
ECE 410, Prof. A. Mason Lecture Notes 12.1

Binary Adder
• Binary Addition

– single bit addition

– sum of 2 binary numbers can be larger than either number
– need a “carry-out” to store the overflow

• Half-Adder
– 2 inputs (x and y) and 2 outputs (sum and carry)

x    y     x + y (binary sum)
0 + 0  =  0
0 + 1  =  1
1 + 0  =  1
1 + 1  =  10 (binary, i.e. 2 in base-10)

x    y    s   c
0   0    0   0
0   1    1   0
1   0    1   0
1   1    0   1

s = x ⊕ y
c = x • y

XOR

AND

HA

x y

c

s
half-adder symbol
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Half-Adder Circuits
• Simple Logic

– using XOR gate

• Most Basic Logic
– NAND and NOR only circuits

x    y    s   c
0   0    0   0
0   1    1   0
1   0    1   0
1   1    0   1

s = x ⊕ y
c = x • y

Take-home Questions:
Which of these 3 half-adders will be fastest? slowest? why??
Which has fewest transistors?  Which transition has the critical delay?
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Full-Adder
• When adding more than one bit, must consider 

the carry of the previous bit
– full-adder has a “carry-in” input

• Full-Adder Equation

• Full-Adder Truth Table

ci
ai

+  bi
ci+1 si

for every i-th bit
carry-in
+ a
+ b
= carry-out, sum

ai bi ci s   ci+1
0   0    0    0   0
0   1    0    1   0
1   0    0    1   0
1   1    0    0   1
0   0    1    1   0
0   1    1    0   1
1   0    1    0   1
1   1    1    1   1

si = ai ⊕ bi ⊕ ci
ci+1 = ai • bi + ci • (ai ⊕ bi)

ci+1 = ai • bi + ci • (ai + bi)

if not trying to ‘reuse’ the ai ⊕ bi
term from sum, can write

FA
+

ai

full-adder symbol

bi

ci
ci+1

si



ECE 410, Prof. A. Mason Lecture Notes 12.4

Full-Adder Circuits

• XOR-based FA

• Other FA Circuits
– a few others options are covered in the textbook

• HA-based FA

Full-Adder Equations: si = ai ⊕ bi ⊕ ci and  ci+1 = ai • bi + ci • (ai ⊕ bi)
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Full Adder Circuits
• AOI Structure FA

– implements following SOP 
equations

– sum delayed from carry

• Transmission Gate FA
– sum and carry have about 

the same delay

AND OR INV

ci+1 = ai • bi + ci • (ai + bi)
si = (ai + bi + ci) • ci+1 + (ai • bi •ci)
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Full Adder in CMOS
• Consider nMOS logic for c_out

– two “paths” to ground

• Mirror CMOS Full Adder
– carry out circuit

ci+1 = ai • bi + ci • (ai + bi)

– complete circuit

ai=bi=0ci=0 and
ai+bi=0

ci=1 and
ai+bi=1 ai=bi=1
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FA Using 2:1 MUX
• If we re-arrange the FA truth table

– can simplify the output (sum, carry) expressions

• Implementation
– use an XOR to make the decision (a⊕b=0?)
– use a 2:1 MUX to select which equation/value of sum 

and carry to pass to the output

ai bi ci a ⊕ b s   ci+1
0   0    0     0      0   0
1   1    0     0      0   1
0   0    1     0      1   0
1   1    1     0      1   1
0   1    0     1      1   0
1   0    0     1      1   0
0   1    1     1      0   1
1   0    1     1      0   1

If (A ⊕ B = 0), SUM=Cin;             Cout=A;
Else, SUM=Cin_bar;      Cout=Cin;

A
B

Cin
Cin_bar

A
Cin

Sum

Cout

A ⊕ B
Partial Schematic
can you figure out

the details?
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Binary Word Adders
• Adding 2 binary (multi-bit) words

