

Series preface

In recent years there have been many changes in the structure of undergraduate

courses in engineering and the process is continuing. With the advent of
modularisation, semesterisation and the move towards student-centred learning
as class contact time is reduced, students and teachers alike are having to adjust to
new methods of learning and teaching.

Essential Electronics is a series of textbooks intended for use by students on
degree and diploma level courses in electrical and electronic engineering and
related courses such as manufacturing, mechanical, civil and general engineering.
Each text is complete in itself and is complementary to other books in the series.

A feature of these books is the acknowledgement of the new culture outlined
above and the fact that students entering higher education are now, through no
fault of their own, less well equipped in mathematics and physics than students of
ten or even five years ago. With numerous worked examples throughout, and
further problems with answers at the end of each chapter, the texts are ideal for
directed and independent learning.

The early books in the series cover topics normally found in the first and second
year curricula and assume virtually no previous knowledge, with mathematics
being kept to a minimum. Later ones are intended for study at final year level.

The authors are highly qualified chartered engineers with wide experience in
higher education and in industry.

R G Powell
Nott ingham Trent University

Preface

This book covers the material normally found in first and second year modules on
digital electronics. It is intended for use by degree, diploma and TEC students in
electronic engineering, computer science and physics departments. It is also aimed
at those professionals who are revisiting the subject as a means of updating them-
selves on recent developments.

The philopsophy of this book is to cover the basics in detail and to give a taste
of advanced topics such as asynchronous and synchronous circuit design, and
semi-custom IC design. In other words we have adopted a broad brush approach
to the subject. This will provide the reader with an introduction to these advanced
techniques which are covered in more specialist and comprehensive texts. The
book is sprinkled with numerous practical examples indicating good and
poor design techniques and tips regarding circuit pitfalls. To provide you with
confidence in your understanding each chapter is concluded with both short and
long questions and follows the same format as the other texts in this series.

Acknowledgements

Thanks are due to David Ross for his patience and understanding when every
deadline was set and missed, and for offering the opportunity for us to be involved
with this series. Finally, and not least, we would like to thank Robert, Emily,
Charlotte, Jessica and Nicki (who also assisted in the proof reading) for their
patience.

Solutions to the self-assessment and other exercises are available from the
publishers to lecturers only. Please e-mail nicki.dennis@hodder.co.uk

Preface

This book covers the material normally found in first and second year modules on
digital electronics. It is intended for use by degree, diploma and TEC students in
electronic engineering, computer science and physics departments. It is also aimed
at those professionals who are revisiting the subject as a means of updating them-
selves on recent developments.

The philopsophy of this book is to cover the basics in detail and to give a taste
of advanced topics such as asynchronous and synchronous circuit design, and
semi-custom IC design. In other words we have adopted a broad brush approach
to the subject. This will provide the reader with an introduction to these advanced
techniques which are covered in more specialist and comprehensive texts. The
book is sprinkled with numerous practical examples indicating good and
poor design techniques and tips regarding circuit pitfalls. To provide you with
confidence in your understanding each chapter is concluded with both short and
long questions and follows the same format as the other texts in this series.

Acknowledgements

Thanks are due to David Ross for his patience and understanding when every
deadline was set and missed, and for offering the opportunity for us to be involved
with this series. Finally, and not least, we would like to thank Robert, Emily,
Charlotte, Jessica and Nicki (who also assisted in the proof reading) for their
patience.

Solutions to the self-assessment and other exercises are available from the
publishers to lecturers only. Please e-mail nicki.dennis@hodder.co.uk

1 Fundamentals

1.1 INTRODUCTION

This chapter introduces the essential information required for the rest of the
book. This includes a description of Boolean algebra, the mathematical language
of digital electronics, and the logic gates used to implement Boolean functions.
Also covered are the 'tools' of digital electronics such as truth tables, timing
diagrams and circuit diagrams. Finally, certain concepts such as duality, positive
and negative assertion level logic and universal gates, that will be used in later
chapters, are introduced.

1.2 BASIC PRINCIPLES

1.2.1 Boolean algebra- an introduction

The algebra of a number system basically describes how to perform arithmetic
using the operators of the system acting upon the system's variables which can
take any of the allowed values within that system. Boolean algebra describes the
arithmetic of a two-state system and is therefore the mathematical language of
digital electronics. The variables in Boolean algebra are represented as symbols
(e.g. A, B, C, X, Y etc.) which indicate the state (e.g. voltage in a circuit). In this
book this state will be either 0 or 1. ~ Boolean algebra has only three operators:
NOT, AND and OR. The symbols representing these operations, their usage and
how they are used verbally are all shown in Table 1.1. Note that whereas the
AND 2 and OR operators operate on two or more variables the NOT operator
works on a single variable.

Table 1.1 Boolean variables and opera to r s

Operator S y m b o l Usage Spoken as
m

N O T - A no t A; or A bar

A N D A . B A and B

O R + A + B A or B

~ln other textbooks, and occasionally later on in this one, you may see these states referred to as HIGH
and LOW or ON and OFF.

-'Sometimes the AND symbol, A- B, is omitted and the variables to be AND'd are just placed together as
AB. This notation will be adopted in later chapters.

2 Fundamentals

Example 1.1

A circuit contains two variables (i.e. signals), X and Y, which must be OR'd
together. How would this operation be shown using Boolean algebra, and how
would you describe it verbally?

Solution

The operation would be spoken as X or Y and written as X+ Y.

Example 1.2

The output Y of a logic circuit with two inputs, A and B, is given by the Boolean
arithmetic expression, Y= A. B. How would this be described verbally?

Solution

This would be spoken as either Y equals A and B bar, or alternatively Y equals A

and not B.

1.2.2 The three Boolean operators

The basic gates (i.e. circuit elements) available in digital electronics perform the
three Boolean algebraic operations of NOT, AND and OR. The symbols for these
gates are shown in Fig. 1.1. In order to both design and analyse circuits it is neces-
sary to know the output of these gates for any given inputs.

A ~ Y A Y A

NOT AND OR
Fig. 1.1 The three basic Boolean operators

The NOT operator
Since any Boolean variable can only be either 0 or 1 (Boolean algebra is a two- state
system) then if it is 0 its complement is 1 and vice versa. The NOT gate performs
this operation (of producing the complement of a variable) on a logic signal, so if
A is input to the NOT gate then the output is represented by Y= A. Therefore if
A =0 then Y= 1, or else A = 1 and Y=0 (there are only two possibilities).

The truth table of a logic system (e.g. digital electronic circuit) describes the
output(s) of the system for given input(s). The input(s) and output(s) are used to
label the columns of a truth table, with the rows representing all possible inputs to
the circuit and the corresponding outputs. For the NOT gate there is only one
input (hence one input column, A), which can only have two possible values (0
and 1), so there are only two r o w s . 3 As there is only one output, Y, there is only

3The number of possible inputs, and hence rows, is given by 2; (where i is the number of inputs) since each
of the i inputs can only take one of two possible values (0 and 1).

Basic principles 3

one output column. The truth table for the NOT gate in Table 1.2 shows that

Y= 1 if A = 0, and Y= 0 if A = 1. So Y= A, the complement of A. The NOT gate is

also sometimes referred to as an inverter due to the fact that it complements

(inverts) its input.

Table 1.2 Truth tables for the three basic logic gates

A
row 1 0
row 2 1

NOT
Y=A

Y
1

0

row 1
row 2
row 3 1
row 4 1

AND
Y=A .B

B Y A B Y
0 0 0 0 0
1 0 0 1 1
0 0 1 0 1
1 1 1 1 1

OR
Y=A +B

T h e A N D operator

The AND operator takes a number of variables as its input and produces one
output whose value is 1 if and only if all of the inputs are 1. That is the output is 1

i f input 1 and input 2 and all the other inputs are 1. Hence its name.
Considering a two-input (although it can be any number) AND gate its truth

table will have two input columns, A and B, and one output column, Y. With two
inputs there are 2 2 =4 input combinations (since both A and B can be either 0 or 1)
and so four rows. The output of the gate, Y, will be 0 unless all (i.e. both A and B)
inputs are 1, so only the last row when A and B are 1 gives an output of 1. The
truth table (see Table 1.2) describes completely the output from an AND gate for
any combination of inputs.

Alternative, but exactly equivalent, descriptions of this operation are given by
use of either the circuit symbol or the Boolean equation, Y= A- B. (This is true of
all combinational logic circuits.)

Example 1.3

Consider a three-input AND gate. How many columns and rows would its truth
table have? What would the Boolean expression describing its operation be? What
would its truth table and circuit symbol be?

Solution

The truth table would have four columns; three for the inputs and one for the
output. Since there are three inputs it would have 23= 8 rows corresponding to all
possible input combinations. Its Boolean algebraic expression would be
Y= A- B �9 C, assuming the inputs are A, B and C. Its truth table and circuit symbol
are shown in Fig. 1.2.

4 Fundamentals

A B C A . B . C
0 0 0 0

o o i o
0 1 0 0

o ~ 1 o
1 0 0 0

_ �9 _

1 0 1 O.

1 1 0 0

1 1 1 1

A m

C

Fig. 1.2 Truth table and symbol for a three-input AND gate as discussed in Example 1.3

The OR operator
The OR operator takes a number of variables as its input and produces an output
of 1 if any of the inputs are 1. That is the output is i i f input I or input 2 or any input
is 1. The layout of the truth table for a two-input OR gate is the same as that for
the two-input AND gate for the same reasons given above (since both have two
inputs and one output). The entries in the output column are all that differ with
Y= 1 whenever any input, either A or B, is 1. 4 Note that this includes an output of
1 if both inputs are 1.5 The Boolean algebraic equation for this gate is Y= A + B.

Example 1.4

Draw the circuit symbol and truth table for a four-input OR gate.

Solution

These are shown in Fig. 1.3.

1.3 BOOLEAN ALGEBRA

Boolean algebra is the mathematical language of digital logic circuits, which are
simply circuits built out of the three gates (operations) introduced above. It
provides techniques for describing, analysing and designing their operation.
Using the above descriptions of the operation of the three basic gates, and their
Boolean descriptions, Y= A, Y= A- B and Y= A + B, the additional rules and laws
of Boolean logic which are needed will now be introduced.

1.3.1 Single-variable theorems

As the heading suggests, this section details those rules which describe the opera-

4Another way oflooking at this is that the output is only 0 if both input A and input B are 0. This (nega-
tive logic) approach is discussed in more detail in Section 1.7.

5A gate which is similar to the OR gate in all but this aspect, the exclusive-OR (XOR) gate, will be consid-
ered in Section 1.4.

Boolean algebra 5

A B C

0 0 0

0 0 0

0 0 1

0 0 1

0 1 0

0 1 0

0 1

0 1

1)

1 ~

1 3

' 1 3

1 1

1 1

1 1 1 0

1 1 1 1

|

D
i ,

0

A + B + C + D

0

1 1

0 1

1 i 1
l

0 1
i 1 1

1 " 0 1
, , ,

1 1 1
- . .

0 0 1
.

0L 1 i
�9

1 0 1
1 1 1
0 0 1
0 1 - 1

1
1

L

Fig. 1.3 Truth table and symbol for a four-input OR gate as discussed in Example 1.4

t ion of logic gates when only one var iable is present . No te tha t these laws, given in

Table 1.3, provide e x a c t l y the same i n f o r m a t i o n as the t ru th tables.

Table 1.3 Single-variable Boolean theorems

Idempotent laws: Rows 1 and 4 of the truth tables, demonstrate the effect of a variable oper-
ating upon itself:

A . A = A (1.1)
A + A = A (1.2)

Property of inverse elements: Rows 2 and 3 of the truth tables show the effect of a variable
operating on its complement:

A ' A : O (1.3)
_ _

A +A = I (1.4)

Involution (NOT) law:
A : A (1.5)

Property of identity elements: The effect of operating on a variable with 0 or 1:
A . 0 : 0 (1.6)
A. 1 : A (1.7)

A + 0 : A (1.8)
A + 1 : 1 (1.9)

I d e m p o t e n t l a w s

The i dempo ten t ~ laws describe the effect o f a var iable opera t ing upon itself (i.e.

the same var iable goes to all inputs). F o r the two- inpu t A N D gate this gives

Y - A- A which will give 1 if A - 1, and 0 if A - 0 ; hence Y= A. A - A.

"idern nmans "same" in Lalin.

6 Fundamentals

The OR operator gives exactly the same result and these laws give the outputs
in rows 1 and 4 (see Table 1.2) of the truth tables.

Inverse elements
The law of inverse elements describes the effect of operating on a variable, A, with
its complement, A. For the AND gate this gives Y= A. A =0, since A and A must
have complementary values and therefore Y= 0.

For the OR gate Y= A + A = 1, since either A or A must be 1. This law describes
the operations in rows 2 and 3 of the truth tables.

Involution law
This describes the effect of operating on a variable twice with the NOT operator
(i.e. passing a signal through two NOT gates). The effect of this is to return the
variable to its original state. So Y= A = A.

Note that the truth tables could be derived from the above three laws as they give
exactly the same information. It will become apparent that there is always more
than one way of representing the information in a digital circuit, and that you
must be able to choose the most suitable representation for any given situation,
and also convert readily between them.

Properties of identity elements
The above laws give all of the information held in the truth tables. However
another way of expressing this information is as the properties of identity elements.
These just give the output of the AND and OR gates when a variable, A, is oper-
ated on by a constant (an identity element). (So for a two-input gate one of the
inputs is held at either 0 or 1.) Obviously these laws, shown in Table 1.3, can also
be used to completely determine the truth tables.

Note that Equation 1.6 in Table 1.3 states that AND'ing any variable (or
Boolean expression) with 0 gives 0, whilst Equation 1.9 means that OR'ing any
variable (or Boolean expression) with 1 gives 1. However AND'ing with 1
(Equation 1.7) or OR'ing with 0 (Equation 1.8) gives the Boolean value of the
variable or expression used in the operation.

Example 1.5

What is the result of the operations (X. 0) and ((X. Y)+ 1)?

Solution

The output from (X-0) will be 0, since anything AND'd with 0 gives a digital
output of 0. The result of ((X. Y)+ 1) will be 1, since any expression OR'd with 1
gives 1. Note that in the second example it is the Boolean expression (X- Y) (which
must be either 0 or 1) that is OR'd with 1.

Table 1.4 Multivariable Boolean theorems

Boolean algebra 7

Commutative laws: Show that the order of operation under AND and OR is unimportant:

A . B = B . A

A + B = B + A

Associative laws: Show how variables are grouped together:
(A. B). C = A . B. C = A . (B . C)

(A+B) + C= A +B+ C= A +(B+ C)

Distributive laws: Show how to expand equations out:
A .(B+ C)=A. B+ A. C
A +(B " C) = (A + B) " (A + C)

De Morgan's theorem:
A + B = A . B =~A+B+C+ A . B ' C . . .

A ' B = A + B = ~ A . B . C . . . = A + B + C . . .

Other laws which can be proved from the above are the:

Absorption laws:

and 'other identities':

(1.10)
(I.11)

(1.12)
(1.13)

(1.14)
(1.15)

(1.16)
(1.17)

A . (A + B) = A (1.18)
A +(A . B)= A (1.19)

A . (A + B) = A . B (1.20)
A +(a. B)= A + B (1.21)

Example 1.6

What is the result of the operations (Y- 1) and ((X. Y)+ 0)?

Solution

The outputs will be whatever the digital values of Y and (X. Y) are, since anything
AND'd with 1 or OR'd with 0 is unchanged.

1.3.2 Multivariable theorems

These rules describe the operations of Boolean algebra when more than one vari-

able is present. This includes defining the equivalence of certain groups of opera-

tions (i.e. groups of gates forming a circuit). All of the multivariable theorems

described below are given in Table 1.4.

Commutative laws
These simply state that it does not matter which way two variables are AND'd or

OR'd together. So

Y - - A . B = B . A and Y - A + B = B + A

This is the same as saying it does not matter which inputs of a two-input gate the
two variables are connected to.

8 Fundamentals

Associative laws
These show how operations can be associated with each other (grouped together).
Essentially if three or more variables are to be AND'd or OR'd together it does
not matter in which order it is done. This is relevant if three variables are to be
operated upon and only gates with two inputs are available.

Example 1.7

If only two input OR gates are available draw the circuit to implement the
Boolean expression Y= A + B + C.

Solution

The circuit is shown in Fig. 1.4. Note that because of the associative law it does
not matter which two of the three variables are OR'd together first.

c I

Fig. 1.4 Implementation of Y= A + B + C using two-input OR gates as discussed in Example 1.7

Distributive laws
The rules given by the commutative and associative laws are intuitive. However,
the remaining multivariable theorems require more thought and are less obvious.
The distributive laws (Equations 1.14 and 1.15) show how to expand out Boolean
expressions and are important because it is upon them that the factorisation, and
hence simplification, of such expressions are based.

Example 1.8

What does the expression (A + B) . (C + D) become when expanded out?

Solution

Doing this rigourously let us replace the Boolean expression (A + B) with X. (This
sort of substitution of one Boolean expression for another is perfectly legitimate.)
We then have X. (C+ D) to expand, which using the distributive law becomes

X. C+ X. D=(A + B). C+(A + B) .D

Using the commutative law to reverse these AND'd expressions and then the
distributive law again gives the result of

(A + B) . (C + D) = A �9 C+ B" C+A" D+ B" D

Boolean algebra 9

De Morgan's theorem
De Morgan's theorem states (Equation 1.16) that complementing the result of
OR'ing variables together is equivalent to AND'ing the complements of the indi-
vidual variables. Also (Equation 1.17), complementing the result of AND'ing
variables together is equivalent to OR'ing the complements of the individual vari-
ables.

Example 1.9

Use Boolean algebra and de Morgan's theorem for two variables, A + B=,4. B, to
show that the form given in Equation 1.16 for three variables is also true.

S o l u t i o n

A + B + C = (A + B) + C

=(A+B).C
: (A . B) . C
= A ' B ' C

associative law
De Morgan's theorem
De Morgan's theorem
associative law

Example 1.10

Draw the circuits that will perform the functions described by both sides of the
first of De Morgan's theorems (Equation 1.16) given in Table 1.4, and also
demonstrate the theorem is true using a truth table.

S o l u t i o n

The circuits and truth table are shown in Fig. 1.5.

A 32> Y
B

A B A B A + B

0 0 1 1 0

0 1 1 0 1

1 0 0 1 1

1 1 0 0 1

~ - ~ - y

A + B A . B

1 1

0 0

0 0

0 0

Fig. 1.5 Solution to Example 1.10 regarding De Morgan's theorem

De Morgan's theorems prove very useful for simplifying Boolean logic expres-
sions because of the way they can 'break' an inversion, which could be the
complement of a complex Boolean expression.

10 Fundamentals

Example 1.11

Use De Morgan's theorems to produce an expression which is equivalent to
Y- A + B- C but only requires a single inversion.

Solution

A +(B. C)-A.(B. C)
: A ' (B + C)

=A.B+A.C

de Morgan's theorem
de Morgan's theorem

distributive law

De Morgan's theorems can also be used to express logic expressions not origi-
nally containing inversion terms in a different way. This can again prove useful
when simplifying Boolean equations. When used in this way care must be taken
not to 'forget' the final inversion, which is easily avoided by complementing both
sides of the expression to be simplified before applying De Morgan's theorem, and
then complementing again after simplification. The following example illustrates
this point.

Example 1.12

Use De Morgan's theorem to express Y= A + B, the OR operation, in a different
form.

Solution

The conversion could be performed directly but when used on more complicated
expressions it is easy to 'forget' an inversion as mentioned above. We therefore
firstly invert both sides of the expression giving Y= A + B. Applying De Morgan's
theorem gives Y-A-B, with both sides again inverted to give the final expression
Y=A.B.

Finally we note that one way of interpreting De Morgan's theorem is that any
AND/OR operation can be considered as an OR/AND operation as long as NOT
gates are used as well (see last example). This approach will be considered later on
in this chapter when we look at the principle of duality in Section 1.6.

Absorption laws
Although these can be proved from the above laws, they nevertheless merit inclu-
sion in their own right as they are often used to simplify Boolean expressions.
Their value is clear since they take an expression with two variables and reduce it
to a single variable. (For example B is 'absorbed' in an expression containing A
and B leaving only A.)

Example 1.13

Boolean algebra 11

Use Boolean algebra to rigorously prove the first absorption law (Equation 1.18)

A " (A + B)= A

Solut ion

'Other identities'

A ' (A + B) = A ' A + A ' B

= A ' I + A . B

=A-(I+B)
=A.1
=A

distributive law, Equation 1.14
Equations 1.1 and 1.7
distributive law
Equation 1.9
Equation 1.7 again

The remaining identities are grouped together under this heading since, like the
absorption laws, they can be proved from the earlier theorems, but nevertheless
are not entirely obvious or expected. These identities are again valuable when
trying to simplify complicated Boolean expressions.

Example 1.14

Use Boolean algebra and a truth table to rigorously prove the first 'other identity'
(Equation 1.20)

m

A . (A + B) = A . B

Solution
w

A- (A + B) = A- A + A- B distributive law, Equation 1.14
=0+A" B Equation 1.3
=A- B Equation 1.8

The truth table is shown in Table 1.5.

Table 1.5 Truth table for Equation t.20 as discussed in Example 1.14

A B
0 0 1 1
0 1 1 1
1 0 0 0
1 1 0 1

,

o
A ' B

o
o
o
1

The similarity between Boolean and ordinary algebra

You may have wondered why the AND and OR operations are indicated by the
symbols for multiplication, -, and addition, +. The reason is that many of the laws
in Table 1.3 and 1.4 hold for both Boolean and ordinary algebra. Indeed, of all the

12 Fundamentals

Boolean laws not involving complements (inversions) the only ones that are not
true in ordinary algebra are 1.1, 1.2, 1.9,1.15 and the absorption laws.

It is for this reason that variables AND'd together are often referred to as
product terms and variables OR'd together as sum terms. Hence the expression:

Y = A . B + A . B

is a sum o f products expression. The two product terms are (A �9 B) and (A �9 B)
which are then summed (OR'd) together. We will return to the use of this kind of
terminology in Chapter 3.

A final point on this topic is that in the same way that multiplication takes
precedence over addition so too does AND'ing over OR'ing. That is why when
sum terms are to be AND'd together they are enclosed in brackets.

Example 1.15
_ m

What type of expression is Y= (A + B). (A + B), what sum terms are included in it,
and what is its expanded form?

Solution

This is a product o f sums expression, with two sum terms, (A + B) and (A +B).
Using Boolean algebra:

(A+B) . (A + B) - (A + B) . A + (A + B) " B

= A . A + B . A + A . B + B . B

- A . B + A . B

distributive law
distributive law
Equation 1.3

(This is the Boolean expression for the exclusive-NOR gate discussed in the next
section.)

1.4 LOGIC SYMBOLS AND TRUTH TABLES

Digital electronics is about designing and analysing circuits and although this
could be done using only the mathematical language of Boolean algebra intro-
duced above, it is often more convenient to use circuit diagrams to show how the
logic gates are connected together. The logic symbols for the three basic Boolean
operators have already been given in Fig. 1.1, and are included again in Fig. 1.6
which shows all of the logic gates that are commonly used together with their
Boolean algebraic expressions, truth tables and the alternative IEEE/ANSI
symbols for the gates.

The gates shown in Fig. 1.6 include the NAND and NOR gates which are the
NOT'd versions of the AND and OR gates (i.e. NOT-AND and NOT-OR). This
simply means that their outputs are inverted, which is indicated by the bubbles on

Logic symbols and truth tables 13

NOT

AND

OR

XOR

NAND

Fig. 1.6

NOR

XNOR

B A

0 1
1 1

0 0

1 0
N O T

A . B A + B
0 0
0 1
0 1
1 1

A N D O R

A . B A + B A ~) B A ~ B
1 1 0 1
1 0 1 0
1 0 1 0
0 0 0 1

N A N D N O R X O R X N O R

Logic symbols, Boolean operators and truth tables of the common logic gates

the outputs. 7 They are equivalent to AND and OR gates whose outputs are then
passed through an inverter (NOT gate).

The exclusive-OR gate
The other new gate introduced at this stage is the exclusive-OR (XOR) gate whose
output is 1 if and only if an odd number o f inputs are 1. So a two-input XOR gate
differs from the corresponding OR gate because Y=0 if both A and B are 1 since

7Bubbles are also sometimes used on the inputs to gates to indicate inversion of an input.

14 Fundamentals

in this case an even number of inputs is 1. The Boolean expression for the output
from a two-input XOR gate is:

Y = A . B + A . B

Example 1.16

Write out the truth table for a three-input XOR gate and draw its circuit symbol.

Solution

These are shown in Fig. 1.7

A B

0 0
0 0
0 1
0 1
1 0

1 0

1 1

1 1

c A.B C

o o
1 1

0 1

1 0

o 1
1 o
o o
1 1

B Y
C

Fig. 1.7 Truth table and symbol for a three-input XOR gate (see Example 1.16)

In addition to the operation of logic circuits being described in terms of Boolean
equations and circuit diagrams, remember that truth tables can also be used, as
shown in Table 1.2. To recap, a truth table shows how the output(s) of a circuit
(i.e. whether 0 or 1) depends upon the input(s). We now have three ways of repre-
senting the operation of a digital circuit: by a Boolean algebraic expression; a
circuit diagram; or a truth table. Note that the rows of the truth table are ordered
in binary code: i.e. 000, 001, 010, 011, etc. (for a table with three input variables).

Example 1.17

Draw the circuit, and write out the truth table, for the Boolean expression
Y=(A + B). (A . B) stating what single gate it is functionally equivalent to. Then

prove this equivalence using Boolean algebra.

Solution

The circuit and truth table are shown in Fig. 1.8. This complete circuit performs

the function of an XOR gate.

(A + B) . (A . B) = (A + B) . (A + B) De Morgan's theorem
= A. A + A- B + B. A + B. B distributive law
= A �9 B + A �9 B Equation 1.3

Logic symbols and truth tables 15

A B

~ Y

A B A+B (A-B) r
, , ,

0 0 0 1 0
I

0 1 1 1 1

1 0 1 1 1

1 1 1 0 0

Fig. 1.8 Solution to Example 1.17, which produces the XOR function

Example 1.18

Another common Boolean expression is the AND-OR-INVERT function,
Y=(A.B) + (C.D). Draw out the circuit for this function together with its truth
table.

S o l u t i o n

This is shown in Fig. 1.9. Note that this function has four variables and so there
are 24= 16 rows in the truth table.

A B

1)
Y

A

0

0

0

0
0

" 0

o
1

1

1

1

= 1

1
. . . .

1

B C

0 0

0 0

0 1

0 1

1 0

1 0

1 1
, ,

1 1

0 0

0 0

0 1

0 1

1 0

1 0

1 1

1 1

D A ' B

0 0

1 0
0 0

1 0

O" 0
i" O
O" 0
1 " 0

0 0

1 0

01 o
1j o
0 1

1 1

0 1

1 1

C ' D

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

1

(A'm+(C.D)
0 1

0 1
0 1
1 0
0 1
0 1
o]

1 0
0 1
0 1
0 1
1 0
] o

1 o
] o
1 0

Fig. 1.9 Circuit and truth table for the AND-OR-INVERT function, as discussed in Example 1.18

16 Fundamentals

E x a m p l e 1 . 1 9

Use De Morgan's theorem to convert the AND-OR-INVERT function into an
alternative form using the four input variables in their complemented forms. Then
draw the circuit to produce this function and the truth tables to prove it is the
same as the previous circuit.

Solution
(A. B) + (C- D) - (A. B)- (C- D)

=(A +8)- (C+O)

The circuit and truth tables are shown in Fig. 1.10.

A B C D

I
,,

~ - - y

A B c
0 0 0 0

0 0 0 1

" o ' o i 1 " o
0 0 1 1

.~ . L l

i O 1 0 0
. o i l . . 0 1 , 1

:A c b c+D r
1 1 1 1 1

1 1 1 0
/

1 . 1 . 0 : 1
| . ,

1 1 0 0
�9 l L

1 0 1 1 |

�9 . . ii , i i

0 1 0

1 1
, o = =

1 1 1
1 1 : 1 j

1 0 i 0
] 1] i ~

1 1 1
O , l L 1 .
o 1~ 1

. ~ l ,

i o o

0
1
0

1 0 0 1 1 1 1
1 O , 0 0 1 0 0

. i . �9 ,, .

0 1 1 1 1 1 1

1
1

0 1 0 ' 1 1 ! 0 1 1

1 0 0 1 ! ' 0 1 1 1 I 1 '
i 1 0
. 1 1
. 1 : 1

1 1 0 1 0 0 1 0
= i ,

0 ' 0 ' 0 ' 0 " l i l ' ' 0 ' 1 0 1

0 . 1 . 0 L 0 1 . 0 : 0 . 1 0

i f l 1 0 O: 0 0 1 0 1 0
: i 1 1 i 1 : 0 ', 0 ', 0 ', 0 : 0 ' ' 0 i 0 i

Fig. 1.10 Solution to Example 1.19 regarding an alternative form for the AND-OR-INVERT function

1.5 TIMING DIAGRAMS

Yet another way of demonstrating the operation of a logic circuit is with a timing
diagram. This shows how the outputs of a circuit change in response to the inputs
which are varying as a function o f time. More complex versions of such diagrams
than the ones considered here appear in the data sheets of components such as

Timing diagrams 17

analogue-to-digital converters and solid state memory which give the timing
information which is needed to design circuits containing them.

For simple circuits like those we have looked at so far the output waveform is
simply obtained by using the Boolean expression or truth table, s

Example 1.20

The inputs to a two-input AND gate have the following values for equal periods
of time. (A, B)- (0, 0),(1, 1),(0, 1),(0, 0),(1,0),(1, 1),(0, 0). Draw the timing
diagrams showing the waveforms for the inputs A and B and the output Y.

Solution

The timing diagram is shown in Fig. 1.11.

A

B I I I

Y ! I I I
Fig, 1.11 Timing diagram for a two-input AND gate for the inputs given in Example 1.20

Example 1.21

Given the timing diagram in Fig. 1.12, write out the truth table for the circuit
responsible for it, the Boolean equation describing its operation and draw the
actual circuit.

A !

B I ! I 1 I I I I

c- ! I ,1 ! I I

Y i I i 1'1
Fig. 1.12 Timing diagram for Example 1.21

SNote that in the timing diagrams shown here, the logic gates used to implement the Boolean functions
have been considered ideal in that the signals are passed through the gates with no delay. The consequences
of what happens in practice will be considered in Section 4.3.

18 Fundamentals

Solution

From the timing diagram we can determine the values of the output, Y, for given
input values of A, B and C. These values can be used to produce the truth table in
Fig. 1.13 together with the circuit.

A B C Y

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1
1 1 1 1

A

B
c

Fig. 1.13 Truth table and circuit produced from the timing diagram in Fig. 1.12 (Example 1.21)

Then, from the truth table we can see that the output is 1 if either A = 1, irre-
spective of the values of B and C (i.e. the bottom four rows of the truth table), OR
if ((B=0) AND (C=0)). So we can deduce that Y=A +(B. C). (We will look at
more rigorous ways of obtaining such information in later chapters.) Note that
the truth table has been written in binary ordered fashion, as is usual, even though
the values are not read off from the waveform in this order.

1.6 DUALITY AND GATE EQUIVALENCE

De Morgan's theorem (Section 1.3.2) indicates a certain equivalence between
AND and OR gates since it states that the result of AND'ing/OR'ing two vari-
ables together is the same as OR'ing/AND'ing their complements. Consequently
so long as we have inverters (NOT gates) available we can convert any circuit
constructed from AND and OR gates to one composed of OR and AND gates.

This fact is generally referred to as the principle of 'duality' and arises because
Boolean algebraic variables can only take one of two values and can only be oper-
ated upon (in combinations) by the two operations (AND and OR). (Its most
trivial form is that if a variable is not 1 then it must be 0, and vice versa.) Duality
has wide-ranging implications for digital electronics since it means that any circuit
must have a 'dual'. That is, a replica of the circuit can be made by basically swap-
ping bits of the circuit.

Rules for dualling
De Morgan's theorem tells us"

Y = A + B = A . B

which gives us an alternative way of constructing a NOR gate using an AND gate
and two inverters. In addition:

Y = A . B - A + B

Duality and gate equivalence 19

tells us a NAND gate can be made up of an OR gate and two inverters.
These equations, and corresponding circuits shown in Fig. 1.14, are duals and

demonstrate how it is always possible to use AND/OR gates to perform any func-
tions originally using OR/AND gates (as long as NOT gates are also available).

,ua,
Fig. 1.14 The NOR and NAND gates and their duals

From these simple examples the 'rules' for dualling circuits can be seen to be
that:

1. All input and output variables must be complemented ('bubbled') (e.g. A
becomes A, and B becomes B). Note that a bubbled output feeding a bubbled
input cancel each other due to Equation 1.5.

2. The type of operation must be swapped (i.e. OR gates replace AND gates, and
AND gates replace OR gates).

This can be applied to any circuit no matter how complex. When using these
rules to dual circuits, remember that: inverted (bubbled) inputs/outputs can rather
be used to bubble preceding outputs/following inputs; and that an inverted output
feeding an inverted input cancel each other.

Example 1.22
w w

Draw the circuit to implement Y=(A +B).(A +B) and its dual. Write out the
Boolean expression for Y directly from this dualled circuit, and then prove this is
correct using Boolean algebra.

Solution

The circuits are shown in Fig. 1.15. From the dualled circuit:

Y=(A.

Using Boolean algebra wc first invert the whole equation as given:

Y=(A + B) . (A + B)

= (A + B) + (A + B) De Morgan's theorem

=(A �9 B) + (A �9 B) De Morgan's theorem

Hence Y= (A .B)+ (A .B)as above.

20 Fundamentals

A

B _1"

l !
A

B

Y

Fig. 1.15 Solution to Example 1.22

A

B

y

Earlier we discussed multivariable theorems which you may recall occurred in
pairs. We can now see that the reason for this is due to duality, with the pairs of
Boolean expressions for the associative and distributive laws and 'other identities'
in Table 1.4 all being duals. (Note however that this does not mean they are equiv-
alent Boolean expressions.)

Example 1.23

Show that the distributive laws:

and

A . (B + C) - A . B + A . C

A + (B . C) : (A + B) ' (A + C)

are duals.

Solution

Using the above 'rule' of complementing all variables and swapping operators the
first equation becomes:

A + (8 - C) - (A + 8) . (A + C)
. . . .

then letting A - X, B - Y, C - Z gives"

x+(Y. z) - (x+ ~9- (x+z)

which has the same form as the second equation.

Example 1.24
m

What is the dual of Y= A. (A + B), which is the left-hand side of Equation 1.20 in

Table 1.4?

Duality and gate equivalence 21

Solution

The circuit to implement Y and its dual are shown in Fig. 1.16. This gives
_ _

r : A + (A- 8)
Using Boolean algebra:

Y- A -(A + B) inverting both sides

= A +(A + B) De Morgan's theorem

= A + A �9 B De Morgan's theorem

Hence Y = A + A �9 B as above.
Note that this has the same form as the left-hand side of Equation 1.211, as

expected due to duality.

AB.
AT
B

A i Y

Fig. 1.16 Circuits relating to Example 1.24

Example 1.25

Draw the circuit for Y=A .(B+C) and produce alternative representations of it
using only a three-input AND and three-input OR gate (assuming NOT gates are
also available). Also obtain the same expressions using Boolean algebra, and
write out the truth table of these functions.

Solution

The original circuit, and the effects of replacing the NOR and AND operators,
respectively, are shown in Fig. 1.17. So"

_ _ m

Y - A . B .C =A + B + C

which can be implemented using three-input AND and OR gates respectively.

22 Fundamentals

A-)--V

B

A

C

m . l ~ .

A ,. , ~ y

C

Fig. 1.17 Circuits relating to Example 1.25

Using Boolean algebra, since (B+ C)=(B- C) then Y = A - B . C, the A N D gate

implementation. To obtain the sum expression (OR gate implementation):

Y= A.. (B + C) inverting both sides

= A + (B + C) de Morgan's theorem

= A + B + C

Hence Y = A + B + C as above.
The truth table for these is given in Table 1.6. Note that the A N D gate produces

a 1 when A = 1 and B= C=0, which specifies a single row in the truth table. The
OR operator can be considered in a slightly different way. This is that Y=0 (or
alternatively Y=I) when either (A=0) OR (B= 1) OR (C= 1). This is again a
consequence of duality.

Table 1.6 Truth table relating to Example 1.25

A B C Y Y
0 0 0 0 1
0 0 1 0 1
0 1 0 0 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1

1 1 0 0 1

1 1 1 0 1

Positive and negative assertion level logic 23

1.7 POSITIVE AND NEGATIVE ASSERTION LEVEL
LOGIC

The idea of positive and negative assertion level logic arises directly out of duality.
It is again based upon the fact that because Boolean algebra describes a two-state
system then specifying the input conditions for an output of 1 also gives the condi-
tions (i.e. all other input combinations) for an output of 0.

For instance the NOR operator, Y= A + B, tells us that Y= 1 if the result of
(A + B) is 0 (since it is inverted to give Y). However, an alternative way of inter-
preting this operation is that Y=0 when (A + B) is 1. Both views tell us all there is
to know about how the circuit operates. The bubble on the output of the NOR
gate indicates this second interpretation of the gate's operation since it signifies
the output is 0 when either of the inputs is 1.

Regarding positive and negative assertion level logic, a non-bubbled input or
output indicates a 1 being input or output (positive level logic) whilst a 0 indicates
a 0 being input or output (negative level logic). In the case of the NOR operator
such assertion level logic indicates that Y is active-LOW (gives a 0) when either A
OR B is active-HIGH (an input of 1). The dual of the NOR gate tells us that Y is
active HIGH if A AND B are active LOW (i.e. both 0).

The value of assertion level logic is that it is sometimes informative to consider
the inputs and output(s) from logic circuits in terms of when they are 'active',
which may be active-HIGH (an input or output of 1 being significant) or active-
LOW (an input or output of 0 being significant). This is because it is useful to
design circuits so that their function is as clear as possible from the circuit
diagram.

Imagine an alarm is to be turned ON given a certain combination of variables
whilst a light may have to be turned OFF. It could be helpful to think of the
output from the corresponding circuits being 1 to turn ON the alarm (active-
HIGH) and 0 (active-LOW) to turn OFF the light. In this case assertion level logic
would be being used. Assertion level logic is also useful when interfacing to
components such as microprocessors which often (because of the circuits from
which they are constructed) initiate communication with other ICs by sending
signals LOW.

Obviously because of duality we can always draw a circuit using the most
appropriate assertion level logic. (Remember that dualling a circuit always inverts
the output.) However, although a circuit may be drawn a certain way it may actu-
ally be implemented, for practical reasons, in its dualled form.

Example 1.26

Draw a NAND gate and its dual and describe their outputs in terms of assertion
level logic.

24 Fundamentals

Solution

These are shown in Fig. 1.18. In the NAND form the output is active-LOW
(because of the bubble) if both inputs are active-HIGH. In its dualled (OR) form
the output is active-HIGH if either input is active-LOW (because of the bubbles).
The two forms effectively describe the neccesary conditions for outputs of 0
(LOW) and 1 (HIGH) respectively from the circuit.

Fig. 1.18 A two-input NAND gate and its dual (see Example 1.26)

E x a m p l e 1.27

A circuit is needed to give an output of 1 when any of its three inputs are 0. Draw
the truth table for this circuit and state what single gate could implement this
circuit. Then derive its dual and state which gives the most appropriate desription
of the circuit's operation.

Solution

The truth table, which clearly describes the NAND function, is shown in Fig. 1.19
together with the single gate capable of implementing this function, and its dual.

The NAND based circuit shows the output is active-LOW if all of the inputs are
active-HIGH, whereas the OR based circuit shows the output is active-HIGH if
any of the inputs are active-LOW. The OR based circuit is the most appropriate
given the stated circuit requirements.

dual ~

Fig. 1.19 Truth table and gates relating to Example 1.27

A B C Y
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 [1
1" 1 1]o

E x a m p l e 1.28

The courtesy light of a car must go off when the door is closed and the light switch
is off. What gate is required to implement this and what is the alternative way of

looking at this circuit?

Universal gates 25

Solution

This function can be implemented by an AND gate with active-LOW inputs and
outputs. Hence the output will go LOW (and the light OFF) when both inputs are
LOW (door closed and switch off).

The alternative interpretation is that the light in on (active-HIGH) when either
the door is open (active-HIGH) or the switch is on (active-HIGH). This would
require an OR gate for its implementation.

1.8 UNIVERSAL GATES

Universal gates, as the name suggests, are gates from which any digital circuit can
be built. There are two such gates, but far from being more complex than
anything considered so far they are in fact the NAND and NOR gates.

The reason they are universal is that because any circuit can be dualled (by
complementing all of the variables and swapping operators) then any gate
capable of being used (either singly or in combinations of itself) to implement
either the AND or OR operation and the NOT operator must be universal.

The NAND and NOR gates fulfil these requirements since tying their inputs
together produces a NOT gate (rows 1 and 4 of the truth tables in Fig. 1.6).
Therefore any digital circuit can be constructed using only NAND or NOR gates.
This fact is used in VLSI design where the IC manufacturers supply a 'sea' of
universal gates which are then connected as necessary to implement the required
digital circuit. This is called a gate array, and is discussed in more detail in Section
11.3.2.

Example 1.29

How can an AND gate be implemented from NOR gates?

Solution

This is shown in Fig. 1.20.

dual =

Fig. 1.20 Implementation of an AND gate using NOR gates (Example 1.29)

26 Fundamentals

Example 1.30

How can Y= (A + B). C be implemented only from NAND gates?

Solution

This is shown in Fig. 1.21.

A

I 1~~_ Y

A

-I

Fig. 1.21

A : : ~ F - ~ I B
c I Y

Implementation of Y= (A +/3) �9 C using NAND gates (see Example 1.30)

1.9 SELF-ASSESSMENT

1.1 What possible values can a Boolean variable take?

1.2 How many basic Boolean operations are there and what are they?

1.3 A logic circuit has four inputs and two outputs. How many rows and columns
will the truth table have that describes its operation?

1.4 Why is a Boolean expression such as (A-B- C) referred to as a product term?

1.5 Draw out the truth tables and circuit symbols for two- and three-input AND,
OR and XOR gates.

1.6 What is meant by a 'sum of products' expression?

1.7 Why can NAND and NOR gates act as universal gates?

1.8 Name the different ways that the operation of the same Boolean function can

be described.

1.9 What is the result of (a) AND'ing a Boolean expression with 0?; (b) OR'ing a
Boolean expression with 07; (c) AND'ing a Boolean expression with 1?; (d)
OWing a Boolean expression with 1?

Problems 27

1.10 PROBLEMS

1.1 Use Boolean algebra to rigorously prove the second absorption law:

A + (A ' B) = A

1.2 Use Boolean algebra and a truth table to rigorously prove the second 'other
identity'"

A + (A . B) = A + B

1.3 The XOR function is usually expressed as:

A ~g B = A . B + A . B

Use Boolean algebra to show that this expression is also equivalent to:
m m

(a) A . B + A . B
a

(b) (A + B) . (A + B)

(c) (A + B) " (A " B)

Draw the logic required to directly implement (a). Derive the dual of this
circuit and state which of the two remaining expressions it directly represents.
Finally, dual one of the gates in this second circuit to obtain the implementa-
tion of (c).

1.4 Using Boolean algebra, expand the Boolean function:

Y = A ~ B ~ C
m m

using P ~9 Q = P . Q + P- Q to show directly that the output from an XOR
gate is high only if an odd number of inputs are high.

1.5 Use Boolean algebra to demonstrate that AND is distributive over XOR.
That is:

A . (B ~B C) = A . B EB A . C

1.6 A combinational circuit responds as shown in the timing diagram in Fig. 1.22.
Describe this circuit's function in the form of a truth table, a Boolean equa-
tion and a circuit diagram.

A I ,,I

S I I I,,

r ,,I-I I I I I

Y r - - [_]~[i U

Fig. 1.22 Timing diagram for Problem 1.6

1.7 Draw the single gate implementation and its dual, of the function Y= A + B.
Describe the operation of these gates in words, stating how the two descrip-

28 Fundamentals

tions differ, and relating this to the truth table of the function. How many
NAND gates are required to implement this function?

1.8 A simple logic circuit is required to light an LED (via an active-LOW logic
signal) if someone is sat in the driving seat of the car with their seatbelt
undone. Sensors connected to the seat and belt give a logical HIGH if the seat
is occupied and the belt fastened.

(a) Write out the approp6ate truth table.
(b) Draw circuits implementing this truth table using NOT gates and (i) a

single AND gate, and (ii) a single OR gate.
(c) Which implementation gives the greater understanding of the underlying

operation of the circuit? (i.e. which uses assertion level logic)?
(d) How many (i) NAND and (ii) NOR gates would be needed to implement

the complete circuit in b(i)?

1.9 Boolean algebra can be thought of as describing the operation of circuits
containing switches. Draw the circuit containing two switches, a battery and a
bulb which demonstrate the AND and OR operators. (Hint: if a switch is
closed the logic variable associated with it is HIGH; if it is open the variable is
LOW. So for the AND gate the bulb will be lit if switches A and B are closed.)

2 Arithmetic and digital
electronics

2.1 INTRODUCTION

Many of the applications of digital electronic circuits involve representing and
manipulating numbers as binary code (i.e. O's and l's). For instance in order to
input any analogue value (e.g. a voltage or temperature) into a digital circuit it
must be first encoded as a binary value, whilst subsequent arithmetic performed
on such an input must be carried out by further digital circuits.

The way in which some arithmetic operations are implemented as digital elec-
tronic circuits is considered in the next chapter. Here, as a prelude to this, some of
the many ways in which numbers can be represented as binary code are intro-
duced, followed by a description of how to perform binary arithmetic; that is
addition, subtraction, multiplication and division on numbers represented only
by O's and l's.

2.2 BASES-2, 10 AND 16 (BINARY, DECIMAL AND
HEXADECIMAL)

Numbers are most commonly represented using the 10 digits 0 to 9, that is in
base-10 (or decimal). This widespread use is linked to our possession of 10 fingers
and their value as a simple counting aid. However, from a purely mathematical
viewpoint the base system used for counting is unimportant (indeed before metri-
fication in Europe (use of base-10 in all weights and measures) many other bases
were common). In digital electronics the only choice of base in which to perform
arithmetic is base-2, that is binary arithmetic, using the only two digits available, 0
and 1. ~ Before continuing it is necessary to consider how to convert numbers from
one base to another.

2.2.1 Conversion from base-n to decimal

In order to do this it is essential to realise what a number expressed in any base
actually represents. For example the number 152m0 in base-10 represents 2 the sum

~Digital systems using more than two logic levels (multilevel logic) have been proposed and built but are
not considered here.

:A subscript is used to denote the base. so 152 in base 10 is written as 152~0.

30 Arithmetic and digital electronics

of 1 hundred, 5 tens and2 units giving 152~0 units. From this is can be seen that the
least significant digit (the one furthest to the right) holds the number of units in
the number, the digit next to that the number of 10's (i.e. 10 ~) and the next the
number of 100's (i.e. 102).

15210 - (1 x 100) + (5x 10)+(2x 1)
=(1 • 10-') +(5 x 10')+(2• 10 ~

The same is true of any number in any base. So for a number in base-n, the least
significant digit holds the units (i.e. n~ the next the number of n's (i.e. n ~) and the
next the number of n 2,s. So in general the value of the three-digit number abc in
base n, i.e. abc,,, is given by:

abc, = (a x n 2) + (b x n') + (c x n ~

' 2 ' In binary code this means that successive digits hold the number of 1 s, s,
4's, 8's etc., that is quantities represented by 2 raised to successively higher
powers.

In the above text and examples where it was necessary to use numeric represent-
ation (e.g. of 102 = 100 and 23 =8) then base-10 was used. It should be appreciated
that any base could have been chosen, with base-10 selected simply because it is
the one we are most familiar with. Remember that any written number is basically
a shorthand way of recording the total number of units with successive single
digits representing larger and larger quantities (i.e. l's, 10's, 100's etc., for base-
10).

Example 2.1

What is 2367 in base-10?

Solution

2367=(2 • x7)+(6 x 1)= 125~0.

Example 2.2

What is 1 O011, in base- 1 O?

Solu t ion

100112=(1 x 16)+(1 x2)+(1 x 1)= 19~0.

If a base larger than 10 is being used we have no numbers 3 (from base-10) to
represent quantities larger that 9. Such a base commonly encountered in digital
electronics is base-16, which is usually referred to as hexadecimal. The problem of

~Any base. n, will have n units with the smallest equal to 0 and the largest equal to (n- 1).

Bases-2, 10 and 16 31

representing numbers greater than l0 is overcome by using the letters A to F to
replace the quantities 10 through to 15. Note that hexadecimal numbers are indi-
cated by the use of the subscript H rather than 16.

Example 2.3

What is the hexadecimal number AB 1 C. in base-10?

Solution

AB1C. =(Ax 163)+(B x 162)+(1 x 16~)+(Cx 16 ~
=(10x4096)+(11 x256)+(1 x 16)+(12x 1)

Therefore AB 1CH = 43804~o.

2.2.2 Conversion from decimal to base-n

Conversion from decimal to base-n is performed by repeated subtraction of the
closest approximate number given by a single digit (in base-n) from the remainder
of the number to be converted. An example is the best way to illustrate this proce-
dure and so the conversion of 12510 to base-7 is now given.

Firstly, since 125~0 is less than 73=343 it is the number of 72-49s that are
contained in 125~0 that must first be found. There are 2 since (2 x 49)= 98 (which is
less than 125). This leaves 27~0.

125
2 x 49 ~ - 98 > 2 X X 7

27

The 27~o needs to be made up of 7~'s and 7~ (i.e. units). Since (3x7)= 21
leaving 6 units, then 125~o= 2367.

27
3 x 7 ~ - 2 1

6
6 x 1 ~ - 6

0

> 23X 7

> 2367

Example 2.4

What is 82~0 in base-5?

Solution

The first three digits in base-5 represent quantities (in base-10) of 1, 5, 25.
Since 82-(3 x25) -7 and 7-(1 x 5)-2, then 82~0- 3125.

32 Arithmetic and digital electronics

Example 2.5

What is 153~0 in binary?

Solution

153~0-128+ 16+8+ 1. Therefore, 153~0= 100110012.

Example 2.6

What is 674~0 in hexadecimal?

So/m/on

674~0 = (2 x 256) + (10 x 16) + (2 x 1). Therefore, 67410- 2A2 H.

2.2.3 Binary and hexadecimal

The bases of most importance in digital electronics are binary and hexadecimal
(base-2 and base-16). So, it is worth looking at conversion between these as a
special c a s e . 4 The reason hexadecimal is commonplace is because the wires in digi-
tial circuits are often grouped into buses of 16 for addressing solid state memory
and other devices.

The first four least significant digits of a binary number encode the numbers, in
base-10, from 0 to 15. This is the range covered by the least significant digit in
hexadecimal. The next four binary digits allow this range to be extended to cover
up to 255~0 (by using the numbers 16~0, 32~0, 64~0 and 12810, i.e. the numbers repre-
sented by these binary digits, as appropriate). Correspondingly, the second hexa-
decimal digit enables numbers requiring up to F . = 15~0 multiples of 16~0 to be
encoded. Hence, conversion from base-2 to hexadecimal can be performed by
operating on blocks of four binary digits to produce the equivalent single hexa-
decimal digit. 5

Example 2.7

What is A4E2. in binary?

Solution

Since A= 1010, 4-0100, E - 1110 and 2=0010 then A4E2. = 1010010011100010 z.

4Conversion between any other bases can always be performed via base-10. That is from base-m to base-

10 and then from base-10 to base-n.
5This must be the case since four binary digits and one hexadecimal digit can both encode 16 different

values.

Example 2.8

Other binary coding systems 33

What is 100111110011~ in hexadecimal?

Solution

Since 1001-9, l l l l - F and 0011-3 then 1001111100112-9F3 H.

In concluding this section it is important to realise that to fully understand
arithmetic operation in digital circuits, and the addressing of memory locations in
computer systems, it is necessary to be able to readily convert numbers between
bases-2, 10 and 16.

2.3 OTHER BINARY CODING SYSTEMS

We have just considered how quantities can be represented in binary (base-2)
when only O's and l's are used. However, this is only one possible code (albeit the
most logical from the arithmetic viewpoint) which can be used. In certain applica-
tions other forms of coding numbers, again using only O's and l's, are more
appropriate. Two of the common alternatives, shown in Table 2.1 are now intro-
duced.

Table 2.1 Decimal, hexadecimal, binary, Gray and binary coded
decimal codes

0 0 0000 0000 0000 0000
1 1 0001 0001 0000 0001
2 2 0010 0011 0000 0010
3 3 0011 0010 0000 0011

4 4 0100 0110 0000 0100

5 5 0101 0111 0000 0101
6 6 0110 0101 0000 0110

7 7 0111 0100 �9 0000 0111

8 8 1000 1100 0000 1000

9 9 1001 1101 0000 1001

10 A 1010 1111 0001 0000

11 B 1011 1110 0001 0001

12 C 1100 1010 0001 0010

13 D 1101 1011 0001 0011

14 E 1110 1001 0001 0100

15 F l l l l 1000 0001 0101
Decimal Hexadecimal binary Gray BCD BCD

lstdigit 2nd digit

34 Arithmetic and digital electronics

Binary coded decimal
A problem of binary arithmetic is that direct conversion from binary to decimal
(for numbers of many digits) requires a quite complex digital circuit. Therefore
often when a number is being held in a digital circuit immediately before output to
a display (in decimal form) binary coded decimal (BCD) rather than straight
binary code is used.

BCD encodes each decimal digit with its binary equivalent using four bits. So
decimal digits are simply represented in four bits by their direct binary values. A
disadvantage of this is that only 10 of the possible 16 (2 4) codes that four bits can
produce are used. Hence it is an inefficient code. Nevertheless, the advantages
usually outweigh this disadvantage and so it is regularly used.

Example 2.9

How would 916~0 be represented in binary coded decimal?

Solution

Since the binary codes for 9, 1 and 6 are 1001, 0001 and 0110 respectively, then
916~0 = 100100010110BC D. Note that the BCD code is 12 bits long since each of the
decimal digits is coded by four bits.

Gray code
As with binary code, Gray code uses n digits to produce 2 ~ distinct codes all of
which are used. The difference is that as successively higher numbers (in base-10)
are represented in Gray code, only one bit is changed at a time. This is best seen by
looking at the code which is given in Table 2.1.

The rule for generating Gray code is to start with all zeros, representing 0, and
then change the lowest significant bit that will produce a code not used before. So,
first the LSB is changed to give 0001, then the second LSB to give 0011 and then
the LSB again to give 0010. The important thing is that only one bit changes
between adjacent codes.

Example 2.10

What is 8~0 in Gray Code?

Solution

From Table 2.1, 8~0-1100GRAY.

Gray code is of benefit when the n digital signals from some device whose
output consists of an n-bit binary code may not all attain their correct values at
the same time. For instance consider the output of a four-bit code indicating the
state of some device. If the output changed from 5 to 6 then using binary code this

Output from analogue-to-digital converters 35

would mean a change in the bit pattern from 0101 to 0110, and so two bits
changing their values. If the least significant bit changed more slowly than the
second then this would lead to a transient indication of 0111, that is state 7.

If Gray code were used there would be no such problem of a transient state
since there is only a one-bit difference between adjacent codes. (The only effect of
a delayed change in one bit would be a correspondingly delayed indication of
movement to that output.) Gray codes will be discussed again in the next chapter
regarding their connection with the simplification of Boolean logic expressions.

2.4 OUTPUT FROM ANALOGUE-TO-DIGITAL
CONVERTERS

Analogue-to-digital converters (ADC) take an analogue voltage and convert it to
binary format (i.e. just O's and l's) for input into a digital circuit. The number of
bits of the ADC gives the number of binary outputs and sets the resolution (i.e.
how many discrete voltage levels can be represented). For example a four-bit
ADC has four digital outputs and can represent 2 4 - 16 distinct voltage levels.

Example 2.11

What is the resolution of an eight-bit ADC with an input voltage range of 10V?

Solution

An eight-bit ADC can encode 28 = 256 analogue values in binary format. The reso-
lution of the ADC is the smallest voltage that can be encoded digitally, in other
words the voltage represented by one bit. This is given by 10 + 255 --0.04 V.

The different voltage levels that the outputs from the ADC represent must be
coded appropriately within the digital circuit. Several possible schemes exist of
which three are considered here. The codes used are shown in Table 2.2. These are
for the output from a four-bit ADC and so there are 16 voltage values to be
coded. These values go from +7 to - 8 (i.e. the ADC can accept positive and nega-
tive voltages).

Sign magnitude
In this scheme three bits are used to represent the magnitude of the signal (in
binary code) with the fourth bit (the most significant) used to give the sign (with 0
indicating a positive voltage). With this code it is clear what the value represented
is, but subtracting different stored inputs is not easy. Note also that there are two
codes to represent zero (and therefore only 15 distinct voltage values).

Offset binary
Here the 16 possible voltages are simply represented by binary code with 0000H

36 Arithmetic and digital electronics

Table 2.2 Possible coding schemes for the output from a four-
bit analogue-to-digital converter

+7 0111 1111 0111
+6 0110 1110 0110
+5 0101 1101 0101
+4 0100 1100 0100
+3 0011 1011 0011
+2 0010 1010 0010
+1 0001 1001 0001

0 0000 1000 0000
-1 1001 0111 1111
-2 1010 0110 1110
-3 1011 0101 1101
-4 1100 0100 1100
-5 1101 0011 1011
-6 1110 0010 1010
-7 Il l l 0001 1001
-8 0000 1000
(-0) lO00

Value Sign magnitude OffSet binary Two'scomplement

representing the lowest. Advantages of offset binary coding are: it has only one code

for zero; and it possesses a sign bit and the value represented can be obtained by
simply subtracting the code for 0 (i.e. 8~0 = 10002 in this case). This scheme is also
obviously well suited to ADCs accepting only positive voltages, with all zeros repre-
senting ground and all ones the maximum voltage that can be input to the ADC.

Two's complement
Two's complement notation is the most commonly used for integer arithmetic
(since it simplifies binary subtraction) and will be discussed in more detail in
Section 2.5.2. The other benefit it offers is that it also only possesses one code for
zero. Note that the most significant bit (MSB) acts as a sign bit and the positive
values' codes are the same as for sign magnitude. The negative values are in two's

complement notation (see Section 2.5.2).

2.5 BINARY ARITHMETIC

Binary arithmetic is in theory very simple since only O's and l's are used.

However, subtraction can cause problems if performed conventionally, and so is

usually carried out using two's complement arithmetic.

2.5.1 Addition

Binary addition is no different in principle than in base-10. The only potential

problem is remembering that (1 +1) gives (0 carry 1) that is 102 (i.e. in decimal

Binary arithmetic 37

(1 + 1)-2); and that (1 + 1 + 1) gives (1 carry 1) that is 112 (i.e. in decimal (1 + 1 + 1)
=3).

Example 2.12

What is 01100101100 + 01101101001?

Solution

01100101100
+01101101001

=ll010010101

2.5.2 Subtraction

Binary subtraction can be performed directly (as for base-10) but it is tricky due to
the 'borrowing' process. The two's complement approach is easier, less error
prone, and is therefore recommended. It is based upon the fact that for two
numbers A and B then A - B = A + (- B) where - B is the complement of B. So
rather than subtracting B directly from A, the complement of B is added to A. All
that we need is a way of generating the complement of a number.

This can be achieved (in any base) by taking the number whose complement is
required away from the next highest power of the base. So the complement of an
n-digit number, p, in base-m is given by:

m n - p

Example 2.13

What is the complement (the ten's complement) of 58~0?

Solution

This is a two-digit number in base-10 and so must be subtracted from 102 to give
the complement of 42.

Example 2.14

What is the complement (the two's complement) of 1102
_

Solution

This three-digit number must be subtracted from 23= 8 giving 2zo = 102.

Subtraction using the complement is then performed by adding the comple-

38 Arithmetic and digital electronics

ment to the number you want it to be subtracted from. In practice it is not quite
this simple as you need to remember how many digits are involved in the subtrac-
tion as the following examples demonstrate.

Example 2.15

Use ten's complement arithmetic to find (68- 35).

Solution

The complement of 35 is 65, so this gives (68 +65)= 133 which gives the correct
answer 33 if the carry is ignored (i.e. only the 2 LSBs in the answer are used).

Example 2.16

Use ten's complement arithmetic to find (42- 7 5).

So/m/on

This gives 42 + 25=67, clearly not the correct answer. However, in the previous
answer one way of considering the carry produced is that it indicated a positive
answer, so simply removing the 1 gave the correct solution. Here where there is no
carry this means we have a negative answer which being negative is in ten's
complement format. Taking the ten's complement of 67 gives 33 meaning that
4 2 - 7 5 = - 33, the correct answer.

Quite why complement methods of arithmetic work is best seen by simply
performing arithmetic graphically using number lines. That is lines are drawn
whose length represents the numbers being added or subtracted. Using this method
to perform complement arithmetic the actual processes involved become very clear.

Obtaining the two's complement
We have seen how the two's complement of an n-bit number is given by
subtracting it from 2 ~.

Example 2.17

What is the two's complement of 1010?

So/m/on

100002 = 24 = 16 so the two's complement is 1610 - 10~0 = 6~0 = 1102.

However, since we are trying to obtain the two's complement to perform a
subtraction then using subtraction to obtain it is not ideal! Another, and indeed

Binary arithmetic 39

the most often quoted, way is to invert the number (i.e. rewrite it replacing all the
O's by l's and all the l's by O's) and then add one. (The inverted number is called
the one's complement.) This works because inverting an n-bit binary number is
the same as subtracting it from the n-bit number composed totally of l's, which is
itself 1 less than 2 ".

Example 2.18

What is the one's complement of 10110?

Solution

Inverting all bits gives 010012=9~0. Note also that (11111-10110)=(31-22)=9~0.

Example 2.19

What is the one's complement of 100101 ?

Solution

The answer is 11010. Note that (63 - 37) = 26~0.

Since adding 1 to an all 1 n-bit number gives 2 ~ then obviously forming the
one's complement of an n-bit number and adding 1 is the same as subtracting it
from 2% which gives the two's complement. The advantage of using the one's
complement is the ease with which it is obtained.

The most significant bit (MSB) in two's complement notation indicates the sign
of the number, as in the above ten's complement subtractions. In two's comple-
ment code if it is 0 the number is positive and if it is 1 the number is negative and
its two's complement must therefore be taken in order to find its magnitude. (Note
that the sign bit was not included in Example 2.17.)

Because the MSB is used to give the sign of a two's complement number this
means an n-digit number in two's complement form will code the numbers from
-(2 ~-~) to + (2 ~-~- 1) (e.g. for the four-digit numbers in Table 2.2 the range is from
- 8 to +7).

Example 2.20

What is the two's complement of 0101 ?

Solution

Inverting 0101 gives 1010 (the one's complement), adding 1 gives 1011, the two's
complement of 0101. (The first bit is a sign bit which, being 1, indicates that this is

40 Arithmetic and digital electronics

a negative two's complement number.) Note that this shows the two's comple-
ment of (the four-bit number) 5 is 11, which is as expected since 16- 5 = 11.

Example 2.21

What number, given in two's complement notation, is represented by 10110?

Solution

Since the number is already in two's complement form and its most significant bit
is 1 we know it is a negative number. Its two's complement will therefore give its
magnitude.

Inverting 10110 gives 01001 which upon adding one becomes 01010. So the
number represented is-1010.

Example 2.22

What number, given in two's complement form, does 110011 represent?

Solution

The MSB is l indicating this is a negative number. It has six bits so subtracting its
decimal equivalent (51) from 26=64 gives its magnitude as 13. It therefore repre-
sents-13.

Shorthand method of obtaining the two's complement
A quicker method of obtaining the two's complement of a number is to invert all
bits to the left of (i.e. bits more significant than) the first bit that is 1. (Hence, all
bits less significant than and including the first bit that is 1 remain as they are).

Example 2.23

What is the two's complement ofl0110100?

Solution

The first bit (starting with the LSB) that is 1 is the third LSB. Therefore, this and
all bits to its right remain as they are giving XXXXX100. The bits more significant
than this one are inverted giving 01001XXX. Together this gives the two's comple-
ment of 10110100 as 01001100.

This can be confirmed by inverting all bits of 10110100 to give 01001011.
Adding 1 then gives 01001100 confirming the above (also confirmed by 2 s - 256

with 256 (128+32+16+4)=76).

Example 2.24

Binary arithmetic 41

What is the two's complement of 010111 ?

Solution

Only the first bit in this case remains as it is: XXXXX1 with all others being
inverted, 10100X, giving 101001.

Subtraction using two's complement
Binary subtraction can be performed by simply adding the two's complement of a
number to that from which it is to be subtracted, rather than subtracting it itself.
The most likely source of error is in making sure the sign bit, which is necessary to
indicate if a number is positive or negative, is produced and used properly.
Confusion may arise because in the addition process digits can be 'carried'
beyond the sign bit. They should be ignored. The following examples illustrate all
possible cases.

Example 2.25

Subtract 5 from 8 using binary notation.

Solution

8 01000 two's comp. 01000
- 5 -00101 ~ +11011

+ 3 100011

The fifth bit is the sign bit (it is 0 for the binary codes of + 8 and + 5, but 1 (indi-
cating a complemented number) f o r - 5). Since it is 0 in the answer this shows that
the result is positive, with a binary value of 0011 = 3~0. The 'overflow' sixth bit in
the result is discarded.

Example 2.26

Subtract 8 from 5 using binary notation.

Solution

5 00101 two's Comp. 00101
-8 -01000 ~ +11000

- 3 11101

Again, the fifth bit is the sign bit which since it is 1 indicates the result is nega-
tive. In order to find the magnitude of the resulting negative number we must
two's complement the result. This gives 0011 = 3~0, so the answer is- 3.

42 Arithmetic and digital electronics

Example 2.27

Subtract-5 from-8 using binary notation.

