CMOS Inverter: DC Analysis

- Analyze DC Characteristics of CMOS Gates $$_{\rm pFET:}$$ by studying an Inverter
- DC Analysis
 - DC value of a signal in static conditions
- DC Analysis of CMOS Inverter
 - Vin, input voltage
 - Vout, output voltage
 - single power supply, VDD
 - Ground reference
 - find Vout = f(Vin)
- Voltage Transfer Characteristic (VTC)
 - plot of Vout as a function of Vin
 - vary Vin from 0 to VDD
 - find Vout at each value of Vin

 $V_{Tp} < 0$

nFET: $V_{Tn} > 0$ $\beta_n = \kappa'_n \left(\frac{W}{L}\right)_n$

Inverter Voltage Transfer Characteristics

- Output High Voltage, V_{OH}
 - maximum output voltage
 - occurs when input is low (Vin = OV)
 - pMOS is ON, nMOS is OFF
 - pMOS pulls Vout to VDD
 - V_{OH} = VDD
- Output Low Voltage, V_{OL}
 - minimum output voltage
 - occurs when input is high (Vin = VDD)
 - pMOS is OFF, nMOS is ON
 - nMOS pulls Vout to Ground
 - V_{OL} = 0 V
- Logic Swing
 - Max swing of output signal
 - $V_L = V_{OH} V_{OL}$

ECE 410, Prof. A. Mason

Inverter Voltage Transfer Characteristics

- Gate Voltage, f(Vin)
 V_{GSn}=Vin, V_{SGp}=VDD-Vin
 Drain Voltage, f(Vout)
 V_{DSn}=Vout, V_{SDp}=VDD-Vout
- Transition Region (between V_{OH} and $V_{\text{OL}})$
 - Vin low
 - Vin < Vtn
 - Mn in Cutoff, OFF
 - Mp in Triode, Vout pulled to VDD
 - Vin > Vtn < ~Vout
 - Mn in Saturation, strong current
 - Mp in Triode, V_{SG} & current reducing
 - Vout decreases via current through Mn
 - Vin = Vout (mid point) $\approx \frac{1}{2}$ VDD
 - Mn and Mp both in Saturation
 - maximum current at Vin = Vout
 - Vin high
 - Vin > ~Vout, Vin < VDD |Vtp|
 - Mn in Triode, Mp in Saturation
 - Vin > VDD |Vtp|
 - Mn in Triode, Mp in Cutoff

ECE 410, Prof. A. Mason

Lecture Notes 7.3

Noise Margin

- Input Low Voltage, V_{IL}
 - Vin such that Vin < V_{IL} = logic 0
 - point 'a' on the plot
 - where slope, $\frac{\partial Vin}{\partial Vout} = -1$
- Input High Voltage, V_{IH}
 - Vin such that Vin > V_{IH} = logic 1
 - point 'b' on the plot
 - where slope =-1
- Voltage Noise Margins
 - measure of how stable inputs are with respect to signal interference

$$VNM_{H} = V_{OH} - V_{IH} = VDD - V_{IH}$$

-
$$VNM_L = V_{IL} - V_{OL}$$

- desire large VNM_H and VNM_L for best noise immunity

= V_{TI}

Switching Threshold

- Switching threshold = point on VTC where Vout = Vin
 - also called midpoint voltage, V_M
 - here, $Vin = Vout = V_M$
- + Calculating V_M
 - at V_M , both nMOS and pMOS in Saturation
 - in an inverter, $I_{Dn} = I_{Dp}$, always!
 - solve equation for $V_{\mbox{\scriptsize M}}$

$$I_{Dn} = \frac{\mu_n C_{OX}}{2} \frac{W}{L} (V_{GSn} - V_{tn})^2 = \frac{\beta_n}{2} (V_{GSn} - V_{tn})^2 = \frac{\beta_p}{2} (V_{SGp} - |V_{tp}|)^2 = I_{Dp}$$

- express in terms of V_M

$$\frac{\beta_n}{2}(V_M - V_{tn})^2 = \frac{\beta_p}{2}(V_{DD} - V_M - |V_{tp}|)^2 \implies \sqrt{\frac{\beta_n}{\beta_p}(V_M - V_{tn})} = V_{DD} - V_M - |V_{tp}|$$

