Intrinsic Silicon Properties

- •Read textbook, section 3.2.1, 3.2.2, 3.2.3
- • Intrinsic Semiconductors
	- – undoped (i.e., not n+ or p+) silicon has **intrinsic** charge carriers
	- –electron-hole pairs are created by thermal energy
	- $-$ intrinsic carrier concentration \equiv $n_i = 1.45 \times 10^{10}$ cm⁻³, at room temp.
	- –function of temperature: increase or decrease with temp?
	- – n = p = n_i , in intrinsic (undoped) material
		- $\bm{\cdot}$ $\bm{\mathsf{n}}$ \equiv number of holes
	- $mass\text{-}action$ law, $np = n_i^2$
		- applies to undoped and doped material

Extrinsic Silicon Properties

- doping, adding **dopants** to modify material properties
	- – n-type = n+, add elements with extra an electron
		- (arsenic, As, or phosphorus, P), Group V elements
		- $\boldsymbol{\cdot}$ $\boldsymbol{\mathsf{n}}_{\mathsf{n}}$ = concentration of electrons in n-type material
		- ・<mark>n_n = N_d|cm^{−3}, N_d ≡ concentration of <mark>donor</mark> atoms</mark>
		- $\boldsymbol{\cdot}$ $\boldsymbol{\mathsf{p}}_\mathsf{n}$ = concentration of holes in n-type material
		- $\boldsymbol{\cdot}$ $\boldsymbol{\mathsf{N}}_\mathtt{d}$ p $\mathtt{p}_\mathtt{n}$ = $\boldsymbol{\mathsf{n}}_\mathtt{i}$ as \mathtt{l} using mass-action law – always a lot more n than p in n-type material

–p-type = p+, add elements with an extra hole

- (boron, B)
- $\bm{\cdot}$ $\bm{{\mathsf{p}}}_{{\mathsf{p}}}$ = concentration of holes in <code>p-type</code> material
- \cdot p_p = N_a cm⁻³, N_a ≡ concentration of **acceptor** atoms
- $\bm{\cdot}$ $\bm{{\mathsf n}}_{\bm{\mathsf p}}$ = concentration of electrons in <code>p-type</code> material
- \cdot N_{a} n_{p} = n_{i} 2 , using mass-action law
	- always a lot more p than n in p-type material
- –if both N_{d} and N_{a} present, n_{n} = $\mathsf{N}_{\mathsf{d}}\text{-}\mathsf{N}_{\mathsf{a}}$, $\mathsf{p}_{\mathsf{p}}\text{=} \mathsf{N}_{\mathsf{a}}\text{-}\mathsf{N}_{\mathsf{d}}$

n+/p+ defines region as heavily doped, typically $\approx 10^{16}$ -10 18 cm $^{-3}$ less highly doped regions generally labeled n/p (without the +)

do example on board $n_{i}^{2} = 2.1x10^{20}$

Conduction in Semiconductors

mobility = average velocity per unit electric field

w

- •doping provides free charge carriers, alters conductivity
- •conductivity, ^σ, in semic. w/ carrier densities *n* and *p*

$$
-\boxed{\sigma = q(\mu_n n + \mu_p p)}\qquad \quad q \equiv \text{electron charge}, \quad\nq = 1.6 \times 10^{-19} \text{ [Coulombs]}
$$
\n
$$
\frac{\mu_n \equiv \text{mobility [cm²/V-sec]}}{\mu_n \equiv 1360} \mu_p \equiv 480 \text{ (typical values)}
$$

- •in n-type region, $n_n \gg p_n$
	- –**− | σ ≈ qμ_n** n_n
- \cdot $\;$ in p-type region, p_p >> n_p
	- − | σ ≈ qμ_p n_{ρ}
- • ${\sf resistivity}$, ρ = $1/\sigma$
- •resistance of an n+ or p+ region

$$
-R=\frac{\rho I}{A}, A=wt
$$

l

- •drift current (flow of charge carriers in presence of an electric field, E_{x})
	- n/p drift current density: Jxn = σ_n E_x = qμ_nn_nE_x, Jxp = σ_p E_x = qμ_pp_pE_x
	- –total drift current density in x direction | Jx = q(μ_nn + μ_pp) E_x = σ E_x