Solution

- 8 01000 two's comp. 11000
-5 -00101 ~ +11011

- 13 110011

The sign (fifth bit) indicates that the result is negative. The two's complement of
10011 is 01101 = 13~0 giving the result as-13. (Note the sixth 'overflow' bit is
discarded.)

2.5.3 Multiplication

Long multiplication in binary is performed in exactly the same way as in decimal
arithmetic. However, in binary arithmetic digits can only be multiplied by 0 or 1.
Multiplying by a power of two, e.g. 22= 1002, simply results in the binary number
being shifted n digits to the left and n zeros being added as the LSBs.
Consequently long multiplication is simply performed by shifting (i.e. multiplying
by powers of two) and adding.

Note that division by powers of two simply results in shifts to the right. Since
logic circuits exist that perform these shift operations (see Section 6.3), multiplica-
tions and divisions by powers of two are very easy and quick to implement in a
digital circuit.

Example 2.28

Calculate 6 x 5 using binary arithmetic.

Solution

110
x 101

11000
+ 110

=11110

Example 2.29

Calculate 6.5 • 2.75 using binary 6 arithmetic.

6In binary arithmetic 0.5= 1/2 ~ which means the first digit after the decimal point is 1. Similarly 0.25 = 1/2-'
so its binary equivalent is 0.01.0.75=0.5+0.25: so in binary this is 0.11.

Self-assessment 43

Solution

110.10
010.11

11010000
110100

11010

= 10001.1110

So the product is 17.875. (Note that 0.875=0.5+0.25+0.125.)

2.5.4 Division

For completeness an example of binary long division is given.

Example 2.30

Perform 10.625 + 2.5 using binary arithmetic.

Solution

To simplify the calculation it helps to turn the divisor into an integer by (in this
case) multiplying both divisor and dividend by 2 (i.e. shifting to the left). This
turns the calculation into 21.25 + 5 which in binary is 10101.01 + 101. The actual
division process is shown in Table 2.3.

Table 2.3 Binary division of21.25~0 § 5 (Example 2.30)

1 0 0 . 0 1

101l 1 0 1 0 1 . 0 1
101

000
O1 O1

1 O1

0 00

2.6 SELF-ASSESSMENT

2.1 Why must digital circuits perform arithmetic in base-2?

2.2 How many units are used, and what are the smallest and largest, in base-8
arithmetic?

2.3 What numbers (in base-10) do the first three digits in a base-8 system repre-
sent?

44 Arithmetic and digital electronics

2.4 How many units are used in the hexadecimal system and what are they?

2.5 How many binary digits are needed to represent a four-digit decimal number
using BCD?

2.6 What is the significant feature of Gray code?

2.7 Write out the Gray code for a three-digit system?

2.8 How many distinct voltage levels does a 12-bit analogue-to-digital converter
have?

2.9 Why can multiplication and division by powers of 2 be pertbrmed efficiently
by a digital electronics circuit?

2.7 PROBLEMS

2.1 What is 346 s in base- 10?

2.2 What is 6327 in base-10?

2.3 What is 235~0 in base-5?

2.4 What is 824~0 in base-6?

2.5 What is 300~0 in binary?

2.6 What is 1246~0 in hexadecimal?

2.7 What is 1010101, in decimal?

2.8 What is ABE, in decimal?

2.9 What is 101001010012 in hexadecimal?

2.10 What is 243~0 in BCD?

2.11 A four-bit analogue-to-digital converter is used to sample a signal at 200 Hz
(i.e. 200 samples per second are taken). How many bytes of data will be
stored if the signal is sampled for 30 seconds? (1 byte= 8 bits).

2.12 A four-bit analogue-to-digital converter has an input voltage range of 5 V.
What voltage is represented by 1 bit?

2.13 What binary pattern would be on a six-bit address bus when it is pointing to
memory address 23,? How could a six-input NAND gate be used to decode
the bus to produce an active-LOW signal to indicate when this memory loca-
tion is accessed? (Inverters can also be used~)

2.14 Perform 011011101 + 101110110 using binary arithmetic.

2.15 Perform 76t0-57~0 using ten's complement arithmetic.

2.16 Perform 6420- 83~0 using ten's complement arithmetic.

Problems 45

2.17 Redo Examples 2.20, 2.21 and 2.22 using the alternative methods of
obtaining the two's complements.

2.18 Perform the following using two's complement arithmetic (all numbers are
given in natural binary notation):

(a) 10011 - 10101
(b) 10111-10110
(c) 1011- 101101
(d) 10101 - 1110

(e) 1011-11011

2.19 Perform 3.5~0x 7.25~0 using binary arithmetic.

2.20 Perform 16.875~0+ 4.5~o using binary arithmetic.

3 Combinational logic basics

3.1 INTRODUCTION

At any time a combinational logic circuit's output(s) depends only upon the
combination of its inputs at that time. The important point is that the output is
not influenced by previous inputs, or in other words the circuit has no memory.

The uses to which combinational logic circuits are put can be broadly classed as:

�9 data transfer circuits to control the flow of logic around a system;
�9 data processing circuits that process or transform data (i.e. perform useful

computations).

Common examples are: multiplexers, encoders, adders, parity checkers and
comparators, all of which we will look at in the next chapter.

Summary of basic logic theory
All of the Boolean expressions considered in Chapter 1 have been examples of
combinational logic, with the output from a circuit described in terms of the
Boolean operations (AND, OR and NOT) performed on its inputs.

For example, the Boolean expression

Y=(A-B) +

tells us that the output, Y, will be I when either of the terms (A- B) OR (B. C) is I.
(That is either ((A=0) AND (B= I)) OR ((B=0) AND (C= I).) Since Y only
depends upon the present inputs A, B and C this is a combinational logic expres-
sion.

As was described at the end of Section 1.3.2 this is in fact a sum of products
combinational logic expression with (A- B) and (B- C) the product terms which are
then summed (AND'd) together. It is called a sum of products expression because
of the similarities between the AND and OR Boolean algebraic operations and
multipication and addition in ordinary algebra (see Chapter 1).1 This is the reason
why the symbols �9 and + are used to represent the AND and OR operations
respectively.

~There is also an equivalence between the AND and OR Boolean operators and the intersection, c~, and
union, u, of sets in set theory.

Introduction 47

Shorthand notation for the AND operator
Because of the similarity between the AND operation and multiplication, in the
same way that the multiplication of two variables, a and b, can be indicated by
juxtaposition (placing the variables next to each other, e.g. a • b is represented by
ab) then so too can the AND operator,. , be omitted and the two variables to be
AND'd simply placed together (e.g. A-B is represented by AB). This convention
will be adopted for the remainder of the book.

Using this notation the above expression can be written as Y= AB + BC. The
truth table, which describes the dependence of Y on A, B and C is shown in Fig.
3.1. For this example the truth table gives the output, Y, for each of the 2 3 = 8

possible combinations of the three inputs. Remember that in general the opera-
tion of any combinational circuit with n inputs and z outputs can be represented
by a truth table with (n + z) columns (n for the inputs and z for the outputs) and 2 ~
rows to show the outputs for each of the 2 ~ possible combinations of inputs.

A B C Y

o o o o XB
0 0 1 1 A

0 1 0 1 B "

0 1 1 1

1 0 0 0

1 0 1 1 C tz . ._ . ._~ _

1 1 0 0 B C

1 1 1 0

Fig. 3.1 Truth table and circuit for Y=AB + BC

m

Y - A B + B C

Also shown in Fig. 3.1 is the circuit diagram that will implement Y. This
consists of two AND gates, to produce the two product terms, and an OR gate to
give the sum of these products.

Example 3.1

Write out the truth table and draw the circuit corresponding to the Boolean func-
tion Y= A C+ AB.

Solution

These are shown in Fig. 3.2. Note that the NOT gates to obtain A, B and C have
been omitted, and their availability for input into the AND gates simply assumed.
This convention will also be used for other circuits in this book.

We will now look in more detail at the relationships between:

�9 the Boolean algebraic expression;
�9 the truth table;
�9 and the circuit diagram;

48 Combinational logic basics

A B C

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Y

1

1

0

1

0

0

0

0

C
m

B

y

Fig. 3.2 Truth table and circuit for Y= AC+ A B (see Example 3.1)

which all describe the operation of sum of products combinational circuits. This
will initially involve describing the circuit's operation in a more fundamental but
expansive form.

3.2 COMBINATIONAL LOGIC THEORY

3.2.1 Fundamental sum of products expressions

We know from the Boolean algebraic expression, Y=AB+ BC, introduced in
Section 3.1, that Y= 1 when either of the product terms AB or BC is 1. (This is due
to the fact that any Boolean expression OR'd with 1 gives a result of 1, Equation
1.9.) Now if (A =0) and (B= 1) are necessary for Y= 1 (i.e. the product term AB
being 1) then the value of C does not matter. 2 Therefore there are two rows of the
truth table (ABC (010) and ABC (011)) which will give an output of 1 because
AB= 1. Similarly the two rows corresponding to the product terms ABC and ABC
will also give an output of 1 since for both of these BC= 1 irrespective of A.

The two rows giving Y= 1 for AB= 1 correspond to the two product terms, ABC
and ABC, which contain all three input variables. Such product terms (which
contain all of the input variables) are calledfundamentalproduct terms. 3

Because each fundamental product term specifies the input conditions which
produce an output of I in a single row of the truth table then there must be as
many of these terms as there are l 's in the truth table. So, in this example, the
product terms: ABC, ABC, ABC and ABC (reading them off from the truth table
beginning at the top) are the fundamental product terms, one of which will be
equal to 1 for each of the four input combinations that give an output of Y= 1.

Now, since any Boolean expression OR'd with 1 gives a result of 1, if these
fundamental product terms are OR'd together then if any one of them is 1 the
result will be 1. The Boolean expression for this is:

Y=ABC+ABC+ABC+ABC

2The strict Boolean algebraic proof of this is as follows:

AB=AB. I=AB(C+C)=ABC+ABC

which uses Equations 1.7, 1.4, 1.14.
3Sometimes the word 'fundamental' is replaced by 'canonical'.

Combinational logic theory 49

and gives exactly the same information as the truth table with each fundamental
product term corresponding to a row. Moreover, since each product term
contains all of the three input variables these are fundamental product terms, and
so this is a fundamental sum of products expression.

Since there is a one-to-one correspondence between each fundamental product
term and a row in the truth table, then obviously the truth table of any combina-
tional function can be used to obtain the fundamental Boolean logic expression
for that function.

Example 3.2

Write out the Boolean expression for Y= A C+ AB in fundamental sum of prod-
ucts form.

Solution

Using the truth table written out for this function in Fig. 3.2

Y=ABC+ABC+ABC

Note that, in this example, there are only three fundamental product terms. This
is because the ABC term is common to both A C (i.e. A(B)C) and AB (i.e. AB(C)).

An alternative notation
Since each fundamental product term corresponds to a row in the truth table an
alternative way of describing a fundamental sum of products expression is simply
to list the rows. To do this all that is required is to decide upon an appropriate
code. The obvious choice is to use the decimal equivalent of the binary code held
by the input variables. So for a truth table with three inputs we have row 0 (ABC),
row 1 (ABC) through to row 7 (ABC).

Using this notation, the expression Y= AB + BC would be written as:

Y : Z (1 , 2, 3, 5)

Example 3.3

Express the function Y= A C + AB in this form.

Solution

Y=Z(O, 1, 3)

3.2.2 Two-level circuits

The circuit to implement Y= AB + BC was given in Fig. 3.1. It is shown again in
Fig. 3.3 together with the circuit to implement the fundamental sum of products
form. Since both of these circuits implement sum of products expressions they

50 Combinational logic basics

D

A .,

A

C A

C

Fig. 3.3 Y= ~B+ BC as a minimised and fundamental two-level circuit

~ ' ~ y

have the same basic form of AND gates to produce the required product expres-
sions, and a single OR gate to perform the summing.

Such implementations are called two-level circuits since they consist of a layer
of AND gates feeding a single OR gate. Consequently each input signal only has
to pass through two gates to reach the output. (Note that this assumes that all of
the input variables and their complements are available for input to the AND
gates.) Two-level implementations are important because since each signal only
passes through two gates, and in real circuits it takes a finite time for a signal to
propagate through a gate (see Section 9.7.4), this is (theoretically) the fastest
possible implementation for a combinational logic circuit.

In practice, as we will discover via the example in Section 4.2, the practical
implementation of two-level circuits often causes problems. The most obvious,
and common, are that:

�9 an OR gate with too many inputs is required (to sum all of the required product
terms);

�9 one input may have to feed into too many AND gates
�9 and that AND gates with too many inputs may be needed.

3.2.3 Minimisation of fundamental sum of products expressions

In this section we began with a Boolean expression containing three variables and
have seen how it can be expanded, using either Boolean algebra or a truth table, to
its fundamental sum of products form. When designing logic circuits it will
usually be the truth table we need to implement that we have to begin with, from
which we need to extract a Boolean expression.

We know we can always do this because the fundamental sum of products form
can be produced directly from the truth table. However, this will in general give
an unwieldy Boolean function with many fundamental product terms, with its
two-level (AND-OR) implementation being correspondingly unsatisfactory.
Clearly what is required is to be able to reverse the process we used earlier to
generate the fundamental sum of products expression from its simpler form. This
process is know as minimisation.

Combinational logic theory 51

It is based upon the distributive law (Equation 1.14) and the property of inverse
elements (Equation 1.4). Using the fundamental product terms A B C and A B C as
an example.

m _ m

A B C + A B C = (A + A) . B C Equation 1.14
m

= 1 �9 B C Equation 1.4
= B C Equation 1.7

An important point to note is that the fundamental terms which are combined
differ only in that one of the variables in the two terms is complemented (e.g. in

m

this example we have A in one term and A in the other). This is essential for
minimisation to be possible, and product terms which can be minimised because
of this are said to be logically adjacent. Note that this is the reverse process of that
described in an earlier footnote for rigorously producing the fundamental
product terms (Section 3.2.1).

Example 3.4
m n D

Minimise Y= A B C + A B C .

Solution

A B C + A B C = A B " (C + C)

= A B . 1

= A B

Example 3.5

Draw the circuit to implement the following fundamental sum of products expres-
sion and then minimise it to obtain the Boolean expression used in a previous
example in this section.

Y = A B C + A B C + A B C

The circuit is shown in Fig. 3.4.

A

C

A

c

A

C

Fig. 3.4 Fundamental and minimised sum of product forms of the circuit discussed in Example 3.5

52 Combinational logic basics

Solution

To minimise we must first use the fact the X+ X= X (Equation 1.2) to give

ABC= ABC+ ABC

sincethistermisneededtwiceintheminimisationprocess. Then:

ABC+ABC+ABC-ABC+ABC+ABC+ABC
. . . .

= A B . (C + Q + A C . (B + B)
=AB+AC

The circuit in its minimised form, which we have studied in earlier examples, is
also shown.

Minimisation of combinational logic functions is a major part in the design of
digital systems. For this reason, although Boolean algebra can always be used,
alternative methods have been developed which are less cumbersome. However,
they are still based upon the Boolean algebra described above, and essentially
allow logically adjacent product terms to be easily and/or rigorously recognised
and combined. Such methods are described in Section 3.3.

3.2.4 Summary
In summary, Boolean algebraic expressions, truth tables and circuit diagrams are
all ways of describing the operation of a combinational logic circuit and all
contain the same information. The Boolean algebraic expression may be in funda-
mental sum of products form, in which case it can be derived directly from the
truth table, or in minimised (simplified) form. The fundamental sum of products
form has a fundamental product term (containing all of the input variables) corre-
sponding to each row of the truth table with an output of 1.

Minimisation of Boolean expressions is based upon recognising the occurrence
of logically adjacent product terms and can be performed algebraically or using
one of a number of other methods (see Section 3.3).

Sum of products expressions are implemented in two-level form with an AND
gate used to produce each product term which are then summed by a single n-
input OR gate where n is the number of product terms. These are, in theory, the
fastest possible general implementation of a combinational circuit although they
often prove impractical.

3.3 MINIMISATION OF COMBINATIONAL LOGIC
EXPRESSIONS

From the above we have seen how the operation of any combinational circuit can
always be expressed in fundamental sum of products form. However, it is also
clear (from the simple examples examined so far) that this is an extremely

Minimisation of combinational logic expressions 53

unwieldy form, both to write and implement. It is for this reason that the minimi-
sation of combinational logic expressions is so important, allowing, as it does,
circuits to be implemented in simpler forms.

Minimisation can be performed using Boolean algebra, or by inspection of
truth tables, however the most commonly used manual method is the Karnaugh
map. In this section we look at these methods of minimisation plus the
Quine-McCluskey technique which is particularly suitable for algorithmic imple-
mention in software.

3.3.1 Minimisation via Boolean algebra

This is best illustrated by an example.

Example 3.6

Use Boolean algebra to simplify the Boolean expression:

Y = A B + A B

Solution

A B + A B = A . (B+B) distributive law
= A-1 Equation 1.4
= A Equation 1.7

Hence the expression originally containing two Boolean variables, but which
significantly has two terms (AB) and (AB) which only differ in that one contains
the variable B and the other its complement B, now only has one.

What minimisation depends upon is the fact that ifA = 1 and also B= 1, then AB
_ .

=1 and so Y=I. If B - 0 (with A still 1) then yet again Y = A B = I . So, Y is
independent of the value of B. Therefore the original function can be minimised to
Y= A. All of the following examples ofminimisation are based upon this principle.

Example 3.7

Minimise" Y= ABC+ ABC+ A B C

Solution
_ m _

Y = A B C + A B C + A B C

= A B C + A B C + A B C + A B C Equation 1.2
. . . .

= A B (C + C) + (A +A)BC

= A B + B C

Note that in this example the A B C term is used twice (Equation 1.2), and all of the
AND operators have now been replaced by juxtaposition.

54 Combinational logic basics

Example 3.8

Minimise" Y = A B C + A B C + A B C + A B C

Solution

Y= AB(C+ C)+ AB(C+ C)

= A B + A B

=A

In this example four logically adjacent fundamental product terms have been
combined into a single variable. What this tells us is that the expression for Y,

which is a function of three variables, is independent of B and C. Consequently,
four rows of the (eight-row) truth table are 1 corresponding to A = 1.

The above examples demonstrate the minimisation of fundamental sum of
products expressions using Boolean algebra. It should be noted that it is also
sometimes possible to spot how a function may be minimised directly from the

truth table.

Example 3.9

Derive minimised expressions for X and Y from the truth table given in Table 3.1.
Note that this truth table gives the outputs for two combinational logic functions,
X and Y.

Table 3.1 The truth table from which minimised functions for
X and Y are found in Example 3.9

Solution

A B C

0 0 0
0 0 1
0 1 o
0 1 1
! o o
1 0 1

1 1 0

1 1 1

x Y
0 0
0 1
1 0
1 1
0 1
0 1
1 0
1 0

m ~ m

From the truth table it is clear that X=B and Y = A C + A B . Note that the A C

product term in Y arises from rows 2 and 4, and the AB term from rows 5 and 6.

3 .3 .2 M i n i m i s a t i o n via K a r n a u g h m a p s

Karnaugh maps contain exactly the same information as truth tables. The differ-
ence is that the Karnaugh map uses a 'matrix' format to hold the output values.
The Karnaugh map is arranged so that, as far as possible, logically adjacent

product terms are also adjacent in the 'matrix' and so can be logically combined

Minimisation of combinational logic expressions 55

and hence minimised. Essentially the minimisation process, described above using
Boolean algebra, is performed visually.

What does a Karnaugh map looks like?
A truth table for two variables has two input columns, one output column and
four rows (one for each possible combination of inputs). The corresponding
Karnaugh map has four cells arranged as a square, with the two inputs, A and B,
used to label the columns and rows as shown in Table 3.2, which also shows the
equivalence between the two for an AND gate. The information is transferred
from a truth table to a Karnaugh map by simply entering the appropriate Boolean
value for Y into the corresponding cell of the map.

In the case of the AND gate the only cell with a 1 in is the one in the bottom
right-hand corner since this holds the output when A = 1 (the right-hand column)
and B = 1 (the bottom row).

Table 3.2 The truth table and Karnaugh map for a two-input A N D gate

A B Y
0 0 0
0 1 0
1 0 0
1 1 1

B--0 0 0
. ,

B--I 0 1

E x a m p l e 3 . 1 0

Draw the Karnaugh maps for two-input OR and XOR gates.

Solution

These are shown in Table 3.3. Note the distinctive 'chequerboard' pattern of alter-
nate O's and l's that appears in the Karnaugh map of functions containing the
XOR operator.

Table 3.3 Karnaugh maps for two-input OR and XOR gates (see Example 3.10)

B=O

B=I

B=O

B=I

OR XOR

56 Combinational logic basics

Obviously because each cell of the Karnaugh map corresponds to a row in the
truth table it also corresponds to a fundamental product term, given by the
column and row labels used to indicate its position. For example the top right-
hand cell is indexed by A = 1 and B=0, and indicates whether the fundamental
product term AB gives 1 for the function Y that the Karnaugh map is drawn for.
In other words if the cell has a 1 in, then Y contains this fundamental prod'uct
term (i.e. Y= 1 when (A = 1) AND (B=0)), but does not if the cell has a 0 in it.

This leads us on to an alternative way of indexing the Karnaugh map which is
to replace A = 1 by A, and A - 0 by A for the columns, with B and B used to index
the rows. Table 3.4 shows the two notations with the fundamental product terms
actually written in the apppropriate cells, together with the row numbers used in
Section 3.2.1 to code fundamental sum of products expressions.

Table 3.4 Alternative notation for labelling a Kamaugh map

B = 0

B = l

0AB

~AB

~AB

3AB

Y

0AB

~AB

2AB

3AB

E x a m p l e 3.11

Draw the truth table and Karnaugh map for Y= AB+ AB. What function is this?

Solution

These are shown in Table 3.5 and are clearly for the XNOR function.

Table 3.5 Truth table and Karnaugh map for a two-input XNOR gate (see Example 3.11)

Y

A B Y
o 1
1 o
o o
1 1

0 B 1 0
o
1

,

1 B 0 1

Minimisation using Karnaugh maps
Although using a two-variable Karnaugh map for minimisation is a rather trivial
process it nevertheless serves to illustrate the minimisation process, which as we
have seen consists of combining logically adjacent fundamental product terms.
We now look at examples of minimisation using Karnaugh maps.

Example 3.12

Minimisation of combinational logic expressions 57

Draw the Karnaugh map for Y= AB+ AB, and then use it to obtain a minimised
expression.

Solution

The Karnaugh map is shown in Table 3.6. From the minimisation examples using
Boolean algebra given above it is clear that

- - w

Y=AB+AB=A(B+B)-A

Table 3.6 The Karnaugh map for Y=AB+AB, discussed in Example 3.12

Y

Using the Karnaugh map for minimisation we see that the two fundamental
product terms (AB and AB) are logically adjacent (they are in the same column and
so only differ in one variable), and hence know they can be combined. The way we
know that it is the variable B that is eliminated is that the adjacent terms differ in
this variable (one has B, the other B) across the rows, whereas both contain A, since
they are in the column labelled A. Hence, the expression minimises to Y= A.

It is important to fully appreciate that Karnaugh maps are simply a graphical
aid to the minimisation process that could always be (although usually less
simply) achieved using Boolean algebra.

Example 3.13

Use a Karnaugh map to minimise Y= AB + AB.

Solution

From the Karnaugh map in Table 3.7 we see that the two fundamental product
terms are logically adjacent and differ in A across the columns, whilst B is the
common term (i.e. they are in the top row). So Y= B.

In these examples the expressions minimise to a single variable. We now return
to the Karnaugh maps drawn earlier for the OR and XOR operators to demon-
strate other possibilities.

58 Combinational logic basics

Table 3.7 Karnaugh map for Y= A B + A B , discussed in Example 3.13

Y

B

Example 3.14

Minimise the two-input OR function using the Karnaugh map drawn in Table
3.3.

Solution

Here we can combine the two terms in the A column to obtain the 'product' term
A and the two terms in the B row to obtain B. So, as expected, OR'ing these
together gives Y= A + B for the two-input OR gate.

The combination of logically adjacent fundamental product terms is indicated
by a looping together of the combined terms as shown in the redrawn Karnaugh
map in Table 3.8. Looking at. this process using Boolean algebra:

Y = A B + A B + A B
w

= A B + A B + A B + A B Equation 1.2
m

=,4(B+B)+(A+A)B
= A + B

Note that the A B term is used twice in the minimisation processes using both
Boolean algebra and the Karnaugh map (since it is included in both loops).

Table 3.8 Karnaugh map for a two-input OR gate demonstrating the grouping and looping of
logically adjacent product terms (see Example 3.14)

1
l

I

i 1 " t-- A

Example 3.15

Minimise the two-input XOR function using the Karnaugh map drawn in Table

3.3.

Minimisation of combinational logic expressions 59

S o l u t i o n

Here we see that the two fundamental product terms, ABand A B , are not logi-
cally adjacent and so the expression cannot be nfinimised. Note that we can still
read off the Boolean expression for the XOR gate directly from the Karnaugh
map since the top right and bottom left cells correspond to the A B and A B

fundamental product terms giving Y = A B + A B , the XOR function.

These simple examples serve to illustrate all there is to know about Karnaugh

maps. This is basically:

�9 how to draw them;
�9 how to spot logically adjacent fundamental product terms that can be

combined to minimise the fundamental sum of products expression corre-
sponding to the map;

�9 and how to extract the product terms from the map to give a minimised sum of
products expression for the Boolean function in question.

We now turn to examples of minimising expressions with more than two vari-
ables, and formalising some of the points that have been introduced above.

Maps for more than two variables
Since truth tables and Karnaugh maps contain exactly the same information, then
obviously a Karnaugh map for n variables must contain 2 ~ cells. In practice
Karnaugh maps become unmanageable for more than five variables (i.e. 32 cells).

A three-variable map will have eight cells and its layout is shown in Table 3.9.
We will now look at some examples of using three-variable Karnaugh maps for
minimisation.

Table 3.9 Layout and labelling of a three-variable truth table and Kamaugh map illustrating
the fundamental product terms occupying each cell

B C row

0 0 0

0 1 1
1 0 2

1 1 3

0 0 4

0 1 5

1 0 6

1 1 7

Y Y

C

C

ABC

ABC

ABC

ABC

ABC

ABC

ABC

ABC

60 Combinational logic basics

Example 3.16

Draw the truth table and Karnaugh map for the function

Y=AB+AC

Solution

This expression has three variables and so the Karnaugh map must contain eight
cells. The variables A and B are used to label the four columns in the map (with
the tbur possible combinations of these two variables), with the third variable, C,
used to label the two rows (for C=0 and C - 1) as shown in Table 3.9.

The outputs, Y, for the various inputs to the circuit represented by the truth
table are entered into the corresponding cells in the Karnaugh map as shown in
Table 3.10. To minimise we note that there are two logically adjacent funda-
mental product terms in column AB (ABC and ABC), and a further two in row C
(ABC and ABC) which can be combined to give AC (as B+B-1). Therefore

Y=AB+AC.

Table 3.10 Karnaugh map for Y= AB + A C, discussed in Example 3.16

A B C Y

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

l o o 0
1 0 1 0

1 1 0 1

1 1 1 1

Y

C

C

i ,

1

The grouping of logically adjacent product terms for minimisation is indicated
by looping them on the Karnaugh map, as illustrated in the above example.
Obviously all fundamental product terms (i.e. l's on the Karnaugh map) must be
looped and so contribute to the final minimised sum of products expression. Two
grouped and looped fundamental product terms are referred to as a dual.

To obtain the minimised product terms any variable existing in both uncomple-
mented and complemented forms within the looped product term is omitted. This
is easy to see from the Karnaugh map because the labelling of adjacent columns
and rows differs only by one variable (being in complemented form) which is

therefore the one that is eliminated.

Example 3.17
_ m

Draw the Karnaugh map for the expression Y=ABC+AC.

Solution

This is shown in Table 3.11. Note that the ABC term cannot be combined with

Minimisation of combinational logic expressions 61

any other product term and so remains in the minimised expression (as given).

Table 3.11 The Karnaugh map for Y-- ABC+ A C, discussed in Example 3.17

Y

G
1 1)

Example 3.18

Draw the Karnaugh map for Y = A B C + A B C and use it to minimise this expres-

sion.

Solution

On first inspection it appears as if no fundamental product terms can be combined

(grouped) in the map in Table 3.12. However, whereas in a two-variable map all

logically adjacent product terms are actually next to each other, this cannot be the
case for more than two variables.

For the three-variable map although AB and AB are logically adjacent they are

not physically next to each other in the Karnaugh map as they index the first and

last columns. However, they are connected if the map is 'rolled' to effectively form

a cylinder by connecting columns 1 and 4. In this case the terms can be looped as
shown to give Y - B C .

Table 3.12 The Karnaugh map for Y= ABC + ABC, discussed in Example 3.18

Y

1)

Example 3.19

Use the Karnaugh map in Table 3.13 to find a minimised expression for Y.

Solution

Here we have four logically adjacent fundamental product terms (ABC, ABC,

62 Combinational logic basics

Table 3.13 Kamaugh map used to demonstrate minimisation in Example 3.19

Y

C 0 1

(~

1
J

ABC and ABC) in which only A does not appear in uncomplemented and comple-
mented forms. This produces the term A to be included in the sum of products
expression. This grouping and looping of four fundamental product terms
produces what is called a quad. We can also group and loop the ABC term with
ABC by rolling the map to give the dual BC. This gives the minimised form of Y as
Y=A+BC.

Example 3.20

Draw the Karnaugh map for the function Y= A C+ AB, used in earlier examples in
this chapter, and from it obtain the fundamental sum of product expression for Y.

Solution

From the Karnaugh map in Table 3.14 we can see there are three fundamental
product terms giving:

Y = A B C + A B C + A B C

Table 3.14 Kamaugh map for function Y= AC+ AB, discussed in Example 3.20

Y

C

C

1 0

Four-variable Karnaugh maps
For a four-variable Karnaugh map, two pairs of variables are used to label the
four columns and four rows respectively as shown in Table 3.15. Continuing the
map 'rolling' idea introduced above, note that the top and bottom rows are logi-

cally connected.

Minimisation of combinational logic expressions 63

Table 3.15 Layout and labelling of a four-variable Karnaugh map

A B C
0 0 0
0 0 0
0 0 1
0 0 1
0 1 0
0 1 0
0 1 1
0 1 1

D row A B C D row

o o i o o o 8
1 1 1 0 0 1 9
0 2 1 0 1 0 10
1 3 1 0 1 1 l l
0 4 1 1 0 0 1 2
1 5 1 1 0 1 13
0 6 1 1 1 0 14
1 7 1 1 1 1 15

Y

~5

CD

CD

CD

12

13

15

14

11

10

CD

CD

CD

CD

ABCD

ABCD

AB CD

ABCD

ABCD

iABCD

ABCD

ABCD

A B C D A B C D

A B C D A B C D

AB CD AB CD

m

A B C D A B C D

E x a m p l e 3.21

W h a t Boolean expression is represented by the K a r n a u g h m a p in Table 3.16?

Table 3.16 Kamaugh map of the function minimised in Example 3.21

~ 5

~O

CD

CD

G
o

o

0 0

S o l u t i o n

This map contains two duals (two grouped and looped fundamenta l p roduc t

terms) and a fundamenta l product term that has no logically adjacent p roduc t

terms giving:

Y = A B C + A C D + A B C D

64 Combinational logic basics

Example 3.22

What Boolean expression is represented by the Karnaugh map in Table 3.17?

Table 3.17 Kamaugh map of the function minimised in Example 3.22

Y

CD

CD

u

CD

0

(1

f

1

1
J

_ _ L 1

Solution

This map contains a quad, CD (four grouped and looped fundamental product
terms) and an octet, A, (eight grouped and looped fundamental product terms)

giving:
Y=A +CD

Example 3.23

What Boolean expression is represented by the Karnaugh map in Table 3.18?

Table 3.18 Karnaugh map of the function minimised in Example 3.23

Y

CD

w

CD

CD

CD

0

0

0

0

II

~ I
Solution

This Karnaugh map contains two quads both of which are obtained by 'rolling'

Minimisation of combinational logic expressions 65

the map; firstly around the first and last columns, secondly between the top and

bottom rows. This gives:
Y = B D + B D

Note that this is an XOR function, in B and D, which is to be expected because of
the 'chequerboard' pattern in the map.

Five-variable Karnaugh maps
For a five-variable map, two four-variable maps must be drawn with the fifth vari-
able E used to index the two maps. The layout is shown in Tables 3.19 and 3.20.

Table 3.19 Row numbering for a five-variable truth table�9 See Table 3.20 for the
corresponding Karnaugh map

r

A B C D E row, A

0 0 0 0 0 0 1

0 0 0 0 1 1 1

0 0 0 1 0 2 1
.

0 0 0 1 1 3 1

0 0 1 0 0 4 1
. J

0 0 1 0 1 5 1

0 0 1 1 0 6 1

0 0 1 1 1 7 1

0 1 o o 0 8 ! 11
0 1 0 0 1 9 1

0 1 0 1 0 10 1

0 1 0 1 1 11 1

0 1 1 0 0 1 2 . . 1

0 1 1 0 1 13 1

0 1 1 1 0 14 . 1

0 1 1 1 1 15 1

B C D E
|

0 0 0 0

0 0 ~ 0 1
0 Or 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 ' 1 1

1 0 i 0 0
1 0 : 0 1

1 O i l 0
1 0 1 1

1 1 0 0

1 1 0 1
1 1 1 0
1 1 1 1

r o w

16

17

18

19

20

21

22

23

24

25

26

27

28

29

3O

31

Table 3.20 Layout and labelling of a five-variable Karnaugh map. See Table 3.19 for
the corresponding row numbering of the truth table

Y

C D

C D

CD

C D

12

13

15

14

11

10

Y

C D

C D

CD

C D

16

17

19

18

20

21

23

22

28

29

31

30

24

25

27

26

E E

66 Combinational logic basics

E x a m p l e 3.24

The five-variable t ruth table in Table 3.21 gives the outputs , X and Y, f rom two

combina t iona l logic circuits. Use Ka rnaugh maps to minimise these functions.

Table 3.21 Truth tables of the functions minimised in Example 3.24

A
0
0
0
0
0
0
0
0

! 0
-0
~0

0
0
0

" ' 0

B C D E X Y
0 0 0 0 0 1
0 0 0 1 [1 ' 1 ~

p.

0 0 1 0 1 1
i �9

0 0 1 1 0 1
0 1 0 0 0 1
0 1 0 1 1 0
0 1 1 0 0 0
0 1 1 1 0 0
1 0 0 0 1 1

1 0 0 1 1 0
1 0 1 0 1 1
1 0 1 1 0 1
1 1 0 0 1 i 1
1 1 0 1 1 1
1 1 1 0 i 0 0

0 1 1 1 1 0 0
,

1 0 0
_

1 0 0

. 1 0 i 0
1 0 1
1 0 1
1 0 1

.

1 0 1
1 1 0

.

1 1 0
~ 1 1 0
~ 1 1 0
" 1 1 ' 1

1 1 1
1 1 1

L 1 1 1

A B C D e X
i | �9

1 0 0 0 0 1

Ol 1 . 0
1L O. 1 "
1 1 . 0
0 0 0
0 1 0
1 ' 0 " 0
1 1 0
0 0 1
O! 1" 1
1 0 0
1 1 1
0 ' 0~ 1

�9

0 1 1
�9

1 0 1
1 1 0

Y
1

1
l i

o
0
0
1
0
0
1

1

0
1

0
1

Solution

F r o m the Karnaugh map in Table 3.22:

X= A C+ CDE+ A B C D + BDE+ A B D E

Table 3.22 Karnaugh map for the function X, minimised in Example 3.24, whose truth table is
given in Table 3.21

X

CD

CD

w

CD

f

1

1

1

X

CD

CD

CD

CD

1 1 \

, , - - - . - . - ~

!

i

o

o

E E

Minimisation of combinational logic expressions 67

The product terms containing E and E are obtained solely from the Karnaugh
w

maps for E and E respectively. Those terms not containing either E or E are for
product terms obtained by grouping and looping the same fundamental product
terms on both maps. For example the term A C occurs because of the quads in the
top right-hand corner of the maps for both E and E. From the Karnaugh map in
Table 3.23:

Y= AB + CDE+ BC+ ABCD+ CDE

Table 3.23 Kamaugh map for the function Y, minimised in Example 3.24, whose truth table
is given in Table 3.21

Y

~2D 1

CD - ~ 1 F,

Y

~O

cB

l

- - - - ~ .

c D 1

E E

The layout of Karnaugh maps
It may seem as if the labelling of the columns and rows of the above Karnaugh
maps was chosen at random, but this is certainly not so. In all the examples in this
book the same format for Karnaugh maps will be used which is that truth tables
will be drawn with A as the most significant bit. Then for three-variable maps, as
used above, A and B will be used to index the columns and C the rows, whilst for
four-variable maps C and D will be used to index the rows.

A significant advantage of keeping to the same convention for labelling
Karnaugh maps is that it simplifies greatly the process of writing them out from
truth tables since the filling pattern remains the same. This pattern can be seen by
observing Tables 3.9, 3.15, 3.19 and 3.20, which show which rows of the truth
tables (and hence fundamental products) correspond to which cells in the
Karnaugh maps.

This is an appropriate point to bring attention to the link between Karnaugh
maps and Gray code, introduced in Section 2.3. This coding scheme is distin-
guished by the fact that adjacent codes only differ in one variable, and it is there-
fore of no surprise to discover a connection with Karnaugh maps since these are
also based upon this principle. The link can be seen by filling in the cells of a four-
variable Karnaugh map with the decimal codes used to index the Gray code given in
Table 2.1 as shown in Table 3.24. Note that the codes representing all adjacent

68 Combinational logic basics

Table 3.24 The link between Gray code and Karnaugh maps

CD

CD

CD

CD

0 i

I I i
I

I

I

21
I

I

I

3t

I !

I
I

I
I

I
I

I

I
!

I

I

I

I
I

J

f
\

8~

I
91

I

I

I

101
I

1

I

l l t

A, 15
I I

1 t

I I

114
I

I

I

I

!13
I

1

I

)12
J

cells differ by only one variable (e.g. 0 and 7 have Gray codes 0000 and 0100
(corresponding to fundamental product terms ABCD and ABCD), and 9 and 14
have codes 1101 and 1001).

Minterms, prime implicants and essential prime implicants
Since each fundamental product term occupies a single cell in the Karnaugh map
it is called a minterm (as it specifics the minimum area of l's, i.e. a single cell, in the
Karnaugh map). Once the minterms have been looped and grouped in the
minimisation process (to duals, quads and octets) then the resulting minimised
(simplified) products arc known as prime implicants. 4

In order to minimisc a function all of the minterms in the Karnaugh map must
be covered (i.e. grouped and looped), since they must be contained in the
minimised Boolean expression. However, if all of the possible groups, that is the
prime implicants, are used in the final minimised sum of product expression there
may be more of them than are strictly necessary to cover the whole map (in the
previous examples we have used just sufficient prime implicants to cover all of the
minterms). Those prime implicants which describe product terms which must be
used for all minterms to be covered are called essential prime impficants. This is
best illustrated by example.

Example 3.25

Obtain minimised expressions for X and Y from the Karnaugh map in Table 3.25.

Solution

The map for X contains four prime implicants: the quad, BD; and duals ABC,
ABC and A CD. However, only three of these are essential prime implicants since

4An implicant refers to any product term consisting of looped and grouped minterms. This includes a
product term that may be able to be combined with another implicant to produce a prime implicant (e.g.
two duals combined to give a quad which is a prime implicant).

X

CD

M

CD

CD

CD

Minimisation of combinational logic expressions 69

Table 3.25 Kamaugh maps of the functions which are minimised in Example 3.25

Y

(1

0

1

II

A A~

0

0

~ m

AB

CD

CD

CD

CD

~B

0

1

AB

0

o

ABC is also covered by BD and A CD. The minimised expression is therefore:

X = B D + A B C + A C D

The map tbr Y contains six prime implicants: the quads CD and AB; and duals
A BD, ABC, A CD and BCD. Only two of these are essential prime implicants,

.

namely" AB and CD. The remaining three minterms ABCD, ABCD and ABCD

must also be covered by choosing appropriate non-essential prime implicants
from the four remaining. This can be achieved a number of ways, any of which
provide a complete and therefore adequate minimised expression. These are"

Y= CD + AB + ABD + BCD

Y = C D + A B + A B C + B C D

Y = C D + A B + A B C + A C D

It is instructive to compare minimisation of an expression with more prime impli-
cants than are required using both a Karnaugh map and Boolean algebra.

Example 3.26

List all of the prime implicants from the Karnaugh map in Table 3.26, and then
give a minimised expression for Y. Then beginning with the expression containing
all of the prime implicants minimise this to the form produced from the Karnaugh
map.

Solution

The map contains three prime implicants AB, A C and BC. Of these AB and A C
are essential prime implicants with BC non-essential since it is also covered by
these two. Therefore, the minimised form is"

Y = A B + A C

70 Combinational logic basics

Table 3.26 Karnaugh map of the function minimised in Example 3.26

Y

CD

m

CD

CD

CD

0

0

f

1

I 1

0

0

1

1

1

1

Using Boolean algebra:

Y=AB+BC+AC
=AB+AC+BC(A+A)

=AB+AC+ABC+ABC
=AB(1 + C) +AC(I +B)
=AB+AC

This demonstrates how the layout of the Karnaugh map allows this process to be

performed 'visually'.

'Don't Care' product terms
Sometimes, when defining a combinational logic function, the output for certain
inputs will not matter (e.g. certain input combinations may never occur). In this
case these outputs are known as 'don't care' terms, and can be made either 0 or 1.

It is usual to choose the output which will aid the minimisation process. 5

E x a m p l e 3 .27

Obtain a minimised expression for Y from the Karnaugh map in Table 3.27.

Table 3.27 Karnaugh map of a function containing 'don ' t
care' terms which is minimised in Example 3.27

Y

X

X

5For some circuits a more important factor than aiding the minimisation process is to ensure the circuit
always functions correctly. This is particularly true in the design of sequential circuits.

Minimisation of combinational logic expressions 71

Solution

It is clear that if we set ABC to 1 then we can group the quad, A, which, if the
other don't care term, ABC, is set to 0 will cover all minterms in the map giving a
minimised form o f Y= A.

Karnaugh maps: summary of rules for minimisation

Karnaugh maps 'work' because adjacent cells (and therefore rows and columns)

are the same except that one contains one of the variables in its complemented

form. Tables 3.9, 3.15, 3.19 and 3.20 show the notation used for drawing

Karnaugh maps with three, four and five variables, respectively.

When used for five variables, two maps of four variables are employed with

looping and grouping across the two maps. For more than five variables the
benefit of Karnaugh maps (which is their ease of use for looping adjacent
minterms) disappears. The following section introduces Quine-McCluskey
minimisation which is an alternative that is theoretically not limited in the number

of variables that can be used.

In summary, the rules for using Karnaugh maps are as follows:

�9 Draw the map, remembering the 'pattern' when filling from a truth table. (For
this to work the same layout of Karnaugh map must be adhered to.)

�9 Loop all octets, quads and duals (groups of eight, four and two adjacent
minterms). These are the prime implicants. It does not matter if some minterms
are covered more than once, although duals should not be totally enclosed in
quads, and quads in octets as this simply means full minimisation has not been
performed.

�9 Remember the map can be 'rolled' across its edges, or across the two maps in
the case of a five-variable map.

�9 Remember that you can set 'don't care' or 'can't happen' terms to either 0 or 1
to aid minimisation.

�9 Determine which prime implicants are essential and so must be used in the
minimised sum of products expression.

�9 Pick enough prime implicants which together with the essential prime impli-
cants already selected will cover the whole map. Other non-essential prime
implicants need not be included in the minimised expression. 6

�9 Also bear in mind:
�9 Although the minimised expression is obtained it may not be the best expres-

sion for your particular problem (e.g. you may already have generated other
product terms, for some other circuit, which could be used).

�9 Look out for the characteristic XOR pattern that cannot be minimised but
which is implemented easily using XOR gates.

�9 Do not forget that it is sometimes easier to minimise by inspection from the

6We will see in the next chapter how the inclusion of non-essential prime implicants can sometimes ensure
the correct operation of a real circuit.

72 Combinational logic basics

truth table (i.e. a Karnaugh map may not offer the best route to minimisation).

3.3.3 Minimisation via the Quine-McCluskey technique

The Quinc-McCluskcy method of minimisation is introduced here for two
reasons. Firstly it provides a method by which Boolean expressions with more
than five variables can be minimiscd. Secondly it relics upon the systematic
combination of adjacent mintcrms, then duals, then quads, then octets, etc.,
which is an algorithmic method which can be readily programmed, thus allowing
minimisation to be performed automatically by computer. (Programs offering
this facility arc readily available.)

The basic procedure is:

�9 Find all of the prime implicants by systematically combining logically adjacent
product terms (this produces firstly duals, then quads, then octets, etc.).

�9 Select a minimal set of prime implicants to cover all mintcrms (using all the
essential prime implicants, and sufficient non-essential prime implicants for
sufficient coverage).

The stages are as follows"

1. Firstly express the function to be minimised in terms of its minterms, Y-E()
(as described in Section 3.2.1).

2. The minterms must then be grouped in tabular form according to how many
l's the codes for these minterms contain (e.g. minterm 13 (fundamental

_ _

product ABCD) which has four variables is coded by 1101 and so has three
l 'S) . 7

3. Then each term in each group (of terms with the same number of l's) is
compared with all terms in the next group (containing terms with an additional
1).

If they differ by one term only (and so can be minimised like a dual on a
Karnaugh map) then they are combined and retabulated as duals. The
common terms should be marked (here a dash is used), and combined
minterms in the first table marked (here with a cross) to indicate that they have
been combined into a dual.

This is the systematic combination of logically adjacent terms, and the
process (i.e. this stage) is repeated until only one combined group is left.

4. Once this phase has been completed then all uncrossed (unmarked) terms from
all of the earlier tables and (non-duplicated) terms from the final table should
be collected as these are the prime implicants. (Duplicated terms may appear
because of terms being combined in more than one way.)

5. All that now remains is to choose sufficient prime implicants to effect total
coverage of the Karnaugh map. To aid in this process it is helpful to draw up a

VThe significance of this is that fundamental product terms differing only by one variable being in
complemented form in one of the terms must be logically adjacent, and so can be minimised.

Minimisation of combinational logic expressions 73

table indicating which minterms (used to label the table's columns) are
included in which minimised (duals, quads, octets, etc.) terms, which are used
to label the table's rows.

A cross can then be entered into this table to indicate coverage of a minterm
by a prime implicant. For total coverage all columns must contain at least one

c r o s s .

Those columns containing only one cross indicate minterms covered by only
one, and therefore an essential, prime implicant. So these essential prime impli-

cants must be included in the final minimised expression. If these essential

prime implicants cover all of the minterms then no other prime implicants are
needed, otherwise additional prime implicants must be used to effect total
coverage.

The implementation of this procedure is best illustrated by an example.

Quine-McCluskey minimisation: Case 1
Minimise Y, given in fundamental sum of products form, using the
Quine-McCluskey method.

Y= ABCD+ ABCD+ ABCD+ ABCD + ABCD

+ A B C D + A B C D + A B C D +ABCD

This Boolean logic expression can be written as:

Y:]~(2, 3, 5, 6, 7, 8, 9, 10, 11)

Of the codes for these minterms:

�9 two have a single 1 (2 and 8)
�9 five have two l's (3, 5, 6, 9 and 10)
o. two have three l's (7 and 11).

This information can then be tabulated as shown in Table 3.28. The next stage is
to combine logically adjacent product terms, which is achieved by comparing
terms with a single 1 with those with two, then those with two with those with
three. So, for example, minterms 2 and 3 differ only in D and so can be combined
to give 2-3 which is the dual ABC. This dual is therefore entered into the next
table (of duals), a cross used in the first table to indicate the inclusion of minterms
2 and 3 in a dual, and the fact that D has been eliminated by a dash in the table of
duals for 2.3.

This procedure is carried out for all minterms, thus producing a table of all
duals as shown in Table 3.29. Note that this table is still split into those terms with
a single 1 and those with two l's. This is essential since it is the members of these
two groups that must now be compared to see if any duals can be combined to
produce a quad.

Repeating the process for the table of duals, to produce a table of quads shown
in Table 3.30, we see, for example, that duals 2-3 and 6-7 only differ in B (the
dashes must match) and so can be combined to give 2- 3-6-7 which is quad AC.

0
0

~
~

0
0

0

0
0

o

0
0

~-
-'

~
-"

0

'

0
'

0
0

'

>

t-
"

0 p
,,

~
.

ID

0 0 0
~

"1

0
,-1

r,~

0 C

C

b
J

0 ,,.
_.

,..
...

0 0

Minimisation of combinational logic expressions 75

Table 3.30 Minimisation process for Case 1 resulting in tabulation of all dual and quad

implicants

min te rms duals

A B C D A B C D

2 x 0 0 1 0 2.3 x 0 0 1

8 x 1 0 0 0 2.6 x 0 - 1 0

2.10 x - 0 1 0

3 x 0 0 1 1 8.9 x 1 0 0

5 x 0 1 0 1 8.10 x 1 0 - 0

6 x 0 1 1 0

9 x 1 0

1 0 x 1 0

0 1 3.7 x 0 - 1

1 0 3 .11 x - 0 1

5.7 0 1 -

1 1 6 . 7 x 0 1 1

1 1 9 .11 x 1 0 -

10 .11 x 1 0 1

7 x 0 1

11 x 1 0

1

1

Pr ime

Impl ican t

quads

A B C D

2.3.6.7 0 - 1 - ,I

2.3.10.11 - 0 1 - "~

2.6.3.7 0 - 1 - dupl icate

2.10.3.11 - 0 1 - dupl icate

8.9.10.11 1 0 - -

8.10.9.11 1 0 - - dupl icate

Pr ime
Impl icants

This is entered into the table of quads and the inclusion of the two duals in this

quad indicated again by crosses in the dual table, with the el iminat ion of B shown

by the dash.

F r o m the table of quads all terms now have a single 1 which means none can be

combined to give an octet (since this would require a quad differing in only one

variable, which must therefore have either two O's or two l's). The combina t ion of

76 Combinational logic basics

logically adjacent product terms is now complete and we are left with a list of
prime implicants.

Note:

�9 The quad table contains duplicates (e.g. 2 . 3 - 6 . 7 and 2 -6 -3 .7) . This will

happen for all quads because there are always two ways in which the four

minterms can be combined into pairs of duals.

�9 There is a dual, 5.7, which cannot be combined into a quad and so is itself a

prime implicant. Such duals and minterms which cannot be reduced must

always be looked for.

We can now produce the table of prime implicants (the rows) and minterms (the

columns) in Table 3.31. A cross indicates that a minterm is included in a prime
implicant. A circle around a cross indicates that the row containing it is an essen-

tial prime implicant (epi). This is so if there is only a single cross in the column and

therefore this is the only prime implicant containing this minterm.

Table 3.31 Prime implicant table for Case 1

5.7

2.3.6.7

2.3.10.11

8.9.10.11

|

Q

Q

All that remains is to pick out the essentiai prime implicants from this table,
plus sufficient prime implicants (if required) to ensure all minterms are included in

the final expression.

Table 3.32 Karnaugh map for the function minimised in Case 1 which illustrates the process
employed in Quine-McCluskey minimisation

Y

CD

CD

CD

CD

0

0

f

1 ' I
t

I

I

! 1 ,

0

1

m

1
J

0

1

1

f

i / 1

I

I

~ - -

,.,

Y[
CD 0

eD

CD

CD

12

13

15

14

11

10

Products of sums: the negative logic approach 77

For this example we get three essential prime implicants, 5.7, 2.3.6.7 and
8.9.10.11, which cover all minterms which means the remaining prime implicant,
2.3.10.11, is non-essential. This gives:

Y= 5.7 +2.3.6.7 + 8.9.10.11
Y - A B D + A C + A B

It is instructive to look at the Karnaugh map that would be used to minimise
this function which is shown in Table 3.32 together with the codes for the
minterms in their corresponding cells in the map. From these the process used in
Quine-McCluskey minimisation can clearly be seen.

Quine-McCluskey minimisation: Case 2
Minimise Y=~(0, 4, 5, 7, 10, 12, 13, 14, 15).

�9 one has no l's (0)
�9 one has a single 1 (4)
�9 three have two l's (5,10 and 12)
�9 three have three l's (7, 13 and 14)
�9 one has four l's (15).

The minimisation process is shown in Table 3.33. The prime implicants are:

0.4, 10.14, 4.5.12.13, 5.7.13.15 and 12.13.14.15

The table of prime implicants, Table 3.34, is now used to produce a minimised
expression with coverage of all minterms. From Table 3.34 we see there are three
essential prime implicants, 0.4, 10.14 and 5.7.13.15, with either of the non-essen-
tial prime implicants, 4.5.12.13 or 12.13.14.15, also required to give full coverage.
Therefore"

Y = A C D + A C D + B D + A B

o r

Y = A CD + A CD+ BD+ BC

Drawing the Karnaugh map, Table 3.35 (although not necessary), serves again to
illustrate the stages ofminimisation used in the Quine-McCluskey method.

3.4 PRODUCT OF SUMS" THE NEGATIVE LOGIC
APPROACH

So far in this chapter we have approached all topics using positive level logic. In
other words we have always considered the output and minimisation of combina-
tional logic expressions in terms of the input combinations giving an output of 1.
(For example we have considered the position of minterms in the Karnaugh
maps.)

Given the principle of duality it should come as no surprise to learn that we
could instead have used a negative level logic appproach. As we will now see this

78 Combinational logic basics

Table 3.33 Quine-McCluskey minimisation process for Case 2

minte rms duals

A B C D A B C D

0 x 0 0 0 0 0.4 0 - 0 0 " ~ ~

4 x 0 1 0 0 4.5 x 0 1 0

5 x 0 1 0 1

1 0 x 1 0

12 x 1 1

4.12 x - 1 0 0

7 x 0 1

13 x 1 1

1 0 5 . 7 x 0 1 - 1

0 0 5.13 x - 1 0 1

10.14 1 - 1 0 " ~ ~

1 1 1 2 . 1 3 x 1 1 0 -

0 1 12.14 x 1 1 - 0

14 x 1 1 1 0

15 x 1 1 1 1

7.15 x - 1 1 1

13.15 x

14.15 x

1 1 - 1

1 1 1

quads

A B C D

4.5.12.13

4.12.5.13

1 0 -

1 0 - dupl icate

5.7.13.15

5.13.7.15

12.13.14.15

12.14.13.15

1 1

1 - 1 dupl icate

1 1 - - dupl icate

Pr ime

Impl ican ts

Pr ime
Impl ican t

Pr ime
Impl ican t

approach is linked to the use offundamentalproduct of sums expressions, and the

posit ion of maxterms (the max imum area of l 's, and hence the posi t ion of a single

zero) on a Karnaugh map.

Products of sums: the negative logic approach 79

Table 3.34 Prime implicant table for Case 2

0.4

10.14

4.5.12.13

5.7.13.15

12.13.14.15

|

Q

Q

Y

~5

CD

CD

CD

Table 3.35 Kamaugh map of the function minimised in Case 2

I

I

r
1

1,.!_

I I

I I

I I I
I I

I ~ I

I I

I I

I I
I

i I
i !

,)

Y

CD

CD

CD

CD

12

13

15

14

Fundamental product of sums form

Using the function considered earlier:

Y = A B + B C

from its truth table, shown again in Table 3.36, we can see (in a similar way to that
used when obtaining the fundamental sum of products form) that Y=0 if:

((A =0) AND (B-0) AND (C=0)) OR
((A- 1) AND (B-0) AND (C= 0)) OR
((A- 1) AND (B- 1) AND (C=0)) OR

((A- 1) AND (B= 1) AND (C= 1)

which in Boolean form is:

Y - A B C + A B C + A B C + A B C

This means that Y = 1 (i.e. Y= 0) if any of these fundamental product terms are 1.

80 Combinational logic basics

Table 3.36 Truth table of Y= AB + BC

A B c
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 o o o
1 0 1 1

1 i 0 0
1 1 1 0

(This is a fundamental sum of products expression for Y.) This expression can be
dualled to give:

r'=(A + B+ 63-(3+ B+ 63-(2+ B+C)-(2+ B+

which expresses Y in f undamen ta l product o f sums form (i.e. fundamental sum
terms (as they contain all three variables) are AND'd together to give their
product). (Note that the- has been used to emphasise that the sum terms are being
AND'd together.) This, and the fundamental sum of products expression

Y = A B C + A B C + A B C + A B C

are identical expressions for Y in different forms.
Although the above dualling process can be performed directly, by swapping all

operators and inverting all variables, it is instructive to consider it in more detail.
Firstly, De Morgan's theorem, P - Q = P + Q, is applied to the individual funda-
mental product terms to give:

~'=(A +B+ C)+(2+B+ C)+(2+B + C)+(A +B +C)

Then the second of De Morgan's theorems, P + Q= P- Q, is used to give:

Y= (A + B + C) . (A + B + C) " (A + B + C) . (A + B + C)

Finally, inverting both sides gives:

Y = (A + B+ C) . (A + B+ C) " (A + B + C) . (A + B + C)

P r o d u c t o f s u m s and m a x t e r m s

With the sum of products form, if any one of the product terms is 1 then the
output will be 1 because any Boolean expression OR'd with 1 gives a result of 1
(Equation 1.9). Regarding the product of sums form, the significant point is that
anything AND'd with 0 gives 0 (Equation 1.6). Consequently, in the fundamental
product of sums form if any of the sum terms is 0 then Y=0.

These processes are illustrated in Table 3.37. This shows how OR'ing (on the
left-hand side) the Karnaugh maps for the individual product terms in the funda-
mental sum of products expression for Y leads to the overall map for Y, together
with how AND'ing (forming the product) of the individual sum terms in the
fundamental product of sums expression for Y also leads to the same map.

Products of sums: the negative logic approach 81

Table 3.37 The production of the overall Karnaugh map for Y from the maps of the indi-
vidual fundamental product and sum terms. The sum of products form is shown
on the left, with the product of sums form on the right

OR AND

OR AND

1 0

1 1

Y

OR AND

The important points to note are that the fundamental product terms specify

where the minterms are in the final map, whereas the fundamental sum terms

specify where a zero appears in the final map. However, an alternative way of

viewing this is that the fundamental sum terms rather specify that all cells except

one have a 1 in them. It is for this reason that the fundamental sum terms are

82 Combinational logic basics

known as maxterms, since they specify the maximum area of l's (i.e. all cells
except one) in the Karnaugh map.

In the same way that we could describe any combinational logic expression as a
list of minterms, we can also describe it as a list of sum terms (maxterms). These
will be those which were not minterms. So Y= AB+ BC can be written as either
Y=Z(1, 2, 3, 5) or Y=l'I(0, 4, 6, 7).

Example 3.28

In Sections 3.1 and 3.2.1 the Boolean expression Y = A C + A B was used as an
example. Write out the fundamental sum of products expression for Y and then
dual it to give the fundamental product of sums expression for Y. Also give an
expression for Y in terms of the codes for the maxterms.

Solution

From the earlier truth table in Fig. 3.2"

Y = A B C + A B C + A B C + A B C + A B C

DuaUing this gives"

Y=(A + B+ C) " (A + B+ C) " (A + B+ C) " (A + B+ C) " (A + B+ C)

Finally, Y= 1-[(2, 4, 5, 6, 7).

Minimisation of product of sums expressions using Boolean algebra
Minimisation of the fundamental product of sums expression can of course be
performed algebraically. To do this it is easiest to simplify the expression for Y:

Y= A B C + A B C + A B C + A B C

=(A + A) B C + (B + B) A C + A B (C + C)

= B C + A C + A B

Dualling gives:

Y= (B + C) " (A + C) " (A + B)

The final expression for Y gives the product terms which correspond to the
three 'prime implicants' for the O's in the Karnaugh map. This is because this is a
sum of products expression for Y. The product of sums expression for Y is
composed of the prime implicates which are the corresponding sum expressions to
prime implicants. It is important to note that whereas the 'prime implicants' for Y
specify where the O's are in the Karnaugh map (for each product term), see Table
3.37, the prime implicates rather specify where the l's are.

It is clear from the Karnaugh map that this is not a minimised product of sums
expression for Y because A t~ is a non-essential prime implicate. This is confirmed
by Boolean algebra as follows:

Products of sums: the negative logic approach 83

Y - BC+AC+AB

= B C + A B C + A B C + A B

= BC(1 +A)+AB(1 + ~

=BC+AB

Dualling gives"
m

r = (s + G - (A +s)

The sum of products and product of sums form are complementary and both
produce the same Boolean function with two-level circuits. The circuit for the
minimised product of sums form of Y is shown in Fig. 3.5.

B
c

A
B

m u

Fig. 3.5 The two-level circuit for Y= (B+ C). (A + B)

Y

Minimisation using Karnaugh maps
The above illustrates how we can use a Karnaugh map to produce a minimised
product of sums expression. Basically the process is exactly the same as usual
except the O's are grouped and looped rather than the l's. This gives a sum of
products expression for Y, which is then simply dualled to give the minimised
product of sums form for Y.

Example 3.29

Minimise the fundamental product of sums expression from Example 3.28:

r'=(A +8+ C). (A +8+63 .(A +8+ C)- (A + 8+ C)- (A +B+C)

firstly using Boolean algebra and then a Karnaugh map. Then draw the circuit
which implements the minimised form of Y.

Solution

Using the dual of Y (from the previous example)
Y= ABC+ABC+ABC+ ABC+ABC

- (A + A)BC + (g + B)A c + (g + B)A C

= B C + A C + A C

=A+BC
Dualling this expression gives:

r=A-(B+C)
From the Karnaugh map for Y in Table 3.38, looping and grouping the O's

gives
Y=A+BC

84 Combinational logic basics

Table 3.38 Karnaugh map for the function discussed in Example 3.29

Y

0)

0

which can be dualled to give the same result as above. The circuit to implement

this minimised product of sums form is shown in Fig. 3.6.

......... i ~ ' ~ - - Y
B

Fig. 3.6 Minimised product of sums form of Boolean expression considered in Example 3.29

3.5 SELF-ASSESSMENT

3.1 What characteristic defines a combinational logic circuit?

3.2 What are product terms and sum terms?

3.3 What are the two (functionally identical) forms that can be used to describe
the operation of a combinational logic circuit?

3.4 What different ways are there of describing the operation of a combina-
tional logic circuit?

3.5 How does the number of columns and rows in a truth table relate to the
number of input and output variables?

3.6 What is meant by a fundamental product term, and how are they related to
the outputs from a truth table?

3.7 What form of circuit does a two-level circuit implement and what are the
advantages of this type of circuit?

3.8 What is the effect of minimising a fundamental sum of products expression?

3.9 Which single-variable theorem is the minimisation of fundamental sum of

products expressions dependent upon?

3.10 Why can Karnaugh maps be used for 'visually' minimising Boolean expres-

sions.

3.11 Draw out the basic form of Karnaugh maps for three and four variables,
together with the corresponding truth tables, indicating the link between the
cells of the Karnaugh maps and rows of the truth table.

Problems 85

3.12 What are octets, quads and duals?

3.13 What are minterms, prime implicants and essential prime implicants?

3.14 What is meant by 'don't care' product terms and what is their significance
regarding minimising Boolean expressions?

3.15 How does the description and implementation of a combinational logic
circuit differ when a product of sums rather than sum of products form is
used?

3.16 The minimisation of fundamental forms via a Karnaugh map relies upon
grouping and looping either minterms or maxterms. If in general n terms are
looped how many variables are eliminated?

3.6 PROBLEMS

The first eight problems refer to the truth tables in Table 3.39.

Table 3.39 T r u t h tables o f funct ions referred to in the fol lowing p rob lems

C J K L M N P Q A B

0 0 0 1 0 1 0 0 1 1

0 0 1 1 0 0 1 1 0 1

0 1 0 0 1 0 0 1 1 0

0 1 1 0 1 1 1 1 0 0

1 0 0 1 1 1 1 0 0 1
1 0 1 0 0 0 1 1 0 0

1 1 0 0 1 1 1 1 1 1

1 1 1 1 1 1 0 0 1 0

C D R S T U V W X

0 0 0 0 1 0 1 1 1

0 1 1 0 0 0 0 1 1

1 0 0 0 0 0 1 0 0

1 1 1 0 0 0 0 0 0
0 0 1 0 1 1 1 1 1

0 1 1 1 0 1 1 1 1

1 0 1 0 0 1 1 0 0

1 1 0 0 1 1 1 0 0

0 0 0 1 1 1 1 1 1

0 1 1 0 1 1 0 1 1

1 0 0 0 1 1 1 0 0

1 1 1 0 1 1 1 0 0

0 0 1 1 0 0 1 0 1

0 1 1 1 0 0 0 1 0

1 0 1 1 0 0 1 0 0

1 1 1 0 0 0 0 1 0

86 Combinational logic basics

3.1 For all of the outputs (J to Q) from the three input variable truth table above:

�9 Give the output from the the truth table as a fundamental sum of products
expression.

�9 Use Boolean algebra to simplify this expression.
�9 Confirm that this is correct by minimising using a Karnaugh map.
�9 Using OR and AND gates draw the two-level circuits required to imple-

ment the functions described by these truth tables.
�9 Use the Karnaugh maps to derive minimised product of sums expressions

for the outputs, and then use Boolean algebra to confirm their equivalence
to the minimised sum of products form.

3.2 Use the Quine-McCluskey method to minimise M.

3.3 Draw circuits to implement J using firstly only NAND gates and then only
NOR gates.

3.4 Draw the Karnaugh map for R and use it to determine all of the prime impli-
cants. Which ones are essential prime implicants? Give a minimised sum of
products expression for R.

Verify that all of the prime implicants have been found using the
Quine-McCluskey technique.

Use the Karnaugh map to derive a minimised product of sums expression for
R, and then demonstrate its equivalence to the sum of products form using
Boolean algebra.

How could R be implemented using one each of: a two-input OR gate, a two-
input AND gate, a four-input NAND gate and an inverter?

