program as in PR 6.25
for the component used for the generation of the control signals.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity vga_signal_gen is
port(clk: in std_logic;

blank: out std_logic;

hsync,vsync: out std_logic;

hpos,vpos: out positive range 1 to 1024);

end vga_signal_gen;

architecture logic_flow of vga_signal_gen is
signal x, y: integer range 0 to 1023:=0;

signal act_pxl_hrzntl,act_pxl_vrtcl: positive
range 1 to 1024:=1;

signal hsync_sig: std_logic:='0';

signal Hactive, Vactive: std_logic:='0';

begin
hpos<=act_pxl_hrzntl;

vpos<=act_pxl_vrtcl;

Hsync<=hsync_sig;

blank<=not(Hactive and Vactive);

--Generation of Horizontal signals
horizontal_sync: process (clk)

begin
if(rising_edge(clk)) then
x<=x + 1;

if(x<96) then
hsync_sig<='0'; Hactive<='0';

elsif (x>=96 and x<144) then
hsync_sig<='1'; Hactive<='0';

elsif (x>=144 and x<784) then
hsync_sig<='1'; Hactive<='1';

act_pxl_hrzntl<=act_pxl_hrzntl + 1;

elsif(x>=784 and x<800) then
hsync_sig<='1'; Hactive<='0';

else
hsync_sig<='0';

x<=0;

act_pxl_hrzntl<=1;

end if;
end if;

end process;

--Generation of Vertical signals
vertical_sync: process (hsync_sig)

begin
if(rising_edge(hsync_sig)) then
y<=y + 1;

if(y<4) then
Vsync<='0'; Vactive<='0';

elsif (y>=4 and y<27) then
Vsync<='1'; Vactive<='0';

elsif (y>=27 and y<627) then
Vsync<='1'; Vactive<='1';

act_pxl_vrtcl<=act_pxl_vrtcl + 1;

elsif (y>=627 and y<628) then
Vsync<='1'; Vactive<='0';

else
Vsync<='0';

y<=0;

act_pxl_vrtcl<=1;

end if;
end if;

end process;

end logic_flow;

PR 6.25 Program 6.25

Now we will write the VHDL program for the image generation component “vga_
square” which is used to form a square on the center of the monitor. The entity part
of the VHDL program is written in PR 6.26.

6 Video Graphic Array (VGA) and HDMI Interfacing

261

In PR 6.27, counter indices, and size parameter for the square shape to be drawn are
defined in the declarative part of the architecture unit. Size parameter for the square
shape is initialized to half of the real size. This is due to square drawing logic to be
employed in the VHDL code.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity vga_square is
port(clk: in std_logic;

blank_in: in std_logic;

hpos, vpos: in positive range 1 to 1024;

vga_red, vga_green, vga_blue: out std_logic_vector(3 downto 0));

end vga_square;

PR 6.26 Program 6.26

architecture logic_flow of vga_square is

signal size: positive range 1 to 1024:=100;

signal obj_X_pos: positive range 1 to 1024:=320;

signal obj_Y_pos: positive range 1 to 1024:=240;

begin

PR 6.27 Program 6.27

In the body of the architecture unit, we need a process to draw the square shape. The
template for this process is depicted in PR 6.28.

architecture logic_flow of vga_square is
begin
square_draw: process(clk)

begin
if(rising_edge(clk)) then
if(blank_in='0') then

--

--Draw your shape here
--

end if;
end if;

end process;
end logic_flow;

PR 6.28 Program 6.28

6.5 VHDL Implementation Examples

262

Considering the coordinates of the corners of the square shape, the coordinates of
the pixels in the square region can be determined using an if statement with four
different conditions as in PR 6.29. The four regions shown in PR 6.29 can be indi-
cated by four different Boolean conditions of PR 6.29. Intersection of the Boolean
conditions define the square region.

1,41,3

2,42,3

1,3 1,4

2,42,3

sizesize

size

size

size size

size

size

if(0<=hpos+size-obj_X_pos) and -- border definition for region-1

(obj_X_pos+size-hpos>= 0) and -- border definition for region-2

(0<=vpos+size-obj_Y_pos) and -- border definition for r egion-3

(obj_Y_pos+size- vpos>= 0) then -- border definition for r egion-4

else

end if;

PR 6.29 Program 6.29

Using the coordinates of pixels inside the square shape, we can color square shape
as in PR 6.30.

square_draw: process(clk)

begin
if(rising_edge(clk)) then
if(blank_in='0') then
if((0<=hpos + size - obj_X_pos) and

(obj_X_pos + size-hpos>= 0) and
(0<=vpos + size-obj_Y_pos) and
(obj_Y_pos + size- vpos>= 0)) then
vga_red<=x"f";

vga_green<=x"0";

vga_blue<=x"0";

else
vga_red<=x"f";

vga_green<=x"f";

vga_blue<=x"f";

end if;
end if;

end if;
end process;

PR 6.30 Program 6.30

6 Video Graphic Array (VGA) and HDMI Interfacing

263

Combining all program units, we obtain the VHDL program for the component
“vga_square” as in PR 6.31.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity vga_square is
port(clk: in std_logic;

blank_in: in std_logic;

hpos, vpos: in positive range 1 to 1024;

vga_red, vga_green, vga_blue: out
std_logic_vector(3 downto 0));

end vga_square;

architecture logic_flow of vga_square is

signal size: positive range 1 to 1024:=100;

signal obj_X_pos: positive range 1 to 1024:=320;

signal obj_Y_pos: positive range 1 to 1024:=240;

begin
square_draw :process(clk)

begin

if(rising_edge(clk)) then
if(blank_in='0') then

if((0<= hpos + size - obj_X_pos) and
(obj_X_pos + size-hpos>= 0) and
(0<= vpos + size-obj_Y_pos) and
(obj_Y_pos + size- vpos>= 0)) then

vga_red<= x"f";

vga_green<=x"0";

vga_blue<=x"0";

else
vga_red<=x"f";

vga_green<=x"f"; vga_blue<=x"f";

end if;
else
vga_red<=x"0"; vga_green<=x"0";

vga_blue<=x"0";

end if;
end if;

end process;

end logic_flow;

PR 6.31 Program 6.31

In Fig. 6.18, a typical square shape drawn for VGA resolution 640 × 480 by the
VHDL program in PR 6.31 is depicted.

6.5.3 Generation and Display of Moving Square

In this section, we will explain how to develop a VHDL program to move a geomet-
ric shape on the monitor screen. We will explain the subject with an example.

Example 6.4 Write a VHDL program which displays a square with sides of 8 pix-
els long at the center of the monitor. This square shape can move in four directions,

Fig. 6.18 A square at the center of the screen

6.5 VHDL Implementation Examples

264

up, down, left, and right, controlled by four buttons. Pressing a button generates
logic “1”. Resolution of the monitor connected to FPGA board via a VGA cable is
640 × 480. Use 12 bits to color a pixel, and 4 of these bits are used for red color, the
other 4 are used for green, and the last 4 bits are used for blue.

Solution 6.4 This example can be considered an improved version of the previous
example. Our design consists of three components as shown in Fig. 6.19. The only
difference from the previous example appears in the design of third component, i.e.,
u3. The component u3 has 4four input bits for the direction of motion, and it has
three output bits.

Clock

Generator

VGA

Object

Motion

VGA Signal

Generation

clk_25MHz
clk_100MHz

vsync

hsync
hpos

vpos

blank

vga_green
vga_red

vga_blue

u1 u2

u3

btn_up
btn_down
btn_left
btn_right

Fig. 6.19 Components of VHDL program for Example 6.4

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity vga_exp2 is
port(clk_100MHz: in std_logic;

hsync, vsync: out std_logic;

btn_left, btn_right: in std_logic;

btn_up, btn_down: in std_logic;

vgaRed, vgaGreen, vgaBlue: out std_logic_vector(3 downto 0));

end vga_exp2;

PR 6.32 Program 6.32

The entity part of the VHDL program can be written as in PR 6.32 where different
from the previous example input ports for directions of motions are defined.

6 Video Graphic Array (VGA) and HDMI Interfacing

265

The signal objects defined in the declarative part of the architecture unit are the
same as in the previous example, and they are given in PR 6.33.

component vga_obj_motion is
port(clk: in std_logic;

blank_in, vsync_in: in std_logic;
btn_left, btn_right: in std_logic;
btn_up, btn_down: in std_logic;
hpos, vpos: in positive range 1 to 1024;
vga_red, vga_green, vga_blue: out std_logic_vector(3 downto 0);
vga_blank: out std_logic);

end component;

PR 6.35 Program 6.35

component clock_generator is
port(clk_100MHz: in std_logic;

clk_25MHz: out std_logic);

end component;

component vga_signal_gen is
port(clk: in std_logic;

blank: out std_logic;

hsync, vsync: out std_logic;

hpos, vpos: out positive range 1 to 1024);

end component;

PR 6.34 Program 6.34

Two components “u1” and “u2”, written for the generations of pixel clock and con-
trol signals, used in the declarative part of the architecture unit of the main program
are the same as in the previous example, and they are given in PR 6.34.

The third component, different from the previous example, to be used in the declara-
tive part of the architecture unit of the main program, is given in PR 6.35. The third
component is used for image generation and object moving.

architecture logic_flow of vga_exp2 is

signal clk_25MHz: std_logic;

signal blank, vsync_signal: std_logic:= '0';

signal hpos, vpos: positive range 1 to 1024;

PR 6.33 Program 6.33

6.5 VHDL Implementation Examples

266

Using all the component units, we can write the main program as in PR 6.36.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity vga_exp2 is
port(clk_100MHz: in std_logic;

hsync,vsync: out std_logic;

btn_left, btn_right: in std_logic;

btn_up, btn_down: in std_logic;

vgaRed,vgaGreen,vgaBlue: out
std_logic_vector(3 downto 0));

end vga_exp2;

architecture logic_flow of vga_exp2 is

signal clk_25MHz: std_logic;

signal blank, vsync_signal: std_logic:= '0';

signal hpos, vpos: positive range 1 to 1024;

component clock_generator is
port(clk_100MHz: in std_logic;

clk_25MHz: out std_logic);

end component;

component vga_signal_gen is
port(clk: in std_logic;

blank: out std_logic;

hsync, vsync: out std_logic;

hpos, vpos: out positive range 1 to 1024);

end component;

component vga_obj_motion is
port(clk: in std_logic;

blank_in, vsync_in: in std_logic;

btn_left, btn_right: in std_logic;

btn_up, btn_down: in std_logic;

hpos, vpos: in positive range 1 to 1024;

vga_red, vga_green, vga_blue: out
std_logic_vector(3 downto 0);

vga_blank: out std_logic);

end component;

begin
u1: clock_generator port map(

clk_100MHz => clk_100MHz,

clk_25MHz => clk_25MHz);

u2: vga_signal_gen port map(

clk => clk_25MHz,

blank => blank,

hsync => hsync,

vsync => vsync_signal,

hpos => hpos,

vpos => vpos);

u3: vga_obj_motion port map(

clk => clk_25MHz,

blank_in => blank,

vsync_in => vsync_signal,

hpos => hpos,

vpos => vpos,

btn_left => btn_left,

btn_right => btn_right,

btn_up => btn_up,

btn_down=> btn_down,

vga_red => vgaRed,

vga_green => vgaGreen,

vga_blue => vgaBlue);

vsync<=vsync_signal;

end logic_flow;

PR 6.36 Program 6.36

After writing the main program as in PR 6.36, we can start writing the VHDL pro-
grams for the components used in the main program.

6 Video Graphic Array (VGA) and HDMI Interfacing

267

We need two processes in the architecture body. One of the processes, named as
“obj_create”, is used to draw the square shape and it is given in PR 6.38.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity vga_obj_motion is
port(clk: in std_logic;

blank_in, vsync_in: in std_logic;

hpos, vpos: in positive range 1 to 1024;

btn_left, btn_up, btn_right, btn_down: in std_logic;

vga_red, vga_green, vga_blue: out std_logic_vector(3 downto 0));

end vga_obj_motion;

architecture logic_flow of vga_obj_motion is

 signal Size: positive range 1 to 1024:=8;

 signal obj_X_pos: positive range 1 to 1024:=320;

 signal obj_Y_pos: positive range 1 to 1024:=240;

 signal obj_X_motion: integer range -8 to 8:=0;

 signal obj_Y_motion: integer range -8 to 8:=0;

PR 6.37 Program 6.37

begin
obj_create:process(clk)

begin
if(rising_edge(clk)) then
if(blank_in='0') then
if((0<= hpos + Size - obj_X_pos) and

(obj_X_pos + Size-hpos>= 0) and
(0<= vpos + Size-obj_Y_pos) and
(obj_Y_pos + Size- vpos>= 0)) then
vga_red<=x"f";

vga_green<=x"0";

vga_blue<=x"0";

else

vga_red<=x"f";

vga_green<=x"f";

vga_blue<=x"f";

end if;
else

vga_red<=x"0";

vga_green<=x"0";

vga_blue<=x"0";

end if;
end if;

end process;

PR 6.38 Program 6.38

Now, we will write the VHDL program for the third component “vga_obj_
motion”. The entity part and signal definitions in the declarative part of the architec-
ture are given in PR 6.37. Signal objects are to be used for the coordinates of the
square shape and for displacement.