– adding 2 n-bit word produces an n-bit sum and a carry
– example: 4b addition

• Carry Bits
– binary adding of n-bits will produce an n+1 carry
– can be used as carry-in for next stage or as an overflow flag

• Cascading Multi-bit Adders
– carry-out from a binary word adder can be passed to next cell 

to add larger words
– example: 3 cascaded 4b binary adders for 12b addition

a3 a2 a1 a0
+ b3 b2 b1 b0
c4 s3  s2 s1 s0

4b input a
+ 4b input b
= carry-out, 4b sum

a b

carry-out

a b

carry-out

a b
carry-in

carry-out
carry-in
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Ripple Carry Adder
• To use single bit full-adders to add multi-bit words

– must apply carry-out from each bit addition to next bit addition
– essentially like adding 3 multi-bit words

• each ci is generated from the i-1 addition
– c0 will be 0 for addition

• kept in equation for generality
– symbol for an n-bit adder

• Ripple-Carry Adder
– passes carry-out of each bit to carry-in of next bit
– for n-bit addition, requires n Full-Adders

c3 c2  c1  c0
a3 a2 a1 a0

+ b3 b2 b1 b0
c4 s3  s2 s1 s0

carry-in bits

4b input a

+ 4b input b

= carry-out, 4b sum

4b ripple-carry adder using 4 FAs
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Adder/Subtractor using R-C Adders
• Subtraction using 2’s complements

– 2’s complement of X: X2s = X+1
• invert and add 1

– Subtraction via addition: Y - X = Y + X2s

• R-C Adder/Subtactor Cell
– control line, add_sub: 0 = add, 1 = subtract
– XOR used to pass (add_sub=1) or invert (add_sub=0)
– set first carry-in, c0, to 1 will add 1 for 2’s complement

b

b

a = add_sub
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Ripple-Carry Adders in CMOS
• Simple to implement and connect for multi-bit addition

– but, they are very slow
• Worse-case delays in R-C Adders

– each bit in the cascade requires carry-out from the previous bit
• major speed limitation of R-C Adders

– delay depends somewhat on the type of FA implemented
– general assumptions

• worst delay in an FA is the sum
– but carry is more important due to cascade structure

• total delay is sum of delays to pass carry to final stage
• total delay for n-input R-C adder

tn = td(a0,b0 ⇒ c1) + (n-2) td(cin ⇒ cout) + td(cin ⇒ sn-1)

first stage delay: inputs to carry-out
middle stage (n-2) delay: carry-in to carry-out
last stage delay: carry-in to sum

basic FA
circuit
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Carry Look-Ahead Adder
• CLA designed to overcome delay issue in R-C Adders

– eliminates the ripple (cascading) effect of the carry bits
• Algorithm based calculating all carry terms at once
• Introduces generate and propagate signals

– rewrite ci+1 = ai • bi + ci • (ai ⊕ bi) ci+1 = gi + ci • pi
• generate term,   gi = ai • bi

• propagate term, pi = ai ⊕ bi

– approach: evaluate all gi and pi terms and use them to calculate 
all carry terms without waiting for a carry-out ripple

• All sum terms evaluated at once
– the sum of each bit is: si = pi ⊕ ci

• Pros and Cons
– no cascade delays; outputs expressed in terms of inputs only
– requires complex circuits for higher bit-order adders (next slide)
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Logic Circuits for a 4b CLA Adder
•Carry-out expressions for 4b CLA

– c1 = g0 + c0•p0,   c2 = g1 + c1•p1,   c3 = g2 + c2•p2,   c4 = g3 + c3•p3

• Expressed only in terms of known inputs
– c2 = g1 + p1 • (g0 + c0•p0)
– c3 = g2 + p2 • [g1 + p1 • (g0 + c0•p0)]
– c4 = g3 + p3 • {g2 + p2 • [g1 + p1 • (g0 + c0•p0)]}
– nested Sum-of-Products expressions
– gets more complex for higher bit adders

