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CMOS Logic Families
• Many “families” of logic 

exist beyond Static 
CMOS

• Comparison of logic 
families for a 2-input 
multiplexer

• Briefly overview
– pseudo-nMOS
– differential (CVSL)
– dynamic/domino
– complementary pass-gate
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nMOS Inverter
• Logic Inverter
• nMOS Inverter

– assume a resistive load to VDD
– nMOS switches pull output low based on inputs

• Active loads
– use pMOS transistor in place of resistor
– resistance varies with Gate connection

• Ground always on
• Drain=Output turns off when Vout > VDD-Vtp

– VSG = VSD so always in saturation
• Vbias can turn Vbias for needed switching characteristics

nMOS Inverter (a) nMOS is off,
(b) nMOS is on
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Pseudo-nMOS

generic pseudo-nMOS logic gate

pseudo-nMOS
inverter

pseudo-nMOS NAND and NOR

• full nMOS logic array
• replace pMOS array with single pull 

up transistor
• Ratioed Logic

– requires proper tx size ratios
• Advantages

– less load capacitance on input signals
• faster switching

– fewer transistors
• higher circuit density

• Disadvantage
– pull up is always on

• significant static power dissipation
– VOL > 0
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Pseudo nMOS DC Operation
• Output High Voltage, VOH (Maximum output)

– occurs when input is low (Vin = 0V), nMOS is OFF
– pMOS has very small VSD triode operation

– pMOS pulls Vout to VDD
– VOH = VDD

• Output Low Voltage, VOL (Minimum output)
– occurs when input is high (Vin = VDD)
– both nMOS and pMOS are ON

• nMOS is “on stronger”; pulls Vout low
– as Vout goes low, nMOS enters triode

• continues to sink current from pMOS load

– VOL > 0 V (active load always pulling)
• Logic Swing (max output swing)

– VL = VOH - VOL < VDD

pseudo nMOS
inverter VTC

VOH = VDD

VOL > Ground
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Pseudo nMOS Transient Analysis
• Rise and Fall Times

– harder to analyze for pseudo nMOS
– due to “always on” active load

slow rise time
faster fall time

but does not fall to 0 volts
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Differential Logic
• Cascode Voltage Switch Logic (CVSL)

– aka, Differential Logic
• Performance advantage of ratioed

circuits without the extra power
• Requires complementary inputs

– produces complementary outputs
• Operation

– two nMOS arrays
• one for f, one for f

– cross-coupled load pMOS
– one path is always active

• since either f or f is always true
– other path is turned off 

• no static power

generic differential logic gate

differential AND/NAND gate

(logic arrays turns off one load)
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Differential Logic
• Advantages of CVSL

– low load capacitance on inputs
– no static power consumption
– automatic complementary functions

• Disadvantages
– requires complementary inputs
– more transistors

• for single function

• Very useful in some circuit 
blocks where complementary 
signals are generally needed
– interesting implementation in 

adders

differential 4-input XOR/XNOR
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Dynamic Logic
• Advantages of ratioed logic without power consumption 

of pseudo-nMOS or excess tx of differential
• Dynamic operation: output not always valid
• Precharge stage

– clock-gated pull-up precharges output high
– logic array disabled

• Evaluation stage
– precharge pull-up disabled
– logic array enabled & if true, discharges output

generic dynamic logic gate
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Dynamic Logic
• Example: Footed dynamic NAND3

• Footed vs. Unfooted
– foot tx ensures nMOS array disabled 

during precharge

unfooted

footed
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Charge Redistribution in Dynamic Logic
• Major potential problem

– during evaluation, precharge charge is distributed over parasitic 
capacitances within the nMOS array

• causes output to decrease (same charge over larger C less V)
– if the function is not true, output should be HIGH but could be 

much less than VDD

charge distribution over nMOS
parasitics during evaluation

• One possible solution
– “keeper” transistor

• injects charge during evaluation if 
output should be HIGH

• keeps output at VDD
– keeper controlled by output_bar

• on when output is high
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Domino Logic
• Dynamic logic can only drive an output LOW

– output HIGH is precharged only with limited drive
• Domino logic adds and inverter buffer at output

• Cascading domino logic
– must alter precharge/eval cycles
– clock each stage on opposite

clock phase generic domino logic gate

NP dynamic logic NO RAce (NORA) 
domino logic
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Pass Transistor (PT) Logic

A
B

FB
0

A

0

B

B= A • B
F = A • B

Gate is static – a low-impedance path exists to both 
supply rails under all circumstances