1 +

- solve for
$$V_{M}$$

$$V_{M} = \frac{VDD - |V_{tp}| + V_{tn}}{\sqrt{V_{tp}}}$$

ECE 410, Prof. A. Mason

 $rac{eta_n}{eta_p}$

Lecture Notes 7.5

Vout

 V_M

"0"

 V_{IL}

 $V_{OH} = 0$

 $V_{OH} = V_{DD}$

Mp on Mn off

 $V_{out} = V_{in}$

Mn on

Mp off

"1" V_{DD}

 V_{IH}

Effect of Transistor Size on VTC

• **Recall**

$$\beta_n = k'_n \frac{W}{L}$$
 $\frac{\beta_n}{\beta_p} = \frac{k'_n \left(\frac{W}{L}\right)_n}{k'_p \left(\frac{W}{L}\right)_p}$

- If nMOS and pMOS are same size
 - (W/L)n = (W/L)p

$$\frac{\beta_n}{\beta_p} = \frac{\mu_n C_{oxn} \left(\frac{W}{L}\right)_n}{\mu_p C_{oxp} \left(\frac{W}{L}\right)_p} = \frac{\mu_n}{\mu_p} \cong 2or3$$

 (\mathbf{W})

• **If**
$$\frac{\mu_n}{\mu_p} = \frac{\left(\frac{L}{L}\right)_p}{\left(\frac{W}{L}\right)_n}$$
, then $\frac{\beta_n}{\beta_p} = 1$

since L normally min. size for all tx, can get betas equal by making Wp larger than Wn

- Effect on switching threshold
 - if $\beta_n \approx \beta_p$ and Vtn = [Vtp], V_M = VDD/2, exactly in the middle
- Effect on noise margin
 - if $\beta_n \approx \beta_p$, V_{IH} and V_{IL} both close to V_M and <u>noise margin is good</u>

Example

- Given
 - k'n = $140uA/V^2$, Vtn = 0.7V, VDD = 3V
 - $k'p = 60uA/V^2$, Vtp = -0.7V
- Find
 - a) tx size ratio so that V_M = 1.5V
 - b) V_M if tx are same size

STATE

ECE 410, Prof. A. Mason

Lecture Notes 7.7

CMOS Inverter: Transient Analysis

- Analyze Transient Characteristics of CMOS Gates by studying an Inverter
- Transient Analysis
 - signal value as a function of time
- Transient Analysis of CMOS Inverter
 - Vin(t), input voltage, function of time
 - Vout(t), output voltage, function of time
 - VDD and Ground, DC (not function of time) $_{V_{DD}}$
 - find Vout(t) = f(Vin(t))
- Transient Parameters
 - output signal rise and fall time
 - propagation delay

 V_{DD}

Transient Response

Fall Time

ECE 410, Prof. A. Mason

Lecture Notes 7.10

Rise Time

Propagation Delay

- Propagation Delay, t_p
 - measures speed of output reaction to input change
 - $t_{p} = \frac{1}{2} (t_{pf} + t_{pr})$
- Fall propagation delay, t_{pf}
 - time for output to fall by 50%
 - reference to input change by 50%
- Rise propagation delay, t_{pr}
 - time for output to rise by 50%
 - reference to input change by 50%
- Ideal expression (if input is step change)
 - $t_{pf} = \ln(2) \tau_n$
- t_{pr} = ln(2) τ_p
 Total Propagation Delay
 - $t_p = 0.35(\tau_n + \tau_p)$

Propagation delay measurement:

