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Intrinsic Silicon Properties
• Read textbook, section 3.2.1, 3.2.2, 3.2.3

• Intrinsic Semiconductors
– undoped (i.e., not n+ or p+) silicon has intrinsic charge 

carriers
– electron-hole pairs are created by thermal energy
– intrinsic carrier concentration ≡ ni = 1.45x1010 cm-3, 

at room temp.
– function of temperature: increase or decrease with temp?
– n = p = ni, in intrinsic (undoped) material

• n ≡ number of electrons, p ≡ number of holes
– mass-action law, np = ni

2

• applies to undoped and doped material
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Extrinsic Silicon Properties
• doping, adding dopants to modify material properties

– n-type = n+, add elements with extra an electron
• (arsenic, As, or phosphorus, P), Group V elements
• nn ≡ concentration of electrons in n-type material
• nn = Nd cm-3, Nd ≡ concentration of donor atoms
• pn ≡ concentration of holes in n-type material
• Nd pn = ni

2, using mass-action law
– always a lot more n than p in n-type material

– p-type = p+, add elements with an extra hole
• (boron, B)
• pp ≡ concentration of holes in p-type material
• pp = Na cm-3, Na ≡ concentration of acceptor atoms
• np ≡ concentration of electrons in p-type material
• Na np = ni

2, using mass-action law
– always a lot more p than n in p-type material

– if both Nd and Na present, nn = Nd-Na, pp=Na-Nd
do example on board

ni
2 = 2.1x1020

n+/p+ defines region
as heavily doped, 

typically ≈ 1016-1018 cm-3

less highly doped regions 
generally labeled n/p 

(without the +)
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Conduction in Semiconductors
• doping provides free charge carriers, alters conductivity 
• conductivity, σ, in semic. w/ carrier densities n and p

– σ = q(μnn + μpp), q ≡ electron charge, q = 1.6x10-19 [Coulombs]
• μ ≡ mobility [cm2/V-sec], μn ≅ 1360, μp ≅ 480 (typical values)

• in n-type region, nn >> pn
– σ ≈ qμnnn

• in p-type region, pp >> np

– σ ≈ qμpnp

• resistivity, ρ = 1/σ
• resistance of an n+ or p+ region

– R = ρ l  ,  A = wt

• drift current (flow of charge carriers in presence of an electric field, Ex)
– n/p drift current density:  Jxn = σn Ex = qμnnnEx,  Jxp = σp Ex = qμpppEx

– total drift current density in x direction  Jx = q(μnn + μpp) Ex = σ Ex

mobility = average velocity per 
unit electric field

μn > μp
electrons more mobile than holes

⇒conductivity of n+ > p+

l

t

w
A

Mobility often 
assumed constant

but is a function of 
Temperature and Doping 

Concentration
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pn Junctions: Intro
• What is a pn Junction?

– interface of p-type and
n-type semiconductor

– junction of two materials forms a diode

• In the Beginning…
– ionization of dopants

at material interface

• Diffusion -movement of charge to regions of lower concentration
– free carries diffuse out
– leave behind immobile ions
– region become depleted of

free carriers
– ions establish an electric field

• acts against diffusion
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pn Junctions: Equilibrium Conditions
• Depletion Region

– area at pn interface 
void of free charges

– charge neutrality
• must have equal charge on both sides
• q A xp NA = q A xn ND , A=junction area; xp, xn depth into p/n side
• ⇒ xp NA = xn ND
• depletion region will extend further into the more lightly doped side 

of the junction

• Built-in Potential
– diffusion of carriers leaves behind immobile charged ions
– ions create an electric field which generates a built-in potential