• Sums obtained by an XOR with carries

gi = ai • bi
pi = ai ⊕ bi

simple

complex
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CLA Carry Generation in Reduced CMOS
• Reduce logic by constructing a CMOS push-pull network 

for each carry term
– expanded carry terms

• c1 = g0 + c0•p0
• c2 = g1 + g0•p1 + c0•p0•p1
• c3 = g2 + g1•p2 + g0•p1•p2 + c0•p0•p1•p2 
• c4 = g3 + g2•p3+ g1•p2•p3 + g0•p1•p2•p3 + c0•p0•p1•p2•p3 

• nFETs network for each carry term
– pFET pull-up not shown
– notice nested structure
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CLA in Advanced Logic Structures
• CLA algorithm better implemented in dynamic logic
• Dynamic Logic (jump to next slide)

• Dynamic Logic CLA Implementation
– multiple output domino logic (MODL)

• significantly fewer transistors
• faster
• less chip area
• output only valid

during evaluate period
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Dynamic Logic –Quick Look
• Advantages: fewer transistors & less power consumption
• General dynamic logic gate

– nFET logic evaluation network
– clocked “precharge” pull up pFET
– clocked disabling nFET

• Precharge stage
– clock-gated pull-up precharges output high
– logic array disabled

• Evaluation stage
– precharge pull-up disabled
– logic array enabled & if true, discharges output

• Dynamic operation: output not always valid

generic dynamic
logic gate
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Manchester Carry Generation Concept
• Alternative structure for carry evaluation

– define carry in terms of control signals such that
• only one control is active at a given time

– implement in switch-logic
• Consider single bit FA truth table

– p OR g is high in 6 of 8 logic states
• p and g are not high at the same time

– introduce carry-kill, k
• on/high when neither p or g is high
• carry_out always 0 when k=1

– only one control signal (p, g, k) is active for each state

ai bi ci ci+1
0   0    0    0
0   1    0    0
1   0    0    0
1   1    0    1
0   0    1    0
0   1    1    1
1   0    1    1
1   1    1    1

pi gi ki
0   0    1
1 0    0
1 0    0
0   1 0
0   0    1
1 0    0
1 0    0
0   1 0

generate     gi = ai • bi

propagate   pi = ai ⊕ bi

carry-kill     ki = ai + bi
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Manchester Carry Generation Concept
• Switch-logic implementation of truth table

– 3 independent control signals g, p, k
– express carry_out in terms of g, p, k

– implement in switch-logic
• only one switch ON at any time

ai bi ci ci+1

0   0    0    0
0   1   0    0
1   0   0    0
1   1    0    1
0   0    1    0
0   1    1    1
1   0    1    1
1   1    1    1

pi gi ki

0   0    1
1   0    0
1   0    0
0   1    0
0   0    1
1   0    0
1   0    0
0   1    0

if g = 1 ci+1 = 1
if p = 1 ci+1 = ci
if k = 1 ci+1 = 0

generate     gi = ai • bi

propagate   pi = ai ⊕ bi

carry-kill     ki = ai + bi
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Static CMOS Manchester Implementation
• Manchester carry generation circuit
• Static CMOS

– modify for inverting logic
• input ci_bar & output ci+1_bar

• New truth table
• Possible implementation

– ci+1 = 1 if gi=0
– ci+1 = 0 if gi=1 AND pi=0
– ci+1 = ci if pi=1

• but gi=0 here. problem?
– carry-kill is not needed

ai bi ci ci+1
0   0    1 1
0   1    1    1
1   0    1    1
1   1    1   0
0   0    0    1
0   1    0    0
1   0   0    0
1   1    0    0

pi gi
0 0
1   0
1   0
0   1
0   0
1 0
1 0
0   1
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Static CMOS Manchester Implementation
• Textbook Circuit Implementation