- from time input reaches 50% value
- to time output reaches 50% value

Add rise and fall propagation delays for total value

ECE 410, Prof. A. Mason

Switching Speed -Resistance

- Rise & Fall Time - $t_f = 2.2 \tau_n, t_r = 2.2 \tau_p$,
- Propagation Delay
 - $t_p = 0.35(\tau_n + \tau_p)$
- In General
 - delay $\propto \tau_n + \tau_p$
 - $\tau_n + \tau_p = Cout (Rn+Rp)$
- Define delay in terms of design parameters
 - Rn+Rp = $\frac{(V_{DD}-Vt)(\beta_n + \beta_p)}{\beta_n \beta_p (V_{DD}-Vt)^2}$
 - Rn+Rp = $\frac{\beta_n + \beta_p}{\beta_n \beta_p (V_{DD} Vt)}$

$$\tau_{n} = R_{n}C_{out} \qquad \tau_{p} = R_{p}C_{out}$$

$$Rn = 1/[\beta_{n}(V_{DD}-Vtn)] \qquad \beta = \mu Cox (W/L)$$

$$Rp = 1/[\beta_{p}(V_{DD}-|Vtp|)]$$

$$Cout = C_{Dn} + C_{Dp} + C_{L}$$

Beta Matched if
$$\beta_n = \beta_p = \beta$$
,
Rn+Rp = $\frac{2}{\beta(V_{DD}-Vt)} = \frac{2L}{\mu Cox W(V_{DD}-Vt)}$

Width Matched if $W_n = W_p = W$, and $L = L_n = L_p$ $Rn + Rp = \frac{L(\mu_n + \mu_p)}{(\mu_n \ \mu_p) Cox W(V_{DD} - Vt)}$

• if Vt = Vtn = |Vtp| To decrease R's, $\forall L$, $\uparrow W$, $\uparrow VDD$, ($\uparrow \mu_p$, $\uparrow Cox$)

Switching Speed -Capacitance

- From Resistance we have
 - \Downarrow L, \Uparrow W, \Uparrow VDD, ($\Uparrow\mu_p$, \Uparrow Cox)
 - but 1 VDD increases power
 - Image: Wincreases Cout
- Cout
 - Cout = $\frac{1}{2}$ Cox L ($W_n + W_p$) + C_j 2L ($W_n + W_p$) + 3 Cox L ($W_n + W_p$)
 - assuming junction area ~W·2L
 - neglecting sidewall capacitance
 - Cout \approx L (W_n+W_p) [$3\frac{1}{2}$ Cox +2 C_j]
 - Cout $\propto L (W_n + W_p)$
 - To decrease Cout, $\Downarrow L$, $\Downarrow W$, ($\Downarrow Cj$, $\Downarrow Cox$)
- Delay ∞ Cout(Rn+Rp) ∞ L W <u>L</u> = $\frac{L^2}{VDD}$

Decreasing L (reducing feature size) is best way to improve speed!

Lecture Notes 7.14

Switching Speed -Local Modification

- Previous analysis applies to the overall design
 - shows that reducing feature size is critical for higher speed
 - general result useful for creating cell libraries
- How do you improve speed within a specific gate?
 - increasing W in one gate will not increase C_G of the load gates
 - Cout = $C_{\text{Dn}} + C_{\text{Dp}} + C_{\text{L}}$
 - increasing W in one logic gate will increase $C_{Dn/p}$ but not C_{L}
 - C_L depends on the size of the tx gates at the output
 - as long as they keep minimum W, $C_{\rm L}$ will be constant
 - thus, increasing W is a good way to improve the speed within a local point
 - But, increasing W increases chip area needed, which is bad
 - fast circuits need more chip area (chip "real estate")
- Increasing VDD is not a good choice because it increases
 power consumption

CMOS Power Consumption

- ideally, $I_{DD} = 0$ in CMOS: ideally only current during switching action
- leakage currents cause $I_{DD} > 0$, define **quiescent** leakage current, I_{DDQ} (due largely to leakage at substrate junctions)
- $P_{DC} = \mathbf{I}_{DDQ} V_{DD}$
- Pdyn, power required to switch the state of a gate
 - charge transferred during transition, Qe = Cout VDD
 - assume each gate must transfer this charge 1x/clock cycle
 - Paverage = V_{DD} Qe f = Cout V_{DD}^2 f, f = frequency of signal change
- Total Power, $P = I_{DDQ} V_{DD} + Cout V_{DD}^2 f$

Power increases with Cout and frequency, and **strongly** with VDD (second order).