 $\boldsymbol{\mathcal{t}}$

Mobility often assumed constant

but is a function of

pn Junctions: Intro

- • What is a pn Junction?
	- – interface of p-type and n-type semiconductor
	- –junction of two materials forms a diode
- • In the Beginning…
	- – ionization of dopants at material interface

- \bullet Diffusion -movement of charge to regions of lower concentration
	- free carries diffuse out
	- leave behind immobile ions
	- – region become depleted of free carriers
	- ions establish an electric field
		- acts against diffusion

pn Junctions: Equilibrium Conditions

- • Depletion Region
	- area at pn interface void of free charges
	- charge neutrality
		- must have equal charge on both sides immobile acceptor ións
		- q A $\times_{\text{p}}\mathsf{N}_{\text{A}}$ = q A $\times_{\text{n}}\mathsf{N}_{\text{D}}$, A=junction area; \times_{p} , \times_{n} depth into p/n side W
		- $\cdot \Rightarrow x_p N_A = x_n N_D$
		- depletion region will extend further into the more lightly doped side of the junction

depletion region-

(negative-charge)

p-type

N acceptors/cm

 N_A

- \bullet Built-in Potential
	- diffusion of carriers leaves behind immobile charged ions
	- ions create an electric field which generates a built-in potential

$$
\Psi_0 = V_T \ln \left(\frac{N_A N_D}{n_i^2} \right)
$$

 $\boldsymbol{\cdot}$ where V $_{\mathsf{T}}$ = kT/q = 26mV at room temperature

E

+

+

+

+

ND

+

electric field

+

+

+

 X_{n}

 X_{p}

--- --

> immobile donor ions(positive-charge)

N donors/cmDen and the second second the second second in the second second second in the second second second in the second sec

n-type

pn Junctions: Depletion Width

pn Junctions - Depletion Capacitance

- •Free carriers are separated by the depletion layer
- •Separation of charge creates junction capacitance
	- $\,$ C j = ε A/d \Rightarrow (d = depletion width, W)

$$
C_j = A \left[\frac{q \varepsilon N_A N_D}{2(N_A + N_D)} \right]^{1/2} \left(\frac{1}{\sqrt{\Psi_0 + V_R}} \right)
$$

ε is the permittivity of Si ε = 11.8⋅ε $_0$ = 1.04x10⁻¹² F/cm $\bm{\mathsf{V}}_{\bm{\mathsf{R}}}$ = applied reverse bias

⎜

=

⎟ ⎟ ⎟

⎜

=

⎝

 \sqrt{j} \sqrt{V} $C_i = \frac{C}{1 - c}$

 $2\Psi_{_{0}}$

⎣

 $\frac{1}{2}$ $\overline{}$ ⎟ $\overline{}$ ⎟

 $^+\frac{1}{\Psi}$

jo

 $3/1 + \frac{R}{r}$

⎞

⎠

0

=

⎡

 $\left[\frac{q \varepsilon N_A N_D}{2 W (N_A + N_A)}\right]$

DA

 $\Psi_{0}(N_{A} +$

ε

jo

- – A is complex to calculate in semiconductor diodes
	- consists of both bottom of the well and side-wall areas ⎞ $\big($
- – Cj is a strong function of biasing
	- must be re-calculated if bias conditions change
- ⎟ ⎟ $\left(\begin{matrix} 1 & \Psi_0 \end{matrix}\right)$ ⎜ + 0 $1 + \frac{R}{R}$ $\left| \int_0^1$ $C_j = \left| \frac{C_{j_o}}{\sqrt{1 + \frac{V_R}{\cdots}}}\right| \quad C_{j_o} = A \left[\frac{q \varepsilon N_A N_D}{2 \Psi_0 (N_A + N_D)} \right]$ $\sigma_{j0} = A \left| \frac{q \alpha v_A v_B}{2 \Psi_0 (N_A + N)} \right|$ $C_{in} = A \frac{q \varepsilon N_A N}{4}$ ⎜ $\big($
- – CMOS doping is not linear/constant
	- graded junction approximation
- Junction Breakdown
	- if reverse bias is too high (typically > 30V) can get strong reverse current flow

