CMOS Inverter: DC Analysis

Analyze DC Characteristics of CMOS Gates

) "/ O
by studying an Inverter pERT: Vrp < ()
Bp=kp \L ) p
DC Analysis
- DC value of a signal in static conditions T Vbp
DC Analysis of CMOS Inverter Ci Mp
- Vin, input voltage
- Vout, output voltage +&—9 A
- single power supply, VDD
- Ground reference Vin 4‘ Mn Vout
- find Vout = f(Vin)
Voltage Transfer Characteristic (VTC) -
- plot of Vout as a function of Vin oFET: V>0
- vary Vin from O o VDD Br=Kn (f) n

- find Vout at each value of Vin

ey
ANy
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Inverter Voltage Transfer Characteristics

+ — VDD

» Output High Voltage, Vo Vsap= VoD
- maximum output voltage - *q On
- occurs when input is low (Vin = OV) |
+ pMOS is ON, nMOS is OFF +—9¢ N G
- pMOS pulls Vout to VDD v, = - 'OH ,
- Vg, = VDD : out = Vpp
» Output Low Voltage, V. T
- minimum output voltage -
. occurs when input is high (Vin = VDD) B
* pMOS is OFF, nMOS is ON " Off
* nMOS pulls Vout to Ground -
= Vo|_ =0V +o—9 _T——o+
» Logic Swing
- Max swing of output signal v =V4{ On Vour =0
AEVIRRVRRY in VDD
L OH oL — —_ -
.[V,_= VDD =
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Inverter Voltage Transfer Characteristics

+ Gate Voltage, f(Vin) *Drain Voltage, f(Vout)
Vs =Vin, VSGP:VDD-Vin -Vps,=Vout, VSDP=VDD-Vou’r — v,
+ o
- Transition Region (between V,,, and V) Voo | Mp
- Vin low N ,
Vin < Vin + ||
- Mnin Cutoff, OFF V.. V; 4l M Vv
- Mp in Triode, Vout pulled to VDD Gsn — out
Vin > Vin < ~Vout - -

- Mn in Saturation, strong current

- Mpin Triode, V. & current reducing Vi,
- Vout decreases via current through Mn
- Vin = Vout (mid point) = 3 VDD Vor=V pp —
- Mn and Mp both in Saturation
- maximum current at Vin = Vout Vin<V, S
- Vin high input logic LOW
Vin > ~Vout, Vin< VDD - |V1p| ,
- Mnin Triode, Mp in Saturation Vin > V Voy = 0ty
Vin > VDD - |Vip| "

input logic HIGH
- Mnin Triode, Mp in Cutoff nput1od!
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Noise Margin

Vout Mp on

* Input Low Voltage, Vy A
- Vin such that Vin < Vy = logic O Vor=V pp 2%

- point 'a’ on the plot
- where slope, dVin 1 Vi

e o]

oVout

* Input High Voltage, Vi
- Vin such that Vin > Vy, = logic 1 0.0 v
- point 'b’ on the plot

* where slope =-1

* Voltage Noise Margins
- measure of how stable inputs are with respect to signal interference
- VNM,, = Vo, - Viy = VDD - V4
= [VNM_ =V - Vg, =V

e )

AT By
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Switching Threshold

+ Switching threshold = point on VTC where Vout = Vin
- also called midpoint voltage, V,, Vout  Mpon

- here, Vin = Vout = V,, Vor =V pp LoV Vol e
» Calculating V, i

- at V,,, both nMOS and pMOS in Saturation Mo ot H / -

- inaninverter, I, = I, always! N e

- solve equation for V,, o B : T

~ %ﬂ(\/wn_ v, )? z%(\/eSn —vm)z=%(\/SGF,—M,\)2=IDp VL Vi

- express in ferms of V,,
%(\/M _th)2 IB

:7p(\/DD Vi _th‘)z \/7(\/'\" n) =Vop MD‘
- solve for Vy,|  \pp_ v, +v \F
tp tn ﬂp

Vy =

1+ﬁ

ph bl p
k)

