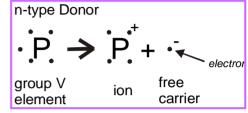
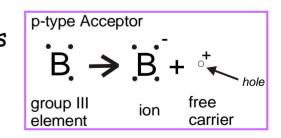
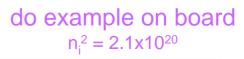
#### **Intrinsic Silicon Properties**

- Read textbook, section 3.2.1, 3.2.2, 3.2.3
- Intrinsic Semiconductors
  - undoped (i.e., not n+ or p+) silicon has *intrinsic* charge carriers
  - electron-hole pairs are created by thermal energy
  - intrinsic carrier concentration =  $n_i = 1.45 \times 10^{10} \text{ cm}^{-3}$ , at room temp.
  - function of temperature: increase or decrease with temp?
  - $n = p = n_i$ , in intrinsic (undoped) material
    - $n \equiv$  number of electrons,  $p \equiv$  number of holes
  - mass-action law,  $np = n_i^2$ 
    - applies to undoped and doped material




## **Extrinsic Silicon Properties**


- doping, adding dopants to modify material properties
  - n-type = n+, add elements with extra an electron
    - (arsenic, As, or phosphorus, P), Group V elements
    - $n_n \equiv$  concentration of electrons in n-type material
    - $n_n = N_d$  cm<sup>-3</sup>,  $N_d =$  concentration of <u>donor</u> atoms
    - $p_n \equiv$  concentration of holes in n-type material
    - N<sub>d</sub> p<sub>n</sub> = n<sub>i</sub><sup>2</sup>, using mass-action law
      always a lot more n than p in n-type material


#### - p-type = p+, add elements with an extra hole

- (boron, B)
- $p_p \equiv$  concentration of holes in p-type material
- $p_p = N_a \text{ cm}^{-3}$ ,  $N_a = \text{ concentration of } \frac{\text{acceptor}}{\text{atoms}}$  atoms
- $n_p \equiv concentration of electrons in p-type material$
- $N_a n_p = n_i^2$ , using mass-action law
  - always a lot more p than n in p-type material
- if both  $N_d$  and  $N_a$  present,  $n_n = N_d N_a$ ,  $p_p = N_a N_d$



n+/p+ defines region as heavily doped, typically  $\approx 10^{16}$ - $10^{18}$  cm<sup>-3</sup> less highly doped regions generally labeled n/p (without the +)







ECE 410, Prof. A. Mason

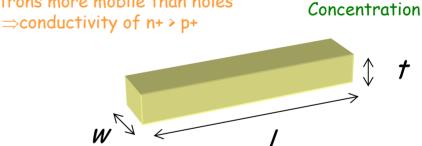
## **Conduction in Semiconductors**

mobility = average velocity per

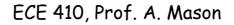
unit electric field

 $\mu_n > \mu_p$ 

electrons more mobile than holes


- doping provides free charge carriers, alters conductivity
- conductivity,  $\sigma$ , in semic. w/ carrier densities n and p

$$\sigma = q(\mu_n n + \mu_p p), q = \text{electron charge, } q = 1.6 \times 10^{-19} [\text{Coulombs}]$$


•  $\mu = \text{mobility [cm^2/V-sec]}, \mu_n \cong 1360, \mu_p \cong 480$  (typical values)

- in n-type region,  $n_n \gg p_n$ 
  - $\neg \sigma \approx q\mu_n n_n$
- in p-type region,  $p_p \gg n_p$ 
  - $\sigma \approx q\mu_p n_p$
- resistivity,  $\rho = 1/\sigma$
- resistance of an n+ or p+ region

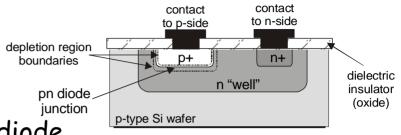
$$- R = \frac{\rho /}{A}, A = wt$$

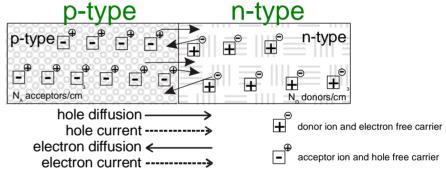


- drift current (flow of charge carriers in presence of an electric field,  $E_x$ )
  - n/p drift current density:  $Jxn = \sigma_n E_x = q\mu_n n_n E_x$ ,  $Jxp = \sigma_p E_x = q\mu_p p_p E_x$
  - total drift current density in x direction  $Jx = q(\mu_n n + \mu_p p) E_x = \sigma E_x$

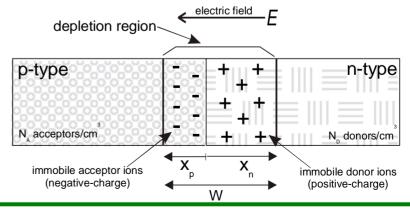


Mobility often


assumed constant


but is a function of

Temperature and Doping


## pn Junctions: Intro

- What is a pn Junction?
  - interface of p-type and n-type semiconductor
  - junction of two materials forms a diode
- In the Beginning...
  - ionization of dopants at material interface





