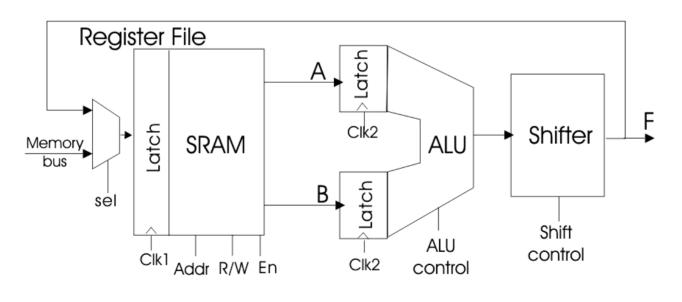
Design Project Basics

Deadlines

- Draft Proposals: Monday, March 24 (in class)
- Lab 8: by Friday March 28 (in lab progress check & proposal discussion)
- Proposals: Monday, March 31 (in class) (final Proposal due)
- Lab 9: by Friday April 4 (in lab check off, Phase 1)
- Lab 10: by Friday April 18 (in lab check off, Phase 2)
- Final Demo: by Wednesday April 23 (in lab final demonstration)
- Report: by Wed, April 30 (by 12pm-noon)
 - submit reports electronically, in Word or PDF, file size less than 3MB

Online Resources

- Project Guide: Report and grading guide, etc.
- Project Description: Detailed design specifications
- Extra Lab Time
 - no lectures on Fridays starting March 28 to allow more time for lab
 - note: Friday April 11 is Exam 2


Design Project Grading

- The combined components of the Design Project are worth 25% of your overall class grade.
- Design Project grade will be broken down as:
 - 10% Quality of Proposal
 - 30% Lab 8-10 Evaluations
 - 30% Final Demo Evaluation
 - 20% Report Quality
 - 10% Individual Effort

Design Project Overview

- Project Focus
 - design a custom CMOS microprocessor data path
- Data Path Components
 - ALU (logic & arithmetic)
 - Shifter
 - Register File (memory)

Project Proposal

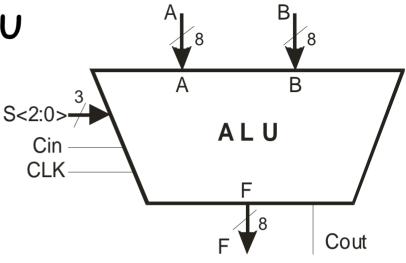
- What is it?
 - A plan of action and organization of labor for the design project
- What's in the proposal
 - Description of design concept
 - show you have studied and planned the project
 - **must** include a function truth table of ALU instructions (see pg. 6)
 - Division of labor
 - who will do what -specifically!
 - Work plan schedule -deadline for each task
- When do I start?
 - NOW! Read the project description, meet with your group, and start planning
 - Draft proposal due in ~10 days
 - Start designing immediately. By the time the proposal is turned in, you should be well into the design phase (~20% done with whole project)

Project Proposal

- What to do for Labs 8-10
 - layout and final timing simulations will take a lot of time
 - don't leave all layout Lab 10!
 - example rough organization of tasks
 - planning and initial design approach, layout floorplan
 - lower level cell design
 - schematic entry and functional simulation
 - layout, DRC, and LVS
 - higher level cell design
 - schematic entry and functional simulation
 - layout, DRC, and LVS
 - final cell layout/routing/LVS
 - final timing analysis
- General Comments
 - for a well-rounded experience, don't make one person do all of one thing, e.g., a layout guy.
 - simulations always take more time than you expect -plan on it!

Proposal

Labs 8-9


Lab 10

Demo

Example ALU

8-bit 2-input multifunction ALU

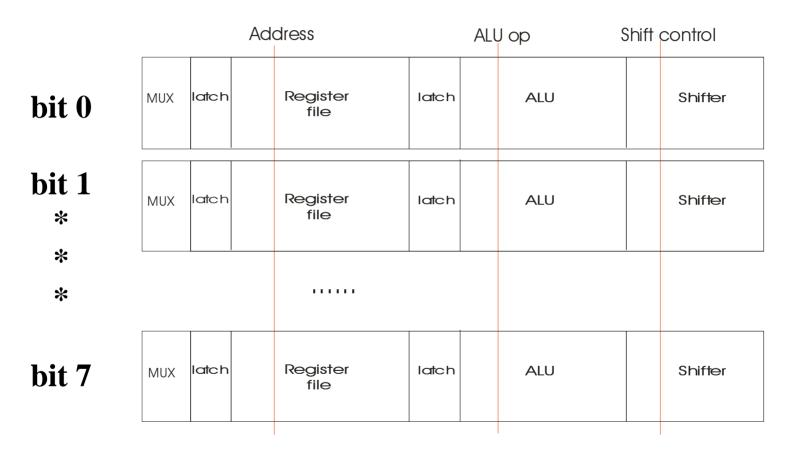
- 8-bit carry look-ahead adder
- possible functions
 - o transfer A
 - o increment A
 - o decrement A
 - o add A + B
 - o subtract A B
 - o NOT A
 - O A AND B
 - o A OR B
 - o A XOR B
- Challenges
 - 8b carry look-ahead design
 - efficient control decoding
 - compact layout

possible layout organization - organize into 1-bit cells and repeat

			-	
latch	1b arith	1b logic	xnw	1-bit ALU cell
latch	1b arith	1b logic	xnm	
latch	1b arith	1b logic	xnm	