6.5 VHDL Implementation Examples

268

The second process, named as “obj_move”, is used for the displacement of the
square shape. The implementation of the second process is given in PR 6.39.

-------- y axis motion --------

if (btn_down='1' and btn_up='1') then
obj_Y_motion<=0;

elsif (btn_up='0' and btn_down='1') then
obj_Y_motion<=8;

elsif (btn_down='0' and btn_up='1') then
obj_Y_motion<=-8;

elsif (btn_down='0' and btn_up='0') then
obj_Y_motion<=0;

end if;
-------- x axis motion --------

if (btn_left='1' and btn_right='1') then
obj_X_motion<=0;

elsif (btn_left='0' and btn_right='1') then
obj_X_motion<=-8;

elsif (btn_right='0' and btn_left='1') then
obj_X_motion<=8;

elsif (btn_left='0' and btn_right='0') then
obj_X_motion<=0;

end if;
obj_Y_pos<=obj_Y_pos + obj_Y_motion;

obj_X_pos<=obj_X_pos + obj_X_motion;

end process;
end logic_flow;

obj_move: process (vsync_in)

begin
if(rising_edge(vsync_in)) then

PR 6.39 Program 6.39

6 Video Graphic Array (VGA) and HDMI Interfacing

269

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity vga_obj_motion is
port(clk: in std_logic;

blank_in, vsync_in: in std_logic;

hpos, vpos: in positive range 1 to 1024;

btn_left, btn_right: in std_logic;

btn_up, btn_down: in std_logic;

vga_red, vga_green, vga_blue: out
std_logic_vector(3 downto 0));

end vga_obj_motion;

architecture logic_flow of vga_obj_motion is

signal size: positive range 1 to 1024:=8;

signal obj_X_pos: positive range 1 to 1024:=320;

signal obj_Y_pos: positive range 1 to 1024:=240;

signal obj_X_motion: integer range -8 to 8:=0;

signal obj_Y_motion: integer range -8 to 8:=0;

begin
obj_create: process(clk)

begin
if(rising_edge(clk)) then

if(blank_in='0') then
if((0<= hpos + size - obj_X_pos) and

(obj_X_pos + size-hpos>=0) and
(0<=vpos + size-obj_Y_pos) and
(obj_Y_pos + size- vpos>=0)) then

vga_red<=x"f";

vga_green<=x"0";

vga_blue<=x"0";

else
vga_red<=x"f";

vga_green<=x"f";

vga_blue<=x"f";

end if;

else
vga_red<=x"0";

vga_green<=x"0";

vga_blue<=x"0";

end if;
end if;

end process;

-------- y axis motion --------

if(btn_down='1' and btn_up='1') then
obj_Y_motion<=0;

elsif(btn_up='0' and btn_down='1') then
obj_Y_motion<=8;

elsif(btn_down='0' and btn_up='1') then
obj_Y_motion<=-8;

elsif(btn_down='0' and btn_up='0') then
obj_Y_motion<=0;

end if;
-------- x axis motion --------

if(btn_left='1' and btn_right='1') then
obj_X_motion<=0;

elsif(btn_left='0' and btn_right='1') then
obj_X_motion<=-8;

elsif(btn_right='0' and btn_left='1')then
obj_X_motion<=8;

elsif(btn_left='0' and btn_right='0') then
obj_X_motion<=0;

end if;
obj_Y_pos<=obj_Y_pos + obj_Y_motion;

obj_X_pos<=obj_X_pos + obj_X_motion;

end if;
end process;

end logic_flow;

obj_move: process (vsync_in)

begin
if(rising_edge(vsync_in)) then

PR 6.40 Program 6.40

Combining all program parts, we get the overall code as in PR 6.40.

6.5 VHDL Implementation Examples

270

6.5.4 Generation and Display of a Filled-Circle and a Ring

In this section, we will show how to draw circles and rings using VHDL. We will
explain the subject through an example.

Example 6.5 Write a VHDL program to draw one filled-circle and one ring shape
with different radii as shown in Fig. 6.20. Use blue color for the circle and ring. The
length of the radius of the filled-circle and inner radius of the ring is 100 pixels in
length, and the length of the outer radius of the ring is 130 pixels in length. The reso-
lution of the display is 800 × 600. The clock frequency of FPGA device is 100 MHz.

Solution 6.5 We will make the VHDL implementation using components. Three
components will be used for the design. The components and their connections are
shown in Fig. 6.21. First component is the clock generation unit. For SVGA,
40 MHz pixel clock is used. For clock generator, IP cores can be used. For the gen-
eration of the pixel clock, programmable IP cores named as digital clock manager
can be used. All the vendors which produce FPGA development platforms offer
digital clock manager structures, and desired clock frequencies can be easily config-
ured using these structures.

First, we will write the main VHDL code, i.e., top module, then write the VHDL
codes for components “SVGA signal generation”, i.e., component u2, and “VGA
Circle”, i.e., component u3. Overall, there are four VHDL programs, one of them is
the main program, and three of them are the component implementations.

Fig. 6.20 Circle and ring displayed on the screen

6 Video Graphic Array (VGA) and HDMI Interfacing

271

In PR 6.41, the entity part of the main program is written, and signal objects used
for pixel clock generation and display control operations are defined in the declara-
tive part of the architecture unit.

Clock

Generator

VGA

Circle

SVGA

Signal

Generation

clk_40MHz
clk_100MHz

vsync

hsync

hpos

vpos

blank

vga_green
vga_red

vga_blue

u1 u2

u3

vga_exp3

Fig. 6.21 Components of VHDL program for Example 6.5

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity vga_exp3 is
port(clk_100MHz: in std_logic;

Hsync, Vsync: out std_logic;

vgaRed, vgaGreen, vgaBlue: out std_logic_vector(3 downto 0));

end vga_exp3;

architecture logic_flow of vga_exp3 is

signal clk_40MHz: std_logic;

signal blank: std_logic:='0';

signal hpos, vpos: positive range 1 to 2048;

PR 6.41 Program 6.41

We need to define three components in the declarative part of the architecture. The
first component used to generate 40 MHz pixel clock frequency is given in PR 6.42.

component clock_generator is
port (clk_100MHz: in std_logic;

clk_40MHz: out std_logic);

end component;

PR 6.42 Program 6.42

6.5 VHDL Implementation Examples

272

begin
u1: clock_generator port map(

clk_100MHz => clk_100MHz,
clk_40MHz => clk_40MHz);

u2: svga_signal_gen port map(
clk => clk_40MHz,
blank => blank,
hsync => Hsync,
vsync => Vsync,
hpos => hpos,
vpos => vpos);

u3: vga_circle port map(
clk => clk_40MHz,
blank_in => blank,
hpos => hpos,
vpos => vpos,
vga_red => vgaRed,
vga_green => vgaGreen,
vga_blue => vgaBlue);

end logic_flow;

PR 6.45 Program 6.45

The second component is given in PR 6.43 where “blank” signal is used to activate
or deactivate the display area. Referring to Table 6.1, maximum range for counter
signals “hpos” and “vpos” is chosen as 2048.

component svga_signal_gen is
port (clk: in std_logic;

blank: out std_logic;

hsync, vsync: out std_logic;

hpos, vpos: out positive range 1 to 2048);

end component;

PR 6.43 Program 6.43

component vga_circle is
port (clk: in std_logic;

blank_in: in std_logic;

hpos, vpos: in positive range 1 to 2048;

vga_red, vga_green, vga_blue: out std_logic_vector(3 downto 0);

vga_blank: out std_logic);

end component;

PR 6.44 Program 6.44

The third component, used for image generation, is written in PR 6.44.

Port definitions are done considering the block diagram given in Fig. 6.20.
Connections between components can be achieved using the port map function as
in PR 6.45.

6 Video Graphic Array (VGA) and HDMI Interfacing

273

Combining all the program parts, we obtain the main VHDL program as in PR 6.46.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity vga_exp3 is
port(clk_100MHz: in std_logic;

Hsync,Vsync: out std_logic;

vgaRed, vgaGreen, vgaBlue: out
std_logic_vector(3 downto 0));

end vga_exp3;

architecture logic_flow of vga_exp3 is

signal clk_40MHz: std_logic;

signal blank: std_logic:='0';

signal hpos, vpos: positive range 1 to 2048;

component clock_generator is
port(clk_100MHz: in std_logic;

clk_40MHz: out std_logic);

end component;

component svga_signal_gen is
port(clk: in std_logic;

blank: out std_logic;

hsync, vsync: out std_logic;

hpos,vpos: out positive range 1 to 2048);

end component;

component vga_circle is
port(clk: in std_logic;

blank_in: in std_logic;

hpos,vpos: in positive range 1 to 2048;

vga_red,vga_green,vga_blue: out
std_logic_vector(3 downto 0);

vga_blank: out std_logic);

end component;

begin
u1: clock_generator port map(

clk_100MHz => clk_100MHz,

clk_40MHz => clk_40MHz);

u2: svga_signal_gen port map(

clk => clk_40MHz,

blank => blank,

hsync => Hsync,

vsync => Vsync,

hpos => hpos,

vpos => vpos);

u3: vga_circle port map(

clk => clk_40MHz,

blank_in => blank,

hpos => hpos,

vpos => vpos,

vga_red => vgaRed,

vga_green => vgaGreen,

vga_blue => vgaBlue);

end logic_flow;

PR 6.46 Program 6.46

After writing the main program as in PR 6.46, we can start writing the VHDL pro-
grams for the components used in the main program.

First, we will write the VHDL program for the component “svga_signal_gen”,
i.e., component u2. The monitor resolution is SVGA 800 × 600. The entity part and
signal declarations in declarative part of the architecture are written as in PR 6.47.
Referring to Table 6.1 the range limits for the counter parameters defined in the
declarative part of the architecture are determined.

6.5 VHDL Implementation Examples

274

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity svga_signal_gen is
port(clk: in std_logic;

blank: out std_logic;
hsync,vsync: out std_logic;
hpos, vpos: out positive range 1 to 2048);

end svga_signal_gen;

architecture logic_flow of svga_signal_gen is
signal x, y: integer range 0 to 2047:=0;
signal act_pxl_hrzntl, act_pxl_vrtcl: positive range 1 to 2048:=1;
signal hsync_sig: std_logic:='0';
signal Hactive, Vactive: std_logic:='0';

begin

PR 6.47 Program 6.47

Horizontal

sync

Sync

128

0 127

horizontal_sync: process(clk)

begin
if(rising_edge(clk)) then

x<=x + 1;

if (x<128) then
hsync_sig<='0'; Hactive<='0';

PR 6.48 Program 6.48

Horizontal

sync

Sync

Back

Porch

128 88
0 127 215

horizontal_sync: process(clk)

begin
if(rising_edge(clk)) then

x<=x + 1;

if(x<128) then
hsync_sig<='0'; Hactive<='0';

elsif(x>=128 and x<216) then
hsync_sig<='1'; Hactive<='0';

PR 6.49 Program 6.49

The VHDL program for generation of the horizontal synchronization signal is writ-
ten in steps in PR 6.48, PR 6.49, PR 6.50, PR 6.51 and explained by small figures
next to program parts.

6 Video Graphic Array (VGA) and HDMI Interfacing

275

Generation of the vertical synchronization signal can be achieved in a similar man-
ner. The sensitivity list of the process used for the generation of vertical synchroni-
zation signal contains horizontal synchronization signal, and at the rising edge of
the horizontal synchronization signal vertical synchronization signal generation is
made.

The VHDL program for generation of the vertical synchronization signal is writ-
ten in steps in PR 6.52, PR 6.53, PR 6.54, PR 6.55 and explained by small figures
next to program parts.