- Diffusion -movement of charge to regions of lower concentration
  - free carries diffuse out
  - leave behind immobile ions
  - region become depleted of free carriers
  - ions establish an electric field
    - acts against diffusion



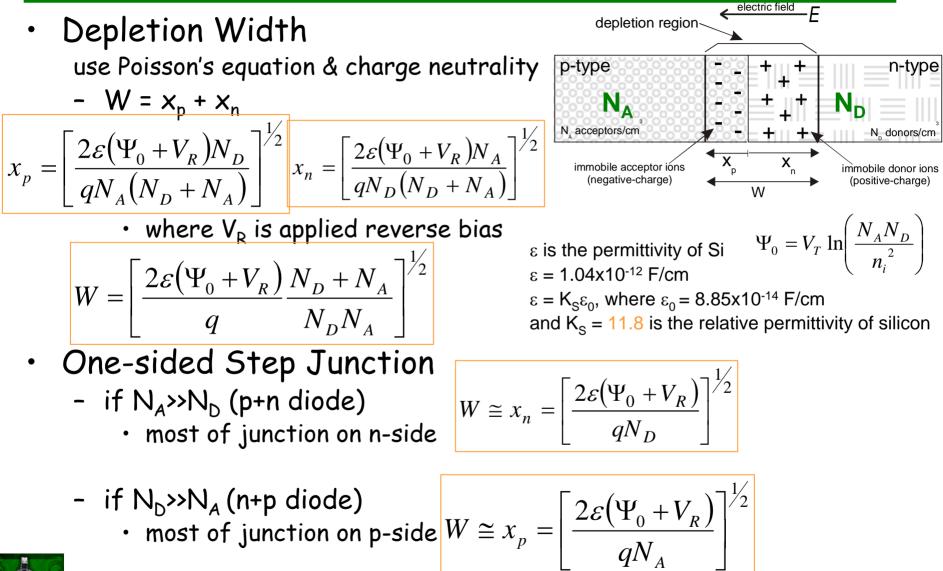


ECE 410, Prof. A. Mason

# pn Junctions: Equilibrium Conditions

- - $q A x_p N_A = q A x_n N_D$ , A=junction area;  $x_p$ ,  $x_n$  depth into p/n side
  - $\bullet \implies \mathsf{x}_{\mathsf{p}}\mathsf{N}_{\mathsf{A}} = \mathsf{x}_{\mathsf{n}}\mathsf{N}_{\mathsf{D}}$
  - depletion region will extend further into the more lightly doped side of the junction
- Built-in Potential
  - diffusion of carriers leaves behind immobile charged ions
  - ions create an electric field which generates a built-in potential

$$\Psi_0 = V_T \ln\left(\frac{N_A N_D}{n_i^2}\right)$$




• where  $V_T = kT/q = 26mV$  at room temperature

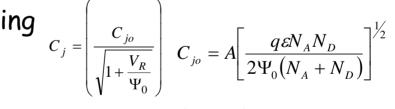
n-type

(positive-charge)

## pn Junctions: Depletion Width





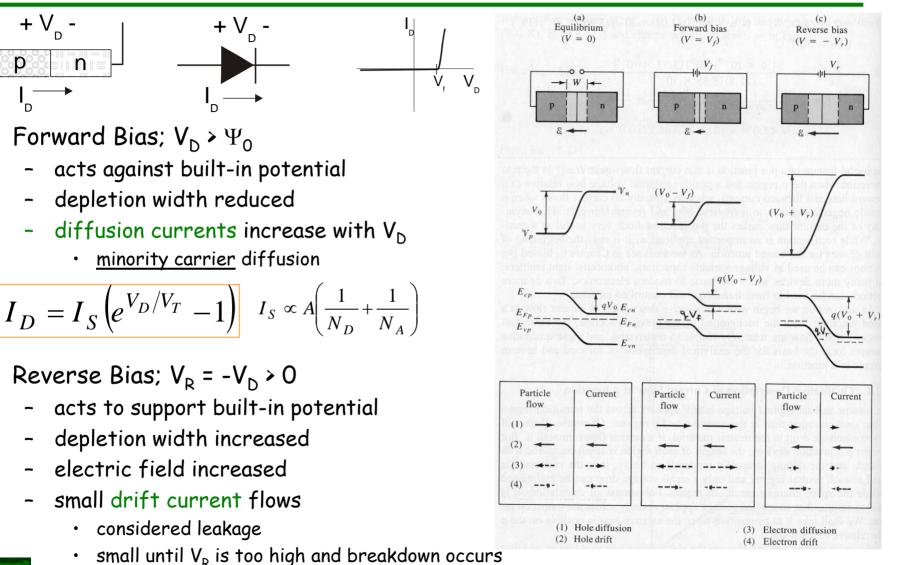

## pn Junctions - Depletion Capacitance

- Free carriers are separated by the depletion layer
- Separation of charge creates junction capacitance
  - $C_j = \epsilon A/d \Rightarrow (d = depletion width, W)$

$$C_{j} = A \left[ \frac{q \varepsilon N_{A} N_{D}}{2(N_{A} + N_{D})} \right]^{1/2} \left( \frac{1}{\sqrt{\Psi_{0} + V_{R}}} \right)$$