3.5 Write out expressions for S and T in sum of fundamental products form and
then minimise them using Boolean algebra. Check the results using Karnaugh
maps.

3.6 Minimise functions U, V and W. Draw the circuit required to implement U
using firstly AND and OR gates and then only NAND gates. What single
gate could be used instead? Express U in minimised product of sums form.

3.7 Minimise X into both sum of products and products of sums form. Show, via
Boolean algebra, the relation between the two forms and how many gates are
necessary to implement them. Then consider the product of sums implemen-
tation using a maxterm and an octet of O's (i.e. a non-minimised implementa-
tion) which leads to a form for X consisting of an octet of l's minus a single
minterm (produced by AND'ing the octet with the complement of the missing
minterm).

3.8 Using Karnaugh maps find the prime implicants of Y and Z. Which are essen-
tial prime implicants? Give minimised expressions for these functions.

Confirm these results using the Quine-McCluskey method.

Problems 87

3.9 Boolean expressions can be factored via the distributive law with a basic
example being:

AC+AD+BC+BD=(A +B).(C+D)

Draw Karnaugh maps of the left-hand side of this equation and the two sum
terms (i.e. factors) on the right-hand side to prove that this equation is
correct.

3.10 Use Karnaugh maps to show that (AC+AC) and (C~D) are factors of
(ABCD+ ABCD) and find a suitable third and final factor.

3.11 Minimise the following function using firstly a Karnaugh map and then the
Quine-McCluskey method.

Y=~(1, 2, 5, 8, 9, 10, 12, 13, 16, 18, 24, 25, 26, 28, 29, 31)

4 Combinational logic circuits

4.1 COMMON COMBINATIONAL LOGIC CIRCUITS

There are a number of combinational logic circuits which are used so frequently
that they are often considered to exist as circuit elements (like logic gates) in their
own right. Note that the forms of these circuits given here are those that imple-
ment the basic functions. When provided as 'building blocks' for digital design
some of these may have additional combinational logic circuits attached to their
inputs that allow extra control of their action.

4.1.1 Multiplexers

Multiplexers provide a way of selecting one out of many digital signals. A multi-
plexer will in general have n inputs, and obviously one output, with m control
lines which are used to select one of the n inputs. The block diagram of a multi-
plexer (mux) is shown in Fig. 4. 1.

m control lines

n inputs MULTIPLEXER single output

Fig. 4.1 Block diagram of an n-to-1 multiplexer

Which of the n-input channels is routed through to the output is determined by
the bit pattern on the m control lines. Hence, n, the number of input lines that can
be multiplexed is 2". The basic structure of an n-input multiplexer is n (m + 1)-
input AND gates (that is one AND gate to decode each of the n= 2"' possible
combinations of the m control inputs), all feeding into a single OR gate. The extra
(to the m control lines) input to each gate is connected to one of the n inputs.

Common combinational logic circuits 89

Multiplexers are usually referred to as n-to-1 or 1-of-n multiplexers or data selec-
tors.

The operation is based upon the fact that only one of the 2 m possible input
combinations can ever be applied to the control inputs at any one time, and there-
fore only the corresponding AND gate will be capable of giving an output other
than 0. This is the gate whose input will be routed through to the output.

A (m=l)

D

D

(n-2)

Fig. 4.2 A 2-to-1 multiplexer

Y

2-to-I multiplexer

Figure 4.2 is the circuit diagram of a 2-to-1 multiplexer. Note that it has two
inputs (n= 2), with a single control line (m= 1). If A =0 then the output from the
AND gate with D~ as an input must be 0 (since anything AND'd with 0 is 0,
Equation 1.6) whilst the output from the other AND gate will be
A. D O = 1 �9 D O = D 0. So, the output from the multiplexer is Y= D O + 0 = D O (Equation
1.8). By similar reasoning if A = 1 then Y= D,. In Boolean algebraic terms:

Y=A.Do+A.D ~

One way of thinking of the action of a multiplexer is that only one of the AND
gates is ever activated and so allows the input signal fed to it through to the OR
gate. This is illustrated in Fig. 4.3 which shows one of the AND gates from an 8-
to-1 multiplexer which therefore has three control signals A, B and C. The gate
shown controls the passage of input D 3 which will be selected for an input of ABC.
The output from this gate is ((ABC).D3),which will be 0 3 when the product term
ABC= 1, and 0 otherwise. Hence the presence of this product term effectively
'activates' the gate, meaning the output is then D 3. Any other input combination

D 3

input
(1-of-8)

A

l
B C control lines

to OR gate

Fig. 4.3 The 'activation' of an AND gate in an 8-to-1 multiplexer

90 Combinational logic circuits

means the output from the gate is always 0. Only one AND gate in a multiplexer is
activated at a time and it is therefore its output that appears as Y, the output from
the OR gate and hence the multiplexer.

E xam p le 4.1

Draw the circuit diagram and truth table, and give the Boolean equation
describing the output, of a 4-to-1 multiplexer.

S o l u t i o n

These are shown in Fig. 4.4

Y = A B D o + A B D ! + A B D 2 + A B D 3

A A B B

D

D I

D 2

D 3

0
I
I

.... [j

/

A B Y

0 0 D O

0 1 D l

1 0 D.,
1 1 D3.

Fig. 4.4 A 4-to-1 multiplexer and its truth table, as discussed in Example 4.1

Y

The multiplexer as a universal logic solution
Because all 2 m possible combinations of the m control lines of a multiplexer are fed
to 2'" AND gates then there is an AND gate for all of the fundamental product
terms of the m variables. A multiplexer therefore provides a way of synthesising
the logic function of any m-input truth table in fundamental sum of products
form. All that has to be done is to connect the input lines of the multiplexer to
either 0 or 1 depending upon the desired output for the particular fundamental
product. So any m-input (n-row) truth table can be implemented by a n-input
multiplexer. The advantage of this type of implementation of a combinational
logic circuit is that it requires only a single circuit element and that no minimisa-
tion is required since the circuit is in fundamental sum of products form.

Example 4.2

Common combinational logic circuits 91

Implement the truth table in Table 4.1 using a multiplexer.

Table 4.1 Truth table implemented via a multiplexer in Example 4.2

A B r

o o 1

o 1 o

1 o 1

1 1 1

S o l u t i o n

This will require a 4-to-1 multiplexer (i. e. two control inputs) with inputs D o
through to 0 3 tied to 1, 0, 1 and 1, respectively (i.e. the output from the truth
table) as shown in Fig. 4.5.

~ m

A A B B

D O

D1

D , ~

D 3

0 1
I I i)

---q)7

I j

Fig. 4.5 Multiplexer used as a universal logic solution, as described in Example 4.2

Furthermore, an n-input multiplexer and an inverter can be used to implement
any 2n row truth table. To achieve this all inputs to the truth table e x c e p t one are
connected to the multiplexer's control lines. This means that each AND gate is
now activated for two rows of the truth table, i.e. two input patterns differing in
the variable not connected to a control line.

These two rows have four possible output combinations: both 0; both 1; one 0
and the other 1; or vice versa. For the same value in both rows the activated AND
gate can be tied to either 0 or 1 as required, whilst for different values it can be
connected to the least significant input or its inverse (this is why the inverter is
needed).

Example 4.3

How can the truth table in Table 4.2 be implemented using a four-input multi-
plexer and an inverter?

92 Combinational logic circuits

Table 4.2 The eight-row truth table implemented using a four-input multiplexer as described
in Example 4.3, and shown in Figure 4.6

A B C Y

o o o 1
0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Solution

This is a three input, eight row (2n = 8) truth table which we are going to implement

using a four-input (n =4 and m = 2) multiplexer. The two most significant inputs to
the truth table, ,4 and B, are connected to the two control lines of the multiplexer.

This relates each of the four AND gates in the multiplexer to a pair of rows in
the truth table (for fixed values of A and B). For A B we see that Y= 1 and for A B

that Y=O. For AB, Y= C and for AB, Y= C. Consequently, the multiplexer must
be wired as in Fig. 4.6.

0 1 A B

o0 I 1, i i
D I ~' 4-to- 1 MUX Y
D 2

D3 " I

l
C

Fig. 4.6 Use of a four-input multiplexer to implement the truth table shown in Table 4.2, as described
in Example 4.3

4.1.2 Demultiplexers

Demultiplexers provide the reverse operation of multiplexers since they allow a
single input to be routed to one of n outputs, selected via m control lines (n-2'").
This circuit element is usually referred to as a 1-of-n demultiplexer. The circuit
basically consists of n AND gates, one for each of the 2'" possible combinations of
the m control inputs, with the single line input fed to all of these gates. Since only
one AND gate will ever be active this determines which output the input is fed to.
The block, and circuit, diagram of a 1-of-4 demultiplexer is shown in Fig. 4.7.

Common combinational logic circuits 93

X

input

A B

i !

1-of-4 DEMUX

control inputs

Y
0

Y 1
Y

2
Y

3

outputs

A A B B

X __ �9 t
- - I

i

. . . . Y

) Y

Y

Y j 3

Fig. 4.7 The block and circuit diagrams of a 1-of-4 demultiplexer

Decoders
A decoder is essentially a demultiplexer with no input line. So instead of feeding
an input line through to the selected output, rather the selected output will simply
become active (this may be either active-HIGH or LOW, with a N A N D rather
than an A N D used for the latter). Obviously a demultiplexer can be used as a
decoder by tying the input line to the appropriate value. A 2-to-4 line decoder
implemented using a 1-of-4 demultiplexer is shown in Fig. 4.8.

2 inputs

A A B B

Y 0

J

~ ----- Y 2

4 outputs

Fig. 4.8 An active-HIGH 2-to-4 line decoder implemented using a 1-of-4 demultiplexer. (Note that an
active-LOW device would have the AND gates replaced with NAND gates)

94 Combinational logic circuits

Example 4.4

Draw the truth table of a BCD-to-decimal decoder, and show how the generation

of the first four codes could be achieved using a demultiplexer.

Solution

Table 4.3 shows the truth table. To produce a decoder for the first four codes (0 to

3) requires a 2-to-4 decoder (i. e. a 1-of-4 demultiplexer). Note that the first four

codes have A = B = 0 so these two inputs are not needed. The circuit to implement

this using a demultiplexer is shown in Fig. 4.9.

Table 4.3

A
0

0
0
0
0

Truth table for a BCD-to-decimal decoder as discussed in Example 4.4

BCD
B C D
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0

0 1 0 1
0 1 1 0
0 1 1 i
l O O O

1 0 0 1

Decimal
0 1 2 3 4 5 6 7 8 9
1 0 0 0 0 0 0 0 0 0

,

0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
o o o o o o o o 1 o

0 0 0 0 0 0 0 0 0 1

BCD
C D

" 0

) 1

3

Fig. 4.9 The BCD-to-decimal decoder designed in Example 4.4

decimal

Some decoders have more than one output active at a time, an example being a

BCD to 7-segrnent decimal display decoder. Here, rather than a single output

layer of A N D gates (one for each possible input pattern), a two-level output is

required to allow the OR' ing together of the outputs that may become active for

many different input patterns. (See Problem 4.3.)

4 . 1 . 3 E n c o d e r s

These are the opposite of decoders in that they convert a single active signal (out

Common combinational logic circuits 95

of r inputs) into a coded binary, s-bit, output (this would be referred to as an r-
line-to-s-line encoder). Often encoders are of a type called priority encoders which
means that more than one of the r inputs may be active, in which case the output
pattern produced is that for the highest priority input.

Encoders have a less general form than multiplexers and demultiplexers, being
specifically designed for the required task. Their usual form is of s combinational
circuits (e. g. AND-OR design),with r inputs.

Example 4.5

Write out the truth table for the 4-1ine-to-2-1ine encoder that takes a four-line
decimal signal and converts it to binary code. Design, and draw, the circuit to
implement this encoder.

Solution

The required truth table is shown in Table 4.4. This truth table is incomplete since
it has four input columns but only four rows. However, we know that for all of the
input combinations not given we need A =0 and B=0. So we can pick out the
fundamental sum of product terms for A and B directly from the truth table to
give:

A = 0 1 2 3 + 0 1 2 3
B = 0 1 2 3 + 0 1 2 3

Table 4.4 Truth table for a 4-line decimal-to-binary encoder as discussed in Example 4.5

Decimal Binary

0 1 2 3 A B

1 0 0 0 0 0

0 1 0 0 0 1
0 0 1 0 1 0

0 0 0 1 1 1

The circuit is shown in Fig. 4.10.

0 1 2 3

r

Fig. 4.10 Circuit that implements the truth table shown in Table 4.4, discussed in Example 4.5

96 Combinational logic circuits

As with decoders, encoders are often used in an active-LOW input and/or
output form.

4.1.4 X O R gate based circuits

The truth table for the XOR operation, Y=AB+AB, is given in Table 4.5.

Table 4.5 The truth table for a two-input XOR gate

A B Y

o o o
o 1 1
1 o 1
]] o

Controlled inverter
From either the truth table or the Boolean logic expression for the XOR gate it is
clear that if A =0 then Y= B, whereas if A = 1 then Y= B. Consequently a two-

input XOR gate can be used as a controlled inverter, with, in this example, the
value of A used to determine whether the output, Y, is equal to B or its comple-
ment.

Comparator
The output of a two-input XOR gate is 0 if the inputs are the same and 1 if they
differ. This means that XOR gates can be used as the basis of comparators, which
are circuits used to check whether two digital words (a sequence of binary digits,
i.e. bits) are the same.

Example 4.6

Design, using two-input XOR gates, a comparator which will give an active-LOW
output if two four-bit words, A and B, are the same.

So/ut/on

The necessary circuit is shown in Fig. 4.11. Y will be 0 only if the outputs from all

of the XOR gates are 0, that is if all corresponding bits (e. g. A 0 and B0) in the two
words are the same.

Example 4.7

A two-bit comparator gives an active-HIGH output, Y, if two two-bit words, A
and B, are the same. Give Y in fundamental sum of products form and then use

Boolean algebra to show that

Y=(Ao (B Bo)+(AI ~) B,)

Fig. 4.11

Common combinational logic circuits 97

A

B

B 1

B 2

A3
B 3

0 ifA 0 = B 0

o

Y---O if A=B

A four-bit comparator constructed using XOR gates, discussed in Example 4.6

Solution

Y = A o A~ B o B~ + AoA ~ B o B~ + AoA ~ BoB ~ + AoA ~ BoB ~

=AoBo(A R B~ +AIB~)+AoBo(A ~ B~ +A~B~)

: (AoB o +AoBo)" (A~ BI +A~B~)
: ((Ao �9 �9 (A, �9

=(A 0 ~ Bo)+(A ~ ~) B~) De Morgan's theorem

Parity generators and checkers
When sending n bits of data along a serial line (i.e. one bit after another) a simple
way of checking whether an error (in a single bit) has occurred is to use a parity
bit. This is an extra bit which is added on to the n-bit word, and whose value is set

at either 0 or 1, to ensure that the total number of bits that are 1 in the complete
(n + 1)-bit word sent is either odd or even (i.e. odd or even parity).

The XOR gate can be used for this purpose since it only gives an output of 1 if

an odd number of its inputs are 1. Parity generation refers to the process of deter-
mining the value of the parity bit; parity checking is performed on the received
(n + 1)-bit word to see if an error has occurred.

Example 4.8

Use two-input XOR gates to produce the parity generation and checking systems
to ensure the four-bit data sent over a serial link is transmitted and received as an
odd parity word.

Solution

The circuit is shown in Fig. 4.12. The output from gates 1 and 2 will be 1 if their

inputs have odd parity (i.e. a 0 and a 1), as will the output from gate 3. (Note that

if gates 1 and 2 both output 1 to indicate odd parity of the two bits they have

compared, then when used as the inputs to gate 3, its output will ~ indicate even

parity, which is correct.) If the four-bit word has odd parity then the parity bit must

98 Combinational logic circuits

1 if odd parity A0 /
4bit A, P ity
data word A 2 [Bit

A 3

GENERATOR 1
controlled
inverter

A 0

A 1

A 2

A 3

Parity bit
CHECKER

) ~ ___ 1 if
no error

Fig. 4.12 Parity generator and checker constructed using XOR gates as discussed in Example 4.8

be zero and so the output from gate 3 is passed through an inverter to generate the
parity bit. (The use of a controlled inverter means that by simply changing the
control bit to 0 the parity bit can be generated for an even parity system.)

An output of 1 from the parity checker indicates that the data has been
correctly received with odd parity.

4.1.5 Full adders

A full adder circuit is central to most digital circuits that perform addition or
subtraction. It is so called because it adds together two binary digits, plus a carry-
in digit to produce a sum and carry-out digit. ~ It therefore has three inputs and
two outputs. The truth table and corresponding Karnaugh maps for it are shown
in Table 4.6.

Example 4.9

Two l 's with no carry-in are added using a full adder. What are the outputs?

Solution

Adding two l 's in binary gives a result of 0 with a carry-out of 1. So S = 0 and Cou ~

= 1. (In decimal this is saying 1 + 1 - 2 , in binary 01 +01 - 10.)

Example 4.10

Two l 's with a carry-in of 1 are added using a full adder. What are the outputs?

IA half adder only adds two bits together with no carry-in.

Common combinational logic circuits 99

Table 4.6 The truth table and Karnaugh maps for a full adder. X and Y are the two bits to be
added, C~, and Cou t the carry-in and carry-out bits, and S the sum

X Y C i n S C o u ,
0 0 0 0 0
0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1
1 1 1 1 1

C.
m

C.
In

C out

C.
In

C in

S o l u t i o n

Here the result is 1 carry 1, that is S = 1 and Cou,= 1. (In decimal 1 + 1 + 1 (carry-in)

= 3; in binary 01 + 01 + 1 (carry- in)= 11 .)

Using the K a r n a u g h maps to obta in minimised expressions for S and Cou ,, we

notice the chequerboard pa t te rn of an X O R gate in the sum term to give:

S-- ~,~r (~) Y ~ Cin
whilst

Cou t - X Y + XCin + YCin

The circuit to implement the full adder is shown in Fig. 4.13.

X

Y

C,
in

.

, !)
t) -

Fig. 4.13 Circuit diagram of a full adder

Cout

100 Combinational logic circuits

4.2 COMBINATIONAL LOGIC DESIGN EXAMPLE:
A FOUR-BIT ADDER

In this section we consider the design of a four-bit adder; i.e. a circuit that adds

together two four-bit binary numbers. This needs to be a combinational logic
circuit and therefore serves as a useful exercise to apply what we have learnt.

To recap, we know that any truth table can be implemented using a product
of sums or sum of products expression in either a fundamental or minimised (via
Boolean algebra or Karnaugh maps for example) form. Using this approach we

end up with a two-level circuit implementation of AND-OR, OR-AND,
NAND-NAND or NOR-NOR. We have not yet considered the practicalities of
any circuits we have designed or analysed, which is one of the purposes of this
section.

We begin by looking again at both the benefits and problems of two-level
circuits, before considering this means of implementation for the four-bit adder.
We then move on to two other methods of implementation which rely upon a
more thorough look at what we want the circuit to do, rather than simply treating
it as a combinational logic problem to be approached using fixed 'rules'.

4.2.1 Two-level circuits

Two-level circuits are direct implementations of sum of products and product of
sums forms, either in fundamental form (straight from the truth table) or after
minimisation. We now consider the advantages and disadvantages of this type of
circuit:

�9 Advantages:
�9 Any combinational logic function can be realised as a two-level circuit.
�9 This is theoretically the fastest implementation since signals have only to

propagate through two gates. 2
�9 They can be implemented in a variety of ways, e. g. AND-OR, OR-AND, etc.

�9 Disadvantages:
�9 A very large number of gates may be required.
�9 Gates with a prohibitively large number of inputs may be needed.
�9 Signals may be required to feed to more gates than is possible (because of the

electrical characteristics of the circuit).
�9 The task of minimisation increases exponentially with the number of input

variables (although computer programs can obviously help reduce this
problem).

The effect of minimising a fundamental two-level circuit is to reduce the first three
disadvantages although it cannot be guaranteed to remove them. Note that the

-'Note however that a single large multi-input gate may be slower than the equivalent constructed from
several gates with fewer inputs (see Section 9.3.5) .

Combinational logic design example: a four-bit adder 101

second disadvantage can always be overcome by using more gates (e. g. by using
three two-input AND gates to implement a four-input AND gate) but that this
means a single-level gate has itself become a two-level circuit.

4.2.2 Specification for the four-bit binary adder

A four-bit binary adder is required to add together two four-bit binary numbers
plus one carry-in bit, and produce a four-bit sum plus a carry-out bit. This is
shown diagramatically in Fig. 4.14.

B 13 3 2 2 1 1 0 0 in

4 bit adder

i i 1 i i
C out S 3 S 2 S 1 S 0

Fig. 4.14 Block diagram of a four-bit adder

By definition this is a combinational logic problem as no memory is involved,
and the outputs (the sum and carry-out) depend solely upon the inputs. The truth
table for this circuit will have nine input columns, and hence 29= 512 rows, and
five output columns. We will now look at four different ways this four-bit adder
could be constructed. The first two consider the use of fundamental and then
minimised two-level circuits; the second two are developed by taking a closer look
at the mechanics of the addition process.

4.2.3 Two-level circuit implementation

Fundamental form
We begin to consider the feasibility of constructing the four-bit adder in funda-
mental two-level form by looking at the output from the first sum bit, S O . Since the
result of the addition will be equally odd andeven then the output column for S O
will contain 256 l's and 256 0's. Since the truth table has nine inputs, and we need
to use all of these as we are considering a fundamental sum of products implemen-
tation, then our two-level circuit will need 256 nine-input AND gates plus a 256-
input OR gate to perform the summing. This is clearly impractical so we
immediately rule out this method.

102 Combinational logic circuits

Minimised form
The most complex Boolean function in the circuit is the one for Coo ~ since it
depends on all of the nine inputs. The minimised expression for Co~ , contains over
30 essential prime implicants, which means that this many AND gates plus an OR
gate with this number of inputs would be needed for a minimised two-level imple-
mentation. Furthermore, some of the input variables (or their complements) must
be fed to up to 15 of the 31 essential prime implicants.

Clearly the large number of gates required, the large number of inputs they
must possess, and the fact that some signals must feed into many gates, means
that this implementation is also impractical, although it is an improvement on the
fundamental two-level form. So although the two-level implementation is theoret-
ically the fastest (assuming ideal gates) we see that for this application it is not
really practical.

4.2.4 Heuristic implementation

Heuristic implementations can broadly be considered as those that are not
produced by rigorous application of Boolean logic theory. (Remember that any
truth table can, in theory, be implemented in fundamental or minimised two-level
form.) Heuristic implementations are found by looking at the overall problem,
often considering the way in which the task would be tackled manually.

Ripple carry adder
The ripple carry, or parallel adder, arises out of considering how we perform addi-
tion, and is therefore a heuristic solution. Two numbers can be added by begin-
ning with the two least significant digits to produce their sum, plus a carry-out bit
(if necessary). Then the next two digits are added (together with any carry-in bit
from the addition of the first two digits) to produce the next sum digit and any
carry-out bit produced at this stage. This process is then repeated until the most
significant digits are reached (see Section 2. 5. 1).

To implement this procedure, for binary arithmetic, what is required is a logic
block which can take two input bits, and add them together with a carry-in bit to
produce their sum and a carry-out bit. This is exactly what the full adder,
described earlier in Section 4.1.5, does. Consequently by joining four full adders
together, with the carry-out from one adder connected to the carry-in of the next,
a four-bit adder can be produced. This is shown in Fig. 4.15.

This implementation is called a parallel adder because all of the inputs are
entered into the circuit at the same time (i.e. in parallel, as opposed to serially
which means one bit entered after another). The name ripple carry adder arises
because of the way the carry signal is passed along, or ripples, from one full adder
to the next. This is in fact the main disadvantage of the circuit because the output,
S 3, may depend upon a carry out which has rippled along, through the second and
third adders, after being generated from the addition of the first two bits.
Consequently the outputs from the ripple carry adder cannot be guaranteed

Combinational logic design example: a four-bit adder 103

out

B 3 B 2

~ _ J Full ~ Full
Adder Adder - - - 4 -

S 3 S 2

S'il
Full

Adder

S 1

Fig. 4.15 A four-bit ripple carry adder constructed from four full adders

S~176
Full

Adder

S
0

"~--- C.
m

stable until enough time has elapsed 3 to ensure that a carry, if generated, has
propagated right through the circuit.

This rippling limits the operational speed of the circuit which is dependent upon
the number of gates the carry signal has to pass through. Since each full adder is a
two-level circuit, the full four-bit ripple carry adder is an eight-level implementa-
tion. So after applying the inputs to the adder, the correct output cannot be guar-
anteed to appear until a time equal to eight propagation delays of the gates being
used has elapsed.

The advantage of the circuit is that as each full adder is composed of five gates 4
then only 20 gates are needed. The ripple carry, or parallel adder, is therefore a
practical solution to the production of a four-bit adder. This circuit is an example
of an iterative or systolic array, which is the name given to a combinational circuit
that uses relatively simple blocks (the full adders) connected together to perform a
more complex function.

Look-ahead carry adder

The fourth possible implementation of a four-bit binary adder bears some resem-
blance to the ripple carry adder, but overcomes the problem of the 'rippling' carry
by using extra circuitry to predict this rippling in advance. This gives a speed
advantage at the expense of a more complex circuit, which is a demonstration of a
general rule that any gain in performance in some aspect of a circuit is usually
matched by a loss in performance of another.

Reconsidering the ripple carry adder and denoting the carry-out from each
stage by C,, where n is the stage number, and the initial carry-in bit as C;, we begin
with the first stage and derive the Boolean expression for C o . (We know what it is
from the Karnaugh map in Section 4.1.5). So:

C O - AoB o + AoCi+ BoCi

= Ao o + (Ao + 80)" C,

'Remember that it takes a finite time for a logic signal to propagate through a real logic gate.
"~Note however that the XOR is not strictly a single gate, with a two-input XOR gate requiring two two-

input ANDs and a two-input OR gate for its implementaton.

104 Combinational logic circuits

Similarly for the second stage:

C ! - A I B I +AIC o +BIC0
= A1B l + (Al + B1)" C o

This expression demonstrates the problem of the ripple carry adder, beca'use C,
depends upon C o which must be produced first. However, we already have an
expression for C o in terms of the actual inputs to the adder, so we can substitute
this into C~ so removing the rippling problem. This gives"

C , - A ~ B z + (A, + Ol) . (AoO o + (A o + Oo) " Ci)

This is a rather unwieldy expression, but we can simplify it by letting, for a general
stage,j:

Gj = AjBj and Pj= A j+ Bj

This gives

Co - Oo + eo " Ci

C1 : GI + PI Co
: G, + P, (Go + Po C,)
= G1 + Pl Go + PtPoCi "

Continuing this process also gives:

C2 - G2 + P2 Cl

= G 2 +P2(GI + PiGo + P, PoCi)

= G2 + P2GI + P2Pl Go + P2PiPoCi

C3- G3 + P3 C2
= G 3 +P3(G2+P2GI + P2P~Go + P2P1PoCi)

= G 3 + P3G2 + P3P2GI + P3P2PI Go + P3P2P~PoCi

This gives all four carry-outs in terms of the inputs, which means they can be
produced as soon as the inputs are applied to the circuit. Hence, there is no
'rippling' delay, although there will still be a delay given by the number of levels
required to implement these expressions. (Two-level circuits could be used but, as
shown in the following circuit diagram, other implementations are usually
employed.) From the above it is clear that there is a distinct pattern for the carry-
outs which can be used to continue this process further if required.

The use of P and G to simplify the above expressions was not an arbitrary
choice and by looking again at the truth table for the carry-out, shown in Table
4.7, we can see their origin. By looping the minterms to produce the A B product
we note that a carry-out is generated (hence the use of G) if:

G = A B
_ m

that is if both inputs are 1. The remaining two minterms for C O (A B C and ABC)

show that a carry-in to the full adder (i.e. C, = 1) is propagated (hence the use of P)

Combinational logic design example: a four-bit adder 105

Table 4.7 Tru th table and Karnaugh map for the carry-out bit, Q,u~, and its use in the

look-ahead carry adder

A B C. C
1 o

0 0 0 0
0 0 1 0

0 1 0 0

0 1 1 1 . ~

1 0 0 0

1 0 1 1 " ~ -

1 1 0 1

1 1 1 1 ~ -~

Propagate

Generate

C out

C in

C ~

in
1

1 0

,)-

- Generate

Propagate

if either A or B are 1. So, these two minterms are covered by the Boolean expres-
sion:

AC,+ BC~=(A +B)" C~= PC~

where P=(A +B). Note that this expression for P means that the ABQ minterm is
covered by both G and p.5

Implementat ion of the look-ahead carry adder

The implementation of the four-bit look-ahead carry adder using the forms of the
carry-outs derived above is shown in Fig. 4.16. As shown the circuit requires 19
gates with a maximum delay of four levels. Note: this does not include production
of the final carry-out (C3); that some gates have four inputs; and that this imple-
mentation requires four three-input XOR gates which we know is not a basic
Boolean operator.

A more practical implementat ion

The four-bit look-ahead carry adder is available (as are many of the circuits we
have already discussed) as a single integrated circuit (IC). 6 It is instructive to

consider this circuit since it employs a different implementation that eliminates

SThis fact is mentioned because some texts use P = A ~ B to explicitly exclude (from P C i) the A B C i
minterm, since it is included in the generate, G, term (as A B = 1).

~This IC is the '283' four-bit adder which belongs to a family of logic devices. Such 'families' are
discussed in more detail in Chapter 9.

106 Combinational logic circuits

s

B 2

B o

s

C .

I

Fig. 4.16 A circuit for a four-bit look-ahead carry adder

the need for three-input XOR gates. Looking at how this is achieved serves as a

useful exercise in Boolean algebra.
The sum of the two bits A and B can be written as:

A ~ B = A B + A B

= (A + B) . (A + B) distributive law
= (A + B) . (AB) De Morgan's theorem

=PG

This means that to produce the sum term, S, rather than use a three-input
XOR gate, a two-input one fed with the above result (generated from the P and

Combinational logic design example: a four-b# adder 107

G terms which are needed anyway for the look-ahead carry) and the carry-in can
be used.

In addition: 7

Co = Go + Po " C i

= PoGo + PoCi see footnote 7

= Po " (Go + Ci)

= Po +(Go + C,) De Morgan's theorem

Hence:

Co - eo + Go Ci

Similarly it can be shown that

C 1 - PI + G1 Co

= P, +G,(P o +G O C,)

= Pl + Gl Po + Gi Go Ci

From this it can be seen that a pattern is emerging, as before, but in this case
for C-j. To implement the circuit in this form requires 25 gates (excluding
inverters) and has a longest delay, for $3, of four levels. Although this is more
gates than the previous implementation, only two-input XOR gates are needed.
(Remember that three-input XOR gates actually implement quite a complex
Boolean function. 8)

4.2.5 Summary

In this section we have considered four ways of implementing a combinational
digital Circuit, namely a four-bit binary adder. This serves to illustrate that there
are always several ways any circuit can be designed. We firstly considered a two-
level implementation in both fundamental and minimised sum of products form,
which both proved impractical. (A product of sums approach would have had the
same outcome.)

A heuristic approach was then tried via consideration of the mechanics of the
addition process. This led directly to the ripple carry, or parallel, adder which
produces a practical ,implementation with a reasonable number of gates, but
suffers from the problem of a rippling carry which reduces the speed of the
circuit.

Finally in order to overcome the problem of the rippling carry, we developed
the look-ahead carry adder which calculates the carry-out at each stage using the
initial inputs, by 'looking ahead'. This produces a faster design but does require
more gates.

7Note that:

P G = (A + B)(AB) = A A B + A B B = A B + A B = A B = G

8This demonstrates that when comparing a circuit's relative complexity a simple gate count is not suffi-
cient since some gates have a more complex construction than others. For example a NAND gate may actu-
ally be simpler than an AND gate.

108 Combinational logic circuits

43 HAZARDS

4.3.1 Introduction

So far we have usually considered the logic gates we have discussed to be ideal.
One of the characteristics of such gates is that their outputs change instanta-
neously in response to changes in their inputs. In practice this is not the case
because the actual circuit which performs the required operation of the gate
cannot respond immediately, and so there will be an inevitable delay between a
change in the inputs affecting the output.

These delays can lead to race conditions, so called because two signals, origi-
nally from the same source, may take different paths through the circuit and so
end up 'racing' each other. I f one wins then this may lead to a hazard which basi-
cally means the output may have the wrong value for a short period of time (until
the other signal catches up).

The basic idea is introduced in Fig. 4.17 which shows how, in practice, the
response to a change in the input, A, of the output, Y, from a NOT gate will be
delayed by a small amount. This delay, labelled XpH L, is the time it takes for the
circuit's output to go from a HIGH to LOW state (1 to 0), whilst XpL H is the time
taken for the output to go from a LOW to HIGH state, in general these will not
be the same, and will depend upon how the analogue circuit implementing the
gate actually operates.

A Y = A

Y - A

Y = A

l~pH L, 'l~PLHi

A'Y

A +Y

1
0

~

Fig 4 17 The output from a real NOT gate

Ideal Gate

Real Gate

Output from

real gates

An important point to note, since it is the fundamental cause of some hazards,
is that because of this delay A. A ~0, since the delay in the output falling to 0
means that for XpHL both A and Y=,4 (from the real gate) are 1, and therefore

Hazards 109

A- Y= 1. Also A + A ~ 1 since the delay in the output rising to 1 means that for l~pL H

both A and Y= A are 0 and so A + Y=0.
The approach adopted in this section is to firstly investigate examples of

hazards in a simple and intuitive manner, and then to look into their cause in

more detail.

4.3.2 Static hazards

Consider the circuit shown in Fig. 4.18 where the NOT gate is considered real
(and so has a delay) but the XNOR gate is ideal. (Although an artificial situation
this serves to illustrate all of the important problems of real circuits.) We know
that the NOT gate will delay the signal .4 into the XOR gate, and so for a short
period of time after a rising edge input A-A ~ 0, and similarly after a falling edge,

A + A ~ I .

Y

/

A

A

Y !

: ' l~PHLi

,

I
:'~PLH[

Fig 4.18 An example of a static-0 hazard

The effects of these anomalies are shown in the timing diagram in Fig. 4.18 and
are that every time A changes state a short pulse (equal to XPHL or XPLH) is produced
at the output of the XNOR gate. This is because A and A are not always the
complement of each other, which the XNOR gate responds to with an output of 1.
These short pulses are known as spikes or glitches, which is a general name for any
unwanted short pulses that appear in a digital electronics circuit.

This non-ideal operation of the circuit is an example of a static hazard which
refers to two changes in the logic level of a digital signal when none is expected.
(There are two changes because the signal should ideally stay at 0 but rather goes
first to 1 and then back to 0.) This is in fact a static-0 hazard because the signal
was expected to stay at 0. Its occurrence is due to the fact that the input A traces
two different paths through the circuit (one straight into the XNOR gate and the
other via the NOT gate) and so there is the opportunity for race conditions. It is
important to realise that when A changes state, eventually this will be reflected in
all paths traced by A changing state, and so the output goes to its expected value.
The hazard occurs because the different paths traced by A attain their final values
at different times because of the race.

110 Combinational logic circuits

Example 4.11

What type of hazard is obtained if the XNOR gate in Fig. 4.18 is replaced by an
XOR gate.

Solution

The circuit and associated timing diagrams are shown in Fig. 4.19. These show
that every change in the input produces a static-1 hazard in the output.

A

A

A

Y
,

Fig. 4.19 Static-1 hazard produced by a delay into an XOR gate (see Example 4.11)

We can look at the cause of the static-0 hazard from the XNOR based circuit
(Fig. 4.18) using Boolean algebra. The output from the circuit is"

Y = A ~ A

= A A + A A

= A A + A A

= A + A

= 1 note the use of A + A = 1

=0

This shows that for an ideal gate the output Y will always be 0 because
A + A = 1. However, with a real NOT gate this cannot be guarateed (because of the
propagation delay of the gate) and so the hazard occurs when this condition is not

met.

A practical use of hazards
Although not particularly recommended unless the propagation delay of the NOT
gates being used can be guaranteed, and even then not an ideal method of logic
design, the hazards that occur in circuits can be used to generate pulses from an

edge signal.
We have already seen how this is achieved in Fig. 4.17 where it can be seen that

if the input and output from the NOT gate are fed through an AND gate a posi-
tive pulse will be produced on the input's leading edge. If an OR gate is used a
negative pulse will be produced on the input's falling edge. Using a N A N D or
NOR gate will give the opposite polarity pulses from the same edges.

Example 4.12

Hazards 111

What simple circuit will produce a short negative pulse on the input of a rising
edge. (Note that this is not a recommended design procedure.)

Solution

It can be seen from Fig. 4.17 that a rising edge is delayed upon passing through an
inverter, and so i fAND'd with the circuit's input gives a glitch since A.A ~:0. Using
a N A N D gate will produce the required negative pulse. (Note that to produce

m

similar pulses from a falling edge an (N)OR gate must be used since then A + A ~ 1.

Although hazards are used in this manner by many digital designers, it is not to
be recommended and alternative design techniques, as discussed in Section 11.3.1,
should be employed.

The multiplexer hazard
The 2-to-1 multiplexer provides an ideal circuit to demonstrate the problem of
static hazards in a more complex circuit. The output of the multiplexer shown in
Fig. 4.20 is:

Y = A C + B C

where C is the control line. So if C= 1, Y= A or alternatively C=0 and Y= B.

A

Y - AC + BC

to- 1 multiplexer

Fig. 4.20 Circuit diagram of a 2-to-1 multiplexer

We know from the simple examples above that if a hazard occurs it will be
because of the two paths traced by C (a race), which are then eventually OR'd
together (the multiplexer is in sum of products two-level form). The error will
occur because C+ C ~ 1.

m

In order to get Y= C+ C we need A = 1 and B= 1, and so anticipate that any
hazard will occur under these conditions when C changes state. The timing
diagram in Fig. 4.21 demonstrates that a static-1 hazard is indeed produced. (It is
assumed all gates, except the NOT gate, are ideal (no delay or variable delays on
any paths through them) which in no way affects the important findings.) As C
changes, its complement through the NOT gate is delayed, consequently when
this and C are OR'd together we get the negative pulse we have seen previously. It
is a static-1 hazard as C goes LOW.

112 Combinational logic circuits

Y-c+ l I
Fig. 4.21 Output from the 2-to-1 multiplexer, for inputs of A= 1 and B= 1 with C changing state,
demonstrating the occurrence of the static-1 hazard

Hazards and Karnaugh maps

The reason for the occurrence of this hazard in the 2-to-1 multiplexer can be seen
by considering the Karnaugh map and its use in minimising the Boolean expres-
sion for the circuit. The Karnaugh map for the 2-to-1 multiplexer is shown in
Table 4.8. There are three prime implicants which if all are used gives:

Y = A C + A B + B C

Previously in this section we have not used the non-essential prime implicant AB.

Table 4.8 Karnaugh map for the output from a 2-to-1 multiplexer

Y

!

C
!

I 'C i 1

0
I
I

I
7 -

If instead of minimising directly from the Karnaugh map, we use Boolean
algebra to minimise the expression containing the three prime implicants we gain
an important insight into the origin of hazards and how to prevent them.

Minimising:

Y = A C + A B + B C

= A C+ AB(C+ C) + BC note the use of 1 = C + C
= A C + A B C + A B C + B C

= AC(1 +B)+ BC(A + 1)
- A C + B C

The important point is that this minimisation depends upon the use of the
Boolean identity C+C= 1, which we know, because of the action of the NOT
gate, is not always true and may introduce a hazard. This suggests how we may
eliminate the static hazard, which is to include the non-essential prime implicant
so that the expression for Y will not then have been minimised using this identity.

Hazards 113

To see the effect of including the AB term, we note that if we use

Y=AC+AB+BC

then if ((A = 1) AND (B= 1)) (the conditions which lead to the hazard, and define
the non-essential prime implicant) this expression becomes"

Y=C+I+C=I

(since anything OR'd with 1 is 1).
So the inclusion of the AB non-essential prime implicant (whose elimination

relies upon the use of C+ C= 1 during minimisation) cures the problem of the
static hazard. The circuit for this form of the multiplexer is shown in Fig. 4.22; the
extra AND gate forming the product AB is sometimes referred to as a blanking,
or holding, gate.

C

A

Y - AC + BC + AB
B

to- 1 multiplexer

(with blanking gate)

Fig. 4.22 2-to-1 multiplexer with holding gate which has no static hazards

As a general rule, static hazards can be eliminated by the inclusion of non-
essential prime implicants in the 'minimised' Boolean expression. More specifi-
cally they will be non-essential prime implicants whose 'removal' relies upon the
use of X+ X= 1 where X is a variable for which a race condition may exist.

Example 4.13

Derive the product of sums form of a 2-to-1 multiplexer and then, performing the
corresponding analysis to that for the sum of products form, determine whether
any static hazards occur, and if they do how they may be eliminated.

Solution

From Table 4.8 looping and grouping the zeros gives:

Y=AC+BC

Dualling gives the required product of sums form of:
w

Y=(A+C)'(B+C)

114 Combinational logic circuits

Due to the final product produced we anticipate a hazard if both racing versions
m

of C reach the AND gate. For a hazard to occur requires C" C which needs both A
=0 and B-0 . This will be, as we saw in Fig. 4.17, a static-0 hazard produced as C
goes high.

Using Boolean algebra to confirm this, from the Karnaugh map using all

'prime implicants' for Y:
w

Y = A C + B C + A B

Dualling to get the product of sums form, and using the fact that C. C=0:

Y=(A + C) " (B+ C) " (A + B)

= (A + ~ " (B+ C) "(A + B+ C" C) using 0 = C- C
= (A + C). (A + B + C). (B+ C). (A + B+ C) using Equation I. 15
=(A + C)- (1 +B)" (B+ C)" (1 +A) using Equation 1.14
=(A+C).(8+C)

So the minimisation process relies upon the fact that C- C= 0 which is where the
hazard arises from. The equivalent 'blanking gate' in this product of sums imple-
mentation is (A + B) since for a hazard to occur both A and B must be 0 meaning
A +B=0. This gate will hold the output, Y, low, thus preventing the static-0
hazard. Note the similarity between the sum of products and product of sums
forms which is again a consequence of duality.

A m o r e r i g o r o u s a p p r o a c h

We now consider a more rigorous analysis of the 2-to-1 multiplexer circuit, which,
although it offers no more understanding of the hazards in that circuit, serves as
an introduction to a method that can be applied generally to other types of
hazard. We know that any hazard in the sum of products multiplexer circuit will
arise because of the fact that C+ C~ 1, and therefore will occur when C changes
state. In addition for a static hazard to occur the change in C must not cause a
change in the output, y.9

We firstly draw up the truth table for the circuit including columns with the
value that C will change to (i.e. C as this is a digital circuit), denoted by C ~ and the
value of Y this will give, Y§ as shown in Table 4.9. From this we see that there are

Table 4.9 Truth table required for the rigorous analysis of potential hazards in a multiplexer

A
0
0
0
0
1
1
1
1

B C C

0 0 1

0 1 0

1 0 1

1 1 0

0 0 1

0 1 0

1 0 1

1 1 0

y Y+

0 0
0 0
1 0
0 1
0 1
1 0
1 1
1 1

"If the output does change then the only effect of the race will be to delay this change.

Hazards 115

four input conditions for which when C changes state the output, Y, will remain
the same and so a static hazard may occur. These are ABC, ABC, ABC and ABC
(i.e. the conditions when A - B).

When C changes, one way of considering its propagation through the circuit is
that it consists of two signals, C~ and G, one of which forms the product A C~ and
the other BC2 (which are then summed). Both of these signals must eventually.

have the same value, but because of the race condition they may transiently be
different. What this means is that if C, and therefore C~ and C 2, is 0, and then
changes, then either C~ or ~ may change first. Eventually they will both be 1 but
the change may take place as either:

(C 1 C2)-(0, 0), (0, 1), (1, 1) or (0, 0), (1, 0), (1, 1)

Similarly in C changing from 1 to 0 there are two possible 'routes' depending
upon which of Ci or C_~ changes first.

We can draw up a kind of truth table which allows us to see the effect of these
transient values of C~ and ~ on the output Y. We do so for expressions for Y
using the values of A and B we have identified from above as likely to lead to static
hazards. This table is shown in Table 4.10. The four rows hold the initial and end
values (rows 1 and 4) of C~ and C 2 when they will be the same, whilst rows 2 and 3
hold the transient conditions when they may differ. We have already considered
how in changing C from 0 to 1 the transition may take place via row 2 or 3
depending upon whether C 2 or C l changes first, whilst for C changing from 1 to 0
the transition will be via row 2 if C~ changes first, else via row 3.

Table 4.10 Table used to find hazards in the 2-to-1 multiplexer. The loops and arrows indi-

cate a change in C from 1 to 0 via row 2 which leads to the static-1 hazard in Y

A = 0 A = I
B = 0 B = I

C 2

row 1 0 0

row 2 A 0 1

row 3 1 0

row 4 1 1

C 1 Y='0 Y = C l + C2

0 1

0 0

0 1

0 1

The last two columns hold the values of Y showing how they depend upon C~
and C 2 for when ((A-0) AND (B=0)), and ((A = 1) A N D (B= 1)), the previously
identified conditions when a static hazard may occur since the output, Y, should
remain unchanged. For the first condition Y=0 for all values of C, therefore it
does not matter which of C~ or C 2 changes first since the output remains at 0.
However, for A = 1 and B - 1, and hence Y= C~ + ~ , we can anticipate a problem,
and see that if when C changes from 0 to 1, C 2 changes first, then the circuit tran-
siently enters row 2 and the output will momentarily go to 0, giving a static-1

116 Combinational logic circuits

hazard. Similiarly when C goes from 1 to 0, if C~ changes first then row 2 will
again be entered giving the same error. Using this different approach we have
again found the conditions that lead to the static hazard, that is C changing when
both A and B are 1.

As the final point we note that because it is C 2 that goes through the NOT gate
it will be this signal that is delayed and therefore C t will always change first.
Consequently we will only see the possible static-1 hazard indicated by the above
analysis when C is changing from 1 to 0. (It is for the same reason that the inverter
and OR gate circuit gives a negative going pulse on a negative, and not a positive,
edge).

More complex hazards
That concludes our look at static hazards. However, if a hazard can be produced
by a signal changing state twice when it should remain the same, could we not also
have an error when a signal changes three times instead of just once? That is we
get the sequence 0101 being output instead of 01. This could possibly happen for
the four input combinations to the multiplexer when the output Y does change as
C is changed (see Table 4.9) which in this case is for when A and B have different
values.

However, further consideration of the necessary conditions to produce this
type of hazard shows that it cannot happen when the signal producing the race
condition only has two paths through the circuit. When there are only two paths
we get a two-variable (i.e. the two paths C~ and C2) 'truth table' (e.g. Table 4.10)
and so only one transient state can be visited before arriving at the eventual values
for the two signal paths (e.g. row 1 to row 2 to row 4). To produce a hazard where
there are three changes of state clearly requires a 'truth table' with more rows and
hence at least three 'input variables', that is three paths for the same signal
through the circuit. This brings us on to the subject of dynamic hazards.

o

4.3.3 Dynamic hazards

Dynamic hazards can occur when a signal has three or more paths through a
combinational logic circuit. Their effect is to cause a signal which is expected to
change state to do so, then transiently change back to the original state, before
making the final transition to the expected state (e.g. the signal gives 1010 rather
than just 10). The analysis of a circuit for a dynamic hazard is essentially a contin-
uation of the 'rigorous approach' for static hazards described above. You should
therefore be familiar with this material before continuing.

Consider the circuit shown in Fig. 4.23 together with its truth table and
Karnaugh map. From this implementation we get:

Y=(B+C)'(AC+BC)

and note that C has three paths through the circuit" via gates l, 5; gates 2, 4, 5; and
gates 3, 4, 5. Therefore there is the possibility of race conditions in three paths
which may lead to a dynamic hazard.

Hazards 117

A

C

B

y

Y

C

C

1 1)

A B C Y
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Fig. 4.23 Combinational logic circuit, its Karnaugh map and truth table, which may possess a dynamic
hazard due to the three paths for signal C through the circuit

E x a m p l e 4 . 1 4

Use Boolean algebra to prove that this implementation of the circuit is function-
ally equivalent to the minimised expression obtained from the Karnaugh map.

Solution

Y= (B + C). (A C+ BC)

= A B C + B B C + A CC+ BCC

= A B C + B C as from the Karnaugh map

From the truth table we see that for inputs of (A, B) of (0,1), (1,0) and (1,1), the
output, Y, changes as C changes. Therefore there is the possibility of a dynamic
hazard as the output may change state, then go back to the initial value, before
changing again to the final expected output.

Continuing our analysis we see that if B - 0 then B= 1 and so the output, (1 + ~ ,
from gate 1 is always 1. This means C now only has two paths through the circuit
and so a dynamic hazard is not possible. Similarly, if A =0 then the output from
gate 2 must be 0 and so again there are only two paths for C through the circuit.

This leaves inputs of A - 1 and B - 1 to consider. (Remember it is C changing
that will lead to any hazard so we are looking at the effect of this whilst the other
inputs are fixed.) Using a subscript, corresponding to the first gate passed
through, for the three possible paths through the ciricuit, for A = 1 and B - 1 we
write:

118 Combinational logic circuits

Y= (B + C,) " (A C 2 + O f 3)

=(0+ C,)" (1 " C2+ 1 �9 C3)

-- C l . (C 2 -+- C3)

Remember that the reason we get hazards is that transiently these three values for

C may not be equal (although they will be once the races have finished), which is
why we are treating them as three separate variables to determine the transient

values of Y. The truth table for the transient values of Y as a function of the three

values of C is shown in Table 4.11.

Table 4.11 Truth table for the transient states of the circuit in Fig. 4.23

row C~

1 0

2 0
3 0
4 0
5 1
6 1
7 1
8 1

C 2 C 3

0 0
0 1
1 0
1 1

0 0
0 1

1 0

1 1

This truth table shows that when the circuit has stabilised (all signals have
affected the output) then all the values of C will be 0 or 1. Therefore the first and
last rows of this truth table correspond to inputs of A B C and A B C in the truth

table of Fig. 4.23.
The final stage in our analysis is to use the truth table in Table 4.11 to see if any

dynamic hazards do occur. We know that for the possibility of a dynamic hazard
both A and B must be 1 with C then changing state. This will correspond to
moving from either the top to the bot tom (for C going from 0 to 1) or the bot tom
to the top row of the truth table in Table 4.11.

Now, since (because of the races) there are effectively three variables C which
all must change, there are many possibilities as to which rows of the truth table
will be visited transiently. For instance for C changing from 0 to 1, then if C 3
changes first, then C 2 followed by C 1, then the circuit will move from row 1 to 8,
transiently visiting rows 2 and 4. This will give transient outputs of 0 and 1 (for
rows 2 and 4) and hence a possible dynamic hazard since the output will give 1010.
This is the only possible hazard for C going from 0 to 1 because of the need for the

output to go to 0 first to give the incorrect transient state.
For C changing from 1 to 0, we note the possible dynamic hazard if the transi-

tion is from row 8 to 1 via rows 4 and 2 (the reverse route to the above). Again this
is the only possibility since we need the output, Y, to go H I G H first (so it can go

LOW again to give the hazard). The output here will be 0101.
So we have identified two possible situations in which a dynamic hazard may

occur, depending upon the relative speed of propagation of C~, C2 and C 3. For the
first possible hazard C 3 must change first then C2, and for the second C l first and
then ~ . Now since C~ only travels through two levels (gates 1 and 5) it will change

Hazards 119

faster than both C2 and C 3. This rules out the first possible hazard as being likely,
leaving only the second. This will only occur if, assuming C, does change first, C 2
then changes before C3 (to give the transient output of 0 from row 2).

The timing diagram in Fig. 4.24 illustrates how this dynamic hazard will occur
for these conditions. Note that C must go from 1 to 0 and so C, will do the oppo-
site, as shown in the figure. This concludes our analysis of this circuit for dynamic
hazards. (Note that we have not considered whether any static hazards are present
in this circuit.)

C
1

C
l

C 2

3

C2+C 3 I]

m D

C1(C2+ C3)

.

,

Dynamic
Hazard

Fig. 4.24 Timing diagram illustrating the occurrence of the dynamic hazard in the circuit shown in Fig.
4.23. For the hazard to occur C 1 must change first (which can be assumed the case as it only has a two-
gate delay), followed by C 2 and then C a

4.3.4 S u m m a r y

The aim of this section was to introduce some of the problems that can be encoun-
tered when transferring combinational logic designs into practical circuits. In par-
ticular, we have seen how the finite time it takes a digital signal to pass through a
logic gate (the propagation delay) can cause problems if a logic signal has two or
more paths through the circuit along which the signals can 'race' each other (race
conditions).

If there are two paths then static hazards may occur (where a signal changes
state twice instead of not at all), whereas for three or more paths dynamic hazards
may occur (where the signal changes place three times rather than once). Both
types of hazard give rise to a short transient pulse (spike).

We have determined the cause of these hazards using Boolean algebra, and how
this allows them to be predicted and, to a certain extent, overcome. However, in

120 Combinational logic circuits

an introductory text such as this there is only room for limited examples. So
although those given demonstrate clearly the principles behind the occurrence of
hazards, in practice their prediction and elimination, although based upon the
methods presented here, are somewhat more complex. Many of the ideas intro-
duced here will be revisited, in later chapters, regarding the design of error-free
asynchronous sequential circuits.

In practice hazards can cause particular problems if they occur in asynchronous
circuits (Chapter 5) or when driving the clock lines of synchronous circuits (see
Chapter 6). In other circumstances, when driving non-clock lines, the transient
conditions resulting from hazards can be 'overcome' simply by delaying the
sampling of such outputs until they have stabilised.

4.4 SELF-ASSESSMENT

4.1 What is the function of an 8-to-1 multiplexer?

4.2 Why can a multiplexer be used a a 'universal logic block'?

4.3 What does a demultiplexer do?

4.4 Why can a decoder be constructed from a demultiplexer?

4.5 What three types of combinational logic circuits can an XOR gate be used to
construct?

4.6 What does a full adder do?

4.7 What type of circuit is a ripple carry adder, what basic unit is it built from,
and what is its major disadvantage?

4.8 What advantage does the look-ahead carry adder have over the ripple carry
adder?

4.9 What is the fundamental cause of hazards in combinational logic circuits?

4.10 What is a static hazard; what causes it and what are the two types?

4.11 What is a dynamic hazard and what causes it?

4.12 How can static hazards be overcome?

4.5 PROBLEMS

4.1 (a) How could a 1-of-8 multiplexer be used to generate functions X, Y shown
in Table 4.12?
(b) How could a 1-of-4 multiplexer plus one other gate be used for the same

purpose?

Problems 121

Table 4.12 Truth table to be implemented using a multiplexer in Problem 4.1

A B C X Y
0 0 0 1 1
0 0 1 0 1
0 1 0 1 0
0 1 1 0 1
1 0 0 0 0

1 0 1 0 0

1 1 0 1 1

1 1 1 1 0

4.2 If the data and select variables are only available in their uncomplemented
forms how many two-input N A N D gates would be needed to construct:
(a) a 4-to-1 multiplexer and
(b) a 1-of-4 demultiplexer.

4.3 Design the necessary combinational logic circuits to act as:
(a) an active-LOW BCD-to-decimal decoder
(b) an active-HIGH BCD-to-7-segment decoder

Assume for both decoders that the outputs for inputs greater than nine will
never be input to the circuit and so can be used as 'don't care' conditions.
Note that for the BCD-to-7-segment decoder some outputs are active for
more than one input condition. The layout of a 7-segment display is shown in
Fig. 4.25.

f

e Ig l a [I I I [I I I I I I I I [

dl Ib I I I I I I I I I I I I I
C

Fig. 4.25 Layout o! a 7-segment display; see Problem 4.3

4.4 Assuming that only one of the inputs is ever high at any one time, give the
Boolean expressions for the outputs from an active-LOW decimal-to-BCD
encoder.

4.5 Design a two-level positive logic decimal-to-BCD priority encoder for
decimal inputs from 0 to 4.

4.6 Fig. 4.26 shows a common implementation of a combinational logic circuit.
What single gate does it represent?

4.7 How could changing a single gate in a parity checker used for a four-bit word
(three data and one parity bit) constructed for two-input XOR gates be
converted into a comparator for use on two-bit words?

4.8 Fig. 4.27 shows part of a standard design for a common digital circuit. Write
down the Boolean functions produced at D and E, and then convert them to a
form which demonstrates directly the purpose of this circuit.

122 Combinational logic circuits

A

C

Fig. 4.26 Circuit to be analysed in Problem 4.6

Y

A

i
i

I

I

Fig. 4.27 Circuit to be analysed in Problem 4.8

D

4.9 How can a parallel (ripple carry adder) be converted to a parallel subtractor
using XOR gates. (Hint: use two's complement subtraction.)

4.10 Table 4.13 shows part of the truth table describing the operation of the ' 181'
Arithmetic Logic Unit (ALU) integrated circuit shown in Fig. 4.28. An
input, M of 0 and 1 means the ALU is operating in Boolean and arithmetic
modes respectively; input C is the carry bit.

Table4.13 Truth table showing some of the functions performed bythe'181' ALU
(see Problem 4. 10)

$3 S~ S~ So M C F
0 0 0 0 1 - A -

1 0 0 1 1 A ~ B

1 0 1 1 1 A B

1 1 1 1 1 A

1 0 0 1 0 0 A plus B

0 1 1 0 0 0 A minus B

Problems 123

Confirm that for the given bit patterns in Table 4.13 the stated functions
are implemented at the output, F. (Note that this circuit can perform further
functions than these.)

$ 3 ~

S 2

S 1

A

S O

LD
!)

M

Fig. 4.28 The '181' arithmetic logic unit to be analysed in Problem 4.10

4.11 What is the output of the circuit in Fig. 4.29 for inputs ,4BCD of 1110; 1011;
0101 and 0010? What function does it perform?

A W
A

X

c z

D

Fig. 4.29 Circuit to be analysed in Problem 4.11

4.12 The design of a circuit to perform binary multiplication could be
approached by writing out the necessary truth table. Do this for the multipli-
cation of two two-bit words.

In general if an m-bit and n-bit number are multiplied together, then (in
terms of rn and n) how many input and output columns, and rows, will the
truth table have?

4.13 Devise a circuit which will produce a short positive going pulse on the input
of a falling edge. Is this type of design to be recommended?

124 Combinational logic circuits

4.14 A function of three variables is minimised to Y = A B + A C . Draw the
Karnaugh map of this function and state whether you would expect any
static hazards to cccur, and if so under what input conditions this would be.

If the circuit is not hazard free, how could it be made so?

5 Asynchronous sequential
logic

5.1 SEQUENTIAL LOGIC CIRCUITS" AN OVERVIEW

All of the circuits so far considered in this book have been combinational. This
means that their outputs are dependent only upon the inputs at that time. We now
turn our attention to sequential logic circuits whose outputs are also dependent
upon past inputs, and hence outputs. Put another way, the output of a sequential
circuit may depend upon its previous outputs and so in effect has some form of
'memory'.

General form of a sequential circuit
Sequential circuits are essentially combinational circuits with feedback. A block
diagram of a generalised sequential circuit is shown in Fig. 5.1. The generalised

circuit contains a block of combinational logic which has two sets of inputs and
two sets of outputs. The inputs ~ are:

�9 A, the present (external) inputs to the circuit;
�9 y, the inputs fed back from the outputs;
�9 Z, the present (external) outputs from the combinational circuit;
�9 Y, the outputs that are fed back into the combinational circuit.

External
Inputs

A

Internal Inputs
(Present State variabl~)

Combinational
Logic

Memory I ~

Y

Z External
Outputs

Internal Outputs
(Next State variables)

Fig. 5.1 The general form of a sequential logic circuit

Note that the outputs, Y, are fed back via the memory block to become the
inputs, y, and that y are called the 'present state' variables because they determine

~The letters (e.g. A, y) represent, in general, a number of inputs.

126 Asynchronous sequential logic

the current state of the circuit, with Y the 'next state' variables as they will deter-
mine the next state the circuit will enter.

It is often useful to think in terms of two independent combinational circuits,
one each for the two sets of outputs, Z (external) and Y (internal), as shown in
Fig. 5.2. Both of these outputs will in general depend upon the external, A, and
internal, y, (fed back) inputs.

A

Y

Combinational circuit to
produce outputs, Z

Combinational circuit to
produce outputs, Y

_ . . , 1 Memory I-"

Z
1,=.._
v

Fig. 5.2 A general sequential circuit emphasising how the outputs from the combinational logic block
are functions of both the external and internal inputs

'States' and sequential circuits
An important concept to appreciate is that sequential circuits can be considered at
any time to occupy a certain 'state'. These 'states' are dependent upon the internal
feedback, and in the case of asynchronous sequential circuits, the external inputs
as well. At this early stage we simply note that if the memory in a circuit has i
digital lines leading to and from it then it can store 2 i different patterns and hence
the circuit possesses 2 ~ internal states. (We call these internal states to distinguish
them from the total states of the circuit which are also dependent upon the
external inputs.)

This idea of the circuit possessing states is fundamental to sequential circuits
since they are often designed and analysed by the manner, or sequence, in which
the available states are visited for given sequences of inputs. This is why in Fig. 5.1
the internal inputs, y, and outputs, Y, are labelled as the present and next state
variables respectively (since they determine the current and next state of the
circuit).

5.1.1 Asynchronous and synchronous circuits

In this introductory text we will define two broad classes of sequential circuits,
namely: asynchronous and synchronous.

�9 The timing of the operation of asynchronous circuits, as the name implies, is not
controlled by any external timing mechanism. Rather, as soon as changes are

Sequential logic circuits: an overview 127

made at the inputs of such a circuit they take effect at the outputs. The simplest
form of memory in such circuits is just a wire forming the feedback connection. 2

�9 Synchronous circuits are those which possess a clock of some sort which regu-
lates the feedback process. Hence the timing of changes in the outputs, in
response to changes at the inputs (which may have occurred some time before),
are controlled by the 'ticking' of a clock. Consequently, the timing of the opera-
tion of sequential circuits can be, and usually is, synchronised to other parts of a
larger circuit. The memory in such circuits is itself made up ot" specialised logic
circuits (called flip-flops) that essentially act as digital storage elements.

Fig. 5.3 shows the block diagrams for these two types of sequential circuits. For
obvious reasons, synchronous sequential circuits are also referred to as clocked

circuits, whilst asynchronous ones are known as unclocked or free running.
Although asynchronous circuits are more difficult to design than synchronous
ones they do have certain benefits. These include the fact that because they are
free running their speed of operation is limited solely by the characteristics of the
components from which they are built and not by the speed at which they are
clocked. Consequently, asynchronous circuits have the potential to work at
higher speeds than synchronous ones. Also: some systems may require a circuit to
respond immediately to changing inputs (i.e. the inputs cannot be synchronised to
the rest of the circuit); in very large circuits the unavoidable delays as a signal

Asynchronous

Combinational
Logic

y Y
.

Z
v

Synchronous

A
I

Combinational I
Logic ,lj

Y
Y Digital Storage

Clock

Z
=,,,...=
v

Fig. 5.3 General asynchronous and synchronous sequential circuits showing the difference between
their respective 'memory'

-'This is the only type of asynchronous circuit we will consider.

128 Asynchronous sequential logic

traverses the whole circuit may mean exact synchronisation is not possible; and
finally flip-flops which are essential digital circuit components are themselves
asynchronous circuits.

Summary
In this brief introduction the general properties and structure of sequential circuits
have been introduced, together with the idea of a broad classification of s~ch
circuits as either asynchronous or synchronous.

The remainder of the chapter is split into three sections. The first is an introduc-
tion to asynchronous sequential logic circuits; the second looks at how asynchro-
nous circuits operate via the analysis of a number of such circuits; whilst the third
considers the design, and associated problems, of these circuits.

The following three chapters are also concerned with sequential logic. Chapter
6 covers flip-flops which are themselves asynchronous circuits that act as digital
storage elements and are used as the memory in synchronous sequential circuits.

Chapters 7 and 8 cover synchronous sequential circuits, beginning with coun-
ters before moving on to more general examples.

5.2 INTRODUCTION TO ASYNCHRONOUS
SEQUENTIAL CIRCUITS

The 'memory' of previous outputs in an asynchronous sequential circuit is
provided by direct feedback from the internal output(s), Y, to the internal
input(s), y, of the combinational logic block (see Fig. 5.3). The essence of under-
standing asynchronous circuits is to realise that for the circuit to be stable the
outputs generated by the input(s) must be equal (i.e. Y=y), since these two sets of
signals are connected via the feedback.

If this is not so then the circuit will be unstable with the output(s) (unmatched
to the input(s)) acting as different input(s) and so producing new output(s) which
will then be fed back again. This process will repeat until a stable condition is
reached. This concept will become clearer as we analyse actual asynchronous
sequential circuits.

The first stage of asynchronous sequential circuit analysis is to 'break' the feed-
back paths and treat the output(s) being fed back and the corresponding input(s),
linked via the feedback, as separate variables. The circuit will only be stable when

these signals have the same values.
The conditions for which the circuit is stable are known as the 'stable states'.

(Note that for asynchronous sequential circuits these total stable states depend
upon all of the inputs, i.e. both internal and external ones, and not just the values
of the feedback, i.e. the present state, variables). Circuit analysis involves finding
out how these stable states are both reached and related to one another, whilst
design involves producing a circuit which enters the required stable states for the

desired input patterns.

Analysis 129

5.2.1 Inputs and race conditions

For an asynchronous circuit to be of use it must have more than one external
input (otherwise all the circuit has to respond to is a signal alternately changing
its value from 0 to 1 to 0 and so on3). If two of these multiple inputs are meant to
change simultaneously we know that for a real circuit this can never be guaran-

teed and one of them will always change slightly before the other. The effect of
this uncertainty, in which signal (and not always the same one) arrives first, is
that the circuit may not operate as expected and actually end up in the 'wrong'

state. This will make the circuit's operation unpredictable and hence render it
useless.

