CMOS Inverter: DC Analysis

- • Analyze DC Characteristics of CMOS Gates by studying an Inverter
- •DC Analysis
	- DC value of a signal in static conditions
- \bullet DC Analysis of CMOS Inverter
	- Vin, input voltage
	- Vout, output voltage
	- single power supply, VDD
	- Ground reference
	- find Vout = f(Vin)
- • Voltage Transfer Characteristic (VTC)
	- plot of Vout as a function of Vin
	- vary Vin from 0 to VDD
	- –find Vout at each value of Vin

 $V_{Tp}<0$

 $\beta_D = k_D \left(\frac{W}{I}\right)_{P}$

pFET:

nFET: $V_{Tn} > 0$ $\beta_n = k'_n \left(\frac{W}{L}\right)_{n}$

Inverter Voltage Transfer Characteristics

- •Output High Voltage, V_{OH}
	- – maximum output voltage
		- occurs when input is low (Vin = 0V)
		- pMOS is ON, nMOS is OFF
		- pMOS pulls Vout to VDD
	- | V_{OH} = VDD
- Output Low Voltage, V $_{\mathsf{OL}}$
	- minimum output voltage
		- occurs when input is high (Vin = VDD)
		- pMOS is OFF, nMOS is ON
		- nMOS pulls Vout to Ground
	- | V_{OL} = 0 V
- Logic Swing
	- – Max swing of output signal
		- V_{L} = V_{OH} V_{OL}

Inverter Voltage Transfer Characteristics

- • Gate Voltage, f(Vin) – V_{GSn}=Vin, V_{SGp}=VDD-Vin •Drain Voltage, f(Vout) $-V_{DSn}$ =Vout, V_{SDp}=VDD-Vout
- •Transition Region (between V_{OH} and V_{OL})
	- Vin low
		- Vin < Vtn
			- Mn in Cutoff, OFF
			- Mp in Triode, Vout pulled to VDD
		- Vin > Vtn < ~Vout
			- Mn in Saturation, strong current
			- Mp in Triode, V_{sG} & current reducing
			- Vout decreases via current through Mn
	- Vin = Vout (mid point) ≈ $\frac{1}{2}$ VDD
		- Mn and Mp both in Saturation
		- maximum current at Vin = Vout
	- Vin high
		- Vin > ~Vout, Vin < VDD |Vtp|
			- Mn in Triode, Mp in Saturation
		- Vin > VDD |Vtp|
			- Mn in Triode, Mp in Cutoff

Noise Margin

- •Input Low Voltage, $\mathsf{V}_{\texttt{IL}}$
	- –Vin such that Vin < V_{IL} = logic 0
	- – point 'a' on the plot
		- $\bm{\cdot}$ where slope, $\frac{\partial Vin}{\partial r} = -1$ ∂*Vout* ∂ *Vin*
- Input High Voltage, V_{IH}
	- –Vin such that Vin > V $_{\rm IH}$ = logic 1
	- – point 'b' on the plot
		- where slope =-1
- • Voltage Noise Margins
	- measure of how stable inputs are with respect to signal interference

$$
\begin{array}{ll}\n\text{VNM}_{H} = V_{OH} - V_{IH} \\
\text{VNM}_{I} = V_{TI} - V_{OI}\n\end{array} = \begin{array}{ll}\n\text{VDD} - V_{IH} \\
\text{VNM}_{I} = V_{TI} - V_{OI}\n\end{array}
$$

$$
- \boxed{VNM_L = V_{IL} - V_{OL}}
$$

desire large VNM H and VNM L for best noise immunity

–

Switching Threshold

- Switching threshold = point on VTC where Vout = Vin
	- –also called midpoint voltage, V $_{\sf M}$
	- –here, Vin = Vout = V_M
- Calculating V_M
	- $\,$ at V $_{\sf M}$, both nMOS and pMOS in Saturation
	- –in an inverter, $\mathtt{I_{\text{Dn}}}$ = $\mathtt{I_{\text{Dp}}}$, always!
	- –solve equation for V_{M}

$$
I_{Dn} = \frac{\mu_n C_{OX}}{2} \frac{W}{L} (V_{GSn} - V_m)^2 = \frac{\beta_n}{2} (V_{GSn} - V_m)^2 = \frac{\beta_p}{2} (V_{SGp} - |V_m|)^2 = I_{Dp}
$$