Horizontal

sync

Sync

Back

Porch

128 88 800

One line of pixels

0 127 215 1015

horizontal_sync: process(clk)

begin
if(rising_edge(clk)) then
x<=x + 1;

if (x<128) then
hsync_sig<='0'; Hactive<='0';

elsif (x>=128 and x<216) then
hsync_sig<= '1'; Hactive<='0';

elsif (x>=216 and x<1016) then
hsync_sig<='1'; Hactive<='1';

PR 6.50 Program 6.50

Horizontal
sync

Sync
Back
Porch

128 88 800

One line of pixels

40

Front
Porch

0 127 215 1015 1055

Horizontal
Active

Sync
Back
Porch

128 88 800

One line of pixels

40

Front
Porch

0 127 215 1015 1055

horizontal_sync: process(clk)
begin
if(rising_edge(clk)) then

x<=x + 1;
if(x<128) then
hsync_sig<='0'; Hactive<='0';

elsif(x>=128 and x<216) then
hsync_sig<='1'; Hactive<='0';

elsif(x>=216 and x<1016) then
hsync_sig<='1'; Hactive<='1';
act_pxl_hrzntl<= act_pxl_hrzntl + 1;

elsif(x>=1016 and x<1056) then
hsync_sig<='1'; Hactive<='0';

else
hsync_sig<='0';
x<=0;
act_pxl_hrzntl<=1;

end if;
end if;
end process;

PR 6.51 Program 6.51

Vertical

sync

Sync

4

0 3

vertical_sync: process(hsync_sig)

begin
if(rising_edge(hsync_sig)) then

y<=y + 1;

if(y<4) then
Vsync<='0'; Vactive<='0';

PR 6.52 Program 6.52

6.5 VHDL Implementation Examples

276

Vertical

sync

Sync

Back

Porch

4 23
0 3 26

vertical_sync:process(hsync_sig)

begin
if(rising_edge(hsync_sig)) then

y<=y + 1;

if(y<4) then
Vsync<='0'; Vactive<='0';

elsif (y>=4 and y<27) then
Vsync<='1'; Vactive<='0';

PR 6.53 Program 6.53

Vertical

sync

Sync

Back

Porch

4 23 600

One frame of

pixels

0 3 26 626

vertical_sync: process(hsync_sig)

begin
if(rising_edge(hsync_sig)) then

y<=y + 1;

if(y<4) then
Vsync<='0'; Vactive<='0';

elsif(y>=4 and y<27) then
Vsync<='1'; Vactive<='0';

elsif(y>=27 and y<627) then
Vsync<='1'; Vactive<='1';

PR 6.54 Program 6.54

Vertical

sync

Sync

Back

Porch

4 23

One frame of

pixels

1

Front

Porch

0 3 26 626 627

600

Vertical

Active

Sync

Back

Porch

4 23

One frame of

pixels

1

Front

Porch

0 3 26 626 627

600

vertical_sync: process(hsync_sig)

begin
if(rising_edge(hsync_sig)) then

y<=y + 1;

if(y<4) then
Vsync<='0'; Vactive<='0';

elsif(y>=4 and y<27) then
Vsync<= '1'; Vactive<='0';

elsif(y>=27 and y<627) then
Vsync<='1'; Vactive<='1';

act_pxl_vrtcl<=act_pxl_vrtcl + 1;

elsif(y>=627 and y<628) then
Vsync<='1'; Vactive<='0';

else
Vsync<='0';

y<=0;

act_pxl_vrtcl<=1;

end if;
end if;

end process;

PR 6.55 Program 6.55

6 Video Graphic Array (VGA) and HDMI Interfacing

277

Combining all the program units we get the overall VHDL program for the compo-
nent “svga_signal_gen”, i.e., component u2, as in PR 6.56.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity svga_signal_gen is
port(clk: in std_logic;

blank: out std_logic;
hsync: out std_logic;
vsync: out std_logic;
hpos, vpos: out positive range 1 to 2048);

end svga_signal_gen;

architecture logic_flow of svga_signal_gen is
signal x, y: integer range 0 to 2047:=0;
signal act_pxl_hrzntl, act_pxl_vrtcl: positive

range 1 to 2048:=1;
signal hsync_sig: std_logic:='0';
signal Hactive, Vactive: std_logic:='0';

begin
hpos<=act_pxl_hrzntl;
vpos<=act_pxl_vrtcl;
Hsync<=hsync_sig;
blank<=not(Hactive and Vactive);

horizontal_sync:process(clk)
begin

if(rising_edge(clk)) then
x<= x + 1;
if(x<128) then
hsync_sig<='0'; Hactive<='0';

elsif(x>=128 and x<216) then
hsync_sig<='1'; Hactive<='0';

elsif(x>=216 and x<1016) then
hsync_sig<='1'; Hactive<='1';
act_pxl_hrzntl<=act_pxl_hrzntl + 1;

elsif(x>=1016 and x<1056) then
hsync_sig<='1'; Hactive<='0';

else
hsync_sig<='0';
x<=0;
act_pxl_hrzntl<=1;

end if;
end if;

end process;

vertical_sync: process (hsync_sig)
begin

if(rising_edge(hsync_sig)) then
y<=y + 1;
if(y<4) then

Vsync<= '0'; Vactive<='0';
elsif (y>=4 and y<27) then

Vsync<='1'; Vactive<='0';
elsif (y>=27 and y<627) then

Vsync<='1'; Vactive<='1';
act_pxl_vrtcl<= act_pxl_vrtcl + 1;

elsif (y>=627 and y<628) then
Vsync<='1'; Vactive<='0';

else
Vsync<='0';
y<=0;
act_pxl_vrtcl<=1;

end if;
end if;

end process;
end logic_flow;

PR 6.56 Program 6.56

After completing the VHDL implementation of second component “svga_signal_
gen”, i.e., u2, we can start writing the VHDL implementation of third component
“vga_circle”, i.e., u3, which is used to draw the filled-circle and ring shapes. The
entity part of the VHDL implementation for the component “vga_circle” is written
in PR 6.57.

6.5 VHDL Implementation Examples

278

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity vga_circle is
port(clk: in std_logic;

blank_in: in std_logic;

hpos,vpos: in positive range 1 to 2048;

vga_red,vga_green,vga_blue: out std_logic_vector(3 downto 0));

end vga_circle;

PR 6.57 Program 6.57

In architecture body, we need a process to draw geometric shapes. The template for
this process is given in PR 6.58.

The shapes to be drawn by the process are depicted in Fig. 6.22 where the filled-
circle can be expressed by the mathematical expression

x h y k r−() + −() ≤

2 2 2 (6.1)

where h and k are the center coordinates of the circle and r is the radius of the circle.
The radius of the filled-circle is chosen as 100, i.e., r = 100. Expanding the left side
of (6.1), we obtain the mathematical expression for the filled-circle as

 x y h k xh yk r2 2 2 2 22 2+ + + − − ≤ (6.2)

which can be implemented using the port parameters in PR 6.57 as

 hpos vpos hpos vpos2 2 2 2200 300 2 200 2 300 100 100+ + + − × × − × × ≤ × . (6.3)

architecture logic_flow of vga_circle is
begin

circle_draw: process(clk)

begin
if(rising_edge(clk)) then
if(blank_in='0') then

--

--Draw your shape here
--

end if;
end if;

end process;
end logic_flow;

PR 6.58 Program 6.58

6 Video Graphic Array (VGA) and HDMI Interfacing

279

Ring shape can be drawn using two circles with common center and with different
radii as shown in Fig. 6.22b. In our example, the inner and outer radii of the circles
for ring shape are taken as rinner = 100 and router = 130. The ring area can be mathe-
matically described using

 x y h k xh yk r2 2 2 2 22 2+ + + − − ≤ inner

 x y h k xh yk r2 2 2 2 22 2+ + + − − ≥ outer

which can be implemented using the port parameters in PR 6.27 as

hpos vpos hpos vpos2 2 2 2200 300 2 200 2 300 100 100+ + + − × × − × × ≥ ×
(6.4)

hpos vpos hpos vpos2 2 2 2200 300 2 200 2 300 130 130+ + + − × × − × × ≤ ×

(h,k)

r

h
x

y

k

(a) (b)

(h,k)

r_inner r_outer

Fig. 6.22 Circle and ring shapes

6.5 VHDL Implementation Examples

280

Employing the formula (6.4), we can write the VHDL code to draw the rig shape as
in PR 6.60.

(600,300)

100 130

elsif(hpos*hpos+vpos*vpos+600*600+300*300-

2*600*hpos-2*300*vpos> 100*100) and
(vpos*vpos+hpos*hpos+600*600+300*300-

2*600*hpos-2*300*vpos< 130*130) then

vga_red<=x"0";

vga_green<=x"0";

vga_blue<=x"f";

PR 6.60 Program 6.60

(200,300)
r=100

if(blank_in='0') then

if(hpos*hpos+vpos*vpos+200*200+300*300-

2*200*hpos-2*300*vpos< 100*100) then

vga_red<=x"0";

vga_gree <=x"0";

vga_blue<=x"f";

PR 6.59 Program 6.59

Using (6.2), we can write the VHDL code to draw the filled-circle as in PR 6.59.

6 Video Graphic Array (VGA) and HDMI Interfacing

281

Combining all the program units, we obtain the overall VHDL implementation of
the component “vga_circle”, i.e., u3, as in PR 6.61.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity vga_circle is

port(clk: in std_logic;

blank_in: in std_logic;

hpos, vpos: in positive range 1 to 2048;

vga_red, vga_green, vga_blue: out std_logic_vector(3 downto 0));

end vga_circle;

architecture logic_flow of vga_circle is
begin

process(clk)

begin
if(rising_edge(clk)) then

if(blank_in='0') then
--Circle is created and filled by blue color
if(hpos*hpos+vpos*vpos+200*200+300*300-2*200*hpos-2*300*vpos<=100*100) then
vga_red<=x"0";

vga_green<=x"0";

vga_blue<=x"f";

--Ring is created and filled by blue color
elsif(hpos*hpos+vpos*vpos+600*600+300*300-2*600*hpos-2*300*vpos>=100*100)

and(vpos*vpos+hpos*hpos+600*600+300*300-2*600*hpos-2*300*vpos<=130*130)

then
vga_red<=x"0";

vga_green<=x"0";

vga_blue<=x"f";

else
vga_red<=x"f";

vga_green<=x"f";

vga_blue<=x"f";

end if;
else
vga_red<=x"0";

vga_green<=x"0";

vga_blue<=x"0";

end if;
end if;

end process;

end logic_flow;

PR 6.61 Program 6.61

It is important to state that blanking intervals in terms of pixels should be defined by
parameters in VHDL code. With this approach, VGA synchronization signals can be
generated easily for all types of resolutions.

6.6 High-Definition Multimedia Interfacing (HDMI) and VHDL Implementati…

282

6.5.5 Generation and Display of Radar Screen

In this section, we will write a VHDL program for the generation and display of a
typical radar screen. We will explain the subject through an example.

Example 6.6 Create a radar screen containing seven centered red circles with radii
of 70, 100, 130, 160, 190, 220, and 250 pixels in length. The coordinates of the
centers of the circles are (400, 300). Place a symbolic target, blue in color, on the
radar screen to the coordinates (500, 200). Distance of the target from the center is
10 pixels in length. The background of the radar screen is white in color. Resolution
of the monitor connected to FPGA board via a VGA cable is 800 × 600. In Fig. 6.23,
the graphical illustration of the design is depicted.

Clock
Generator

VGA
Radar
Screen

SVGA
Signal

Generation

clk_40MHz
clk_100MHz

vsync

hsync

hpos

vpos

blank

vga_green
vga_red

vga_blue

u1 u2

u3

vga_exp6

Fig. 6.24 Components of VHDL program for Example 6.6

Solution 6.6 The block diagram of the system to be designed is shown in Fig. 6.24
which is similar to the block diagram of the previous example. The only difference
appears in the implementation of the third component u3. For this reason, we will
only write the VHDL code for the third component u3, the other implementations
for the other components can be used from the previous example.

(400,300)

r1

r7

Fig. 6.23 A typical radar screen

6 Video Graphic Array (VGA) and HDMI Interfacing

283

The entity part for the implementation of third component “vga_radar_screen”, i.e.,
component u3, is written in PR 6.62 where the same port definitions were made as
in the previous example.

(400,300)

r1=70

--First ring r1=70 is drawn
if((vpos*vpos+hpos*hpos+400*400+300*300-

2*400*(hpos)-2*300*vpos >70*70) and
(vpos*vpos+hpos*hpos+400*400+300*300-

2*400*hpos-2*300*vpos <72*72)) then

vga_red<=x"f";

vga_green<=x"0";

vga_blue<=x"0";

PR 6.64 Program 6.64

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity vga_radar_screen is
port(clk: in std_logic;

blank_in: in std_logic;

hpos, vpos: in positive range 1 to 2048;

vga_red, vga_green, vga_blue: out std_logic_vector(3 downto 0));

end vga_radar_screen;

PR 6.62 Program 6.62

The template of the process, which is used to draw the radar screen, is given in PR
6.63.

Radar screen contains seven circles, and the distance between the borders of two
consecutive circles is 30 pixels in length. The VHDL code to draw the innermost
circle is given in PR 6.64. The thickness of the circle border is 2 pixels in length.

architecture logic_flow of vga_radar_screen is
begin

radar_screen: process(clk)

begin
if(rising_edge(clk)) then
if(blank_in='0') then

--

--Draw your shape here
--

end if;
end if;
end process;
end logic_flow;

PR 6.63 Program 6.63

6.6 High-Definition Multimedia Interfacing (HDMI) and VHDL Implementati…

284

The drawing of the second innermost circle is achieved in a similar manner in PR
6.65.