This problem can be overcome by making sure that only one input to the circuit
changes at a time and that there is sufficient time between changes in the inputs
for the circuit to stabilise. This is called fundamental mode operation, which
although providing a solution does inhibit the way that the circuit can be used. 4

5.3 ANALYSIS

We now turn our attention to the actual analysis of asynchronous sequential
circuits. The first three circuits are very simple examples whose operation can be
determined intuitively. These serve to introduce some of the basic concepts of
asynchronous sequential circuits such as stable states and the idea of 'memory'.
The final three examples include circuits with one and two feedback signals.

5.3.1 Circuit 1: stable and unstable states

Consider the circuit in Fig. 5.4 which is simply an XOR gate with one of the inputs
being the output which is fed back, so making it an asynchronous sequential
circuit. 5 (Note that in this case, Z, the external output is the same as Y, the internal
output.)

A Z

y Y y 1 0

Fig. 5.4 XOR gate based asynchronous sequential circuit. This circuit is only stable when the present,
y, and next, Y, state variables, which are connected, are the same

~ln an asynchronous circuit the outputs change immediately in response to a change in the inputs.
Therefore it is not even possible to encode any time information, to which the circuit may respond, onto
such a single signal.

4An alternative 'safe' means of operating such circuit is pulse mode, where the inputs to the circuit are
given a pulse (i.e. go from 0 to 1 and back) when active.

5Although it is not actually useful since it only has one external input.

130 Asynchronous sequential logic

If A - 0 and y - 1 then the output Y= 1, so the output produced, and fed back to
the inputs, matches the input (i.e. y = Y) and the circuit is stable. Similarly, if A =0
and y=0, then Y=0, and so y= Y and the circuit is again stable. The fact that the
circuit is stable means that all of the variables will remain unchanged until the
input A is changed (as this is the only variable that can be accessed, i.e. the only

external input).
Now, ifA is changed to 1 then i fy=0 then Y= 1; and i f y - 1 then Y=0. Hence,

y~ Y. This will clearly lead to an unstable circuit that will continually oscillate.
For example, if y - 0 the output will be 1, which will be fed back to y causing the
output to go to 0 which will be fed back and so cause the output to go to 1 and so
on. The speed of oscillation will be determined chiefly by the time it takes the
signals to propagate through the XOR gate and back along the feedback path.

The Karnaugh map for Y in terms of A and y is also shown in Fig. 5.4 and illus-
trates the operation of the circuit. For the circuit to be stable Y must equal y,
therefore for the top row, ~ (and hence y=0), the circuit will only be stable when
the corresponding cell of the Karnaugh map has a 0 in it (i.e. the internal output Y
=0). For the bottom row the circuit will only be stable when Y= 1. We therefore
see that only two stable conditions for this circuit exist. Firstly, A =0 and y=0 and
secondly A - 0 and y= 1, that is when A - 0 (the left hand column of the Karnaugh
map) as we deduced above.

The Karnaugh map confirms the instability of the circuit when A = 1, since
nowhere in the right-hand column (A = 1) does y= Y. All of the remaining circuit
analyses are based upon the use of such Karnaugh maps.

5.3.2 Circuit 2: movement between states

The previous example introduced the idea of stable and unstable total states.
Using the circuit shown in Fig. 5.5 we now look at how asynchronous sequential
circuits have the potential to possess memory. This circuit has two external inputs
and a single internal input which feed into a three-input OR gate.

0 1 1 1

y 1 1 1 1

Fig. 5.5 Three-input OR gate based asynchronous sequential circuit

If either A or B are 1 then Y= 1, and so y= 1 which has no effect on the output,
hence the circuit is stable. If A and B are both 0 then:

Y-A+B+y
= 0 + 0 + y
=y

Analysis 131

so the circuit is again stable, but whether the output is 0 or 1 depends upon what
the output was before both external inputs went to 0. Hence the circuit has
memory since its output under these input conditions depends upon what state it

was in beforehand (i.e. whether Y was 0 or 1).
However, since for any external inputs other than A =0 and B=0 the output is

always 1, this means when A and B do both equal 0 the output will still always

be 1.
Referring to the Karnaugh map in Fig. 5.5 we see that when either A or B are 1

the stable state is when y= Y= 1. This is because for these inputs the l 's in the top

row, y, indicate that the output, Y, is 1, which will then feed back making y = 1 and
so causing the state of the circuit to 'move' to the bottom row of the truth table

where the states are stable since then y= Y= 1. The idea that each cell of the
Karnaugh map contains a state of the circuit which will be stable if y= Y, or else is
unstable (such as when the top row contains a 1) is central to the analysis and
design of asynchronous sequential circuits.

For A and B both 0, an output of either 0 or 1 gives a stable condition (since the
output simply equals the internal input). However, when the external inputs are
changed this effectively causes a horizontal movement across the Karnaugh map
(as each column represents one of the possible input conditions) to a new cell and
hence state. Now, since the only stable states are for y= 1 (the bottom row) this
means that horizontal movement in the map, as the inputs change, will always be
within the bottom row. Consequently for A and B both 0, movement will always
be to cell (ABy), and so the output will be 1. The lack of stable states for which
y = 0 when A or B are 1 means that as soon as either of the external inputs are 1 the
circuit is confined to operate within the bottom row of the Karnaugh map. So the
circuit will never give an output of 0.

Summary
The concept of the circuit moving within the Karnaugh map from state to state
(cell to cell) is vital to understanding the analysis and design of these circuits.
Changes in the external variables cause horizontal movement in the map (to a
new column and hence input condition), whilst changes from an unstable to
stable state (for fixed external inputs, i.e. within a column) cause vertical move-
ment.

5.3.3 Circuit 3: memory

We have seen how asynchronous circuits can be considered to have total states

(depending upon both the internal and external inputs), some stable and some
unstable, and how changing the external inputs causes the circuit to move

between these states. We now look at a circuit which demonstrates how this type
of circuit can possess a memory of its previous states. This is shown in Fig. 5.6
together with the corresponding Karnaugh map for Y= A + By.

If A = 1 then Y= 1 and so the only possible stable states for this input condition

132 Asynchronous sequential logic

A Z Y

[Y
Y Y

1 1

1 1

Fig. 5.6 Asynchronous sequential analysis (Circuit 3) which demonstrates the concept of memory.
For inputs A,B the circuit has two stable states

will be when y= 1, the bottom row of the Karnaugh map. When A - 0 and B= 1
then

Y=A+By=O

hence the only stable state possible is y= Y=0, the top row. This leaves the input
condition of A and B both 0 to consider, which gives

Y=O+l.y=y

for which Y being either 0 or 1 is a stable condition. We know from the last
example that which of these stable states is entered depends upon which row of
the Karnaugh map the circuit was 'in' before the inputs were changed, thus
causing a horizontal movement to the AB (in this example) column.

If the inputs were previously A - 0 and B= 1 (AB), then y - Y=0 and the hori-
zontal movement left (from cell ABy) will take the circuit to the stable state with
A =0, B=0 and y = 0 (i.e. cell ABy). However, if previously A = 1 and B = 0 then
y= Y= 1 (cell ABy) and the horizontal movement is to the right (looping around
the map) taking the circuit to stable cell ABy. So, for inputs A and B both 0, the
output, Y, will depend upon what the previous inputs were and therefore from
which direction the column in the Karnaugh map corresponding to these inputs
was entered. Hence the circuit has memory.

The addition of a simple logic circuit as shown in Fig. 5.7 serves to decode state
ABy which will give an output of 1 whenever the circuit enters this state and hence

A

,

~

~

~

~

[-)

~

Fig. 5.7 Analysis Circuit 3 with additional output circuitry (the three-input AND gate)

Analysis 133

when the inputs (A,B) have gone from (1,0) to (0,0) (since this is the only way to
enter this state). Note that this circuit now has the form of a general asynchronous
sequential circuit (see Figs 5.2 and 5.3). Remember that because we are only
allowing one input to change at a time (fundamental mode operation) this means
the circuit can only move one column at a time as the inputs change.

Summary
These three examples have served to introduce asynchronous sequential circuits.
We now consider three further examples which will be analysed more rigorously.
Finally, note that in the first example of the XOR circuit we did not at the time
discuss how the two possible stable states could be entered. It should now be clear
that if A = 1, with the circuit's output oscillating, then switching A to 0 will result
in a stable output whose value is dependent upon which state the oscillating
circuit was in at the time that A was taken low.

5.3.4 Circuit 4: rigorous analysis

The largely intuitive analysis of the above three circuits has served to illustrate the
majority of the basic concepts of asynchronous sequential circuit analysis. We
now consider three further examples, beginning with a full and rigorous analysis
which amounts largely to formalising the methods we used above. The headings
below relate to the various stages of the procedure.

The circuit
This circuit is shown in Fig. 5.8. It has two external inputs, A and B, and one feed-
back signal, labelled y. The basic AND-OR circuit forms the combinational logic
for the signal, Y, which is fed back, whilst the output circuit producing Z is simply
an AND gate. We will assume that we are operating in fundamental mode, that is
that only one of the external inputs can change at a time.

A Z

Fig. 5.8 Analysis Circuit 4

I)

I-
Y

134 Asynchronous sequential logic

'Breaking' the feedback path
The first step when rigorously analysing an asynchronous sequential circuit is to
'break' all of the feedback paths. The reason for this is that we know for a stable
circuit the values of the signals at each end of the feedback path(s) must be equal.
By breaking the feedback path(s) and treating the signal(s) at either end as inde-
pendent (e.g. y and Y) we can begin the analysis. Here there is only one feedback
path with labels y and Yused for the internal input and output respecti,,ely.

Boolean expressions for the internal variables and external output
Once the loop is broken we can consider the signal Y (the internal output from the
next state combinational logic) and y (the input to the whole combinational logic
block) to be separate variables. Hence the Boolean expressions for Y and Z can be
written (by studying the combinational logic circuit) as:

Y=AB+Ay

Z=ABy

Transition table and output map
Using these Boolean equations we next draw the Karnaugh maps for Y and Z for
the variables A, B and y. For this type of circuit analysis the convention is to use
the external inputs to label the columns and the internal variables the rows. This
gives the maps shown in Table 5.1. The one showing the next state variable, Y, in
terms of the present state variable, y, is referred to as the transition tab le . 6

Table 5.1 Transition table and output Kamaugh map for Circuit 4

Y

y 0 0

y 0

y 0 0

0 1 1 y 0 0 1

0 0

Flow tables
The next, crucial, stage is to decide which combinations of the three inputs repre-
sent stable states for the circuit. That is for which inputs does the fed back signal,
Y, correspond to the input signal, y? If these differ, then if they are 'reconnected'
(since we have 'broken' the loop) clearly the circuit cannot be stable and will
therefore be trying to change.

The circuit will be stable (as we have deduced in the previous examples) when-
ever Y=0 in the top row of the Y transition table (i.e. y=0) or Y= 1 in the bottom
row (i.e. y= 1). These 'states' can be given numbers to code them and the Y transi-
tion table redrawn showing the stable states (the given number to code that state
within a circle) and the unstable states Oust a number with no circle) which indi-

6This is sometimes called the excitation table or map.

Table 5.2 Flow table for Circuit 4

Y

y=O

y = l
\

1

,0
\

2

@
Q

5
. / "G

Analysis 135

cates to which stable state the circuit will progress. This is shown in Table 5.2 and

is called theflow table since it shows how the circuit 'flows' between states.

The stable states correspond to those cells in the transition table for which the

next state variable, Y, equals the present state variable, y. Note that the transition
table was drawn (by using the external inputs to label the columns) such that a
change in the external inputs causes a horizontal movement in the table, which
because we are operating in fundamental mode, can only be one column at a time.
We see that for this circuit, all columns have a stable state, so every combination

of external inputs will produce a stable output of both Y and Z.
Whilst changing the external inputs causes horizontal movements, note that a

vertical movement represents a change in the feedback signal. In this example,
since all columns have a stable state, if the circuit enters an unstable state it will
'move' vertically into a stable condition where it will remain. (This is sometimes
indicated by drawing arrows within the flow table to show the circuit's action
when it enters an unstable state.)

For example if A - B - 0 and y - 1 then Y=0 and the circuit is unstable since
y~: Y, but the signal Ywill feedback to y (after some delay) and so eventually y=0.
For A - B-y=O, Y=0 and so the circuit is now in stable state 1. (This is the reason
why all stable states in the row indexed by y = 0 have Y=0 and all unstable states
(e.g. 5) have Y= 1 which causes vertical movement to a stable state (e.g. down-
wards to stable state 5 in cell A By).

We will now look at some examples of the operation of this circuit for different
inputs. We begin by assuming we are in stable state 3 (i.e. A - B - 1 and y - 0) and
are operating in fundamental mode. Changing an input will move us across one
column in the flow table, in this case from the AB labelled column. If this hori-
zontal movement takes us to a cell with a stable state the circuit will obviously
remain there (with the appropriate output for Z); if it moves the circuit to an
unstable state then the circuit shifts vertically to the stable state (as indicated by
the arrows) corresponding to the unstable state (the number not in a circle) in the
transiently occupied cell of the flow table.

Operation of circuit: Case 1

If A - B= 1 and y - 0 then Y=0 and the cell is in stable state 3 (i.e. in cell ABy). If
input B is then changed (to 0) the circuit shifts horizontally to the right to cell
ABy. This cell is unstable since y = 0 but Y=(AB+Ay) - 1, so there is a downward
vertical movement to cell ABy (stable state 5), where Y= i. The circuit then

remains in this stable state since y= Y= 1. This movement of the circuit from one

stable state to another via a transient unstable state is shown in Table 5.3.

Table 5.3 Flow table for Circuit 4: Case 1

Y

y=O

y = l

AB AB

B goes low

136 Asynchronous sequential logic

, Q Q
.

Y
Y= 1 fed back to y

Operation of circuit: Case 2
What if the circuit is again in stable state 3 and then A is taken LOW? This will

cause a horizontal movement to the left to cell ABy which is another stable state,

namely 2. So the circuit comes to rest in this state with A =0, B= 1 and y= Y= 1.

Summary: use of flow tables
To summarise the use of the flow table to determine the circuit's operation, firstly

find which stable state (i.e. cell of the flow table) the circuit is in for the given

inputs, and then note that:

�9 Changing an external input causes a horizontal movement in the flow table.

�9 If the circuit enters an unstable state 0 ' 4 Y) there is vertical movement to a

stable state (if one exists) in the column relating to the present external inputs.
�9 If the circuit immediately enters a stable state it will remain in it.
�9 If there is no stable state in a column then the circuit will simply continually

enter and exit unstable states (i.e. oscillate) as y and Y continually follow each

other.

State diagram
We can redraw the flow table as a state diagram which contains exactly the same

information but for some purposes is more convenient. In the state diagram each

state is represented by a node (a circle with a number in) with the states joined by

arrows. These indicate how the circuit moves from state to state with the inputs

causing the change indicated on the arrows. The state diagram for Circuit 4 is

shown in Fig. 5.9. The number of arrows leading to each node gives the number of

stable states from which that node (stable state) can be reached. (For example

state 5 can be reached from states 1, 3, and 4 and so has three arrows leading to it.)

There are twice as many arrows as states (nodes) since there are two input vari-

ables one of which can be changed (in fundamental mode operation).

Note that in the state diagram the states have been coded to indicate whether

the ouput Z is 0 or 1. Either this diagram, or the transition table, can be used to

determine how changing the inputs to the circuit cause the state occupied to

change.

Analysis 137

O1

AB=ll

/1 o
) 1 0 ~ "1" , Ol t

7;t///oo } ;,,'

10

Fig. 5.9 State diagram for Circuit 4

11

/ \

J Z=O

Z = l

Use of the state diagram
As an example, if A - B - 0 the circuit is in state 1. Changing B causes a shift to
state 2 (along the arrow labelled 01), then changing A causes a shift (along arrow
11) to state 3.

Example 5.1

The inputs (A,B) take the following values. Determine which states will the circuit
be occupied by and illustrate this, and the output, Z, on a timing diagram.

(A,B) - (0,0), (1,0),(1,1),(0,1),(1,1),(1,0), (0,0)

Solution

For these inputs the circuit will go into states: 1, 5, 4, 2, 3, 5, 1. The timing diagram
is shown in Fig. 5.10.

A ! I I I

S i- I

z I-1
Fig. 5.10 Timing diagram for Circuit 4; see Example 5.1

138 Asynchronous sequential logic

What is the circuit's function?
We have now fully analysed this circuit and can predict what state it will be in for
any given sequence of inputs. So, what is its function?

This is best investigated by considering under what conditions the external
output, Z, becomes 1. This is when the circuit enters state 4, which is when both
inputs are 1. This state can only be reached via state 5, which is entered when A = 1
and B-0 . So, Z= 1 when the inputs (A,B) are (1,0) and then change directly to
(1,1). In other words, the circuit detects an input sequence of (1,0), (1,1).7 This can
be seen from the above example where the output goes high indicating this input
sequence.

Summary
This completes the analysis of this circuit, which obviously possesses memory
because of the way the stable state entered (when both inputs go to 1) is dependent
upon the previous input conditions, and hence previous stable state.

5.3.5 Summary of analysis procedure

Now we have completed our first rigorous analysis of an asynchronous sequential
circuit we can outline the analysis procedure. We will then use it to analyse two
further circuits and then consider the design process.

Procedure:

1. Break the feedback loop(s).
2. Draw the transition tables for the next state variable(s) and Karnaugh map(s)

for the external output(s) in terms of the external inputs and the present state
variable(s). Remember to use the external inputs to index the columns and the
present state variables to index the rows.

3. Determine which cells in the transition table give stable states, assign each of
these a number and then draw the flow table.

4. Draw the state diagram if required.

5.3.6 Circuit 5: two internal inputs

This circuit, shown in Fig. 5.11, has two external inputs, A and B, two internal
inputs, X and Y, and one external output, Z.

Breaking the feedback paths
This circuit has two internal outputs, X and Y, feeding back to two internal
inputs, x and y. So these feedback paths are broken.

Boolean expression of outputs
From the circuit we see that:

7Note the similarity between the structure and function of this circuit and Circuit 3 in Section 5.3.3 which
detected the sequence (1,0), (0,0).

A

i i
!

1
yl

Analysis 139

X
Z

Fig. 5.11 Analysis Circuit 5, which has two external and two internal inputs

X=AB~,+Ax~

Y= AB2 + ABx + Ay

with the output circuit (in this case using no logic) giving:

Z = x = X

Using these equations we can draw the Karnaugh maps for these as shown in
Table 5.4.

Table 5.4 Karnaugh maps for the outputs from Circuit 5

X

o

~y 0

xy 0

0

Y

~Y

~y

xy

~Y

~y

xy

0 0 0

0 0 0

1 1 1

1 1 1

T r a n s i t i o n t a b l e

The next stage is to determine under what conditions the circuit is stable which, by
extending the argument used in the previous examples, will be when both internal
inputs, x and y, match the signals being fed back to them, X and Y. In order to see

this it is helpful to combine the Karnaugh maps for X and Y into the single transi-

tion table shown in Table 5.5. The stable total states will be those cells where the
values of X Y match those of the variables x and y labelling the rows.

Flow table

The stable total states can then be given numbers and circled whilst the unstable

140 Asynchronous sequential logic

Table 5.5 Transition table for Circuit 5

STATE XY

~Y

~y

xy

x~

00

00

00

00

01

01

00

00

10

01

01

10

00

01

01

11

states are simply labelled with the states they will lead to, as shown in Table 5.6.

Note that because this circuit has two feedback signals there are four possible

internal states corresponding to the four possible combinations of these vari-

ables, and hence four rows in the excitation matrix. This means that when the

circuit is unstable in any cell it now has three cells (in the same column) into

which it can move (with one internal input there is only one other cell in each

column).

Table 5.6 Flow table for Circuit 5

STATE

xy

xy

x~

@
Q Q

@

Q
@

With this circuit when both A and B are 0 all unstable states lead to stable state

1; similarly in the second column when A =0 and B - 1 there is a single stable state

to which all unstable states (the other three cells in this column) lead. Note that in

this column, AB, rows 3 and 4 do not lead directly to the stable state, but rather

get there indirectly via row 1 (since in these rows, (X, Y)-(0,0)), which leads

directly to state 3 (row 2).
In the third column, which has inputs of both A and B being 1, there are two

stable states, 4 ar-d 6, with one each of the two unstable states leading to state 4

and 6 respectively.
The fourth column, ,~B, also has two stable states, 2 and 5, but here the two

feedback variable combinations giving unstable states both lead to state 5 (the one

from row 4 indirectly via row 3). Hence the only way of entering state 2 is from

state 1.

Analysis 141

State diagram
Finally we can draw the state diagram (for fundamental mode operation) as
shown in Fig. 5.12. There is a node for each stable state, with two arrows leading
from every node (corresponding to movement to the left and right in the flow
table as one of the two external input variables is changed).

lO 11

/ \ \ \

~ 5 J ~ 4 J ~ 3 J ~ l J 2 J

oi

A B - I O

Fig. 5.12 State diagram for Circuit 5. Note the dashed states have an external output Z= 0, and the
solid Z= 1

Circuit operation
Having completed the basic analysis we can examine the circuit's operation under
certain conditions. To do this we look at which states give an output of 1 which by
comparing the flow table for the circuit (Table 5.6) and the Karnaugh map for Z
(in Table 5.4) can be seen to be only stable state 6. From the state diagram (Fig.
5.12) it can be seen that this state is only reached from state 2 when the inputs
(A,B) are (1,1). However, state 2 can only be reached from state 1 with inputs of
(1,0), whilst state 1 can only be entered with inputs of (0,0). This circuit therefore
uniquely detects an input sequence of (A,B)= (0,0),(1,0) and then (1,1) to which it
responds by sending the external output, Z, high. This completes the analysis,
with the consequence of any input sequence capable of being found from either
the flow table or state diagram.

Example 5.2

Which states would the circuit enter for inputs of:

(a)01, 11,01,00, 10, 11,01, 11
(b) 00, 10, 00, 10, 11, 10, 11, O1
(c) 01,00, 10, 00, 10, 11, 10, 11
(d) 00, 01, 11, 10, 00, 10, 11, 01

Draw the output waveforms for these inputs.

142 Asynchronous sequential logic

So/m/on

(a) 3, 4, 3, 1 ,2 ,6 ,3 ,4
(b) 1,2, 1,2, 6, 5, 4, 3
(c) 3, 1,2, 1,2, 6, 5,4
(d) 1,3,4,5, 1,2, 6,3
The corresponding output waveforms are shown in Fig. 5.13.

a, I I
b, L !

d) [- - -] ~

Fig. 5.13 Output waveforms from Circuit 5 for the inputs given in Example 5.2

5.4 CIRCUIT 6: A BINARY STORAGE ELEMENT

The final asynchronous sequential circuit we are going to analyse is shown in Fig.
5.14 and consists of two cross-coupled NOR gates. As well as analysing its opera-
tion like the previous circuits we will also use it to investigate the consequence of
relaxing the restriction of fundamental mode operation.

R Q

S

Fig. 5.14 Analysis Circuit 6: the SR flip-flop

5.4.1 Analysis

Breaking the feedback path
This circuit has two feedback paths. However, the circuit can be redrawn as
shown in Fig. 5.15 which demonstrates that we only need to split one of the paths
because in this circuit they are not independent. 8

8The circuit can be analysed by considering two feedback paths but this will obviously be more compli-
cated and results in exactly the same conclusions.

Circuit 6: a binary storage element 143

R Q

Fig. 5.15 Circuit 6 redrawn to show that only one dependent feedback path exists

Boolean expression of outputs

From the circuit we see that:

Q=R+(S+q)-R. (S+q)-SR +RQ

Transition table
We can now draw the transition table as shown in Table 5.7 which shows that all

possible input combinations possess a stable state. These are shown numbered

and circled in the flow table also in Table 5.7.

Table 5.7 The transition table and flow table for Circuit 6

0

q 1

0 0 1

0 0 1

Q

q

|

2 3 (~

State diagram
We can draw the state diagram (for fundamental mode operation) which is shown

in Fig. 5.16. Having completed the basic analysis we can examine the circuit's
operation under certain conditions.

01

SR =10

/ \

/

J

10

O1

Fig. 5.16 The state diagram for Circuit 6. Solid circles indicate the states for which Q= 1

144 Asynchronous sequential logic

Example 5.3

If the inputs (S,R) take the following values then what states does the circuit
occupy and what happens to the output, Q.

(S,R) = (1,1),(0,1),(0,0),(1,0),(0,0)

Solution

Changing the inputs causes horizontal movement in the maps, which will be
followed by a vertical movement to a stable state should one not be entered
initially. The circuit goes firstly to state 3 (inputs (1,1)):

�9 (0,1) causes movement to the left to stable state 2;
�9 (0,0) causes movement to the left to stable state 1;
�9 (1,0) causes movement to the 'left' (to the far right hand column) and unstable

(transient) state 5, which is followed by vertical movement to stable state 5;
�9 (0,0) causes movement to the right, back to the first column, but with the circuit

now occupying state 4 (due to downward movement when in column 4 (inputs
(1,0)) to stable state 5).

The output, Q, will be 0 until state 5 is entered (since this is in the bottom row of
the flow table) when it will become 1 and remain 1 as the circuit moves into state 4.

Example 5.4

What states will the circuit occupy for the following inputs?

(S ,R) : (0,1),(0,0),(0,1),(1,1),(1,0),(0,0),(0,1),(0,0)

Solution

The circuit will occupy states: 2, 1, 2, 3, 5, 4, 2, 1 with corresponding outputs of
0, 0, 0 , 0 , 1, 1, 0, 0.

5.4.2 Race conditions

In order to study some important features of asynchronous and other circuits we
now relax the fundamental mode conditions and so allow more than one input to

change at the same time.

Non-critical races
Consider Circuit 6 in the above section with inputs (S,R)=(0,1) and therefore in
state 2 (cell SR-q), with both inputs then changing to give (S,R)=(1,0). We now
have the situation for a race condition since both S and R must change. If S
changes first the circuit goes transiently to state 3, cell SR-q and then, as R
changes, on to stable state 5, cell SRq (via unstable state, SR-q). However, alterna-

Circu# 6: a binary storage element 145

tively R may change first in which case the circuit will transiently enter state 1 (cell

SR-q) before finally settling in state 5 (again via unstable state, SR-q).

The important point to note is that whichever signal changes first the circuit
eventually ends up in state 5. This is therefore an example of what is called a non-

cri t ical race. It is a race condition because there are two signals changing simulta-
neously and hence 'racing' each other to see which one effects a change first. It is a
non-critical race because the final result, that is the eventual stable state, does not

depend upon which signal arrives first at, or travels fastest through, the circuit.

Critical races
Now consider (S,R)-(1,1) ~ (0,0). Initially the circuit is in stable state 3. If S

changes first then the circuit goes from state 3 to 2 and finally settles in state 1 as R

changes. However, if R is the first to change the circuit goes firstly to state 5 and
then settles in state 4. Here we have an example of a crit ical race since the eventual
state of the circuit (for the same inputs) is critically dependent upon which signal
arrives first.

This critical race condition clearly renders this circuit's operation unpre-
dictable, and therefore unusable, unless it is either operated in fundamental mode
(remember we had relaxed this restriction) or alternatively the input conditions
S - R = 1 are not allowed since it is only by entering this state that the unpredicata-
bility occurs. The first option demonstrates why fundamental mode operation is
such a powerful restriction because of the way it helps eliminate race conditions.

5.4.3 The SR flip-flop

We now consider the second option which basically removes state 3, leaving four
states. Since of these four states, two each have an output of 0 and 1, then we can
combine these into a state diagram with two nodes, corresponding to outputs of 0
and 1 as shown in Fig. 5.17.

This state diagram shows that the output, Q, is set to 1 when S= 1 and reset to 0

SR =10

oo Q =o~ (~ o o
Ol ~ lO

O1

Fig. 5.17 State diagram for Circuit 6, in terms of the output, Q, rather than the circuit's states

when R = 1 (remember we are not allowing both inputs to be 1). If the inputs then
both become 0 the circuit retains the same output due to the existence of the two
stable states (1 and 4) for these input conditions (column 1).

This circuit, operated under the conditions that both inputs must not be 1

146 Asynchronous sequential logic

simultaneously, 9 is what is known as a Set-Reset (SR) flip-flop. As the name
implies the output of this flip-flop can be set to 1 by making S= 1 or reset to 0 by
making R = 1. If both inputs are 0 then the circuit remains in the same state, and
hence the output is unchanged.

Clearly the circuit has 'memory' since when both inputs are 0 it remembers
what the output was before this input condition (since it has two stable conditions
and different outputs for an input of (0,0)). A flip-flop can therefore act as a
digital storage element that can store a 0 or 1 (i.e. a binary digit or bit) and is the
basis for SRAM devices (see Section 10.3.1). As we will see in the next chapter,
other types of flip-flop also exist.

The function of the SR flip-flop can be expressed in a variety of ways.
Obviously the flow table and state diagrams completely describe its action, but
more typically it is the truth table, shown in Table 5.8 or Boolean description:

M _ _

Q = SR + Rq

that is used. These are considered again, together with the operation of other
types of flip-flop, in the next chapter.

Table 5.8 Tru th table of the SR flip-flop
, ,

S R Q
, , ,

0 0 unchanged

0 1 0 R E S E T

1 0 1 SET

1 1 not used

5.5 INTRODUCTION TO ASYNCHRONOUS
SEQUENTIAL CIRCUIT DESIGN

The design of asynchronous sequential circuits follows essentially the reverse of
the analysis procedure. That is from flow table, to transition table, to Karnaugh
maps for the individual output variables and finally the Boolean equations.
However, in order to produce reliable circuits the procedure becomes somewhat
more complex than this simplified description suggests.

Consequently, what follows is a discussion of the design process, rather than its
application which can be found in other texts.

The design route
Asynchronous circuit design usually begins with the primitive f low table which is
similar to the flow table but only possesses one stable state per row. This is then

9It is worth reiterating that the reason is that if both of the inputs are 1 and then change together, there is
a critical race condition which may lead to an output of either 0 or 1, i.e. unpredictable behaviour.

Asynchronous sequential circuit design 147

studied tosee whether any of the resulting states are equivalent (in terms of their
stable states, where their unstable states lead and the associated outputs). If any
states are equivalent then they can be combined to produce the minimum-row
primitive flow table (still with one stable state per row) which can be further
reduced by merging equivalent rows to give the flow table we have used during
circuit analysis.

The state assignment is then performed in which binary codes are given to the
states in the flow table. Note that there are many state assignments possible (i.e.
any binary code can be given to any state). This leads to the transition table and
then on to the final Boolean equations for the output variables.

Hazards
Unfortunately the process is not quite this straightforward, and further thought is
necessary to produce a reliable circuit. We saw in Section 4.3 that combinational
circuits can contain hazards and therefore the effects of these in the combina-
tional block of our asynchronous circuit must be taken into account. In addition
asynchronous circuits possess their own potential hazards.

We have seen how relaxation of fundamental mode operation can lead to race
conditions. In a similar way if a circuit possesses more than two internal variables
and these change 'simultaneously' then the order in which they change may result
in different eventual states being reached. (In this situation the flow table will have
more than two rows, and the order in which these rows are visited within the same
column, upon external inputs being changed, may differ and lead to an unex-
pected stable state.) Techniques for predicting and eliminating such problems
exist and this is done during state assignment. It may involve the introduction of
additional intermediate states which are visited transiently during the actual
required transition.

Spikes in the outputs may occur due to the same cause (i.e. transiently visited
states) and can be eliminated by consideration of the 'don't care' conditions when
drawing up the output table.

Finally, even if neither critical races nor hazards in the combinational logic
block exist an asynchronous circuit may still possess essential hazards. These are
due to internal delays in the circuit which make it appear as if a single external
input has changed three times (i.e. 0 --) 1 --) 0 --) 1) rather than just once. These can
be eliminated by adding in appropriate delays to the circuit to ensure signals prop-
agate in the 'correct' order.

Summary
In principle asynchronous design is straightforward but the presence of hazards
means that care must be taken for such designs to function correctly. The hazards
are usually dealt with by: firstly eliminating critical races; then ensuring all combi-
national logic is free of hazards; and finally spotting and eliminating essential
hazards by the addition of strategically placed delays.

148 Asynchronous sequential logic

5.6 SELF-ASSESSMENT

5.1 What is the basic difference between sequential and combinational logic
circuits?

5.2 What is the general form of a sequential logic circuit?

5.3 How does the number of &ternal and total states of a sequential circuit relate
to the number of outputs from the circuit's 'memory' and the circuit's inputs?

5.4 What are the basic differences between asynchronous and synchronous
sequential circuits?

5.5 What conditions must be met for an asynchronous sequential circuit to be
stable?

5.6 In what way can changes in the inputs to an asynchronous sequential circuit
be restricted to ensure correct operation?

5.7 What is meant by 'breaking the feedback path' in the analysis of an asyn-
chronous sequential circuit?

5.8 What are the: transition table,flow table and state diagram?

5.9 What movement in the flow table is caused by:
(a) a change in the inputs to an asynchronous sequential circuit
(b) movement to an unstable state?

5.10 If no stable state exists for certain input conditions what will happen to the
output of an asynchronous sequential circuit when these conditions are
present?

5.11 What is the difference between non-critical and critical races?

5.7 PROBLEMS

5.1 Analyse fully the circuit shown in Fig. 5.18 by producing the transition table
and output map, the flow table and finally the state diagram. What function
does the circuit perform? Comment on any similarites with Circuit 4.

A

Fig. 5.18 Circuit to be analysed in Problem 5.1

Problems 149

5.2 Analyse fully the circuit shown in Fig. 5.19 by producing the transition table
and output map, the flow table and finally the state diagram. Compare the
function of this circuit with that in Problem 5.1.

A

Fig. 5.19 Circuit to be analysed in Problem 5.2

5.3 Analyse fully the circuit shown in Fig. 5.20 by producing the transition table
and output map, the flow table and finally the state diagram. Comment on
any similarities to Circuit 4 and those analysed in Problems 5.1 and 5.2. How
could this circuit be used to detect (i.e. produce an output Z= 1) an input
sequence of (0,1),(1,1)?

A

Fig. 5.20 Circuit to be analysed in Problem 5.3

5.4 Analyse the operation of a circuit constructed from cross-coupled NAND
gates (see Circuit 6, Section 5.4).

5.5 Once Problems 5.1, 5.2 and 5.3 have been completed use what you have
learned to design a circuit to detect the input sequence (0,1),(0,0).

Comment on any similarities between your design and Circuit 3.

5.6 Analyse Circuit 6, the cross-coupled NOR gates, as a circuit with two feed-
back paths (i.e. without combining the dependent feedback signals).

6 Flip-flops and flip-flop based
circuits

6.1 INTRODUCTION

Flip-flops 1 are vital ingredients in all except purely combinational logic circuits
and are therefore extremely important. The SR (Set-Reset) flip-flop was intro-
duced in the last chapter and illustrates an important point, namely that all flip-
flops are asynchronous sequential logic circuits. However, by controlling their use
they can be considered as synchronous circuit elements, which is exactly the
approach taken here. Rather than providing a detailed description of how flip-
flops are designed and operate, they are presented as discrete circuit elements (e.g.
like a multiplexer or full adder) to be used in subsequent designs.

In general, flip-flops possess data inputs (e.g. the S and R inputs), an output, Q
(and its complement, Q), and also (as we will see) a 'clock' input which controls
the activation, or clocking, of the flip-flop. That is the timing of the change in the
flip-flop's output in response to its inputs.

6.1.1 Ffip-flop types

The SR flip-flop can be set, or reset, or held in the same state via control of its inputs.
However, it cannot be made to change state (i.e. its output give the complementary
value) or toggle. Further thought reveals that if it could its operation would be
unpredictable since it is an asynchronous circuit and therefore if made to toggle it
would do so continuously (i.e. oscillate) until new inputs were presented.

However, by gating the inputs to an SR flip-flop via AND gates under control of
the flip-flop's complementary outputs (Q and Q) it is possible to produce a flip-flop
whose output can be made to toggle (i.e. go from 0 to 1 or vice versa) when acti-
vated (see Problem 6.1). This is then an example of a T-type (Toggle) flip-flop whose
output either remains the same (when the input T=0) or toggles (when T= 1).

Alternative input gating (again using AND gates via control of the flip-flop's
outputs) allows the SR flip-flop to be transformed into a device called a JK flip-
flop which combines the characteristics of the both the SR and T-types (see
Problem 6.2). The JK operates as for an SR flip-flop with the addition that both of
its inputs can be 1, in which case the output toggles.

~A flip-flop is basically a circuit capable of storing a 0 or 1.

Introduction 151

The fourth and final type of flip-flop has the simplest operation acting only to
delay the transfer of its input to its output. Clearly the activation of this D-type
(Delay) flip-flop must be controlled externally since otherwise it would simply be a
wire link. Hence it has three external connections" the input, D, and output, Q, and
a clock input which controls the timing of the transfer of the input value to the
output.

In fact all types of flip-flops are available in clocked form which basically means
that they have an additional clock input, with the flip-flop's outputs only
responding to the input conditions when the clock line goes active (i.e. the flip-flop
is 'clocked').

To summarise, there are four types of flip-flop:

SR Set-Reset; must not allow both inputs to be 1 simultaneously.
T Toggle type; on clocking the output either remains the same or toggles

depending if the input is 0 or 1.
JK Offering the capabilities of both the SR and T types.
D Delay-type flip-flop; upon clocking the output follows the input.

The operation of these four flip-flops can be described in several ways.

�9 A truth table which shows what the flip-flop's output, Q+, will be for all possible
m

input combinations. (Note the use of Q and Q in. the output column which
respectively mean that the output either remains as it is or toggles.)

�9 An excitation table which gives the inputs that must be used to produce a given
output transition.

�9 A Karnaugh map containing the same information as the truth table but in a
different format. (Note there is a cell for every possible value of Q, and so more
cells than rows in the truth table.)

�9 The next state equation which is the minimised form of the output, Q+, from the
Karnaugh map as a function of the flip-flop's inputs and the flip-flop's present
output (state), Q.

These are shown for all types of flip-flop in Table 6.1.

6.1.2 Flip-flop operation

Being asynchronous circuits the brief description of flip-flops given above clearly
cannot adequately describe their precise operation. 2 Although the SR flip-flop
does find uses in its basic (unclocked) form (see Section 6.2.1), the other three
types are always clocked, that is the changes in the outputs occur under the
control of a clock 3 signal.

2For example the JK flip-flop is usually implemented as a master-slave device in order to give reliable
operation. This consists of two appropriately gated SR flip-flops (see Problem 6.3). Also D-type flip-flops
may not be constructed from basic logic gates at all, but rather from circuit elements called transmission
gates (see Section 9.3.6) which are not logic gates.

3The clock input to a flip-flop is sometimes labelled as the strobe or enable input.

152 Flip-flops and flip-flop based circuits

Table 6.1

s O

clk

R Q

T o l

clk
m

Q

The four types of flip-flop, and their truth and excitation tables,
Karnaugh maps and next state equations

truth tables

O

0

1

Reset

Set

r
(Q=O) Q 0 0 x 1

(Q-l) Q 1 0 x 1

Q § 2 4 7
excitation

tables

Q+

(Q=O) Q o 1

(Q-l) Q 1 1 o

Q + - T O Q

j QI

clk

K O

r
(Q=0) Q

(Q=I) Q

0 0 1 1

1 0 O] 1
i

Q+= j Q + K Q

D QI [
clk 0

Q 1

Q+
m

(Q=0) Q 0 1

(Q--l) Q 0 1

Q+= D

Given that a flip-flop is clocked there are still several ways in which this can be
performed. For instance the clock (or control) line going active may then mean
that any changes in the inputs (during the active clock signal) take effect at the
outputs. In this case the flip-flop is said to be transparent (since as long as the
clock is active the outputs can 'see' right through to the inputs).

Introduction 153

With such a clock signal the flip-flop is effectively a level triggered device with
the inputs taking effect as soon as the clock line reaches, and whilst it remains at,
its active level. Obviously in order for such devices to operate correctly it will
usually be necessary to ensure the inputs do not change when the clock is active.

Alternatively flip-flops may be edge triggered. An edge refers to a rising or
falling logic signal (e.g. going from 0 to 1 or 1 to 0), referred to as positive and
negative edges respectively. An edge-triggered flip-flop will change its outputs in
response to the inputs when an edge appears on the clock line. Therefore it is not
transparent since ideally it responds to the inputs at a particular instant in time.
This is the most common form of flip-flop used and the one that we will use in
subsequent designs.

6.1.3 Timing requirements

In order for flip-flops to perform correctly (and effectively as synchronous
components) they must be operated within certain timing constraints. These are
the set-up and hold times, and refer respectively to the times that the inputs must
be held at the required values before and after being clocked. Adhering to these
times guarantees correct operation of the asynchronous flip-flops.

This requirement imposes a limit on the speed at which a flip-flop can be
toggled (changed repeatedly between states), with the fundamental frequency of
this toggling being one of the parameters used to describe the performance of a
flip-flop.

6.1.4 Other inputs

In addition to the inputs and outputs shown in Table 6.1, flip-flops (available as
circuit elements) usually possess preset (i.e. set Q= 1) and clear (i.e. reset Q=0)
inputs. These inputs may be synchronous in which case the flip-flop's outputs will
change when it is next clocked, or asynchronous which means the outputs will
change immediately in response to either of these inputs being active.

Figure 6.1 shows a positive edge triggered JK flip-flop with active-LOW preset,
Pr, and clear, CI, and a negative edge triggered D-type with active-HIGH preset

Fig. 6.1
flip-flop

m

Pr

J Q

lk

, Q

Cl

Pr

!
D

clk

I
Cl

Q

Q

Circuit symbols for a positive edge triggered JK flip-flop and a negative edge triggered D-type

154 Flip-flops and flip-flop based circuits

and clear. Remember that a bubble indicates inversion and that active-LOW
means the signal must be LOW to take effect (assertion level logic). The wedge
symbol on the clock input indicates edge triggering, so a bubble and a wedge
means negative edge triggered.

Finally it should be noted that many elegant heuristic designs using flip-flops
exist which make use of the preset and clear inputs to perform the required circuit
operation in a simple manner (e.g. Problem 6.5).

6.2 SINGLE FLIP-FLOP APPLICATIONS

The following are two common uses of single flip-flops, one clocked and the other
unclocked.

6.2.1 Switch debouncing

All mechanical switches will 'bounce' when closed which means the contacts do
not make immediate firm contact. The consequence of this is that the actual
voltage from the switch oscillates when contact is made. If this signal is to act as
the input to a digital circuit then instead of the circuit seeing only a single transi-
tion it will actually see many. A common use of an SR flip-flop is to clean up this
signal to ensure-only a single transition is produced. The SR can do this because
once set or reset it will remain in this state if both inputs are held at 0 (and so be
immune to the oscillations).

Example 6.1

Draw the outputs that will be obtained from the circuit in Fig. 6.2 and determine
how an SR flip-flop can be used to clean up these signals.

T

5V

T

5V

- A
w

Fig. 6.2 Switch circuit whose output, exhibiting contact bounce, is 'cleaned up' as described in
Example 6.-I

Single flip-flop applications 155

Solution

Fig. 6.3 shows the signals that will be obtained from points A and B. We note that
the contact bounce gives conditions of A and B both 1 during which time we
require the outputs to remain constant. We cannot use inputs of S =R = 1 for an
SR flip-flop but note that if both inputs to the flip-flop are inverted (to give an SR
flip-flop) then we will obtain the required clean waveform shown in Fig. 6.4.

switch thrown
from A to B

Switch A I /] I
Position B

contact
bounce

0 V
threshold

5v /
OV ~ ~

Fig. 6.3 Output from the circuit in Fig. 6.2 which illustrates the problem of contact bounce. A logic level
of 1 is represented by a voltage above the illustrated threshold

switch thrown
from A to B

 witc i t / I Position B

A

B

n

s Q

u

R Q

Q I I

~ n

Fig. 6.4 Switch debouncing using an SR flip-flop; see Example 6.1

m

Input A going LOW, and so S LOW, will set Q-1 . Then as this transition
occurs the contact bounce giving A and B both HIGH will cause both S and R to
be HIGH (i.e. S =R =0) and so the flip-flop will remain in the same (Q= 1) state as
required. Similarly, input B going LOW will reset Q to 0. Contact bounce giving
A =B= 1 will not affect Q which remains LOW.

156 Flip-flops and flip-flop based circuits

6.2.2 Pulse synchroniser

In synchronous circuits it is vital that events (signals) are correctly synchronised
to one another. Consider an asynchronous pulse which must be synchronised to
the master clock within the digital system it is entering. How can this be achieved?
A D-type flip-flop provides a solution since it 'allows' the pulse to enter the system
only when it has been clocked as shown in Fig. 6.5.

I O m

CLK

cL~ I-1 I -

' 1
O

I I I L ~ l }

Fig. 6.5 Synchronisation of a pulse using a negative edge-triggered D-type flip-flop

Example 6.2

Draw the relevant waveforms showing pulse synchronisation using a positive
edge triggered flip-flop.

Solution

These are shown in Fig. 6.6.

CLKI I I I ,! i ~

' I
Q

1

Fig. 6.6 The use of a positive edge triggered flip-flop for pulse synchronisation, as discussed in
Example 6.2

Use of an AND gate allows synchronised gating of the clock by the input pulse
as shown in Fig. 6.7 where Q. CLK is the clock signal and the output from the D-
type AND'd together. Note that the propagation delay of the D-type has been
included.

Single flip-flop applications 157

eLK ! I

Q. CLK I I

I i ! l
o

Fig. 6.7 Synchronised gating of a clock using a negative edge triggered D-type. Note that the delay of
the D-type is shown (as the lag in Q changing state)

Example 6.3

Consider the use of the positive edge triggered D-type synchroniser from the last
example for the synchronised gating of a clock.

Solut ion

The waveforms are shown in Fig. 6.8. The important thing to notice is that in this
case the propagation delay of the D-type causes the production of spikes (and
shortening of the initial gated clock pulse) following the AND'ing process which
would be liable to cause incorrect circuit operation. This circuit should therefore
not be used. Further examples of this type are discussed in Sections 11.2 and 11.3.

CLK

Q- CLK

I I

I I -1 I l
Fig. 6.8 Synchronised gating of a clock using a positive edge triggered D-type, as discussed in
Example 6.3

158 Flip-flops and flip-flop based circuits

6.3 REGISTERS

Because it possesses 'memory', a single flip-flop can be used to store a single
binary digit (a bit), hence n flip-flops can store an n-bit word. Such an arrange-
ment is called a register. Considered as circuit elements in their own right registers
have many applications including arithmetic operations, special types of counter
and the simple storage of binary patterns. We will now look at some of the most
common of these.

6.3.1 Shift registers

A shift register is simply a collection of clocked flip-flops linearly connected
together so that information can be passed between them. That is the value stored
in one flip-flop is shifted to the next in line when the register is clocked. Each flip-
flop has its output(s) connected to the input(s) of the next in line. Obviously to be
of use data must be able to be moved in and out of this structure, and this can be
performed either serially or in parallel.

Used serially, data is passed into the flip-flop at the end of the line and then fed
along from flip-flop to flip-flop. In parallel mode data is input to all flip-flops
simultaneously. Fig. 6.9 shows a three-bit shift register constructed out of D-type
flip-flops. Note how: the inputs and outputs of adjacent flip-flops are connected;
all the clear and clock lines are tied together; and the gated preset arrangement
allows the register to be parallel loaded with any desired pattern.

Preset

(Parallel
Load)

Clear

Q2 (~

m ~

Pr 2

Q2 Pr D 2

clk<(-

Q2 (:l

T

M

Pr I Pr o
1 QO

~ o . _ ~

Q1 Pr D 1

clk ~ ~

QI Cl

I

_ . . _ _ ~ ~ _ _ . _

Q0 Pr D O

elk<: ~

Qo C~l

Y

Data
Input

- - - - Clock

Fig. 6.9 A three-bit shift register

Because there are two ways of entering and extracting data from the shift
register this gives four possible modes of operation: serial in, parallel out (SIPO);
serial in, serial out (SISO); parallel in, serial out (PISO); and parallel in, parallel
out (PIPO).

Registers 159

Although some of these forms are of more use than others we will briefly look
at how the shift register shown in Fig. 6.9 would be used in each of these four
modes.

SIPO
�9 Clear all flip-flops by taking clear LOW.
�9 Set clear and preset HIGH for normal flip-flop operation.
�9 Apply serial data train to the first flip-flop and clock at a rate synchronised to

the data train so that one bit is entered for each clock trigger (for three bits of
data for this shift register).

�9 Data is now residing in the shift register and can be read out in parallel from all
three flip-flops simultaneously using Q0, Q~ and Q2.

Example 6.4

Draw the contents of a four-bit shift register, at each clock pulse, which has the
binary pattern 0110 serially loaded into it.

Solution

This is shown in Fig. 6.10.

Q3 Q2 Q1 Q0
Reset 0 0 0 0
Clock 1 0 0 0 0

J
Clock 2 0 0 0 1
Clock 3 0 0 1 1
Clock 4 0 1 1 0

Fig. 6.10 Contents of a four-bit shift register when being serially loaded with binary pattern 0110 (see
Example 6.4)

Note that in the SIPO shift register the data is transformed from being sepa-
rated in time (temporally) to separated in space (spatially), within the individual
flip-flops.

SISO
For the serial in, serial out shift register data is loaded in exactly the same way as
for the SIPO but is then simply clocked out serially via Q2. Obviously once loaded
the data need not be accessed immediately and so can be stored. Also, it can be
clocked out at a different rate, so providing a method of buffering data between
two digital systems running at different clock speeds.

Note that because a SISO can be operated with only two connections (to get the
data in and out) its size is not constrained by necessary access to any other inputs
and outputs.

160 Flip-flops and flip-flop based circuits

PISO
�9 Clear all flip-flops by taking clear LOW.
�9 Present the parallel data (a three-bit word) to the preset input lines Pr 2, Pr~, Pro.
�9 Write this data into the register by taking preset enable HIGH.

This means the three-bit word is stored in the register, and can be read out as
for the SISO using three clock pulses. Note that the PISO performs a spatial-to-
temporal conversion of data.

PIPO
The PIPO shift register takes the data in and outputs it in parallel. Hence there is
no shifting of data within the circuit, rather it simply acts as three memory cells.

The register discussed here can only shift data in one direction. Bidirectional
shift registers are also available that can shift data in either direction. Note that
one potential use of shift registers is for the multiplication or division by factors of
two (by simply shifting data left or right respectively, see Section 2.5).

6.3.2 Applications of shift registers

Digital delay lines
If a single-bit data stream is fed serially into a shift register and then read out seri-
ally from the output of one of the register's flip-flops then the effect is that of
delaying the data stream. For a clock period T then if the data is read from the nth
stage of the register, the data is delayed by (n- 1)T.

Sequence generator
If a binary pattern is fed into a shift register it can then be output serially to
produce a known binary sequence. Moreover, if the output is also fed back into
the input (to form a SISO connected to itself) the same binary sequence can be
generated indefinitely.

When a SISO shift register is connected to itself this is usually referred to as a
re-entrant shift register, dynamic shift register, ring buffer or circulating memory.
Variations on this type of circuit are used for data encryption, error checking and
for holding data during digital signal processing.

Ring counters
Shift registers can be used to produce a type of simple counter whose advantage
(in addition to the simplicity) is that they can operate at very high speeds since
there is no need for any external control or decoding circuitry (necessary for most
counters as we will see in the next chapter).

Such counters are formed by simply using a re-entrant shift register (the serial
output is fed back to the serial input) which is (usually) loaded with a solitary high
value. The register is then clocked and the output, taken from any one of the flip-
flops, simply goes high every time the single stored bit arrives at that flip-flop (i.e.
after N clock cycles giving what is known as a mod-N counter).

Self-assessment 161

B

A second type of counter can be produced by connecting the Q output from the
last flip-flop of a SISO back to the input and then loading a single 1. This is
usually referred to as one of the following" twisted ring, switched tail, Johnson or
Moebius 4 counter. A mod-2N twisted ring counter requires N flip-flops.

E x a m p l e 6 .5

Tabulate the contents of four-bit ring and Johnson counters which have a single
bit entered and are then clocked.

Solution

These are shown in Fig. 6.11.

4-bit Ring 4-bit Johnson

Q3 Q2 Q1 Q0 Q3 Q2 Q1 Q0
Reset 0 0 0 0 Reset 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 1
0 1 0 0 0 1 1 1
1 0 0 0 1 1 1 1

0 0 0 1 1 1 1 0

0 0 1 0 1 1 0 0

0 1 0 0 mod-4 1 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 1

Fig. 6.11 The outputs from four-bit ring and Johnson counters; see Example 6.5

- mod-8

6.4 SELF-ASSESSMENT

6.1 What are the four types of flip-flop?

6.2 Why must the T and JK flip-flops be clocked (synchronous).

6.3 In what ways can the operation of a flip-flop be described; what does the exci-
tation table tell you?

6.4 Draw the truth table and excitation table for a JK flip-flop and relate their
respective entries to each other (i.e. which entries in the two tables correspond
to each other?).

4A Moebius strip is a loop made from a strip of paper with a single twist in, meaning it only has one side.

162 Flip-flops and flip-flop based circuits

6.5 What does the next state equation for a flip-flop tell you?

6.6 What do the terms transparent; level triggered and edge triggered mean?

6.7 What happens to the output Q when a flip-flop is preset or reset; and what do
asynchronous and synchronous mean when referred to these operations?

6.8 What is a shift register, and why can such a circuit be used to multiply a
binary number by 2".

6.9 How many flip-flops are required to construct mod-12 ring and Johnson
counters?

6.5 PROBLEMS

6.1 Determine how the circuit shown in Fig. 6.12 functions as a T-type flip-flop.
What problem would there be when T= 1 and how could it be resolved. (Hint:
remember that the SR flip-flop must have a propagation delay.)

, i -)

QI 1 Q

Fig. 6.12 Circuit to be analysed in Problem 6.1

6.2 Determine how the circuit shown in Fig. 6.13 functions as a JK-type flip-flop.
Under what input conditions may a problem occur?

j I 1)

K V)
I

S Q Q

m

R Q

Fig. 6.13 Circuit to be analysed in Problem 6.2

6.3 Fig. 6.14 shows a master-slave flip-flop where the C input is a square-wave
clock signal. Analyse its operation and find why it does not suffer from the
problems afflicting the circuits in Problems 6.1 and 6.2.

6.4 How could:
(a) a JK flip-flop be used as a D-type?
(b) a JK flip-flop be used as a T-type?
(c) a D-type flip-flop be used as a T-type?

Problems 163

X

1
1 I

s Q

R Q

' -i

)__

~ S Q Q

Q c~

Fig. 6.14 Circuit to be analysed in Problem 6.3

6.5 What does the circuit in Fig. 6.15 do?

Q

c - A T d T F L

Pr

clk

Z

Fig. 6.15 Circuit to be analysed in Problem 6.5

6.6 Show the circuits for, and outputs from, a mod-6 ring counter and Johnson
counter. What problems would arise if somehow one of the unused states (i.e.
binary patterns not held by the flip-flops during normal operation of the
Johnson counter) was entered.

7 Counters

7.1 INTRODUCTION

Counters are one of the most widely used logic components in digital electronic

circuits. In addition to simply counting they can be used: to measure time and

frequency; increment memory addresses; and divide down clock signals amongst
a host of other applications. They are basically special forms of synchronous
sequential circuits in which the state of the circuit is equivalent to the count held
by the flip-flops used in the circuit. In this chapter we will look only at counters
which count in binary sequence, although the next chapter describes how to
design circuits with any required count sequence, such as Gray code for instance.

The 'mod' of the counter is the number of states the counter cycles through
before resetting back to its initial state. So a binary mod-8 counter has eight count
states, from 0002 to 1112 (e.g. the mod-8 counter actually counts from 0 to 7). All
of the counters we will look at use flip-flops as the storage elements that hold the
count state. Therefore, a mod-N counter will need to contain n flip-flops, where

2">N.

7.1.1 Asynchronous and synchronous counters

To divide the counters we will look at into two types: asynchronous and synchro-

nous. When used with respect to counters ~ these adjectives describe whether the
flip-flops holding the states of the circuit are all clocked together (i.e. synchro-
nously) by a master clock or rather asynchronously, with each flip-flop clocked by

the one preceding it.

�9 Asynchronous counters:
�9 are also known as ripple counters;

�9 are very simple;
�9 use the minimum possible hardware (logic gates);
�9 employ flip-flops connected serially, with each one triggering (clocking) the

next;
�9 have an overall count which 'ripples' through, meaning the overall operation

is relatively slow;

~Note that asynchronous counters are not asynchronous circuits as described in Chapter 5.

Asynchronous counters 165

�9 require virtually no design.

�9 Synchronous counters:
�9 use interconnected flip-flops, but all are clocked together by the system clock;
�9 use the outputs from the flip-flops, to determine the next states of the

following flip-flops (rather than simply clocking them);
�9 require no settling time due to rippling (as all flip-flops are clocked synchro-

nously);
�9 need designing, to determine how the present state of the circuit must be used

to determine the next state (i.e. count);
�9 usually need more logic gates for their implementation.

Although we will not consider such circuits it is possible to design hybrid
asynchronous/synchronous counters (e.g. two synchronous four-bit counters
connected asynchronously to produce an eight-bit hybrid) that possess some of
the advantages of both types and which are appropriate in some applications.

Due to their universal use in logic circuits, counters are widely available as logic
elements in a wide range of forms. These often include clear and preset facilities
(which can be used to load a particular count state), and up-down counts available
within the same device. Because the design of binary counters is largely intuitive the
approach we will take is to firstly consider simple circuits that act as mod-2" coun-
ters, and then how they must be modified to produce a general mod-N count.

7.2 ASYNCHRONOUS COUNTERS

The output of a T-type flip-flop with T - 1 will simply toggle every time it is clocked.
So the circuit in Fig. 7.1 constructed from negative edge triggered T-type flip-flops
will give the waveforms shown. Note that each flip-flop is clocked by the output
from the preceding flip-flop with all flip-flop inputs tied HIGH so they toggle.

The outputs of the flip-flops will only change when the output from the
preceding flip-flop changes to produce a negative edge. Since this will be once
every clock period of the preceding flip-flop, the effect is for each flip-flop to
produce an output with twice the period of the one clocking it. In effect the clock
is divided down by 2 at each stage. Two flip-flops connected like this will produce
a four-bit counter, and the three in Fig. 7.1 an eight-bit counter (2 3- 8).

Any 2"-bit counter can be produced like this, whilst any particular count state
for a counter built from n flip-flops can be decoded using an n-input AND gate (or
equivalent circuit) connected to the Q or Q from all flip-flops as required.

Down counters

A count down circuit can be produced by either simply replacing the negative
edge triggered flip-flops for positive edge triggered ones o r using the Q outputs to
trigger the next flip-flop (see Problem 7.1).

166 Counters

CLOCK
IN

1 T

clk

Q

Q0

11
clk

Q

Q1

,-4T ~ clk

Q2

!

CLOCK A l l i l l { l i i ! i C-I 1 l 1 I I 1

Q0 1 I l I 1 I I l ~ l

QI I I I I I ~
Q2 [.

Count 0 1 2 3 4 5 6 7 0 1
State

Fig. 7.1 The count action of rippled T-type flip-flops

7.2.1 Mod-N asynchronous counters

A mod-N (or divide-by-N) as3/nchronous counter, where N= 2", will count up to
(N-1) (an output of all l's) before resetting to all O's and beginning the count
sequence again.

A general mod-N counter can be produced by using flip-flops with clear inputs
and then simply decoding the Nth count state and using this to reset all flip-flops
to zero. The count will therefore be from 0 to (N-1) repeated since the circuit
resets when the count gets to N. Note that because the Nth state must exist before
it can be used to reset all of the flip-flops there is the likelihood that glitches will
occur in some of the output lines during the resetting phase (since an output may
go high as the reset count is reached, and then be reset to 0).

Example 7.1

Design a mod-10 binary up-counter using negative edge JK flip-flops with active-

LOW clear.

Solution

Four flip-flops are required, and decimal state 10 must be decoded and used to
reset all flip-flops to give a repeated count from 0 to 9 (0000 to 1001). State 10 is
given by Q3Q2Q~Qo (1010) so a four-input N A N D gate (as the clear is active-
LOW) could be used to decode this count and clear all flip-flops. However, since
states 11 to 15 will never be entered they can be considered as 'don't care' condi-

Mod-2" synchronous counters 167

tions and used to simplify the logic. From the Karnaugh map in Fig. 7.2 it can be
seen that the count state Q3Q~ can be used to perform the reset with the subse-
quent circuit also shown.

-- Q3 J Q2 J - Q1 J ~ Q0 J

_ clk c l k c lk _ c lk _ _ ~

C I K - C1 K " " C1 K C1 K
I

- - - C L O C K

R e s e t al l

f l i p - f l o p s

Q I %
0 0

0 0

0 0

0 0

x indicates state is unused

x 0 1 indicates state when circuit
must be reset

x 0

X X] -""

1

11

Q3Q1

Fig. 7.2 The binary mod-10 asynchronous up-counter designed in Example 7.1

Summary
Asynchronous (ripple) counters are easy to design but, because the count has to
ripple through the system, timing problems can occur and glitches can be gener-
ated. Consequently the speed of operation of this type of counter is limited.

7.3 MOD-2 n S Y N C H R O N O U S C O U N T E R S

Synchronous binary counters are arguably the simplest sequential synchronous
circuits. They use the flip-flops to store the circuit's count state and (usually) have
no external inputs. Thus the next state (count) is determined solely by the last
state (count). We again initially take an intuitive look at mod-2" counters.

The waveforms required for a mod-8 counter were shown in Fig. 7.1, being the
outputs, Q2, Q~ and Q0, from the three flip-flops. If this synchronous mod-8
counter is to be built from negative edge triggered T-type flip-flops, then since all
three flip-flops will be clocked together (as this is to be a synchronous circuit) we
need to determine for each clock input whether the T input for each flip-flop must
be 0 (for the output to remain the same) or 1 (for it to toggle).

168 Counters

By inspection of the waveforms in Fig. 7.1 it is clear that"

~ Q0 must toggle on every negative edge of the system clock and so we need
T0- 1;

�9 Q~ must only toggle when Q0-1, and so we need T~- Q0;
~ Q~ must only toggle when Q0-Q~- 1 and so we need T 2- Q0" Q~-

We must therefore use an AND gate to produce the steering logic (as it is
known) to enable the toggling action of the flip-flops as required. The circuit for
the mod-8 synchronous counter is shown in Fig. 7.3.

Q2c, I !
- v

Q0 J

c lock

Fig. 7.3 A mod-8 synchronous counter constructed from negative edge triggered T-types

From the above analysis of the required steering logic a clear pattern emerges
of how to produce any mod-2" counter (where n is the number of flip-flops used).
This is that the T input of each flip-flop must be the outputs from all preceding
flip-flops AND'd together.

7.3.1 Implementation of the steering logic

Since for this type of counter in general we need the input to the nth T-type used to
construct the circuit to be T,= Qo'Q~" Q2""Q,-~ = T,-I'Q,-~ it is clear there are
two ways in which the steering logic can be generated. One approach is to actually
AND together all of the previous outputs, which for a counter with n flip-flops
requires AND gates with from 2 up to (n-1) inputs. The advantage of this parallel
implementation is the only delay introduced is that of the single AND gate with
the disadvantage that an AND gate with a prohibitively large number of inputs
may be required 2 and the outputs from the flip-flops may also have to feed a
prohibitively large number of inputs.

The alternative, serial approach, is to use only two-input AND gates and at
each stage AND together the output from the each flip-flop with its input (i.e. its
steering logic), for example ~ = ~ . Q2.The disadvantage here is that this intro-
duces a delay because the output of the steering logic is using a signal that must
propagate (ripple) through all of the AND gates.

-'Note also that in practice, as mentioned in Section 4.2.1, a gate with a large number of inputs will have a
longer propagation delay than its two,input counterpart.

Mod-N synchronous counters 169

7.4 MOD-N SYNCHRONOUS COUNTERS

We have seen that the design of mod-2" binary up-counters is straightforward,
with all 2" states produced, and cycled through in sequence. For general mod-N
counters we must begin to use (simplified) synchronous sequential circuit design
techniques, with each present state of the circuit used to produce the necessary
steering logic to take the circuit into the desired next state. Note that because the
circuit is clocked the outputs are always stable. This is because although the next
state is determined by the present state, the next state and present state variables
are separated by the flip-flops, unlike the asynchronous sequential circuits studied
in Chapter 5.

We begin by redesigning the mod-8 counter, which should give the circuit
produced above (see the end of this section). Firstly we look at how D-type flip-
flops could be used and then JK-types. This will also give us our first insight into
the general differences in circuits designed using these two types of flip-flop.

7.4.1 Mod-8 cou~.ter using D-type flip-flops

We will need three flip-flops to give the necessary eight states from 000 (state 0)
through to 111 (state 7). We begin by, as shown in Table 7.1, listing the eight
possible present states of the circuit alongsidethe next states that must follow.
The design task is to use the present state outputs from the three flip-flops to
produce the required next states for the three flip-flops.

Since we are using D-type flip-flops and their outputs will equal their inputs
when clocked (i.e. the next state equation is Q+= D), we must simply ensure that
the present states are used to produce the required next state for each flip-flop.
This is easily achieved by producing a Karnaugh map for each of the three flip-
flop's D-inputs in terms of the (present) outputs of the three flip-flops.

These Karnaugh maps are also shown in Table 7.1 and are (because the output
of a D-type simply follows its input, i.e. Q*= D) just the required next states for
the circuit entered across the three maps as functions of the circuit's present states.

To complete the design we simply need to use the Karnaugh maps to simplify
the required steering logic they define. This gives:

D2- Q2Qo + Q2Q, + Q:Q, Qo
D,- Q, Qo + Q, Qo
Do-Q o

The circuit to implement this is shown in Fig. 7.4.