AT By
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LINSOBy

Effect of Transistor Size on VTC
Recall o k(V\L’) o, v, [
B, =K,— ﬂ:: ' \/\/n Vy = P
L k p(Ljp 1+\/§7:
If nMOS and pMOS are same size
- (W/L)n= (W/L)p ﬂncm(wj
L _ ~ 20r3

- Coxn = Coxp (always)

B, WY
P /upCOXp T P
p

0
If o _ L p,thenﬁzl
Hop

(A

Effect on switching threshold

- if B, = B, and Vin = |Vip|, V), = VDD/2, exactly in the middle

Effect on noise margin

- if By~ By, Vi and Vy both close to V), and noise margin is good
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Example

+ Given
- k'n = 140uA/V?2, Vtn= 0.7V, VDD = 3V
- k'p = 60uA/V?, Vip = -0.7V

* Find ‘:‘ N
- a) tx size ratio so that Vy= 1.5V ™ o~
- b) V,, if Tx are same size

[ vDD | l i1 ) TSR |
v | o111 [al vano LR Tw, > Vi
Rl [0 n+/p+ s 0 1.5 3.0
e i v i transition pushed lower
R B Contact Mn . . Iwn . .
vn ol a Iwn - el as beta ratio increases
i | [ God i
(a) Larger pFET design (b) Equal aspect ratios
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CMOS Inverter: Transient Analysis

Analyze Transient Characteristics of —j— Vip
CMOS Gates by studying an Inverter Aq .
P

Transient Analysis Lo +—— o,
- signal value as a function of time

Viﬂ 4‘ Mn Vgut
Transient Analysis of CMOS Inverter - B B,

- Vin(%), input voltage, function of time

- Vout(t), output voltage, function of time N

- VDD and 6round, DC (not function of time), T
- find Vout(t) = f(Vin(1)) Vin
0 .y
Transient Parameters A e e
- output signal rise and fall time o T /]
- propagation delay Yout 1\ {
| 1 ’_t
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Transient Response

. VDD
* Response to step change in input % .
- delays in output due to parasiticR & C : P
- Inverter RC Model — % | Cop
- Resistances L —9 t —
- Rp = 1/[p(Voo-1V1P1)] i » ——  vout
- Output Cap. (only output is important) ; R CL -
* Cp, (NMOS drain capacitance) " —
= Cpn = % Cox Wn L+ Cj ADnbo‘r * stw PDnsw - Cﬂ[>07
* Cp, (PMOS drain capacitance) ECL
| =
- CDp - % Cox Wp L+ Cj Apro’r + stw PDpsw b. 'l i ’.
- Load capacitance, due to gates attached at the output I
- € =3 Cin= 3 (Cgy+ Cgp), 3 is a “typical” load | %DO‘
+ Total Output Capacitance
-| Cout = Cpp+ Cpp, + €, term “fan-out” describes

# gates attached at output
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Fall Time

: A
* Fall Time, t; v 2
- time for output to fall from 1" 1o 'O’ Vin
- derivation: . N, V. 0— ¢
i =—C out _ You A i !
"ot R, S ol 4ol
» initial condition, Vout(0) = VDD Voo L | ﬁ
» solution t ' et

_t
VOUt(t) =VDDE %n Tn - Rncout

t=1 In( Voo j
Vout

- definition pFET off

* t; is time to fall from + ‘
+

90% value [V, 1,] to 10% value [V,1,]

0.V, 0.9V, T

‘|t=227,

(a) Discharge circuit

P>

{(b) Output waveform

ECE 410, Prof. A. Mason
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Rise Time

: : A
- Rise Tlme, Tr. Vop T
- time for output to rise from ‘0" to '1' Vin
- der'iVGTion: | _ C aVOUt _ VDD _VOU'[ 0 : } _P ¢
out ot Rp VDD‘A —D}{f i*l— —’! t
» initial condition, Vout(0) = OV V.., L : ﬁ
» solution . o tl ' ) L et
Vout(t) =Vpp|1-€ 77 | 1, = R Cpy !
- defin”'ion Vpp Vout(t]A
* 1 is time to rise from Rp g Vo ety =
10% value [v,,1,] to 90% value [V, t,] I i e
. Tr‘ =2.2 Tp i .Cow; | +Voutm Vo—: i
. . nFET off 1- ok ! > ¢
*  Maximum Signal Frequency Vs @ =0V o R
= fmax = 1/(1-r. + Tf) {a) Charge circnit (b) Output waveform