–express in terms of V_{M}

$$
\frac{\beta_n}{2}(V_M - V_m)^2 = \frac{\beta_p}{2}(V_{DD} - V_m - |V_p|)^2 \qquad \Longrightarrow \qquad \sqrt{\frac{\beta_n}{\beta_p}}(V_M - V_m) = V_{DD} - V_M - |V_p|
$$

 $1\, +$

- solve for
$$
V_M
$$

$$
V_M = \frac{VDD - |V_{tp}| + V_m \sqrt{\frac{\beta_m}{\beta_p}}
$$

ECE 410, Prof. A. Mason Lecture Notes 7.5

p

p

n β

 β

 V_{out}

 V_M

"ר)

 V_{II}

 $V_{I\!H}$

 $V_{OH} = 0$

 $V_{OH} = V_{DD}$

Mp on Mn off

 $V_{out} = V_{in}$

Mn on Mp off

" $1"$ V_{DD}

Effect of Transistor Size on VTC

• **Recall**
\n
$$
\beta_n = k'_n \frac{W}{L} \qquad \frac{\beta_n}{\beta_p} = \frac{k'_n \left(\frac{W}{L}\right)_n}{k'_p \left(\frac{W}{L}\right)_p}
$$

$$
V_{M} = \frac{VDD - \left|V_{tp}\right| + V_{tn}\sqrt{\frac{\beta_{n}}{\beta_{p}}}}{1 + \sqrt{\frac{\beta_{n}}{\beta_{p}}}}
$$

- If nMOS and pMOS are same size
	- –(W/L)n = (W/L)p
	- –Coxn = Coxp (always)

$$
\frac{\beta_n}{\beta_p} = \frac{\mu_n C_{oxn} \left(\frac{W}{L}\right)_n}{\mu_p C_{oxp} \left(\frac{W}{L}\right)_p} = \frac{\mu_n}{\mu_p} \approx 2or3
$$

• **If**
$$
\frac{\mu_n}{\mu_p} = \frac{\left(\frac{W}{L}\right)_p}{\left(\frac{W}{L}\right)_n}, then \frac{\beta_n}{\beta_p} = 1
$$

since L normally min. size for all tx, can get betas equal by making Wp larger than Wn

- Effect on switching threshold
	- − if $\beta_n \approx \beta_p$ and Vtn = |Vtp|, V_M = VDD/2, <u>exactly in the middle</u>
- Effect on noise margin
	- if $\beta_\mathsf{n} \approx \beta_\mathsf{p}$, $\mathsf{V}_{\mathsf{I}\mathsf{H}}$ and $\mathsf{V}_{\mathsf{I}\mathsf{L}}$ both close to V_{M} and <u>noise margin is good</u>

Example

•Given

-
$$
k'n = 140uA/V^2
$$
, $Vtn = 0.7V$, $VDD = 3V$

-
$$
k'p = 60uA/V^2
$$
, $Vtp = -0.7V$

- • Find
	- –a) tx size ratio so that V_M = 1.5V
	- –b) V_M if tx are same size

as beta ratio increases

CMOS Inverter: Transient Analysis

- Analyze Transient Characteristics of CMOS Gates by studying an Inverter
- Transient Analysis
	- –signal value as a function of time
- Transient Analysis of CMOS Inverter
	- –Vin(t), input voltage, function of time
	- Vout(t), output voltage, function of time
	- –VDD and Ground, DC (not function of time)
	- –find Vout(t) = f(Vin(t))
- • Transient Parameters
	- –output signal rise and fall time
	- –propagation delay