Multi-Input Gate Signal Transitions

- In multi-input gates multiple signal transitions produce output changes
- What signal transitions need to be analyzed?
 - for a general N-input gate with M_0 low output states and M_1 high output states $V_A = V_B V_{out}$
 - # high-to-low output transitions = $M_0 \cdot M_1$
 - # low-to-high output transitions = $M_1 \cdot M_0$
 - total transitions to be characterized = $2 \cdot M_0 \cdot M_1$
 - example: NAND has $M_0 = 1$, $M_1 = 3$
 - don't test/characterize cases without output transition table
- Worst-case delay is the slowest of all possible cases
 - worst-case high-to-low
 - worst-case low-to-high
 - often different input transitions for each of these cases

	VA	VB	V _{out}	
(i)	0	0	V _{DD}	
(ii)	0	V_{DD}	V _{DD}	
(iii)	V_{DD}	0	V _{DD}	-1
	V_{DD}	V _{DD}	0]_◀┸

Series/Parallel Equivalent Circuits

- Scale both W and L
 - no effective change in W/L
 - increases gate capacitance
- inputs must be at same value/voltage
 - Series Transistors
 - increases effective L

- Parallel[°]Transistors
 - increases effective W

 $\beta \Rightarrow 2\beta$

MICHIGAN E

ECE 410, Prof. A. Mason

(a) Separate transistors

Lecture Notes 7.18

(b) Single equivalent FET

NAND: DC Analysis

NAND Switching Point

NOR: DC Analysis

Lecture Notes 7.21

NAND: Transient Analysis

 V_{DD} NAND RC Circuit R_p - R: standard channel resistance - C: Cout = $C_{L} + C_{Dn} + 2C_{Dp}$ V_B • Rise Time, t_r Vout V_{DD} C_{out} V_A - Worst case charge circuit R_p 1 pMOS ON ♦ V_{out} $-|t_r = 2.2 \tau_p$ Cout = • $\tau_{p} = R_{p} Cout$ - best case charge circuit • 2 pMOS ON, $Rp \Rightarrow Rp/2$ (a) Charging circuit Fall Time, t_f ¹dis. - Discharge Circuit C_{out} R_n • 2 series nMOS, $Rn \Rightarrow 2Rn$ Vout must account for internal cap, Cx R, - $t_f = 2.2 \tau_n$ $Cx = C_{Sn} + C_{Dn}$ • $\tau_n = Cout (2 R_n) + C \times R_n$ (b) Discharging circuit

٠

ECE 410, Prof. A. Mason

Lecture Notes 7.22

NOR: Transient Analysis

NAND/NOR Performance

- Inverter: symmetry ($V_M = V_{DD}/2$), $\beta n = \beta p$
 - $(W/L)_p = \mu_n/\mu_p (W/L)_n$
- Match INV performance with NAND
 - pMOS, $\beta_P = \beta p$, same as inverter
 - nMOS, β_N = 2 β n, to balance for 2 series nMOS
- Match INV performance with NOR
 - pMOS, β_P = 2 βp , to balance for 2 series pMOS
 - nMOS, $\beta_N = \beta n$, same as inverter
- NAND and NOR will still be slower due to larger Cout $d = \beta_p$
- This can be extended to
 3, 4, ... N input NAND/NOR
 gates

ECE 410, Prof. A. Mason

(a) Inverter

 β_n

Lecture Notes 7.24

β is adjusted by changing transistor size (width)

NAND/NOR Transient Summary

- Critical Delay Path
 - paths through series transistors will be slower
 - more series transistors means worse delays
- Tx Sizing Considerations
 - increase W in series transistors
 - balance β_n/β_p for each cell
- Worst Case Transition
 - when all series transistor go from OFF to ON
 - and all internal caps have to be
 - charged (NOR)
 - discharged (NAND)