–

 $\frac{1}{2}$

 $\overline{}$ $\overline{}$

Diode Biasing and Current Flow

•

•

–

ID

p

 $\tilde{}$

–

–

–

–

MOSFET Capacitor

- • MOSFETs move charge from drain to source underneath the gate, **if** a conductive channel exists under the gate
- • Understanding how and why the conductive channel is produced is important
- • MOSFET capacitor models the gate/oxide/substrate region
	- source and drain are ignored
	- substrate changes with applied gate voltage
- • Consider an nMOS device
	- –Accumulation, V_G < 0, (-)ve charge on gate
		- induces (+)ve charge in substrate
		- (+)ve charge accumulate from substrate holes (h+)
	- $\,$ Depletion, V $_{G}$ > 0 but small
		- creates depletion region in substrate
		- (-)ve charge but no free carriers
	- $\,$ Inversion, V $_{\rm G}$ > 0 but larger
		- further depletion requires high energy
		- (-)ve charge pulled from Ground
		- electron (e-) free carriers in channel

Capacitance in MOSFET Capacitor

- • In Accumulation
	- inside of the – Gate capacitance = Oxide capacitance
	- Cox = ε_{οχ}/t_{οχ} [F/cm²]
- • In Depletion
	- Gate capacitance has 2 components
	- 1) oxide capacitance
	- 2) depletion capacitance of the substrate depletion region
		- $\,$ Cdep = $\varepsilon_{\rm si}/\varkappa_{\rm d}$, $\varkappa_{\rm d}$ = depth of depletion region into substrate
	- Cgate = Cox (in series with) Cdep = Cox Cdep / (Cox+Cdep) < Cox
		- C's in series add like R's in parallel
- • In Inversion
	- free carries at the surface
	- Cgate = Cox

Gate capacitor C_{C}

Gate oxide

ECE 410, Prof. A. Mason Lecture Notes 6.10

Cox

 $n+$

M

 V_G

Gate

p

 $n+$

Cdep

Inversion Operation

- • MOSFET "off" unless in inversion
	- + $V_G > 0$ look more deeply at inversion operation –
- Define some stuff
	- –Qs = total charge in substrate
	- $\vee_{\mathcal{G}}$ = applied gate voltage
	- –Vox = voltage drop across oxide

- $\hbox{-} \quad \upphi_{\rm s}$ = potential at silicon/oxide interface (relative to substrate-ground)
- Qs = Cox V_G
- V_{G} = Vox + ϕ_{S}
- • During Inversion (for nMOS)
	- $\ V_{G}$ > 0 applied to gate
	- –Vox drops across oxide (assume linear)
	- $\ _{\mathfrak{g}}$ drops across the silicon substrate, most near the surface

Surface Charge

- • $\mathsf{Q}_\mathtt{B}$ = bulk charge, ion charge in depletion region under the gate 2 $2\varepsilon\phi$ $\overline{\ }$
	- $\, {\mathsf Q}_{\mathsf B}$ = q ${\mathsf N}_{\mathsf A}$ ${\mathsf x}_{\mathsf d}$, ${\mathsf x}_{\mathsf d}$ = depletion depth $\frac{\frac{1}{\sqrt{5}}}{\sqrt{5}}$ $\left\lceil \frac{2\varepsilon\phi_{s}}{N}\right\rceil$ $\overline{}$ ⎡ = $\frac{d}{d} = \frac{1 - r_s}{qN_A}$ $x_{i} = \frac{2\varepsilon\phi_{s}}{2\varepsilon\phi_{s}}$

-
$$
Q_B
$$
 = - (2q $\varepsilon_{Si} N_A \phi_s$)^{1/2} = f(V_G)