• where VT = kT/q = 26mV at room temperature

Edepletion region

immobile acceptor ions
(negative-charge)

immobile donor ions
(positive-charge)

electric field

x
p

W

x
n

-
-
-
-

-
-
-
-

+
+
+

+
+
+

+
+

p-type

N  acceptors/cm
A

3

N  donors/cm
D

3

n-type

NA ND

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Ψ 20 ln

i

DA
T n

NNV



ECE 410, Prof. A. Mason Lecture Notes 6.6

pn Junctions: Depletion Width
• Depletion Width

use Poisson’s equation & charge neutrality
– W = xp + xn

• where VR is applied reverse bias

• One-sided Step Junction
– if NA>>ND (p+n diode)

• most of junction on n-side

– if ND>>NA (n+p diode)
• most of junction on p-side
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pn Junctions - Depletion Capacitance
• Free carriers are separated by the depletion layer
• Separation of charge creates junction capacitance

– Cj = εA/d ⇒ (d = depletion width, W)

– A is complex to calculate in semiconductor diodes
• consists of both bottom of the well and side-wall areas

– Cj is a strong function of biasing
• must be re-calculated if

bias conditions change
– CMOS doping is not linear/constant

• graded junction approximation

• Junction Breakdown
– if reverse bias is too high (typically > 30V) can get strong reverse current flow
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• Forward Bias; VD > Ψ0
– acts against built-in potential
– depletion width reduced
– diffusion currents increase with VD

• minority carrier diffusion

• Reverse Bias; VR = -VD > 0
– acts to support built-in potential
– depletion width increased
– electric field increased
– small drift current flows

• considered leakage
• small until VR is too high and breakdown occurs
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MOSFET Capacitor
• MOSFETs move charge from drain to source underneath the gate, 

if a conductive channel exists under the gate
• Understanding how and why the conductive channel is produced is 

important
• MOSFET capacitor models the gate/oxide/substrate region

– source and drain are ignored
– substrate changes with applied gate voltage

• Consider an nMOS device
– Accumulation, VG < 0, (-)ve charge on gate

• induces (+)ve charge in substrate
• (+)ve charge accumulate from substrate holes (h+)

– Depletion, VG > 0 but small
• creates depletion region in substrate
• (-)ve charge but no free carriers

– Inversion, VG > 0 but larger
• further depletion requires high energy
• (-)ve charge pulled from Ground
• electron (e-) free carriers in channel

Si substrate = bulk

gate oxide
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G
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Capacitance in MOSFET Capacitor
• In Accumulation

– Gate capacitance = Oxide capacitance
– Cox = εox/tox [F/cm2]

• In Depletion
– Gate capacitance has 2 components
– 1) oxide capacitance
– 2) depletion capacitance of the substrate depletion region

• Cdep = εsi/xd, xd = depth of depletion region into substrate
– Cgate = Cox (in series with) Cdep = Cox Cdep / (Cox+Cdep) < Cox

• C’s in series add like R’s in parallel
• In Inversion

– free carries at the surface
– Cgate = Cox

Cgate

VG

Cox

inversion
depletion

accumulation

Cox

Cdep
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Inversion Operation
• MOSFET “off” unless in inversion

– look more deeply at inversion operation
• Define some stuff

– Qs = total charge in substrate
– VG = applied gate voltage
– Vox = voltage drop across oxide
– φs = potential at silicon/oxide interface (relative to substrate-ground)

– Qs = - Cox VG

– VG = Vox + φs

• During Inversion (for nMOS)
– VG > 0 applied to gate
– Vox drops across oxide (assume linear)
– φs drops across the silicon substrate, most near the surface
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Surface Charge
• QB = bulk charge, ion charge in depletion region under 

the gate
– QB = - q NA xd, xd = depletion depth
– QB = - (2q εSi NA φs)1/2 = f(VG)
– charge per unit area

• Qe = charge due to free electrons at substrate surface
• Qs = QB + Qe < 0 (negative charge for nMOS)
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Surface Charge vs. Gate Voltage
• Surface Charge vs. Gate Voltage 

– VG < Vtn, substrate charge is all bulk charge, Qs = QB

– VG = Vtn, depletion region stops growing
• xd at max., further increase of VG will NOT increase xd
• QB at max.