Performance Considerations

- Speed based on $\beta n,\,\beta p$ and parasitic caps
- DC performance (V_M, noise) based on $\beta n/\beta p$
- Design for speed not necessarily provide good DC performance
- Generally set tx size to <u>optimize speed</u> and then test DC characteristics to ensure adequate noise immunity
- Review Inverter: Our performance reference point
 - for symmetry ($V_M = V_{DD}/2$), $\beta n = \beta p$
 - which requires (W/L)_p = μ_n/μ_p (W/L)_n
- Use inverter as reference point for more complex gates
- Apply slowest arriving inputs to series node closest to output
 Let faster signals begin to charge/discharge
 - let faster signals begin to charge/discharge nodes closer to VDD and Ground

power supply

faster

signa

Timing in Complex Logic Gates

- Critical delay path is due to series-connected transistors
- Example: $f = \overline{x(y+z)}$
 - assume all tx are same size
- Fall time critical delay
 - worst case, x ON, and y or z ON
 - $t_f = 2.2 \tau_n$ • $\tau_n = Rn Cn + 2 Rn C_{out}$ - $C_{out} = 2C_{Dp} + C_{Dn} + C_L$ - $Cn = 2C_{Dn} + C_{Sn}$
- Rise time critical delay
 - worst case, y and z ON, x OFF

-
$$t_r = 2.2 \tau_p$$

• $\tau_p = Rp Cp + 2 Rp C_{out}$
- $C_{out} = 2C_{Dp} + C_{Dn} + C_L$
- $Cp = C_{Dp} + C_{Sp}$

size vs. tx speed considerations $\square Wnx \Rightarrow \Downarrow Rn$ but $\square Cout$ and $\square Cn$ $\Downarrow Wny \Rightarrow \Downarrow Cn$ but $\square Rn$

 $(W/L)_{nz}$

 $(W/L)_{px}$

(W/L)_{DZ}

 $(W/L)_{nx}$

 $(W/L)_{ny}$

Vnn

C_{out}

Z

Sizing in Complex Logic Gates

- Improving speed within a single logic gate $\beta_{P} = 2\beta_{P}$
- An Example: f=(a b+c d) x
- nMOS
 - discharge through 3 series nMOS
 - set $\beta_N = 3\beta n$
- pMOS
 - charge through 2 series pMOS
 - set β_P = 2 β_P
 - but, Mp-x is alone so $\beta_{P1} = \beta p$
 - + but setting β_{P1} = 2 βp might make layout easier
- These large transistors will <u>increase capacitance</u> and <u>layout area</u> and may only give a small increase in speed

Advanced logic structures are best way to improve speed

 V_{DD}

 β_{P1}

 $\beta_{N1}=3\beta_n$

 $\beta_N = 3\beta_n$

 $\beta_N=3\beta_n$

β_N

 β_N

Timing in Multi-Gate Circuits

• What is the worst-case delay in multi-gate circuits?

- too many transitions to test manually
- Critical Path
 - longest delay through a circuit block
 - largest sum of delays, from input to output
 - intuitive analysis: signal that passes through most gates
 - not always true. can be slower path through fewer gates

path through most gates critical path if delay due to D input is very slow

ECE 410, Prof. A. Mason

C↑D√

1 0 0 0 | 0 ¬*B*7

1

1 1 0 0

1 1 1 1

Power in Multi-Input Logic Gates

• Inverter Power Consumption

$$P = P_{DC} + P_{dyn} = V_{DD}I_{DDQ} + C_{out}V_{DD}^2f$$

- assumes gates switches output state once per clock cycle, f
- Multi-Input Gates
 - same DC component as inverter, $P_{DC} = V_{DD}I_{DDQ}$
 - for dynamic power, need to estimate "activity" of the gate, how often will the output be switching

- $P_{dyn} = aC_{out}V_{DD}^2f$, a = activity coefficient

NOR NAND

- estimate activity from truth table

•
$$a = p_0 p_1$$

- p₀ = prob. output is at 0
- p_1 = prob. of transition to 1

a=3/16

a = 3/16

Timing Analysis of Transmission Gates

- TG = parallel nMOS and pMOS
- RC Model
 - in general, only one tx active at same time \overline{E}
 - $\cdot\,$ nMOS pulls output low
 - pMOS pushes output high
 - R_{TG} = max (Rn, Rp)
 - $Cin = C_{Sn} + C_{Dp}$
 - if output at higher voltage than input
 - larger W will decrease R but increase Cin
- Note: no connections to VDD-Ground. Input signal, Vin, must drive TG output; TG just adds extra delay

out

Vout

Vin

 R_{TG}

 V_{in}

Pass Transistor

- nMOS can't pull output to VDD
 - rise time suffers from threshold loss in nMOS