» faster than this and the output can't settle
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Propagation Delay

* Propagation Delay, t,
- measures speed of output reaction to input change

-1
- -|-p =3 (Tpf -|-. Tpr') A
* Fall propagation delay, t Vin
- time for output to fall by 50% .t
* reference to input change by 50% R N |
. . P
* Rise propagation delay, Tor | F;f tpr !
- time for output to rise by 50% Vout 4---—-H-----LHf 50%
* reference to input change by 50% ! ' | -
» TIdeal expression (if input is step change)
- Tpf = In(Z) Th _
-t =In(2)x Propagation delay measurement:
pr P - from time input reaches 50% value

» Total Propagation Delay - to time output reaches 50% value
- 1,=0.35(t, + 1)

Add rise and fall propagation delays for total value

e )

AT By
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Switching Speed -Resistance
* Rise & Fall Time

=R,C =R,C
-t = 221,1T.=2.2 T, n n—out *p p ot
* Propagation Delay Rn = 1/[B,(Vpp-VIn)] B= nCox (W/L)
- 1,=0.35(7, + 1) Rp = 1/[B,(Vpy-| VHp)]

* In Generadl

- delay o 1, + 1,

— T,+ T, = Cout (Rn+Rp)
- Define delay in terms of getaMaiched if B,=B,=B,

Cout = Cpy, + G, + €

desigh parameters Rn+Rp=__ 2  =_2L
= Rn+Rp = (Vpp-VH)(B, +B,) B(Vop-Vt) nCox W (Vpp-Vt)
Br Bo(Vpp-V1)? Width Matched if W, =W =W, andLsL L,
- Rn+Rp=_ B, +B, Rn+Rp = L (uo* 1)
By B,(Vop-V1) (1 1) Cox W (Vpp-V1)

- if VI =Vin= |Vip|

R
LINSOBy
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Switching Speed -Capacitance

+ From Resistance we have  cout = ¢y, + ¢y, + €,

if L=L=L, estimate

- but 7 VDD increases power

CL =3 (CGH + CGP) = 3 Cox (WnL+WpL)

W increases Cout

CDn = % Cox Wn L+ Cj ADnboT + stw PDnsw

- Cout

Cop = % Cox W, L+ C; Apppor * Cisw Popsw

- Cout= 7 Cox L (W+W,)+C;2L
(Wn+Wp) + 3 Cox L (Wn+Wp)
* assuming junction area ~W-2L
* neglecting sidewall capacitance

- Cout ~L (W, *W,) [37 Cox +2 C|] L
- Cout o L (W +W,)

~2L

-

Ucj, Ucox )
+ Delay o Cout(Rn+Rp) c LW _ L =_L2
W VDD VDD
Bl Decreasing L (reducing feature size) is best way to improve speed!

~ R
e )

AT By
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Switching Speed -Local Modification

* Previous analysis applies to the overall design
- shows that reducing feature size is critical for higher speed
- general result useful for creating cell libraries

* How do you improve speed within a specific gate?
- increasing W in one gate will not increase C; of the load gates
* Cout = G, + Gy + €
+ increasing W in one logic gate will increase C,,, but not €

- C_ depends on the size of the tx gates at the output
- as long as they keep minimum W, C, will be constant

- thus, increasing W is a good way to improve the speed within a
local point

- But, , which is bad

» fast circuits need more chip area (chip "real estate”)

» Increasing VDD is not a good choice because it
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CMOS Power Consumption

I
* P=Py+P o ”
DC dyn VDDA ¥ Da A

- Ppei DC (static) term

- P4t dynamic (signal changing) term |
Mn on |

) PDC Mp off Mn off Mp off
v Ippg | |
- P=TI V 05 P Vin I T Vin
DD VDD Vpp 0 Vi Vpp
(b) DC current

» I, DC current from power supply (@) VTC
- ideadlly, Iy, = 0 in CMOS: ideally only current during switching action