– ci+1 = 1 if gi=0
– ci+1 = 0 if gi=1 AND pi=0
– ci+1 = ci if pi=1

– error
• when gi=0, pi=1, ci=0, ci+1 0
• pulled low through M1
• but M4 pulls it high

• Possible Correction?
– insert switch in pull-up path to disable when ci=0
– solves error when gi=0, pi=1, ci=0 ci+1=0
– but introduces error when gi=0, pi=1, ci=0 ci+1=1

• M4 can not pull high since new nMOS cuts off path

static
CMOS

from textbook

ci

ai bi ci ci+1
0   0    1    1
0   1    1    1
1   0    1    1
1   1    1    0
0   0    0    1
0   1    0    0
1   0    0    0
1   1    0    0

pi gi
0   0 
1   0 
1   0
0   1
0   0 
1   0
1 0
0   1
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pi

gi

gi

cici+1

Manchester Implementation

– truth table organized by pi
• if pi = 0

– ci+1 = gi (NOT gi)
– block ci, pass VDD or GND

• if pi = 1
– ci+1 = ci
– pass ci, block VDD & GND

corrected
static

CMOS
ai bi ci ci+1
0   0    1 1
0   1    1 1
1   0    1 1
1   1    1  0
0   0    0 1
0   1    0 0
1   0    0 0
1   1    0   0

pi gi
0   0
1   0
1   0
0   1
0   0
1   0
1   0
0   1

ai

0 0 1

0 0 0

1 1 1

1 1 0

0 1 1

1 0 1

0 1 0

1 0 0

bi ci ci+1 pi gi VDD GND Ci

1 0 0 act x x

1 0 0 act x x

0 0 1 x act x

0 0 1 x act x

1 1 0 x x act

1 1 0 x x act

0 1 0 x x act

0 1 0 x x act

act = active
x = disabled

alternative design:
- do not add pMOS M3
- make W of M1 
significantly larger than 
W of M4

Ci will override VDD

• Corrected Manchester Carry Generation Circuit

M4

M3

M2

M1
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Manchester Implementation
• Dynamic Logic Circuit

– evaluate when φ = 1
– ci+1 stays high unless

• gi = 1 (ci+1 0) or pi = 1 (ci+1 ci) 

• 4b Dynamic Manchester Carry Generation
– minor ripple delay
– threshold drop on propagate
– very few transistors

single bit carry 
generation in
dynamic logic

ai bi ci ci+1
0   0    1    1
0   1    1    1
1   0    1    1
1   1    1    0
0   0    0    1
0   1    0    0
1   0    0    0
1   1    0    0

pi gi
0   0 
1   0 
1   0 
0   1 
0   0  
1   0 
1   0 
0   1

internal output, ci+1
dynamically pulled high

propagate
pulled low (generate)
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CLA for Wide Words
• number of terms in the carry equation increases with 

the width of the binary word to be added
– gets overwhelming (and slow) with large binary words

• one method is to break wide adders into smaller blocks 
– e.g., use 4b blocks (4b is common, but could be any number)
– must create block generate and propagate signals to carry 

information to the next block
• g[i,i+3] = gi+3 + gi+2•pi+3 + gi+1•pi+2•pi+3 + gi•pi+1•pi+2•pi+3

• p[i,i+3] = pi•pi+1•pi+2•pi+3
• for block i thru i+3 of an n-sized adder
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16b Adder Using 4b CLA Blocks

• Create SUMs from outputs of this circuit
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Other Adder Implementations
• Alternative implementations for high-speed adders
• Carry-Skip Adder

– quickly generate a carry under certain conditions and skip the 
carry-generation block

• recall ci+1 = gi + ci•pi, gi = ai • bi, pi = ai ⊕ bi
• note generation of pi is more complex (XOR) than gi (AND)

– so, generate pi and check cipi case, skip gi generation if cipi = 1

• Carry-Select Adder
– uses multiple adder blocks to increase speed
– take a lot of chip area

• Carry-Save Adder
– parallel FA, 3 inputs and 2 outputs
– does not add carry-out to next bit (thus no ripple)

• carry is saved for use by other blocks
– useful for adding more than 2 numbers 
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Fully Differential Full Adder
• (a) sum-generate circuit
• (b) carry generate circuit

pMOS

nMOS pMOS

nMOS
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Multiplier Basics
• Single-Bit Binary Multiplication

– 0 x 0 = 0,  0 x 1 = 0,  1 x 0 = 0,  1 x 1 = 1
– same result as logic AND operation (1b output, no carry!)