7.4.2 Mod-8 counter using JK flip-flops

The procedure for designing the counter using JK type flip-flops is fundamentally
the same as for the D-type design. The major difference is that whereas the output

170 Counters

Table 7.1 Present and next states for a mod-8 binary up-counter, and
the associated Kamaugh maps for the design of a D-type based circuit

Present State Next State

STATE Q 2 Q 1 Q o Q +2Q]Q0+ +

0 0 0 0 0 0 1

1 0 0 1 0 1 0

2 0 1 0 0 1 1

3 0 1 1 1 0 0

4 1 0 0 1 0 1

5 1 0 1 1 1 0

6 1 1 0 1 1 1

7 1 1 1 0 0 0
I I I I

I I

D21

Current output

from flip-flops

Required output

from flip-flops

Q.o 0 o 1 1 Qo 0 1 1 0

Qo o 1 o 1 Oo 1 o o 1

D01
Qo 1 1 1 1

Qo 0 0 0 0

O n- (~

I

Fig. 7.4 Mod-8, D-type based, binary up-counter

from a D-type is simply its input, the output from a JK is given by the excitation

function and depends upon the values on the J and K inputs (see Table 6.1).

We again write out the present and next states for the circuit (see Table 7.2) and

hence the three individual flip-flops, but now also include tables for each of the

Mod-N synchronous counters 171

Table 7.2 The present and next states, and excitation requirements for a JK based
mod-8 binary up-counter, together with the associated Karnaugh maps

Present State Next State
+ + +

Q2 Q1 Qo Q2 Q1 Qo STATE

o o o | o 00-
1 0 0 1 0 1 0
2 0 1 0 0 1 1
3 0 1 1 1 0 0
4 1 0 0 1 0 1

5 1 0 1 1 1 0
6 1 1 0 1 1 1
7 1 1 (~ 0 0 @ _

I , I
I

Required output

from flip-flops

I I
I

Current output
from flip-flops

J2K2 J1K1 JoK0

ox o
0 x I x x l

0 x x 0 I x
I x x l x l
x 0 0 x l x
x 0 l x x l
x 0 x 0 l x
x l x l (~

I
i

Necessary inputs
for the 3 flip-flops

J2

%

%

0 0 X X

0 1 X X

(~0 X

X

x 0 0

x 1 0

J
1

%

%

0 x x 0

1 x x 1

Qo x 0 0 x

Qo x 1 1 x

Jo

Qo 1 1 1 1

% X X X X

X

% ,

X X X

1 1 1

three flip-flops showing the necessary J and K inputs to produce the desired
changes. These inputs are found from the JK excitation table. For instance, in
state 0 then Q0 is 0, and must go to 1 for state 1. So, the inputs to flip-flop 0 must
be (J0, K0)= (1, x). In state 7, Q0 = 1 and must become 0 for state 0, hence we need
(Jo, Ko)= (x, 1).

172 Counters

Derivation of steering logic: Method 1
Once this table is complete we are at the same stage as for the D-type design
except, rather than using three Karnaugh maps, for the three inputs to the D-
types we now need six maps, one each for the J and K inputs to the flip-flops as
shown in Table 7.2.

We can then minimise the steering logic using the Karnaugh maps to give:

J2=K2=Q0- Q,
Jl =KI =Qo
Jo=Ko= 1

Derivation of steering logic: Method 2
Rather than using the excitation tables of the JK flip-flops to find the required
steering logic, as demonstrated in Method 1, alternatively the next state equation
for the JK flip-flops can be employed. Here, Karnaugh maps for the next state
outputs are firstly drawn in terms of the present state outputs, which are of course
the Karnaugh maps used in the D-type design shown in Table 7.1.

However, whereas for the D-type these were the expressions that had to be sent
to the inputs (since the next state equation for a D-type is Q+-D) the next state
equation for a JK flip-flop is Q + - J Q + KQ. Hence, the J and K inputs required for
each flip-flop are given by the coefficients for Q and Q respectively, taken from the
minimised expressions derived from the Karnaugh maps for Q+ for each of the
flip-flops.

The minimised expressions from the Karnaugh map give (as we used for the D-
type design): 3

Q0 + Q2 Q, + Q: Q, Q0
= (QoQ,) Q~_+(Qo + Q ,) Q 2

Q+I = Qo " Q-l + Qo " Q l
Qo=Qo

= 1 Q o + O Qo

Therefore: ~ = QoQ~ and ~ = QoQt (using De Morgan's theorem); J~ = K , - Qo;

and Jo= K o- 1.

Circuit dependence on flip-flop type
Note that this circuit demonstrates that in general the use of D-type flip-flops will
require more logic gates, since the operation of the flip-flop itself is simpler.
However, this must be offset against the fact that because the D-type is simpler it
can be fabricated on a smaller area (see Section 9.3.6).

We now consider how the mod-8 counters designed using T, D and JK flip-
flops relate to one another (see Problem 6.4). From the intuitive design using T-
types: ~ - Q~ Qo; T~ =Qo and T o = 1. A JK flip-flop with its inputs tied together acts

;Since the expression lbr Oois minimised, then it does not contain Q.. Consequently in order to obtain its
coefficient (which is Ko) it must be reintroduced. An alternative approach, used in the next section, is to
ensure the terms whose coefficients are required are n o t minimised out.

Example: mod-6 counter 173

as a T-type, which is the outcome of the JK design, since both inputs to all three

flip-flops are the same as in the T-type design.

For a D-type Q+= D, so for it to act as a T-type, the input to the flip-flop must

pass through some simple combinational logic together with the flip-flop's output
so that the signal fed to the D-type's input is DQ + DQ = D ~ Q. Then if D is 0 the

flip-flop remains in the same state, whilst if it is 1 it toggles (either the output or its

complement is fed back).

For the D-type design we found that D o -Q0, so flip-flop 0 always toggles.Flip-
flop 1 is fed D~ = Q0 ~ Q~ which from the above we can see means it is wired as a T-

type with an input of Q0, whilst

D2-Q2Qo +Q2Q~ +Q2Q, Qo-Q2 ~(Q, Qo)

meaning this is also wired as a T-type but now with an input of Q~ Qo- So all three
circuits are identically equivalent, demonstrating the relationships between these
three types of flip-flop.

7.5 EXAMPLE" MOD-6 COUNTER

Design a mod-6 binary up-counter using firstly D-type and then JK type flip-flops.
A mod-6 counter will require three flip-flops. The required relationship between

the present and next states plus the required inputs to the JK flip-flops is shown in
Table 7.3. Note that two states are unused.

Table 7.3 Present and next state variable for a mod-6 binary up-counter

Present State

STATE Q 2 Q 1 Q o

0 0 0 0
1 0 0 1

2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1

6 1 1 0

7 1 1 1

Next State
+ + +

Q 2 Q 1 Qo J2K2 JIKI JoKo

0 0 1 0 x 0 x l x
0 1 0 0 x l x x l
0 1 1 0 x x 0 l x
1 0 0 l x x l x l
l 0 1 x 0 0 x l x
0 0 0 x l 0 x x l

X X X X X X X X X

X X X X X X X X X

7 . 5 . 1 D - t y p e i m p l e m e n t a t i o n

The Karnaugh maps for the next state variables are shown in Table 7.4. From
these, and minimising taking advantage of the 'don' t care' conditions:

Q~-D2-QzQo+Q,Q o
Q] - D,- Q, Q-o + Q2Q-~ Qo
Qo-Do-Qo

174 Counters

Table 7.4 Karnaugh maps for the next state variables for a mod-6 binary up-counter

%

% 0

0 x 1

1 x 0

Q0 0 1 x 0
. . . .

Qo 1 0 x 0

Q3 1 1 x 1

Q0 0 0 x 0
.

Using the above equations to determine the next state values for the unused

states of 6 (i.e. Q2Q~ Q0 = 110) and 7, we find that they lead to states 7 and 4, respec-

tively. (The states can also be found by considering the Boolean values used in the
'don't care' conditions in the Karnaugh maps during minimisation.) These are
shown, together with the state diagram in Fig. 7.5 which illustrates the sequence of

states the circuit moves through as it is clocked.

Q2 Q, Qo Q ~ Q ~ Q o +

STATE 6 1 1 0 1 1 1 STATE 7

STATE 7 1 1 1 1 0 0 STATE 4

Present State Next State

| @

@--- @ @

Fig. 7.5 State diagram for the mod-6 binary up-counter implemented using D-type flip-flops

Note that rather than using the 'don't care' states to aid minimisation they

could have been used to ensure the unused count states led to specific states. A

common choice is for them to lead to state 0 so that if either state was entered due

to a circuit error then at the next clock cycle the counter would 'reset'. (To achieve

this O's are simply entered in place of the x's before the Karnaugh maps are used

for minimisation.)

Example: mod-6 counter 175

7 . 5 . 2 J K - t y p e i m p l e m e n t a t i o n

The Karnaugh maps for the necessary J and K inputs are shown in Table 7.5.

Table 7.5 Karnaugh maps for the J and K inputs for a mod-6 binary counter

J2

00 0 0 x x

Qo 0 1 x x

Qo x x x 0
,

Qo x x x 1

J1

Qo 0 x x

Qo 1 x x

Qo x o

Qo x 1

x x

x x

Jo

% 1 1 x 1 Qo x x x x

Qo x x x x Qo 1 1 x 1

Method 1
Minimising directly from the Karnaugh maps and using the 'don' t care' states to
aid minimisation gives"

J2-Q, Qo K2=Qo

J1- Q2Qo KI = Qo

J 0 - g 0 - 1 i.e. it is wired as a T-type.

Method 2
Using the Karnaugh maps in Table 7.4 we again minimise using the 'don ' t care'
states to aid this process. Note that since we are looking for the coefficients of the
Q. and Q. terms from the Q.th flip-flop we do not minimise out these terms. This

gives"

02-(a~ O0)" 02 + O0" 02
0+1-(O2Oo)'O~ + Oo " Q~
Oo-1. Oo + O" Oo

On picking out the relevant coefficients these give the same Boolean expressions
for the J and K inputs as obtained above.

176 Counters

Again we determine the results of entering states 6 and 7, which are shown in
Fig. 7.6. Here state 6 leads to state 7 which leads to state 0 so the design is 'safe' in

that it will reset to state 0 if an error occurs. The worst-case scenario would be if

minimisation meant states 6 and 7 led to each other since then if either was entered

the circuit would be stuck and simply move between these two states.

Q2 Q, Qo Q ? Q ? Q o +

STATE 6 1 1 0 1 1 1 STATE 7

STATE 7 1 1 1 0 0 0 STATE 0

t
-|

Fig. 7.6 State diagram for the mod-6 counter implemented using JK flip-flops

The reason that state 7 leads to state 0 for the JK based design (and not state 4
as when using D-types) is because a 0 rather than a 1 was used as the 'don ' t care'

condition in cell Q2Q~Qo for Q2-

Summary
Synchronous binary counters can be designed by simply writing out a table
containing all possible states the circuit can hold as the present states, and the
states that must follow these as the next states. If D-type flip-flops are used (which
will generally lead to a requirement for more steering logic) then the Karnaugh
maps for each of the next state variables in terms of the present state variables

simply need minimising.
To use JK flip-flops the same method can be used. This requires the minimised

expression to be matched with the JK's next state equation to allow the coeffi-
cients corresponding to the J and K inputs to be found. Alternatively, the required
flip-flop inputs to produce the required change of output can be tabulated (using
the excitation table), with this information used to produce the Karnaugh map for

each of the flip-flop's inputs.
Any unused states may be used to aid minimisation or ensure that if they are

entered erroneously the circuit will be eventually reset in some way. Different

designs may lead to different state diagrams regarding the unused states.

Problems 177

7.6 SELF-ASSESSMENT

7.1 What is the 'mod' of a counter?

7.2 What are the differences between asynchronous and synchronous counters?

7.3 What do the terms preset and reset mean when referred to counters?

7.4 What design changes are necessary to turn an asynchronous up-counter into
the corresponding down-counter?

7.5 What is the procedure for producing an asynchronous binary mod-N
counter, and what problems may be encountered when using such a circuit in
practice?

7.6 How is a synchronous binary mod-2" counter produced?

7.7 What is the procedure for producing a synchronous binary mod-N counter?

7.8 In general how may flip-flops are required to produce a mod-N counter, how
many unused states will there be, and what is the outcome of entering these
'unused states'?

7.7. PROBLEMS

7.1 A logic signal is to be used to select either count-up or count-down operation
from a ripple counter. What combinational logic is required between succes-
sive flip-flops to produce the required circuit?

7.2 What type of counter is shown in Fig. 7.7, and what is its exact function?
Show how a three-input NOR gate could be used to decode count state 3, and
draw the resultant output waveform.

Q2
clk

Q1

_ clk]

Ol

Fig. 7.7 Circuit to be analysed in Problem 7.2

Qo
_ clk

Qo

clock

7.3 What function does the circuit in Fig. 7.8 perform?

7.4 Design a mod-5 binary ripple counter.

7.5 Compare the use of D-type and JK-type flip-flops in the mod-6 counter
designed as an example of a synchronous binary counter in Section 7.5.

178 Counters

I
Q2 J Q1

clk clk

Q2 C1 Q1 C1
Y

Fig. 7.8 Circuit to be analysed in Problem 7.3

Q0 'J

_ __clk

QoC1 K[....
Y

clock

7.6 Design a:
(a) mod-5 synchronous binary counter using D-type flip-flops;
(b) mod-5 synchronous binary counter using JK flip-flops;
(c) mod-9 synchronous binary counter using D-type flip-flops;
(d) mod-9 synchronous binary counter using JK flip-flops.
For all four counters use the unused states to aid minimisation. Determine
what happens if the count goes into the unused state and show the results on a
state diagram.

7.7 Design a mod-7 synchronous binary counter using JK flip-flops. Determine
what happens if the count goes into any of the unused states and show the
results on a state diagram.
How must the circuit be modified if the unused state is to lead to state 4 (i.e.
outputs of 100 from the flip-flops (MSB first)).

8 Synchronous sequential
circuits

8.1 INTRODUCTION

Synchronous sequential circuits were introduced in Section 5.1 where firstly
sequential circuits as a whole (being circuits with 'memory') and then the differ-
ences between asynchronous and synchronous sequential circuits were discussed.
You should be familiar with these ideas, and in particular the general form of a
synchronous sequential circuit (see Figs 8.1 and 5.3) before continuing with this
chapter.

As with asynchronous sequential circuits, the operation of synchronous
sequential systems is based around the circuit moving from state to state.
However, with synchronous circuits the state is determined solely by the binary
pattern stored by the flip-flops within the circuit. (In Chapter 5 this was referred to
as the internal state of the circuit.) Since each flip-flop can store a 0 or 1 then a
circuit with n flip-flops has 2" possible states. Note that all states are stable since
the present and next state variables are not connected directly but isolated due to
the (not-transparent) flip-flops. The analysis and design of these circuits is based
upon determining the next state of the circuit (and the external outputs) given the
present state and the external inputs. This is therefore one application of the flip-
flops' next state equations introduced in Chapter 6.

Following the introduction to sequential circuits in Section 5.1, Chapter 5 then
dealt exclusively with asynchronous sequential circuits, concluding with an in-
depth analysis of an SR flip-flop. Chapter 6 continued this theme of flip-flops
which then meant that we could begin to look at synchronous sequential circuits
since these use flip-flops as their 'memory'.

Chapter 7 looked at counters, which themselves are often considered as basic
digital building blocks, and are therefore important digital circuits. The syn-
chronous counters designed in Chapter 7 are in fact (simple types of) synchronous
sequential circuits. In this chapter following a description of the way that
synchronous sequential circuits can be classified, we will look at further examples
of such circuits.

180 Synchronous sequential circuits

8.2 CLASSIF ICATION

The general form of a synchronous sequential circuit is shown in Fig. 8.1. To
recap, this has: external inputs, A, and outputs, Z; a combinational block which
can be considered in two parts; and 'memory' in the form of flip-flops. The two
parts of the combinational block serve to provide the internal outputs to the flip-
flops, Y, and the external outputs, Z.

A

External
Inputs

Present state
variables

=[Combinational circuit to
produce outputs, Z

_.__•[Combinational circuit to
produce outputs, Y

Dig i ta lS to;age !
1

Clock

Z
v

External
Outputs

Next state
variables

Fig. 8.1 General form of a synchronous sequential circuit

Obviously a circuit could have a simpler form and still be a synchronous
sequential circuit. For instance it may have no external inputs or the external
outputs may be functions of only the flip-flop's outputs (the present state vari-
ables). Consideration of such simplified circuits leads to a useful way of classifying
sequential synchronous circuits.

8.2.1 Autonomous circuits

Autonomous circuits are those with no external inputs (except for the clock line)
and which therefore perform independently (autonomously) of other circuits
around them. Such circuits move through a set cycle of states as the circuit is
clocked. The synchronous counters in the last chapter come into this category.
However, the states of a general autonomous circuit obviously need not follow a
binary sequence and furthermore the external ouputs need not simply be the
outputs from the flip-flops (as with the synchronous counters) but could be func-
tions of these (present state) signals. An example of an autonomous circuit is

presented in Section 8.3.1.

8.2.2 General (Moore and Mealy) circuits

The next state of a general synchronous sequential circuit is dependent not only

Design examples 181

on the present state, as in an autonomous circuit, but also on the external inputs.
Such general circuits can be further subdivided into two classes which are
commonly referred to as Moore and Mealy models, l

Moore model
The Moore model describes a general synchronous sequential circuit where the
external outputs are only functions of the circuit's present states (i.e. the flip-flops'
outputs). Because of this in the state diagram of such a circuit the external outputs
can be linked explicitly to the nodes (i.e. states). An example of such a circuit is
given in Section 8.3.2.

Mealy model
The Mealy model is the most general since not only is the next state dependent
upon the present state and the external inputs, but the external outputs are also
functions of both of these sets of variables. Since the external outputs also depend
upon the external inputs then in the state diagram of Mealy circuits the external
outputs cannot simply be associated with a node but rather must be linked to the
arrows (connecting the nodes) which are labelled with the output conditions as
appropriate.

8.3 DESIGN EXAMPLES

8.3.1 Autonomous circuit

We shall design a mod-6 Gray code counter using JK flip-flops.

Design
A mod-6 counter has six states and therefore three flip-flips are needed. The
required next states from the present states are shown in Table 8.1 together with
the necessary J and K inputs to the flip-flops (obtained from the JK excitation
table) and the Karnaugh maps for the six inputs. Note that the states have been
labelled using their binary codes and therefore the Gray code count sequence is
0, 1, 3, 2, 6, 7, 0, 1, etc. (Design Method 1 (see last chapter) is being used.) The
unused states are used to aid minimisation, the consequences of which will
become clear when the state diagram is produced.

From the Karnaugh maps:

J2= Q, Oo =O0
Jl = Qo Kt = Q2 Qo

Jo= Ql + Oz Ko= Ql

which completes the design.

~After the people who suggested such a classification.

182 Synchronous sequential circuits

Table 8.1

STATE

Required states for the mod-6 Gray code counter, together
with the required inputs to the JK flip-flops

Present State Next State
+ + +

Q 2 Q 1 Qo Q 2 Q 1 Qo J2 K2 Jl KI JoKo

0 0 0 0 0 1 0 x 0 x l x

0 0 1 0 1 1 0 x l x x 0

0 1 1 0 1 0 0 x x 0 x l

0 1 0 1 1 0 l x x 0 0 x

1 1 0 1 1 1 x 0 x 0 l x

1 1 1 0 0 0 x l x l x l

5 1 0 1 x x x x x x x x x

4 1 0 0 x x x x x x x x x

J2

Qo 0 1 x x

Qo 0 0 x x

Qo x x

X X

0 x

1 x

Jl

%

%

0 x x x

1 x x x

w

Qo x 0 0 x

Qo x o 1 x

J0

% 1

X

0 1 x

X X X

X X X X

Qo 0 1 1 x

S t a t e d i a g r a m

The consequences of (accidentally) entering one of the two unused states are

shown in Fig. 8.2 together with the state d iagram. Note tha t the states are indexed

by their binary rather than Gray codes. I f either unused state is entered the circuit

will lead back to the correct count sequence so the design is 'safe'.

Q Q,%

STATE 5 1 0 1 0 1 1

STATE 4 1 0 0 1 0 1

Present State Next State

I@--. |
@ @

@ @.*--@

Fig. 8.2 State diagram for the mod-6 Gray code counter

Design examples 183

STATE 3

STATE 5

8.3.2 Moore model circuit

Now we shall design a D-type based circuit that will count up or down, under the
control of a single external input, through the first five prime numbers (in binary).
We must ensure that the circuit will return to state (binary count of) 1 if an unused
state is entered.

Design
Taking 1 as a prime number the first five primes are 1, 2, 3, 5 and 7. Therefore
three flip-flops are required. States (i.e. binary counts) 0, 4 and 6 are unused and
must lead to state 1 (i.e. 0012)-

Fig. 8.3 shows: the state diagram; the necessary next states in terms of the
present states and external input control, X; together with the Karnaugh maps for
the next states, Q+, of the three flip-flops in terms of the present states and X. By
minimising the Karnaugh maps we determine that we need"

O~- D: - Oo " (O2O~ X+ O2O~ X+ O2O~ X+ Q2Q~X) - Qo "(02 ~9 Q~ �9 Qo)

0+1 - D~ - O~ Oo + Q2Qo X+ Q2Q~ Qo X

Q,+~-Do-Q2+Qo+Q~X+Q~X=Q2+Qo+(Q ~ ~ x)

These give the Boolean expressions that must be implemented using combina-
tional logic and used as the inputs to the three D-type flip-flops.

Mealy outputs
In this design the 'count' state can be taken straight from the flip-flops' outputs.
Alternatively a particular state could be decoded using appropriate combina-
tional logic. In both cases these would fit the Moore model since the outputs
would be independent of the external input, X.

A further option would be to additionally use the input X to decode the arrival

STATE

0

1

2

3

4

5

6

7

x @

0

Present State

Q 2 Q I Qo

x indicates

either 0 or 1

(count up) (count down)

Next State Next State

X = O X = I
+ + + + + +

Q2 Q1 Q0 Q2 Q1 Q0

0 0 0 0 0 1 0 0 l reset t o l

0 0 l 0 l 0 l l l

0 l 0 0 1 l 0 0 1

0 l l l 0 1 0 l 0

l 0 0 0 0 l 0 0 1 reset t o l

l 0 l l l l 0 l 1

1 l 0 0 0 1 0 0 l reset t o l

1 l l 0 0 1 1 0 l

Current output Required output
from flip-flops from flip-flops

+

Q2
w

(~x

(~x

%x

0 0

0 0

l 0

0 1

(

(~x

(~x

+

Oo

1 l

l l

l 0

0 l

Fig. 8.3 State diagram, state tables and appropriate Karnaugh maps for the D-type based prime
number up-down 'counter' discussed in Section 8.3.2

Analysis 185

into a particular state from a particular count direction. This would give a circuit
that would conform to the Mealy model. With such circuits care must be taken
because changes in the external inputs may not be synchronised to the clock, in
which case neither will changes to the external outputs. This may lead to transient
states (and so spikes) in the outputs.

8.4 ANALYSIS

8.4.1 Case 1

The circuit to be analysed is shown in Fig. 8.4. From this it can be seen that it is an
autonomous sequential synchronous circuit composed of two flip-flops (and
therefore possessing four states) with a single output, Z = Q0. The next state equa-
tions are:

O~- D~- O~ ~ Q0

O+o- Do- Ol

From these the state table can be written (Fig. 8.5). We then assign letters to the
four states and draw the state diagram using the state table. The timing diagram
for the circuit is shown in Fig. 8.6.

Fig. 8.4

Q1

clock

Circuit analysed in Case 1

Present State Next State

STATE Q 1 Q 0 Z Q +lQ o§ STATE

A 0 0 1 0 .1 B

B 0 1 0 1 1 C

|

|

C 1 1 0 0 0 A

D 1 0 1 1 0 D

Fig. 8.5 Next and present state table and state diagram for the circuit in Fig. 8.4

186 Synchronous sequential circuits

�9 ,

~

c,oc~ I I i ! !
z j

~ .

STATE C A B

Fig. 8.6 Timing diagram for the circuit in Fig. 8.4

V

I
~

,

~

!
I
,

C A B C A

From these it is clear that this is a mod-3 counter with the output giving a pulse
every third clock cycle. In effect it is therefore a divide-by-3 circuit. Note that if
the circuit somehow entered state D it would remain there. This is therefore a
poor design.

8 .4 .2 Case 2

The circuit for this example is shown in Fig. 8.7. This is another two flip-flop
autonomous circuit with in this case:

Q+l = Qo

Q+o= Q,

This gives the state table and state diagram shown in Fig. 8.8. From this, the
timing diagram in Fig. 8.9 can be drawn which shows that the circuit produces
four waveforms out of phase with each other by 1/4 of their period, which is four
times that of the clock.

clock

I,D, Q,I Qo
k ~1 I [c~ Q0

Fig. 8.7 Circuit analysed in Case 2

Present State

STATE Q1 Q0

A 0 0
B 0 1

C 1 1

D 1 0

Next State

Q +IQ 0+ STATE

1 0 D

0 0 A
0 1 B

1 1 C

Fig. 8.8 State table and diagram for the circuit analysed in Fig. 8.7

| @

t
| �9

Summary 187

c,ock i I I -

Qo I
Ql

I I 1-1

I I
I

I ,

....... L__

J

Fig. 8.9 Timing diagram for the circuit in Fig. 8.7

8.5 SUMMARY

In this chapter we have seen how synchronous sequential circuits can be classified
into different types (with the synchronous counters described in Chapter 7 being
autonomous). Examples of a further autonomous design, together with a more
general design (fitting the Moore model) in which the circuit's operation is also
dependent upon an external input have also been given. In addition, two simple
autonomous synchronous sequential circuits have been analysed.

Although these examples use only simple circuits, they demonstrate the princi-
ples underlying more complex ones. Additional complexity could come via the
Mealy type circuit described in Section 8.2.2, via additional external inputs and a
greater number of flip-flops.

The analysis of the circuits in the last two chapters has ultimately led to the
state diagram. This is the usual starting point in the design of general synchronous
sequential circuits. At this initial stage of a design the important feature is that the
circuit 'moves' between states as required (possibly under the control of external
inputs), which is what the state diagram describes. From this the state table can be
produced and then state assignment performed. This is the assignment of the
codes (the bit patterns held by the flip-flops) to particular states. Note that there
may be more codes available than states (and hence unused states).

Although for counters the state assignment to use is obvious this is not gener-
ally so and many possible assignments will exist, all of which will give functionally
(in terms of the state diagram) identical circuits. Once states have been assigned
codes it is a relatively straightforward process to produce the Karnaugh maps for
the next states, in terms of the present states and any external inputs, and so
complete the design.

Such general design is beyond the scope of this book, but can be found in more
advanced texts, and should be readily accessible to the reader with a firm grasp of
the material presented in this and the preceding chapter. Some of the concepts

188 Synchronous sequential circuits

regarding state diagrams and synchronous sequential circuit design are taken up
in the following problems.

8.6 SELF-ASSESSMENT

8.1 What is a synchronous sequential circuit?

8.2 How can synchronous sequential circuits be classified? Illustrate your answer
by drawing the modified general forms for these classes.

8.3 What is the basic design process for an autonomous synchronous sequential
circuit, and how must this be amended for a general design (i.e. one with
external inputs)?

8.4 What are, and happens to, the unused states in synchronous sequential
circuits?

8.7 PROBLEMS

8.1 Redesign the mod-6 Gray code counter from Section 8.3.1 using D-type flip-
flops and compare the result with the JK design.

8.2 Design a circuit using three D-type flip-flops which goes through the binary
count sequence of 0, 2, 4, 6, 5, 3, 1, 0, 2, 4, 6 etc., with count state 7, if entered,
leading to state 0. To what class of circuit does this design belong?

8.3 Modify the mod-7 counter designed in Problem 7.7 so that it is able to count
either up and down under the control of an external input, I (count up for
I= 1), ensuring all unused states lead to state 0.

8.4 Modify the mod-5 D-type flip-flop synchronous binary counter designed in
Problem 7.6(a) so that it counts either up or down under the control of an
external input, I (count up if I= 1).

8.5 What function does the circuit in Fig. 8.10 perform? (This should include
production of the state diagram.) State what problems there could be with
this circuit and produce a solution.

8.6 Analyse the operation of the circuit in Fig. 8.11. Compare this with Case 1 in
Section 8.4.1.

8.7 A circuit contains two D-type flip-flops with inputs:

D~- Oo I + O~ Qo + O~ Oo I D o- O~I + Oo I

Determine its state diagram.

Problems 189

clock

, A

Q Q2

Fig. 8.10 Circuit to be analysed in Problem 8.5

I 1'.

o

clock

ii_

Q D 1 QI

j

Fig. 8.11 Circuit to be analysed in Problem 8.6

8.8 Draw the state diagram for a JK flip-flop by considering it as a synchronous
sequential circuit in its own right. (See Fig. 5.17 for the equivalent state
diagram for an SR flip-flop.) Also draw the state table with the J and K inputs
labelling the columns and the internal input (present state) labelling the rows.
To what class circuit does this belong?

8.9 Produce Karnaugh maps for the internal state (i.e. the state table) and Z for
the circuit in Fig. 8.12. Use the state table to derive the state diagram (which
will be similar in form to the one in Problem 8.8). What variables is Z depen-
dent upon, and therefore to what class does this circuit belong? Add values

)E> z

c,oc D

Fig. 8.12 Circuit to be analysed in Problem 8.9

190 Synchronous sequential circuits

for Z to the state diagram (see Section 8.2.2). State what arithmetic function
this circuit performs and compare this implementation with the combina-
tional equivalent discussed in Chapter 4.

8.10 Draw the state diagrams for circuits that are to act as: (i) a parity checker
and (ii) a comparator. Hints: Binary words to be operated upon are input to
the circuit one bit at a time for (i) and two bits at a time for (ii); the state of
the circuit should indicate odd or even parity for (i) arid whether the words
are equal for (ii).

8.11 Synchronous sequential circuits can be used to detect specific binary
sequences entered one bit at a time. This is achieved by the circuit moving
through different states (as bits are entered) until the desired pattern is
received (and hence the final state is reached). Design a circuit that will
detect the self-contained input sequence 1101. (That is, the final 1 in the
sequence may n o t be taken as the first 1 in a following sequence.)

9 Choosing a means of
implementation

9.1 INTRODUCTION

So far we have seen how to design both combinational and sequential circuits.
These will, on paper, successfully perform many different functions but may well
fail if the practicality of the hardware implementation issues are ignored. Ten
years ago the choice of hardware options was limited; however, nowadays many
choices exist for the designer, some of which are more accessible than others. The
aim of this chapter is to introduce the technology options that are available so
that the appropriate selection can be made from a sound engineering basis.

As far as technology is concerned designers must choose the balance they
require between the circuit speed of operation and its power consumption. The
two choices available are typically either bipolar or Complementary Metal Oxide
Semiconductor (CMOS). However, other more exotic high-speed options are
available such as Emitter Coupled Logic (ECL) and Gallium Arsenide (GaAs).
CMOS offers low power consumption with moderate speeds. Alternatively,
bipolar offers high speed but high power consumption. A combination of both is
the ideal but was not available until only a few years ago. A mixed bipolar and
CMOS technology (called BiCMOS) is now available and has an excellent combi-
nation of high speed and low power with the exception that this involves a more
complex manufacturing procedure and hence is currently more expensive. As with
most aspects of electronics technology the cost will certainly fall and BiCMOS
may well be a low-cost technology option for the future.

The most common technology 10-15 years ago was bipolar (i.e. TTL
(Transistor Transistor Logic) or ECL) but now CMOS is the preferred choice.
Table 9.1 provides a comparison of logic families for various technology options.
This table will provide a useful reference throughout this chapter. We shall start
with a description of bipolar logic so that its limitations can be appreciated before
moving to the more popular CMOS technology.

Table 9.1 Comparison of logic families

Device Description Technology Delay(ns) Pstatic Vohmin
Volmax
@Iomax

Vihmin
Vilmax

lihmax
Iilmax

lohmax
Iolmax

74

74S

74LS

74AS

74ALS

74F

74C

74HC

74HCT

74AC

74ACT

Standard TTL

Schottky clamped TTL- transistors do not enter saturation

Low power Schottky - as 74S but larger resistor values

Advanced Schottky- same as 74S but improved processing

Advanced low power Schottky - low power version of 74AS

Fast--compromise between S and ALS

Standard CMOS - first CMOS parts in TTL pinout

High speed CMOS - improved CMOS

High speed CMOS with TTL i/p voltage levels

Advanced high speed CMOS (1.5 lgn CMOS)

Advanced high speed CMOS with TTL i/p voltage levels

74(A)BCT High speed BiCMOS for line drivers

74LVC

74LV

74LVT

74ALVC

4000B

F100K

Low voltage (2.7-3.6 V) 1 ~rn CMOS

Low voltage (2.7-3.6 V) 2 lma CMOS

Low voltage BiCMOS (optional 5 V inputs, 3 V outputs)

Advanced low voltage 1 larn CMOS

Early CMOS, not TTL pin compatible, 5--12 V supply

100K ECL series- very fast but poor noise margins

TTL 10 10mW

TTL 3 20mW

TTL 10 2mW

TTL 2 8mW

TTL 4 1 mW

TTL 3 4 mW

CMOS 30 50gW

CMOS 9 25 gW

CMOS 10 25 ~tW

CMOS 4 25 gW

CMOS 6 25 gW

BiCMOS 3.5 600 gW

CMOS 5 50 gW

CMOS 9 50 gW

BiCMOS 4 400 laW

CMOS 3 50 laW

CMOS 75 50 laW

ECL 0.75 20mW

2.4/0.4

2.7/0.5

2.7/0.5

2.7/0.5

2.7/0.5

2.7/0.5

4.2/0.4

4.3/0.33

4.3/0.33

4.3/0.44

4.3/0.44

2/0.55

2/0.55

2.4/0.4

2/0.5

2/0.55

2.5/0.4

-0.9/-1.7

2/0.8

2/0.8

2/0.8

2/0.8

2/0.8

2/0.8

3.5/1

3.5/1

2/0.8

3.5/1.5

2/0.8

2/0.8

2/0.8

2/0.8

2/0.8

2/0.8

3.5/1.5

--1.2/-1.4

40 laA/- 1.6 mA

50 laA/-2 mA

20 laA/-0.4 mA

20 gA/-0.5 mA

20 laA/-0.1 mA

20 gA/-0.6 mA

+2laA

_+o.l~h

+_0.1~n

+_0.1~A

_+0.1 ~A

0.07 mA/0.65 mA

___lgA

+_lgA

_+lgA

+_5laA

+0.1 gA

240 ~A, 0.5 gA

- 0 . 4 m A / 1 6 mA

- 1 mA/20 mA

-0.4 mM8 mA

-2 mA/20 mA

-0.4 mh/8 mA

- 1 mA/20 mA

+ 4mA

+4mA

+4mA

+ 24mA

+ 24mA

- 15 mA/64 mA

+ 24mA

+6mA

+ 32mA

+ 24mA

0.6 mA/2.3 mA

_+ 40 mA

The bipolar junction transistor 193

9.2 THE BIPOLAR JUNCTION TRANSISTOR

9.2.1 The B J T as a switch

The bipolar junction transistor or BJT as it is more commonly known can be
considered in digital terms as a simple single-pole switch. It physically consists of
three layers of semiconductor (which can be either N-type or P-type) of which two

transistor types exist - NPN or PNP. We shall consider the operation of the NPN
device since this device is used mainly in bipolar digital switching circuits.

The symbol for the NPN transistor is shown in Fig. 9.1 and is connected as a
simple switch. The transistor consists of three terminals: base (b); emitter (e); and
collector (c). Notice that the arrow on this type of transistor is pointing out from
the emitter which indicates the direction of current flow. For the PNP the arrow
points in. A simple rule for remembering the direction of the arrow is that with an
NPN transistor the arrow is Not Pointing iN?

Vin

Fig. 9.1 A transistor switch

Vcc

Ib

Rb

" " Ic

1 Rc
o/p

o

Vout

The input to the circuit in Fig. 9.1 is connected to the base terminal via the
resistor R b whilst the output is taken from the collector. Several text books are
available that discuss the operation of a bipolar transistor in detail. ~ However, for
this simple BJT switch, and other BJT applications to follow, we just need to
know the following.

1. To turn the transistor on a voltage at the base with respect to the emitter of

greater than 0.7 V is needed. Under this condition a large collector current, I~,
flows through the transistor. The amount of current that flows is related to the

LB. Hart, Introduction to Analogue Electronics, in this series.

194 Choosing a means of implementation

base current, I b, by I~ =hf~Ib, where hfe is called the current gain and is typically
100. In this condition the transistor is in the on state, called saturation, and the

voltage across the collector to emitter is approximately 0.2 V and is called V ~ .

2. To turn the transistor off the voltage at the base with respect to the emitter has

to be less than 0.7 V. The collector current that flows is now zero (or more

accurately a very small current called the leakage current). The transistor in

this off state is called cut-off and the voltage across it is the supply voltage, Vcc,
which is usually 5 V.

Example 9.1

Determine the value of R b needed in Fig. 9.1 to place the transistor in the satu-

rated state when the input is 5 V. Assume that hfe = 100 and R c- 1 k~.

Solution

In the saturated state the voltage across the transistor is 0.2 V. We need to work
back from the collector side to the base input. Using Kirchhoff's Voltage Law
(KVL)

Vcc-I~R~+ Vcesa t

5=I~x 1 • i 0 3 +0.2

Hence I c = 4.8 mA and so I b = IJhfe-48 laA. Using KVL on the input side:

Vin = IbRb + V~

To turn the transistor on requires the base-emitter voltage to be at least 0.7 V.
Hence

Rb-(5 - 0.7)/48 gA =89.6 kf~

Consequently, when the input is 5 V the transistor is turned on (saturated) and
hence the output is Fcesa t or 0.2 V. With the input at 0 V the transistor is turned off
(cut-off) and the output is 5 V. If we let 5 V represent a logic '1' and 0.2 V a logic
'0' then 2 the circuit in Fig. 9.1 performs the operation of an inverter or a NOT

gate.
We shall now look at how other logic gates are implemented with BJT devices.

9.2.2 The BJT as a logic gate

Diode transistor logic
The DTL or diode transistor logic first became available commercially in 1962.
The circuit diagram for a two-input DTL N A N D gate is shown in Fig. 9.2(a) and
although it is no longer available it does provide a useful introduction to the TTL

-'As we shall see both logic levels are assigned to a voltage range rather than a single voltage.

The bipolar junction transistor 195

logic family which follows. Before proceeding we need to point out that when the

voltage across a diode equals 0.7 V (anode (A) voltage with respect to cathode
(K)) then current will flow and this is called forward bias. Any voltage less than
0.7 V will result in negligible current flow. The two conditions are shown on a
current/voltage plot in Fig. 9.2(b).

i/Po

i/p

o H

R1

'i D1

D2

Vcc

R3 (I K ~)

o/p

D3 D4 Ib

Vout

R2
(5Kf~)

12

-2V
A K

Reverse bias

A K

Forward bias

0.7V V

(a) (b)

Fig. 9.2 Diode transistor logic circuit and ideal diode II Vcharacterist ic

The circuit in Fig. 9.2(a) is actually a two-input AND gate followed by a NOT
gate (i.e. a N A N D gate) and functions as follows. If one input is low (less than
0.2 V) then the corresponding diode is forward biased and the voltage appearing
at point 'P' is 0.9 V (since 0.7 V exists across a forward biased diode).This voltage,
however, is insufficient to turn on diodes D3 and D4 and so the voltage appearing
at the base of T1 is insufficient to turn on transistor T1. The current flowing
through T1 is small and so the voltage dropped across R3 is also small and the
output voltage is therefore close to 5 V i.e. a logic 1. Thus when either or both of
the inputs are low the output is high.

Now if both inputs are high then the diodes D 1 and D2 are turned off and the
voltage at point 'P' rises to turn on diodes D3 and D4. Hence the voltage
appearing at the base of T 1 is dictated by the values of resistors R 1 and R2. If R1
and R2 are chosen carefully then transistor T1 can be turned on and the output
will be V~,~ or 0.2 V.

So to summarise: if either or both inputs are low the output transistor, T1, is
turned off and hence the output is high; if, however, both inputs are high (' 1') then
the transistor T1 is turned on and the output is low ('0'). The circuit thus operates
as a two-input N A N D gate.

Example 9.2

For Fig. 9.2(a) what value of R 1 should be chosen to turn on T1 when both inputs
are high? Assume that the hfe of T 1 is 100.

196 Choosing a means of implementation

So/ut/on

To turn on T 1 we need a base-emitter voltage of 0.7 V. Hence using KVL from R 1
to R2 reveals:

V~c=ItR l + VD3 -I- VD4-t- Vbl-- I~R~ +0.7 +0.7 +0.7 =I tR ~ + 2.1

Since we know Vc~ then to find R~ we need to know I 1, which from Kirchhoff's
Current Law (KCL) is equal to the sum of 12 and I b since D1 and D2 are off.
Calculating each of these currents gives:

I2 = (Vb,- (-2))/Rz

L = (0.7- (-2))/(5 • 103)=0.54 mA

Ib=Ic/hf~=((V~c-O.2)lR3)/hr~=4.8/(1 • 103• 100)=48 gA

Therefore I~ =0.588 mA and substituting this into the above equation for V~ to
find R~ gives:

5=(0.588• 10-3)R~ +2.1 =~ R~ =4932 ~

Standard TTL (Transistor Transistor Logic)- 74 series
The standard TTL (short for Transistor Transistor Logic) logic gate was first
marketed in 1963 under part numbers 74XXX. For example the 7400 is a
quadruple (i.e. it contains four) two-input N A N D gate in one package whilst the
74174 is a Hex D-type (i.e. six D-types in one package). The circuit diagram for a
single two-input NAND gate implemented in TTL is shown in Fig. 9.3. Although
it is not immediately obvious it does build on the DTL design of Fig. 9.2(a). The
diodes D1, D2 and D3 have been replaced by a single transistor (T1) that has a
multiemitter (two emitters in this case). The diode D4 and resistor R2 is replaced
by the R2, T2 and R3 configuration. Finally the output stage has been replaced by
a circuit that is called a totem pole 3 output. The multiemitter input transistor is
quite simply an NPN transistor with more than one emitter which mimics the
operation of the two diodes D 1 and D2. The circuit operates as follows.

If at least one input is low (0.2 V) then that emitter is forward biased and the
transistor is turned on (with current flowing out of the input that is low). A
voltage of V~, (0.2 V) appears across T1 and hence the voltage at the base ofT2 is
0.4 V (i.e. 0.2 +0.2). This is insufficient to turn on transistor T2 and hence the
current through R2 and R3 is negligible. Consequently, the voltage at the base of
T3 is 0 V and at the base ofT4 is approximately 5 V. Hence T4 is turned on but not
quite saturated and the output is h igh- but how high?

Example 9.3

What is the output high voltage when at least one of the inputs is low and what

current would flow out of the input?

3The term totem pole is used simply because the components are arranged above each other.

The bipolar junction transistor 197

i /Po ,
i/pO ,

I

I

I

I

I1

/fT,\
I

I

I

R1

(4K~)

Vcc

R2 R4

(1.6K~) (130~)

T4

2

(1Kn)

D1

o/p
o

Vout

Fig. 9.3 Standard TTL two-input NAND gate- 74XXX series

Solution

From the above analysis we know that the voltage at the base of T4 is approxi-
mately 5 V when at least one input is low. Hence the output voltage is"

Voo~- Vb4- (Vb~4+ VD~)-5-(0.7 +0 .7) - 3.6 V

This is classed as a TTL logic high voltage under no load and is called Vou. Note
that if a load is added which draws current through T4 then the output voltage
will fall. This is caused by the voltage dropped across R2 as the base current

through T4 increases and an additional volt drop across D1 and Vb~ 4 due to their
internal resistances. A minimum value for VOH for the 74 series is consequently set

below 3.6 V at 2.4 V and is called VOHmm-
Since one input is low then the emitter-base ofT1 is forward biased and current

will flow out of the emitter. Since T2 is off then the current must be supplied via

R1. Thus"

V~c-I,R, + Vb~ , + V
Substituting"

Therefore:

5-I~ x 4 x 103+0.7 +0.2

I , - (5 - 0 .7- 0.2)/(4 x 103) - 1.025 mA

This current is referred to as the input low current (or I~L) and any stage driving

this input must be able to receive (or sink) this current and still maintain an input

low of 0.2 V. Precise control of resistance values from chip to chip is difficult and

198 Choosing a means of implementation

hence IIL c a n vary considerably. To account for the wide tolerance in resistor
values the maximum value quoted for I~L is 1.6mA and is called I~Lmax" It is
possible to apply a larger value of input voltage than 0.2 V and for it still to be
recognised as a logic '0'. The maximum input low voltage for the 74XXX series is

quoted at 0.8 V and is called V~Lma x. This will provide 0.6 V immunity (0.8-0.2)
against a noise signal appearing at the input which would corrupt a logic ' 0 ' - such
a safety tolerance is called the noise margin and is discussed later in this chapter.

Now, with both inputs high (3.6 V, from Example 9.3) the two emitter-bases of
T1 are reverse biased and the current through R 1 falls thus increasing the voltage
at the base of T1 until its base-collector is forward biased. This will provide base
current to turn on T2 which then turns on T3 and hence the output will be equal to
Vcesa t or 0.2 V - which is sufficiently low to drive other TTL inputs. When the
output drives other TTL loads then this output transistor (T3) must be able to
sink I~L (1.6 mA) and still maintain a valid logic zero. In fact the output of any
TTL gate may well drive more than one TTL input and hence the output must
have sufficient current drive to drive several loads without the voltage at the
output rising above 0.8 V (ViLmax). The capacity for the output to drive more than
one TTL input is called its fan out. Now, if the output is at 0.8 V then any slight
noise will result in the output no longer providing a valid logic zero. Thus a safety
margin is allowed of 0.4 V and the output low voltage must not be allowed to rise
above 0.4 V - called VOLma x-

So in summary if at least one of the inputs is low then the output is high, whilst
if both inputs are high then the output is low. The circuit thus operates as a two-
input NAND gate.

The two diodes (shown by dotted lines in Fig. 9.3) at the input are protection
diodes to protect the gate against negative going voltages at the input caused by
ringing of fast signals on the inputs. The presence of a negative voltage at the
input will turn on the diodes and hence limit the input to a maximum negative
voltage of-0.7 V.

Example 9.4

The output of a standard TTL gate is low when both inputs are high. What is the
minimum value of input voltage that can be classed as a logic '1'?

Solution

Using Fig. 9.3, when the output is low, T3 is turned on and we can work back-
wards from here. The base of T3 will be at 0.7 V and in order to generate this
voltage across R3 then T2 must be turned on, i.e. its base must be at 1.4 V. To turn
on T2 we require a base current from T1 into T2 and hence the base-collector of
T1 must be forward biased, i.e. 2.1 V. In other words, the base of T1 will be at
three forward biased diode voltage drops. So that the input voltage does not influ-
ence the base of T1 we must reverse bias the emitter bases of T1. In order to

The bipolar junction transistor 199

achieve this we need to have a voltage at the input of greater than 2.1 V. In fact it
is found for TTL that input voltages slightly less than 2.1 V (i.e. 2.0 V) are suffi-
cient to turn on the output transistor.

The valid voltage levels for a 74 series standard TTL are thus summarised as:

ViHmin=2.0V; ViLmax:0.8 V; VoHmin=2.4V; and VoLmax=0.4V as can be seen in
Table 9.1.

The totem-pole output stage
At the output of all gates there is a capacitive load (CL) caused by the input capac-
itance of the next stage. This could be a printed circuit board interconnect or quite

simply an oscilloscope lead. With the DTL circuit of Fig. 9.2(a) when the output

changes from low to high, this capacitance (C L) has to be charged through the
collector resistor R3. Hence the delay time for the output to charge from low to
high (i.e. '0' to '1') is limited by the time constant R3 x C L. To reduce this we could
just reduce the value of R3 but then the power consumption will increase when the

output transistor T1 is on.
The totem-pole output Fig. 9.3 gets around these problems. When the output is

charging, the time constant is now dependent uponthe resistance of the transistor
T4, diode D 1 and R4. Since R4 is only 130 fl and both T4 and D I are on then the
time constant is much smaller than the DTL output circuit and hence the low-to-
high delay is greatly reduced. In this case the transistor T3 is off and power
consumption is low. This type of circuit is called an active pull-up.

The presence of both D1 and R4 are essential for the reliable operation of the
TTL output stage. When the output is low, i.e. T3 on, the base ofT4 is at a poten-
tial of: Vbe 3"k- Vc~s,,,2 =0.7 +0.2 =0.9 V. Since the output is 0.2 V then this is insuffi-
cient to turn on the combination of T4 and D 1 which results in no current being
drawn from the supply. However, without the diode D 1, then T4 will turn on and
current will flow into T3 thus consuming power and the output voltage will rise
(due to the resistance of T3) to a level between a 'low' and a 'high' (i.e. an illegal
state). Hence D 1 is inserted to keep T4 turned off when T3 is on. Resistor R4 is
present so as to limit the current when the output is high and thus provides a short
circuit protection if the output is inadvertently tied to 0 V.

Example 9.5

Given that the input and output currents for a standard 74 series TTL gate are as
shown in Table 9.1 then how many standard 74 series TTL inputs will a single
standard 74 series device drive?

Solution

This is called the fan out and is equal to the lesser of IOLmax/llLma x or IOHmax]lIHma,~ ,.

In both cases this is 10. Hence a 74 device can drive 10 other 74 series devices,
i.e. it has a fan out of 10.

200 Choosing a means of implementation

Example 9.6

Many other logic gates can be implemented with the standard 74 series. What

function does the circuit in Fig. 9.4 perform? Assume V~L--0.2 V and V~H--3.6 V.

4K I

Ao . ,/IT, \

BO
/,L \

1 4K~

ill ~

Vcc = 5V

1.6K ~ 130

T6

1

5

o/p
�9

Vout

Fig. 9.4 Circuit for Example 9.6

Solution

A = 0.2 V, B= 0.2 V. Both input transistors T 1 and T2 are on and thus the bases of

both T3 and T4 are at 0.4 V. This is insufficient to turn on the output transistor T5
and the collectors of both T3 and T4 are high which turns on transistor T6, thus

pulling the output high.
A =0.2 V, B=3.6V. T1 is on but T2 is off. With T1 on then the voltage at the

base ofT3 is 0.4 V and so this is insufficient to turn on both T3 and T5. However,

since T2 is off then the base of T4 can rise so as to turn on T4 and then T5. The

output is thus low.
A = 3.6 V, B=0.2 V. This time T2 is on and T1 off and the transistors T3 and T5

are on, forcing the output low.
A = 3.6 V, B= 3.6 V. Both T1 and T2 are turned off and so both T3 and T4 are

on which therefore turns on T5 and the output is low.
Since the output is only high when both inputs are low then the circuit functions

as a two-input NOR gate.

Schottky clamped T T L - 74S series
The standard TTL series has a typical propagation delay of 10ns (the term propa-

gation delay was introduced in Chapter 4 and will be covered in more detail later

The bipolar junction transistor 201

in this chapter). By this we mean that when an input change occurs it takes 10 ns
for the effect to propagate to the output. In the early 1970s it was found that this
propagation delay could be decreased by replacing those transistors that saturate
with Schottky clamped transistors.

So far we have seen that when a transistor turns on it enters saturation. This
name is given to this condition because the base is saturated with charge. Before a
saturated transistor can be turned off this charge must first be removed. This can
take a considerable amount of time and thus slows down the switching speed of
the device. Preventing the transistor from entering saturation will therefore
increase the switching speed. The Schottky TTL series uses such a technique by
connecting a Schottky diode between the base and collector of the transistor to
stop the device entering saturation. Hence these circuits are much faster than the
non-Schottky clamped series.

A Schottky diode is a metal-semiconductor diode that has a forward volt drop
of only 0.3 V as opposed to the standard PN junction diode that has a forward
voltage drop of 0.7 V. The Schottky diode is connected as shown in Fig. 9.5(a)
between the base and collector. Without the Schottky diode, when the transistor
is turned on, the base is 0.7 V above the emitter, the collector-emitter voltage is
0.2 V and this is called saturation. However, addition of the Schottky diode
(which will be forward biased due to the base at 0.7 V) clamps the collector at a
voltage this time of 0.4V with respect to the emitter. Remember, a forward biased
Schottky diode has 0.3 V across it. Hence the transistor is on but is not in satura-
tion. When such a transistor is turned off it will now not take as long to change
state since the base is not saturated with charge. The resulting Schottky transistor
is represented by the symbol illustrated in Fig. 9.5(b).

(a) (b)

Fig. 9.5 Schottky clamped transistor and its associated symbol

The Schottky series (labelled the 74S series) thus emerged as a high-speed
replacement for the standard 74 series. The circuit diagram of a two-input NAND
gate implemented with Schottky clamped transistors is shown in Fig. 9.6. Apart
from the use of Schottky transistors the circuit also has other improvements. The
output diode D1 has been replaced with two transistor stages T3 and T5. This
again provides two 0.7 V drops between the T2 collector and the output so that T5

202 Choosing a means of implementation

is not turned on at the same time as T6. However, the two-transistor arrangement
without the diode also improves the output current drive when the output is in the
high state. In addition, Schottky transistor T4 is included so as to improve the
switch-off time of transistor T6.

A o
B 0

Vcc--5V

R4
R1 (900 ff~) (50 ~)

y U
T3 T5

/ 3.5K o/p

j 500 f~
R 6 0 D ~ q'6 R2

4

- $

Fig. 9.6 Schottky clamped TTL NAND gate- 74SXXX series

The 74S series has a typical propagation delay of 3 ns and a power dissipation
of 20 mW. The voltage levels at the output are changed slightly. In the high state
since the diode has been removed then the minimum output high voltage is
increased to 2.7 V. In the low state since the output transistor does not saturate
then the maximum output low voltage has been increased to 0.5 V.

Due to these circuit changes the input and output currents for a Schottky
clamped 74S series are different from the 74 series. From Table 9.1 we can see that
the fan out is 10 when the output is low but 20 when the output is high. However,
it is the lower value (i.e. 10) that indicates the number of loads that can be driven.

Low-power Schottky- 74LS series
The low-power Schottky clamped TTL logic family (74LS series) was released in
1975. This, as the name suggests, has a lower power dissipation than the 74S
series. A circuit diagram for a two-input NAND gate is shown in Fig. 9.7. The

main differences from the 74S series are:

The bipolar junction transistor 203

AO

B�9

D1

RI
(20K~)

Vcc=5V

R4
(12o ~)

R3

(8K f2) T~.T3 ~/~T

5

~ 4kl]

1.5I~

4

D2
f~ o/p

Fig. 9.7 Low-power Schottky clamped TTL NAND gate - 74LSXXX series

1. larger resistors are used throughout to reduce power consumption at the
expense of longer propagation delays;

2. the multiemitter input trarisistor is replaced by Schottky diodes D1 and D2.
This is because these diodes can take up a smaller area on chip;

3. the Schottky diodes D3 and D4 assist in the removal of charge from T5 thus
speeding up the high-to-low propagation delay.

Typical delays for the 74LS series are 10 ns with a power dissipation of 2 mW.
The logic levels are the same as the 74S series whilst the input and output currents
for a 74LS series are such that the fan out is now 20.

Advanced Schottky TTL- 74AS, 74ALS and 74F series
In approximately 1980 advancements in manufacturing of the 74S and 74LS
series resulted in the release of the Advanced Schottky (74AS) and Advanced
Low-power Schottky series (74ALS), respectively. As can be seen in Table 9.1, the
ALS and AS series provide a much faster propagation delay time than the LS and
S series, respectively. Also the ALS and AS series have a significant reduction in
power consumption when compared to their associated LS and S series. These
improvements have been achieved by implementing the design with smaller tran-
sistors (due to improvements in manufacturing), by increasing resistor values
slightly and by using subtle circuit modifications.

204 Choosing a means of implementation

Another family appeared at this time and that was the 74F series (sometimes
referred to as Fast). This family is a compromise between the AS and ALS series
having a typical delay of 3 ns and a power dissipation of 4 mW.

9.3 THE MOSFET

9.3.1 The M O S F E T as a switch

The Metal Oxide Semiconductor Field Effect Transistor (or MOSFET) has proved
over the past 15 years to be a very attractive alternative to the BJT. In recent years
the MOSFET has become the preferred technology mainly because manufacturing
improvements have advanced further with FET processes compared to bipolar
processes. A cross-section of an N-channel MOSFET is shown in Fig. 9.8(a). We
shall study the device at this level since this will help in our understanding of how
memory devices opera te - see Chapter 10. The transistor has four terminals:
gate(G); source(S); drain (D); and substrate. Just as in the BJT the MOSFET is
composed of three semiconductor layers. However, for the FET the middle
terminal (the gate) is separated from the P-type semiconductor substrate by a thin
gate oxide of approximately 0.05 Ima in thickness. The drain and source are
connected to the N-type regions either side of the gate. The original MOSFETs
used a metal gate but now all MOSFETs are manufactured with a polysilicon
gate. 4 One symbol for an N-channel MOSFET is shown in Fig. 9.8(b).

Fig. 9.8 Metal Oxide Semiconductor Field Effect Transistor

The device operates by using the voltage on the gate to control the current
flowing between source and drain. When VGs is zero, application of a positive
voltage between the drain and source (VDs) will result in a negligible current flow
since the drain to substrate is reverse biased. When VGs is increased in a positive
direction electrons are attracted to the gate oxide-semiconductor interface. When
VBs is greater than a voltage called the threshold voltage (VT) the P-type material
close to the gate oxide changes to N-type and hence the source and drain are

4L. lbbotson, Introduction to Solid State Devices, in this series.

The MOSFET 205

connected together by a very thin channel. Now, when a positive voltage, VDS, is
applied a current, IDS, will flow from drain to source and the transistor is said to be
turned on. The transistor can be turned on even more by further increasing the
gate voltage. This is because more electrons are attracted to the oxide-semicon-
ductor interface and the depth of the channel increases. Consequently the resis-

tance between source and drain reduces thus increasing the current IDS"

The current-voltage relationship of the MOS transistor can be modelled

approximately with two equations depending upon the value of VDS:

If lids < VGs- V v then the device is in the linear 5 region and

IDS-- K[(Vcs- Vv) lids- VDS/2]

If VDS > VGs- V v then the device is in the sa tura t ion region and

IDS-- [K/2][VGs- VT] 2

(9.1)

(9.2)

where K=(W/L)#Cox and W and L are the width and length of the gate; # is the
mobility of carriers (this is a measure of the ease at which a carrier can pass
through a semiconductor material); and Cox is the oxide capacitance per unit area
of the thin gate oxide region. Physically, the length of the gate is the distance
between the drain and source and is marked as L in Fig. 9.8(a), whilst the width W
is the dimension into the page. Since increasing K increases IDS then K is some-
times referred to as the gain of the transistor even though it has dimensions of
#A V 2. These MOS equations thus allow the voltages around the transistor to be
calculated.

Let us look at a simple N-channel MOSFET inverter (illustrated in Fig. 9.9(a))
as a means of illustrating the application of this type of transistor. Here, the tran-
sistor can be thought of as a switch such that when VGs is greater than the
threshold voltage, V T (typically 1 V), then the transistor will turn on. Therefore

i/p

G

Vdd=5V

R L

o/p

 S:bvs s
i/p

Vdd=5V

Y
~ o / p

J i/p

Vss Vss

Vdd=5V

o o/p

-1
(a) (b) (c)

Fig. 9.9 MOS inverter

5The term linear is used because for small values of VDS the current It) s is linearly related to VDS.

206 Choosing a means of implementation

current flows from the supply through the load resistor RL, through the transistor
to ground (V~). As VGS increases the current flowing will increase and by choosing
the appropriate value of R E then the voltage at the output will be pulled down

towards 0 V. If on the other hand the gate-source voltage is less than V T then the

transistor is turned off (i.e. the switch is open) and the output is pulled up to Vjd
(usually 5 V). This circuit thus operates as an inverter or a NOT gate. From the
bipolar section we can see that the NMOS device operates as an active pull-down,

whilst the resistor R E is called a passive pull-up.

Example 9.7

For the circuit shown in Fig. 9.9(a) what value should be chosen for R L such that
the output will be 0.5 V when the input voltage is 5 V. Assume that K for the tran-
sistor is 128 gA V -2.

Solution

We need to decide which of the two Equations 9.1 and 9.2 to use. Since the input
voltage (VGs) is 5 V and the output voltage is 0.5 V (VDs) then VDs < VGs- V T and
hence the device is in the linear region, i.e. we use Equation 9.1:

IDs=K[(VGs - V+) VDS- V~s/2] = 128• 10-6[(5 - 1)0.5- 0.25/2] =0.24 mA

Since we want an output voltage of 0.5V then the voltage across the load

resistor, R E, will be 4.5 V and so:

4.5V=IDs•215 L ~ RE= 18 750 f~

To create a resistor of this size would require a large area on an integrated
circuit. Hence the resistor is replaced with an MOS transistor which is wired by
attaching the gate to the drain and hence the device is always in saturation. The
MOS transistor wired in this manner is shown in Fig. 9.9(b) and is called an active

resistor. The area taken up by the transistor is approximately 1/200 of that of an

equivalent value resistor.
There are two points to notice about the symbol for the N-channel device.

Firstly the arrow pointing in on the substrate terminal indicates that the device is
N-channel. Secondly, the dotted line indicates that this device is an enhancement

mode device. With enhancement mode devices a current will only flow when a
voltage above the threshold voltage is applied to the gate. Depletion mode devices
exist where a current will flow even if the gate is at zero volts. The symbol for these
has a continuous line between source and drain. Since we shall only be using
enhancement mode devices and to simplify the drawing of the transistor symbol
we shall use the symbol shown in Fig. 9.9(c) to represent an n-channel enhance-
ment mode MOSFET which is easier to draw. Also it will be assumed that the
substrate for all n-channel devices is always connected to 0 V. PMOS enhance-

ment mode devices exist and these have the substrate connected to VDD.

The MOSFET 207

9.3.2 The M O S F E T as a logic gate

Apart from the inverter shown in Fig. 9.9(b) and (c) it is possible to use the
NMOS transistor to form other logic gates as we shall see in the next example.

Example 9.8

For the circuits in Fig. 9.10(a) and (b) determine the functions implemented.

[j
]

i1

Vdd Vdd

Vss

T j f
o/p oo/P

o

J
A B
o o

- "~ Vss-

(a) NAND (b) NOR

Fig. 9.10 NMOS NAND and NOR gates

Solution

Fig. 9.10(a): if either or both of the inputs A and B are low (i.e. less than VT) then
one of the NMOS transistors will be off and hence the output voltage will be
pulled up to Vdd. The only way for the output to go low is for both A and B to be
high. The circuit thus operates as a two-input NAND gate.
Fig. 9.IO(b): if either A or B or both are high then the output is pulled to ground.
The only way for the output to go high is for both A and B to be low. The circuit
thus operates as a two-input NOR gate.

This type of logic is called NMOS logic. Historically the first MOS logic that
appeared was in 1970 and used PMOS transistors. It was not possible at the time
to produce NMOS devices due to problems with processing. However, in 1975
these problems were remedied and NMOS logic gates were manufactured taking
advantage of the higher mobility of the N-channel carriers in NMOS transistors
compared to the P-channel carriers in PMOS devices. We can see from K=
[W/L]#Co~ that a higher mobility will result in a higher value of K allowing a

208 Choosing a means of implementation

larger current to be passed within the same size transistor. In addition the higher
the mobility, the faster the switching speed. In fact N-channel mobility is 2-3
times that of P-channel carriers and hence the NMOS logic operates at 2-3 times
the speed of PMOS.

One problem of the NMOS gates (and for that matter PMOS) is that the upper
transistor load is just acting as a resistor. When the lower transistor is on then
current will flow from Vdd to V~ and hence these types of devices consume a
moderate amount of power. Consequently in 1978 both PMOS and NMOS
devices were combined on to the same chip to produce the Complementary Metal
Oxide Semiconductor family or CMOS as it is more commonly known.

9.3.3 CMOS inverter

A CMOS inverter is shown in Fig. 9.11. It consists of one NMOS and one PMOS
transistor. The PMOS device is indicated by the negation sign (i.e. a bubble) on its
gate and has a negative threshold voltage of typically-1V. To turn on a PMOS
device we require a voltage, VGs, more negative t han -1 V. Notice that the two
drains of the two MOS transistors are connected together and form the output
whilst the two gates form the single input. Due to the difference in the mobilities
of the two devices the PMOS device is made with its WIL ratio 2-3 times larger
than the NMOS device. This results in the two transistors having the same value
of K so that both will have the same electrical performance.

i/p
c

f

Vdd

Vss

Fig. 9.11 CMOS inverter

The circuit operation depends upon the individual gate-source voltages. When
the input voltage is 5 V then the NMOS VGs is 5 V and hence this device is on.
However, the PMOS VGs is 0 V and so this device is turned off. The output voltage
is thus pulled down to 0 V. Now with the input at 0 V the NMOS VGs is 0 V and
hence is turned off. However, the PMOS VGs i s - 5 V and is thus turned on
(remember a voltage more negative than the threshold voltage is needed to turn
on a PMOS device). With the PMOS device on, the output voltage is pulled up to

Voo. The circuit thus operates as an inverter or a NOT gate.