* leakage currents cause I, > 0, define quiescent leakage current,
Iypq (due largely to leakage at substrate junctions)

= Poc = Inpg Voo
* Pdyn, power required to switch the state of a gate

- charge transferred during transition, Qe = Cout VDD
- assume each gate must transfer this charge 1x/clock cycle
- Paverage = Vyp Qe f = Cout V2 f, f = frequency of signal change

Total Power, P = Typq Vip + Cout Vip? f
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Multi-Input Gate Signal Transitions

* In multi-input gates multiple signal transitions produce
output changes

* What signal transitions need to be analyzed?

- for a general N-input gate with M, low output states and M, high
output states . Vs Voo

* # high-to-low output transitions = My-M, mlo o | |
* # low-to-high output transitions = MM, @ ¢ Voo Voo
- total transitions to be characterized = 2-M,-M,
- example: NAND has M; =1, M; = 3

- don't test/characterize cases without output transitions

is the slowest of all possible cases

- worst-case high-to-low
- worst-case low-to-high
- often different input transitions for each of these cases

wVop O [Vpp

bt 7

Vop Vpp| ©
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Series/Parallel Equivalent Circuits

Scale both W and L

- no effective change in W/L
- increases gate capacitance

Series Transistors
- increases effective L

Q;
o—p—ifC Wi, Qeq
—— o——[7. WiLq +L)
L wi, T
Q4

Parallel Transistors
- increases effective W

W/l
O_||_—___|,: W/l — o—j (W + W)L
Q Q, Qeq

o—[C wL — H% (KW)/(KL) for any K
Qq Qeq
PR B=nCox (WIL) L

o A (B w] T . o 1
m [ [
m| [T : Wn & : W
sl Hl m M|
& FM VL || effective L B

B=>w%p M

(a) Separate transistors (b) Single equivalent FET

I-"__'_F..—? —————— :
I g B e -.d i m [ [m :T
| A B : ] u :EW
J| i) -_-:_- | 3 "_-:_'. | 1N p : . = :l
vl L -'}':'VM effective b nlElEs
B AL P I .

(a) Separate transistors (b) Single equivalent FET

ECE 410, Prof. A. Mason
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NAND: DC Analysis

: A
° MU Tl P e InPUTS Va VB \Vout Vop | R
. o4 Wl o O [Vpp 1™ 1 switching
- Multiple Transitions 5 0 voolem |1 A
. Multiple VTCs “loo 0 Yoo -
DD VDD “ 0 > Vi
: : L -~
- VTC varies with transition N
* transition from 0,0 to 11 pushed right of others
* why? T S o
—
- V) varies with transition S
- assume all ¥x have same L Vg ——i[ Bn v
* V= V4=V =Vout Voo 5.
- can merge transistors at this point 1 2 Voo
+ if Wya=Wgand W, =W, QRS
- series nMOS, 3, = %2 p3n Ipp
+o—o +
- parallel pMOS, B, = 2 Bp ; Ion
M _
- can now calculate the NAND V,, o
(Bp/2 &+
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NAND Switching Point

VDD
» Calculate VM for NAND zﬁ_pq
- 0,0 to 1,1 transition Iop
» all +x change states (on, off) +e—e +
* in other fransitions, only 2 change Vi ID”_ Vi
- VM=VA=VB=VIOUT - (B2l _
- set I, = I, solve for Vy series NMOS means ‘
VDD—M\+vtn; P more resistance to I —
v, = Py output falling, ) *
1+£ By _ _ | (i)
2\ B, shifts VTC to right
- denominator reduced more 0 gl
- VTC shifts right to balance this effect (b) VTC family
. For NAND with N i and set V,, to V/2, ATiFE ]
or wit INPUTS o increase B by = R T
VDD_WW‘”; g increasing Wn T
Vy = i T
L \/ﬂT e |
N ﬂo i
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NOR: DC Analysis