– VG > Vtn, substrate charge has both components, Qs = QB + Qe
• since QB is maxed, further increases in VG must increase Qe
• increasing Qe give more free carriers thus less resistance

• Threshold Voltage
– Vtn defined as gate voltage where Qe starts to form
– Qe = -Cox (VG-Vtn)
– Vtn is gate voltage required to

• overcome material difference between silicon and oxide
• establish depletion region in channel to max value/size
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Overview of MOSFET Current
• Gate current

– gate is essentially a capacitor ⇒ no current through gate
– gate is a control node

• VG < Vtn, device is off
• VG > Vtn, device is on and performance is a function of VGS and VDS  

• Drain Current (current from drain to source), ID
– Source = source/supply of electrons (nMOS) or holes (pMOS)
– Drain = drain/sink of electrons (nMOS) or holes (pMOS)
– VDS establishes an E-field across (horizontally) the channel

• free charge in an E-field will create a drain-source current
• is ID drift or diffusion current?

• MOSFET I-V Characteristics

nMOS

drain @ (+)ve potential

Electron Flow
Current Flow

source @ ground

Charge Flow
Current Flow

↑ VGS

VDS = VGS - Vtn
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Channel Charge and Current
• Threshold Voltage = Vtn, Vtp

– amount of voltage required on the gate to turn tx on
– gate voltage > Vtn/p will induce charge in the channel

• nMOS Channel Charge
– Qc = -CG(VG-Vtn), from Q=CV, (-) because channel holds electrons

• nMOS Channel Current (linear model:)
– I = |Qc| / tt , where tt = transit time, average time to cross channel

• tt = channel length / (average velocity) = L / v
• average drift velocity in channel due to electric field E v = μn E
• assuming constant field in channel due to VDS E = VDS / L

•

– I = μnCox (W/L) (VG-Vtn) VDS : linear model, assumes constant charge in channel

similar analysis applies for pMOS, see textbook

L
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nμ
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assumes channel charge is
constant from source to drain
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Transconductance and Channel Resistance
• nMOS Channel Charge: Qc = -CG(VG-Vtn)
• nMOS linear model Channel Current:

– I = μnCox(W/L)(VG-Vtn) VDS
• assumes constant charge in channel, valid only for very small VDS

• nMOS Process Transconductance
– k’n = μnCox [A/V2] ⇒ I = k’n (W/L) (VG-Vtn) VDS

• nMOS Device Transconductance
– βn = μnCox (W/L) [A/V2]  ⇒ I = βn (VG-Vtn) VDS
– constant for set transistor size and process

• nMOS Channel Resistance
– channel current between Drain and Source
– channel resistance = VDS / IDS
– Rn = 1/( βn (VG-Vtn) )

• pMOS: k’p = μpCox, βp = μpCox (W/L)

similar analysis 
applies for pMOS, 

see textbook
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nMOS Current vs.Voltage
• Cutoff Region

– VGS < Vtn
⇒ ID = 0

• Linear Region
– VGS > Vth, VDS > 0 but very small

• Qe = -Cox (VGS-Vtn)
• ID = μn Qe (W/L) VDS

⇒ ID = μnCox (W/L) (VGS-Vtn) VDS

• Triode Region
– VGS > Vth, 0 < VDS < VGS-Vth

• surface potential, φs , at drain now f(VGS-VDS=VGD) ⇒ less charge near drain 
• assume channel charge varies linearly from drain to source

– at source: Qe = -Cox (VGS-Vtn), at drain: Qe = 0
⇒

∫=
DV

ID yVyQI
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)()( δα
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2 DSDStGS

OXn
D VVVV

L
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I −−=
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General Integral for expressing ID
• channel charge = f(y)
• channel voltage = f(y)
• y is direction from drain to source

↑ VGS

VDS = VGS - Vtn
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nMOS Current vs.Voltage
• Saturation Region (Active Region)