(400,300)

r2=100

r1=70

--First ring r1=70 is drawn
if((vpos*vpos+hpos*hpos+400*400+300*300-

2*400*(hpos)-2*300*vpos >70*70) and
(vpos*vpos+hpos*hpos+400*400+300*300-

2*400*hpos-2*300*vpos <72*72)) then
vga_red<=x"f";

vga_green<=x"0";

vga_blue <=x"0";

--Second ring r2=100 is drawn
elsif((vpos*vpos+hpos*hpos+400*400+300*300-

2*400*hpos-2*300*vpos >100*100) and
(vpos*vpos+hpos*hpos+400*400+300*300-

2*400*hpos-2*300*vpos <102*102)) then
vga_red<=x"f";

vga_green<=x"0";

vga_blue<=x"0";

PR 6.65 Program 6.65

r=10

(t_x,t_y)

--Target is drawn
elsif((vpos*vpos+hpos*hpos+t_x* t_x + t_y* t_y-

2*t_x*hpos-2*t_y*vpos <10*10)) then
vga_red<=x"0";

vga_green<=x"0";

vga_blue<=x"f";

PR 6.66 Program 6.66

The rest of the circles can be drawn on the radar screen in a similar manner. The
drawing of the target symbol can be achieved using the VHDL code in PR 6.66
where the coordinates of the target is expressed using parameters, although numeri-
cal values are used for our example. The parameter “t_x” is the x-ordinate, and
“t_y” is the y-ordinate for the center of the target.

6 Video Graphic Array (VGA) and HDMI Interfacing

285

Combining all the program segments, we get the VHDL implementation for the
third component “vga_radar_screen” as in PR 6.67.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity vga_radar_screen is

port(clk,blank_in: in std_logic;

hpos, vpos: in positive range 1 to 2048;

vga_red, vga_green, vga_blue: out
std_logic_vector(3 downto 0));

end vga_radar_screen;

architecture logic_flow of vga_radar_screen is
signal t_x: positive range 1 to 2048:=500;

signal t_y: positive range 1 to 2048:=200;

begin
process(clk)

begin
if(rising_edge(clk)) then
if(blank_in='0') then
--First ring r1=70 is drawn

if((vpos*vpos+hpos*hpos+400*400+300*300-

2*400*(hpos)-2*300*vpos>70*70) and
(vpos*vpos+hpos*hpos+400*400+300*300-

2*400*hpos-2*300*vpos<72*72)) then
vga_red<=x"f";

vga_green<=x"0";

vga_blue<=x"0";

--Second ring r2=100 is drawn
elsif((vpos*vpos+hpos*hpos+400*400+300*300-

2*400*hpos-2*300*vpos>100*100) and
(vpos*vpos+hpos*hpos+400*400+300*300-

2*400*hpos-2*300*vpos<102*102)) then
vga_red<=x"f";

vga_green<=x"0";

vga_blue<=x"0";

--Third ring r3=130 is drawn
elsif((vpos*vpos+hpos*hpos+400*400+300*300-

2*400*hpos-2*300*vpos>130*130) and
(vpos*vpos+hpos*hpos+400*400+300*300-

2*400* hpos-2*300*vpos<132*132)) then
vga_red<=x"f";

vga_green<=x"0";

vga_blue<=x"0";

--Fourth ring r4=160 is drawn
elsif((vpos*vpos+hpos*hpos+400*400+300*300-

2*400*hpos-2*300*vpos>160*160) and
(vpos*(vpos)+ hpos*hpos+ 400*400+

300*300-

2*400*hpos-2*300*vpos<162*162)) then

vga_red<=x"f";

vga_green<= x"0";

vga_blue <= x"0";

--Fifth ring r5=190 is drawn
elsif((vpos*vpos+hpos*hpos+400*400+300*300-

2*400*hpos-2*300*vpos>190*190) and
(vpos*vpos+hpos*hpos+ 400*400 +300*300-

2*400*hpos -2*300*vpos< 192*192)) then
vga_red<=x"f";

vga_green<=x"0";

vga_blue<=x"0";

--Sixth ring r6=220 is drawn
elsif((vpos*vpos+hpos*hpos+400*400+300

*300-2*400*hpos-2*300*vpos>220*220) and
(vpos*vpos+hpos* hpos+400*400+ 300*300-

2*400*hpos-2*300*vpos< 222*222)) then
vga_red<=x"f";

vga_green<=x"0";

vga_blue<=x"0";

--Last ring r7=250 is drawn
elsif((vpos*vpos+hpos*hpos+400*400+300*

300-2*400*hpos-2*300*vpos>250*250) and
(vpos*vpos+hpos*hpos +400*400+ 300*300-

2*400*hpos-2*300*vpos< 252*252)) then
vga_red<=x"f";

vga_green<=x"0";

vga_blue<=x"0";

--Target is drawn
elsif((vpos*vpos+hpos*hpos+t_x*t_x+t_y*

t_y-2*t_x* hpos-2*t_y*vpos<10*10)) then
vga_red<=x"0";

vga_green<=x"0";

vga_blue<=x"f";

else
vga_red<=x"f";

vga_green<=x"f";

vga_blue<=x"f";

end if;
else

vga_red<=x"0";

vga_green<=x"0";

vga_blue<=x"0";

end if;
end if;
end process;

end logic_flow;

PR 6.67 Program 6.67

6.6 High-Definition Multimedia Interfacing (HDMI) and VHDL Implementati…

286

When the VHDL program in PR 6.67 is run, we get shapes similar to the one shown
in Fig. 6.25.

6.6 High-Definition Multimedia Interfacing (HDMI)
and VHDL Implementation of HDMI

HDMI (High-definition Multimedia Interface) is introduced as an alternative to DVI
and VGA interfaces for data transmission. In HDMI, different from DVI and VGA,
audio data can be transmitted along with the video data

HDMI interface contains three types of communication channels which are dis-
play data channel (DDC), transition minimized differential signaling (TMDS) chan-
nel, and consumer electronics control (CEC) channel. Display data channel employs
I2C bus specification, and it is used to get HDMI sink devices’ properties from the
HDMI source device.

TMDS is the main channel that carries video/audio data. In TMDS, 8-bit infor-
mation data packets are encoded using 8b/10b encoding method as 10-bit packets
which are used to carry digital data. 8b/10b encoding algorithm reduces the effects
of electromagnetic interference. As the cable length increases, the transmitted data
signal faces more degradation. TMDS encoding can be considered as a technique
for data protection.

Three different data packet types are transmitted over TMDS lines, and these
data packet types are video data packets, audio and auxiliary data packets, and con-
trol data packets. In this section, we will only consider the transmission of video
data packets and control data packets over TMDS lines. The third channel type of
HDMI is the consumer electronics control channel. This channel is used to control
up to 15 compatible devices that are connected through HDMI lines to the same
device. The pinout diagram for HDMI connector is depicted in Fig. 6.26.

Fig. 6.25 Output of Example 6.6

6 Video Graphic Array (VGA) and HDMI Interfacing

287

Serializer
Channel 1

1 bit

Control Data

Audio Data

Video Data

Data Source

HDMI Transmitter

Clock Management

Clock
Clock

x10

TMDS (8b/10b) Encoder

8-bit 10-bit

TMDS Communication Channel 1

TMDS Communication Channel 2

TMDS Communication Channel 3

TMDS Clock

1 bit

1 bit

1 bit

Channel 2

Channel 3

Clock Channel

HDMI

Receiver

Fig. 6.27 HDMI transmitter

HDMI Pinout While Looking into Plug

1
TMDS

Data2+

3
TMDS

Data2-

5
TMDS

Data1

Shield

7
TMDS

Data0+

9
TMDS

Data0-

11
TMDS

Clock

Shield

13
CEC

15
SCL

17
DDC /

CEC /

HEC

Ground

19
Hot

Plug

Detect

2
TMDS

Data2

Shield

4
TMDS

Data1+

6
TMDS

Data1-

8
TMDS

Data0

Shield

10
TMDS

Clock+

12
TMDS

Clock-

14
reserved

16
SDA

18
+5V

power,

50 mA

max

Fig. 6.26 HDMI pinout

6.6.1 TDMS Communication Channel

For VHDL implementation of HDMI, we need to know the details of TDMS chan-
nel. In this section, we will explain TMDS channel structure in detail. A TMDS
channel, or communication block, consists of three parts, which are 8b/10b encoder,
serializer, and clock manager, as depicted in Fig. 6.27.

6.6 High-Definition Multimedia Interfacing (HDMI) and VHDL Implementati…

288

6.6.2 8b/10b Encoder

8b/10b encoding is introduced by IBM in 1983, and it is used in digital visual inter-
face (DVI) specification developed by Digital Working Group. Using 8b/10b encod-
ing it is possible to obtain DC balance on the transmission wires. DC balance is
achieved keeping the number of ones and zeros equal. Due to DC balance, the noise
margin is lowered. TMDS encoding algorithm is given in Fig. 6.28.

Count ones in databyte (d_in)

Number_1 >4

OR
[(Ones ==4) and (d_in(0)==0)]

Cout (0) = d_in(0);

Cout (1) = Cout (0) XOR d_in(1);

Cout (2) = Cout (1) XOR d_in(2);

Cout (3) = Cout (2) XOR d_in(3);

Cout (4) = Cout (3) XOR d_in(4);

Cout (5) = Cout (4) XOR d_in(5);

Cout (6) = Cout (5) XOR d_in(6);

Cout (7) = Cout (6) XOR d_in(7);

Cout (8) = 1;

Cout (0) = d_in(0);

Cout (1) = Cout (0) XNOR d_in(1);

Cout (2) = Cout (1) XNOR d_in(2);

Cout (3) = Cout (2) XNOR d_in(3);

Cout (4) = Cout (3) XNOR d_in(4);

Cout (5) = Cout (4) XNOR d_in(5);

Cout (6) = Cout (5) XNOR d_in(6);

Cout (7) = Cout (6) XNOR d_in(7);

Cout (8) = 0;

TRUE FALSE

-Count ones in codeword Cout[7:0]

-Calculate diff=No_of_Ones-No_of_Zeros (of Cout[7:0])

Conrol command == 1

FALSE

TRUE FALSE

TRUE FALSE

disparity==0

OR
Ones ==4

Cout (8) == 0

Cout (8) == 0 Cout (8) == 0

Cout (9) = 1;

Cout (8) = 0;

Cout (7:0) = NOT Cout (7:0);

disparity=disparity-diff;

Cout (9) = 0;

Cout (8) = 1;

Cout (7:0) = Cout (7:0);

disparity=disparity+diff;

Cout (9) = 1;

Cout (8) = 0;

Cout (7:0) = NOT Cout (7:0);

disparity=disparity-diff;

Cout (9) = 1;

Cout (8) = 1;

Cout (7:0) = NOT Cout (7:0);

disparity=disparity-diff+2;

Cout (9) = 0;

Cout (8) = 0;

Cout (7:0) = Cout (7:0);

disparity=disparity+diff-2;

Cout (9) = 0;

Cout (8) = 1;

Cout (7:0) = Cout (7:0);

disparity=disparity+diff;

TRUE

FALSE

TRUE

FALSE

TRUE

FALSE

(disparity>0 AND Ones >4)

OR
(disparity<0 AND Ones <4)

If Control=00, Cout=1101010100

If Control=01, Cout=0010101011

If Control=10, Cout=0101010100

If Control=11, Cout=1010101011

Disparity =0;

TRUE

Fig. 6.28 Flowchart of TMDS encoding

6 Video Graphic Array (VGA) and HDMI Interfacing

289

Let us solve an example to illustrate the TMDS encoding operation.

Example 6.7 At the input of the TMDS encoder, we have the hexadecimal number
din = 0xF2. Calculate 10-bit number at the output of the TMDS encoder for the three
consecutive clock cycles. Use the flowchart given in Fig. 6.28. Starting disparity is
zero.

Solution 6.7 First Clock Cycle

 1. The binary equivalent of din = 0xF2 is “11110010”. There are five ones in din.
Disparity is zero. Cout (0) = din (0) = 0;

 2. Cout (0) = din (0) = 0;
Cout(1) = Cout(0) xnor din(1) = 0 ʘ 1 = 0;
Cout(2) = Cout(1) xnor din(2) = 0 ʘ 0 = 1;
Cout(3) = Cout(2) xnor din(3) = 1 ʘ 0 = 0;
Cout(4) = Cout(3) xnor din(4) = 0 ʘ 1 = 0;
Cout(5) = Cout(4) xnor din(5) = 0 ʘ 1 = 0;
Cout(6) = Cout(5) xnor din(6) = 0 ʘ 1 = 0;
Cout(7) = Cout(6) xnor din(7) = 0 ʘ 1 = 0;
Cout(8) = 0.

 3. Cout(8 : 0) = 0 0000 0100;
The difference between number of ones in Cout and number of zeros in Cout is
calculated as

 Diff = − = −1 7 6.

 4. Disparity is still zero and Cout(8) equals to 0
Cout(9) = 1;
Cout(8) = 0;
Cout(7 : 0) = NOT Cout(7 : 0) = > 1111 1011;
Thus, Cout equals = 10 1111 1011 = x“2FB” and disparity is calculated as

Disparity Disparity diff= − = − −() =0 6 6.

Second Clock Cycle
 1. The binary equivalent of din = 0xF2 is “11110010”. There are five ones in din.

Disparity is 6.
 2. Cout (0) = din (0) = 0;

Cout(1) = Cout(0) xnor din(1) = 0 ʘ 1 = 0;
Cout(2) = Cout(1) xnor din(2) = 0 ʘ 0 = 1;
Cout(3) = Cout(2) xnor din(3) = 1 ʘ 0 = 0;
Cout(4) = Cout(3) xnor din(4) = 0 ʘ 1 = 0;
Cout(5) = Cout(4) xnor din(5) = 0 ʘ 1 = 0;
Cout(6) = Cout(5) xnor din(6) = 0 ʘ 1 = 0;
Cout(7) = Cout(6) xnor din(7) = 0 ʘ 1 = 0;
Cout(8) = 0.