. Similar Analysis o NAND v T ot
» Critical Transition o o vpp | 0
- 0,0 to 1,1 w| o vppt 0 j‘ @) 1} ()
- when all fransistors change W Vpp 0 —~Y
+ V), for NOR2 critical transition © [pp Yop| © |=— 0 —- Vi
. DD
lf WpA:WpB Gnd WnA:WnB {a) Transition table v (b) VTC family
- parallel nMOS, Bn = 2 Bn R
. series pMOS, p = 2 Bp - i
VDD -V, |+ 2V, P VDD -V, |+ NV, [Zn {_lﬂp
ﬂp _ ﬂp * 4
Vy = Vy = B
1+2 By 1+ N B Vﬂ"“!% Vp* P Vot
By p i —_J__ ; VoD
for NOR2 for NOR-N i . (Bp/2)
- series pMOS resistance means slower rise —G I
. D
- VTC shifted to the left ro—o P .
— to set V,, to Vp/2, increase Wp Vi Ipn

- « this will increase 3p

| VM
2

- mn —

)
LBy

MICHIGAY 1
HTATE ECE 410, Prof. A. Mason
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NAND: Transient Analysis

- NAND RC Circuit P~ oD
s

- R: standard channel resistance
- C: Cout = C + Cy, + 2Cy, i
: i Vg *
+ Rise Tlme, Tr. Vop ﬁ‘~j T Yout
R, ]
il

- Worst case charge circuit R e Va e
-1 pMOS ON +
= Tr‘ =2.2 ’Cp Vout
* 1, =R, Cout
- best case charge circuit AL
+ 2 pMOS ON, Rp = Rp/2
* Fall Time, t;
- Discharge Circuit
« 2 series nMOS, Rn = 2Rn
- must account for internal cap, Cx
- t=22r1,
* 1,=Cout (2R, )+ CxR,

f
|ﬂ

(a) Charging circuit

Cx=Cg, + Cp,

o, (b) Discharging circuit

)
LBy
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NOR: Transient Analysis

+  NOR RC Circuit T "po
- R: standard channel resistance 4| R
- C: Cout = € + 2Cy, + Cp, el
* Fall Time, t;

- Worst case discharge circuit
- 1nMOS ON R,

- t,=22r1,
* 1,= R, Cout
- best case discharge circuit
* 2nMOS ON, Rn = Rn/2
- Rise Time, T,
- Charge Circuit

- 2 series pMOS, Rp = 2Rp Y C.. +C
S D
- must account for internal cap, Cy §,RP = P P
- t.=2.2 T, \_
* 1,= Cout (2R, )+ Cy R, c w}_:” Vs
G - .
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NAND/NOR Performance

Inverter: symmetry (Vy=Vpo/2), Pn = Pp

- (W/L), = po/u, (W/L),
Match INV performance with NAND

- pMOS, Bp = Bp, same as inverter

- nMOS, B\, = 2f3n, to balance for 2 series nMOS
Match INV performance with NOR

- pMOS, By = 2 Bp, to balance for 2 series pMOS

- nMOS, B\ = Bn, same as inverter Voo Voo
NAND and NOR will still 4 Vip *qaﬁp Oq}]mﬁﬂp od| Fo=2B

be slower due to larger Cout ;, . Bm2p
Oq L
. -—i ._[ BN:an

This can be extended to B i ._\ -
3,4, .. N input NAND/NOR L - {Nﬂﬂn

gaTes
: (a) Inverter (b) NAND2 (c) NOR2
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NAND/NOR Transient Summary

* Critical Delay Path
- paths through series transistors will be slower
- more series transistors means worse delays

' +— VDD
+ Tx Sizing Considerations _4%34[:[1;?
- increase W in series transistors .
- balance B,/B, for each cell e 7T Vout
Ve R, -__-;__-E: -

- Worst Case Transition ]
- when all series transistor go from OFF to ON

- and all internal caps have to be
* charged (NOR)
» discharged (NAND)
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Performance Considerations

Speed based on n, Bp and parasitic caps

DC performance (V,,, noise) based on 3n/PBp

Design for speed not necessarily provide good DC
performance

Generally set tx size to optimize speed and then test DC
characteristics to ensure adequate noise immunity