- –charge per unit area
- Qe = charge due to free electrons at substrate surface
- • \textsf{Qs} = $\textsf{Q}_\textsf{B}$ + \textsf{Qe} < \textsf{O} (negative charge for nMOS)

ECE 410, Prof. A. Mason Lecture Notes 6.12

 $\overline{}$

A

Surface Charge vs. Gate Voltage

- Surface Charge vs. Gate Voltage
	- $\rm\,V_{\mathcal G}}$ < Vtn, substrate charge is all bulk charge, Qs = $\rm Q_B$
	- $\,$ V $_{\rm G}$ = Vtn, depletion region stops growing
		- \cdot x_{d} at max., further increase of V_{G} will NOT increase x_{d}
		- \cdot $\,$ Q_B at max.
	- $\ V_{\mathcal{G}}$ > Vtn, substrate charge has both components, Qs = Q_B + Qe
		- \cdot since Q_{B} is maxed, further increases in V_{G} must increase Q e
		- increasing Qe give more free carriers thus less resistance
- Threshold Voltage
	- –**Vtn defined as gate voltage where Qe starts to form**
	- –Qe = -Cox (V_G-V†n)
	- – Vtn is gate voltage required to
		- overcome material difference between silicon and oxide
		- establish depletion region in channel to max value/size

Overview of MOSFET Current

- • Gate current
	- gate is essentially a capacitor ⇒ **no current through gate**
	- gate is a control node
		- $\cdot \;\; \mathsf{V}_\mathsf{G} \mathsf{\cdot}$ Vtn, device is off
		- $\cdot \;\; {\sf V}_{\sf G}$ > Vtn, device is on and performance is a function of ${\sf V}_{\sf GS}$ and ${\sf V}_{\sf DS}$
- •Drain Current (current from drain to source), $\mathtt{I}_\mathtt{D}$
	- Source = source/supply of electrons (nMOS) or holes (pMOS)
	- Drain = drain/sink of electrons (nMOS) or holes (pMOS)
	- $\rm\,V_{DS}$ establishes an E-field across (horizontally) the channel
		- free charge in an E-field will create a drain-source current
		- \cdot $\,$ is ${\tt I}_{\sf D}$ drift or diffusion current?
- •MOSFET I-V Characteristics

Channel Charge and Current

- Threshold Voltage = Vtn, Vtp
	- –amount of voltage required on the gate to turn tx on
	- –gate voltage > Vtn/p will induce charge in the channel
- nMOS Channel Charge
	- $\big\vert \operatorname{Qc}$ = - $\mathcal{C}_{\mathcal{G}}(\mathsf{V}_{\mathcal{G}}\text{-}\mathsf{V}\text{tn})$, from Q=CV, (-) because channel holds electrons
- nMOS Channel Current (linear model:) assumes channel charge is constant from source to drain
	- – $I = |Qc| / t_{_{\rm t}}$, where $t_{_{\rm t}}$ = *transit time*, average time to cross channel
		- \cdot \uparrow = channel length / (average velocity) = L / ν
		- average drift velocity in channel due to electric field $E\to |{\bf \nu}$ = $\mu_{\sf n}$ E
		- \cdot assuming constant field in channel due to V $_{\textrm{\scriptsize{DS}}}$ \rightarrow $\mathsf{\mathop{E}}$ = V $_{\textrm{\scriptsize{DS}}}$ / L

$$
\cdot \rightarrow \frac{\mu_n \frac{V_{DS}}{L}}{I = Qc \frac{L}{L}} \quad C_G = CoxWL \Rightarrow |Qc| = CoxWL(V_G - Vtn)
$$