ε is the permittivity of Si  $ε = 11.8 ε_0 = 1.04 x 10^{-12}$  F/cm V<sub>R</sub> = applied reverse bias

- A is complex to calculate in semiconductor diodes
  - consists of both bottom of the well and side-wall areas
- Cj is a strong function of biasing
  - must be re-calculated if bias conditions change

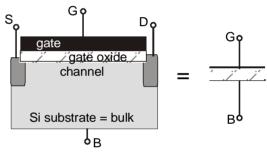


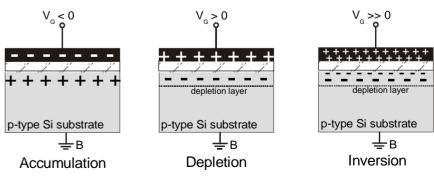

 $C_{j} = \begin{vmatrix} C_{jo} \\ \frac{1}{3\sqrt{1 + \frac{V_{R}}{V_{L}}}} \end{vmatrix}$ 

- CMOS doping is not linear/constant
  - graded junction approximation
- Junction Breakdown
  - if reverse bias is too high (typically > 30V) can get strong reverse current flow



## **Diode Biasing and Current Flow**

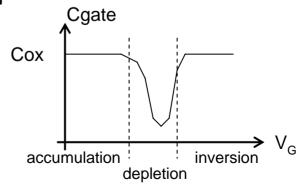



p

## **MOSFET** Capacitor

- MOSFETs move charge from drain to source underneath the gate,
  if a conductive channel exists under the gate
- Understanding how and why the conductive channel is produced is important
- MOSFET capacitor models the gate/oxide/substrate region
  - source and drain are ignored
  - substrate changes with applied gate voltage
- Consider an nMOS device
  - Accumulation,  $V_G < 0$ , (-)ve charge on gate
    - induces (+)ve charge in substrate
    - (+)ve charge accumulate from substrate holes (h+)
  - Depletion,  $V_G > 0$  but small
    - creates depletion region in substrate
    - (-)ve charge but no free carriers
  - Inversion, V<sub>G</sub> > 0 but larger
    - further depletion requires high energy p-type S
    - (-)ve charge pulled from Ground
    - electron (e-) free carriers in channel








## Capacitance in MOSFET Capacitor

- In Accumulation
  - Gate capacitance = Oxide capacitance <sup>inside of the</sup> dashed-line border
  - $Cox = \varepsilon_{ox}/t_{ox} [F/cm^2]$
- In Depletion
  - Gate capacitance has 2 components
  - 1) oxide capacitance
  - 2) depletion capacitance of the substrate depletion region
    - Cdep =  $\varepsilon_{si}/x_d$ ,  $x_d$  = depth of depletion region into substrate
  - Cgate = Cox (in series with) Cdep = Cox Cdep / (Cox+Cdep) < Cox
    - C's in series add like R's in parallel
- In Inversion
  - free carries at the surface
  - Cgate = Cox



Gate capacitor  $C_{C}$ 

Gate oxide



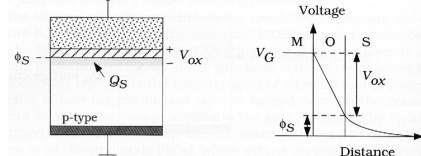
VG

Gate

p

n+

Cox

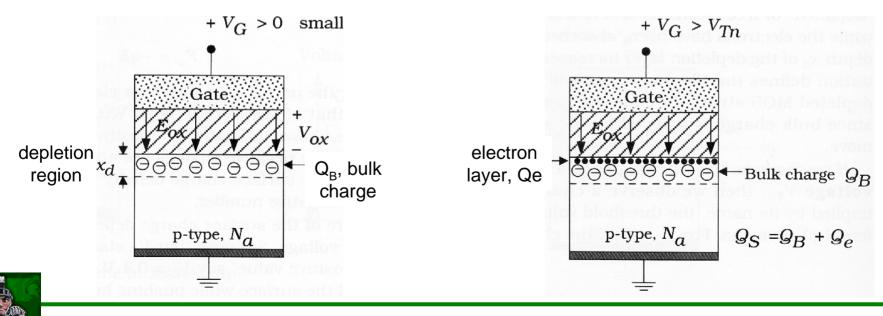

Cdep

n+

M

## **Inversion** Operation

- MOSFET "off" unless in inversion
  - look more deeply at inversion operation  $+ V_G > 0$
- Define some stuff
  - Qs = total charge in substrate
  - $V_G$  = applied gate voltage
  - Vox = voltage drop across oxide