6.6 High-Definition Multimedia Interfacing (HDMI) and VHDL Implementati…

290

 3. Cout(8 : 0) = 0 0000 0100;
The difference between number of ones in Cout and number of zeros in Cout is
calculated as Diff = 1 − 7 = − 6.

 4. Disparity is 6 and number of ones in Cout(7 : 0) is 1.
 5. Cout(8) equals to 0.

Cout(9) = 0;
Cout(8) = 0;
Cout(7 : 0) = Cout(7 : 0) = > 0000 0100;
Hence, Cout equals = 00 0000 0100 = x“004” and disparity is calculated as

 Disparity Disparity diff= + − = − − = −2 6 6 2 2.

Third Clock Cycle

 1. The binary equivalent of din = 0xF2 is “11110010”. There are five ones in din.
Disparity is −2.

 2. Cout (0) = din (0) = 0;
Cout(1) = Cout(0) xnor din(1) = 0 ʘ 1 = 0;
Cout(2) = Cout(1) xnor din(2) = 0 ʘ 0 = 1;
Cout(3) = Cout(2) xnor din(3) = 1 ʘ 0 = 0;
Cout(4) = Cout(3) xnor din(4) = 0 ʘ 1 = 0;
Cout(5) = Cout(4) xnor din(5) = 0 ʘ 1 = 0;
Cout(6) = Cout(5) xnor din(6) = 0 ʘ 1 = 0;
Cout(7) = Cout(6) xnor din(7) = 0 ʘ 1 = 0;
Cout(8) = 0.

 3. Cout(8 : 0) = 0 0000 0100;
The difference between number of ones in Cout and number of zeros in Cout is
calculated as

 Diff = − = −1 7 6.

 4. Disparity is −2 and number of ones in Cout(7 : 0) is 1.
 5. Cout(8) equals to 0;

Cout(9) = 1;
Cout(8) = 0;
Cout(7 : 0) = not Cout(7 : 0) = > 1111 1011;
Hence, Cout equals to 10 1111 1011 = x“2FB”, and the disparity is calculated as

Disparity Disparity diff= − = − − −() =2 6 4.

Thus, outputs of the TMDS encoder are x“2FB”, x“004”, and x“2FB” for three con-
secutive clock cycles. The number of ones and zeros in two consecutive sequences
are equal to each other.

6 Video Graphic Array (VGA) and HDMI Interfacing

291

6.6.3 Implementation of TMDS Encoder in VHDL

In this section, we will explain VHDL implementation of TMDS encoder through
an example.

Example 6.8 Implement the TMDS encoder algorithm illustrated in Fig. 6.28 in
VHDL. The TMDS encoder has the inputs, “din”, i.e., data input, “blank”, “con-
trol_command”, and “clk”. At the output of the TMDS encoder, there is 10-bit wide
word “Cout”.

Solution 6.8 The black-box representation of the TMDS encoder, to be imple-
mented in VHDL, is given in Fig. 6.29 where there are four input and one output
ports.

Considering Fig. 6.29 and the algorithm depicted in Fig. 6.28, we write the entity
part and declarative part of the architecture for VHDL implementation of TMDS
encoder as in PR 6.68.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity TDMS_encoder is
port(clk: in std_logic;

data: in std_logic_vector (7 downto 0);
c: in std_logic_vector (1 downto 0);
blank: in std_logic;
encoded: out std_logic_vector (9 downto 0));

end TDMS_encoder;

architecture logic_flow of TDMS_encoder is
signal ones, ones_count, zeros_count: integer range -8 to 8;
signal disparity, diff: integer range -16 to 16:=0;
signal Cout: std_logic_vector (9 downto 0);

begin

PR 6.68 Program 6.68

C_out (10 bits)TMDS

Encoder

d_in (8bits)

control_command (2bits)

clk

blank

Fig. 6.29 Black-box representation of the TMDS encoder

6.6 High-Definition Multimedia Interfacing (HDMI) and VHDL Implementati…

292

In the body part of the architecture, the algorithm explained in Fig. 6.28 is imple-
mented. The process to count the number of “1”s in the input byte is written in PR
6.69.

Count ones in data-byte (d_in)

process(clk)

variable temp: integer:=0;

begin
if(rising_edge(clk)) then

temp:=0;

for i in 0 to 7 loop
if(data(i)='1') then
temp:=temp + 1;

end if;
end loop;

ones<=temp;

end if;
end process;

PR 6.69 Program 6.69

In PR 6.70, calculation of TMDS encoder output is explained and implemented in
VHDL.

Ones >4

OR
[(Ones ==4) and (d_in(0)==0)]

Cout (0) = d_in(0);

Cout (1) = Cout (0) XNOR d_in(1);

Cout (2) = Cout (1) XNOR d_in(2);

Cout (3) = Cout (2) XNOR d_in(3);

Cout (4) = Cout (3) XNOR d_in(4);

Cout (5) = Cout (4) XNOR d_in(5);

Cout (6) = Cout (5) XNOR d_in(6);

Cout (7) = Cout (6) XNOR d_in(7);

Cout (8) = 0;

Cout (0) = d_in(0);

Cout (1) = Cout (0) XOR d_in(1);

Cout (2) = Cout (1) XOR d_in(2);

Cout (3) = Cout (2) XOR d_in(3);

Cout (4) = Cout (3) XOR d_in(4);

Cout (5) = Cout (4) XOR d_in(5);

Cout (6) = Cout (5) XOR d_in(6);

Cout (7) = Cout (6) XOR d_in(7);

Cout (8) = 1;

TRUE FALSE

Cout(0)<=data(0);

Cout(1)<=data(1) xnor Cout(0) when (ones>4 or (ones=4 and data(0)='0')) else data(1) xor Cout(0);

Cout(2)<=data(2) xnor Cout(1) when (ones>4 or (ones=4 and data(0)='0')) else data(2) xor Cout(1);

Cout(3)<=data(3) xnor Cout(2) when (ones>4 or (ones=4 and data(0)='0')) else data(3) xor Cout(2);

Cout(4)<=data(4) xnor Cout(3) when (ones>4 or (ones=4 and data(0)='0')) else data(4) xor Cout(3);

Cout(5)<=data(5) xnor Cout(4) when (ones>4 or (ones=4 and data(0)='0')) else data(5) xor Cout(4);

Cout(6)<=data(6) xnor Cout(5) when (ones>4 or (ones=4 and data(0)='0')) else data(6) xor Cout(5);

Cout(7)<=data(7) xnor Cout(6) when (ones>4 or (ones=4 and data(0)='0')) else data(7) xor Cout(6);

Cout(8)<='0' when (ones>4 or (ones=4 and data(0)='0')) else '1';

PR 6.70 Program 6.70

6 Video Graphic Array (VGA) and HDMI Interfacing

293

The process unit used to count the difference between number of ones in Count and
number of zeros in Count is explained and written in PR 6.71.

-Count ones in codeword Cout[7:0]

-Calculate diff=No_of_Ones-No_of_Zeros (of Cout[7:0])

process(data,Cout)

variable temp_ones: positive range 1 to 8:=1;

variable temp_zeros: positive range 1 to 8:=1;

begin
temp_ones:=1;

temp_zeros:=1;

for i in 0 to 7 loop
if(Cout(i)='1') then
temp_ones:=temp_ones + 1;

end if;

if(Cout(i)='0') then
temp_zeros:=temp_zeros + 1;

end if;
end loop;

ones_count<=temp_ones;

zeros_count<=temp_zeros;

diff<=ones_count - zeros_count;

end process;

PR 6.71 Program 6.71

6.6 High-Definition Multimedia Interfacing (HDMI) and VHDL Implementati…

294

In PR 6.72, the conditional parts of the TMDS encoding algorithm is implemented
in VHDL.

Conrol command == 1

FALSE

TRUE FALSE

TRUE FALSE

disparity==0

OR
Ones ==4

Cout (8) == 0

Cout (8) == 0 Cout (8) == 0

Cout (9) = 1;

Cout (8) = 0;

Cout (7:0) = NOT Cout (7:0);

disparity=disparity-diff;

Cout (9) = 0;

Cout (8) = 1;

Cout (7:0) = Cout (7:0);

disparity=disparity+diff;

Cout (9) = 1;

Cout (8) = 0;

Cout (7:0) = NOT Cout (7:0);

disparity=disparity-diff;

Cout (9) = 1;

Cout (8) = 1;

Cout (7:0) = NOT Cout (7:0);

disparity=disparity-diff+2;

Cout (9) = 0;

Cout (8) = 0;

Cout (7:0) = Cout (7:0);

disparity=disparity+diff-2;

Cout (9) = 0;

Cout (8) = 1;

Cout (7:0) = Cout (7:0);

disparity=disparity+diff;

TRUE

FALSE

TRUE

FALSE

TRUE

FALSE

(disparity>0 AND Ones >4)

OR
(disparity<0 AND Ones <4)

If Control=00, Cout=1101010100

If Control=01, Cout=0010101011

If Control=10, Cout=0101010100

If Control=11, Cout=1010101011

Disparity =0;

TRUE

process(clk)

begin
if(rising_edge(clk)) then

if(blank='1') then
if(c="00") then
encoded <="1101010100";

elsif(c="01") then
encoded<="0010101011";

elsif(c="10") then
encoded<="0101010100";

else
encoded<="1010101011";

end if;
disparity<= 0;

else
if(disparity = 0 or ones_count=4) then

if(Cout(8)='0') then
encoded<='1' & '0' & not Cout(7 downto 0);

disparity<=disparity-diff;

else
encoded<='0' & '1' & Cout(7 downto 0);

disparity<=disparity+diff;

end if;

else
if((disparity>0 and ones_count>4) or
(disparity<0 and ones_count<4))then
if(Cout(8)='0') then
encoded<= '1' & '0' & not Cout(7 downto 0);

disparity<= disparity-diff;

else
encoded<='1' & '1' & not Cout(7 downto 0);

disparity<=disparity-diff+2;

end if;
else
if(Cout(8)='0') then
encoded<='0' & '0' & Cout(7 downto 0);

disparity<=disparity+diff-2;

else
encoded<='0' & '1' & Cout(7 downto 0);

disparity<=disparity+diff;

end if;
end if;

end if;
end if;

end if;
end process;

PR 6.72 Program 6.72

6 Video Graphic Array (VGA) and HDMI Interfacing

295

Combining all the program units, we get the complete program for the VHDL
implementation of TMDS encoding algorithm as in PR 6.73.

library ieee;

use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity TDMS_encoder is

port(clk: in std_logic;

data: in std_logic_vector (7 downto 0);

c: in std_logic_vector (1 downto 0);

blank: in std_logic;

encoded: out std_logic_vector (9 downto 0));

end TDMS_encoder;

architecture logic_flow of TDMS_encoder is
signal ones: integer range range -8 to 8;

signal ones_count, zeros_count: integer range -8 to 8;

signal disparity, diff: integer range -16 to 16:=0;

signal Cout: std_logic_vector (9 downto 0;

begin
process(clk)

variable temp: integer:=0;

begin
if(rising_edge(clk)) then
temp:=0;

for i in 0 to 7 loop
if(data(i) ='1') then
temp:=temp + 1;

end if; end loop;

ones<=temp;

end if;end process;

Cout(0)<=data(0);

Cout(1)<=data(1) xnor Cout(0) when (ones>4 or
(ones=4 and data(0)='0')) else data(1) xor Cout(0);

Cout(2)<=data(2) xnor Cout(1) when (ones>4 or
(ones=4 and data(0)='0')) else data(2) xor Cout(1);

Cout(3)<=data(3) xnor Cout(2) when (ones>4 or
(ones=4 and data(0)='0')) else data(3) xor Cout(2);

Cout(4)<=data(4) xnor Cout(3) when (ones>4 or
(ones=4 and data(0)='0')) else data(4) xor Cout(3);

Cout(5)<=data(5) xnor Cout(4) when (ones>4 or
(ones=4 and data(0)='0')) else data(5) xor Cout(4);

Cout(6)<=data(6) xnor Cout(5) when (ones>4 or
(ones=4 and data(0)='0')) else data(6) xor Cout(5);

Cout(7)<=data(7) xnor Cout(6) when (ones>4 or
(ones=4 and data(0)='0')) else data(7) xor Cout(6);

Cout(8)<='0' when (ones>4 or (ones=4 and
data(0)='0')) else '1';

process(data, Cout)

variable temp_ones: positive range 1 to 8:=1;

variable temp_zeros: positive range 1 to 8:=1;

begin
temp_ones:=1;

temp_zeros:=1;

for i in 0 to 7 loop
if(Cout(i)='1') then

temp_ones:= temp_ones + 1;

end if;
if(Cout(i) = '0') then
temp_zeros:= temp_zeros + 1;

end if;
end loop;

ones_count<=temp_ones;

zeros_count<=temp_zeros;

diff<=ones_count - zeros_count;

end process;

process(clk)

begin
if(rising_edge(clk)) then

if(blank='1') then
if(c="00") then
encoded<="1101010100";

elsif (c="01") then
encoded<="0010101011";

elsif(c="10") then
encoded<="0101010100";

else
encoded<="1010101011";

end if;
disparity<= 0;

else
if(disparity=0 or ones_count=4) then
if(Cout(8)='0') then
encoded<='1' & '0' & not Cout(7 downto 0);

disparity<=disparity-diff;

else
encoded<='0' & '1' & Cout(7 downto 0);

disparity<=disparity+diff;

end if;
else
if((disparity>0 and ones_count>4) or

(disparity<0 and ones_count<4))then
if(Cout(8)='0') then
encoded<= '1' & '0' & not Cout(7 downto 0);

disparity<=disparity-diff;

else
encoded<= '1' & '1' & not Cout(7 downto 0);

disparity<=disparity-diff+2;

end if;
else
if(Cout(8)='0') then

encoded<= '0' & '0' & Cout(7 downto 0);

disparity<=disparity+diff-2;

else
encoded<='0' & '1' & Cout(7 downto 0);

disparity<=disparity+diff;

end if; end if; end if; end if; end if;
end process; end logic_flow;

PR 6.73 Program 6.73

6.6 High-Definition Multimedia Interfacing (HDMI) and VHDL Implementati…

296

6.6.4 Serializer in TMDS Communication Channel and Its VHDL
Implementation

TMDS encoder takes 8-bit input data and produces 10-bit encoded data which
appears at the output of the encoder on parallel lines. Using a parallel to serial con-
verter, it is possible to serialize the parallel data. Serializer is a parallel to serial
converter. In TDMS communication channel, serializer takes 10-bit parallel data
and converts it to serial.