 Γ = μ_n Cox (W/L) (V $_{G}$ -V†n) V $_{\text{DS}}$ linear model, assumes constant charge in channel

similar analysis applies for pMOS, see textbook

•

Transconductance and Channel Resistance

- •nMOS Channel Charge: Qc = -C_G(V_G-Vtn)
- • nMOS linear model Channel Current:
	- Ι=μ_nCox(W/L)(V_G-Vtn) V_{DS}
		- \cdot assumes constant charge in channel, valid only for very small V_DS
- nMOS Process Transconductance
	- |k'_n = μ_nCox [A/V²]|⇒ I = k'_n (W/L) (V_G-V†n) V_{DS}
- nMOS Device Transconductance
	- | β_n = μ_nCox (W/L) [A/V²] | ⇒ Ι = β_n (V_G-Vtn) V_{DS}
	- –constant for set transistor size and process
- nMOS Channel Resistance
	- channel current between Drain and Source
	- channel resistance = V_{DS} / I_{DS}
	- – $Rn = 1/(\beta_n (V_G-Vtn))$
	- $pMOS:$ k'p = $\mu_p \text{Cox}$, β_p = $\mu_p \text{Cox}$ (W/L)

similar analysis

applies for pMOS,

see textbook

•

nMOS Current vs.Voltage

- Cutoff Region
	- V_{GS} < Vtn \Rightarrow I_D = 0
- Linear Region
	- $\rm\,V_{GS}$ > Vth, V_{DS} > 0 but very small
		- Qe = -Cox (V_{GS}-Vtn)
		- \cdot I_D = $\mu_{\sf n}$ Qe (W/L) V_{DS}
	- \Rightarrow ${\bf I}_{\mathsf{D}}$ = μ_{n} Cox (W/L) (V $_{\mathsf{GS}}$ -Vtn) V $_{\mathsf{DS}}$
- Triode Region
	- $\rm\ V_{GS}$ > Vth, O < V_{DS} < V_{GS}-Vth
- General Integral for expressing ID • channel charge = f(y)
- channel voltage = f(y)
- y is direction from drain to source

$$
I_D = \alpha \int_0^{V_D} Q_I(y) \delta V(y)
$$

- \cdot surface potential, $\upphi_{\tt s}$, at drain now $\mathsf{f}(\sf{V}_{\mathsf{GS}}\text{-}\sf{V}_{\mathsf{DS}}\text{=} \sf{V}_{\mathsf{GD}})$ \Rightarrow less charge near drain
- assume channel charge varies linearly from drain to source
	- at source: Qe = -Cox (V_{GS}-Vtn), at drain: Qe = 0

$$
\Rightarrow I_D = \frac{\mu_n C_{OX}}{2} \frac{W}{L} \Big[2(V_{GS} - V_t)V_{DS} - V_{DS}^2 \Big]
$$

nMOS Current vs.Voltage

- • Saturation Region (Active Region)
	- $\rm\,V_{\rm\scriptscriptstyle GS}^{\phantom i}$ > Vtn, V $_{\rm\scriptscriptstyle DS}^{\phantom i}$ > V $_{\rm\scriptscriptstyle GS}^{\phantom i}$ -Vtn
		- \cdot surface potential at drain, ϕ_sd = V $_{\mathsf{GS}}\text{-}\mathsf{V}\mathsf{tn}\text{-}\mathsf{V}_\mathsf{DS}$
		- $\bm{\cdot}\;$ when V_{DS} = V_{GS}-Vtn, ϕ_{sd} = 0 $\;\Rightarrow$ channel not inverted at the drain
			- channel is said to be <u>pinched off</u>
		- \cdot during pinch off, further increase in $\mathsf{V}_{\mathsf{D}\mathsf{S}}$ will not increase \mathtt{I}_D
			- $\,$ define saturation voltage, Vsat, when V $_{\mathsf{D}\mathsf{S}}$ = V $_{\mathsf{G}\mathsf{S}}$ -Vtn
		- current is saturated, no longer increases
		- substitute Vsat=V_{GS}-Vtn for V_{DS} into triode equation