- $\phi_s$  = potential at silicon/oxide interface (relative to substrate-ground)
- Qs =  $Cox V_G$
- $V_G$  = Vox +  $\phi_s$
- During Inversion (for nMOS)
  - $V_G > 0$  applied to gate
  - Vox drops across oxide (assume linear)
  - $\phi_{s}$  drops across the silicon substrate, most near the surface

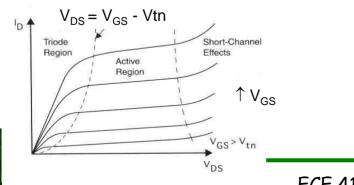


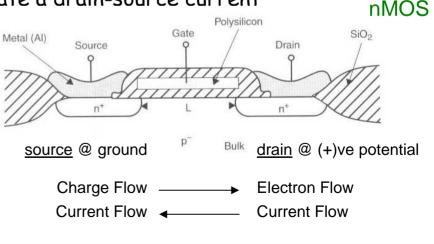
### Surface Charge

- $Q_{R}$  = bulk charge, ion charge in depletion region under the gate
  - $Q_B = -q N_A x_d$ ,  $x_d = depletion depth x_d = \left[\frac{2\varepsilon\phi_s}{qN_A}\right]^{\frac{1}{2}}$   $Q_B = -(2q \varepsilon_{si} N_A \phi_s)^{1/2} = f(V_G)$
  - charge per unit area
- Qe = charge due to free electrons at substrate surface
- $QS = Q_{R} + Qe < 0$  (negative charge for nMOS)



ECE 410, Prof. A. Mason


## Surface Charge vs. Gate Voltage


- Surface Charge vs. Gate Voltage
  - $V_G$  < Vtn, substrate charge is all bulk charge, Qs =  $Q_B$
  - $V_G$  = Vtn, depletion region stops growing
    - $x_d$  at max., further increase of  $V_G$  will NOT increase  $x_d$
    - $Q_B$  at max.
  - $V_G$  > Vtn, substrate charge has both components, Qs =  $Q_B$  + Qe
    - since  $Q_B$  is maxed, further increases in  $V_G$  must increase Qe
    - increasing Qe give more free carriers thus less resistance
- Threshold Voltage
  - Vtn defined as gate voltage where Qe starts to form
  - Qe = -Cox ( $V_G$ -Vtn)
  - Vtn is gate voltage required to
    - overcome material difference between silicon and oxide
    - $\boldsymbol{\cdot}$  establish depletion region in channel to max value/size



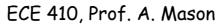
#### **Overview of MOSFET Current**

- Gate current
  - gate is essentially a capacitor  $\Rightarrow$  no current through gate
  - gate is a control node
    - $V_G$  < Vtn, device is off
    - $V_G$  > Vtn, device is on and performance is a function of  $V_{GS}$  and  $V_{DS}$
- Drain Current (current from drain to source),  $I_D$ 
  - Source = source/supply of electrons (nMOS) or holes (pMOS)
  - Drain = drain/sink of electrons (nMOS) or holes (pMOS)
  - $V_{DS}$  establishes an E-field across (horizontally) the channel
    - free charge in an E-field will create a drain-source current
    - is I<sub>D</sub> drift or diffusion current? Metal (AI)
- MOSFET I-V Characteristics





ECE 410, Prof. A. Mason

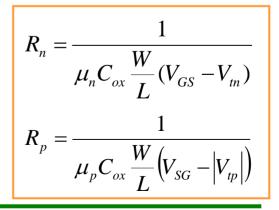

## **Channel Charge and Current**

- Threshold Voltage = Vtn, Vtp
  - amount of voltage required on the gate to turn tx on
  - gate voltage > Vtn/p will induce charge in the channel
- nMOS Channel Charge
  - $Qc = -C_G(V_G-Vtn)$ , from Q=CV, (-) because channel holds electrons
- nMOS Channel Current (linear model:) assumes channel charge is constant from source to drain
  - $I = |Qc| / t_{+}$ , where  $t_{+} = transit time$ , average time to cross channel
    - t<sub>t</sub> = channel length / (average velocity) = L / v
    - average drift velocity in channel due to electric field  $E \rightarrow v = \mu_n E$
    - assuming constant field in channel due to  $V_{DS} \rightarrow E = V_{DS} / L$

$$\Rightarrow I = Qc \frac{\mu_n \frac{V_{DS}}{L}}{L} \quad C_G = CoxWL \Rightarrow |Qc| = CoxWL(V_G - Vtn)$$