N transistors instead of 2N
No static power consumption
Ratioless
Bidirectional (versus undirectional)
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VTC of PT AND Gate
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A=B=0→VDD
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Pure PT logic is not regenerative - the signal 
gradually degrades after passing through a number 
of PTs (can fix with static CMOS inverter insertion)
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nMOS Only PT Driving an Inverter

• Vx does not pull up to VDD, but VDD – VTn

In = VDD

A = VDD

Vx = 
VDD-VTn

M1

M2

B
SD

• Threshold voltage drop causes static power consumption (M2
may be weakly conducting forming a path from VDD to GND)

• Notice VTn increases of pass transistor due to body effect
(VSB)

VGS



ECE 410, Prof. A. Mason Advanced Digital.15

Voltage Swing of PT Driving an Inverter

• Body effect – large VSB at x - when pulling high (B is tied to 
GND and S charged up close to VDD)

• So the voltage drop is even worse
Vx = VDD - (VTn0 +  γ(√(|2φf| + Vx) - √|2φf|))

In = 0 → VDD

VDD
x Out
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TG Full Adder

Sum

Cout

A

B

Cin

16 Transistors; full swing – transmission gates
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Basic CMOS Isolation Structures
• LOCOS –Local Oxidation of Silicon
• STI –Shallow Trench Isolation
• LDD –Lightly-Doped Drain

– Used to reduce the lateral electric field in the channel
• SOI –Silicon on Insulator
• BiCMOS -Bipolar and CMOS on same chip
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LOCOS
• Isolation between 

transistor
– Field Oxide (FOX)

• FOX formed by
– masking active regions
– thermal oxidation of 

non-masked areas
• Self-aligned gate

– S/D formed after 
poly gate

– S/D automatically 
aligned to gate

p+p+ p+

n

n+ n+ n+

p-type substrate

Layout view

Cross section view

FOX
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Problems with LOCOS
• Device “packing” density limited by “bird’s beak effect 

of FOX isolation layer.
– effects the width (W) of the transistor

• Can improve density with Shallow Trench Isolation (STI)

bird’s beak



ECE 410, Prof. A. Mason Advanced Digital.20

Shallow Trench Isolation (STI)
• Form Gate and S/D first
• Then isolate devices by

– etching trench (~0.4um) 
in substrate between 
devices

– filling trench with 
deposited oxide

• Eliminates the area lost 
to bird’s beak effect of 
LOCOS

• Well doping and channel 
implants done later in 
process via high energy 
ion implantation
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Lightly-Doped Drain (LDD)
• Create lightly doped regions in S/D near the channel
• Necessary for submicron fabrication

– reduces the electric field across the channel
– reduces the velocity of electrons in the channel 

(hot carrier effect)
– reduces performance, but allows higher density

• Can be used with any
isolation process
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Silicon On Insulator (SOI)
• Buried SiO2 layer beneath 

surface of active single-
crystal Si substrate

• More expensive, but 
excellent isolation
– no leakage current to 

substrate
– no latchup
– high transconductance
– good subthreshold 

performance
– reduced short channel 

effects
– radiation immunity
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BiCMOS

• Advantage
– both Bipolar and CMOS transistor

• Disadvantage
– Increased process complexity
– Reduced density (just no way to make small BJTs)
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Scaling Options
• Constant Voltage (CV)

– voltage remains constant as feature size is reduced
– causes electric field in channel to increase

• decreases performance
– but, device will fail if electric field gets too large

• Constant Electric Field (CE)
– scale down voltage with feature size
– keeps electric field constant

• maintain good performance
– but, limit to how low voltage can go

Electric Field in channel
vs. Channel Length 

at various Supply Voltages

constant electric field

constant
voltage
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Low Voltage Issues
• Reasons modern/future circuits have lower voltage

– lower voltage = lower dynamic power:  Pdyn = α CL VDD
2 fCLK

– lower voltage required for smaller feature size
• feature sizes reduced to improve performance/speed
• smaller features = shorter distances across the channel

stronger electric fields in channel
poorer performance or device failure

» unless voltage is reduced also

• Side effects of reducing voltage
– reduces current (speed) and increases noise problems
– as supply voltage decreases, must also reduce threshold voltage

• otherwise, circuits will not switch correctly
– reduced threshold voltage = increased subthreshold current

increased leakage currents
increased static power consumption
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Short Channels
• Effective channel length

– must account for depletion region spreading into the channel
– more important as channel length gets shorter

• For short channels, roughly measured by L < 1μm
– Source-Substrate and Drain-Substrate junction depletion layer extend 

noticeably into the channel
– will reduce the about of bulk charge, QB, in the channel
– thus reduce the threshold voltage as channel length decreases
– called the short channel effect