The clock frequency of the serializer should be ten times larger than the incom-
ing data frequency. To achieve synchronization for serializer, two different strate-
gies can be followed. In the first method, serializer clock frequency can be ×10
larger than the clock frequency of the encoder. In the second method, serializer can
use ×5 larger clock frequency; however, in this case, both rising and falling edges of
the larger clock are utilized for data transition. Both methods achieve serialization
task. In Fig. 6.30, both methods are illustrated.

Case 1 Clock x10

Serializar output

Case 2 Clock x5

Encoded

data (0)

Encoded

data (1)

Encoded

data (2)

Encoded

data (6)

Encoded

data (7)

Encoded

data (8)

Encoded

data (9)

Fig. 6.30 Serializer clock types

We will consider the VHDL implementation of serializer used in TMDS communi-
cation channel through an example.

Example 6.9 Implement the serializer, which converts 10-bit parallel data to serial,
in VHDL.

Solution 6.9 Data throughput speed of the serializer is ten times faster than input
speed. The VHDL implementation of this serializer is given in PR 6.74.

6 Video Graphic Array (VGA) and HDMI Interfacing

297

library ieee;
use ieee.std_logic_1164.all;
entity serializer_10_to_1 is

 port(clk: in std_logic;

 clk_x10: in std_logic;

 data: in std_logic_vector (9 downto 0);

 serial_out: out std_logic);

end serializer_10_to_1;

architecture logic_flow of serializer_10_to_1 is

 signal new_data: std_logic_vector (9 downto 0);

begin
 process (clk_x10)

 variable count: integer range 0 to 10;

 begin
 if (clk_x10'event and clk_x10='1') then

 count:=count + 1;

 if (count=9) then

 new_data<=data;

 elsif (count=10) then

 count:=0;

 end if;
 serial_out<=new_data(count);

 end if;
 end process;

PR 6.74 Program 6.74

A simple PLL structure inside the FPGA can be used to obtain ×5 or ×10 faster
clock signals to be used in TMDS communication channel.

6.6.5 VHDL Implementation of HDMI

Up to now, we considered parts of HDMI interface. Now, we can consider a com-
plete VHDL program for data transmission via HDMI. It is seen in Fig. 6.27 that
HDMI is used for data transmission, and HDMI gets audio, video, or control data
from data sources separate from the HDMI. For this purpose, we can use our VGA
source codes to generate image and control signals to be used for monitor display
and send them via HDMI.

Let us explain the subject via an example.

Example 6.10 Design an HDMI transmitter in VHDL that is used to display a
square shape of size 100 × 100 pixels in length on the monitor. The color of the
square shape is red, and it should be displayed at the center of the monitor screen.
Resolution of the monitor connected to FPGA board via an HDMI cable is 720P,

Problems

298

i.e., 1280 × 720 pixels. 720P is the smallest of the high-definition resolutions sup-
ported by most of the monitors used today. In 720P, each frame contains 8Mbits.

Solution 6.10 Referring to Table 6.1, pixel configuration and clock management of
the design can be performed. The block diagram of the design to be implemented in
VHDL is depicted in Fig. 6.31.

VGA

Source

HDMI

Transmitter

HDMI Cable

Clock

Generator

Clock

Source

FPGA
u1

u2u3
HDMI

Signals
HDMI

Connector

Fig. 6.31 Components of VHDL program for Example 6.10

In Fig. 6.31, display control and data signals are generated using VGA, and these
signals are transmitted using TMDS communication channels of the HDMI. For the
VHDL implementation of the FPGA side of Fig. 6.31, we will use components to
write our VHDL codes. We will follow a top-down approach. First, we will write the
main code involving component declarations and instantiations, then we will imple-
ment the components in VHDL.

6 Video Graphic Array (VGA) and HDMI Interfacing

299

After writing the main program as in PR 6.75, we can start writing the VHDL pro-
grams for the components used in the main program.

library ieee;

use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity hdmi_display is
port(Clk_100Mhz: in std_logic;

hdmi_tx_rscl: out std_logic;

hdmi_tx_rsda: inout std_logic;

hdmi_tx_hpd: in std_logic;

hdmi_tx_cec: inout std_logic;

hdmi_tx_clk_p: out std_logic;

hdmi_tx_clk_n: out std_logic;

hdmi_tx_p: out std_logic_vector(2 downto 0);

hdmi_tx_n: out std_logic_vector(2 downto 0));

end hdmi_display;

architecture logic_flow of hdmi_display is

signal pixel_clk_x1: std_logic;

signal pixel_clk_x10: std_logic;

signal hpos, vpos: positive range 1 to 2048;

signal vga_hsync: std_logic;

signal vga_vsync: std_logic;

signal vga_red: std_logic_vector(7 downto 0);

signal vga_green: std_logic_vector(7 downto 0);

signal vga_blue: std_logic_vector(7 downto 0);

signal vga_blank: std_logic;

component clock_generator is
port(clk_100MHz: in std_logic;

clk_75MHz: out std_logic;
clk_750MHz: out std_logic);

end component;

component vga_source is

port(pixel_clk: in std_logic;

vga_hsync: out std_logic;

vga_vsync: out std_logic;

vga_red: out std_logic_vector(7 downto 0);

vga_green: out std_logic_vector(7 downto 0);

vga_blue: out std_logic_vector(7 downto 0);

vga_blank: out std_logic);

end component;
component vga_to_hdmi is
port(pixel_clk: in std_logic;

pixel_clk_x10: in std_logic;

vga_hsync: in std_logic;

vga_vsync: in std_logic;

vga_red: in std_logic_vector(7 downto 0);

vga_green: in std_logic_vector(7 downto 0);

vga_blue: in std_logic_vector(7 downto 0);

vga_blank: in std_logic;

hdmi_tx_rscl: out std_logic;

hdmi_tx_rsda: inout std_logic;

hdmi_tx_hpd: in std_logic;

hdmi_tx_cec: inout std_logic;

hdmi_tx_clk_p: out std_logic;

hdmi_tx_clk_n: out std_logic;

hdmi_tx_p: out std_logic_vector(2 downto 0);

hdmi_tx_n: out std_logic_vector(2 downto 0));

end component;
begin

u1: clock_generator port map (

clk_100MHz => Clk_100Mhz,

clk_75MHz => pixel_clk_x1,

clk_750MHz => pixel_clk_x10);

u2: vga_source port map (

pixel_clk => pixel_clk_x1,

vga_hsync => vga_hsync,

vga_vsync => vga_vsync,

vga_red => vga_red,

vga_green => vga_green,

vga_blue => vga_blue,

vga_blank => vga_blank);

u3: vga_to_hdmi port map (

pixel_clk => pixel_clk_x1,

pixel_clk_x10 => pixel_clk_x10,

vga_hsync => vga_hsync,

vga_vsync => vga_vsync,

vga_red => vga_red,

vga_green => vga_green,

vga_blue => vga_blue,

vga_blank => vga_blank,

hdmi_tx_rscl => hdmi_tx_rscl,

hdmi_tx_rsda => hdmi_tx_rsda,

hdmi_tx_hpd => hdmi_tx_hpd,

hdmi_tx_cec => hdmi_tx_cec,

hdmi_tx_clk_p => hdmi_tx_clk_p,

hdmi_tx_clk_n => hdmi_tx_clk_n,

hdmi_tx_p => hdmi_tx_p,

hdmi_tx_n => hdmi_tx_n);

end logic_flow;

PR 6.75 Program 6.75

The main program involving the components “HDMI transmitter”, i.e., u3, “VGA
source”, i.e., u2, and “Clock generator”, i.e., u1, is written in PR 6.75.

Problems

300

The block diagram of the component “vga_source”, i.e., u2, is depicted in Fig. 6.32.

VGA

Square

1280x720

VGA Signal

Generation

clk_75MHz

vga_vsync

vga_hsync

hpos

vpos

blank

vga_green
vga_red

vga_blue

u2_1

u2_2

u2:vga_source

vga_blank

Fig. 6.32 Subcomponents for component u2

The component u2 explained in Fig. 6.32 can be implemented using subcompo-
nents. The implementation of u2 can be achieved using a main program and two
VHDL programs for the subcomponents u2_1 and u2_2. The main program is writ-
ten in PR 6.76.

library ieee;

use ieee.std_logic_1164.all;

entity vga_source is
port(pixel_clk: in std_logic;

vga_hsync: out std_logic;

vga_vsync: out std_logic;

vga_red: out std_logic_vector(7 downto 0);

vga_green: out std_logic_vector(7 downto 0);

vga_blue: out std_logic_vector(7 downto 0);

vga_blank: out std_logic);

end vga_source;

architecture logic_flow of vga_source is
signal blank: std_logic:= '0';

signal hpos, vpos: positive range 1 to 2048;

component vga_gen_720p is
port(clk: in std_logic;

blank: out std_logic;

hsync: out std_logic;

vsync: out std_logic;

hpos, vpos: out positive range 1 to 2048);

end component;

component vga_square is
port(clk: in std_logic;

blank_in: in std_logic;

hpos, vpos: in positive range 1 to 2048;

vga_red: out std_logic_vector(7 downto 0);

vga_green: out std_logic_vector(7 downto 0);

vga_blue: out std_logic_vector(7 downto 0));

end component;
begin

u2_1: vga_gen_720p port map (

clk => pixel_clk,

blank => blank,

hsync => vga_hsync,

vsync => vga_vsync,

hpos => hpos,

vpos => vpos);

vga_blank<= blank;

u2_2: vga_square port map (

clk => pixel_clk,

blank_in => blank,

hpos => hpos,

vpos => vpos,

vga_red => vga_red,

vga_green => vga_green,

vga_blue => vga_blue);

end logic_flow;

PR 6.76 Program 6.76

6 Video Graphic Array (VGA) and HDMI Interfacing

301

Implementation of the sub-component “vga_gen_720”, i.e., u2_1, is made in PR
6.77.

720P resolution contains 1650 × 750 pixels in total when front porch, back porch,
and sync width parameters are considered, and 1280 × 720 of the pixels are used in
active display screen area.

library ieee;

use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity vga_gen_720p is
port(clk: in std_logic;

blank: out std_logic ;

hsync, vsync: out std_logic ;

hpos, vpos: out positive range 1 to 2048);

end vga_gen_720p;

architecture logic_flow of vga_gen_720p is

signal x, y: integer range 0 to 2047:=0;

signal act_pxl_hrzntl,act_pxl_vrtcl: positive range
1 to 2048:=1;

signal hsync_sig: std_logic:='0';

signal Hactive, Vactive: std_logic:='0';

begin
hpos<=act_pxl_hrzntl;

vpos<=act_pxl_vrtcl;

Hsync<=hsync_sig;

blank<=not(Hactive and Vactive);

p1: process (clk)

begin
if(rising_edge(clk)) then

x<=x + 1;

if (x<40) then
hsync_sig<='0'; Hactive<='0';

elsif (x>=40 and x<260) then
hsync_sig<='1'; Hactive<='0';

elsif (x>=260 and x<1540) then

hsync_sig<='1'; Hactive<='1';

act_pxl_hrzntl<=act_pxl_hrzntl + 1;

elsif (x>=1540 and x<1650) then
hsync_sig<='1'; Hactive<='0';

else
hsync_sig<='0';

x<=0;

act_pxl_hrzntl<=1;

end if;
end if;

end process;

p2: process (hsync_sig)

begin
if(rising_edge(hsync_sig)) then
y<=y + 1;

if (y<5) then
Vsync<='0'; Vactive<='0';

elsif (y>=5 and y<25) then
Vsync<='1'; Vactive<='0';

elsif (y>=25 and y<745) then
act_pxl_vrtcl<=act_pxl_vrtcl + 1;

Vsync<='1'; Vactive<='1';

elsif (y>=745 and y<750) then
Vsync<='1'; Vactive<='0';

else
Vsync<='0';

y<=0;

act_pxl_vrtcl<=1;

end if;
end if;

end process;

end logic_flow;

PR 6.77 Program 6.77

6 Video Graphic Array (VGA) and HDMI Interfacing

302

Now, VHDL implementation of the component “vga_to_hdmi”, i.e., u3, will be
made. In Fig. 6.33 detailed view of the component u3 is depicted. It is seen from
Fig. 6.33 that there are two different subcomponents in u3, and these subcompo-
nents are TMDS encoder and serializer.