Other Stuff

- Transconductance
	- –process transconductance, ${\sf k}^\prime$ = $\upmu_{\sf n}$ Cox
		- constant for a given fabrication process
	- –device transconductance, β_n = k' W/L
- Surface Mobility
	- mobility at the surface is lower than mobility deep inside silicon
	- $\,$ for current, $\rm I_{\rm D}$, calculation, typical $\rm \mu_{n}$ = 500-580 cm²/V-sec
- Effective Channel Length
	- – effective channel length reduced by
		- lateral diffusion under the gate
		- depletion spreading from drain-substrate junction

$$
Left = L(drawn) - 2L_D - X_d
$$

$$
X_d = \sqrt{\frac{2\varepsilon_s (V_D - (V_G - V_t))}{qN_A}}
$$

ECE 410, Prof. A. Mason Lecture Notes 6.19

Second Order Effects

- Channel Length Modulation
	- –Square Law Equation predicts ${\tt I}_{\tt D}$ is constant with ${\tt V}_{\tt DS}$
	- However, $\mathtt{I}_\mathtt{D}$ actually increases slightly with $\mathtt{V}_{\mathtt{DS}}$
		- \cdot due to effective channel getting shorter as V_{DS} increases
		- effect called channel length modulation
	- Channel Length Modulation factor, λ
		- \cdot models change in channel length with V_DS
	- $\,$ Corrected ${\rm I}_{{\rm D}}$ equation

$$
I_D = \frac{\mu_n C_{OX}}{2} \frac{W}{L} (V_{GS} - V_t)^2 (1 + \lambda (V_{DS} - V_{eff}))
$$

- Veff = V_{GS} Vtn • Body Effect
	- so far we have assumed that substrate and source are grounded
	- –if source not at ground, source-to-bulk voltage exists, $\mathsf{V}_{\mathsf{SB}}\triangleright\mathsf{O}$
	- $\rm\,V_{SB}$ > 0 will increase the threshold voltage, Vtn = f(V_{SB})
	- –called Body Effect, or Body-Bias Effect

pMOS Equations

- • Analysis of nMOS applies to pMOS with following modifications
	- – physical
		- change all n-tpye regions to p-type
		- change all p-type regions to n-type
			- substrate is n-type (nWell)
		- channel charge is positive (holes) and (+)ve charged ions
	- – equations
		- \cdot change $\mathsf{V}_{\mathsf{G}\mathsf{S}}$ to $\mathsf{V}_{\mathsf{S}\mathsf{G}}$ (V $_{\mathsf{S}\mathsf{G}}$ typically = VDD V $_{\mathsf{G}}$)
		- change $\bm{\mathsf{V}}_{\mathsf{DS}}$ to $\bm{\mathsf{V}}_{\mathsf{SD}}$ (V_{SD} typically = VDD V_D)
		- change Vtn to |Vtp|
			- pMOS threshold is negative, nearly same magnitude as nMOS
	- – other factors
		- \cdot lower surface mobility, typical value, $\mu_{\sf p}$ = 220 cm²/V-sec
		- \cdot body effect, change V_{SB} to V_{BS}

Transistor Sizing

• Channel Resistance

"ON" resistance of transistors

- Rn = 1/(μ_nCox (W/L) (V_{GS}-Vtn))
- –Rp = 1/(μ_pCox (W/L) (V_{SG}-|Vtp|))
	- $\,$ Cox = $\rm \varepsilon_{ox}/t_{ox}$ [F/cm²], process constant
- Channel Resistance Analysis
	- $\, {\sf R} \propto 1/W$ (increasing W decreases R & increases Current)
	- R varies with Gate Voltage, see plot above
	- – If Wn = Wp, then Rn < Rp
		- \cdot since μ_n > μ_p
		- assuming Vtn ~ |Vtp|
	- – to match resistance, Rn = Rp
		- adjust Wn/Wp to balance for μ_n > μ_p

Transistor Sizing

- • Channel Resistances
	- –Rn = 1/(μ_nCox (W/L) (V_G-Vtn))
	- –Rp = 1/(μ_pCox (W/L) (V_G-|Vtp|))
	- – $Rn/Rp = \mu_n / \mu_p$
		- if Vtn = |Vtp|, (W/L)_n = (W/L)_p
- • Matching Channel Resistance
	- – there are performance advantage to setting Rn = Rp
		- discussed in Chapter 7
	- to set Rn = Rp
		- define mobility ratio, $r = \mu_{\sf n}/\mu_{\sf p}$
		- $\big| \mathsf{(W/L)}_{\mathsf{p}} \text{ = } \mathsf{r} \, \big(\mathsf{W/L} \big)_{\mathsf{n}}$
			- pMOS must be larger than nMOS for same resistance/current
- •Negative Impact

 \Rightarrow C_{Gp} = r C_{Gn} larger gate = higher capacitance circuit performance?