ALU Truth Table

- ALU & shifter operation will be controlled by 6 "function" bits, f<0:5> plus a 7th bit for extended instructions
- Required instructions
 - you MUST implement the 8 requires instructions
 - see Project Description
 - you are STRONGLY encouraged to implement additional functions; grading will be competitive
 - 2-peron groups can do just 8 instructions for full credit
- Function truth table (example)


	f<0>	f<1>	f<2>	f<3>	f<4>	f<5>	f<6>
NAND	х	х	х	1	0	0	1
XOR	х	х	х	1	0	1	1
ADD	х	х	х	0	0	0	1

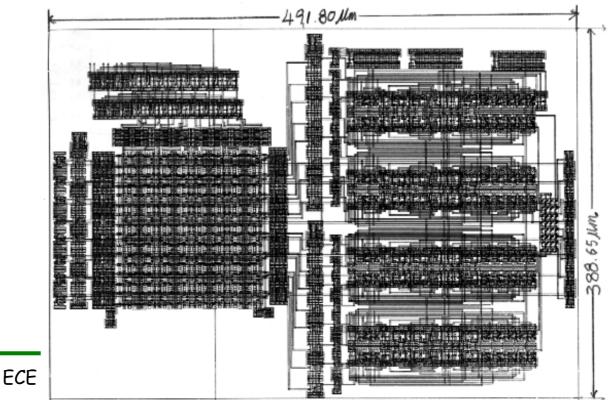
very carefully plan this table. has a major impact on ALU design. can be changed as you design.

Data Path Physical Design

• Organize by bit

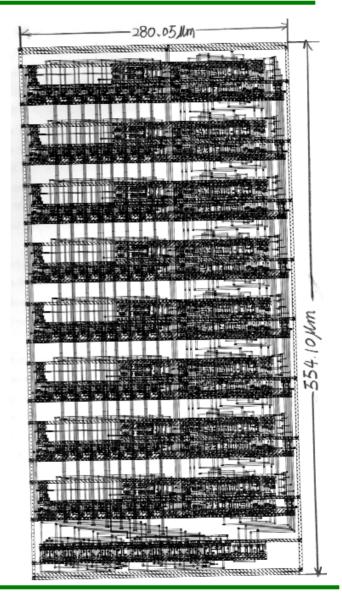
Common Design Issues

- design hierarchy
 - not much transistor-level design required for design projects
 - should design at tx-level if you can save area and delay
 - MUST use instantiated cells at higher level
- instruction/function decoding
 - must use only the specified input control signals for all functions
- size/power/speed tradeoff
 - make size the priority, discuss specific tradeoffs in report
- simulating worst case delays
 - measure from clock edge to mid-point of last output to change
- simulating power consumption
- · LVS
 - passing LVS on all smaller cells will make final LVS much easier

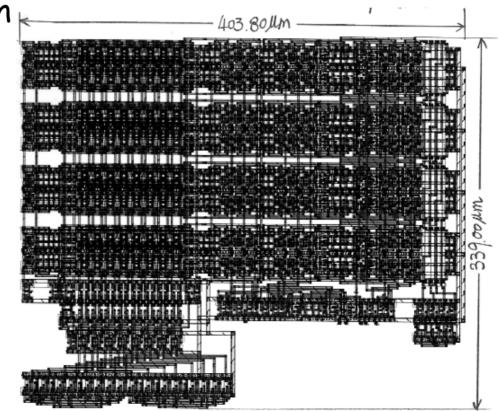

Group Lab Comments

- Teamwork "professional skill"
 - valued by employers
- Organizing your team/group
 - divide and conquer to get started
 - plan who will do what, organize by email to reduce in-person demand
 - work together to learn from each other
 - after individual effort, meet as pairs or as 3 and have fun learning
- Dividing Work Load
 - divide by cells
 - divide by software tools
 - * don't assign report to one person
 - all should contribute, everyone needs experience writing
- Directory Permissions
 - anyone having trouble with permission issues?

Final Layout Examples


- 8 instructions: 388um x 491um
 - quite large for 8 instructions
- Very compact SRAM layout
- ALU organized in 2-bit blocks
- Very inefficient final cell organization

Final Layout Examples


- 16-instruction ALU
- 280um x 554um
 - very small area for 16 instructions
- Clearly organized in bit slices - control decoder on bottom
- Very tightly packed transistors within bit slice
- Lots of open area in final cell
 - could have been better planned to eliminate wasted chip area

Final Layout Examples

- 27 instructions
- 339um x 403um
- Excellent density
- Good bit-slice organization
- Some empty space at bottom could be improved
- Cell needs global VDD & ground routing.
- Overall very nice work, especially with 27 instructions.