The subcomponent TMDS encoder is used three times in u3, and the subcompo-
nent serializer is used four times in u3. TMDS encoders are used to encode red,
green, and blue color information. TMDS encoders accept 8-bit color data and pro-
duce 10-bit encoded data.

Serializers are used to convert parallel data at the output of the encoders to serial
data. We will use the serializer explained in Example 6.9. Three of the serializers are
used to encode the color data, and the fourth one is used to send clock signal which
is ×10 faster than pixel clock.

Implementation of the sub-component “vga_square”, i.e., u2_2, is made in PR 6.78.

library ieee;

use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity vga_square is
port(clk: in std_logic;

blank_in: in std_logic;

hpos, vpos: in positive range 1 to 2048;

vga_red: out std_logic_vector(7 downto 0);

vga_green: out std_logic_vector(7 downto 0);

vga_blue: out std_logic_vector(7 downto 0));

end vga_square;

architecture logic_flow of vga_square is

signal size: positive range 1 to 2048:=100;

signal obj_X_pos: positive range 1 to 2048:=640;

signal obj_Y_pos: positive range 1 to 2048:=360;

begin
square_draw: process(clk)

begin

if(rising_edge(clk)) then
if(blank_in='0') then
if(0<=hpos+size-obj_X_pos) and

(obj_X_pos+size-hpos>= 0) and
(0<=vpos+size-obj_Y_pos) and
(obj_Y_pos+size-vpos>= 0) then

vga_red<=x"ff";

vga_green<=x"00";

vga_blue<=x"00";

else
vga_red<=x"ff";

vga_green<=x"ff";

vga_blue<= x"ff";

end if;
else
vga_red<=x"00";

vga_green<=x"00";

vga_blue<=x"00";

end if;
end if;

end process;

end logic_flow;

PR 6.78 Program 6.78

6 Video Graphic Array (VGA) and HDMI Interfacing

303

The VHDL program in PR 6.79 is written for the implementation of the component
“vga_to_hdmi”, i.e., u3.

HDMI uses differential signaling. Transition minimized differential signaling
(TMDS) is used by HDMI. TMDS standard is used for video transmission. To
achieve digital transmission through HDMI, buffer structures offered by FPGA ven-
dors for their FPGA products to convert outputs of serializer into TMDS-based
differential signals should be used. The name of buffer used for the FPGAs pro-
duced by XILINX company is OBUFDS. The use of OBUFDS is shown in PR 6.79.
Besides, the pin format should be set to TMDS when pin assignments are made to
test the code on FPGA board.

TMDS Encoder 1

TMDS Encoder 2

TMDS Encoder 3

Serializer 1

Serializer 2

Serializer 3

Encoded_Red_Data

Encoded_Blue_Data

Encoded_Green_Data

10 bits

10 bits

10 bits

Serial_Red_Data
1 bit

Serial_Blue_Data
1 bit

Serial_Green_Data
1 bit

Red_Data (8bits)

Control (“00”)

Blank Signal (1bit)

Blue_Data (8bits)

Control (Hsync,Vsync)

Blank Signal (1bit)

Green_Data (8bits)

Control (“00”)

Blank Signal (1bit)

VGA
Source

u3:HDMI Transmitter

Clock
Generator

Clock 75 MHz

Clock 750 MHz

Serializer 4
1 bit

Serial_Clock

Clock 75 MHz

Clock 75 MHz

Clock 750 MHz

Clock 750 MHz

Clock 750 MHz

u1

u2

Fig. 6.33 Subcomponents for component u3

6 Video Graphic Array (VGA) and HDMI Interfacing

304

312

library ieee;
use ieee.std_logic_1164.all;
library UNISIM;
use UNISIM.Vcomponents.all;
entity vga_to_hdmi is

port(pixel_clk: in std_logic;

pixel_clk_x10: in std_logic;

vga_hsync, vga_vsync: in std_logic;

vga_red: in std_logic_vector(7 downto 0);

vga_green: in std_logic_vector(7 downto 0);

vga_blue: in std_logic_vector(7 downto 0);

vga_blank: in std_logic;

hdmi_tx_rscl: out std_logic;

hdmi_tx_rsda: inout std_logic;

hdmi_tx_hpd: in std_logic;

hdmi_tx_cec: inout std_logic;

hdmi_tx_clk_p: out std_logic;

hdmi_tx_clk_n: out std_logic;

hdmi_tx_p: out std_logic_vector(2 downto 0);

hdmi_tx_n: out std_logic_vector(2 downto 0));

end vga_to_hdmi;

architecture logic_flow of vga_to_hdmi is

component TDMS_encoder is
port(clk: in std_logic;

data: in std_logic_vector (7 downto 0);

c: in std_logic_vector (1 downto 0);

blank: in std_logic;

encoded: out std_logic_vector (9 downto 0));

end component;

component serializer_10_to_1 is
port(clk: in std_logic;

clk_x10: in std_logic;

data: in std_logic_vector (9 downto 0);

serial_out: out std_logic);

end component;

signal serial_clk: std_logic;

signal serial_ch1: std_logic;

signal serial_ch2: std_logic;

signal serial_ch3: std_logic;

signal c1_tmds_in: std_logic_vector(9 downto 0);

signal c2_tmds_in: std_logic_vector(9 downto 0);

signal c3_tmds_in: std_logic_vector(9 downto 0);

begin
hdmi_tx_rsda<='Z';

hdmi_tx_cec<='Z';

hdmi_tx_rscl<='1';

c1_tmds: TDMS_encoder port map(

clk => pixel_clk,

data => vga_blue,

c(1) => vga_vsync,

c(0) => vga_hsync,

blank => vga_blank,

encoded => c1_tmds_in);

c2_tmds: TDMS_encoder port map (

clk => pixel_clk,

data => vga_green,

c => (others => '0'),

blank => vga_blank,

encoded=> c2_tmds_in);

c3_tmds: TDMS_encoder port map (

clk => pixel_clk,

data => vga_red,

c => (others => '0'),

blank => vga_blank,

encoded => c3_tmds_in);

ser_ch1: serializer_10_to_1 port map (

clk => pixel_clk,

clk_x10 => pixel_clk_x10,

data => c1_tmds_in,

serial_out=> serial_ch1);

ser_ch2: serializer_10_to_1 port map (

clk => pixel_clk,

clk_x10 => pixel_clk_x10,

data => c2_tmds_in,

serial_out=> serial_ch2);

ser_ch3: serializer_10_to_1 port map (

clk => pixel_clk,

clk_x10 => pixel_clk_x10,

data => c3_tmds_in,

serial_out=> serial_ch3);

ser_clk: serializer_10_to_1 port map (

clk => pixel_clk,

clk_x10 => pixel_clk_x10,

data => "0000011111",

serial_out => serial_clk);

clk_buf: OBUFDS generic map (IOSTANDARD => "TMDS_33", SLEW => "FAST")

port map (O => hdmi_tx_clk_p, OB => hdmi_tx_clk_n, I => serial_clk);

tx0_buf: OBUFDS generic map (IOSTANDARD => "TMDS_33", SLEW => "FAST")

port map (O => hdmi_tx_p(0), OB => hdmi_tx_n(0), I => serial_ch1);

tx1_buf: OBUFDS generic map (IOSTANDARD => "TMDS_33", SLEW => "FAST")

port map (O => hdmi_tx_p(1), OB => hdmi_tx_n(1), I => serial_ch2);

tx2_buf: OBUFDS generic map (IOSTANDARD => "TMDS_33", SLEW => "FAST")

port map (O => hdmi_tx_p(2), OB => hdmi_tx_n(2), I => serial_ch3);

end logic_flow;

PR 6.79 Program 6.79

6 Video Graphic Array (VGA) and HDMI Interfacing

305

In the previous example, the image to be displayed on the monitor is formed using
VHDL programming. However, it is difficult to generate complex images, such as
the one shown in Fig. 6.34, via VHDL programming. For this reason, in the next
example, we show how to generate image data in VHDL code from an image file.

Example 6.11 Save a grayscale image in block RAMs of the FPGA. Then, show
this image on a screen with an HD720 resolution. Resolution of a pixel is repre-
sented with 8 bits.

Solution 6.11 The MATLAB code given in PR 6.80 converts a jpeg image to a
grayscale image. The converted image consisting of 8-bit pixels is written into a text
file.

clc; clear all; close all;

rgbImage=imread('your_image.jpg');

Gray_Image=rgb2gray(rgbImage);

fid=fopen('myTextFile.txt','wt');

size_gray=size(Gray_Image);

for i=1:size_gray(1)%%length of the rows

for j=1:size_gray(2)%%length of the columns

if(j==1)

fprintf(fid,'(%d,',Gray_Image(i,j));

elseif (j==size_gray(2) && i<size_gray(1))

fprintf(fid,'%d),',Gray_Image(i,j));

elseif (j==size_gray(2)&& i==size_gray(1))

fprintf(fid,'%d)',Gray_Image(i,j));

else

fprintf(fid,'%d,',Gray_Image(i,j));

end

end

if(i==size_gray(1))

fprintf(fid,');');

else

fprintf(fid,'\n');

end

end

fclose(fid);

imshow(Gray_Image);

PR 6.80 Program 6.80

Fig. 6.34 A nice image on monitor screen

6 Video Graphic Array (VGA) and HDMI Interfacing

306

Once you get the text file consisting of the integers, you can copy and paste comma-
separated integers to the read part of the VHDL program shown in PR 6.81.

library ieee;

use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity vga_picture is
port(clk: in std_logic;

blank_in: in std_logic;

hpos, vpos: in positive range 1 to 2048;

vga_red: out std_logic_vector(7 downto 0);

vga_green: out std_logic_vector(7 downto 0);

vga_blue: out std_logic_vector(7 downto 0));

end vga_picture;

architecture logic_flow of vga_picture is

type ram_array is array(0 to 199, 0 to 199) of integer range 0 to 255;

signal gray: ram_array;

begin
gray <=((,……………………,),

content of 'myTextFile.txt'
……..));

picture_show: process(clk)

begin
if(rising_edge(clk)) then

if(blank_in='0') then
if(540<=hpos and hpos<=739) and (260<=vpos and vpos<=459) then
vga_red<=std_logic_vector(to_unsigned(gray(vpos-260,hpos-540),8));

vga_green<=std_logic_vector(to_unsigned (gray(vpos-260,hpos-540),8));

vga_blue<=std_logic_vector(to_unsigned (gray(vpos-260,hpos-540),8));

else
vga_red<=x"ff";

vga_green<=x"ff";

vga_blue<=x"ff";

end if;
else
vga_red<=x"00";

vga_green<=x"00";

vga_blue<=x"00";

end if;
end if;

end process;

end logic_flow;

PR 6.81 Program 6.81

6 Video Graphic Array (VGA) and HDMI Interfacing

307

 Problems

 1. Draw the horizontal synchronization signal of VGA format for resolution
640 × 480 and label the portions of the signal clearly.

 2. Draw the vertical synchronization signal of VGA format for resolution 640 × 480
and label the portions of the signal clearly.

 3. What is the period of pixel clock for 640 × 480 resolution.
 4. What is the period of pixel frequency for 800 × 600 resolution.
 5. Write VHDL, a program to display the digits 0, 1, 2, 3, 4, and 5 with 1 s delay on

the monitor screen using VGA format.
 6. Write VHDL, a program to display the characters, A, B, C, and D with 1 s delay

on the monitor screen. Assume that FPGA is connected to the monitor via HDMI.

6 Video Graphic Array (VGA) and HDMI Interfacing

309© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
O. Gazi, A. Ç. Arlı, State Machines using VHDL,
https://doi.org/10.1007/978-3-030-61698-4

Bibliography

 1. Orhan Gazi, “A Tutorial Introduction to VHDL Programming,” Springer, first edition, August
19, 2018, ISBN-13: 978-981132308.

 2. Volnei A. Pedroni, “Circuit Design with VHDL,” The MIT Press, third edition, April 14, 2020,
ISBN-13: 978-0262042642.

 3. Ricardo Jasinski, “Effective Coding with VHDL: Principles and Best Practice,” The MIT Press,
May 27, 2016, ISBN-13: 978-026203422.