– VGS > Vtn, VDS > VGS-Vtn
• surface potential at drain, φsd = VGS-Vtn-VDS
• when VDS = VGS-Vtn, φsd = 0  ⇒ channel not inverted at the drain

– channel is said to be pinched off
• during pinch off, further increase in VDS will not increase ID

– define saturation voltage, Vsat, when VDS = VGS-Vtn
• current is saturated, no longer increases
• substitute Vsat=VGS-Vtn for VDS into triode equation

⇒
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Other Stuff
• Transconductance

– process transconductance, k’ = μn Cox
• constant for a given fabrication process

– device transconductance, βn= k’ W/L
• Surface Mobility

– mobility at the surface is lower than mobility deep inside silicon
– for current, ID, calculation, typical μn = 500-580 cm2/V-sec

• Effective Channel Length
– effective channel length reduced by

• lateral diffusion under the gate
• depletion spreading from drain-substrate junction
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Second Order Effects
• Channel Length Modulation

– Square Law Equation predicts ID is constant with VDS
– However, ID actually increases slightly with VDS

• due to effective channel getting shorter as VDS increases
• effect called channel length modulation

– Channel Length Modulation factor, λ
• models change in channel length with VDS

– Corrected ID equation

• Veff = VGS - Vtn
• Body Effect

– so far we have assumed that substrate and source are grounded
– if source not at ground, source-to-bulk voltage exists, VSB > 0
– VSB > 0 will increase the threshold voltage, Vtn = f(VSB)
– called Body Effect, or Body-Bias Effect
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pMOS Equations
• Analysis of nMOS applies to pMOS with 

following modifications
– physical

• change all n-tpye regions to p-type
• change all p-type regions to n-type

– substrate is n-type (nWell)
• channel charge is positive (holes) and (+)ve charged ions

– equations
• change VGS to VSG (VSG typically = VDD - VG)
• change VDS to VSD (VSD typically = VDD - VD)
• change Vtn to |Vtp|

– pMOS threshold is negative, nearly same magnitude as nMOS
– other factors

• lower surface mobility, typical value, μp = 220 cm2/V-sec
• body effect, change VSB to VBS
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Transistor Sizing
• Channel Resistance

“ON” resistance of transistors
– Rn = 1/(μnCox (W/L) (VGS-Vtn) )

– Rp = 1/(μpCox (W/L) (VSG-|Vtp|) )

• Cox = εox/tox [F/cm2], process constant

• Channel Resistance Analysis
– R ∝ 1/W (increasing W decreases R & increases Current)
– R varies with Gate Voltage, see plot above
– If Wn = Wp, then Rn < Rp

• since μn > μp
• assuming Vtn ~ |Vtp|

– to match resistance, Rn = Rp
• adjust Wn/Wp to balance for μn > μp

VGVDD-|Vtp|Vtn

Rn
Rp
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Transistor Sizing
• Channel Resistances

– Rn = 1/(μnCox (W/L) (VG-Vtn) )
– Rp = 1/(μpCox (W/L) (VG-|Vtp|) )
– Rn/Rp = μn/μp

• if Vtn = |Vtp|, (W/L)n = (W/L)p

• Matching Channel Resistance
– there are performance advantage to setting Rn = Rp

• discussed in Chapter 7
– to set Rn = Rp

• define mobility ratio, r = μn/μp
• (W/L)p = r (W/L)n

– pMOS must be larger than nMOS for same resistance/current

• Negative Impact
– ⇒ CGp = r CGn larger gate = higher capacitance

How does this impact
circuit performance?
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MOSFET RC Model
• Modeling MOSFET resistance and capacitance is very 

important for transient characteristics of the device
• RC Model

• Drain-Source (channel) Resistance, Rn
– Rn = VDS / ID

• function of bias voltages
– point (a), linear region

• Rn = 1/[βn(VGS-Vtn)]
– point (b), triode region

• Rn = 2/{βn[2(VGS-Vtn)-VDS]}
– point (c), saturation region

• Rn = 2VDS / [βn (VGS-Vtn)2]
– general model equation

• Rn = 1/[βn(VDD-Vtn)]

time constant 
at drain, τD
τD = CD Rn
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MOSFET Capacitances -Preview
• Need to find CS and CD

• MOSFET Small 
Signal model
– Model Capacitances

• Cgs
• Cgd
• Cgb
• Cdb
• Csb
• no Csd!