-  $I = \mu_n Cox (W/L) (V_G - V tn) V_{DS}$  linear model, assumes constant charge in channel

similar analysis applies for pMOS, see textbook




#### **Transconductance and Channel Resistance**

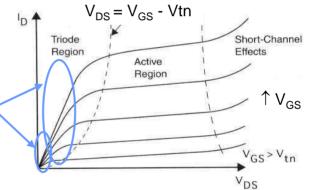
- nMOS Channel Charge:  $Qc = -C_G(V_G Vtn)$
- nMOS linear model Channel Current:
  - $I = \mu_n Cox(W/L)(V_G-Vtn) V_{DS}$ 
    - assumes constant charge in channel, valid only for very small  $V_{\text{DS}}$
- nMOS Process Transconductance
  - $k'_n = \mu_n Cox [A/V^2] \Rightarrow I = k'_n (W/L) (V_G-Vtn) V_{DS}$
- nMOS Device Transconductance
  - $\beta_n = \mu_n Cox (W/L) [A/V^2] \Rightarrow I = \beta_n (V_G-Vtn) V_{DS}$

applies for pMOS, Vtn) V<sub>DS</sub> see textbook

- constant for set transistor size and process
- nMOS Channel Resistance
  - channel current between Drain and Source
  - channel resistance =  $V_{DS}$  /  $I_{DS}$
  - Rn = 1/(  $\beta_n$  (V<sub>G</sub>-Vtn) )
  - pMOS: k'p =  $\mu_p Cox$ ,  $\beta_p = \mu_p Cox$  (W/L)



similar analysis

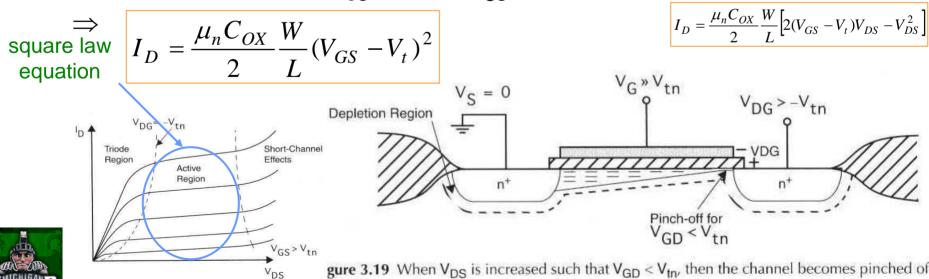


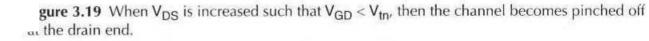

## nMOS Current vs.Voltage

- Cutoff Region
  - $V_{GS} < Vtn$  $\Rightarrow I_{D} = 0$
- Linear Region
  - $V_{GS}$  > Vth,  $V_{DS}$  > 0 but very small
    - Qe = -Cox ( $V_{GS}$ -Vtn)
    - $I_{D} = \mu_{n} Qe (W/L) V_{DS}$
  - $\Rightarrow$  I<sub>D</sub> =  $\mu_{n}$ Cox (W/L) (V<sub>GS</sub>-Vtn) V<sub>DS</sub>
- Triode Region
  - $V_{GS}$  > Vth, 0 <  $V_{DS}$  <  $V_{GS}$ -Vth

- General Integral for expressing ID • channel charge = f(y)
- channel voltage = f(y)
- y is direction from drain to source

$$I_D = \alpha \int_0^{V_D} Q_I(y) \delta V(y)$$



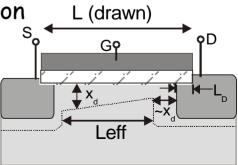


- surface potential,  $\phi_s$ , at drain now f(V<sub>GS</sub>-V<sub>DS</sub>=V<sub>GD</sub>)  $\Rightarrow$  less charge near drain
- assume channel charge varies linearly from drain to source
  - at source:  $Qe = -Cox (V_{GS}-Vtn)$ , at drain: Qe = 0

$$\Rightarrow I_D = \frac{\mu_n C_{OX}}{2} \frac{W}{L} \Big[ 2(V_{GS} - V_t) V_{DS} - V_{DS}^2 \Big]$$

#### nMOS Current vs.Voltage

- Saturation Region (Active Region)
  - $V_{GS}$  > Vtn,  $V_{DS}$  >  $V_{GS}$ -Vtn
    - surface potential at drain,  $\phi_{sd} = V_{GS}$ -Vtn- $V_{DS}$
    - when  $V_{DS} = V_{GS}$ -Vtn,  $\phi_{sd} = 0 \implies$  channel not inverted at the drain
      - channel is said to be pinched off
    - during pinch off, further increase in  $V_{DS}$  will not increase  $I_{D}$ 
      - define saturation voltage, Vsat, when  $V_{DS} = V_{GS}$ -Vtn
    - current is saturated, no longer increases
    - substitute Vsat= $V_{GS}$ -Vtn for  $V_{DS}$  into triode equation