• Multiple-Bit Multiplication
– n-bit word TIMES an n-bit word give 2n-bit product
– 4b example

• 16 single-bit multiplies
– multiply each bit of a by each bit of b

• shift products for summing
note: can multiply by 2 by 
shifting the word to the left by 
one, multiply by 4 by left-shift 
twice, 8 three times, etc.
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Implementing Multiplier Circuits
• Multiplication Sequence

– organization of ANDs and ADDs

• 4x4 Array
Multiplier Circuit

– 8b output
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• Signed Numbers
– 2’s complement

• Booth Encoding
– evaluate number 2-bits at a time
– generate ‘action’ based on 2-bit sequence

+m = m
–m = 2 – m

Ex: 3-bit signed numbers
3 = 0 1 1
2+3 = 5 = 2- (-3)
=> 1 0 1 = -3

Signed Multiplication: Booth Encoding

0 1 1 0 1 (0) 1 0 -1 1 -1

-1: a sequence of  “ 1 0”
0: no change in sequence
1: a sequence of  “ 0 1”

0 1 1 0 1 = (13)10 = [ 1*24 + 0*23 –1*22 + 1*21 –1*20]

Benefit: Number of shift-add reduces if long seq. of “1” or “0”
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4b x 4b Booth Multiplication
Multiply m x r:  
A = m3 m2 m1 m0 x  r3 r2 r1 r0

Rules: 
Start with product A = 0
Examine rn, rn-1
0 0 : shift R right
0 1 : add M (A+M) 

shift A right
1 0 : sub M (A-M) 

shift A right
1 1 : shift A right

Ex : 0 1 0 1 x 1 0 1 1 ( 5* -5 = - 25)
n rn rn-1 Action A = 0 0 0 0

0 1 0 Sub M (A-M) 1 0 1 1

Shift Rt 1 1 0 1 1

1 1 1 Shift Rt 1 1 1 0 1 1

2 0 1 Add M (A+M) 0 0 1 1 1 1

Shift Rt 0 0 0 1 1 1 1

3 1 0 Sub M (A-M) 1 1 0 0 1 1 1 =-25

1 1 1 0 1 1
0 1 0 1
0 0 1 1 1 1

0 0 0 1 1 1 1
1 0 1 1
1 1 0 0 1 1 1
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Arithmetic/Logic Unit Structure
• ALU performs basic arithmetic and logic

functions in a single block
– core unit in a microprocessor

• Basic n-bit ALU
– Inputs

• 2 n-bit inputs
• carry in
• function selects

– Outputs
• 1 n-bit result
• carry out
• status outputs

– minus, zero, etc.
Status
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ALU Arithmetic Components
• ALU Components

– Arithmetic Block
– Logic Block
– Date Movement

• sometimes done in register file

• Arithmetic Block
– implements arithmetic functions
– add
– subtract
– increment/decrement
– sometimes

• multiply
• divide

Example 4b Arithmetic Block
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ALU Logic Components
• Logic Block

– implements logic functions
– NOT
– AND
– OR
– XOR

• Date Movement
– somewhere in the ALU

• or in the register file
– shift
– rotate

Example 1-bit Logic Block
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Example ALU Organization & Function
• Example ALU Bit Slice

– implementation of one bit

• Example Function Table

function set for
a simple ALU

function determined
by select inputs
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