Review Inverter: Our performance reference point

- for symmetry (Vy=Vyp/2), Pn = Bp
* which requires (W/L), = p,,/p, (W/L),
Use inverter as reference point for more complex gates

output
slower _|

- let faster signals begin to charge/discharge  signal

nodes closer to VDD and Ground faster
signal power supply
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Timing in Complex Logic Gates

Critical delay path is due to series-connected transistors
Example: f = x (y+2) 1 o

. (W/L)
- assume all tx are same size ye—s Py

j o WL x
Fall time critical delay .

z o—q| WLy, L ©p

- worst case, x ON, and y or z ON } o s
- =221, xo—| W/L), ‘{'m
* T,=RnCn+2RnC, =
= Cour = 2Cp, + Cpp+ €, y —| [wmnyl (w/L) }—.

- Cn=2C,, +Cs,
Rise time critical delay
- worst case, y and z ON, x OFF

Size vs. tx speed considerations
ffwnx = URn but NCout and 1ICn

- t=221, Uwny = UCn but IRn
" T, =RpCp+2RpCy,
= Cour = 2Cp, + Cpp* €, f'wpz = URp but ICout and 1Cp
- Cp=Cp, + Cs, UWpx = no effect on critical path
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Sizing in Complex Logic Gates

Improving speed within a single logic gate

Bp = 2P
An Example: f=(a b+c d) x -1 e 1 ¢ Voo
nMOS asi[fp beq|Pe
- discharge through 3 series nMOS B} Bp]l < l:ﬂpl
c d
- set By = 3Bn &Cljp ~c|1 .
pMOS x —— _TﬂN1=3|3n
- charge through 2 series pMOS i —+
- set Bp = 2y o b e
- but, Mp-x is alone so [3p; = Bp b By e[ By=sBy
- but setting Bp; = 2Bp might make layout easier 1 1

These large transistors will increase capacitance and
layout area and may only give a small increase in speed
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Timing in Multi-Gate Circuits

* What is the worst-case delay in multi-gate circuits?

A AB CD |F
= s b= -
C
5 0001@
010]|1
- too many transitions to test manually 1000l0-B7
1100 1]

- Critical Path

- longest delay through a circuit block 11111
- largest sum of delays, from input to output

- intuitive analysis: signal that passes through most gates
* not always true. can be slower path through fewer gates

critical path if delay due to
D input is very slow
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Power in Multi-Input Logic Gates

* Inverter Power Consumption
- P=Ppc+ den = Voolong * CoutVopnf
* assumes gates switches output state once per clock cycle, f

* Multi-Input Gates

- same DC component as inverter, Py = VippIppq

- for dynamic power, need to estimate "activity” of the
gate, how often will the output be switching

- den = aC,+V°ppf, a = activity coefficient NOR NAND
- estimate activity from truth table (2 % | A*% /45
* @ = PoPy o 1 0 1
- po = prob. output isat O I 1 8 o

- p; = prob. of transition to 1 20-075 50-025

pl1l=0.25 pl1l=0.75
a=3/16  a=3/16
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Timing Analysis of Transmission Gates

*+ TG = parallel nMOS and pMOS Py
* RC Model Vi 1L Vou
. . N SR R A
- in general, only one tx active at same time s
+ nMOS pulls output low S
« pMOS pushes output high T
- Rz = max (Rn, Rp) *—_T_—WNV—*"FJ_—'+
- Cin = Cg, + Cp, I I Vout

- if output at higher voltage than input -
- larger W will decrease R but increase Cin

Note: no connections to VDD-Ground. Input signal, Vin,
ust drive TG output; TG just adds extra delay
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Pass Transistor

- Single nMOS or pMOS tx i
+ Often used in place of TGs o T Ty
- less area and wiring " CMI Vout
- can't pull to both VDD and Ground % L1
- typically use nMOS for better speed , -~ Vop
* Rise and Fall Times 1! .
" TERNC TN e x=_|o_|7=1 N *_::::::::‘/:\::::‘;ﬁx
- t,=294r1, oo L
- t.=18 7, P tie _,J—‘|_

* much slower than fall fime x=1 y=0=1

nMOS can't pull output to VDD
- rise time suffers from threshold loss in nMOS
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