– need a new way to calculate QB
• some bulk charge lost to depletion layers

(from Kuo and Lou, p. 43)
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Short Channel Effects
• Short channel lengths introduce effects which must be considered

– in selecting process technologies for a given application
– in design of circuits

• Short Channel Effects
– mobility degradation
– threshold voltage degradation
– velocity saturation
– hot carrier effects

• Other effects made worse by short channels
– leakage currents
– latch-up
– subthreshold operation
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Velocity Saturation
• Charge Velocity

– vn = μE, μ is mobility and E is electric field
– valid for small E, as assumed in previous I-V equations

• Velocity Saturation
– if E > Ec (critical field level), velocity will reach a maximum
– vsat = saturation velocity, velocity at E > Ec

• Short Channel Devices
– lateral field near drain is very high charge can experience velocity saturation
– even at VDS voltages before pinchoff occurs
– here

• where V’DSAT is the drain-source voltage which generates the critical electric field, Ec
• valid when V’DSAT < VGS-Vt (when velocity saturation occurs before channel pinchoff)

• Velocity Overshoot
– with very short channels, carriers can travel faster than saturation velocity
– occurs in deep submicron devices with channel lengths less than 0.1μm
– the velocity saturation equation above becomes inaccurate for very small channel 

lengths and more detailed models are required.
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Hot Carrier Effects
• High E-field in channel will accelerate charge carriers
• Accelerated carriers can start colliding with the substrate atoms

– generates electron-hole pairs during the collision
– these will be accelerated, collide with substrate atoms and form even more 

electron-hole pairs: called impact ionization
• Impact ionization can lead to 

– avalanche breakdown within the device
– large substrate currents
– degradation of the oxide

• high energy electrons collide with gate oxide and become imbedded
• causes a shift in threshold voltage
• considered catastrophic effect

– leads to unstable performance
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Hot Carrier Effects II
• Supply voltages dropping slower than channel length

– as a result electric fields in channel continue to increase.
• Hot carrier effect must be considered for submicron devices

– may potentially be a limiting factor in how far devices can be scaled 
down

• unless we can reduce electric fields in channel  
• To reduce hot carrier effects, increase channel length

• pMOS devices may be better overall for deep submicron circuits
– hole mobility is closer to electron mobility under high electric fields 

which occur in submicron devices
– hot carrier effects are worse in nMOS devices than pMOS
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Leakage Currents
• All p-n junctions in the MOSFET structure will have a 

reverse bias leakage current
• Leakage Current, Ilk

– where
• Aj is the junction area
• ni is the intrinsic carrier concentration
• τ0 is the effective minority carrier lifetime
• xd is the depletion layer thickness, xd=f(VR)

• Undesired effects of leakage currents
– add to unwanted static power consumption
– limit the charge storage time of dynamic circuits

• Factors in leakage
– ni is a strong function of temperature (doubles every 11°C)

• significant in high power density circuit that generate heat
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Latch-Up
• Latch-up is a very real, very important factor in circuit design that 

must be accounted for
• Due to (relatively) large current in substrate or n-well

– create voltage drops across the resistive substrate/well
• most common during large power/ground current spikes

– turns on parasitic BJT devices, effectively shorting power & ground
• often results in device failure with fused-open wire bonds or interconnects

– hot carrier effects can also result in latch-up
• latch-up very important for short channel devices

• Avoid latch-up by
– including as many substrate/well contacts as possible
– limiting the maximum supply current on the chip
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Subthreshold Operation
• Weak inversion, when VG > 0 but < Vt

– some channel change and the drain current is small but not zero.
– referred to as the subthreshold region

• Subthreshold operation
– the drain current is an exponential function of the gate voltage 
– the current increase sharply with VGS until the device turns on

– where 
• ID0 is a process dependant constant, typically ~20nA
• n is a process dependant constant, typically n=1.5
• kT/q = 26mV at room temperature

• Channel Length
– subthreshold currents are much larger in short channel devices

• due to high e-fields at the drain reducing effective channel length
• effect can be reduced my using lightly-doped drain regions under the gate
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Subthreshold Operation
• Analog Circuits

– subthreshold operation is exploited for low power operation in low 
frequency applications

• Digital Circuits
– subthreshold current serves as undesired leakage current
– want to quickly transition in/out of subthreshold

• How can we decrease subthreshold currents and speed transition?
– thinner gate oxide = faster transition

• same as current technology trend
– lighter substrate doping = faster transition

• opposite of current technology trend
– higher doping needed for better short channel performance

– faster transition = less subthreshold leakage current = lower power
– process must be chosen to match the speed, power, and performance 

spec’s for each circuit
• what is best for DRAM is not best for microprocessors, etc.
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