The MOSFET 209

CMOS inverter power dissipation
You should notice that when the input is steady at either a high or a low voltage
(static condition) then one transistor is always off between V~d and V~s. Hence the
current flowing is extremely small - equal to the leakage current of the off tran-
sistor which is typically 100 nA. As a result of this the static power dissipation is
extremely low and it is this reason that has made CMOS such a popular choice of

technology.
For input voltages between V T and Vd~- V T then the individual MOS transis-

tors will be switched on by an amount dictated by Equations 9.1 and 9.2 and
thus current will flow from Vd~ to V~. When the input voltage is V~J2 both
transistors will be turned on by the same amount and hence the current will rise
to a maximum and power will be dissipated. On many integrated circuits,
several thousand gates exist and hence this power dissipation can be large. It is
for this reason that the input voltage to a CMOS circuit must not be held at
Vd,]2. When the inputs are switching the power dissipated is called dynamic
power dissipation. However, as long as the input signals have a fast rise and fall
time then this form of dynamic power dissipation is small. The main cause of
dynamic power dissipation, however, in a CMOS circuit is due to the charge
and discharge of capacitance at each gate output. The dynamic power dissipa-
tion of a CMOS gate is therefore dependent upon the number of times a capac-
itor is charged and discharged. Hence as the frequency of switching increases so
the dynamic power dissipation increases. The dynamic power dissipation for a
CMOS gate is equal to

edynamic- CL X V~d x f (9.3)

wherefis the switching frequency and C L is the load capacitance.
The total power dissipated in a CMOS inverter is thus the sum of the static and

dynamic components.

Example 9.9

Compare the power dissipated by a CMOS inverter driving a 50pF load at (a)
10 kHz and (b) 10 MHz. What average current flows in each case. Assume a 5 V
power supply.

Solution

(a) 10 kHz:

Also:

(b) 10 MHz:

Pdynami~- CL • V~o • 50• 10-12 • • 10• 103= 12.5 ~W

Pdynamic- Vdd X [average ~]average- 12.5 • 10-6/5 - 2.5 gA

Pdynamic = C L x V~,jxf= 50x 10-12 x 25 x 10• 106-12.5 mW

210 Choosing a means of implementation

Also"

edynamir = Vdd X/average ~/average-- 12.5 x 10-3/5-- 2.5 mm

Example 9.10

Calculate the output voltage and the current los flowing between V~ and V~ when
the input to the CMOS inverter in Fig. 9.11 is 2.5V. Assume that K N - K P-
128 ~A V -2.

Solution

When the input voltage is 2.5 V then VGS N =-VGS P = 2.5 V. Hence both devices will
be turned on by the same amount. Since K N = Kp then the output voltage will equal

(Vd~- Vs~)/2 = 2.5 V.
The current, IDS, is determined by using one of the two Equations 9.1 or 9.2.

Since VDS > VGS- V s for both the NMOS and PMOS transistors then both devices
are in saturation and Equation 9.2 is used. Thus:

IDs- KN(VGs- VT)e/2 -- 128 X 10-6(2.5 - 1)2/2 = 0.144 mA

CMOS inverter delay
The delay for a CMOS inverter depends upon the rate of charge or discharge of all
capacitors at the output. This load capacitance is due to two components called
the inherent capacitance and the external load capacitance. The inherent capaci-
tance is due to the drain regions of each transistor and the wiring connecting these
two drains together. The external capacitance is due either to the input capaci-
tance of the next stage or any parasitic off-chip capacitance. The propagation
delay (Xp) of a CMOS inverter, and for that matter all CMOS gates, is approxi-
mately equal to

Xp - 2 CLIKVdd (9.4)

Example 9.11

A CMOS inverter has a total inherent drain capacitance at the output of 1 pF
before any external load is added. What is the propagation delay for this inverter
unloaded? Also, plot a graph of inverter propagation delay versus external load

capacitance. Assume that K N - K e - 64 ~ V -2.

Solution

Before any load is added (i.e. with 1 pF inherent capacitance) the inherent propa-
gation delay of this inverter can be calculated from Equation 9.4. Now, since K s =
K e then the high-to-low delay will equal the low-to-high delay and it does not

matter which of the two we use. Hence

17p(inherent)= 2 X 1X 10-~2/64 X 10-6X 5 =6.25 ns

The MOSFET 211

As external load capacitance is added the propagation delay will increase linearly
at a rate of 6.25 ns/pF. A graph of propagation delay versus external load capaci-
tance can be plotted and is shown in Fig. 9.12. The graph does not pass through
the zero delay point since the intercept on the y-axis is the inherent delay before
any external load is added. If we wish to decrease the delay of a CMOS gate then
we must do one of two things. Either decrease the capacitance or increase K. The
capacitance is decreased by reducing the size of the devices but this is limited to
the minimum linewidth 6 achievable with the process. Hence if the designer is
already at the limit of the process then all that remains is to increase K which is
implemented by increasing the W/L ratio.

Fig. 9.12

318.75

Propagation
Delay (ns)

6.25
(~inh)

0pF 50pF

External Load Capacitor (CL)

Propagation delay versus load capacitance

Note: It is also possible with some CMOS processes to reduce delays by either
increasing Vdd (you should check the data sheet before doing this!) or by reducing
the temperature (this results in an increase in mobility and hence an increase in K).

9.3.4 CMOS logic gates

We have seen how to implement the logic gates NAND and NOR using NMOS
technology. In CMOS the process is just the same except that the complementary
PMOS transistors are added.

Example 9.12

What function is implemented by the circuits shown in Fig. 9.13(a) and (b)?
Although not shown you should assume that the gate inputs labelled A are
connected together (similarly for gate input B).

6The minimum linewidth is the narrowest feature that an IC manufacturing process can produce. The
smaller the feature size the more transistors per unit area.

212 Choosing a means of implementation

Vdd
A

I J i
Vss

o/p
o

Vdd

J
B

A

(a) (b)

Fig. 9.13 CMOS circuits for Example 9.12

Vss

o/p

Solution

Fig. 9.13 (a): with either A or B or both high then at least one NMOS transistor is
on and the output is pulled down to ground. As far as the PMOS transistors are

concerned if an input is low then that PMOS transistor is turned on. Now, in this
case the PMOS transistors are in series and hence only when both inputs are low
will the output be pulled high. The circuit of Fig. 9.13(a) is thus a NOR gate.

Fig. 9.13(b): this time the PMOS transistors are in parallel and hence we only
need one input to be low for the output to go high. Conversely, the NMOS tran-
sistors are in series and the only way for the output to go low is for both inputs to
be high. The circuit of Fig. 9.13(b) is thus a N A N D gate.

Note: as for the CMOS inverter when the inputs are held static at either logic 1
or logic 0 then one transistor is always off between Vdd and V~ and the current
flow is just due to the leakage current of the off transistor. The static power dissi-

pation is therefore again extremely low.

9.3.5 Complex gates with CMOS

As we have seen in earlier chapters we can implement many complex combina-
tional functions by connecting together the basic gates NAND and NOR.
However, the result is not an efficient use of transistors. If we introduce some
basic rules we can produce a more efficient CMOS transistor implementation.
Consider for example Fig. 9.14(a) which shows a CMOS circuit which implements

the function:
f=(A+B).(C+D)

The MOSFET 213

Vdd

1

I

" 4,
Vss

B

ojp D

C

(a) (b)

Fig. 9.14 CMOS implementation of the function f= (A + B).(C+ D)

The basic rules are as follows.

1. Concentrate on the NMOS network and note that from the function 'f' we can

see that terms OR'd are represented as transistors in parallel and those A N D ' d
are transistors in series, i.e. A is in parallel with B and C is in parallel with D,
whilst these two networks are in series with each other.

2. To produce the PMOS network we just replace series networks with parallel
networks and parallel with series. 7

Notice that the number of transistors needed for this function is eight. If we try to
implement this function directly with a NAND/NOT/NOR gate approach the

circuit shown in Fig. 9.14(b) would be needed and the number of transistors
required would be 16- a rather wasteful use of silicon.

E x a m p l e 9 . 1 3

Produce an efficient CMOS transistor circuit diagram for the function:

f =A .(B+C+D)

7This is another illustration of the principle of duality which we introduced in Chapter 1.

214 Choosing a means of implementation

Solution

Using the above rules we concentrate on the NMOS network first. AND func-
tions are networks in series whilst OR functions are networks in parallel. Since B,
C, and D are OR'd together then they are drawn in parallel. This parallel network
is in series with A since they are AND'd together. The network for the NMOS side
is thus as shown in Fig. 9.15(a).

(b) PMOS

B
--C

Vdd

J

]

i

(a) NMOS

(c) Complete

o/p I

,,, ~

Vss

Fig. 9.15 CMOS circuit for Example 9.13

B
--0

%

Vdd

J

]
]
]

o/p

)

Vss

The PMOS side is the reverse of the NMOS circuit, i.e. all series networks are in
parallel and all parallel are in series. The circuit for the PMOS side is thus as
shown in Fig. 9.15(b). The complete CMOS circuit is as shown in Fig. 9.15(c).

We stated in Chapter 4 that if we reduce the number of gates or levels then the
total delay for the circuit reduces. However, we should be careful with this tech-
nique since if we tried to produce an eight input NAND gate using a minimum
number of transistors then we would have eight NMOS transistors in series and
eight PMOS transistors in parallel. If R~= is the resistance of a transistor when
turned on, then the output resistance for a high-to-low transition will be 8Ra~,
whilst for a low-to-high transition it will be just Ra,. Thus the high-to-low delay
will be eight times that of the low-to-high delay. Hence for large input gates the
minimum transistor count may not give the shortest delay. In these cases it is
sometimes better to use two four-input NAND gates feeding into an OR gate.

The MOSFET 215

9.3.6 CMOS transmission gate

The CMOS transmission gate (TG) is a single-pole switch that has a low on resis-
tance and a near infinite off resistance. The device consists of two complementary
MOS transistors back to back and is shown in Fig. 9.16(a) with its symbol in Fig.
9.16(b).The device has one input, V~n, and one output Vou ~. The gate of the NMOS

transistor is driven from a control signal V c whilst the PMOS transistor gate is

driven from V c via an inverter (not shown).

-•
, , ,

Vin I ~ Vout

~ T s _ J ~
I [

Vc

Fig. 9.16 CMOS transmission gate

Vc

(a) (b)

Vout
o

Consider what happens when V c is held high (i.e. 5 V). With Vin at 0 V then the
NMOS VGS is 5 V and this device is turned on and the output will equal the input,
i.e. 0 V. Notice that VGS for the PMOS device is 0 V and hence this device is turned
off. The reverse is true when ~n is held high, i.e. PMOS VGS is -5 V and is switched
on whilst the NMOS VGs is 0 V and is turned off. In either case an on transistor
exists between Win and Vo~ , and hence the input will follow the output, i.e. the
switch is closed when V c is held high.

Now when V c is held low then the NMOS VGS is 0 V and the PMOS VGS is 5 V
and so both devices are off. The switch is therefore open and the output is said to
befloating or high impedance.

One application of this device is as a tri-state circuit which is discussed later in
this chapter. However, many other uses have been made of this CMOS TG. Some
of these are shown in Fig. 9.17(a) and Fig. 9.18(a). Fig. 9.17(a) shows a 2-to-1
multiplexer circuit. When the select line is high then 'bit 0' is selected and passed
to the output whilst if select is low then 'bit 1' is passed to the output. Notice that
the non-TG version of this circuit, illustrated in Fig. 9.17(b), uses many more
transistors than the simple TG version.

Fig. 9.18(a) shows the use of a transmission gate as a feedback element in a level
triggered D-type latch. When the clock signal is high then TG 1 is closed and data
at D is passed to the output (TG2 is open). When the clock goes low then TG 1 is
open and the data at the output is passed around the feedback loop via TG2
which is now closed. Data is therefore latched into the circuit. The equivalent
non-TG version using logic gates (introduced in Problem 5.4) is shown in Fig.
9.18(b) and again uses many more transistors than the TG version. As a result of
this, all CMOS flip-flops are designed using the space saving TG technique. To

216 Choosing a means of implementation

'bit 1' ~

select

select

select

select

'bit O' o

o/p

'bit 1'

'bit 0 '

(a) (b)

1

Fig. 9.17 Digital multiplexer implemented with (a) TGs and (b) logic gates

o/p

CLOCK

GI

%ocK I

CLOCK

D

CLOCK
o

Fig. 9.18 D-type latch implemented with (a) TGs and (b) logic gates

(b)

produce a JK with CMOS TGs it is necessary to add the appropriate circuitry to a
TG based D-type (see Problem 11.4). Hence CMOS JKs use more gates than D-
types. It is for this reason that CMOS designs use the D-type as the basic flip-flop
rather than the JK.

9.3.7 CMOS 4000 series logic

The 4000 series was the first CMOS logic family marketed. It was basically the
raw CMOS logic gates shown in Figs 9.13-9.18 directly driving external load
capacitances or other loads such as TTL gates. The circuit impedance seen
looking back into the output depends upon which transistors are on or off. For
example the two-input NOR gate when the output is low will present a different
output impedance depending upon whether one transistor is on or both are on.
This will result in differing propagation delays and variable output drive capa-

bility. Nevertheless, these devices had very low static power dissipation and

The MOSFET 217

with a wide power supply range of 3-15 V had good noise immunity (see later).
The 4000 series was eventually replaced by the 4000B series. This logic family is

essentially the original 4000 series but with the outputs double buffered. This
double buffering was quite simply two inverter stages with WIL ratios increasing
at each stage so that the last stage is able to drive the off chip capacitances and
other TTL loads without compromising logic levels. A transistor circuit diagram
illustrating the double buffering (with approximate WIL ratios in microns) is
shown in Fig. 9.19 for a two-input NOR gate in the 4000B series. These devices
have a transfer characteristic which changes more abruptly from one logic level to
the other compared to the 4000 series. This is due to the two extra stages at the
output which also results in a much better noise margin. Delays of the order of
50-100ns are obtainable with this process.

A

50/5

I5 -. 20/5

300/5

o/p
50/5 o

Vdd

120/5

, ,

Vss

I
l

20/5

150/5

Fig. 9.19 A CMOS 4000B double buffered NOR gate

9.3.8 CMOS 74 series logic

Many digital electronic systems were designed at first with the 74 series TTL
devices. Since the 4000B series were not pin-for-pin compatible with the TTL
devices then replacement with CMOS was only possible if a complete board
redesign was implemented. Hence, in order to take advantage of the low static
power consumption of CMOS logic the TTL series has been gradually replaced
with CMOS equivalents that have the same pin out. These CMOS logic gates all
have outputs that arc double buffered and buffers on the inputs which result in a
good noise margin. A plethora of logic gate families now exist under the 74
CMOS series and we shall look chronologically at most of these.

74C series
The 74C family was the first CMOS version of the TTL 74XXX series on the
market. It used 5 tun technology with all outputs double buffered, as in the

218 Choosing a means of implementation

4000B series, so that they can drive other TTL logic gates as well as large off-
chip capacitances. This family is now obsolete being replaced by the HC and
HCT versions.

74HC/I-ICT series
The 74 HC series are fabricated with 3 grn CMOS and an increased value of K (see
Section 9.3.1). This results in a shorter propagation delay and increased output
drive capability. These devices have a speed performance similar to the 74LS
series but with a greatly reduced power consumption. Unloaded the output volt-
ages are guaranteed to be within 100mV of the supply. However, under a load
such as driving a TTL input the voltage across the MOS output transistors will
increase as current passes through them. The value of K of the output stage is
therefore designed such that the output voltage will still produce a legal logic 1 or
0 (i.e. a large WIL ratio is used- see Problem 9.11 at the end of this chapter).

Although the HC series have the same speed as 74LS parts (see Table 9.1) they
cannot be driven by LS parts. This is because the minimum V~H (called VIHmin) of
the HC is approximately 3.5 V whilst the minimum VOH for the LS part is 2.7 V and
hence will not be recognised by the HC series device as a legal logic 1. To avoid this
problem the 74HCT was introduced. This series again uses CMOS technology but
the inputs are designed to be TTL input voltage level compatible i.e. ViHmin'-2.0 V
and V~Lm,~ = 0.8V. This is achieved by adjusting the WIL ratios ofthe two MOS tran-
sistors in the input buffers so as to move the switching point. In the HC series the
PMOS width is 2-3 times that of the NMOS (to compensate for the difference in
mobilities) and the device switches at VdJ2. However, for the HCT devices the
NMOS width is approximately ten times that of the PMOS device such that the
value of V~H is reduced to 2 V and V~L to 0.8 V - compatible with TTL logic levels.

Example 9.14

What should be the relative width-to-length ratios of the NMOS and PMOS tran-
sistors for the CMOS input buffer to create a TTL input compatible device.
Assume that the mobility of NMOS carriers is three times that of the PMOS

carriers.

Solution

The TTL input logic levels are: ViHmin=2.0V and ViLmax -- 0.8 V, Hence the
switching point should be chosen half-way between these levels i.e. at 1.4 V. The
switching point will occur when both transistors are on by the same amount and
from Equation 9.2

KN(VGs N - VT)2/2 = Kp(VGS P -- VT)2/2
KN(Vin- VT)2/2-'- gp(Vdd-- Fin- VT)2/2

KNIKp=(3.6-1)2/(1.4 - 1)2=42.25

BiCMOS- the best of both worlds 219

From K=(WIL)xl, tXCox and given that lXn=3 ~ then the NMOS WIL ratio
should be set at 14.08 times that of the PMOS transistor.

74ACIACT series
Continual improvements in CMOS processing have led to the introduction of an
improved high-speed CMOS family called the advanced CMOS logic designated
as 74AC and 74ACT. They are direct replacements for the 74AS and 74ALS series
and in some cases the 74F series. These devices use 1.5grn CMOS technology with
a very thin gate oxide of approximately 400,/k (one A= 10-1~ This results in
very high speed CMOS devices with delays of typically 5 ns. This range of devices
also has a very high output current drive of 24 mA (see Table 9.1) due to the
higher K caused by the thin gate oxide and large WIL ratios at the output. The
ACT series is TTL input voltage level compatible and can be mixed with ALS and
AS devices. It has the added advantage of a very low power consumption as with
all CMOS devices. This range of devices is sometimes referred to as advanced
CMOS logic (ACL) by Texas Instruments or FACT by National and Fairchild.

Undoubtedly more and more logic families will become available to the
designer. Currently we are at the advanced, advanced stage of high-speed CMOS
devices, the latest being the 74VHC series offered by National Semiconductors
and the 74AHC/AHCT series marketed by Texas Instruments. We may well be
approaching the limit of CMOS and the use of BiCMOS could well be the next
technology choice on offer to the logic designer.

9.4 BiCMOS- THE BEST OF BOTH WORLDS

The advances in integrated circuit processing have led to ever decreasing tran-
sistor sizes. However, for the same quality process a MOS transistor consumes
considerably less space than a bipolar transistor. Hence CMOS chips are much
smaller than bipolar equivalents and hence internal capacitances are greatly
reduced resulting in ever decreasing propagation delays and manufacturing costs.
However, the CMOS families are limited when driving large capacitive loads such
as off-chip capacitances present on data buses, and even oscilloscope leads. The
bipolar transistor is much better at driving these large capacitances since for the
same size device the bipolar transistor has a larger effective K than the MOS
device. A new technology has therefore emerged called BiCMOS that combines
the best of both worlds, i.e. CMOS and bipolar. It contains the small CMOS logic
gates but in any places where it is necessary to drive large capacitive loads then the
bipolar totem-pole stage is used.

A typical BiCMOS inverter is shown in Fig. 9.20. The device operates as
tbllows. When the input is high then the base of T1 is low and is turned off.
Transistor MN is turned on and since MN2 is off then T2 turns on and the output
is low. When the input switches to zero volts then the base of T1 goes high and
turns on T1. Since the base ofT1 is high then MN2 is turned on and the base ofT2

220 Choosing a means of implementation

i/p
c

I/MN,
Vss

Vdd

Fig. 9.20 BiCMOSinverter

MN

MN2

. . . .

Vss

T1

T2

I ,

I

I

I

I

o/p
o

Cload

(external)

is low and is thus turned off and the output goes high. Notice that when T1 turns
off then MN 1 provides a base discharge path, whilst when T2 turns off the base
discharge path is provided by MN2.

The bipolar output thus allows large capacitances to be driven, whilst the
CMOS part implements the desired function internally. A typical BiCMOS logic
family is the 74BCT series which tends to have devices that are only for bus
driving such as octal buffers and octal latches. These have similar speeds to the
74F family but with greatly reduced power consumption (see Table 9.1).

9.5 LOW-VOLTAGE OPERATION

Battery operated equipment such as lap-top computers and hand-held instruments
require low-power devices. As we have seen CMOS offers extremely low power, an
approximate value of which can be obtained from Equation 9.3, i.e. C L Voo2f

As device dimensions reduce in size, the capacitance reduces leading to further
reductions in the power consumed. However, a reduction in Vod will lead to a
larger reduction in power consumption due to the square term in Equation 9.3. In
addition the use of a lower Voo will result in fewer batteries needed and hence a
lighter instrument. Consequently most portable digital equipment is made nowa-

days with a reduced Vdd.

Other technology options 221

Since alkaline batteries have a typical voltage of 1.35 V and NiCd have a typical
voltage of 1.2 V then a multiple of this is usually needed for the power supply. A
range of 2.7-3.6 V will require either two alkaline or three NiCd. Although the
HC, AC and 4000B series will operate at 3 V these devices have not been opti-
mised for this supply voltage and hence they are a compromise that will satisfy all
power supply voltages. Consequently, a range of CMOS devices is now available
that has been specifically designed for this lower voltage. These low-voltage
devices are labelled by National Semiconductor as 74LVX or by Texas
Instruments for example as 74LV, 74LVC and 74ALVC. It is also possible to
obtain low-voltage BiCMOS devices which again are able to drive large capacitive
loads. These not only operate with a 3 V supply but also have the capability of
being driven from 5 V input signals. A typical range of devices of this type is the
74LVT series by Texas Instruments (see again Table 9.1).

Example 9.15

What percentage saving in dynamic power consumption will be obtained by
reducing the power supply from 5 V to 3 V?

Solution

From Equation 9.3 the power consumption will reduce from: CLXfX25 to
C L x fx 9, i.e. a saving of 64% in power consumed.

9.6 OTHER TECHNOLOGY OPTIONS

9.6.1 Emitter coupled logic- ECL

The emitter coupled logic family has been available for the digital designer since
the early TTL days. A circuit configuration for a two-input OR/NOR gate is
shown in Fig. 9.21.

This family has delays of the order of 1 ns and achieves this by (a) ensuring that
the transistors do not enter saturation and (b) having a smaller voltage swing. The
circuit contains two inputs A and B and two outputs Vo,~ (NOR) and Vo,,2 (OR).
The outputs are taken from the emitters of T5 and T6. Although these emitters
appear to be floating they are assumed to be driving other ECL gate inputs which,
as can be seen, have a 50 k~ resistor between its input and -5.2 V. The output
circuit is thus acting as a voltage follower. 8 Note also that the power supplies are
0 V and--5.2 V which are not compatible with TTL, CMOS or BiCMOS. In ECL
technology a logic 0 is defined as having a larger negative voltage than a logic 1.

This ECL logic gate functions as follows. Firstly, the circuit inside the dotted
box is a voltage reference circuit providing a reference voltage at the base ofT2. If

8B. Hart, Introduction to Analogue Electronics, in this series.

222 Choosing a means of implementation

T5
Voutl(NOR)

50K.O

220 Q

779

5Q 907Q

~ ' KQ

Fig. 9.21 ECL NOR/OR gate

~x~ 6 Vout2 (OR)

Vee=-5.2V

both inputs A and B are taken low (i.e. a large negative voltage) then transistors
T1 and T3 are turned off and current flows through T2 and hence the output Vo~,~
(NOR) is pulled towards 0 V (i.e. a logic 1) and Vow,2 (OR) moves towards-5.2 V
(i.e. a logic 0). When one or both of the inputs are held high then the current
passes through the transistor which has a high on its base and T2 turns off. Hence
Vo~t~ (NOR) is now pulled towards -5.2 V and Vout2 (OR) pulled towards 0 V. The
circuit thus functions as an OR/NOR gate.

Two families have been marketed in ECL logic. These are the 10K series and
the 100K series, the 100K series being the most recent. The voltage levels for this
family are (see Table 9.1):

VOH=-O.9V; VOL=-I.7V; V~H=-I.2V; and VIL=-I.4V

As can be seen these logic levels are not TTL or CMOS level compatible.
The 100K series differs from the 10K series by having a more temperature

stable characteristic and a faster speed of operation, with a delay of 0.75 ns and a
power consumption of 20mW. These devices tend to be used in specialist high-
speed logic requirements such as digital telephone exchanges or high-speed super-
computers.

9.6.2 Gallium arsenide- GaAs

All the technologies we have looked at so far have been implemented in silicon.
Alternative semiconductors, such as gallium arsenide (GaAs) and germanium
(Ge) exist. The use of GaAs in digital applications such as telecommunications
has been marketed for some time. GaAs has an electron mobility approximately

Gate characteristics 2 2 3

five times that of silicon and hence can operate at much higher frequencies.
Consequently a lot of research effort has been spent on exploiting this speed
advantage. However, the processing that is needed with GaAs is much more
complicated than silicon and hence these devices are used only for the specialist
high-speed digital market. Typical operating delays of lOOps with power
consumptions of 1 mW per gate are available. Since these devices are to comple-
ment ECL they use ECL logic levels with similar power supply requiremenl~s.

9.7 GATE CHARACTERISTICS

We should now be more familiar with the various technology options so let us
investigate how the gate characteristics vary from technology to technology. A
logic gate is characterised in terms of various parameters. Some of the more
important parameters are: transfer characteristics; noise margin; output drive
(fan out and fan in); propagation delay; power dissipation; and power delay
product.

9.7.1 Transfer characteristics

A transfer characteristic plots the output voltage versus the input voltage for a
logic gate. A transfer characteristic for a non-inverting logic gate is shown in
Fig. 9.22.

Vout

Vdd

Vohmin
ideal

. ~
o .

. ~
o

~ o . o o

~ 1 7 6 1 7 6 1 7 6 1 7 6

actual

o o o

o . o

o
o

o
. o o

.
. ~ . o

.

Vflmax

Volmax _

Vss I I -~

Vss Vs Vihmin Vdd Vin

(-Vdd/2)

Fig. 9.22 Logic gate transfer function

The ideal characteristic (shown by the solid line) illustrates that below a
switching voltage (Vs) the output will equal the most negative voltage (usually
ground or V~). With the input above V~ the output will equal the most positive

224 Choosing a means of implementation

voltage (referred to as Vcc for bipolar or Voo for CMOS). The switching voltage V~
is usually at half the supply voltage and the change from one logic state to the
other occurs very sharply.

In reality the transfer characteristic is as shown by the dotted line. In this case
the switching voltage may not be at half the supply, the switching region is
gradual and the output voltage may not reach the supply rails. For TTL V~ is
1.4V whilst for CMOS V s- Vdo/2 (unless of course the CMOS is TTL input
compatible when it too will be 1.4 V - see Section 9.10.1).

Various significant voltages are defined for a logic gate. For the gate input, the
two logic level voltages are

�9 ViLma x" the maximum value of input voltage that can be recognised as a logic '0';
�9 VIHmin: the minimum value of input voltage that can be recognised as a logic' 1';

whilst for the gate output the two logic levels are

�9 VOLmax: the maximum value of output voltage for a legal logic '0';
�9 VOHmi n" the minimum value of output voltage for a legal logic '1'.

Input voltages between ViLma x and ViHmi n will result in an indeterminate value of
output voltage and hence are not allowed. In addition the output of a gate is not

allowed to have values between VOLma x and VoHm.i..

9.7.2 Noise margin

Noise in a digital system is mainly caused by switching transients which cause
perturbations in the power supply or generate crosstalk between adjacent wires on
the chip or circuit board. These disturbances are propagated to the output or the
input and can either add or subtract to the existing signals and hence change the
voltage appearing at the output. If the noise is large enough it can change a legal
logic level into an illegal value. The magnitude of the voltage required to reach
this illegal state is called the noise margin and is specified for both logic high and
logic low conditions. It indicates the maximum noise voltage that can appear on
an output before the output level is deemed illegal.

Consider two non-inverting gates in series as shown in Fig. 9.23 and the associ-
ated voltage levels. The maximum high and low noise voltages that can be allowed
on the output of the first buffer are thus

NM H = VoHmi n - ViHmi n and NML= ViLma x - VOLma x

Example 9.16

Two inverters from a 74LS04 hex inverter IC (i.e. six inverters in one package) are
connected in series such that one inverter is driving the other. From Table 9.1
determine the high and low noise margins.

Gate characteristics 225

Fig. 9.23 Logic levels and noise margins

Solu t ion

N M H - V o H m i n - V iHmi n - - 2.7 - 2 .0- 0.7 V

N M L - VILma x -- VOLmax -- 0. 8 -- 0. 5 -- 0 . 3 V

Example 9.17

Repeat 9.16 for a 74HCT04 (CMOS version of 74LS04).

Solu t ion

N M H = V O H m i n - V i H m i n =4 .3- 2.0= 2.3 V

N M L = V i L m a x - VOLmax = 0 . 8 - 0 . 3 3 = 0 . 4 7 V

Hence an improved noise margin is obtained with CMOS. It should be noted,
however, that since the CMOS output is driving another CMOS device then the
current drawn from the output is small. Hence the output voltage levels for a
CMOS device will be much closer to the supply than indicated in Table 9.1
resulting in an even larger noise margin.

9.7.3 Output drive (fan out/fan in)

One of the requirements of a logic gate is that sufficient output current drive is

226 Choosing a means of implementation

available to drive other inputs. However, as the output current increases the
voltage dropped across the 'on' output transistor will increase. It is essential that
this voltage does not rise above the point at which the voltage levels become illegal

(i.e. below VOHmi n OI" above VOLm~). The number of inputs which a gate output can
drive before the output becomes invalid is called the fan-out or output drive capa-
bility. This fan-out is expressed as

fanouthig h = IOHmax/IiHma x and fanoutlow = IOLmax/IiLma x

The fan-in on the other hand is the load that an input places on an output. This
is sometimes expressed as the input capacitance, the input current or sometimes as
the number of inputs to a gate.

Example 9.18

How many standard 74 series gates can a 74ACT series drive?

So/m/on

From Table 9.1 the output current drive of a 74ACT device is 24 mA.The worst
case fan-out calculations will be for the logic low case since this requires the
largest input current. Hence

fanout low = IOLmax/IiLmax-- 24/1.6= 15

i.e. the 74ACT series will drive 15 standard 74 series devices. If we compare this
with a 74LS series device driving a standard 74 series the output drive current is
only 8 mA (IOLmax) and thus its fan-out is only 5.

Example 9.19

Repeat Example 9.18 for a 74ACT driving other 74ACT devices.

So/m/on

Since the input current to a 74ACT device is negligible (due to the fact that it uses
MOS transistors), then the load it places on the output is minimal and the fan out
is very large (much greater than 15). However, the inputs do have an input capac-
itance and this will affect the propagation delay, as discussed in the next section.

9.7.4 Propagation delay

As we have already seen the propagation delay is defined as the time it takes for a
signal at the input to pass to the output. It is usually defined between the 50%
points as illustrated in Fig. 9.24. Two propagation delays are quoted for a logic
gate depending upon whether the output is going low to high (XpLH) or high to low

Gate characteristics 227

input

i t I
~ .+ r

i i

i i . .

+ + + t +
, !

50o~ 'r i

1 0 %

output 5 0 %

I

I

I
" ~ P L H t

Fig. 9.24 Delay times for logic gates

J, tf ~
r - ~ f -

I

I

I

I

I

T.pH L i time

(XPHL). Notice that the ideal input (shown dotted) has an immediate change from 0
to 1 and from 1 to 0. However, in reality this response is not as sharp as this and
hence the input has a rise time and a fal l time. The rise and fall times are defined as
being between the 10% and the 90% points. Notice that the definition of the prop-
agation delay time is unaffected by the value of the rise and fall time.

As we have seen from Equation 9.4 for CMOS circuits, the propagation delay
depends upon the capacitance being driven and the effective value of K for the
output transistor- a similar relationship holds for bipolar technology. A plot of
relative propagation delay versus external load capacitance is given in Fig. 9.25
for the three main families of CMOS, TTL (or BiCMOS) and ECL. At low capac-
itances the CMOS family has a smaller delay than TTL or BiCMOS. This is
because the external load capacitance on the x-axis does not include the internal
capacitance of the logic gate. For MOS devices this internal capacitance is smaller

Relative
delay

lO
T CMOS

_ _

B]CMOS

_ _

ECL

0pF 50pF External Load Capacitance

Fig. 9.25 Comparison of propagation delay versus load capacitance for different technologies

228 Choosing a means of implementation

than bipolar devices partly because the processing of MOS devices has advanced
considerably over the years and partly because a bipolar transistor takes up more
space on the chip and hence has a higher capacitance. However, as the external
load capacitance increases it soon dominates over the small internal load capaci-
tance. The rate of increase of propagation delay with capacitance depends upon
the effective K of the output transistor. The effective K is larger for a bipolar tran-
sistor than for a MOS transistor and hence with large load capacitance the delays
for CMOS are larger than for BiCMOS or TTL. Consequently if you are driving a
large capacitance, i.e. several other inputs (or large fan-in), then it is preferable to
use a bipolar output. If, however, the output is driving a low capacitance, i.e. less
than 30 pF, then use CMOS outputs. Drawn on the same axis is the ECL delay
versus capacitance. As expected these devices are faster since they do not enter
saturation.

Example 9.20

Compare the delay of a TTL device driving 15 CMOS devices with that of a
CMOS device driving the same load. Assume that the TTL output can drive at
20 ps/pF whilst the CMOS device has a drive of 67 ps/pF and that each CMOS
input has a capacitance of 10 pF.

So/ut/on

Total load from 15 CMOS devices= 15 x 10 pF = 150 pF

TTL driving: loading delay = 150 pF x 20 ps/pF = 3 ns

CMOS driving: loading delay = 150 pF x 67 ps/pF = 10.05 ns

9.7.5 Power dissipation

The power dissipation of logic gates is characterised under two modes. These are
static and dynamic. Under static conditions the input is held at either logic '1' or
'0'. The static power consumption is thus

Pstatic = Vdd X Is,pply

Under dynamic conditions the inputs are changing state and hence the transis-
tors between the supplies will either be both on or require energy to charge and
discharge output capacitances. Hence the dynamic power dissipation will depend
upon the number of times the transistors switch per second, i.e. the signal
frequency. If the rise and fall times of the input signal are small then the dynamic
power dissipation is due solely to the energy required to charge and discharge the
load capacitances. As seen in Equation 9.3 for CMOS, this is equal to

P yoamic = C,. X x f

Open collector and three-state logic 229

where C L is the total capacitance seen at the output and f is the signal frequency.
This equation also applies to bipolar technology. The total power dissipated is
therefore the sum of the static and dynamic power dissipations.

Consider the comparison of power consumptions between TTL and CMOS.
With TTL devices the static power dissipation is quite large. Fig. 9.3 shows that
for the TTL family, with a low at the input, a current must flow out of the input
(typically 1.6 mA). Now, with the inputs high the second stage will be on and
drawing current from the supply. However, for CMOS devices one transistor is
always off between the supplies and hence the static current drawn is only due to
the off transistor. This is called the leakage current, and is very small. Hence the
total power dissipation for CMOS is due mainly to dynamic effects and is very
small at low frequencies. This is the reason why CMOS is such a popular choice.

However, Equation 9.3 shows that as the frequency increases the power dissi-
pation of the CMOS devices will increase. The same component is present in TTL
devices but since the static power consumption is high in the first place it does not
show itself until relatively high frequencies are reached. A typical plot of power
dissipation versus operating frequency is shown in Fig. 9.26 for a 74LS00 device
and a 74HC00 device (quad two-input NAND gate). Notice that it is not until
frequencies above 5 MHz that the CMOS device has similar power consumption
to the TTL device. Below this the power dissipation of the CMOS device is very
low.

Power Consumption

(mW) 100

10

1.0

0.1

0.01

~ " HC00

I I t t
0.005 0.05 0.5 5 50

Frequency(MHz)

Fig. 9.26 Comparison of power consumption versus frequency for CMOS and 74LS series

9.8 OPEN COLLECTOR AND THREE-STATE LOGIC

In cases where data has to pass off-chip to a single interconnect that is used by
other output devices (called a bus) then the traditional totem-pole output of
bipolar, or the standard complementary pair of CMOS, cannot be used in its
present form. This is illustrated in Fig. 9.27 where two outputs drive the same line.
If the output of gate 1 is high and that of gate 2 is low then a condition called bus

230 Choosing a means of implementation

gate 1

gate 2

data bus
Y

Fig. 9.27 Bus contention with logic gates

contention occurs. Current passes from gate 1 to gate 2 and an unknown voltage is
presented to the line and in some cases may result in damage to either or both of
the output stages. Two remedies exist to this problem: use open collector (or open
drain) outputs; or use three-state output circuits.

9.8.1 Open collector/drain

The open collector output (or open drain for MOS devices) is quite simply the
same output as a TTL totem pole (or CMOS output buffer) but with the top half
of the output circuit removed to just leave the lower transistor with its collector
o p e n - hence its name. An example of two open collector gate outputs driving a

Vcc

gate 1

gate 2 _ /

~ Rpull-up

1
data bus /

Fig. 9.28 Open collector outputs driving a common data bus

Open collector and three-state logic 231

common data bus is shown in Fig. 9.28. The advantage of this type of output is
that they can be wired together and bus contention is no longer a problem. If both
output transistors are turned off then the output is pulled up to a logic '1' via the
single pull-up resistor. The case of bus contention when one output transistor is
on and another is off is avoided because the off transistor presents an open circuit
to the common line and does not interfere with the logic level. Such a wiring
arrangeme~lt is often called a wired-or connection.

9 . 8 . 2 T h r e e - s t a t e l o g i c

Two disadvantages exist with the wired-or connection. The first is that power is
consumed with the pull-up resistor via the on transistor and secondly that the
switching speed is reduced due to the arrangement having no active pull-up. The
low-to-high switching time is now dictated by the time constant of the pull-up
resistor with the external load capacitor. An alternative to the open collector or
open drain output is to use a three-state circuit.

A O
B 0

control
o

Vcc-5V

R3 R4
R1 (900D.) I 1(50 f~)

(2.8K ~)

o/p

I ~ "

6
SB1 R2~

500

i
Fig. 9.29 Three-state logic TTL 74S circuit

The term three-state logic is a most misleading term in digital logic, especially
since we have been using the binary system which only has two values! Three-state
logic is a term given to the ability of an output stage to: drive a logic 1; drive a
logic 0; and a third state where the output presents a high impedance to the

232 Choosing a means of implementation

common data bus and hence does not drive the output to any voltage. This third
state has many other names, these being high impedance, high Z and tri-state to
name but a few. They all produce the same function of having this third mode
where the output does not drive any voltage on to the common data bus and
presents a high impedance to the line as though it were not connected.

A circuit diagram for a three-state logic TTL 74S series circuit is shown in Fig.
9.29. The circuit is exactly the same as the 74S series device illustrated in Fig. 9.6
except that an extra control input is added via two Schottky barrier diodes. When
the control is high both diodes SB1 and SB2 are reverse biased and the circuit
operates as normal with the output either driving a logic 1 or a logic 0. When the
control is held low the diodes are forward biased and the bases of T2 and T3 are
held low. The two output driving transistors T5 and T6 are therefore turned off
and hence present a high impedance to the output and the common data bus.

Example 9.21

A CMOS version of a three-state logic output buffer is shown in Fig. 9.30.
Explain how the circuit operates.

D
c -

o . , .

control

Vdd

Vss

Fig. 9.30 A CMOS three-state logic circuit

Solution

With the control line high, a logic ' l ' appears at the gate of the PMOS and a logic
'0' at the gate of the NMOS. Hence both the PMOS and NMOS transistors are
turned off and the output presents a high impedance. However, when the control
line is low the data at D can pass through to the output and the gate operates

normally.

9.9 COMPARISONS OF LOGIC FAMILIES

So how does a designer decide which logic family to choose? The answer depends
upon whether one is looking for high speed, low power, special power supply
voltage, what level of noise immunity, and/or cost. In other words there is no

Comparisons of logic families 233

single answer and it depends upon the requirements. As we have seen, Table 9.1
summarises the main features for each logic family.

Some of the more important observations from this table are:

�9 the 74F series is the fastest of the commonly available TTL series with a
moderate power consumption;

�9 the CMOS 74ACT series is an excellent low-power, high-speed replacement for
TTL devices;

�9 the CMOS 74AC is low power, with a good speed performance and a low
voltage operation if required;

�9 the ECL/GaAs range offer the fastest families but with non-standard power
supplies and high cost;

�9 the 4000B CMOS series has a wide power supply range and a good noise
immunity but is relatively slow;

�9 the CMOS 74HC/HCT series is an earlier low-cost option to the AC/ACT series
but with reduced speed of operation;

�9 dedicated 3 V series (LV, etc.) offer good speed and low power for battery appli-
cations;

�9 BiCMOS provides low power, good speed and excellent drive capability but at
an increased cost compared to CMOS.

As can be seen, with the exception of cost, the combination of delay and power
is the main issue facing a designer in making a logic family selection. A useful
figure of merit is therefore the power-delay product (PDP) which has units of
Joules and is the energy dissipated per logic gate. Fig. 9.31 shows a plot of power
versus delay for the various technology families with constant PDP lines drawn
in. As can be seen the BiCMOS family has just the edge on this figure of merit but
CMOS is an excellent low cost alternative that is used in most new designs today.

Fig. 9.31 Power delay product for different logic families

234 Choosing a means of implementation

9.10 MISCELLANEOUS PRACTICAL PROBLEMS

The use of these various logic technologies can present many practical problems.
This section will briefly discuss some of these issues.

9.10.1 Interfacing

It may be necessary on occasions to mix technologies on a single PCB, for
example TTL and CMOS devices. The main concerns are:

1. Do the logic output levels from one device fall inside the legal input levels for
the next device?

2. Can the output transistors provide sufficient current for driving the next stage
without producing illegal logic levels?

Table 9.1 (on p. 192) will again help answer these questions.

CMOS to TTL
Figure 9.32 shows a CMOS output stage driving a typical TTL input. No special
interfacing circuitry is required as long as the CMOS output can source and sink
I~L and/in for the TTL input. If we look at Table 9.1 we can see that all the CMOS
outputs can source and sink at least 4 mA with output voltage levels of 4.2-4.3 V
(VOHmin) and 0.33-0.44 V (VOLmax). This current drive is sufficient for the TTL
inputs and provides adequate TTL voltage levels.

Vdd

_T
-----C

input

Vss

CMOS

�9 ~ T 1 ~
i

I

I

I

Vcc

R1 R2

(4I~) (1.6I~)

T2

R3

(1K~)

, ~ 7 Vss

l q ' L

Fig. 9.32 Interfacing CMOS to TTL

Miscellaneous practical problems 235

TTL to CMOS
Fig. 9.33 shows a TTL output driving a CMOS input. It is necessary to be very
careful here. If we connect a 74ALS to a 74AC then when the TTL output goes
high the minimum output voltage level could be as low as 2.7 V. This is less than
the minimum legal high input voltage for the 74AC device which is 3.5 V and the
CMOS output will be indeterminate. Two methods are used for TTL driving
CMOS. The first is to use TTL input compatible CMOS devices. These are the
devices which have a T in their code, i.e. 74HCT, 74ACT, etc. In this case an input
inverter is included which has its W/L ratios adjusted such that the switching
point is halfway between the TTL input voltage levels, i.e. at 1.4 V for 74X or
1.6 V for other TTL devices. The second method is to use the non-TTL com-
patible CMOS devices (i.e. 74HC, 74AC, etc.) and add a pull-up resistor at the
input to the CMOS device. This is the resistor, Rp, in Fig. 9.33.

Example 9.22

From Table 9.1 what is the maximum value of pull-up resistor, Rp, that can be
used for a 74ALS device (TTL) driving a 74AC (CMOS) device? What would the
input time constant be if the 74AC input capacitance is 10 pF?

Solution

From Fig. 9.33 when the output of the TTL circuit is driven high, due to T3

Wcc

R4

(130~)

I T4

D1

" T3

Ip

Rp

1q'L

Fig. 9.33 Interfacing TTL to CMOS

~ C

Vdd

T

ou~out

r
x~ Vss

CMOS

236 Choosing a means of implementation

turning 'off' and T4 turning 'on', the resistor Rp pulls the output high and thus
turns off T4. Current, Ip, flowing through Rp is therefore due to the input current
for the CMOS device (approximately 1 gA) plus the current through the off tran-
sistor T3 (approximately 10 gA). Hence

Vcc = Ip x Rp + V I H min

and so Rp =(Vcc- Vi.m,,)llp=(5--3.5)/11X 10 -6- 136.4 k~.
The input time constant is gp X Cin - 136.4 x 103 x 10 x 10 -~2-1364 ns! This delay

is very large and can seriously affect power consumption of the following CMOS
stage. This is simply because the input voltage will be around 2.5 V for a relatively
long time. During this time both MOS transistors will be on between V~o and V~
and hence a large current will flow. The solution is either to use a much lower
value of Rp (typically 2.2 k~) or as stated before to use the CMOS TTL input
voltage compatible series (i.e. HCT, ACT, etc).

9.10.2 Unused inputs

To understand what to do with unused inputs take another look at the input of
each of the three technologies that we have studied so far, i.e. Fig. 9.3 for TTL,
Fig. 9.11 for CMOS and Fig. 9.21 for ECL.

From Fig. 9.3, unused inputs on TTL gates can be left unconnected and will
float and give the appearance of a logic 1 at the input. However, it is best that
these inputs are tied to either ground directly or to the supply via a 2.2 k~ resistor
since the input may pick up noise and oscillate between a logic 1 and logic 0.

CMOS inputs (Fig. 9.11) are simply the two complementary MOS transistors.
Two problems occur when the input(s) of a CMOS gate is left floating. The first
problem is due to the very high input impedance of MOS devices. When an input
is left unconnected the input terminal can float to high voltages due to a build up
of electrostatic charge that cannot leak away. The gate oxide of a MOS device is
extremely thin and hence very high fields can be generated at the input sufficient
to destroy this oxide. To avoid this problem all CMOS inputs are designed with
electrostatic protection (and a CMOS inverter for pulse sharpening). The
resulting CMOS input circuit is shown in Fig. 9.34. To avoid undue stress on these
protection circuits the inputs nevertheless should be tied to either ground or
supply. The second reason for tying the inputs to ground or supply is because if
they are left to float they can obtain voltages that can turn both of the MOS tran-
sistors on and thus result in a large power consumption. Hence all unused inputs
on a CMOS chip must be tied high or low.

ECL circuits (Fig. 9.21) have their inputs already tied to -5.2 V by the 50 kff2
resistor and hence they can be left unconnected.

A final note about inputs. Any input signal that has a slow rise or fall time of
the order of 50 ns or greater must not be applied to a gate until it has been sent
through a pulse sharpening circuit. This is particularly true for clock signals.
These pulse sharpening circuits can simply be a two-stage CMOS inverter as in the

input []

T l J l_[
" ,5,

Fig. 9.34 A standard CMOS input circuit

Vdd

Vss

Self-assessment 237

to rest of chip

double buffered outputs of the CMOS logic families. However, a Schmitt trigger
device is the more common pulse sharpener device in use and is available in both
the TTL (74LS14) and CMOS (74HC14) families.

9 . 1 0 . 3 D e c o u p l i n g

When the output of a logic gate switches from one state to another then a large
power supply current will flow for a very short time. These fast changing current
spikes and the inductance of the power supply wiring feeding the chip will cause
voltage transients on the power supply which are passed to the next stage hence
appearing at its output. This is then passed on to the input of the following stage
and may well produce an illegal state. The solution is to stop the voltage spike
from passing down the power supply line by adding bypass or decoupling capaci-
tors as close as possible to the source of the problem. This usually means adding
decoupling capacitors to every chip. Typically two capacitors are placed in
parallel with the supply: a 4.7 laF tantalum (good for low frequencies) and a 10 nF
disk ceramic (for high frequencies). The liberal use of decoupling capacitors
cannot be overemphasised.

9.11 SELF-ASSESSMENT

9.1 What is the voltage across a saturated bipolar transistor?

9.2 What base-emitter voltage is needed to turn on a bipolar transistor?

9.3 What is hfo?

9.4 What do the following acronyms stand for: DTL; TTL; NMOS; CMOS;
ECL; BiCMOS?

9.5 A diode is forward biased if the cathode is more negative than the anode.
True or False?

238 Choosing a means of implementation

9.6 Place in chronological date order the following:
74ALS; 74; 74LS; 74F.

9.7 Group into CMOS and TTL the following devices:
74ALS; 74HC; 74; 74LS; 74AC; 74ACT; 74F; 74HCT; 74AHC and 4000B.

9.8 What is the difference between 74ACT and 74AC?

9.9 For a TTL device which is the larger: IILmax or]IHmax ?

9.10 Repeat Question 9.9 for a CMOS device.

9.11 When would you use the technologies CMOS and TTL?

9.12 Why is a Schottky clamped bipolar transistor faster than an unclamped
device?

9.13 State the MOS transistor//Vequations.

9.14 Write down the equation for K for a MOS transistor.

9.15 Explain why an NMOS device is smaller than an electrically identical PMOS
device.

9.16 A two-input NOR gate has its PMOS transistors in series. True or False?

9.17 Write down the ex.pression for dynamic power consumption in a CMOS
device.

9.18 Repeat Question 9.17 for propagation delay.

9.19 In CMOS combinational logic what is the relationship between the NMOS
transistors and the PMOS transistors?

9.20 What is a CMOS transmission gate?

9.21 Place in decreasing speed order the following: 74LS; 74HC; 74ALS; 74AC;
F100K.

9.22 Place in increasing power consumption order the devices in Question 9.21.

9.23 Define PDP.

9.24 Place in increasing PDP order the following: CMOS; TTL; ECL; BiCMOS.

9.25 A 74LS device is connected directly to a 74HC device- is this acceptable?

9.12 PROBLEMS

9.1 For the circuit shown in Fig. 9.1 determine the value of R~ needed such that
the transistor is saturated when the input is 5 V. Assume that R b = 100 kf~ and

hf~ = 100.

Problems 239

9.2 A two-input DTL NAND circuit is shown in Fig. 9.2(a). If R 1 =4.9 kt2 then
determine the approximate power consumption when both inputs are low
and both inputs held high. Assume a low-0.2 V, a high > 3 V and Vcc- 5 V.

9.3 How many 74S gates will a 74ALS gate drive?

9.4 From Table 9.1 determine the high and low noise margins for the following
gate combinations: (a) 74 driving 74; (b) 74ALS driving 74S; (c) 74HCT
driving 74AS; (d) F100K driving F100K. Comment on the accuracy of these
values.

9.5 For the NMOS resistive load inverter of Fig. 9.9(a) calculate the W I L ratio
of the MOS transistor to obtain an output voltage of 0.25 V when the input
is 5 V. Assume that R L = 2 kf~, V T - 1 V and ~tCox- 32 gA V -2.

9.6 A CMOS inverter is powered from a 5 V supply. What supply current will
flow when the input voltage is 2.5V. Assume that VTN--0.8V, Kp=
200 gA V -2, Vvp =-0.8 V, Kp- 200 gA V -2 and that the gate is unloaded.

9.7 The CMOS inverter in Problem 9.6 is to drive ten similar gates each having
an input capacitance of 0.3 pF. Calculate the propagation delay for this
inverter. Assume that the inherent capacitance is zero. Without reprocessing
this chip how could you reduce its delay?

9.8 The circuit shown in Fig. 9.13(a) is a two-input NOR gate. Calculate XpL H
and Xp. L when both inputs are tied together. Assume that KN-Kp=
200 gA V -2 for each transistor, the output is driving a 50 pF load and a 5 V
supply is used. Hint: for transistors in series the effective K halves; for tran-
sistors in parallel the effective K doubles.

9.9 Draw the minimum CMOS transistor circuit configuration that will
implement the function: f = A . B . (D + C).

9.10 A 74HC series logic gate is to drive an LED such that when the output is
high the LED will be illuminated. What value current limiting resistor would
be required to switch on the LED. Assume that the forward current of the
LED is 4 mA and that the voltage across the LED when on is 1.8 V.

9.11 A CMOS inverting output stage is to be designed such that it will drive a 74
series TTL load. Calculate the corresponding values of K required for both
the NMOS and PMOS transistors. Comment on the relative transistor sizes.
Assume that a CMOS legal logic '1' is no less than 4.2 V and a legal logic '0'
is no more than 0.4 V. Also assume that VvN= 1V and VTp=-I V.

10 Semiconductor memories

10.1 INTRODUCTION

In general semiconductor memories are used when fast access of data is required.
Semiconductor memories are historically divided into two types. These are Read
Only Memory (ROM) and Random Access Memory (RAM). The main members
of each family are shown in Fig. 10.1.

!
f /

SEMICONDUCTOR

MEMORIES

ROM

MASK FUSE EPROM EEPROM FLASH

RAM

SRAM DRAM

Fig. 10.1 Semiconductor memory types

Read only memory overview
ROM devices are used for storage of data that does not require modification,
hence the name 'read only memory'. This definition however, has become less
clear over the years and now includes devices whose data are occasionally modi-
fied. The original true ROM types are mask programmable ROM and fuse
programmable ROM (or PROM). The mask programmed ROM devices are
programmed at the factory during manufacture whilst the fuse programmed
ROM devices are programmed by blowing small fuses and hence are sometimes
called One Time Programmable ROM or OTPROM. Both mask ROM and
OTPROM devices are true read only memory devices which are written only
once. Other ROM devices that are, paradoxically, written more than once are:
Erasable PROM (called E P R O M) - these devices are programmed electrically but
are fully erased with ultraviolet light; Electrically Erasable ROM (referred to as
E E P R O M or E2pROM) - these devices can be both programmed and erased elec-
trically; FLASH memory - these devices use the same technology as EPROM but

Introduction 241

not only are they electrically programmed, they can be erased electrically in a very

short time. The great advantage of all these ROM devices is that they are non-

volatile. This means that when the power is removed the stored data is not lost.

Random access memory overview

The RAM device family is divided into two types. These are Static RAM (SRAM)

and Dynamic RAM (DRAM). The SRAM device retains its data as long as the

supply is maintained. The storage element used is the transmission gate latch
introduced in Chapter 9 (see Fig. 9.18(a)). On the other hand, DRAM devices
retain their information as charge on MOS transistor gates. This charge can leak

away and so must be periodically refreshed by the user. In both cases these devices
are volatile, i.e. when the power is removed the data is lost. However, newer

devices are available which muddy the water, such as non-volatile SRAM

(NOVRAM) which have small batteries located within their packages. If the
external supply is removed the data is retained by the on-board battery. Another
relatively new device is the Pseudo Static RAM (PSRAM). This is a DRAM

device with on-board refresh circuitry that partially relieves the user from
refreshing the DRAM and hence from the outside it has a similar appearance to
that of an SRAM device.

The term 'random access memory' is given to this family for historical reasons
as opposed to the magnetic storage media devices, such as tape drives, which are
sequential. In RAM devices any data location can be read and written in approxi-
mately equal access times hence the name 'random access memory'.

Semiconductor memory architecture

Most semiconductor memories are organised in the general form as shown in Fig.
10.2. The chip consists of an array of cells with each cell holding a single bit of
data as either a logic '1' or a logic '0'. The memory cells are arranged in rows and
columns. Each row is individually accessed by a row decoder. As seen in Chapter
4, a decoder is a device which has n inputs and 2" outputs such that only one
output line goes high when an n-input data string is applied. When a row goes high
the data for that row is presented at the bottom of the array on the column lines.
A second decoder, called a column decoder, is used in conjunction with the row
decoder thus allowing a single cell or bit to be individually accessed. Hence by
applying a row and a column address the data of a single bit can be either read (R)
or written (W) via a single input/output pin under the control of a R/W pin.

In some cases the data is organised as more than one bit, e.g. an eight-bit data

word called a byte and the chip therefore has eight data inputs and outputs. In this
case eight column decoders could be used to access in parallel eight different data
bits from a single row. This structure is true for both RAMs and ROMs, although
mask programmable ROMs of course would only have a DATA OUT pin(s) and
no R/W pin.

This chapter will focus on the structure of a single memory cell and we shall

assume that the row lines (sometimes called WORD) and column lines (some-
times called BIT) are decoded such that only one row and column line is high at

242 Semiconductor memories

J

�9

N r
ROW

ADDRESS -

ONE CELL

~NRows

COLUMN

ADDRESS TT
1 2

J
CELL ARRAY

ARRAY SIZE=2 ~M+N) bits

. t 2Mc~
COL MNOECOOER BIO 1 1

t
M

L DATA IN/OUT

r "

m

R/W

Fig. 10.2 Generic semiconductor memory architecture

any one time to select that particular cell. However, in order to visualise the
memory layout, other cells may have to be included. In addition to looking at
each cell we shall discuss the relative timing requirements for the input and output
signals in order to read and write data.

10.2 READ ONLY MEMORY- ROM

ROMs are read only memory devices, or nowadays more strictly RMM (Read
Mostly Memory). As stated, an important property of all ROMs is that they are
non-volatile, i.e. when the power is interrupted the data is retained. Most semi-
conductor memories are implemented with MOS technology due to its high
packing density and low power consumption compared to bipolar.

10.2.1 Mask programmed ROMs

Mask programmable ROMs are programmed during manufacture and hence
cannot be changed once programmed. These devices are thus used for program
storage where the data stored is not required tochange.

A section of a programmed NMOS ROM array holding eight bits is shown in
Fig. 10.3. This type of array is called a NOR type memory array. Data is stored by
the presence or non-presence of an NMOS drain connection to the COLUMN
lines. When a ROW is high then the NMOS transistors connected to that ROW
will be turned on and the output on the column line will be '0'. Those locations

Read only memory- ROM 243

i T i T T T
Vdd

ENHANCEMENT LOADS

V I V' J

7] - _I V

lCl 1c4
Fig. 10.3 Mask programmed ROM

with no NMOS drain connections on the column line are pulled up to '1' by the
enhancement mode NMOS devices acting as a load.

Alternative ways of pregramming ROM devices during processing exist. For
example omitting the source connection at locations where a logic '1' is desired is
just as effective. Alternatively the threshold voltage of those transistors which are
not to turn on can be increased by using a selective implantation of P-type
dopants into the MOS substrate. These processing steps are performed by use of a
processing tool called a photo or electron beam mask (for further reading on semi-
conductor processing the reader is referred to an alternative text in this series~).
Since these processing steps are performed near the end of the process then a large
inventory of uncommitted ROM wafers with most of the processing completed
are kept on the shelf. All that is required is for the customer to specify the data to
be stored and hence the mask step can be implemented.

It should be noted that this mask step is very expensive and usually mask
programmed ROMs are used only when large volumes are required - greater than
10 000 pieces. The delivery time for such devices is approximately 3-6 weeks and
hence mistakes incur a heavy financial and time penalty.

The inputs and outputs for a typical mask programmed ROM are as follows:

�9 Inputs: address lines; chip enable (CE); output enable (OE);
�9 Outputs: data out;

�9 Power: Voj and ~ .

The address lines and data output lines require no explanation. The chip enable
pin is quite simply used to 'wake up' the chip from its low power, stand-by mode.

~L. I bbotson. Introduction to Solid State Devices. in this series.

244 Semiconductor memories

When 'chip enable' is low the device operates normally but when it is high the
device is 'off' and in 'stand by'. Since a low turns the device on then this pin is said
to be active low and hence it is labelled as CE. This pin can be used as an extra
address line for cascading two or more ROM devices when larger memory capaci-
ties are required. This is illustrated in Fig. 10.4 where an extra address line is used
with an inverter to select either ROM 1 or ROM2 via CE. The output enable pin is
used for shared data buses, with microprocessors for example, where the data
output pins can be made tri-state by holding OE high. When OE (and CE) is low
then data is presented at the output pins. Since it is active low it is therefore
labelled OE.

Fig. 10.4

A[1)N !
/

,

1
A[N+I]

A[I:NI

ROM 1

w

CE

/

/

m

Using CE to increase memory storage

/
/

A[I:NI

ROM 2

CE

DATA OUT

The timing diagram for a read operation of a mask programmable ROM is
shown in Fig. 10.5. Although these diagrams appear daunting at first they are in
fact essential to the system designer so that the device can be correctly interfaced
to other devices. This timing diagram shows that we must first set up a. valid
address and then bring chip enable (CE) and output enable (OE) low in order to
read data. Three signal types 'a', 'b', and 'c' are labelled in Fig. 10.5. Type 'a' indi-
cates that the signal can be either ' l ' or '0'; type 'b' is the tri-state or high imped-
ance condition where the outputs are floating (see Chapter 9); and type 'c' refers
to an unknown state that occurs whilst the system is changing states. We can see
that once the address is set up (i.e. valid) and CE and OE are low then valid data
can be read out of the ROM but only after a time t~c c called the address access
time. This access time is an important figure of merit for all types of memory

Read only memory- ROM 245

Fig. 10.5. ROM read timing diagram

devices. For a ROM device it is typically lOOns whilst for a hard disk on a

computer it can be as large as 100 ms!

In semiconductor memories this access time is limited by the resistance and

capacitance of the row and column lines which act as an RC delay line. The row

and column lines are usually made from metal since this has a low resistance but

unfortunately it will also have wiring capacitance as well as the gate capacitance

of each of the storage transistors. Hence the larger the array the longer the row

and column lines and so the larger the value of the RC component. Large memory

arrays, using the same technology, therefore have longer access times.

Like all of the semiconductor memory market, single chip mask ROM packing

densities have grown over the years from 256 Kbit in 1986 to 16 Mbit now.

Example 10.1

For the mask programmable ROM layout shown in Fig. 10.3 determine the data

appearing on the column lines when both rows 1 and 2 are accessed.

Solution

To access a row the row decoder output (not shown) for that row must be high.
When this happens all other row lines will be low. Hence to access row 1 a high
must be present on the decoder output. All transistors with the drain connected to
the column line will produce a 0 and those not connected will produce a 1 on the

column line. Hence:

Row 1 selected: then data out=C~C2C3C4=OIO1

Row 2 selected: then data out=CiCzC3C4=O010

Example 10.2

Assume that the memory array shown in Fig. 10.3 are two rows of a larger array

of size 64 by 4 bits. What would the row address be to access these two rows if they

are the last two rows in the array?

246 Semiconductor memories

Solution

This chip would have 64 rows with each row four bits in length. To address all 64
rows we would need a decoder which has six address inputs and 64 outputs each

connected to a single row. The address 000000 will produce a '1' on the first row

with a '0' on all the other rows. Hence in order to address the last two rows we will
need row addresses of 111110 and 111111, respectively.

10.2.2 PROMs

A PROM, or programmable read only memory device, is programmed by
blowing small fusible links which are made of nichrome or polycrystalline silicon.

Since fuses are blown the result is irreversible and hence the devices are sometimes
called one-time programmable ROMs (or OTPROMs). The early PROM devices

were mainly of bipolar form which have a higher effective K than MOSFETs and
thus can generate the 15-20mA needed to blow a fuse without the use of large
WIL ratio MOS transistors.

A schematic for an eight-bit bipolar fuse PROM is shown in Fig. 10.6. before
the fuses are blown. To blow a fuse the row is selected and the corresponding
column line held low in order to program a zero. The power supply Vpp is then
held at typically 12.5V for approximately 501as which is sufficient to generate
enough power to blow the fuse. In this case the devices are supplied to the
customer with a 1 in every location and the user is able to program a 0 where

Vpp

R2

[1

Cl

V
i /

[1

c2

Fig. 10.6 A bipolar fuse programmable ROM - OTPROM

C3

~7

C4

Read only memory- ROM 247

required by blowing the small fuses. During normal operation the power supply
voltage is 5 V and so there is no danger of accidentally blowing the fuses.

The increased packing density of MOS transistors over bipolar has resulted in
PROMs now being predominantly fabricated using MOS techniques. These MOS
devices are in some cases quite simply MOS EPROM devices (see next section)
with no transparent window hence stopping erasure by ultraviolet light. In both
cases the pin-out for bipolar or MOS OTPROMs are:

�9 Inputs: address lines; data in; chip enable (CE); output enable (OE);
�9 Outputs: data out;
�9 Power: Vdd, Vpp and Vss or Vcc, Vpp and Vee (for bipolar).

The difference in pin-outs between mask and one-time programmable ROMs is
the addition of the higher power supply voltage pin (Vpp) and that the data pins
are bidirectional, i.e. having both input and output capability for programming
purposes. The read timing diagram is the same as for mask programmable ROMs
with similar address access times. However, since these devices need to be
programmed by the user then a write program timing sequence is supplied in the
data sheet. A simplified write or fuse program timing diagram is shown in Fig.
10.7 which actually consists of two stages: data programming and then data verifi-
cation. As can be seen the address and data are set up first and Vpp is pulled up to
12.5 V and Vcc to 6.25 V. The actual programming operation occurs when CE is
held low for typically 50-1001as (tpw). To verify that the correct data was
programmed into the PROM the data is read back out again by pulling OE low
for a short time (approximately 200 ns). This process is repeated for every address
value and hence the total time taken to program a PROM depends upon the total
number of addresses and can take as long as 10 minutes in some cases. This timing
diagram is fairly complex but fortunately PROM programmers are readily avail-
able that will operate automatically from PCs.

Single-chip OTPROM packing densities are currently at 4 Mbit.

Fig. 10.7 Program timing diagram for fuse programmable ROMs

248 Semiconductor memories

Example 10.3

A PROM of size 4Mbit, organised as 0.5 Mbit by 8 bit, is to be programmed using
the CE pulse technique described above. If the CE minimum low pulse width is
100 ~ts then what is the maximum programming time to program all bits? Assume
that all other timing parameters can be neglected.

Solution

A total of 0.5 Mbytes require to be programmed. Since each byte is programmed
in 100 laS then the total approximate programming time, ignoring tas , tdh and toe s,
etc., is

rtota I -- 0 . 5 X 106 X 1 O0 x 10 -6 -" 5 0 s e c o n d s

10.2.3 E P R O M

The problem with the OTPROM devices is that for program development they
are inefficient since only one address change will require a completely new device.
Hence OTPROMs are only used when the program is settled and contains no
known bugs. However, during system development several iterations are usually
required, hence devices which can be reprogrammed are more useful. The erasable
programmable ROM, more commonly known as an EPROM, is not only electri-
cally programmed but can be fully erased by exposure to ultraviolet light. Hence
the device can be reUsed over and over again until the design is completed. The
code on the EPROM can then be transferred to either an OTPROM or a mask
programmable ROM.