## Other Stuff

- Transconductance
  - process transconductance, k' =  $\mu_n Cox$ 
    - constant for a given fabrication process
  - device transconductance,  $\beta_n = k' W/L$
- Surface Mobility
  - mobility at the surface is lower than mobility deep inside silicon
  - for current,  $I_{\rm D},$  calculation, typical  $\mu_{\rm n}$  = 500-580 cm²/V-sec
- Effective Channel Length
  - effective channel length reduced by
    - lateral diffusion under the gate
    - depletion spreading from drain-substrate junction

$$Leff = L(drawn) - 2L_D - X_d$$

$$X_{d} = \sqrt{\left(\frac{2\varepsilon_{s}\left(V_{D} - \left(V_{G} - V_{t}\right)\right)}{qN_{A}}\right)}$$





#### ECE 410, Prof. A. Mason

## Second Order Effects

- Channel Length Modulation
  - Square Law Equation predicts  $\mathbf{I}_{D}$  is constant with  $V_{DS}$
  - However,  $\mathbf{I}_{\mathsf{D}}$  actually increases slightly with  $V_{\mathsf{DS}}$ 
    - due to effective channel getting shorter as  $V_{\mbox{\scriptsize DS}}$  increases
    - effect called channel length modulation
  - Channel Length Modulation factor,  $\lambda$ 
    - models change in channel length with  $V_{\text{DS}}$
  - Corrected  $\mathbf{I}_{\mathsf{D}}$  equation

$$I_{D} = \frac{\mu_{n} C_{OX}}{2} \frac{W}{L} (V_{GS} - V_{t})^{2} (1 + \lambda (V_{DS} - V_{eff}))$$

- Veff =  $V_{GS}$  Vtn
- Body Effect
  - so far we have assumed that substrate and source are grounded
  - if source not at ground, source-to-bulk voltage exists,  $V_{SB} > 0$
  - $V_{SB}$  > 0 will increase the threshold voltage, Vtn =  $f(V_{SB})$
  - called Body Effect, or Body-Bias Effect

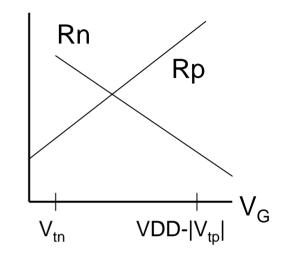


## pMOS Equations

- Analysis of nMOS applies to pMOS with following modifications
  - physical
    - change all n-tpye regions to p-type
    - change all p-type regions to n-type
      - substrate is n-type (nWell)
    - channel charge is positive (holes) and (+)ve charged ions
  - equations
    - change  $V_{GS}$  to  $V_{SG}$  ( $V_{SG}$  typically = VDD  $V_G$ )
    - change  $V_{DS}$  to  $V_{SD}$  ( $V_{SD}$  typically = VDD  $V_D$ )
    - change Vtn to |Vtp|
      - pMOS threshold is negative, nearly same magnitude as nMOS
  - other factors
    - lower surface mobility, typical value,  $\mu_p$  = 220 cm<sup>2</sup>/V-sec
    - + body effect, change  $V_{\text{SB}}$  to  $V_{\text{BS}}$






### **Transistor Sizing**

Channel Resistance

"ON" resistance of transistors

- Rn =  $1/(\mu_n Cox (W/L) (V_{GS}-Vtn))$
- $Rp = 1/(\mu_p Cox (W/L) (V_{SG^-}|Vtp|))$ 
  - Cox =  $\varepsilon_{ox}/t_{ox}$  [F/cm<sup>2</sup>], process constant
- Channel Resistance Analysis
  - R  $\propto$  1/W (increasing W decreases R & increases Current)
  - R varies with Gate Voltage, see plot above
  - If Wn = Wp, then Rn < Rp
    - since  $\mu_n > \mu_p$
    - assuming Vtn ~ |Vtp|
  - to match resistance, Rn = Rp
    - adjust Wn/Wp to balance for  $\mu_{n} \, \text{>} \, \mu_{p}$





#### **Transistor Sizing**

- Channel Resistances
  - Rn =  $1/(\mu_n Cox (W/L) (V_G-Vtn))$
  - $Rp = 1/(\mu_p Cox (W/L) (V_G |Vtp|))$
  - Rn/Rp =  $\mu_n/\mu_p$ 
    - if Vtn = |Vtp|,  $(W/L)_n = (W/L)_p$
- Matching Channel Resistance
  - there are performance advantage to setting Rn = Rp
    - discussed in Chapter 7
  - to set Rn = Rp
    - define mobility ratio,  $r = \mu_n / \mu_p$

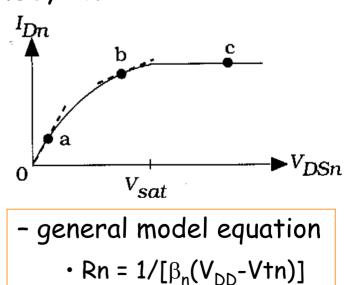
 $\Rightarrow C_{Gp} = r C_{Gn}$  larger gate = higher capacitance

- $(W/L)_p = r (W/L)_n$ 
  - pMOS must be larger than nMOS for same resistance/current
- Negative Impact

How does this impact circuit performance?