 4. Pong P. Chu, “FPGA Prototyping by Verilog Examples: Xilinx Spartan-3 Version,” Wiley-
Interscience, September 20, 2011, ISBN-13: 978-0470185322.

 5. Volnei A. Pedroni, “Circuit Design and Simulation with VHDL,” The MIT Press; second edi-
tion, September 17, 2010, ISBN-13: 978-026201433.

 6. Andrew Rushton, “VHDL for Logic Synthesis,” Wiley, third edition, April 25, 2011.
 7. Eduardo Augusto Bezerra, Djones Vinicius Lettnin, “Synthesizable VHDL Design for FPGA,”

Springer, October 31, 2013, ISBN-13: 978-3319025469.
 8. NXP Semiconductors, “UM10204, I2C-bus specification and user manual,” rev. 6 - 4 April

2014.
 9. Motorola, Inc., “SPI Block Guide,” v03.06, original release date: 21 January 2000, revised 04

February 2003.

https://doi.org/10.1007/978-3-030-61698-4#DOI

311© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
O. Gazi, A. Ç. Arlı, State Machines using VHDL,
https://doi.org/10.1007/978-3-030-61698-4

A
Accelerometer, 186–192
Active video display area, 242
AD7303, 177
ADT7420, 218, 229
ADT7420 interfacing, 219
ADT7420 I2C interfacing, 218–235
ADXL362, 186
A nice more complex image, 305
Arbiter, 78, 79
Arbiter state diagram, 79
A slave device, 147
Asynchronous, 83
Asynchronous receiver, 91

B
Basic VGA format, 240–246
Bit stuffing, 9
Buffer structures, 303

C
Cathode ray tubes (CRTs), 239
Circle and ring shapes, 279
Classical state machine, 117
Clock, 57
Clock divider, 108
Combined format, 203–205
Combined read-write, 203
Combined state diagram, 230
Components of VHDL program, 252
Consumer electronics control (CEC), 286
Control, 154
Conversion operation, 26
Convolutional encoder, 46

Counter state machine, 64

D
DAC chip, 177
Data-clock, 200
Data transfer formats, 202–205
Detector, 8
Digital-to-analog converter (DAC), 177
Digital transmitter, 136
Display of moving square, 263–265
Display of radar screen, 282–286
Display of square shape, 252–263
Dynamic acceleration, 186

E
Eelevator machine, 11
8b/10b encoder, 288–291
8-Bit DAC, 180
8-bit oriented communication, 193
Electron beam scan, 245
Electronic counter, 7
Elevator, 11
Encoder, 51
Encoding types, 67
Entity, 56
Every, 229
External inputs, 56

F
Filled-circle and a ring, 270
First-in First-out (FIFO), 103
Five, 107, 186, 234, 244
Flip-flops, 35–38, 41, 55

Index

https://doi.org/10.1007/978-3-030-61698-4#DOI

312

Four, 262, 263, 291
FPGA vendors, 303

G
Graphic controller, 238–240

H
HDMI connector, 286
HDMI interfacings, 237
HDMI pinout, 287
HDMI transmitter, 287
High-definition multimedia interface

(HDMI), 237–307
Horizontal synchronization, 241, 244, 256

I
Instance, 203
Inter integrated circuit (I2C), 193
I2C communication, 229
I2C port circuit, 193–196
I2C protocol, 198
I2C read operation, 201
I2C serial communication, 220
I2C transmission waveforms, 197
I2C write operation, 201

L
The least significant, 84

M
Manchester encoding, 11, 12
Master, 147
Master reads the slave immediately, 202–203
Master unit, 146
MCP4921, 175
Mealy, 2, 24–26
Mealy and Moore models, 4
Mealy conversion result, 35
Mealy state diagram, 8, 9, 68
Mealy state machines, 3, 133–136
Mealy to Moore, 26
Mealy to Moore conversion, 26
Memory elements, 55
MEMS accelerometer, 189
Merging, 119
Miso, 177
Mod-00, 164
Mod-00 SPI, 150
Mod-01 SPI, 151

Mod-10 SPI, 151
Mod-11 SPI, 151
Moore, 2, 24–26
Moore FSM, 56
Moore machine, 19
Moore state diagram, 5
Moore state machine, 3, 13, 74
Moore to Mealy, 32–35
Moore to Mealy conversion, 32
MOSI port, 148

N
Next states, 66, 118
Non-overlapping sequence detector, 75
Non-return to zero inverted (NRZI), 8

O
Obstacle avoidance robot, 6
OBUFDS, 303
One, 291

P
Parity generator, 72
Pixel clock, 240
Pixel coordinates, 247
Port map, 102
Present state update, 61
Properties of SPI, 149

R
Read-only, 147
Real-life problems, 5
Repeated START, 203–205
Reset, 57
Resolution modes, 245–246
Rising edge, 57, 66
Rrobot, 7
RS232, 13, 82–103
RS232 protocol, 91
RS232 receiver, 84, 91–96
RS232 transmission waveform, 13
RS232 transmitter, 83, 96–103

S
Sensitivity list, 62
Sequence detector, 16, 19, 25, 75
Sequential circuit, 40, 54
Serializer, 296–297
Serial peripheral interface (SPI), 143–192

Index

313

Seven-segment, 129
Shift register, 45
Signal objects, 118
Sine signal in VHDL, 178
Slave-select, 147
Slave unit, 145
SPI communication, 145, 154–175
SPI connections, 180
SPI operation modes, 150, 152, 154
SPI protocol in VHDL, 154
SPI protocol of ADXL362, 186
SPI protocols, 165, 169–175
Start signal, 196
State diagrams, 2, 6, 38, 48, 85
State machines, 1
State tables, 38, 48
Static acceleration, 186
Stop signal, 197
Successor incoming pulse, 66
Synchronization signals, 242
Synchronous communication, 143

T
TDMS communication channel, 287
Temperature sensor, 218
Template, 57, 58
Test-bench, 75, 125, 158, 168
Test-bench program, 72
3-bit counter, 60
Timed Mealy machine, 134

Timed Mealy state, 116
Timed Moore state, 115
Timed Moore state diagram, 122
Timed Moore state machine, 125
Timed state machines, 115
TMDS encoder in VHDL, 288–291
TMDS encoding, 289
TMDS encoding algorithm, 294
Transition minimized differential signaling

(TMDS), 286
Transmit mode, 154–169

U
UART, 83

V
Vertical synchronization, 243, 244, 256
VGA connection lines, 238
VGA connector, 246
VGA format, 247
VGA interface, 247–248
VHDL implementation, 55, 68, 175
VHDL implementation of HDMI, 270–281,

287, 297–307
VHDL implementation of I2C

protocol, 205–217
VHDL implementation of the SPI, 154
VHDL implementation of VGA, 237
Video graphic array (VGA), 237–307

Index

	Preface
	Acknowledgments
	Abbreviations
	Contents
	1: State Machines and Modeling of Mathematical and Physical Problems by State Machines
	1.1	 State
	1.1.1	 State Diagrams and Mealy and Moore Models
	1.1.1.1	 Mealy and Moore Machines

	1.1.2	 State Names
	1.1.3	 State Machine Inputs and Outputs

	1.2	 Modeling of Mathematical and Real-Life Problems by State Machines
	1.2.1	 Some Applications of Finite State Machines
	1.2.2	 Mealy or Moore

	1.3	 Conversion Between Mealy and Moore State Diagrams/Machines
	1.3.1	 Conversion from Mealy to Moore State Diagrams/Machines
	1.3.2	 Conversion from Moore to Mealy State Machines

	1.4	 Modeling the Behavior of Electronic Circuits Using State Machines
	1.4.1	 Flip-Flops, Characteristic, and Excitation Tables
	1.4.2	 State Tables and State Diagrams of Sequential Circuits

	Problems

	2: VHDL Implementation of Finite State Machines and Practical Applications
	2.1	 Implementation of Finite State Machines in VHDL
	2.1.1	 VHDL Implementation of Moore State Machines
	2.1.2	 VHDL Implementation of Mealy State Machines

	2.2	 Examples for VHDL Implementations of State Machines
	2.2.1	 Three-Bit Binary Counter in VHDL
	2.2.2	 Counter State Machine Program Flow Analysis
	2.2.3	 Predefined Encoding Types
	2.2.4	 Mealy State Diagram Implementation Example
	2.2.5	 Parity Generator Implementation Example
	2.2.6	 Non-overlapping Sequence Detector Implementation Example
	2.2.7	 Arbiter Implementation Example
	2.2.8	 VHDL Implementation of RS232 Asynchronous Serial Communication Protocol
	2.2.8.1	 VHDL Implementation of RS232 Transmitter
	2.2.8.2	 VHDL Implementation of RS232 Receiver
	2.2.8.3	 VHDL Implementation of RS232 Transceiver

	2.2.9	 VHDL Implementation of FIFO
	2.2.10	 VHDL Implementation of Buffered RS232 Receiver

	Problems

	3: Timed Finite State Machines in VHDL
	3.1	 Timed State Machine Models
	3.2	 VHDL Implementation of Timed Moore State Machines
	3.2.1	 Timed Moore State Machine VHDL Implementation Example

	3.3	 Analysis of the Timed Moore State Machine
	3.4	 Seven-Segment Display as a Timed State Machine
	3.5	 The Implementation of Timed Mealy State Machines in VHDL
	3.5.1	 Example for the VHDL Implementation of Timed Mealy State Machine

	3.6	 Digital Transmitter Implementation Using Timed State Machines
	Problems

	4: Serial Peripheral Interface
	4.1	 Synchronous Communication
	4.2	 Serial Peripheral Interface (SPI) Communication
	4.2.1	 MOSI and MISO Bit Transmission
	4.2.1.1	 The Steps of SPI Data Transmission
	4.2.1.2	 Properties of SPI Communication

	4.2.2	 SPI Operation Modes
	4.2.2.1	 Clock Polarity (CPOL)
	4.2.2.2	 Clock Phase
	4.2.2.3	 Summary

	4.3	 VHDL Implementation of SPI Communication
	4.3.1	 Implementation of SPI Protocols Only in Transmit Mode
	4.3.1.1	 Second Solution

	4.3.2	 Implementation of SPI Protocols Both in Transmit and Receive Mode

	4.4	 SPI VHDL Implementation Examples for Electronic Devices
	4.4.1	 VHDL Implementation of SPI Protocol for 12-bit DAC MCP4921
	4.4.2	 Sine Signal Generation and SPI Protocol Development in VHDL for Digital Analog Converter (DAC), AD7303
	4.4.2.1	 8-Bit Digital-to-Analog Converter, AD7303
	4.4.2.2	 Sine Signal Generation in VHDL
	4.4.2.3	 Second Solution

	4.4.3	 SPI Protocol Development in VHDL for Digital Output MEMS Accelerometer, ADXL362
	4.4.3.1	 SPI Protocol of ADXL362

	Problems

	5: Inter Integrated Circuit (I2C) Serial Communication in VHDL
	5.1	 Master-Slave Connections and I2C Port Circuit
	5.2	 START, STOP, and IDLE Control Signals of I2C Protocol
	5.3	 Generation of Shifted Clock and Determination of the Transmission Instants
	5.4	 I2C Read and Write Operations
	5.4.1	 I2C Write Operation
	5.4.2	 I2C Read Operation

	5.5	 Data Transfer Formats
	5.5.1	 Write Operation
	5.5.2	 Master Reads the Slave Immediately
	5.5.3	 Combined Format Involving Repeated START

	5.6	 VHDL Implementation of I2C Protocol
	5.7	 VHDL Implementation of FPGA and ADT7420 I2C Interfacing
	5.7.1	 VHDL Implementation of I2C Communication Between FPGA and ADT7420
	5.7.1.1	 ID Register of ADT7420
	5.7.1.2	 VHDL Implementation

	Problems

	6: Video Graphic Array (VGA) and HDMI Interfacing
	6.1	 Video Graphic Array (VGA)
	6.1.1	 Graphic Controller
	6.1.2	 VGA Monitors
	6.1.3	 Pixel Clock

	6.2	 Basic VGA Format
	6.2.1	 Hsync Signal
	6.2.2	 Vsync Signal
	6.2.3	 VGA Resolution Modes

	6.3	 VGA Connector
	6.4	 VHDL Design for VGA Interface
	6.5	 VHDL Implementation Examples
	6.5.1	 Generation and Display of Letter “I”
	6.5.2	 Generation and Display of Square Shape
	6.5.3	 Generation and Display of Moving Square
	6.5.4	 Generation and Display of a Filled-Circle and a Ring
	6.5.5	 Generation and Display of Radar Screen

	6.6	 High-Definition Multimedia Interfacing (HDMI) and VHDL Implementation of HDMI
	6.6.1	 TDMS Communication Channel
	6.6.2	 8b/10b Encoder
	6.6.3	 Implementation of TMDS Encoder in VHDL
	6.6.4	 Serializer in TMDS Communication Channel and Its VHDL Implementation
	6.6.5	 VHDL Implementation of HDMI

	Problems

	Bibliography
	Index