 $V^{}_{\hspace{-0.5pt} D\hspace{-0.2pt} D}$

Transient Response

Fall Time

Rise Time

Propagation Delay

- Propagation Delay, t_p
	- –measures speed of output reaction to input change
	- $t_p = \frac{1}{2} (t_{pf} + t_{pr})$
- Fall propagation delay, ${\sf t}_{\sf pf}$
	- – time for output to fall by 50%
		- reference to input change by 50%
- Rise propagation delay, ${\sf t}_{\sf pr}$
	- – time for output to rise by 50%
		- reference to input change by 50%
- Ideal expression (if input is step change)
	- ${\sf t}_{\sf pf}$ = ln(2) ${\sf \tau}_{\sf n}$ –
- ${\sf t}_{\sf pr}$ = ln(2) ${\sf \tau}_{\sf p}$ • Total Propagation Delay
	- | t_p = 0.35(τ_n + τ_p)

Propagation delay measurement:

- from time input reaches 50% value
- to time output reaches 50% value

Add rise and fall propagation delays for total value

Switching Speed -Resistance

- Rise & Fall Time - t_f = 2.2 τ_n , t_r = 2.2 τ_p ,
- Propagation Delay
	- t_p = 0.35($\tau_{\sf n}$ + $\tau_{\sf p}$)
- In General
	- –<mark>delay</mark> ∝ τ_n + τ_p – τ_n + τ_p = Cout (Rn+Rp)
- Define delay in terms of design parameters
	- Rn+Rp = (V_{DD}-Vt)(β_n + β_p) $\beta_{\sf n}\,\beta_{\sf p}({\sf V}_{\sf D\sf D}\text{-}{\sf V}\texttt{t})^2$
	- Rn+Rp = $\beta_n + \beta_p$ $\beta_{\sf n}\,\beta_{\sf p}({\sf V}_{\sf D\sf D}\text{-}{\sf V}\texttt{t})$

$$
\tau_{n} = R_{n}C_{out} \qquad \tau_{p} = R_{p}C_{out}
$$
\n
$$
Rn = 1/[\beta_{n}(V_{DD} - Vtn)] \qquad \beta = \mu C_{ox} (W/L)
$$
\n
$$
Rp = 1/[\beta_{p}(V_{DD} - |Vtp|)]
$$
\n
$$
C_{out} = C_{Dn} + C_{Dp} + C_{L}
$$

Beta Matched if
$$
\beta_n = \beta_p = \beta
$$
,
\n
$$
Rn+Rp = \frac{2}{\beta (V_{DD}-Vt)} = \frac{2 L}{\mu Cox W (V_{DD}-Vt)}
$$

Rn+Rp = L (μ_n+ μ_p) (μ_n μ_p) Cox W (V_{DD}-Vt) Width Matched $\,$ if $\,W_{\sf n}\,$ = $\,W_{\sf p}\,$ = $\,W_{\sf n}\,$ and L=L $_{\sf n}$ =L $_{\sf p}\,$

• if Vt = Vtn = |Vtp| To decrease R's, \Downarrow L, \Uparrow W, \Uparrow VDD, ($\Uparrow_{\mu_p}, \Uparrow$ Cox)

Switching Speed -Capacitance

- • From Resistance we have
	- − ↓L, ↑W, ↑VDD, (↑μ_p,↑Cox)
	- but ⇑ VDD increases power
	- ⇑ W increases Cout
- • Cout
	- C out = $\frac{1}{2}$ C ox L $(W_n+W_p)+C_j$ 2L $({\sf W}_{{\sf n}}\text{-} {\sf W}_{{\sf p}})$ + 3 Cox L $({\sf W}_{{\sf n}}\text{-} {\sf W}_{{\sf p}})$
		- assuming junction area ~W•2L
		- neglecting sidewall capacitance
	- C out \approx L (W_n+W_p) [3 $\frac{1}{2}$ C ox +2 C_j]
	- C out ∝ L (W_n+W_p)
	- $\mathsf{To}\,$ decrease Cout, $\mathsf{\Psi L}\,$, $\mathsf{\Psi W}\,$, $\mathsf{\Psi Cj}\,$, $\mathsf{\Psi Cox}\,$)
- •Delay \propto Cout(Rn+Rp) \propto L W L \vert = L^2 W VDD VDD

$$
C_{\text{Dp}} = \frac{1}{2} \text{Cox } W_{\text{p}} L + C_{\text{j}} A_{\text{Dpbot}} + C_{\text{jsw}} P_{\text{Dpsw}}
$$