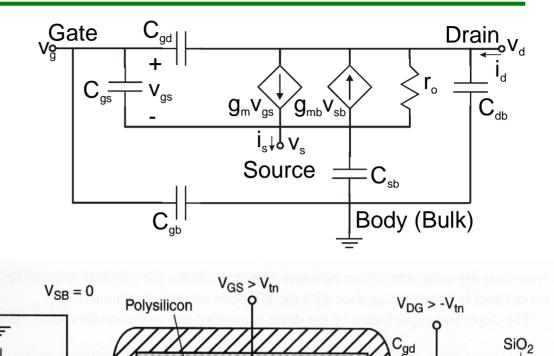
ECE 410, Prof. A. Mason

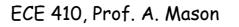

## MOSFET RC Model

 Modeling MOSFET resistance and capacitance is very important for transient characteristics of the device



- Drain-Source (channel) Resistance, Rn
  - Rn =  $V_{DS} / I_{D}$ 
    - function of bias voltages
  - point (a), linear region
    - Rn =  $1/[\beta_n(V_{GS}-Vtn)]$
  - point (b), triode region
    - Rn =  $2/{\{\beta_n[2(V_{GS}-Vtn)-V_{DS}]\}}$
  - point (c), saturation region


• Rn = 
$$2V_{DS} / [\beta_n (V_{GS} - V tn)^2]$$






## **MOSFET** Capacitances - Preview

- Need to find  $C_{\rm S}$  and  $C_{\rm D}$
- MOSFET Small
  Signal model
  - Model Capacitances
    - Cgs
    - Cgd
    - Cgb
    - Cdb
    - Csb
    - no Csd!
- MOSFET Physical Capacitances
  - layer overlap
  - pn junction





n<sup>+</sup>

Csh

C<sub>s-sw</sub>

p<sup>+</sup> Field

Implant

Cas

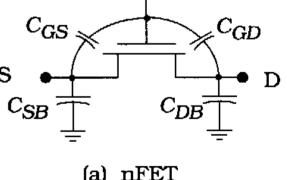
p<sup>-</sup> Substrate

C<sub>d-sw</sub>

n<sup>+</sup>

Cdb




## **RC Model Capacitances**

- Why do we care?
  - capacitances determine switching speed
- Important Notes
  - models developed for saturation (active) region
  - models presented are simplified (not detailed)
- RC Model Capacitances
  - Source Capacitance
    - models capacitance at the Source node

• 
$$C_{\rm S}$$
 =  $C_{\rm GS}$  +  $C_{\rm SB}$ 

 $\bullet C_{\rm D} = C_{\rm GD} + C_{\rm DB}$ 

- Drain Capacitance
  - models capacitance at the Drain node



S

What are  $C_{GS}$ ,  $C_{GD}$ ,  $C_{SB}$ , and  $C_{DB}$ ?



## **MOSFET** Parasitic Capacitances

- Gate Capacitance
  - models capacitance due to overlap of Gate and Channel
    - $C_G = Cox W L$
  - estimate that  $C_G$  is split 50/50 between Source and Drain

• 
$$C_{GS} = \frac{1}{2} C_G$$
  
•  $C_{GD} = \frac{1}{2} C_G$ 

- assume Gate-Bulk capacitance is negligible
  - models overlap of gate with substrate outside the active tx area
  - $C_{GB} = 0$
- Bulk Capacitance
  - $C_{SB}$  (Source-Bulk) and  $C_{DB}$  (Drain-Bulk)
    - pn junction capacitances

$$C_{j} = \left( C_{jo} / \sqrt{1 + \frac{V_{R}}{\Psi_{0}}} \right) \quad C_{jo} = A \left[ \frac{q \varepsilon N_{A} N_{D}}{2\Psi_{0} (N_{A} + N_{D})} \right]$$

What are  $V_R$ ,  $\Psi_0$ ,  $N_A$ , and  $N_D$ ?