The cross-section of a single EPROM cell is shown in Fig. 10.8. It consists of
two gates:

(i) FG1 - Floating gate not connected in the array and insulated from the
channel by an oxide layer of standard thickness of 0.05 pro.

(ii) G 2 - Polysilicon gate used as the normal memory transistor on the row or
word line.

Fig. 10.8 Cross-section of a single EPROM cell

This device fits into the same NOR array as in Fig. 10.3 with inverters on the
column line outputs and some additional circuitry. The floating gate (FG1) is
used to store charge which thus modifies the threshold voltage (V~) of G2.

Read only memory- ROM 249

Assume initially that FG 1 has zero charge and thus when G2 (or ROW) is held
high then the transistor conducts as normal and the column line is 1 (due to the
column inverters). Hence unprogrammed EPROM devices have all bits at logic 1.

To write a '0' into the EPROM cell, the row and column lines are both held at a
sufficiently high voltage (typically 12.5 V) to cause the drain to enter a condition
called avalanche breakdown and a large current flows. The high field from D to S
accelerates these electrons to high velocities and some of these electrons (called
hot electrons) have sufficient energy to jump to FG1 where they are trapped. (It
should be noted that these hot electrons pass over a potential barrier which is
larger when looking back from FG to substrate. These hot electrons do not tunnel
through the oxide. For a more detailed explanation of the MOS device the reader
is referred to Hart2). Now since FG1 is totally insulated then on removing this
voltage a negative charge is left on FG 1 and under normal conditions it will not
leak away for typically 5-10 years.

This negative charge on FG1 will attract holes to the silicon/silicon dioxide
interface and so raises the threshold voltage seen by G2. Thus the row voltage at
G2 will not turn this device on and so the drain will be pulled up to logic 1 and the
column output will be programmed as a logic 0. This avalanche hot electron MOS
technique is known as the floating gate avalanche MOS or FAMOS process.

The only way to remove the charge from FG 1 and hence erase the device is to
make the silicon dioxide conductive by using light of energy greater than its
energy gap. This is usually light in the ultraviolet region and the whole process
takes approximately 20 minutes to erase. Since these devices are erased optically
by the user they must have a transparent window in the package which adds
slightly to the cost of the EPROM compared to OTPROMs. It should be noted
that daylight also contains the correct wavelength for erasing EPROMs.
Consequently once an EPROM has been programmed then the quartz window
must be covered with an opaque label. (The MOS OTPROMs discussed in the
previous section are nowadays actually made by using EPROM technology but
with no transparent window present for erasing. Hence the device can only be
programmed once.)

The input and output pins for an EPROM device are exactly the same as for the
OTPROM including power supplies (i.e. Vdd, Vpp and Vss). Consequently the read
and write timing diagrams are also identical and it is not surprising that EPROM
devices are programmed by the same programmer as that which programmed an
OTPROM. However, since an EPROM device is reprogrammable it is necessary
to erase the device completely before every write operation. This is because the
write operation can only program a logic '0' and will not reprogram a logic '0' to a
logic '1'. Finally the number of write/erase cycles is an important f ac to r - this is
usually called endurance in memory terminology. The use of hot electrons gradu-
ally damages the gate oxide and hence the number of write/erase cycles is typically
only 100 for an EPROM device.

2B. Hart, Introduction to Analogue Electronics, in this series.

250 Semiconductor memories

In 1986 EPROM packing densities were typically 256 Kbit. Currently this
figure stands at 4 Mbit.

Example 10.4

How much current is required to charge the floating gate of a 1 grn EPROM cell
to 5 V from 0 V over a write time of 50 las? Assume that the capacitance of the
floating gate is 8 x 10 -4 pF/grn 2.

Solution

The total capacitance of the floating gate is

Cfg- 8 x 10-4x 1 x 1-0.8 fF

Hence the charge current, derived from I= Cd Vldt, is

I~ha~g~--0.8 X 10-tSX 5 +(50X 10-6)-- 80 pA

i.e. only a small fraction of the avalanche current (which is of the order of 1 mA) is
required to charge the floating gate.

10.2.4 EZPROM

Although the EPROM is an extremely mature technology having been available
for more than 15 years its main disadvantage, apart from requiring an ultraviolet
light source to erase, is that this erase is not selective and all cells are erased at
once. The electrically erasable PROM (EEPROM or E2PROM), on the other
hand, is not only programmed electrically but the cells can be erased electrically.
This allows the devices to be programmed whilst still in the system. Hence these
devices can be used not only for programs and program upgrades but also for
storing data that occasionally require updating whilst in use (for example tele-
phone numbers on mobile telephones).

One variant of the E2pROM device employs an MNOS (Metal Nitride Oxide
Semiconductor) transistor as the memory element. This MOS transistor, shown in
Fig. 10.9, consists of an insulator which is composed of two layers - a silicon
nitride layer of thickness 0.05 lain and a very thin silicon dioxide layer of thickness

Fig. 10.9 Cross-section of a single E2PROM cell

Read only memory- ROM 251

0.005 grn. The principle of operation relies on the fact that the interface between
the oxide and nitride is capable of trapping electrons. Assuming that this interface
has zero charge initially then as in the EPROM a '1' on the r o w line will result in
the column line reading '1' (remember that an inverter is present on the column
line).

To write a '0', 12.5V is applied to the gate with respect to the source and

substrate for approximately 10 ms. The high field generated across the very thin
oxide layer allows electrons to tunnel through which are caught by the electron
traps at the oxide/nitride interface. The presence of this negative charge will
increase the threshold voltage seen by the r o w line. When r o w goes high next time
then the MNOS transistor will not conduct and the column output will indicate a
logic '0'. Just as in the EPROM the charge can stay at this interface for many
years.

The advantage of this tunnelling action is that it is reversible. Hence to erase, all
that is required is to apply-12.5 V on the gate which repels electrons from the
oxide/nitride interface. No distinct erase operation is needed; only a write cycle is
required which loads in either a logic '1' or a logic '0'.

This type of device has high reliability. For example, in the event of a pinhole or
a defect in the oxide then only the charge at the oxide/nitride interface above the
pinhole or defect will leak away. The rest of the charge at the interface is trapped
in the non-conductive layers and so the cell retains its state. The device thus has a
very high endurance in that at least 104 write/erase operations can be carried out
before the device shows signs of degradation.

An alternative to the MNOS E2pROM cell is to use a variation of the EPROM
floating gate cell. In this case the floating gate is extended over the drain and here
the oxide is thinned down to 0.01 gm from 0.05 pan. The cross-section for this
structure is shown in Fig. 10.10. The advantage of this structure is that the thin
oxide region is limited to a small area and hence reliability problems caused by
defects and pinholes in the oxide are greatly reduced due to the small area occu-
pied by this thin oxide. The device is programmed by holding the gate at a high
positive voltage with respect to the drain. Electrons tunnel through to the floating
gate and thus become trapped. To erase the cell the process is reversible and thus a
high positive voltage is applied to the drain with respect to the gate and electrons
are withdrawn from the floating gate. Note that since in a memory array all the

Fig. 10.10 Cross-section of a single floating gate E2PROM cell

252 Semiconductor memories

drains in one column are connected together, then the application of a large posi-
tive voltage to the drain during erase will also be passed to other cells on that
column. Hence with the floating gate E2pROM device each memory element must
have its own select transistor to individually access each transistor which reduces
the packing density.

Whichever cell is used the pin-out for an E2PROM has typically the following
pins:

�9 Inputs: address; data in; chip enable (CE); output enable (OE); write enable
(WE);

�9 Outputs: data out; RDY/BUS Y;

�9 Power: Vdd; V~s.

The first thing to note about these pins is that no high voltage supply (Vpp) is
necessary. This is generated automatically on chip for both a logic '0' and logic
'1'. Since this device can be both written and read then a write enable pin (WE) is
needed to indicate to the array that data is to be written. Hence the read timing
diagram for the E2pROM is the same as for the mask programmed ROM but with
WEheld high. Due to the E2PROM cell having a slightly larger capacitance on the
row lines its access time is slightly larger than an EPROM at typically 150 ns.

A simplified write timing diagram for an EZPROM is shown in Figure. 10.11.
Since the data is usually byte wide then eight bits at a time are written in parallel-
this being true for most memories. A pin to indicate that the device is busy writing
is provided, called RDY/B US Y. When WE goes from low to high B US Y goes low
indicating that the array is busy writing. Only when B U S Y goes high impedance
has the data been correctly written. The complete cycle takes approximately
10ms. Another way of indicating successful data writing is by using the data
polling method. In this case the data is latched into the chip and an inverted data
value appears at the output. When the data has been correctly written this data
changes to non-inverted.

Fig. 10.11 Write timing diagram for an E2PROM device

Read only memory- ROM 253

The current state of the art of E2pROM using MNOS is approximately 1 Mbit
compared to 64 Kbit in 1986. However, because the floating gate version has to
have an extra transistor per cell these versions are lower capacity being typically
256 Kbit.

Example 10.5

How many pins would an E2pROM chip have if it has a capacity of 256 Kbit
organised as 32 Kbits by 8 bit?

So/m/on

This chip has 32 Kbytes of storage space. To address this storage space we need 15
address lines. Hence the total pin-out would be: 15 Address lines;eight data bits;
CE, OE, WE, BUSY, Vdd and V~s, i.e. 29 pins in total.

10.2.5 F L A S H E 2 P R O M

Although the MNOS E2pROM device has a relatively high capacity the fabrica-
tion of the nitride layer and the very thin oxide layer (0.005 lma) is more expensive
to manufacture than the floating gate EPROM transistor. The alternative
EapROM utilising a thinned down oxide transistor over the drain also requires
extra processing steps, has an extra select transistor and it too is expensive per bit.
To take advantage of the higher packing density of EPROM arrays and its lower
manufacturing costs recent processing improvements have allowed a complete
thinning down of the oxide under the whole length of the floating gate. The
process of charge storage could now be reversed by simply reversing the applied
potential. Hence the need for ultraviolet light to erase the device is no longer
necessary. This type of memory element is called a Flash EapROM cell and is
shown in Fig. 10.12.

Fig. 10.12 Cross-section for a single flash E2PROM cell

A single flash cell is basically the same as the EPROM cell (i.e. having a floating
gate) but the oxide under the floating gate is reduced in thickness from 0.05 pan to
0.01 ~n. As a reminder, to program the floating gate EPROM a large positive
voltage is applied to the drain and gate with respect to the source and the device

254 Semiconductor memories

enters breakdown. This creates hot electrons of which some pass to the floating
gate therefore programming the cell. Now, to program the flash device 5 V is
applied to the drain and a large positive voltage (12 V) is applied to the gate with

respect to the source. Since for the flash device the oxide under the floating gate is
much thinner then electrons are able to tunnel through this gate oxide using a

mechanism called Fowler-Nordheim tunnelling. Unlike the EPROM this process
is reversible and to erase the stored charge all that is required is to apply +12 V to
the source with the gate grounded (drain floating) thus returning the electrons on
FG 1 to the source. Since the drain is never held at a high positive voltage then the
use of a select transistor to isolate other cells as in the alternative E2PROM is
unnecessary. The problem with this structure is that a much larger area of thin

oxide exists and hence the device is much more susceptible to damage. In addition
if a cell is erased that is already erased then the MOS device will over time acquire
a negative threshold voltage and will not program properly. Hence in order to

ensure that this problem does not occur all cells must be preprogrammed before
erasure can start. In this way all cells will be erased by the same amount and the
problem of over erasure will not occur. Since all cells are erased at the same time
the device is called flash. Note that before erasure a preprogram time must be
allowed for of approximately the product of the number of bytes and the data
write time. For 1 Mbyte arrays the total pre-write and erase time for the complete
chip is typically 2-3 seconds. It should also be noted that before programming can
commence the memory array must be erased (i.e. all cells at logic '1') since the
action of programming only writes a logic '0'. The diagrams in Fig. 10.13(a), (b)
and (c) illustrate these write, erase and read modes on a small 2 x 2 array.

WRITE to T4 ERASE all CELLS READ T3 and T4

Row I (word 1)

source T ~ . ~

Row 2(word2)

5V Float Float

T ~ _ ~ OV

OV T 3 ~ T 4 ~ ! 2 V

- I I - I

T3 1 !"-"

(a) (b) (c)

I
T~~_~ ~ OV

T 4 ~ ' 0V

5V

Fig. 10.13 Write, erase and read programming for a flash E2PROM array

The input and output pins for a flash E2pROM are as follows:

�9 Inputs: address; data in; chip enable (CE); output enable (OE); write enable

(WE)
�9 Outputs: RDY/BUSY; data out;

�9 Power: Vdd; Vs~; Vpp.

However, on some of the more recent flash devices the Vpp pin is removed as in
the EZPROM and is generated on chip.

The timing diagrams for a flash read are the same as in EZPROM but the timing

diagrams for write and erase are much more complicated than EZPROM and

Random access memory- RAM 255

require 2-3 write cycles to load in not only data but also commands indicating
whether the operation is to be a write, an erase, a data verify, etc. The timing
diagrams for these devices will not be included here so as not to detract your
interest from this exciting new product! For these details you are advised to
consult the manufacturers' data sheets although it is expected that as with the

trend of all memory products the complexity of writing and erasing will ease as
more and more circuitry is included within the chip. The flash memory device is a

relatively new entry into the memory market and is starting to provide strong
competition to hard disk drives especially in mobile computers where the lack of

moving parts is a great boost for reliability.

Example 10.6

A 1 Mbit flash memory, organised as 128 K by 8 bits, has a byte write time of

10 ~ts, a flash erase time of 10ms and a verify time of 6 laS. Calculate the total

length of time for a complete memory write and then a complete erase.

Solution

To write a byte of data takes 10 gs but each byte should be verified and so the total
write time per byte is 16N. Hence the total write time for the array is:
128 x 103 x 16 x 10-6= 2.048 seconds.

To completely erase we must first prewrite all bytes with a logic 0, then erase
and finally perform an erase verify. The total erase time is thus:

T~,~e = 2.048 + 10ms + 128 x 103X 6 ~ts
=2.048+0.01 +0.768
=2.826 seconds

10.3 R A N D O M A C C E S S M E M O R Y - R A M

All the programmable ROM devices we have looked at have read times of the
order of 100 ns but byte write times from 10 ~ to 10 ms. This is acceptable when
holding programs or storing data that change fairly infrequently but in cases
where fast write times are needed such as in computers during mathematical
calculations then these devices are inappropriate. For such applications RAM
devices are more suitable. RAM or random access memories (more appropriately
called read write memories) can be both written to or read from in a very fast time
of typically 100 ns. They are classed as either static or dynamic.

Static RAMs retain their data indefinitely unless the power to the circuit is
interrupted. Dynamic RAMs require that the data stored in each cell be refreshed
periodically to retain the stored information. Again the data is lost if the power is

interrupted.

256 Semiconductor memories

10.3.1 Static RAMs

The basic schematic structure of a single static RAM cell is shown in Fig. 10.14.
This cell consists of two inverters connected back to back in what is called a flip-
flop arrangement. Two switches, S 1 and $2, are controlled by the row line so that
data may be read from or written to this cell. The output of one inverter reinforces
the output of the other and hence the state of the circuit is locked. By closing
switches S 1 and $2 the cell can be accessed and data can be read. Alternatively the
cell can again be accessed and by forcing column (and column) to the required
voltage, data can be written accordingly.

ROW

(word line)

! i

I

| i
|
| I

! I

i I

COLUMN

(bit line)

COLUMN

Fig. 10.14 Schematic for a single SRAM cell

SRAMs can be implemented with MOS or bipolar transistors. However, as
mentioned in Chapter 9 the bipolar device is fast but consumes more space than
the MOS cell and hence is only used in specialist applications. As shown in
Chapter 9 BiCMOS is becoming popular when driving large capacitances which is
especially important on the row lines for memory devices. Nevertheless, the MOS
route is the most economical and hence is still the most popular technology for
SRAMs.

The MOS transistor circuit diagram for an SRAM cell is shown in Fig. 10.15.
Transistors T5 and T6 act as access transistors to the cell and implement the
switches S1 and $2 from Fig. 10.14. Transistor pairs T l/T3 and T2/T4 are
NMOS inverters (as described in Chapter 9) and are arranged in cross-coupled
form as in Fig. 10.14. Access to the cell is achieved by a high on the row line
which allows the state of the cell to be read out from the column lines. If T3 is off
and T4 on then column will be high and column low and the cell is said to be in
the logic '1' state. To write a '0' in the cell the row line is held high and column is
forced low and column high. Thus T4 turns off and T3 turns on. When row is
held low again the access transistors T5 and T6 turn off, but due to the cross-
coupled nature of the two inverters the data is retained in the cell. However, if
the power is removed the data will be lost and hence these devices are called

ROW

(word line)

Random access memory- RAM 257

Vdd
. .

T2

I ' X 5

4

Vss

L 1
T6

COLUMN COLUMN

(bit line) (bit line)

Fig. 10.15 MOS implementation of a single SRAM cell

volatile. It is possible to obtain pin compatible, directly replaceable, non-volatile
SRAM (called NOVSRAM) which contains small batteries integrated into the
package which cut-in when the main power is lost. However, although these
batteries last for two years it is usually not possible to replace them since they
are totally encapsulated.

It should be noted that using NMOS transistors as the load can result in unnec-
essary power consumption since a current will always flow between V~d and V~
when one of the driver transistors (T3 or T4) is on. Having small W/L ratios for
the loads will keep this consumption low although two other techniques are used,
namely" CMOS logic used for the inverters, or the load is replaced with a high-
value polysilicon resistor. A cross-section of one-half of the flip-flop arrangement
using this latter technique is shown in Fig. 10.16. This cross-section utilises two
layers of polysilicon, one for the gate and the other for the load resistor. The
resistor is positioned on top of the transistor thus saving space.

Fig. 10.16 Cross-section for one-half of an MOS SRAM cell

258 Semiconductor memories

Typical input and output pins for an SRAM are:

�9 Input" address; data in; CE; OE; WE;
�9 Output: data out;
�9 Power: V~d; V~.

The CE pin is often referred to as the Chip Select pin or CS. The SRAM read
timing diagram is the same as in Fig. 10.5 for the mask ROM but with WE held
high. The write timing diagram is the same as in Fig. 10.11 for an E2pROM, but
without the BUSY pin. Data is written into the SRAM as soon as WE goes high
from its low state.

Low-power stand-by modes are possible with most SRAM devices, reducing
the power consumption when not in use by a factor of 1000. This is achieved quite
simply by holding CE high. In some devices the power can be reduced further by
lowering Vdd to 2 V without corrupting the stored data. Remember though that
removing the power altogether will result in a complete loss of data.

Example 10.7

A single cell of an SRAM uses 20 Mr2 load resistors. If the chip operates at 5 V
and contains 64 Kbits then what is its power consumption? Assume that the
voltage across an MOS transistor when on is 0 V.

So/ut/on

When one of the inverter outputs is low then current flows through the load
resistor from Vdo to V~. The power consumed for one cell is thus

V~J20 x 10 6 = 1.25 lxW

Hence for a 64Kbit SRAM the total power consumed is 80 mW.
Notice that if the power supply is reduced to 2 V then the total power consumed

reduces to 12.8 mW. If CMOS is used this static power consumption is reduced
but with the added disadvantage of a lower packing density due to more transis-
tors per bit.

10.3.2 Dynamic RAMs

Each SRAM cell either uses four transistors and two resistors or six transistors for
CMOS logic. Hence each cell consumes a relatively large area of silicon compared
to other semiconductor memory options. Using 1 jma technology a single SRAM
cell in CMOS covers approximately 10 lma x 10 lma and thus a large multibit chip
quickly becomes too large to manufacture.

The dynamic RAM or DRAM uses fewer transistors per cell than the SRAM.
Hence more bits can be achieved per mm 2 albeit at the expense of more complex
peripheral circuitry to refresh the data. All DRAMs use MOS technology and

Random access memory- RAM 259

data is stored as charge on a capacitor. The highest density DRAM is obtained
with the one transistor cell. There are many variations but the most common form
is shown in Fig. 10.17. It consists of a single access transistor and a storage capac-
itor, C~.

ROW

(word)

Cc

!

I
.

!

!

,5,
COLUMN

(bit)

Fig. 10.17 A one-transistor dynamic RAM cell

T T1
i

1
(storage capacitor)

To read the cell, row is held high and hence T 1 is turned ON. The voltage stored
on C~ is transferred to the column line and sensed by a sense amplifier (not
shown).

To write to the cell the row is again held high turning on T1. I fa logic '1' is to be
stored then the column line is held high and C s charges up to a logic '1'. When row

is held low T 1 is then turned off thus holding the charge on Cs. The charge stored
on C~ can, however, leak away through T1 due to its small leakage current when
the transistor is off. Consequently the data must be periodically refreshed which
thus requires extra circuitry on the chip. In fact the operation of reading the cell
also results in the data being lost. This is because the storage capacitor is designed
to be deliberately small for compactness. However, the column line feeds many
cells and hence the capacitance of this line is very high (shown dotted as Cc). Each
time the transistor T1 is turned on the charge on C~ is distributed between these
two capacitors and hence its voltage will drop (see Example 10.9 below).
Consequently each time the cell is read it must be refreshed. This is usually
performed automatically after every read with on-chip refresh circuitry. However,
cells that lose their charge through leakage currents via the off transistor must be
periodically refreshed by the user.

Typical input and output pins for a DRAM are:

�9 Inputs: address; data in; RAS; CAS; OE; WE;

~ Outputs: data out;
�9 Power: Vjj; V~.

As can be seen two new pins, CAS and R A S , are present with the DRAM and
are called 'column address select' and 'row address select', respectively. Since
DRAM devices have a large capacity then the number of address lines would be
large. In order to reduce the number of address pins these are multiplexed into
row and column addresses via the two select lines RAS and CAS. Hence a 1 M by

260 Semiconductor memories

16 bit DRAM would require 20 address lines but with address multiplexing this
can be reduced to 10 address lines plus CAS and RAS. This results in a smaller
and hence lower cost chip. The problem with this for the user is that the timing
diagrams are more complicated. For example a read timing diagram is shown in
Fig. 10.18. Although not indicated, WE is held high and OE is held low
throughout. Notice that the row address is latched into the chip on the falling
edge of RAS and then the column address is latched on the falling edge of CAS.
After a short time, t~,~, called 'access time from CAS' the data becomes valid on
Data out. It remains valid until CAS goes high and tort seconds later Data out goes
high impedance. Typical values of tcac and tof r are 20 ns.

Fig. 10.18 DRAM read timing diagram

To write data into a DRAM two methods are available which provide the user
with design flexibility. These are early write and late write. Both these modes are
illustrated in Fig. 10.19. In both cases RAS, CAS and the address lines are set up

Fig. 10.19 Two techniques for writing data into a DRAM

Random access memory- RAM 261

as before, however, in early write the WE line is taken low before CAS. When
CAS falls the data is written into the array. For late write the WE is taken low
after CAS at which point data is written into the array.

As stated the charge on the storage capacitor can leak away within a few
milliseconds, hence the whole chip must be periodically refreshed. Several
methods exist for the user t~o refresh the data. For example, every time a read
operation is performed on a~a address then the data at that address is refreshed.
Another method is called 'Ix'AS only refresh' and the timing diagram for this
mode is shown in Fig. 10.20. Yt consists of holding CAS high and each time RAS
goes low the data on the whole row that is being addressed will be refreshed. For
other refresh modes the reader is referred to the manufacturer's data book.

Fig. 10.20 DRAM RAS-only refresh

As can be seen the timing diagrams for DRAMs are more complex than
SRAMs and hence some semiconductor manufacturers have added extra circuitry
on board to relieve the system designer from complicated refreshing and address
multiplexing. These devices are called 'Pseudo Static RAMs or PSRAM and are
pin compatible with SRAMs (plus a B'USY pin) with only minor timing limita-
tions required to allow for the chip to refresh itself.

Typical DRAM sizes are currently at ,16 Mbit. The yield of such highly packed,
very large, integrated circuits, needless to say, is low. However, for the cost to be
kept competitive the yield must be kept high. The yield of DRAMS is dramati-
cally increased by incorporating redundant (or spare) rows and columns of bits
which can be exchanged for faulty ones.

Example 10.8

How often must a DRAM cell be refreshed .if C~-0.01 pF, the leakage current of
the off transistor is 10 pA and the voltage across the capacitor is 2 V for a logic' 1'
and 0 V for a logic '0'.

Solution

When C~ is fully charged then 2 V appears across it. This voltage gradually falls as

262 Semiconductor memories

charge leaks away through the off transistor and must be refreshed before it
changes to a logic '0'. The switching point is half-way between the two logic levels
i.e. at 1 V. Hence using the equation for the discharge of a capacitor we can work
out the time it will take for the voltage to fall from 2 V to 1 V, i.e. I= 6'8 V/St.

Rearranging to find 8t:

8t=CSV/I=O.O1 x 10-12 X 1/10pA= 1 ms

i.e. the data must be refreshed every 1 ms.

Example 10.9

Consider the DRAM cell shown in Fig. 10.17. The capacitance of the column line
(C~) is twenty times that of the storage capacitor (C) and the voltage across each
capacitor is V c and V~ respectively. If a read signal is applied then what will be the
change in voltage on the column line?

Solution

Before a read occurs the charges on the two capacitances are Qc = C c v~ and
Q~= C~ vs. When a read occurs the charge is d:wided amongst these two capacitors
which are now connected in parallel. Hence the new charge on the column line is
the sum of these two charges:

Qr, ew~=CcV~+C~V~

These two capacitors can be treated in parallel and hence

Qnewc=(Cc+C~)V,r

Equating these two expressions and substituting 20Cs = Cc we obtain

20C~ V c + C s V~= (20C~ + C) V.~wc

Thus V.~w~ = (20 V c + V~)/21.
The change in voltage on the column line is 8V c and hence V.~w~= V~ +8 V~.

Substituting for V.~w~ into the above equation:

Vc+SVr162 V~)/21

Rearranging:

Vc = (2 0 + v3/21 - = 0 / 2 1

Hence if F~ is 2 V and V c is 1 V then the column line voltage will only change by
47.6 mV. This is for a logic '1' stored and a similar value change (but negative) for
a logic '0' stored. Consequently the sense amplifiers on the column line must be
able to detect this small change in voltage. Needless to say one of the key compo-
nents of a DRAM is a sensitive, noise-free, high-quality, sense amplifier.

Selecting the appropriate memory 263

10.4 MEMORY MODULES

In order to increase the memory capacity and to take advantage of the highly
reliable semiconductor memories several semiconductor memory chips are incor-
porated onto a small PCB or substrate called 'memory modules'. Two main types
of memory modules are in use today: SIMM and PCMCIA. The SIMM or single
in-line memory module devices are those used in most PC based computers and
consist of several DRAM chips on one board having either 30 or 72 pins arranged
in a single line. The PCMCIA memory modules are actually memory cards which
look like a typical bankers card. PCMCIA cards (standing for personal computer
memory card international association) have 68 pins arranged in two socketed rows
of 34 pins each. Most laptops and some PCs nowadays contain a PCMCIA slot.
The card consists of an array of memory chips which could either be: flash, battery
backed SRAM, E2pROM or ROM. Three types exist: Type 1 (3.3 mmin thickness);
Type 2 (5 mm in thickness); and Type 3 (10.5 mm in thickness). However, only
Types 1 and 2 are used for memory whilst Types 2 and 3 are used for hard disks and
fax cards. PCMCIA cards that use SRAM have a small lithium disk battery such
that data is retained when the card is removed from the computer.

10.5 SELECTING THE APPROPRIATE MEMORY

To conclude this chapter let us try and briefly summarise these memory options as
an aid to providing a selection guide. The first requirement is usually capac i ty -
what is the maximum number of bits that can be obtained with a single chip? As
you can imagine this figure is continually increasing as semiconductor processing
advances. The second consideration is the write time (the read times for all types
of semiconductor memory are all very similar of the order of 10ns-100ns). Fig.
10.21(a) and (b) shows histograms of the current capacity and the write time of
each of the memory options discussed in this chapter. As expected these capacities
have steadily increased over the years due to improvements in semiconductor
processing. It can be seen that the highest capacity ROM is the mask program-
mable device but this is programmed once at the factory for a high cost. The
DRAM is the largest read/write chip available with a very high speed write time.
However, it is volatile and requires careful timing considerations. The SRAM has
a medium capacity, is easy to interface to other devices, but is expensive per bit
and is also volatile. The flash is a new market which is catching up with DRAMs
and has the advantage of being both non-volatile and low cost but currently also
requires careful timing. It is expected that these devices will become easier to use
as this technology advances. EPROMs are very low cost and are ideal for
program development but are totally inappropriate where in-circuit modifications
are required. This area is covered by E2pROM devices but write times of
10 ms/byte make its use limited. The 10 lxs byte write times for flash make this the
product to watch for the future.

264 Semiconductor memories

Densi ty

(Mbit)

,6t
1 2 -

8 -

4 -

ROM OTPROM EPROM E2pROM E2pROM FLASH SRAM
(mask) (MNOS) (FG)

(a)

DRAM

Fig. 10.21

10,000

Write time 1000

per byte 100
(~)

10

1

0.1

(b)

Capacity and write time comparisons for semiconductor memories

10.6 SELF-ASSESSMENT

10.1 Define the terms ROM, RAM, SRAM, DRAM, EPROM, RWM, PSRAM,
NOVRAM, OTPROM, EZPROM.

10.2 The power is removed from the devices in Question 10.1. Which devices will
retain their data?

10.3 What does non-volatile mean?

10.4 Define access time.

10.5 Which of the memory types uses the most transistors per bit and which uses
the least?

10.6 Which has the longest write time: a hard disk or an SRAM?

10.7 Place in increasing write time order the memory options described in this
chapter.

10.8 Which type of memory device is used as the main semiconductor memory in
PC computers?

Problems 265

10.9 What is a SIMM?

10.10 What is a PCMCIA card?

10.11 What voltage levels should the pins CE, OE, WE be in order to read data
from a DRAM?

10.12 Why do you have to refresh a DRAM memory device?

10.13 What power supply voltages are needed for EPROM, flash, SRAM,
E2PROM?

10.14 What happens when CE is held high for an SRAM device?

10.15 Which of these devices must be erased before they can be written: EPROM;
E2PROM; SRAM; flash?

10.7 PROBLEMS

10.1 A semiconductor memory chip is specified as 2 K by 8"
(a) How many words (exactly) can be stored on this chip?
(b) What is the word size?
(c) How many total bits can this chip store?

10.2 (a) How many pins would a 4 M by 8 bit mask ROM have?
(b) Repeat (a) for a multiplexed address DRAM.

10.3 Illustrate with a sketch how to combine 256 K by 4 bit SRAM chips (having
a single CE pin and bidirectional I/O pins) to produce a:
(a) 256 K by 8 memory;
(b) 512 K by 4 memory (use only 19 address lines);
(c) 1024 K by 4 memory (use only 20 address lines).

10.4 A DRAM has a column line capacitance of 3.8 pF. What value of C~ is
required such that at least 250 mV change on the column line occurs when
reading a logic zero (0 V) or a logic one (5 V)? Assume that the column line is
precharged to 2.5 V before reading.

10.5 A flash memory device organised as 256 K by 8 bits has a total write time of
4.2 seconds and a total erase time of 5.8 seconds. If the flash erase time is
9.5 ms then what are the values of byte write time and byte verify time?

10.6 A 5V NMOS SRAM cell is to have a stand-by power consumption of
0.1 mW. What value of load resistor is required? Assume the voltage across
the 'on' MOS transistor is 0 V.

10.7 A 5V, 512 K by 8 bit CMOS SRAM is to be used in a three hour battery
powered application. If the leakage current of an off transistor is 0.5 nA then
what is the total static power dissipation and the total ampere hours
required. Comment on the validity of your answer.

11 Selecting a design route

11.1 INTRODUCTION

The preceding chapters have described the various techniques used to design

combinational and sequential circuits. We have also discussed the advantages and

disadvantages of each of the technology options, i.e. bipolar, CMOS, ECL, etc.
This final chapter describes the various design routes which can be used to imple-
ment a design. The decision regarding which of these design routes to use depends
upon the following issues:

�9 When should the first prototype be ready?
�9 How many units are needed?
�9 What are the power requirements?
�9 What is the budget for the product?
�9 What are the physical size limitations?
�9 How complex is the design (gate count, if known)?
�9 What is the maximum frequency for the design?
�9 What loads will the system be driving?
�9 What other components are needed to complete your design?
�9 What experience have you or your group had to date in the design of digital

systems?

These are the questions that must be asked before starting any design. The aim
of this chapter is to provide background to the various design routes that are
available. Armed with this knowledge, the answers (where possible) to the above
questions should allow the reader to decide which route to select or recommend.

11.1.1 Brief overview ofdesign routes

The various design options are illustrated in Fig. 11.1. As can be seen the choice is
either to use standard products or to enter the world of application specific inte-
grated circuits (ASICs). The 'standard product' route is to choose one, or a
mixture, of the logic families discussed in Chapter 9 such as 74HCT, 74LS, 4000
series, etc. On the other hand, an ASIC is simply an IC customised by the designer
for a specific application. Various ASIC options exist which can be subdivided
into either field programmable or mask programmable devices. Field program-

Introduction 267

DIGITAL DESIGN OPTIONS

STANDA.D P.O OCTS b

L
74"['TL 74CMOS 4000 ~ P ~1. C DSP

INTEGRATED CIRCUITS] / \
/ / / I \ \

ROM PAL PLA EPLD GAL FPGA

MASK PROG. I/ \l
GATE STD. FULL

ARRAY CELL CUSTOM

Fig. 11.1 Design options

mable devices (i.e. ROM, PAL, PLA, GAL, EPLD and FPGA) are all
programmed in the laboratory. However, mask programmable devices must be
sent to a manufacturer for at least one mask layer to be implemented. These mask
programmable devices may be exclusively digital or analogue, or alternatively
what is known as a mixed ASIC which will contain both.

The mask programmable devices can be further subdivided into full custom,
standard cell and gate array. With full custom design the designer has the option
of designing the whole chip, down to the transistor level, exactly as required.
Standard cell design again presents the designer with a clean slice of silicon but
provides standard cells (e.g. gates, flip-flops, counters, op-amps, etc.) in a soft-
ware library. These can be automatically positioned and connected on the chip as
required (known as 'place and route'). Both of these levels of design complexity
are used for digital and analogue design, and are characterised by long develop-
ment times and high prototyping costs. The third and lowest level in terms of
complexity is the gate array. With the gate array the designer is presented with a
'sea' of universal logic gates and is required onl:y to indicate how these gates are to
be connected which thus defines the circuit function. This approach offers a less
complex, and hence cheaper, design route than standard cell and full custom.

Until the late 1980s the cheapest route to a digital ASIC was via the use of a mask
programmable gate array. These devices are still widely used but since the late 1980s
have had to face strong competition from field programmable gate arrays (FPGAs)
where the interconnection and functionality are dictated by electrically program-
mable links and hence appear in the field programmable devices section.

With regard to the above ten questions, the overriding issue is usually when the
first prototype should be ready. ASICs require computer aided design (CAD)
tools of differing complexities. Designs that use such tools provide elegant solu-
tions but can be very time consuming especially if your team have no experience in
this field. However, designs that use 'standard products' are quick to realise but
can be bulky and expensive when high volumes are required.

With the exception of microcontrollers/processors and DSPs this chapter will
describe the design options in Fig. 11.1 in more detail. It should be noted,

268 Selecting a design route

however, that as you move from left to right across this diagram, each option
becomes more complex to implement resulting in a longer design time and greater
expenditure.

11.2 DISCRETE IMPLEMENTATION

As has been seen in Chapter 9 the 74 series offers a whole range of devices at
various levels of integration. These levels of integration are defined as"

�9 SSI - Small-scale integration (less than 100 transistors per chip);
�9 M S I - Medium-scale integration (100-1000 transistors per chip);
�9 LSI - Large-scale integration (1000-10 000 transistors per chip);
�9 V L S I - Very large-scale integration (greater than 10 000 transistors per chip).

The VLSI devices are mainly microcontrollers and microprocessors which are
outside the scope of this book.

Designs using these standard parts are quick to realise and relatively easy to
debug. However, they are bulky and expensive when high volumes are required.
The various functions available allow all sorts of digital systems to be imple-
mented with minimal overheads and tooling. For expediency these designs can be
ad hoc and incorporate poor digital design techniques. We shall look at some of
these pitfalls and suggest alternative safe design practices.

One such standard product is the 74HCT139 which consists of two 2-to-4
decoders in a single IC package. A logic diagram for this IC is shown in Fig. 11.2.
A decoder was introduced in Chapter 4 and, as seen in Chapter 10, it can be used
in memories for addressing purposes where only one output goes high for each
address applied. Such a device has many other uses. However, as we saw in
Chapter 4 one must be careful w~th this type of circuit since any of the decoder
outputs can produce spurious signals called static hazards. These static hazards
are called 'spikes'and 'glitches'.

Y1

Y3

[~ ~ Y4

Fig. 11.2 74HCT139: two-to-four decoder

Discrete implementation 269

11.2.1 Spikes and glitches

Consider the case of output Y3 in Fig. 11.2. A timing diagram is shown in Fig.
11.3 for this output for various combinations of A and B. At first AB=00 and so
Y3=0. Next, AB= 10 and Y3 goes high. With AB returning to 00 the output goes
low again. All seems satisfactory so far but i fAB= 11, then due to the propagation
delay of the inverter the output will go high for a short time equal to the inverter
propagation delay. As we shall see, although this spike is only a few nanoseconds
in duration it is sufficiently long to create havoc when driving clock lines and may
inadvertedly clock a flip-flop. This phenomenon is not limited to decoders. All
combinational circuits will produce these spikes or glitches as they are known.

A I I I

B 1

B

�9 .

�9 ,

Y3 [[~ s p i k e

Fig. 11.3 Spike generation on output Y3 of the 2-to-4 decoder

Propagation delay

To appreciate the problem when driving clock lines consider a circuit counting
the number of times a four-bit counter produces the state 1001. A possible design
using 74 series logic is shown in Fig. 11.4(a). This consists of a 4-to-16 decoder
(74HC154) ~ being used to detect the state 1001 from a four-bit counter
(74HC161). (For clarity the four-bit counter output connected to the four inputs
of the decoder is represented as a data bus having more than one line. The number
of signals in the line is indicated alongside the bus.) The 10th output line of the
decoder is used to clock a 12 bit counter (74HC4040). However, although this will
detect the state 1001 at the required time it will also detect it at other times due to
the differing propagation delays in the 4-to-16 decoder. These spikes and glitches
will trigger the larger counter and result in a false count.There are two solutions to
this: an elegant one and one that some undergraduates fall mercy to! The latter
method, illustrated in Fig. 11.4(b), is to use art RC network (connected as an inte-
grator or a low-pass filter) and a Schmitt trigger which together remove the spike
or glitch. The values of R and C are chosen so as to filter out this fast transient -
usually RC is set to be 10 times the glitch or spike pulse width. Due to this long

~This decoder has outputs which are active low: however, for this application we shall assume that the
outputs are active high.

270 Selecting a design route

CLOCK
l 74HC161

4 bit counter
4 / 74HC 154 F l 74HC4040
" 4-16 Decoder : ~0 12 bit counter

r 6

(a) Unsafe clocking of 12 bit counter

12
/ , /

CLOCK
l 74HC161 4.,

_ _ 4 bit counter "

I

I 74HC 154 : R 74HC4040 /
4-16 Decoder " 12 bit counter

(b) Poor technique for correcting (a) - [RC>> spike/glitch width]

CLOCK
74HC 161
4 bit counter

!

4 z 74HC 154 �9 | 74HC4040
" 4-16 Decoder ~> 12 bit counter

(c) Safe clocking technique

Fig. 11.4 Using a decoder as a state detector

12
/

time constant the signal presented at the input to the Schmitt is now only a frac-
tion of the magnitude of the original spike. To remove this signal completely it is
passed through a Schmitt. This device has a voltage transfer characteristic which
has two switching points. When the input is rising (from 0 V) the Schmitt switches
at typically 0.66 Va0. However, when the input is falling (from Voa) the Schmitt
now switches at 0.33Vdo. Hence any signal that does not deviate by more than
two-thirds of the supply will be removed. This circuit, although successful, cannot
be used in any of the other design options in this chapter since large values of R
and C are not provided on chip. In addition the provision of extra inputs and
outputs for these passive components will produce an unnecessarily large chip.
The elegant solution, shown in Fig. 11.4(c), is to detect the previous state with the
decoder and present this to the D input of a D-type. The clean output of the flip-
flop is then used to drive the 12 bit counter.

To summarise, an important rule for all digital designers is that clock inputs
must not be driven from any combinational circuit, even a single two-input logic
gate. This can be stated quite succinctly as no gated clocks. In fact the same is true
for reset and set lines since thesewill also respond to spikes and glitches thus
causing spurious resetting of the circuit.

11.2.2 Monostables

Another tempting circuit much frowned upon by the purist is the monostable.
The monostable or 'one shot' produces a pulse of variable width in response to

Discrete implementation 271

either a high-to-low or a low-to-high transition at the input. The output pulse
width is set via an external resistor and capacitor.

One application of the use of a monostable is shown in Fig. 11.5(a). Suppose
that we require an eight-bit parallel in, serial out shift register (PISO) to be loaded
with an eight-bit data word when a line called interrupt goes high. An active high
load signal must be produced which will load the eight-bit data. This load sigmil
must be returned low before the next rising clock edge so that serial data can
continue to be clocked out. It should be noted that in this case theinterrupt line is
assumed to be synchronised with the clock. By adjusting the value of R and C the
required parallel load pulse width (kRC, where k is a constant) is set to be no
longer than the clock pulse width less the load to clock set-up time. The corre-
sponding timing diagram is shown in Fig. 11.5(b).

INTERRUPT __~
,

CLOCK

T Vcc

R
C

MONO

Tw=kRC

I I ~ load

data in "8
serial out

(a)

CLOCK 8

INTERRUPT[

LOAD [[

Tw=kRC

(b)

Fig. 11.5 Use of a monostable to produce a short pulse

! I

Circuits that use monostables, however, exhibit several limitations. The first is
that it is necessary to use an external R and C which will require a redesign when
migrating to an ASIC. Other problems related to the analogue nature of the
device are: the pulse width varies with temperature, V~c and from device to device;
poor noise margin (see Chapter 9) thus generating spurious pulses; oscillatory
signal edges are generated for narrow pulse widths (less than approximately
30 ns); and long pulses require large capacitors which are bulky.

An alternative to the circuit in Fig. 11.5(a) is to use the circuit in Fig. 11.6(a)
which uses the reset technique with a purely digital synchronous approach. The

272 Selecting a design route

"'[__
INTERRUPT f tD Q1

2CLOCK

__I - - - I

i ,,,

D Q2

data/

.,

Idivide I - -

l~

CLOCK

serial out
f

(a)

2CLOCK

CLOCK

INTERRUPT

LOAD

CLR

State A
(for example 11.2)

Tw=T/2 J

�9 A

i

I

i
�9 B

[I F,,I /!

N
//

/ /

/ /

B B ~ A

(b)

Fig. 11.6 Alternative circuit to the monostable circuit in Fig. 11.5

resulting timing diagram for this circuit is shown in Fig. 11.6(b). The circuit oper-
ates by using a clock frequency of twice the PISO register clock (2-clock). When
interrupt goes from low to high, Q 1 (i.e. load) will go high. This will load in the
parallel data. At the next rising 2-clock edge Q2 goes high (as its input, Q 1, is now
high) and clears or resets the load line. Because of the higher clock frequency used
this all occurs within half a clock cycle. A divide-by-two counter is used to divide
2-clock down to clock so that the new data loaded into the PISO can be serially
shifted out on the immediately following rising edge of clock. Load will not go
high again until another low to high transition on interrupt occurs.

The following example shows how pulses of a longer time duration can be
produced.

Example 11.1

Consider the circuit in Fig. 11.7. What pulse width is produced at the Q output of
the D-type (74HC74) device? Assume that both 'CLR' and 'RESET' are active
high.

Discrete implementation 273

'l'

BEGIN __~

CLOCK

D Q
I 1/2 of
r 74H 74 I 1
[CLR QI I

I

W

(:

1 11
IQI QIIQI2

74HC4040
12 bit COUNTER
(asynchronous)

Fig. 11.7 Circuit to produce a controlled long pulse width

RESE

Solution

When a BEGIN low-to-high transition occurs the Q output goes high which
releases the counter from its reset position. The counter proceeds to count until
the Q 11 output goes high, at which point the D-type flip-flop is cleared and the Q
output goes low again awaiting the arrival of the next BEGIN rising edge. The Q
output is thus high for 2 ~~ clock pulses.

Taking the clear input from any of the other outputs of the counter will
produce pulses of varying width. The higher the input clock frequency the better
the resolution of the pulse width.

It should be noted that if BEGIN is synchronised with the clock then the rising
edge of the output pulse will also be synchronised (albeit delayed by one D-type
flip-flop delay). However, the falling edge of the Q output pulse is delayed with
respect to the clock. This is because the counter used is an asynchronous or ripple
counter. The Q ll output will only go high after the clock signal has passed
through 11 flip-flop delays- this could be typically 100-400ns. This may not
cause a problem but is something to be aware of. The solution is to use either a
synchronous counter or detect the state before with a 10-input decoder and a D-
type as described earlier.

Example 11.2

The circuit of Fig. 11.6(a) was designed in an ad hoc manner with the reset tech-
nique. Using the state diagram techniques of Chapter 8 produces a circuit that will
implement the same timing diagram of Fig. 11.6(b).

Solution

The first task is to use the timing diagram of Fig. 11.6(b) to produce a state
diagram. At the bottom of Fig. 11.6(b) are the states A and B at each rising 2-
clock edge. Remember, that the interrupt (/) line is generated by 2-clock (i.e.

274 Selecting a design route

synchronised) and thus changes after the 2-clock rising edge. Hence the state
diagram, shown in Fig. 11.8(a), can be drawn. The corresponding state transition
table is shown in Fig. 11.8(b) and since there are only two states then only one flip-
flop is needed. Assigning A =0 and B= 1 results in Fig. 11.8(c). From this we
produce the K-maps for the next state Q+ and present output LOAD(L). These
produce the functions Q+= I and L= I. 0. The resulting circuit diagram is shown
in Fig. l l.8(e). It should be remembered that the clock input is the higher
frequency 2-clock.

PRESENT

INPUT (I) PRESENT

" ~ OUTPUT (L)
0/0 ~ ' -

0/0 !/!

1/0

(a) State Diagram

Present Next Present
State State Output
(Q) (Q+) (L)

A A 0

A B I

B B 0

B A 0

(b) State Transition Table

I Present Next Present
Smte Smte Output
(Q) (Q+) (L)

0 0 0 0

1 0 1 1

1 1 1 0

0 1 0 0

(c) State Assignment

Q* xl
Q ~ 0 I

0 0 1

1 0 i

=> Q+=I

Q•x ._ o 1

o o 1

! 0 0

=> L=I.(~

(d) Mapping

, 1.
2clock

(e) Circuit Realisation

J---L

L (LOAD)

Fig. 11.8 Using a state diagram to implement the timing diagram of Fig. 11.6(b)

11.2.3 CR pulse generator

The practice of using monostablcs has already been frowned upon and safe alter-
native circuit techniques have been suggested. However, monostables are
tempting, quick to use and can still be found in many designs. Another design
technique that is also simple and tempting to use but should be avoided is the CR
pulse generator or diffcrentiator circuit shown in Fig. 11.9(a). The circuit is the
opposite of the integrator shown in Fig. 11.4. This circuit is used to 'massage' a
long pulse into a shorter one and so gives the appearance of a one-shot reacting at

I' - ,
�9 5_1 L_ 1 or o 0

(a)

Fig. 11.9 Using a CR network to produce a narrow pulse

(b)

Mask programmable ASlCs 275

either rising or falling edges. If a 5 V pulse is applied to the circuit in Fig. 11.9(a)
two short pulses are produced, one at the rising edge and one at the falling edge.
At the rising edge when the input goes instantaneously from 0 V to 5 V the output
momentarily produces 5V. As the capacitor charges the voltage across the
resistor starts to fall as the charging current falls, hence the corresponding rising
edge waveform. When the input changes from 5 V to 0 V the capacitor cannot
change its state instantly and so both plates of the capacitor drop by 5 V. Hence
the output momentarily produces-5 V. The capacitor then discharges, resulting
in the falling edge waveform.

To convert this signal into a digital form the output is fed into a Schmitt trigger
and thus produces a short pulse from 5 V to 0 V whose duration is determined by
the value of R and C and the Schmitt switching point. This pulse is only present on
the rising edge of the input since the falling edge produces a negative voltage
which the Schmitt does not respond to. However, this circuit should again be
avoided as the migration to an ASIC would require a redesign whilst in addition
the negative voltage may in time damage the Schmitt component. Consequently,
it is therefore recommended that the pulse shortening techniques described
earlier, which use a higher clock frequency, are employed.

11.3 MASK PROGRAMMABLE ASICs

The use of standard products (74 series, etc.) to implement a design becomes inef-
ficient when large volumes are required. Hence the facility for the independent
customer to design their own integrated circuits was provided by IC manufac-
turers. This required the designer to use either a gate array, standard cell or full
custom approach. In each case the manufacturer uses photomasks (or electron-
beam lithography) to fabricate the devices according to the customer's require-
ments. These devices are therefore collectively named mask programmable ASICs.

11.3.1 Safe designfor mask programmable ASICs

A limitation of mask programmable ASICs is that since the layers are etched
using these masks any design errors require a completely new set of masks. This is
very expensive and time consuming and hence safe design techniques which work
first time must be employed. A designer must avoid monostables and CRIRC type
circuits and be aware that a manufacturing process can vary from run to run and
sometimes across a wafer. Consequently, propagation delays vary quite consider-
ably from chip to chip or even across a chip. Hence the use of gates to provide a
delay (see Fig. 11.10(a)) is a poor design technique since the value of this delay
cannot be guaranteed. Three poor ASIC circuit techniques where these delay
chains are used are shown in Figs. 11.10(b)-(d) and were discussed in Section
4.3.2. Essentially the designer must use synchronised signals and a higher clock
frequency to generate short predictable pulses.

276 Selecting a design route

i/p ~ _Do_ o/p
i/p 1 I ! 1 I l

o/p ~ [~ 1 I ! I 1 ~

(a) Delay chain using even (or odd) number of inverters

CLK CLK I ~ l I 1 I I
o/p

o/p ~ r] o/p with no delay chain

o/p / __J ! o/p with delay chain

unwanted

(b) Using Delay Chains to avoid unwanted spikes and glitches

i/p

even

Vp I
, _ ~ _ _ ~ ~ o/p dcl [~

o/p I-1 del

1 , 1 ~ 1 [~ 1

1, _ J - - - - -] ~ _ l ~ l

FI i-1 F1 I - L _ F l ~

(c) Frequency Doubler Using Even Number of Inverters

i/p i/p j 1 ! -I] I
~ - ~ - - r - - - ~ ~

odd r del 1 [~ l ! I 1 ~
1

del o/p r-] r-] . [-]

(d) Using odd number of Inverters to Produce a Monostable

Fig. 11.10 Examples of poor ASIC circuit techniques

The use of synchronous techniques is not a panacea for all timing problems.
Take for example the master clock in a synchronous system driving several
different circuits. The total capacitance being driven by the master clock can be
extremely large thus delaying the clock quite considerably. In order to isolate this
large capacitance from the master clock, buffers are used leading to each circuit.
These are quite simply two CMOS inverters in series. This reduces the capacitance
seen directly by the master clock circuit and hence reduces the clock delay to each
circuit. However, the input capacitance between the smallest and largest of these
circuits may differ by an order of magnitude. Hence the clock will arrive at
different times to each of these circuits and the whole system will appear asyn-
chronous in nature (see Problem 11.10). A better buffering technique is therefore
required. Two improved buffering techniques are shown in Figs 11.11 (a) and (b).
The first is to use an even number of inverters driving the large load. At first it just
looks like our poor delay line shown in Fig. 11.10(a). However, each inverter is
larger than the previous one by a factorf(i.e, the W/L ratios of the MOS transis-
tors are increased by f a t each stage). The load capacitance gradually increases at

Mask programmable ASICs 277

[I : ~ - i ;~ I load
~<>-- ~____~

W/L fW/L f"W/
64

a I load

Fig. 11.11

~~ 4 loads

~r

;5

;9
;5

(a) (b)

Two techniques for buffering the ASIC clock driver from a large capacitance

each stage but the drive strength also increases. The optimum value o f f is in fact e
or 2.718 but the number of stages required for this case would be quite large. A
compromise is to use an increased value o f f and a reduced number of stages (see
Problem 11.11). Another technique is to use tree buffering which consists of
several small inverters arranged in a tree structure. This is illustrated in Fig.
11.11 (b). In this case each inverting buffer is arranged such that it drives the same
load. Hence the relative clock signal delay will be kept to a minimum.

Example 11.3

One of the small inverters in Fig. 11.11 (b) is used to drive 64 loads each of 1 pF.
Determine the delay of this inverter when driv'ug this load directly and what the
delay would be if the tree buffering of Fig. 11.1 l(b) is used. Assume that the
inherent delay of a single inverter is 1 ns, its output drive capability is 20 ns/pF
and has an input capacitance of 0.01 pF.

Solution

Unbuffered

Buffered

Delay- 1 + 20 x 64-1281 ns

Delay=(1 + 20• x4) + (1 + 20x0.01 • + (1 + 20•

Delay = 1.8 ns + 1.8 ns + 81 ns - 84.6 ns

Hence a great saving in delay is achieved at the expense of more gates.

278 Selecting a design route

These safe mask programmable ASIC design techniques can therefore be
summarised as follows:

1. no gated clocks or resets;
2. no monostables;
3. no RC or CR type circuits;
4. use synchronous techniques wherever possible;
5. use a high-frequency clock subdivided down for control;
6. no delay chains;
7. use clock tree buffering.

In the early days ASIC designs were breadboarded (i.e. a hardware prototype
was produced) using 74 series devices in order to confirm that the design functions
correctly. However, nowadays the designer has available very accurate computer
simulators that can be run in conjunction with drawing packages and chip layout.
Together these computer programs are called computer aided design (CAD)
tools. Since a mask programmable ASIC cannot be modified once fabricated
without incurring additional charges, the design cycle relies very heavily upon
these CAD tools. The process of fabricating a chip and then finding a design fault
is an unforgivable and costly error. We shall look at the various CAD tools
employed to guarantee a 'right first time' design.

11.3.2 Mask programmable gate arrays

The first mask programmable ASIC that we shall look at is the mask program-
mable gate array. This device consists of a large array of unconnected blocks of
transistors called gates. All the layers required to form these gates are prefabri-
cated except for the metal interconnect. The IC manufacturer therefore has a
'stock-pile' of uncommitted wafers awaiting a metal mask. The user or designer
only needs to specify to the manufacturer how these gates are to be connected
with the metal layer (i.e. customised).

The basic building block or gate in a CMOS gate array is a versatile cell
consisting of four transistors. These blocks of four transistors are repeated many
times across the array. Mask programmable gate arrays are characterised in terms
of the number of four transistor blocks or gates in the array. The gate is called a
versatile cell since it contains two NMOS and two PMOS transistors which can
form simple logic gates such as NOR and NAND as illustrated in Chapter 9.

Two types of arrays exist - channelled and sea of gates. These are illustrated in
Figs. 11.12(a) and (b). The channelled array has a routing channel between each
row of gates. These routing channels allow metal tracks on a fixed pitch to be used
for interconnection across the array. Each channel can contain typically 20 wiring
routes. The sea of gates on the other hand does not contain any dedicated routing
channels and as a result contains more gates. The routing is implemented across
each gate at points where no other metal exists. However, with the sea of gates the
routing over long distances is more difficult and hence places a limit on the

D D D D [3 D D

l-q I 111 1 II I l i d

D I l l l l l l l l i d

!--1 i I 1 i I I 1 I

I 1 1 1 i ! 1 1
D

I I i l 1 1 1 1

1--] [I 1 i I 1 i I

D l l l l l l l i l l
D l l l l l l l l l l

I I D
I 11

D
U
i i D

-T-q D

II D

D D D D D D D

Mask programmable ASlCs 279

D D D D D D D

! I I
I

O D D D l-q D D

(a) Channelled Array (b) Sea of Gates Array

Fig. 11.12 Channelled and sea of gates mask programmable gate arrays

number of gates that can be accessed. This raises the important issue of utilisation.

This is the percentage of gates which the designer can access. As more gates on the
array are utilised the routing ability for both array types is reduced. There comes a
point where there are not enough routes available to complete the design and
because of this manufacturers quote a utilisation figure. As you can imagine the
channelled array has a better utilisation than the sea of gates. A simple single layer
metal channelled array has a utilisation of 80% whilst a double layer metal has a
utilisation of 95%. Many mask programmable gate array manufacturers use three
and four layer metal processes in order to fully utilise the array.

For any design it is the gate count that is the most important issue. It is there-
fore useful to know how many gates typical functions consume in CMOS tech-
nology. For example a two-input NOR or NAND uses one gate, whilst a D-type
and a JK consume five and eight gates, respectively. Hence if a design schematic
exists then a quick gate count is always useful to specify what gate array size to
use. The selection of an optimum array size is crucial in gate array design since
array sizes can vary from 1000 to 500 000 gates!

The cost of a mask programmable gate array depends upon:

1. number of gates required (or the number of I/Os);
2. number of parts required per year;
3. maximum frequency of operation;
4. number of metal layers.

All mask programmable gate array, manufacturers charge a tooling cost for
production of the metal mask(s). This charge is called a non-recurring expendi-
ture or NRE. Quotes from three reputable ASIC suppliers for a 2000 gate design,
commercialised by the authors, revealed the following prices on a small volume of
1000 parts per year:

280 Selecting a design route

�9 Firm X (2 micron) NRE of s 10 000 at s unit cost;
�9 Firm Y (1.2 micron) NRE of s 12 000 at s unit cost;
�9 Firm Z (3 micron) NRE of s at s unit cost.

The numbers in brackets indicate the minimum feature size on the chip which is
inversely proportional to the maximum operating frequency. Although the prod-
ucts are not fully comparable one can see that the costs of mask programmable
gate arrays involves the user in large initial charges. Hence the importance of
accurate CAD simulator tools prior to mask manufacture.

Because the gate array wafers before metallisation are customer independent,
the costs up to this stage are divided amongst all customers. It is only the metalli-
sation masks that are customer dependent and so these costs make up the bulk of
the NRE. These NRE charges can be greatly reduced by sharing the prototyping
costs even further by using a technique called a multiproject wafer (MPW). This is
a metal mask which contains many different customer designs. The NREs are
thus reduced approximately by a factor of N where N is the number of designers
sharing that mask. Hence prototyping costs with mask programmable gate arrays
are less of a financial risk when a manufacturer offers an MPW service. The
typical prototyping costs for a 2000 gate design, with MPW, are now as low as
s 1000 for 10 devices.

Of all the mask programmable ASICs the gate array has the fastest fabrication
route, since a reduced mask set is required depending upon the number of metal
layers used for the interconnect. The typical time to manufacture such a device
(referred as the turnaround time) is four weeks.

Example 11.4

How many masks are needed for a double layer metal, mask programmable gate
array?

So/ut/on

The answer is not two since it is necessary to insulate one metal layer from the
next and provide vias (holes etched in the insulating layers deposited between the
first and second layer metal) where connections are needed between layers. Hence
the number is three, i.e. two metal masks and one via mask.

Example 11.5

A schematic for a control circuit consists of four 16 bit D-type based synchronous
counters, 20 two-input NAND gates and 24 two-input NOR gates. Estimate the
total number of gates required for this design.

Solution

Gate count for each part:

Mask programmable ASlCs 281

A 16 bit synchronous counter contains 16 D-type bistables plus combinational
logic to generate the next state. This logic is typically comparable to the total gate
count of the bistable part of the counter. Hence the total gate count for the
counter will be approximately 160 gates (i.e. 16 x 5 x 2). A two-input NAND gate
will require four transistors and hence one gate. Thus 20 will consume 20 gates of
the array. Finally a single two-input NOR gate can be made from four transistors.
Hence 24 will consume 24 gates of the array.

The total gate count required for this control circuit is 160 + 20 + 24= 204
gates.

CAD tools for mask programmable gate arrays
A mask programmable gate array cannot be modified once it has been fabricated
without incurring a second NRE. Consequently a large reliance is placed upon the
CAD tools, in particular the simulator, before releasing a design for fabrication.
The generic CAD stages involved in the design of both mask and field program-
mable ASICs is illustrated in Fig. 11.13. For mask programmable gate arrays this
design flow is discussed below:

system description VHDL I
! or

simulate _]j SIMULATE

I

layout

BACK

A N N O T A T E

SCHEMATIC t- .

i J

i LVS
i
i

i
i
i

L A Y O U T

i

i

t "

J
. ~ _ ~.

V *
| .

i
i |

E R C P A R A S | T I C , D R C ,

E X T R A C T " .

Fig. 11.13 Generic CAD stages involved in the design of ASICs

1. System description The most common way of entering the circuit desCription
is via a drawing package, called schematic capture. The user has a library of
components to call upon, varying in complexity from a two-input NAND gate
through to counters/decoders, PISO/SIPOs and arithmetic logic units (as
described in Problem 4.10). At no stage does the designer see the individual

282 Selecting a design route

transistors that make up the logic gates. For large circuits (greater than
approximately 10000 gates) the description of the circuit using schematic
capture becomes rather tedious and error prone. Consequently high-level,
textual, programming languages have been developed to describe the system in
terms of its behaviour. The one language adopted as a standard is that
recommended by the USA Department of Defense called VHDL. A brief
introduction to VHDL is presented.later in this chapter.

If the system is described in schematic form it is then converted into a net-
list. This is a textual description of how the circuit is interconnected and is
needed for the simulator. If the system is described in VHDL form then for the
sake of brevity this can be considered as a net-list description already.

2. Prelayout simulation Once the system has been described the next stage is to
simulate the system prior to layout. The components used in the schematic or
VHDL are represented as digital (or behavioural) models. A digital simulator,
called an event-driven simulator, is used to simulate the system by applying input
vectors to the system, i.e. a stream of l 's and O's. This simulator obtains its name
since only the gates whose inputs are changing (i.e. an event is occurring) are
updated. The outputs then drive other gates and hence a new event is scheduled
some time later. In some cases, to simplify the simulation, all gates are assumed
to have a 1 ns delay or a unit delay and wire delays are set at zero. This is because
the chip has not been laid out and therefore no information is available yet about
wire delays. This type of simulation is called in some CAD manuals functional
simulation. It is, however, advisable to simulate with the gate propagation delays
which include fan-out loading thus allowing the simulator to perform more
realistic flip-flop timing checks such as: set-up and hold times; minimum clock
and reset pulse widths, etc. This will identify, early in the design cycle, poor
design techniques such as asynchronous events which violate set-up and hold
time, or gated clocks which are revealed as spikes and glitches on clock lines.

3. Layout Next, the chip is laid out and this consists of a two-stage process of
place and route. First the gates used to describe the system are placed on to the
array and implemented using the versatile four transistor cell. Optimum place-
ment algorithms are run which aim to reduce the total wire length. The cells are
then connected together by using the available routing channels. The I/O posi-
tions may be left to the software to decide on the best position so as to assist the
place and routing software, or may be specified by the user at the placement
stage.

4. Back annotation of routing delays The metal used for the interconnect
contains resistance and capacitance and will introduce delays. Hence these
delays need to be added to the original system description, i.e. the schematic or
VHDL file. This step is called back annotation and these extra delays are
referred to as wiring parasitics.

5. Postlayout simulation The perfomaance of the original prelayout system will
now have changed, which in some cases may result in the delays increasing

Mask programmable ASlCs 283

from 1 ns to lOOns. The system therefore needs to be resimulated with the
parasitic delays included. This final simulation is called postlayout simulation
and includes the timing delays of both the wiring and logic gates. The simula-
tion is now called a full timing simulation since the true delays of the chip are
included} Any errors appearing in the simulation at this stage must be
corrected by modifying the original schematic or VHDL file and rerunning
the layout. This iterative process is characteristic of all ASIC CAD design
tools.

An example of a layout induced timing error is demonstrated with a two-stage
shift register in Fig. 11.14. The delay element indicated by the dotted box repre-
sents additional wire delay on the clock line. If this delay is greater than the prop-
agation delay of the flip-flop then data is lost. This is because when a shift register
shifts data it is assumed that all clocks arrive at the same time at each flip-flop.
However, if a clock arrives at the first flip-flop before the second by at least one
flip-flop delay then the data at the input to the second flip-flop will change before
the arrival of its clock pulse. This data has been overwritten and therefore lost. To
avoid this problem occurring the place and route software allows the designer to
influence the layout in several ways. Firstly, the clock line can be given priority
(called seeding) and it is routed first before all the other routes. It will therefore
have the shortest and hence the fastest path. Another technique is to label groups
such as shift registers so that they are not broken up during placement. All flip-
flops are consequently placed close to each other and hence clock delays are
reduced.

D D Q
data

c lock delay

Fig. 11.14 Layout delays on clock lines can cause a shift register to malfunction

When the postlayout simulation has been successfully completed the designer
has to pass an intensive sign-off procedure which needs to be countersigned by the
project manager and an engineer at the ASIC manufacturer. The final file that is
passed to the manufacturer is in a syntax which is applicable for mask manufac-

21n some environments a separate static timing analyser is available. This checks all timing delays around
bistables with regard to clock and data and confirms that no set-up and hold time violations are present.
This removes the time consuming process of writing a stimulus file for the timing simulator that covers all
possible combinations of inputs around all bistables.

284 Selecting a design route

turing machines and allows the metal interconnection layer(s) to be added to the
base wafers in order to customise the array.

The CAD tools described here are either supplied by the IC manufacturer or by
generic CAD software houses such as Mentor and Cadence. These tools take a
design from schematic through to layout. Alternative tools, such as Viewlogic, are
used for just the prelayout stage. These so-called front end tools are popular PC
based commodities and are used extensively in FPGA design.