Decreasing L (reducing feature size) **is best way to improve speed!**

Switching Speed -Local Modification

- Previous analysis applies to the overall design
	- –shows that reducing feature size is critical for higher speed
	- –general result useful for creating cell libraries
- How do you improve speed within a specific gate?
	- –increasing W in one gate will not increase $\mathcal{C}_{\mathbf{\mathcal{G}}}$ of the load gates
		- C out = $C_{\sf Dn}$ + $C_{\sf Dp}$ + $C_{\sf L}$
		- increasing W in one logic gate will increase $\mathcal{C}_{{\mathsf{D}}{\mathsf{n}}/{\mathsf{p}}}$ but not $\mathcal{C}_{{\mathsf{L}}}$
			- $\,$ $\,$ $C_{\rm L}$ depends on the size of the tx gates at the output
			- $\,$ as long as they keep minimum W, \mathcal{C}_{L} will be constant
	- – thus, increasing W is a good way to improve the speed within a local point
	- – But, increasing W increases chip area needed, which is bad
		- fast circuits need more chip area (chip "real estate")
- • Increasing VDD is not a good choice because it increases power consumption

CMOS Power Consumption

- leakage currents cause I_{DD} > 0, define **quiescent** leakage current, I_{DDQ} (due largely to leakage at substrate junctions)
- P_{DC}=I_{DDQ} V_{DD}
- • Pdyn, power required to switch the state of a gate
	- –charge transferred during transition, Qe = Cout VDD
	- –assume each gate must transfer this charge 1x/clock cycle
	- –Paverage = V_{DD} Qe f = Cout V_{DD}² f, f = frequency of signal change
- • Γ otal Power, P = $\mathsf{I}_{\mathsf{DDQ}}$ V_{DD} + Cout V_{DD}² f

Power increases with Cout and frequency, and **strongly** with VDD (second order).

Multi-Input Gate Signal Transitions

- • In multi-input gates multiple signal transitions produce output changes
- What signal transitions need to be analyzed?
	- –for a general N-input gate with $\mathsf{M} _0$ low output states and $\mathsf{M} _1$ high output states
		- $\bm{\cdot}\hspace{0.5cm}$ # high-to-low output transitions = $\bm{\mathsf{M}}_{0}\bm{\cdot}\bm{\mathsf{M}}_{1}$
		- $\bm{\cdot}\hspace{0.5cm}$ # low-to-high output transitions = $\bm{\mathsf{M}}_{1}\bm{\cdot}\bm{\mathsf{M}}_{\bm{\mathsf{O}}}$
		- \cdot total transitions to be characterized = 2⋅M $_{\rm O}$ ⋅M $_{\rm 1}$
		- example: NAND has M $_{\rm O}$ = 1, M $_{\rm 1}$ = 3
	- –don't test/characterize cases without output transitions
- • Worst-case delay is the slowest of all possible cases
	- –worst-case high-to-low
	- –worst-case low-to-high
	- often different input transitions for each of these cases

Series/Parallel Equivalent Circuits

- • Scale both W and L
	- –no effective change in W/L
	- increases gate capacitance
- **inputs must be at same value/voltage**
	- Series Transistors
		- increases effective L

- • Parallel Transistors
	- increases effective W

NAND: DC Analysis

ECE 410, Prof. A. Mason Lecture Notes 7.19

NAND Switching Point

- • Calculate VM for NAND
	- 0,0 to 1,1 transition
		- all tx change states (on, off)
		- in other transitions, only 2 change

$$
- V_M = V_A = V_B = Vout
$$

- set
$$
I_{Dn} = I_{Dp}
$$
, solve for V_M

$$
V_M = \frac{VDD - |V_{tp}| + V_m \frac{1}{2} \sqrt{\frac{\beta_n}{\beta_p}}}{1 + \frac{1}{2} \sqrt{\frac{\beta_n}{\beta_p}}}
$$