–

MOSFET RC Model

• Modeling MOSFET resistance and capacitance is very important for transient characteristics of the device

- • Drain-Source (channel) Resistance, Rn
	- Rn = V_{DS} / I_D
		- function of bias voltages
	- – point (a), linear region
		- \cdot Rn = 1/[$\beta_{\sf n}$ (V $_{\sf GS}$ -Vtn)]
	- – point (b), triode region
		- \cdot Rn = 2/{ β_n [2(V $_{GS}$ -Vtn)-V $_{DS}$]}
	- –point (c), saturation region

•
$$
Rn = 2V_{DS} / [\beta_n (V_{GS} - Vtn)^2]
$$

MOSFET Capacitances -Preview

- •Need to find \mathcal{C}_S and \mathcal{C}_D
- • MOSFET Small Signal model
	- Model Capacitances
		- **Cgs**
		- **Cgd**
		- Cgb
		- **Cdb**
		- **Csb**
		- no Csd!
- • MOSFET Physical Capacitances
	- –layer overlap

p⁺ Field

Implant

pn junction

p⁻Substrate

 $C_{\rm sh}$

 $\mathsf{C}_{\mathsf{s}\text{-}\mathsf{s}\mathsf{w}}$

 C_{d-sw}

 C_{db}

RC Model Capacitances

- • Why do we care?
	- –capacitances determine switching speed
- • Important Notes
	- –models developed for saturation (active) region
	- –models presented are simplified (not detailed)
- • RC Model Capacitances
	- – Source Capacitance
		- models capacitance at the Source node

$$
\cdot \boxed{C_{\rm S} = C_{\rm GS} + C_{\rm SB}}
$$

–Drain Capacitance

 \cdot C

•models capacitance at the Drain node

 c_{GD}

 C_{GS}

S

ECE 410, Prof. A. Mason Lecture Notes 6.26

 \mathcal{L}_{G} = \mathcal{C}_{G} + \mathcal{C}_{D} What are $\mathcal{C}_{\mathsf{G}\mathsf{S}}, \mathcal{C}_{\mathsf{G}\mathsf{D}}, \mathcal{C}_{\mathsf{S}\mathsf{B}},$ and $\mathcal{C}_{\mathsf{D}\mathsf{B}}$?

MOSFET Parasitic Capacitances

- • Gate Capacitance
	- – models capacitance due to overlap of Gate and Channel
		- \cdot C $_{G}$ = Cox W L
	- estimate that $\mathcal{C}_{\mathcal{G}}$ is split 50/50 between Source and Drain

$$
\cdot \frac{C_{GS} = \frac{1}{2} C_G}{C_{GD} = \frac{1}{2} C_G}
$$

- – assume Gate-Bulk capacitance is negligible
	- models overlap of gate with substrate outside the active tx area
	- $\, {\cal C}_{\mathsf{GB}} = 0 \,$
- Bulk Capacitance
	- $\,$ $C_{\rm SB}$ (Source-Bulk) and $C_{\rm DB}$ (Drain-Bulk)
		- pn junction capacitances

$$
C_j = \left(C_{j0} / \sqrt{1 + \frac{V_R}{\Psi_0}}\right) \quad C_{j0} = A \left[\frac{q \varepsilon N_A N_D}{2\Psi_0 (N_A + N_D)}\right]^{\frac{1}{2}}
$$

What are $\mathsf{V}_\mathsf{R},\,\mathsf{\Psi}_0^{\vphantom{\dag}},\,\mathsf{N}_\mathsf{A}^{\vphantom{\dag}},$ and $\mathsf{N}_\mathsf{D}^{\vphantom{\dag}}?$