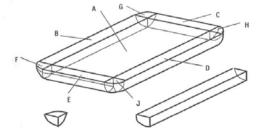




ECE 410, Prof. A. Mason

## **MOSFET Junction Capacitances**

Capacitance/area for pn Junction


$$=C_{jo} / \left(1 + \frac{V_R}{\Psi_0}\right)^{m_j} \qquad C_{jo} = \left[\frac{q \varepsilon N_A}{2\Psi_0}\right]^{1/2} \qquad \Psi_0 = V_T \ln\left(\frac{N_A N_D}{n_i^2}\right)$$

 $m_j = \text{grading coefficient (typically 1/3)}$  assuming  $N_D (n+S/D) >> N_A (p \text{ subst.})$ 

- S/D Junction Capacitance
  - zero-bias capacitance
    - highest value when  $V_R = 0$ , assume this for worst-case estimate

$$C_{j} = C_{jc}$$

- $C_{S/Dj} = C_{jo} A_{S/D}, A_{S/D}$  = area of Source/Drain
  - what is A<sub>S/D</sub>?
  - complex 3-dimensional geometry
    - bottom region and sidewall regions
- $C_{S/Dj}$  = Cbot + Csw
  - bottom and side wall capacitances



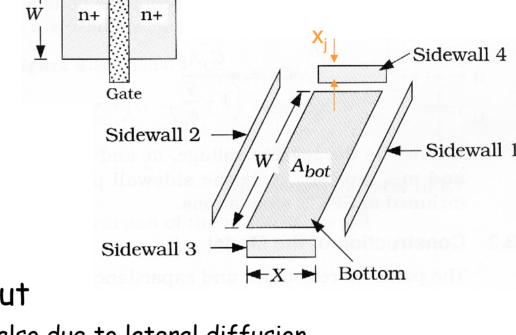
spherical contribution cylindrical contribution



planar contribution Figure 2-11: Diffusion capacitance.



 $C_i$ 


ECE 410, Prof. A. Mason

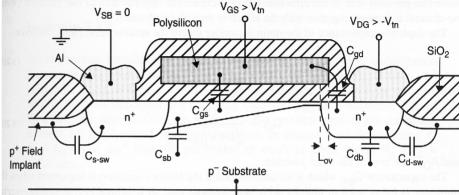
## **Junction Capacitance**

- Bottom Capacitance -  $C_{bot} = C_j A_{bot}$ •  $A_{bot} = X W$ • Sidewall Capacitance -  $C_{sw} = C_{jsw} P_{sw}$ 
  - $C_{jsw} = Cj \times_j [F/cm]$ 
    - $-x_j = junction depth$
    - P<sub>sw</sub> = sidewall perimeter
      P<sub>sw</sub> = 2 (W + X)
  - Accounting Gate Undercut
    - junction actually under gate also due to lateral diffusion
    - $X \Rightarrow X + L_D$  (replace X with X +  $L_D$ )
  - Total Junction Cap

- 
$$C_{S/Dj} = C_{bot} + C_{sw} = C_j A_{bot} + C_{jsw} P_{sw} = C_{S/Dj}$$






## **MOSFET Bulk Capacitances**

General Junction Capacitance

C<sub>SB</sub> (Source-Bulk)


$$-C_{SB} = C_j A_{Sbot} + C_{jsw} P_{Ssw}$$

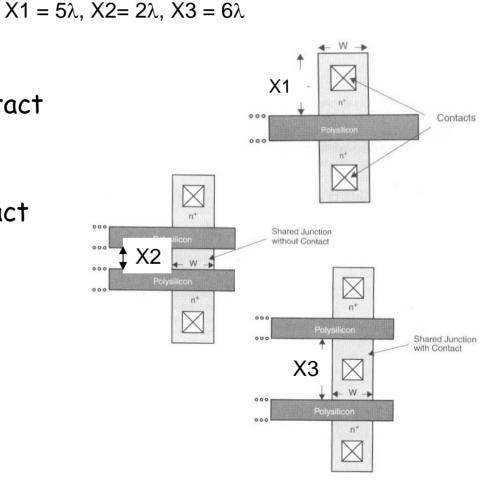
$$C_{DB} (Drain-Bulk) - C_{DB} = C_j A_{Dbot} + C_{jsw} P_{Dsw}$$



- RC Model Capacitances
  - Source Capacitance
    - $C_{\rm S}$  =  $C_{\rm GS}$  +  $C_{\rm SB}$
  - Drain Capacitance

 $\cdot C_{D} = C_{GD} + C_{DB}$ 






ECE 410, Prof. A. Mason

#### **Junction Areas**

 $W = 4\lambda$ 

- Note: calculations assume following design rules
  - poly size, L =  $2\lambda$
  - poly space to contact,  $2\lambda$
  - contact size,  $2\lambda$
  - active overlap of contact,  $1\lambda$
- Non-shared Junction with Contact
  - Area: X1 W = (5)(4) =  $20\lambda^2$
  - Perimeter:  $2(X1 + W) = 18\lambda$
- Shared Junction without Contact
  - Area: X2 W = (2)(4) $\lambda^2$  = 8 $\lambda^2$
  - Perimeter:  $2(X2 + W) = 12\lambda$ 
    - much smaller!
- Shared Junction with Contact
  - Area: X3 W = (6)(4) $\lambda^2$  = 24 $\lambda^2$
  - Perimeter:  $2(X3 + W) = 20\lambda$ 
    - largest area!