- – denominator reduced more
	- VTC shifts right
- •For NAND with N inputs

to balance this effect and set V_{M} to $\mathsf{V}_{\mathsf{DD}}\!/2,$ can increase β by increasing Wn but, since μ_n>μ_p, V_M≈V_{DD}/2 when $Wn = Wp$

output **falling**,

Gnd

NOR: DC Analysis

NAND: Transient Analysis

 V_{DD} NAND RC Circuit $R_{\scriptscriptstyle D}$ – R: standard channel resistance - C : Cout = $C_{\textrm{L}}$ + $C_{\textrm{Dn}}$ + 2 $C_{\textrm{Dp}}$ V_B Rise Time, t_r v_{out} $V_{\bm{DD}}$ c_{out} $R_p \geqslant$ – Worst case charge circuit $V_{\boldsymbol{A}}$ • 1 pMOS ON - | t_r = 2.2 τ_p \star V_{out} $C_{out} =$ • $\tau_{\sf p}$ = R_p Cout – best case charge circuit \cdot $\,$ 2 pMOS ON, Rp \Rightarrow Rp/2 (a) Charging circuit Fall Time, t f dis . – Discharge Circuit C_{out} R_n $\boldsymbol{\cdot}$ $\,$ 2 series nMOS, Rn \Rightarrow 2Rn V_{out} • must account for internal cap, $\mathcal C \mathsf x$ R_n - | t_f = 2.2 τ_n $\mathsf{Cx} = \mathsf{C_{Sn}} + \mathsf{C_{Dn}}$ \cdot τ_n = Cout (2 R_n) + Cx R_n (b) Discharging circuit

•

•

 \bullet

NOR: Transient Analysis

NAND/NOR Performance

- •Inverter: symmetry (V_M=V_{DD}/2), βn = βp
	- (W/L)_p = μ_n/μ_p (W/L)_n
- • Match INV performance with NAND
	- $\,$ pMOS, $\beta_{\sf P}$ = β p, same as inverter
	- $\,$ nMOS, β_N = 2 β n, to balance for 2 series nMOS
- Match INV performance with NOR
	- $\,$ pMOS, $\beta_{\sf P}$ = 2 β p, to balance for 2 series pMOS

 $β$ is adjusted by changing transistor size (width)

NAND/NOR Transient Summary

- • Critical Delay Path
	- –paths through series transistors will be slower
	- –more series transistors means worse delays
- • Tx Sizing Considerations
	- increase W in series transistors
	- balance $\beta_{\sf n}/\beta_{\sf p}$ for each cell
- Worst Case Transition
	- –when all series transistor go from OFF to ON
	- – and all internal caps have to be
		- charged (NOR)
		- discharged (NAND)

Performance Considerations

- \cdot Speed based on β n, β p and parasitic caps
- •DC performance (V_M, noise) based on β n/ β p
- • Design for speed not necessarily provide good DC performance
- Generally set tx size to optimize speed and then test DC characteristics to ensure adequate noise immunity
- Review Inverter: Our performance reference point
	- –for symmetry (V_M=V_{DD}/2), β n = β p
		- \cdot which requires (W/L) $_{\sf p}$ = $\mu_{\sf n}/\mu_{\sf p}$ (W/L) $_{\sf n}$
- Use inverter as reference point for more complex gates
- • Apply slowest arriving inputs to series node closest to output output slower signal
	- – let faster signals begin to charge/discharge nodes closer to VDD and Ground faster

power supply

Timing in Complex Logic Gates

- Critical delay path is due to series-connected transistors
- Example: f = x (y+z)
	- assume all tx are same size
- Fall time critical delay
	- –worst case, x ON, and y or z ON
	- $-$ t_f = 2.2 τ_{n} \cdot τ_n = Rn Cn + 2 Rn C_{out} - C_{out} = 2 C_{Dp} + C_{Dn} + C_{L} – C n = 2 \mathcal{C}_Dn + \mathcal{C}_Sn
- Rise time critical delay
	- worst case, y and z ON, x OFF

$$
- tr = 2.2 \taup
$$

\n
$$
- \taup = Rp Cp + 2 Rp Cout
$$

\n
$$
- Cout = 2Cbp + Cbn + CL
$$

\n
$$
- Cp = Cbp + Csp
$$

size vs. tx speed considerations ⇑Wnx [⇒] ⇓Rn but ⇑Cout and ⇑Cn⇓Wny [⇒] ⇓Cn but ⇑Rn