MOSFET Junction Capacitances

•Capacitance/area for pn Junction

$$
C_j = C_{j0} \left(1 + \frac{V_R}{\Psi_0} \right)^{m_j} \qquad \qquad C_{j0} = \left[\frac{q \varepsilon N_A}{2\Psi_0} \right]^{1/2} \qquad \qquad \Psi_0 = V_T \ln \left(\frac{N_A N_D}{n_i^2} \right)
$$

m_j = grading coefficient (typically 1/3) assuming N_D (n+ S/D) >> N_A (p subst.)

- • S/D Junction Capacitance
	- – zero-bias capacitance
		- \cdot highest value when V_R = 0, assume this for worst-case estimate

$$
\cdot \ \ C_{\mathbf{j}} = C_{\mathbf{j}\circ}
$$

-
$$
C_{S/Dj}
$$
 = C_{jo} A_{S/D}, A_{S/D} = area of Source/Drain

- what is ${\sf A}_{\sf S/D}$?
- complex 3-dimensional geometry
	- bottom region and sidewall regions
- – $\mathcal{C}_{\mathsf{S}/\mathsf{D}\mathsf{j}}$ = Cbot + Csw
	- •bottom and side wall capacitances

planar contribution Figure 2-11: Diffusion capacitance.

Junction Capacitance

W

 $n+$

 $n+$

Sidewall₂

Gate

- • Bottom Capacitance – C_{bot} = C_{J} A_{bot} \cdot | A_{bot} = X W •Sidewall Capacitance
	- C_{sw} = C_{jsw} P_{sw} $\boldsymbol{\cdot}$ $\boldsymbol{\mathcal{C}}_{\text{jsw}}$ = $\boldsymbol{\mathcal{C}}$ j $\boldsymbol{\mathsf{x}}_{\text{j}}$ [F/cm] – x_{j} = junction depth
		- P_{sw} = sidewall perimeter – | P_{sw} = 2 (W + X)
	- • Accounting Gate Undercut
		- junction actually under gate also due to lateral diffusion
		- $\, \mathsf{X} \Rightarrow \mathsf{X}$ + L_D (replace X with X + L_D)
	- Total Junction Cap

$$
- C_{S/Dj} = C_{bot} + C_{sw} = C_j A_{bot} + C_{jsw} P_{sw} = C_{S/Dj}
$$

xj

Sidewall 4

Sidewall 1

MOSFET Bulk Capacitances

•General Junction Capacitance

$$
- C_{S/Dj} = Cbot + Csw
$$

• $\mathcal{C}_{\mathsf{SB}}^{\mathsf{}}\left(\mathsf{Source}\text{-}\mathsf{Bulk}\right)$

$$
-C_{SB} = C_j A_{Sbot} + C_{jsw} P_{Ssw}
$$

$$
C_{DB} (Drain-Bulk)
$$

-
$$
C_{DB} = C_j A_{Dbot} + C_{jsw} P_{Dsw}
$$

- • RC Model Capacitances
	- – Source Capacitance
		- \cdot C_S = C_{GS} + C_{SB}
	- –Drain Capacitance

 \cdot C_D = C_{GD} + C_{DB}

•

Junction Areas

 $W = 4λ$

⇒

- • Note: calculations assume following design rules
	- –poly size, L = 2 λ
	- –poly space to contact, 2 λ
	- contact size, 2 λ
	- $\,$ active overlap of contact, 1 λ
- • Non-shared Junction with Contact
	- Area: X1 W = (5)(4) = 20λ²
	- Perimeter: 2(X1 + W) = 18λ
- Shared Junction without Contact
	- Area: X2 W = (2)(4)λ² = 8λ²
	- Perimeter: 2(X2 + W) = 12 λ
		- much smaller!
- • Shared Junction with Contact
	- Area: X3 W = (6)(4)λ² = 24λ²
	- Perimeter: 2(X3 + W) = 20 λ
		- •largest area!