• MOSFET Physical
Capacitances
– layer overlap
– pn junction

+
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CgdGate Drain

Source
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RC Model Capacitances
• Why do we care?

– capacitances determine switching speed
• Important Notes

– models developed for saturation (active) region
– models presented are simplified (not detailed)

• RC Model Capacitances
– Source Capacitance

• models capacitance at the Source node
• CS = CGS + CSB

– Drain Capacitance
• models capacitance at the Drain node
• CD = CGD + CDB What are CGS, CGD, CSB, and CDB?
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MOSFET Parasitic Capacitances
• Gate Capacitance

– models capacitance due to overlap of Gate and Channel
• CG = Cox W L

– estimate that CG is split 50/50 between Source and Drain
• CGS = ½ CG

• CGD = ½ CG

– assume Gate-Bulk capacitance is negligible
• models overlap of gate with substrate outside the active tx area
• CGB = 0

• Bulk Capacitance
– CSB (Source-Bulk) and CDB (Drain-Bulk)

• pn junction capacitances
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MOSFET Junction Capacitances
• Capacitance/area for pn Junction

• S/D Junction Capacitance
– zero-bias capacitance

• highest value when VR = 0, assume this for worst-case estimate
• Cj = Cjo

– CS/Dj = Cjo AS/D, AS/D = area of Source/Drain

• what is AS/D?
• complex 3-dimensional geometry

– bottom region and sidewall regions

– CS/Dj = Cbot + Csw
• bottom and side wall capacitances
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Junction Capacitance
• Bottom Capacitance

– Cbot = Cj Abot
• Abot = X W

• Sidewall Capacitance
– Csw = Cjsw Psw

• Cjsw = Cj xj [F/cm]
– xj = junction depth

• Psw = sidewall perimeter 
– Psw = 2 (W + X)

• Accounting Gate Undercut
– junction actually under gate also due to lateral diffusion
– X ⇒ X + LD (replace X with X + LD)

• Total Junction Cap
– CS/Dj = Cbot + Csw = Cj Abot + Cjsw Psw = CS/Dj

xj
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MOSFET Bulk Capacitances
• General Junction Capacitance

– CS/Dj = Cbot + Csw
• CSB (Source-Bulk)

– CSB = Cj ASbot + Cjsw PSsw
• CDB (Drain-Bulk)

– CDB = Cj ADbot + Cjsw PDsw

• RC Model Capacitances
– Source Capacitance

• CS = CGS + CSB
– Drain Capacitance

• CD = CGD + CDB

+
v
-

gs

vsis

vg vd

id
g vmb sbg vm gs

roCgs

Cgb

Csb

Cdb

CgdGate Drain

Source

Body (Bulk)
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Junction Areas
• Note: calculations assume following design rules

– poly size, L = 2λ
– poly space to contact, 2λ
– contact size, 2λ
– active overlap of contact, 1λ

• Non-shared Junction with Contact
– Area: X1 W = (5)(4) = 20λ2

– Perimeter: 2(X1 + W) = 18λ
• Shared Junction without Contact

– Area: X2 W = (2)(4)λ2 = 8λ2

– Perimeter: 2(X2 + W) = 12λ
• much smaller!

• Shared Junction with Contact
– Area: X3 W = (6)(4)λ2 = 24λ2

– Perimeter: 2(X3 + W) = 20λ
• largest area!

W = 4λ
X1 = 5λ, X2= 2λ, X3 = 6λ⇒

X1

X2

X3
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