⇑Wpz [⇒] ⇓Rp but ⇑Cout and ⇑Cp \mathbb{U} Wpx \Rightarrow no effect on critical path

Sizing in Complex Logic Gates

- •Improving speed within a single logic gate $\mu_{p_1=2\beta_p}$
- •An Example: f=(a b+c d) x
- • nMOS
	- –discharge through 3 series nMOS
	- set β_N = 3 β n
- pMOS

•

- –charge through 2 series pMOS
- set $\beta_{\sf P}$ = 2 $\beta{\sf p}$
- but, Mp-x is alone so β_{P1} = β p
	- \cdot but setting $\beta_{\texttt{P1}}$ = 2 β p might make layout easier
- These large transistors will <u>increase capacitance</u> and layout area and may only give a small increase in speed

Advanced logic structures are best way to improve speed

 V_{DD}

 β_{P1}

 $\beta_{N1} = 3\beta_n$

 $\beta_{N}=3\beta_{n}$

 $\beta_N = 3\beta_n$

 $b \bullet \circlearrowleft$

 $\beta_{\rm N}$

 $\beta_{\rm N}$

 $\beta_{\rm P}$

Timing in Multi-Gate Circuits

•What is the worst-case delay in multi-gate circuits?

- –too many transitions to test manually
- • Critical Path
	- –longest delay through a circuit block
	- –largest sum of delays, from input to output
	- – intuitive analysis: signal that passes through most gates
		- not always true. can be slower path through fewer gates

path through most gates critical path if delay due to D input is very slow

A B C D | F 0 0 0 0 0

1 0 0 0 $|_0$ $\neg B$ \uparrow

C↑

C↑*D*↓

0 0 0

1 1 0 0 1

1 1 1 1 1

 Ω 0

Power in Multi-Input Logic Gates

•Inverter Power Consumption

$$
P = P_{DC} + P_{dyn} = V_{DD}I_{DDQ} + C_{out}V^2_{DD}f
$$

- assumes gates switches output state once per clock cycle, f
- •Multi-Input Gates

–

- –same DC component as inverter, P $_{\sf DC}$ = $\mathsf{V}_{\sf DD}\mathsf{I}_{\sf DDQ}$
- – for dynamic power, need to estimate "activity" of the gate, how often will the output be switching

– $\mathsf{P}_{\sf dyn}$ = $\mathsf{a} \mathcal{C}_{\sf out}$ V² _{DD}f, a = activity coefficie<u>nt</u>

NOR NAND

–estimate activity from truth table

$$
\cdot \boxed{a = p_0 p_1}
$$

- $\, {\sf p}_{\rm 0}$ = prob. output is at 0 $\,$
- $\, {\sf p}_1^{}$ = prob. of transition to 1

 $A + B$ $A \cdot B$ \boldsymbol{B} A $\mathbf 0$ $\mathbf 0$ 1 1 $\mathbf 0$ 1 $\mathbf 0$ $\mathbf 0$ 1 0 0 p0=0.75 p0=0.25 $p1=0.25$ p1=0.75

 $a = 3/16$

 $a = 3/16$

Timing Analysis of Transmission Gates

- •TG = parallel nMOS and pMOS
- • RC Model
	- –in general, only one tx active at same tim $\bar{\bar{e}}$
		- nMOS pulls output low
		- pMOS pushes output high
	- – $\mathsf{R}_{\mathsf{T} G}$ = max (Rn, Rp)
	- – C in = C_{Sn} + C_{Dp}
		- if output at higher voltage than input
	- –larger W will decrease R but increase Cin
- \bullet Note: no connections to VDD-Ground. Input signal, Vin, must drive TG output; TG just adds extra delay

∕out.

 $V_{\bm{out}}$

 V_{tn}

 R_{TG}

 $\boldsymbol{C_{in}}$

 V_{in}

Pass Transistor

- • nMOS can't pull output to VDD
	- –rise time suffers from threshold loss in nMOS