11.3.3 Standard cell

The advantages of fast turnaround time and relatively low cost offered by gate
arrays is counterbalanced by several problems. The first is that silicon is wasted
because a design does not useall the available gates on the array. Also, it is not
known by the manufacturer which pad on the array is to be an input or an output
and so silicon is further wasted by the inclusion of both input and output circuits
at every pad. As the chip price is proportional to die size then this can be uneco-
nomical when large volumes are required. In addition, because all the transistors
in a gate array are the same size then when transistors are placed in series long
delays occur. This happens on the PMOS chain for NOR and the NMOS chain
for NAND. Consequently the gates cannot be optimally designed and the delays
~p~h and Xphl a re asymmetrical. If the W/L's of the transistors were individually
adjusted for each gate type the delays would be shorter.

The standard cell approach gets around these problems. Here, the designer
again has available a library of logic gates but the design starts with a clean
piece of silicon. Hence only those gates selected for a design appear on the final
chip and no silicon is wasted. It is also known which pads are to be input and
output thus further saving silicon. The standard cell chip is therefore smaller
than the gate array. This device is also faster partly because it is smaller and the
routing is shorter (hence smaller wire delays) and partly because the library of
logic gates is optimally designed by the manufacturer. This is achieved by
adjusting the W/L's of the transistors in each gate so as to achieve optimum
delay.

Since the standard cell only uses those gates that are needed for a design then
each chip is of different size and is unique. Hence all masks are required, which
can be of the order of 8-16 masks where each mask costs s 1000-s The NRE
costs are therefore considerably higher and the production times longer compared
to a mask programmable gate array. This approach is therefore only economical
when relatively large volumes are involved. However, reduced prototyping costs
are again available by using multiproject wafers.

Libraries for standard cell (and gate arrays) have become quite sophisticated.
Not only are the basic and complex gates provided but also counters and UARTs
(serial interface) exist. Incredibly some manufacturers are even offering complete
processor cores such as the Z180 by VLSI Technology, TMS320C50 by TI and
the 80486 by SGS Thomson.

Mask programmable ASlCs 285

Example 11.6

Compare the transistor count of a complex combinational gate that is offered in
the manufacturer's library that produces the function f= A B + CD implemented
in a mask programmable gate array with a standard cell approach.

Solution

The gate array approach would require De Morgan's theorem to implement this
function using the blocks of four transistors (i.e. using either two-input NAND or
two-input NOR gates). Choosing NAND gates results in:

f = A B + CD = A B . CD

The function using NAND gates is shown in Fig. 11.15(a). Note that it is not
possible to directly produce an AND gate with CMOS. This must be produced by
using a NAND with an inverter. Thus the total number of gates required is 3.5 or

14 transistors.
Consider now the standard cell. To implement the above function the library

designer uses the technique presented in Chapter 9:

1. Concentrate on the NMOS network first: those terms that are AND'd are
placed in series whilst those. OR'd are placed in parallel.

2. The PMOS network is just a reverse of the NMOS network.

The final circuit diagram is shown in Fig. 11.15(b). Notice that the number of
transistors used is now only eight, a great saving on silicon. In addition the gate

Vdd

A

B

f

Vss

(a) Inefficient (14 transistors) (b) Efficient (8 transistors)

Fig. 11.15 Inefficient and efficient implementation of the function AB+ CD

o/p - f

286 Selecting a design route

array approach uses a three-level logic whilst the standard cell uses only a single-
level, giving the gate a much smaller propagation delay.

CAD tools for standard cell
The CAD tools for a standard cell follow those for mask programmable gate
arrays with a slight exception at the layout stage. Here the designer can intercon-
nect each cell without the restriction of a fixed number of routing channels. This
results in a chip that is much easier to route but may cause errors in the layout due
to incorrect connectivity caused by designer intervention. To avoid this problem
the designer has available layout verification tools which perform various checks
on the layout. These are shown dotted in Fig ! 1.13 and consist of." design rule
check (DRC), where the spacing of the metal interconnect is checked; electrical
rule check (ERC), where the electrical correctness of the circuit is confirmed, i.e.
outputs not shorted to supply, no outputs tied together etc.; and finally layout
versus schematic (LVS), where a net-list is extracted from the layout and is
compared with the original schematic. Since the NRE costs are high (especially
for non-MPW processes) these verification tools are an essential component in
standard cell design. Both Mentor and Cadence offer such tools and so are suit-
able for standard cell design.

11.3.4 Full custom

This is the traditional method of designing integrated circuits. With a standard
cell and gate array the lowest level that the design is performed at is the logic gate
level, i.e. NAND, NOR, D-Type, etc. No individual transistors are seen.
However, full custom design involves working down at this transistor level where
each transistor is handcrafted depending upon what it is driving. Thus a much
longer development time occurs and consequently the development costs are
larger. The production costs are also large since all masks are required and each
design presents new production problems.

Full custom integrated circuits are not so common nowadays unless it is for an
analogue or a high-speed digital design. A mixed approach tends to be used which
combines full custom and standard cells. In this way a designer can use previously
designed cells and for those parts of the circuit that require a higher performance
then a full custom part can be made.

CAD tools for full custom
The CAD tools follow the general form described for a standard cell. However,
since the design of full custom parts involves more manual human involvement
then the chances of error are increased. The designer thus relies very heavily on
simulation and verification tools. In addition since cells are designed from individ-
ually handcrafted transistors then they must be simulated with an analogue circuit
simulator such as SPICE before being released as a digital part. Needless to say,
the choice of a design route that incorporates full custom design is one that should

not be taken lightly.

Field programmable logic 287

11.4 FIELD PROGRAMMABLE LOGIC

So far we have seen two extremes in the design options available to a digital
designer- namely standard products and mask programmable ASICs. Although
mask programmable ASICs offer extremely high performance they carry a large
risk in terms of time and expenditure. To provide the designer with the flexibility
of both, the industry has gradually developed a class of logic that can be
programmed with a personal computer in the laboratory. These devices are called
field programmable logic and can be either one-time programmable (utilising small
fuses) or many times programmable (using either ultraviolet erasable connections
or an SRAM/MUX). Because these devices contain the extra circuitry to control
interconnect and functionality this overhead results in a family which is less
complex and slower than the mask programmable ASICs. However, the attrac-
tion of a much lower risk can outweigh the performance problems especially for
prototyping purposes.

These field programmable logic devices are divided into two groups:

�9 AND-OR programmable architectures;
�9 field programmable gate arrays or FPGAs.

11.4.1 AND-OR programmable architectures

The AND-OR programmable architecture devices were the first programmable
logic chips available on the market and still exist today. The reason for the interest
in such structures is because all combinational logic circuits can be expressed in
this AND-OR form.

Three types of programmable AND-OR arrays are available:

�9 fixed A N D - programmable OR (ROM);
�9 programmable A N D - fixed OR (PAL);
�9 programmable A N D - programmable OR (PLA).

A block schematic of an AND-OR array is shown in Fig. 11.16. Inputs are
passed to the AND array whose outputs are fed into the OR array which provide

AND ll > OR
!

inputs

Fig. 11.16 Schematic for an AND-OR array

i
outputs

288 Selecting a design route

the outputs of the chip. Each of these AND-OR array types will now be discussed
in more detail.

11.4.2 ROM: fixed AND-programmable OR

As was seen in Chapter 10 a ROM is a read only memory device. It consists of a
decoder with n inputs (or addresses) whose 2" outputs drive a memory array. As
seen in Fig. 11.2 a decoder can be implemented with AND gates and hence this is
called the AND array. Since all possible input and output combinations exist then

this is classed as afixed array, i.e. an n input decoder requires 2" n-input AND gates
to generate all product terms. As we have also seen (see Fig. 10.3), the memory
array is in fact a NOR array. However, the inclusion of an inverter on each column

line will turn this into an OR array. Hence if the decoder has 2" outputs then the
OR array must contain m OR gates with each gate having up to 2" inputs, where in
this case m is the number of bits in a word. Notice that we have said 'up to' 2" inputs.
This is because the OR array contains the data which is programmable. The ROM
architecture is thus a f ixed AND-programmable OR array.

The complete circuit for a 4 x 3 bit ROM is shown in Fig. 11.17(a). Note that it
consists of a fixed AND structure (i.e. a 2-to-4 decoder) and a programmable OR
array (i.e. a 4-to-3 encoder).The three-bit words stored in the four addresses are
programmed by simply connecting each decoder output to the appropriate input
of an OR gate when a logic' l ' is to be stored.

A B

X~

- - ~ AB
m _ _ _ j

�9 AB

I

I !
I

It
Vl v0

A B Y2 Y1 Y0
i i i

0 0 0 1 0

0 1 0 1 1

1 0 1 0 0

1 1 0 1 0

(a) (b)

Fig. 11.17 A 4 x 3 bit ROM shown storing the data in the truth table

This circuit shows the ROM storing the data in the truth table of Fig. 11.17(b).
The Boolean equations, in fundamental sum of products form, are:

Y2=AB
Yl = AB + A B + A B

ro=A

Field programmable logic 289

Note that rather than thinking of the ROM storing four three-bit words, an alter-
native view is that it is implementing a two-input, three-output truth table.

The same circuit is shown again in Fig. 11.18 but this time the 2" inputs to each
OR gate are shown, for simplicity, as a single input. A cross indicates a connection
from the address line to the gate. The same data as in Fig. 11.17 are shown stored.

A B

m w

AB

- - A B)

�9 ~ AB

I

/ \

/ ' x

\ /

)~--

Y2 YI Y0

Fig. 11.18 A 4 x 3 bit ROM using an abbreviated notation for the OR array

As seen in Chapter 10 the physical implementation of the programmable OR
array is achieved via the presence or absence of a transistor connection. This is
achieved either by omitting the source or drain connections of MOS transistors or
blowing fuses which are connected to the transistor terminals. Apart from using
ROMs to store data or programs they can also be used to perform many digital
operations, some of which are described below.

Universal combinational logic function
As we have seen a ROM has all fundamental product terms available for
summing and can implement an m-output, n-input truth table. This is simply
achieved by connecting the address lines to the n input variables, and each output
line programmed to give the appropriate output values. The advantages of such a
ROM based design are: it is particularly applicable ifn is large; no minimisation is
needed; it is cheap if mass produced; and only one IC is needed.

Example 11.7

How would the truth table shown in Fig. 11.19(a) be implemented using a ROM?

Solution

A ROM of at least size 16 x 3 would be needed. The four address lines would be
connected to the input variables A, B, C and D with the three outputs providing
X, Y and Z. The required outputs (three-bit word) for each of the 16 possible

290 Selecting a design route

A B C D X Y 2

0 0 0 0 0 0 0

0 1 1 0

1 0 0 0

1 1 0 1

0 0 0

0 1 1

1 0 0

1 1 1

0 0 0

0 1 0

1 0 1

1 1 0

0 0 0

0 1 0

1 0 1

1 1 0

1

1 0

0 0

0 0

0 1

1 1

0 0

1 1

0 0

1 0

0 0

1 1

0 0

WORD 0

WORD 1

WORD 2

WORD 3

I
A0 IA1 A2 A3 O0 O1 02

0 0 0 0 0 0 0

0 0 0 1 1 0 1

0 0 1 0 0 0 0

0 0 1 1 0 1 1

(a)

Fig. 11.19 Truth table used in Example 11.7 for implementation in ROM

(b)

input combinations would be programmed into the ROM, straight from the truth
table. This is shown in Fig. 11.19(b) for the first four addresses, where A, and O,
are the nth address line and output respectively of the ROM.

Note that because all the fundamental product terms are produced by the fixed
AND array of the ROM then no minimisation can take place.

Code converter and look-up table
A ROM can be used to convert an n-bit binary code (presented to the address
lines) into an m-bit code (which appears at the outputs).The desired m-bit code is
simply stored at the appropriate address location. Considered in this way it is a
general n-to-m encoder or code converter.

Another ROM application similar to the code converter is the look-up table.
Here, a ROM could be used to look up the values of, for example, a trigonometric
function (e.g. sin x), by storing the values of the function in ROM. By addressing
the appropriate location with a digitised version of x the value for the function

stored would be output.

Sequence generator and waveform generator
A ROM can be used as a sequence generator in that if the data from an n • ROM
are output, address by address, then this will generate n binary data sequences.
Also, if the ROM output is passed to an m bit digital-to-analogue converter
(DAC) then an analogue representation of the stored function will be produced.

Hence a ROM with a DAC can be used as a waveform generator.

Field programmable logic 291

11.4.3 PAL: programmable AND-fixed OR

ROM provides a fixed AND-programmable OR array in which all fundamental
product terms are available, thus providing a universal combinational logic solu-
tion. However, ROM is only available in limited sizes and with a restricted
number of inputs. Adding an extra input means doubling the size of the ROM.
Clearly a means of retaining the flexibility of the AND-OR structure whilst also
overcoming this problem would produce a useful structure.

Virtually all combinational logic functions can be minimised to some degree,
therefore allowing non-fundamental product terms to be used. Therefore, a
programmable AND array would allow only the necessary product terms, after
minimisation, to be produced. Followed by a fixed OR array this would allow a
fixed number of product terms to be summed and so a minimised sum of products
expression implemented. This type of structure is called a programmable array

logic or PAL.
The structure of a hypothetical PAL is shown in Fig. 11.20. This circuit has two

input variables and three outputs, each of which can be composed of two product
terms. The product terms are programmable via the AND array. For the connec-
tions shown the outputs are:

Y2 =AB + A B
r,=A+a
r 0 = A a

(Note that Y0 only has one product term so only one of the two available AND
gates is used.)

Commercially available PAL part numbers are coded according to the number
of inputs and outputs. For example the hypothetical PAL shown in Fig. 11.20

m

A A B

)

)

)

B

[I

t" B : itT

u v, v o

Fig. 11.20 A programmable AND-fixed OR logic structure (i.e. PAL) with two inputs, six program-
mable product terms and three outputs (each summing two of the six product terms)

292 Selecting a design route

would be coded PAL2H3, i.e. it is a PAL having two inputs and three outputs.
The H indicates that the outputs are active high. One of the smallest PALs on the
market is a PAL16L8 offered by Texas Instruments, AMD and several other
manufacturers. This has 16 input terms and eight outputs. The L indicates that
the outputs are active low. This device actually shares some of its inputs with its
ouputs, i.e. it has feedback. Hence if all eight outputs are required then only eight
inputs are available. The other piece of information that is required about a PAL
is how many product terms each OR gate can support. This is supplied on the
data sheet, and for the PAL16L8, for example, it is seven.

By adding flip-flops at the output, the designer is able to use PALs as sequential
elements. The nomenclature for the device would now be PAL16R8 for example
where R stands for registered output. The early PALs were fuse programmable.
However, companies such as Altera, Intel and Texas Instruments added EPROM
technology to these registered output PALs so that the devices could be
programmed many times. These devices are called erasable programmable logic

devices or EPLDs.
Very large PALs exist having gate equivalents of over 2000 gates quoted

(remember a gate is defined as a two-input NAND gate). The inflexibility of only
having the flip-flops at the outputs and not buried within the array (as in mask
programmable ASICs) resulted in the GAL. The GAL (generic array logic) is an
ultraviolet-erasable PAL with a programmable cell at each output, called an
output logic macro cell (OLMC). Each OLMC contains a register and multi-
plexers to allow connections to and from adjacent OLMCs and from the
AND/OR array. The GAL (trademark of Lattice Semiconductors) has a similar
nomenclature to PALs. For example the GAL16V8 has 16 inputs and eight
outputs using a versatile cell (i.e. V in the device name). However, because it uses
OLMCs then it can emulate many different PAL devices in one package, having a
range of inputs (up to 16) and outputs (up to eight).

Example 11.8

How could the truth table in Fig. 11.19(a) be implemented using a (hypothetical)
PAL with four inputs, three outputs and a total of 12 programmable product
terms (i.e. four to each output)?

Solution

First, we use Karnaugh maps (Fig. 11.21) to minimise the functions X, Y and Z.
From these Karnaugh maps:

Z - A BD + A CD + A CD + A BD

Y = A B C D + BCD + A D

X = A C D + A B D + A C D

The PAL, a PAL4H3, would therefore be programmed as shown in Fig. 11.22.

Fig. 11.21

Fig. 11.22

Field prcgrammable logic 293

Z

CD 0

CD I

CD I

c~) o

0 0 l

0 0 0

1 0 0

0 1 1

CD

CD

CD

c5

0 1 1

0 0 0

1 0 0

0 0 l

CD 0 0 0

CD 1 1 0

CD 0 1 0

C[) 0 0 1

Karnaugh maps for Example 11.8

X A B B C C D D

\
/ k / \ / \

>()< ><

)()< ><

)()(><

>()()(>(

>()(>(

)()(

)(>()(
\ / ~, >()(

\ / / ,) () (

Z

Using a PAL to implement the truth table in Figure 11.19

Y X

11.4.4 PLA: programmable AND-programmable O R

The final variant of the AND-OR architectures is the programmable A N D -
programmable OR array or programmable logic array (PLA). With this the
desired product terms can be programmed using the AND array and then as
many of these terms summed together as required, via a programmable OR array,
to give the desired function.

The structure of such an array with two inputs, three outputs and six program-
mable product terms available is shown in Fig. 11.23. For the connections shown
the outputs are:

294 Selecting a design route

Y o - A B + A B + B

Y~ = A B + A B + A B

Y 2 - A B + A + B + A B

Note that any product term can be formed by the AND gates, and that any
number of these product terms can be summed by the OR gates.

A A B B

\

)(

\ ,(

/ \

/

w _

~ A']) B
(

AB

" A ,,
/

(, - B ,~

, [~ AB x

\

)

(

(

/ \

~ v

/ \

(

/
/ \

)(

\ ,(,

Yo

Fig. 11.23 A programmable AND-programmable OR logic array (i.e. PLA) with two inputs, six
programmable product terms and three programmable outputs

Example 11.9

How would the truth table shown in Fig. 11.19(a) be implemented using a (hypo-
thetical) four-input, three-output PLA with eight product terms?

Solution

From the minimisation performed to implement this truth table using the PAL in
Example 11.8 it can be seen that the three Boolean expressions for X, Y and Z
contain a total of nine different product terms (A C/) is common to both X and Z).
This PLA can only produce eight which means that product terms common to
the three expressions must be found, effectively de-minimising them to some
degree.

This can be achieved by reconsidering the Karnaugh maps and not fully
minimising them, but rather looking for common implicants in the three expres-
sions:

Z - A B D + A B C D + A CD + A B C D

Y= B C D + A B C D + A CD + A B C D

X = A C D + A B C D + A C D

In this form only seven different product terms are required to implement all
three functions and so the given PLA can be used as shown in Fig. 11.24.

A A B B C C D D

\

(
/ \

(

;(

>(

>

/

)
)

(

>

C,

<

>

<

/

f
\

<
<

Field programmable logic 295

>(

/

I
x

/
/ \

i),
)~,)<
)()<
)(
)<

Y Z

Fig. 11.24 A programmable AND-programmable OR logic array (PLA) with four inputs, eight
programmable product terms and three programmable outputs

11.4.5 Field programmable gate arrays

The advancement in on-chip field programmable techniques combined with ever
increasing packing densities has led to the introduction of field programmable gate
arrays or FPGAs. These devices can be considered as being the same as mask
programmable gate arrays except the functionality and interconnect is
programmed in the laboratory at a greatly reduced financial risk. The popularity
of FPGAs is indicated by the large number of companies who currently manufac-
ture such devices. These include Actel, Altera, AMD, Atmel, Crosspoint, Lattice,
Plessey, Quicklogic, Texas Instruments, and Xilinx, to name but a few. Of these,
the three that are perhaps the best known are Altera, Xilinx and Actel. In order to
introduce FPGAs, some of the devices provided by these three companies will
therefore be discussed. Essentially they differ in terms of: granularity; program-
ming technique; volatility; and reprogrammability. All FPGAs consist of a versatile
cell that is repeated across the chip with its size and hence cell complexity referred
to as the granularity. These cells are multifunctional such that they can produce
many different logic gates from a single cell. The larger the cell the greater the
complexity of gate each cell can produce. Those arrays that use a small simple cell,
duplicated many times, are referred to as having fine granularity, whilst arrays
with few, but large, complex cells are defined as coarse grain. These versatile cells
have been given different names by the manufacturers, for example: modules;
macrocells; and combinatorial logic blocks. The programming of the function of
each cell and how each cell is interconnected is achieved via either: small fuses; on-
board RAM elements that control multiplexers; or erasable programmable read
only memory (EPROM) type transistors. Consequently some devices are volatile
and lose their functionality when the power is removed whilst others retain their
functionality even with no supply connected. Finally these devices can be divided

296 Selecting a design route

into those that can be reprogrammed many times and those that are one-time
programmable.

Let us now look more closely at the FPGA types, which will be divided into:

EPROM type; SRAM/MUX type; and fuse type.

EPROM type FPGAs

The most common EPROM type FPGA device is that supplied by Altera. The

range of devices available from Altera are the MAX 5000, .7000 and 9000 series
(part numbers: EPM5XXX, EPM7XXX and EPM9XXX). These devices are the

furthest from the true FPGAs and can be considered really as large PAL struc-
tures. They offer coarse granularity and are more an extension to Altera's own

range of electrically programmable, ultraviolet-erasable logic devices (EPLD).
The versatile cell of these devices is called a 'macrocell'. This cell is basically a
PAL with a registered output. Between 16 and 256 macrocells are grouped
together into an array inside another block called a logic array block (LAB) of
which an FPGA can contain between 1 and 16. In addition to the macrocell array
each LAB contains an I/O block and an expander which allows a larger number of
product terms to be summed. Routing between the LABs is achieved via a
programmable interconnect array (PIA) which has a fixed delay (3 ns worst case)
that reduces the routing dependence of a design's timing characteristics.

Since these devices are derived from EPLD technology the programming is
achieved in a similar manner to an EPROM via an Altera logic programmer card
in a PC connected to a master programming unit. The MAX 7000 is similar to the
5000 series except that the logic block has two more input variables. The MAX 9000
is similar to the 7000 device except that it has two levels of PIA. One is a PIA local
to each LAB whilst the other PIA connects all LABs together. Both the 7000 and
9000 series are EZPROM devices and hence do not need an ultraviolet source to be
erased.

It should be noted though that these devices are not true FPGAs and have a
limited number of flip-flops available (one per macrocell). Hence the Altera Max
5000/7000/9000 series is more suited to combinatorially intensive circuits. For
more register intensive designs Altera offer the Flex 8000 and 10K series of
FPGAs which uses an SRAM memory cell based programming technique (as
used by Xi l inx- see next section); although currently rather expensive it will in
time become an attractive economical option. The Flex 8000 series (part number:
EPF8XXX) has gate counts from 2000 to 16000 gates. The 10K series (part

number: EPF 10XXX) however, has gate counts from 10 000 to 100 000 gates!

SRAM/MUX type FPGAs
The most common FPGA that uses the SRAM/MUX programming environment
is that supplied by Xilinx. The range of devices provided by Xilinx consists of the
XC2000, XC3000 and XC4000. The versatile cell of these devices is the 'con-
figurable logic block' (CLB) with each FPGA consisting of an array of these
surrounded by a periphery of I/O blocks. Each CLB contains combinational logic,
registers and multiplexers and so, like the Altera devices, has a relatively coarse

Field programmable logic 297

granularity. The Xilinx devices are programmed via the contents of an on- board
static RAM array which gives these FPGAs the capability of being reprogrammed
(even whilst in operation). However, the volatility of SRAM memory cells requires
the circuit configuration to be held in an EPROM alongside the Xilinx FPGA.

A recent addition to the Xilinx family is the XC6000 range. This family has the
same reprogrammability nature as the other devices except it is possible to
partially reconfigure these devices. This opens up the potential for fast in-circuit
reprogramming of small parts of the device for learning applications such as
neural networks.

Fuse type FPGAs
The most common fuse type FPGA is that supplied by Actel. These devices are
divided into the Act l, Act2 and Act3 families. The Act 1 FPGAs (part numbers:
A I0XX) contain two programmable cells: 'Actmod' and 'IOmod'. The versatile
core cell is the 'Actmod' which is simply based around a 4-to-1 multiplexer for
Act 1. This versatile cell is shown in Fig. 11.25. Since this cell is relatively small the
array is classed asfine grain. By tying the inputs to either a logic '0' or logic '1' this
versatile cell can perform 722 different digital functions. The programmable
'IOmod' cell is used to connect the logic created from the 'Actmods' to the outside
world. This cell can be configured as various types of inputs and/or outputs (bi-
directional, tristate, CMOS, TTL, etc.). Unlike the Xilinx and Altera devices the
Actel range are programmed using fuse technology with desired connections
simply blown (strictly cailed an antifuse). These devices are therefore 'one time
programmable' (OTP) and cannot be reprogrammed. The arrays have an archi-
tecture similar to a channelled gate array with the repeating cell (Actmod)
arranged in rows with routing between each row.The routing contains horizontal
and vertical metal wires with antifuses at the intersection points.

S1

$2

$3

W

X

* F
Z

S4

o/p

Fig. 11.25 Versatile cell used for Actel Act1 range of fused FPGAs

298 Selecting a design route

Other devices in the Actel range are the Act2 (part numbers:A12XX) and the

Act3 (part numbers:A14XX) devices. These use two repeating cells in the array.

The first is a more complex 'Actmod' cell called Cmod used for combinational

purposes whilst the other cell is a Cmod with a flip-flop.

Table 11.1 shows a comparison of some of the FPGA devices offered by Altera,

Xilinx and Actel.

Table 11.1 Comparison of some FPGA types

Manufacturer Part Gates D-types Cost Programming Speed I/Os
(k) (s technique (MHz)

Altera EPM5X 8 21-252 1 4 - 5 5 EPROM 60 100
EPM7X 10 40-400 12-100 EPROM 70 288
EPM9X 20 400-700 50-140 EPROM 65 100
EPF8X 2.5-16 7 8 - 2 0 8 1 5 - 9 0 SRAM 100 208
EPF10KX 10-100 148-420 25-550 SRAM 120 300

Xilinx XC2X 0.6-1.5 64-100 1 0-15 SRAM 60 74
XC3X 1-7.5 256-1320 10-60 SRAM 70 176
XC4X 2-25 256-2560 15-190 SRAM 60 256

A c t e l A10X(Actl) 1 . 2 - 2 147-273 1 2 - 2 0 Antifuse 37 69
A12X(Act2) 2-8 5 6 5 - 9 9 8 1 7 - 5 5 Antifuse 41 140
A14X(Act3) 1.5-10 264-1153 15-250 Antifuse 125 228

Example 11.10

Consider the versatile Actel cell shown in Fig. 11.25. What functions are

produced if the following signals are applied to its inputs:

(a) S1S2S3S4=O00A and WXYZ=O001

(b) S, $2S3S 4 = 0BAA and W X Y Z = 1110

(c) S1S2S3S4=OCA1 and WXYZ=OB11 .

Assume that the signals A and B are inputs having values of '0' or '1' and that
for each multiplexer when the select line is low the lower input is selected.

S o l u t i o n

(a) In this case the OR gate output is always zero and so the lower line is selected.

This is derived from the lower multiplexer whose select line is controlled by the

only input 'A'. With the inputs to this multiplexer at '0' for the upper line and '1'

for the lower line the output thus follows that of an inverter.

(b) Here it is helpful to construct a truth table and include in this table the output

of the OR gate, called sel.

A B Sel olp
0 0 0 0
0 1 1 1
1 0 0 1
1 1 1 1

We can thus see that the function is a two-input OR gate.

Field programmable logic 299

(c) Again a truth table (including sel) is useful to work out the function imple-
mented:

a n CSeIlo[p
0 0 0 0 1

0 0 1 1 0

0 1 0 0 1

0 1 1 1 1

1 0 0 0 1

1 0 1 1 0

1 1 0 0 1

1 1 1 1 0

A Karnaugh map for the output is shown below which generates the function

o/p = C + A B

A B A B A B A B

C 1 1 1 1

C 0 1 0 0

11.4.6 CAD tools for field programmable logic

The programming of field programmable logic devices is implemented directly via
a computer. The software needed for PALs and PLAs is usually a simple matter of
producing a programming file called a fuse or an EPROM bit file. This file has a
standard format (called JEDEC) and contains a list of l's and 0's. This file is auto-
matically generated from either Boolean equations, truth tables or state diagrams
using programs such as ABEL (DatalO Corp.), PALASM (AMD Inc.) and
CUPL (Logical Devices Inc.). In other words the minimisation is done for you
and it is not necessary to draw out any Karnaugh maps. Software programs that
can directly convert a schematic representation into a JEDEC file are also avail-
able. Since these devices have only an MSI complexity level then the software
tools are relatively simple to use and also inexpensive.

The FPGAs, on the other hand, have capacities of LSI and VLSI level and are
much more complex. Since FPGAs are similar in nature to mask programmable
gate arrays the associated CAD tools have been derived from mask program-
mable ASICs and follow that of Fig. 11.13; that is: schematic capture (or VHDL),
prelayout simulation, layout, back annotation and postlayout simulation.

It should be noted that FPGA simulation philosophy is somewhat different
from mask programmable gate arrays. With mask programmable devices, 100%
simulation is absolutely essential since these circuits cannot be rectified after fabri-
cation without incurring large financial and time penalties. These penalties are
virtually eliminated with FPGA technology due to the fast programming time in
the laboratory and the low cost of devices. For one-time programmable devices
(such as Actel) the penalty is the price of one chip whilst for erasable devices (such

300 Selecting a design route

as Xilinx) the devices can simply be reprogrammed. Hence the pressure to simu-
late 100% is not as great.

For those devices that are reprogrammable this results in an inexpensive itera-
tive procedure whereby a device is programmed and then tested in the final
system. If the device fails it can be reprogrammed with the fault corrected. For
OTP type FPGAs then a new device will have to be blown at each iteration;
although it will incur a small charge the cost is considerably less than mask
programmable arrays. It is not uncommon for FPGA designs (both reprogram-
mable and OTP) to experience four iterations before a working device is obtained.
This is totally unthinkable for mask programmable designs where a 'right first
time approach' has to be employed- hence the reliance on the simulator.

Since fuses, SRAM/MUX cells, etc., are used to control the connectivity the
delays caused by these elements must be added to the wire delays for postlayout
simulation. Hence it is for this reason that FPGAs operate at a lower frequency
than mask programmable gate arrays. The large delays in the routing path also
mean that timing characteristics are routing dependent. Hence, changing the
placement positions of core cells (by altering the pin out for example) will result in
a different timing performance. If the design is synchronous then this should not
be a problem with the exception of the shift register problem referred to in Figure.
11.14. It should also be noted that the prelayout simulation of FPGAs on some
occasions is only a unit delay (i.e. 1 ns for all gates) or functional simulation. It
does not take into account fan-out, individual gate delays, set-up and hold time,
minimum clock pulse widths (i.e. spike and glitch detector), etc., and does not
make any estimate of the wire delay. Hence the simulation at this stage is not
reflective of how the final design will perform. To obtain the true delays the
FPGA must be laid out and the delays back annotated for a postlayout simula-
tion. This will provide an accurate simulation and hence reveal any design errors.
Unfortunately, if a mistake is found then the designer must return all the way
back to the original schematic. The design must again be prelayout simulated, laid
out and delays back annotated before the postlayout simulation can be repeated.
This tedious ~terative procedure is another reason why FPGAs are usually
programmed prematurely with a limited simulation. It should be mentioned that
an FPGA is sometimes used as a prototyping route prior to migrating to a mask
programmable ASIC. Hence the practice of postlayout simulation using back
annotated delays is an important discipline for an engineer to learn in preparation
for moving to mask programmable ASICs.

When all the CAD stages are completed the FPGA net-list file is converted into
a programming file to program the device. This is either a standard EPROM bit
file for the Xilinx and Altera arrays or a fuse file for the Actel devices. Once a
device is programmed, debug and diagnostic facilities are available. These allow
the logic state of any node in the circuit to be investigated after a series of signals
has been passed to the chip via the PC serial or parallel port. This feature is unique
to FPGAs since each node is addressable unlike mask programmable devices.

FPGA CAD tools are usually divided into two parts. The first is the prelayout

Field programmable logic 301

stage or front-end software, i.e. schematic and prelayout simulation. The CAD
tools here are generic (suitable for any FPGA) and are provided by proprietary
packages such as Mentor Graphics, Cadence, Viewlogic, Orcad, etc. However, to
access the FPGAs the corresponding libraries are required for schematic symbols
and models.

The second part is called the back-end software incorporating: layout; back
annotation of routing delays; programming file generation and debug. The soft-
ware for this part is usually tied to a particular type of FPGA and is supplied by
the FPGA manufacturer.

For example consider a typical CAD route with Actel on a PC. The prelayout
(or front end) tools supplied by Viewlogic can be used to draw the schematic using
a package called Viewdraw and the prelayout functional simulation is performed
with Viewsim. In both cases library files are needed for the desired FPGA. Once
the design is correct it can be converted into an Actel net-list using a net-list trans-
lator. This new file is then passed into the CAD tools supplied by Actel (called
Actel Logic System- ALS) ready for place and routing. The parasitic delays can
be extracted and back annotated out of ALS back into Viewlogic so that a post-
layout simulation can be performed again with Viewsim. If the simulation is not
correct then the circuit schematic must be modified and the array is placed and
routed again. Actel provide a static timer to check set-up and hold time and calcu-
late the delays down all wires indicating which wire is the heaviest loaded. A
useful facility is the net criticality assignment which allows nets to be tagged
depending on how speed critical they are. This facility controls the placing and
routing of the logic in order to minimise wiring delays wherever possible. The
device is finally programmed by first creating a fuse file and then blowing the fuses
via a piece of hardware called an activator. This connects to an Actel program-
ming card inside the PC. As an example of the length of time the place and route
software can take to complete the authors ran a design for a 68 pin Actel 1020
device. The layout process took approximately 10 minutes using a 486, 66 MHz
PC and utilised 514 (approximately 1200 gates) of the 547 modules available (i.e. a
utilisation of 94%). In addition on the same computer the fuse programming via
the activator took around 1 minute to complete its program. With mask program-
mable ASICs, however, the programming step can take at least four weeks to
complete! This is one of the great advantages that FPGAs have over mask
programmable ASICs. Note, however, that as with mask programmable arrays
the FPGA manufacturers only provide a limited range of array sizes. The final
design thus never ever uses all of the gates available and hence silicon is wasted.
Also, as the gates are used up on the array the ability for the router to access the
remaining gates decreases and hence although a manufacturer may quote a
maximum gate count for the array the important figure is the percentage utilisa-
tion.

Actel FPGAs also have comprehensive postprogramming test facilities avail-
able under the option 'Debug'. These consist of: the functional debug option; and
the in-circuit diagnostic tool. The functional debug test involves sending test

302 Selecting a design route

vectors from the PC to the activator, which houses the FPGA during program-
ming, and simple tests can be carried out. The in-circuit diagnostic tool is used to
check the real time operation of the device when in the final PCB. This test is 100%
observable in that any node within the chip can be monitored in real time with an
oscilloscope via two dedicated pins on the FPGA.

The Xilinx FPGA devices are programmed in a similar way by using two pieces
of software. Again typical front-end software for these devices is Viewlogic util-
ising Viewdraw and Viewsim for circuit entry and functional simulation respec-
tively. The net-list for the schematic is this time converted into a Xilinx net-list
and the design can now move into the Xilinx development software supplied by
Xilinx (called XACT). Although individual programs exist for place and route,
parasitic extract, programming file generation, etc., Xilinx provide a simple to use
compilation utility called XMAKE. This runs all of these steps in one process.
Parasitic delays can again be back annotated to Viewsim for a timing simulation
with parasitics included. A static timing analyser is again available so that the
effects of delays can be observed on set-up and hold time without having to apply
input stimuli. Bit stream configuration data, used in conjunction with a Xilinx
provided cable, allow the data to be down-loaded to the chip for configuration.
As with Actel both debug and diagnostic software exist such that the device can be
tested and any node in the circuit monitored in real time. The bit stream data can
be converted into either Intel (MCS-86), Motorola (EXORMAX) or Tektronix
(TEKHEX) PROM file formats for subsequent PROM or EPROM program-
ming. The one disadvantage of these devices as compared to the Actel devices is
that when in final use the device needs to have an associated PROM or EPROM
which increases the component count.

11.5 VHDL

As systems become more complex the use of schematic capture programs to
specify the design becomes unmanageable. For designs above 10000 gates an
alternative design entry technique of behavioural specification is invariably
employed. This is a high-level programming language that is textual in nature,
describes behaviour and maps to hardware. The most commonly accepted behav-
ioural language is that standardised by the IEEE (standard 1076) in 1987 called
VHDL. VHDL is an acronym for VHSIC Hardware Description Language where
VHSIC (Very High Scale Integrated Circuits) is the next level of integration above
VLSI. This language was developed by the USA Department of Defense and is
now a world-wide standard for describing general digital hardware. The language
allows a system to be described at many different levels from the lowest level of
logic gates (called structural) through to behavioural level. At behavioural level
the design is represented in terms of programming statements which makes no use
of logic gates. This behaviour can use a digital (i.e. Boolean), integer or real repre-
sentation of the circuit operation. A system designer can specify the design at a

VHDL 303

high level (i.e. in integer behavioural) and then pass this source code to another
member of the group to break the design down into individual smaller blocks
(partitioning). A block in behavioural form requires only a few lines of code and
hence is not as complex as a structural logic gate description and hence has a
shorter simulation time. Since the code supports mixed levels (i.e. gate and behav-

iour) then the system can be represented with some blocks represented at the gate

level and the rest at behavioural. Thus the complete system can be simulated in a
much shorter time.

One of the biggest problems of designing an ASIC is the interpretation of the

specification required by the customer. Because VHDL has a high-level descrip-
tion capability it can be used also as a formal specification language and estab-
lishes a common communication between contractors or within a group. Another
problem of ASIC design is that you have to choose a foundry before a design is
started thus committing you to that manufacturer. Hence, it is usual to insist on
second sourcing outlets to avoid production hold-ups. However, VHDL at the
high level is technology and process independent and is therefore transportable
into other processes and CAD tools. It is not surprising that many companies are
now insisting on a VHDL description for their system as an extra deliverable as
well as the chip itself.

A simple example of a VHDL behavioural code for a 2-to-1 multiplexer is
shown in Table 11.2. This source code is divided into two parts: entity and archi-
tecture. The entity lists the input and output pins and what form they are - bit or
binary in this case - whilst the architecture describes the behaviour of the multi-
plexer. The process labelledfl is only run if any of the inputs dO, dl or sel change,
i.e. it is an event driven simulator. If one of these events occurs the IF statement is
processed and the output q is set depending upon the value of sel.

Table 11.2 VHDL behavioural code for a 2-to-1 multiplexer

ENTITY mux IS
PORT (dO, dl, sel:IN bit; q:OUT I~it);

END mux;
ARCHITECTURE behaviour OF mux IS

BEGIN
fl:
PROCESS (d0,d 1,sel)~sensitivity list
BEGIN
IF' sel--0 THEN

q <=dl;
ELSE
q <=dO;

END IF;
END behaviour;

Notice that since this is a behavioural description then no logic gates are used in
the architecture. The next stage would be to convert this design into logic gates.
This can be performed in two ways: automatically or manually. With the auto-

304 Selecting a design route

matic approach an additional CAD software package is required called a synthe-
siser. These are available at an extra charge and will generate the logic gates

required to implement the desired behaviour. Alternatively this step can be
performed manually. A typical VHDL structural description of the above multi-

plexer implemented with logic gates is shown in Table 11.3.

Table 11.3 VHDL structure code for a 2-to-1 multiplexer

ENTITY mux IS
PORT (dO, d 1, sel:IN bit; q:OUT bit);

END mux;
ARCHITECTURE structure OF mux IS

COMPONENT and2
PORT (inl, in2:IN bit; f:OUT bit);

END COMPONENT;
COMPONENT or2

PORT (inl, in2:IN bit; f:OUT bit);
END COMPONENT;
COMPONENT inv

PORT (inl, in2:IN bit; f:OUT bit);
END COMPONENT;
SIGNAL x, y, nsel: bit;
FOR Ul:inv USE ENTITY work.inv;
FOR U2:and2 USE ENTITY work.and2;
FOR U3:or2 USE ENTITY work.or2;
BEGIN

UI: inv PORT MAP(sel, nsel)
U2:and2 PORT MAP(nsel, dl, y)
U3:and2 PORT MAP(d0, sel, x)
U4:or2 PORT MAP(x,y,q)

END structure;

Since this is only a trivial example then a manual synthesis is possible. It is also
apparent that a behavioural code is more succinct than a structural one hence the
simulation is faster. As the design becomes more complex then the use of an auto-

matic synthesiser is essential.

11.6 CHOOSING A DESIGN ROUTE

So we now know all the options available to a digital circuit designer. The deci-

sion is now to choose the appropriate route. It is wise at this point to revisit the ten
questions that were raised at the beginning of this chapter and to consider them in
the light of the summarised information given in Table 11.4.

A standard part (called 'Std. Part' in the table) design route (i.e. 74HCT, etc.) is
certainly the quickest to get started and can handle large and complex designs.
However, it may well be limited when the design needs to be miniaturised or put
into production. Also design techniques with standard products often tend to be

Choosing a design route 305

Table 11.4 Comparison of digital design routes

FC SC MPGA FPGA PAL/PLA Std. Part

Design time (months) 6-12 2-6 1-6 1-30 days 1-14days 1-30days
Fab. time (months) 2-4 1-3 2-6 wks 1-10 mins 1-5mins 14 days
Time to mkt. (months) 8-16 3-9 1.5-7.5 30 days 14 days 6 wks
Prototype cost hi hi med. lo V.lo V.lo
Production cost med./lo lo lo hi med./lo hi
Speed V.hi hi hi/med, med./slow med. /hi med./hi
Complexity V.hi hi hi/med, med./lo 1o V.hi
Redesign time (months) 3-5 2-4 3-6 wks 5 days 2 days 1-14 days
CAD complexity V.hi hi/med, m e d . med./lo 1o Io
Risk V.hi hi med. lo V.lo V.lo

ad hoc and in some instances not synchronous. The design may use RC compo-

nents, 555 timers and gated clocks. If the design is only a one-off and it functions
correctly then this will be perfectly satisfactory if size and power are not an issue.
However, if the design requires miniaturisation or transfer to an ASIC for power

consumption reasons then the circuit will have to be redesigned for a totally
synchronous approach as discussed in Chapter 8.

Of the AND-OR array devices a ROM device can be used to efficiently
perform a number of digital tasks, whilst PALs and PLAs are also widely avail-
able providing much of the capability of ROM but with smaller circuits.
However, it is necessary to minimise the Boolean functions before they can be
implemented in a PAL or PLA. A PAL allows a fixed number of minimised
product terms to be summed whilst a PLA enables any number of the product
terms formed to be summed. However, although PALs and PLAs are quite
adequate for gate counts of the order of 500 they are limited due to having no
buried registers.

Obviously no one route will satisfy all options but FPGAs are becoming a
strong prototyping contender. At present FPGA performance is still below that of
mask programmable gate arrays (MPGA) which still have the edge in terms of
high performance (high speed, low power consumption), high gate density or
large volumes. However, for small volumes, FPGAs offer a virtually immediate
turn around time and relatively low cost (particularly in terms of the non-recur-
ring engineering (NRE) costs which can be very large for many ASIC designs). In

addition since a single FPGA is relatively inexpensive the risk factor is signifi-
cantly less and hence the emphasis on the simulation stage is reduced. An FPGA

can thus be programmed and tested rapidly. However, if a design fault exists then
the fault can be quickly corrected and the device reprogrammed. The use of an

FPGA is a very powerful vehicle for testing out an idea before going to volume

production. Translators are available which can convert FPGA designs into mask
progl'ammable ASICs once the design is confirmed at the prototype stage. FPGAs
also/support VHDL description and since VHDL is transportable it can be trans-
ferred into standard cell (SC) options if sufficient volume is expected.

306 Selecting a design route

The standard cell (SC) and full custom (FC) route appear at first sight to be
much too expensive to consider in small volumes. However, processes such as
multiproject wafers and the Europractice initiative have brought these routes into
the reach of small companies and universities. Europractice (previously called
Eurochip) provides low-cost access to both CAD software and foundries. A very
competitive service for standard cell and full custom designs is offered. For
example a typical standard cell charge for a 2000 gate design costs approximately
s for 10 devices. It is initiatives such as these that provide training for future
IC designers to move into industry and take advantage of the latest technology.
For those of you who wish to explore further the Europractice route then visit the
web site: http: /Iwww. te. rl. ac. ukleuropractice or http: llwww, imec. beleuropractice.

11.7 SELF-ASSESSMENT

11.1 Define the acronym 'ASIC'.

11.2 List the safe rules to follow for mask programmable ASIC design.

11.3 Explain what is meant by the term gated clock.

11.4 Why should gated clocks be avoided?

11.5 What problems do monostables have for digital design?

11.6 Why should delay lines be avoided in ASIC designs?

11.7 Name three ways in which programmable logic devices can be
programmed.

11.8 What is the difference in architecture between a ROM, PAL and a PLA?

11.9 Define utilisation with respect to gate arrays.

11.10 What does the acronym VHDL stand for?

11.11 Why is it necessary to resimulate after a chip is laid out?

11.12 What is meant by a functional simulation?

11.13 Define an event driven simulator.

11.14 Is the following statement true or false: 'A gate array has more customer
specific masks than a standard cell design'?

11.15 Name two pieces of software for producing a JEDEC file for a PAL type

device.

11.16 How does a GAL differ from a PAL?

11.17 A hypothetical PAL has 10 input terms and four outputs (active high).
What is its part number?

Problems 307

11.18 Repeat Question 11.17 for a GAL.

11.19 A VHDL description is divided into two parts. Name these parts.

11.20 With respect to VHDL what is the difference between a structural descrip-
tion and a behavioural description?

11.21 Define NRE with respect to ASICs.

11.8 PROBLEMS

11.1 Assuming that you are the first digital designer employed by a company,
choose a design option for the following digital circuits:
(a) seven input, three output truth table (low volume);
(b) controller using 200 gates (high volume);
(c) controller using 1500 gates (small size, low volume);
(d) high-speed synchronous sequencer with 1000 miscellaneous logic gates

(very high volume);
(e) controller using 15 000 gates (high volume);
(f) a single PCB for the control of a multisite temperature measurement

system (no size and power restrictions but required within two weeks).

11.2 How could an eight-bit ROM with 2048 memory locations be used as a
look-up table for the function y= sin x?

11.3 How could the ROM used as a look-up table for y= sin x in Problem 11.2 be
used to generate a 500 Hz sine wave?

11.4 A digital designer designing with a gate array requires a JK flip-flop.
However, the library contains only D-type flip-flops and basic gates. Using a
state diagram approach design a circuit that will implement the JK function
from a D-type and these basic gates.

11.5 The system in Fig. 11.8 assumes that the interrupt input line is synchronised
to the clock. If interrupt can now arrive at any time (i.e. asynchronously)
then redesign the circuit such that the load line must go high for one clock
pulse after interrupt goes high. Hint: redraw the timing diagram and label
the states (you will now need three states).

11.6 Using the PAL in Fig. 11.22 produce a fuse map for the truth table shown in
Fig. 11.26. What software is available to produce a JEDEC file directly from
a truth table without having to draw the Karnaugh maps?

11.7 A 10 MHz clock is applied to the 12 bit counter in Fig. 11.7 with the 74HC74
device cleared by the Q4 output. Given that the propagation delay of each
bistable in the counter is 10 ns what is the exact pulse width produced at the
Q output of the 74HC74 device? Assume all other delays are zero.

308 Selecting a design route

A B C D X Y Z

0 0 0 0 0 0 0

0 0 0 1 0 1 1

0 0

0 0

0 1

0 1

0 1

0 1

1

1

1

1

1

1

1

1

Fig. 11.26 Truth table for Problem 11.6

1 0 0 0 0

1 1 1 0 0

0 0 0 0 1

0 1 0 1 0

1 0 0 0 0

1 1 0 0 1

0 0 0

0 0 1

0

0

1

1

1

1

1 0 0

1 0 0

1 0 0 0 0

1 1 0 1 0

0 0 1 1 0

0 1 1 0 1

1 0 0 0 0

1 1 0 1 0

11.8 The inverter chain buffer circuit of Fig. 11.11 (a) is used to drive a load of 24
unit loads where one unit load is equal to the input capacitance of the first
inverter. If N = 4 , f = 3 and the delay of the first inverter driving itself is 2 ns
then what is the total delay for this network?

11.9 The basic cell used in the Actel Act l FPGA (see Fig. 11.25) has the
following input signals applied: SIS2S3S4=OABC and WXYZ=OAO1. If
'A', 'B' and 'C' are inputs having values of '0' or '1', and for each multi-
plexer when the select line is low the lower input is selected, what function is
performed by this circuit?

11.10 A master clock circuit is to drive two circuits, A and B, having input capac-
itances of 5 and 10 unit loads respectively. Each circuit is buffered by a non-
inverting buffer having an inherent delay of 1 ns and output drive
capability of 15 ns/unit load. What is the relative delay between the clock
signals arriving at each circuit?

11.11 A small CMOS inverter is to drive a 50 pF load via two inverting buffers
whose WIL ratios increase by a factor off, as shown in Figure 11.1 l(a).
Calculate the value o f f to achieve a minimum delay and the magnitude
of this delay. Assume that each inverter has a zero inherent delay and
the small CMOS inverter has a loading delay of 12.5 ns/pF and an input
capacitance of 0.01 pF.

12 Answers to selected
self-assessment questions
and problems

Chapter 1

Self-assessment
1.1:0 or 1 (HIGH or LOW). 1.2: 3; NOT, AND, OR. 1.3: six columns; 16 rows.
1.4: As variables are AND'd together. 1.6: A number of product terms are OR'd
(summed) together. 1.7: Can implement NOT function; and then use duality for
other functions. 1.8: Boolean algebra; truth table; circuit diagram; timing
diagram. 1.9: (a) 0; (b) no change; (c) no change; (d) 1.

Problems
1.1" Use Equation 1.7, then see Ex. 1.13. 1.2: Similar to Ex. 1.14, except use
Equation 1.15 first. 1.3: Begin by using De Morgan's theorem twice. 1.6:
Y= A +B~ C. 1.7: See Ex. 1.26; 3 NANDs. 1.8: (c) AND gate; (d) 2 NAND; 3 NOR.

Chapter 2

Self-assessment
2.1: Variables can only be 0 or 1.2.2:8 units; 0 through to 7.2.3:8 ~ 8 ~ and 8 -~. 2.4:
16 units; 0 to 9, then A to F. 2.5:4 x 4.2.6: Adjacent codes differ only by 1 bit. 2.7:
000, 001, 011,010, 110, 111,101,100.2.8:2 ~2 =4096.2.9: As can multiply/divide
by 2 by simply shifting binary representation of number.

Problems
2.1: 230.2.2: 317.2.3:1425. 2.4:34526. 2.5:100101100.2.6: 4DE. 2.7: 85.2.8: 2750.
2.9: A59. 2.10: 0010:0100:0011.2.11:4x200x30=24000 bits=3000 bytes. 2.12:
5+(2 4- 1)= 333mV. 2.13:100011 (Wire 0's to gate via inverters). 2.15: 76+43= 119;
giving + 19.2.16: 64+ 17 =81; but is negative result; giving-19.

Chapter 3

Self-assessment
3.1: Outputs only depend upon inputs (no memory). 3.2: Respectively variables
AND'd/OR'd together. 3.3: Sum of products/product of sums. 3.4: As for SA
question 1.8 plus a Karnaugh map. 3.5: For m-input and n-output variables; get
(re+n) columns and 2'" rows. 3.6: Has all input variables AND'd together; is
linked to single row of the truth table. 3.7: Sum of products or product of sums;

310 Answers

theoretically the fastest. 3.8: Gives sum of products expression with fewer, non-
fundamental product terms. 3.9: Property of inverse elements (after use of distrib-
utive law). 3.10: They place logically adjacent product terms next to each other.
3.12: Groupings of 8, 4 and 2 minterms. 3.13: Single cell in Karnaugh map;
minimised product term; minimised product term that must be used for minimisa-
tion. 3.14: A product term whose value is not defined; can be set to 0 or 1 to aid
minimisation. 3.15: SOP/POS describe where the l's/0's are on a Karnaugh map.
3.16: log2n.

Chapter 4

Self-assessment
4.1" To route 1 of 8 inputs to single output (selected via three control lines). 4.2: As
all fundamental product terms are decoded by the multiplexer (mux). 4.3: Routes
single input to one of n outputs (selected via m control lines (n = 2m)). 4.4: Just hold
input to de-mux HIGH or LOW as required. 4.5: Programmable inverter; parity
generator/checker; comparator, 4.6: Adds two bits plus carry-in bit to give sum
and carry-out bits. 4.7: Iterative array; full-adder; rippling carry makes it slow.
4.8: Carry signals generated directly from inputs (hence name); therefore faster.
4.9: Race conditions so that signals do not have expected values at all times. 4.10:
Signal goes transiently to other state; caused by race conditions for two paths;
static-0 and static-1.4.11: Signal expected to change state actually doe~so twice;
caused by race conditions for three or more paths. 4.12: By including non-
essential prime implicants in minimised expression.

Problems
4.2: (a) 19; (b) 18 gates. 4.6: three-input XOR gate. 4.7: Swap final XOR for NOR
gate. 4.8: Full adder with inverted carry-out. 4.9: Invert all inputs and add 1 using
carry-in. 4.11- Gives two's complement of input word. 4.12: (re+n) input and
output columns; 2 t'''+"~ rows. 4.13: Need NOT and OR gate. 4.14:Static-1 hazard
for BC; use this product term for blanking gate.

Chapter 5

Self-assessment
5.1: Sequential circuits have 'memory' because their outputs depend, in part,
upon past outputs. 5.2: Combinational logic plus 'memory'. 5.3: For n-outputs
from 'memory', and m-external inputs; have: 2" internal and 2 m+n possible total
states. 5.4: Memory elements in synchronous circuits are flip-flops which are
clocked. Asynchronous circuits are unclocked. 5.5: The internal inputs and
outputs must match (as they are connected). 5.6: Only one input can change at a
time (fundamental mode operation). 5.7: 'Cutting' the connection between
internal inputs and outputs. 5.9: (a) Horizontal; (b) vertical. 5.10: Oscillation.
5.11: Non-critical races do not affect final output; critical races do.

Answers 311

Problems
5.1: Detects input sequence (1,0), (1,1), as Circuit 4. 5.2: State diagram has
same form as P5.1. 5.3: Functionally same state diagram as others; Z=ABy.
5.4: SR flip-flop. 5.5: Circuit similar in form to 5.1, 5.2 and 5.3; two stable states
for inputs (0, 0): Z= 1 when entered from (0,1).

Chapter 6

Self-assessment
6.1: SR, T, JK, D. 6.2: They can be toggled so if unclocked when toggled would
oscillate. 6.3: Truth table; excitation table; Karnaugh map; next state equations.
Gives necessary inputs for specific outputs. 6.5: Gives next state of output, Q§ in
terms of present output, Q, and inputs. 6.6: Inputs affect outputs: immediately;
when clock line reaches (and remains at) a certain level; at the instant an edge
occurs on the clock line. 6.7: Goes to 1 or 0; either immediately or when next
clocked. 6.8: Series of flip-flops whose outputs/inputs are linked. Shifting
performs multiplication or division. 6.9:12 and 6.

Problems
6.1,2: Use short pulses as inputs. 6.3: Feedback path is broken. 6.4: (a) J=K; (b)
J= K; (c) D= T ~ Q. 6.5: Q= 1 when X= 1 else Q= C. 6.6: Oscillates between state
010 and 101.

Chapter 7

Self-assessment
7.1- The number of count states it possesses. 7.2: Asynchronous: each flip-flop is
clocked by the last (ripple counters); synchronous: all flip-flops clocked simulta-
neously under control of a combinational logic function of flip-flops' outputs. 7.3:
Set count state; reset count to 0.7.4: Either use Q outputs as clock or use positive
edge triggered flip-flops. 7.5: Decode Nth count state and use it to reset all flip-
flops; spikes in output. 7.6: Use T-type flip-flops; always toggle first flip-flop and
only toggle others when all preceding flip-flops have an output of 1.7.7: Use
present outputs (via combinational logic) to determine next outputs. 7.8: Need M,
with 2M___N; will have (2M-N) unused states; depends upon minimisation of
'don't care' states.

Problems
7.1: Mux to route either Q or Q to next FF's clock. 7.2:Mod-8 binary ripple down

m

counter; 3=Q2+Q~+Qo. 7 .3 :Mod-6 binary ripple up counter. 7.4: Reset

using 0200- 7.6(a): D2= Q~ Q0, D~ = Qi ~9 Q0, Do= Q2Qo; J2- Q~ Qo K,_= 1, J~- Qo
K~=Qo, J0 = Q2 K0 = 1.7.7: J2-QiQo, K2=Q~, Jl=Q0, K~=Q2+Qo, J0 = Q2 + Q~,
K0=l.

312 Answers

Chapter 8

Self-assessment
8.1: Possesses memory in the form of flip-flops which are clocked together. 8.2:
Autonomous (no external inputs); general synchronous sequential circuit with
outputs either depending upon internal inputs only (Moore model) or upon
external inputs as well (Mealy model). 8.3: Write table for present and next states;
produce Karnaugh maps for next state variables; minimise to find inputs to flip-
flops. 8.4: Those not required in the design. If entered, erroneous circuit operation
may occur; so often made to lead to some specified state.

Problems
8.2: Autonomous. 8.5: States 4 and 5 cycle; lead them to another state. 8.6: I
controls direction through states. 8.7: For I = 1 sequence of states. A, B, C, D, A;
for I = 0 sequence is A, B, D, C, A. 8.8: Moore. 8.9: Mealy; serial adder.

Chapter 9

Self-assessment
9.1:0.2 V. 9.2:0.7 V. 9.3: Transistor current gain or IJI b . 9.4: Diode Transistor
Logic, Transistor Transistor Logic, N-channel Metal Oxide Semiconductor,
Complementary MOS, Emitter Coupled Logic, Bipolar and CMOS. 9.5: True.
9.6: 74, 74LS, 74F, 74ALS. 9.7: CMOS: 74HC, 74AC, 74ACT, 74HCT, 74AHC,
4000B. TTL: 74ALS, 74LS, 74F, 74. 9.8: Both devices are CMOS and pin
compatible with TTL devices but the ACT device has input voltage levels that are
TTL voltage levels. 9.9: I~em,x" 9.10: Both currents are equal and very low (0.1 ~A).
9.11: CMOS: low power, high density. TTL: high speed but now being superseded
by high-speed CMOS processes. 9.12: Because the transistors are prevented from
entering saturation. 9.13: If Vos < VGS- V T then the device is in the linear region
and los = K[(VGs- Vv). VDS- V~s/2]. If however, Vos > VGs- V v then the device is in
the saturation region and IDs=[K/2][VGs--VT] 2. 9.14: K=(WIL)IXCox. 9.15: Since
/z, >/Zp then in order to ensure that KN= Kp the PMOS device is larger than the
NMOS. 9.16: True. 9.17: P~ynamic=CL.V~d.f. 9.18: Xp=2CL/(KN.Vd~). 9.19: Series
NMOS parallel PMOS, parallel NMOS series PMOS. 9.20: One NMOS and one
PMOS transistor back to back. 9.21: F100K, 74AC/74ALS, 74HC, 74LS. 9.22:
74AC/74HC, 74ALS, 74LS, F100K. 9.23: Product of power and delay. 9.24:
BiCMOS, CMOS, GaAs, ECL, TTL. 9.25: No.

Problems
9.1" 1.17 k~. 9.2: Plow- 4.18 mW (T 1 is off), Phigh ----- 26.96 mW (T 1 is on). 9.3:8
(high), 4 (low). 9.4: 0.4(high)/0.4(low), 0.7/0.3, 2.3/0.47, 0.3/0.3. This assumes that
o/p's are at the minimum and maximum conditions. 9.5: 76.6.9.6:0.289 mA. 9.7:
6 ns, increase Vaa and/or decrease temperature. 9.8:200 ns, 50 ns. 9.9: NMOS: A in
series with B in series with a parallel combination of D and C. Reverse for PMOS.
9.10:625 f2.9.11: KN= 1053 ~ V -2, Kp= 13.9 laA V -2.

Answers 313

Chapter I0

Self-assessment
10.1- Read only memory; random access memory; static RAM; dynamic RAM;
erasable PROM; read-write memory; pseudo SRAM; non-volatile SRAM; one-
time PROM; electrically erasable and programmable ROM. 10.2: Retains data;
loses data; loses; loses; retains; depends if EEPROM/FLASH (retains) or RAM
(loses); loses; retains; retains; retains. 10.3: When the power is removed the data is
retained. 10.4: Time taken to read data from memory. 10.5: In ascending tran-
sistor count per bit: mask ROM; EPROM; FLASH; EEPROM(MNOS);
OTPROM; DRAM; EEPROM(floating gate); SRAM. 10.6: Hard disk write
times are typically lOOms whilst SRAM is 0.1 ps. 10.7: SRAM/DRAM (0.1 ~) ;
FLASH (10 lus); EPROM (50 las but takes 20 minutes to erase); OTPROM(100
but only one write operation); EEPROM (10 ms); hard disk (100 ms). 10.8:
DRAM due to its high capacity and fast write times. 10.9: Single in line memory
module. 10.10: A thin plastic card containing memory chips with a standard 68
pin connector. 10.11" CE=O, OE=O, WE = 1.10.12: Data is stored as charge on a
capacitor via an off transistor. This charge can leak away through the off tran-
sistor and hence must be periodically recharged. 10.13: All need Vdd and Vs~ except
the EPROM and FLASH which currently require an extra high voltage pin, Vpp.
10.14: SRAM device goes into low-power mode. 10.15: EPROM and FLASH.

Problems
10.1- (a) 2048 words, (b) 8 bits, (c) 16 384 bits. 10.2: (a) 32 pins, (b) 24 pins. 10.3:
(a), (b) drive A19 to CE of one chip and A19 to CE on the other chip, (c) CE~ =
A19+A20, CE2=A19+A20 , CE3=A19+A20 , CE4-A19.A20. 10.4: 0.42pF.
10.5:tbyteverify=6.21 ILLS, /byte write--10.19 ~ . 10.6: 250kf2. 10.7: 20mW, 12mAhours
- but does not include dynamic power dissipation.

Chapter II

Self-assessment
II .I : Application Specific Integrated Circuit. 11.2: No gated clocks/resets, mono-
stables, RC/CR circuits and delay chains; use synchronous techniques, use a high
frequency clock; use clock buffering. 11.3: A clock signal passed through a logic
gate such as an AND gate. 11.4: These can cause spikes and glitches on clock lines
and hence can cause incorrect clocking of flip-flops. 11.5: A monostable is a device
that in response to a rising (or falling edge) will produce a pulse of duration
dictated by external C and R. External R and C required (not suitable for ASICs);
pulse width varies with temperature, Vcc and from device to device; poor noise
margin; unclean signal for narrow pulses. 11.6: The propagation delay on a chip
(and across it) varies considerably. 11.7: SRAM, fuse, EPROM. 11.8: ROM: fixed
AND-programmable OR; PAL: programmable OR-fixed OR; PLA: program-
mable OR-programmable AND. 11.9: The percentage of gates used in a design.
11.10: VHSIC (Very High Scale Integrated Circuits) Hardware Description

314 Answers

Language. 11.11" When a chip is laid out the interconnect and other layers add R
and C and so slow down signals- hence it must be resimulated. 11.12: All gates
have the same delay (typically 1 ns) and no set-up, hold and pulse width checks are
carried out. 11.13: Only when an input to a gate changes will the gate output be
computed. 11.14: False. 11.15: ABEL, PALASM, CUPL. 11.16: Generic Array
Logic- a PAL with a versatile cell at the output called an OLMC (output logic
macro cell). 11.17: PAL10H4. 11.18: GAL10V4. 11.19: Entity and architecture.
11.20: Structure: logic gates and blocks connected together; behaviour: use of
high-level statements (i.e. IF THEN etc.) to describe function of system. 11.21"
Non-recurrent engineering charges- tooling costs.

Problems
11.1: (a) PAL, FPGA; (b) GAL, standard cell; (c) FPGA, standard products; (d)
standard cell, full custom; (e) gate array, standard cell; (f) standard products,
FPGA. 11.2: ROM would need to have 11 address lines (i.e. 2048 locations) and
eight data bits. 11.3: Add DAC to output of ROM at an addressing clock
frequency of 0.9 MHz. 11.4: D=J.Q+Q.K. 11.5: Two D-types: Do=Qo.Q~ + i. Q0;
D~=I.Qo.Q~ where D~ output is LOAD. 11.6: X=A.C+A.B.C.D;
Y=A.C.D+A.C.D+A.B.C.D; Z=A.B.C.D+A.B.C.D+A.B.C.D + A.B.C.D; use
ABEL or PALASM. 11.7: 840ns. 11.8:19.8 ns (both the input capacitance and K
increases by 'f' at each stage). 11.9: output=A.C+A.B. 11.10: 75ns. 11.11"
f= 17.1, minimum delay = 6.42 ns.

Index

"283' adder, 105

absorption laws, 10
adder

'283', 105
design example, 100
full, 98, 102
half, 98
look ahead carry, 103

alternative implementation, 105
ripple carry, 102

analogue-to-digital converter
output from, 35

offset binary, 35
sign magnitude, 35
two's complement, 36

AND, 3
operator shorthand, 47

AND-OR Architectures, 287
AND-OR-INVERT, 15
ASIC's, 266

field programmable, 266
mask programmable, 266

assertion level logic, 23, 77
associative laws, 8
asynchronous counter, 164, i 65

mod-N, 166
asynchronous logic circuit, 126
asynchronous sequential circuit, 128

breaking feedback path, 134
design, 146

essential hazard, 147
hazards, 147
merging rows, 147
primitive flow table, 147
transition table, 147

flow table, 134
fundamental mode, 129
race conditions, 144

critical race, 145
non-critical race, 144

stability, 128
stable and unstable states, 129
state diagram, 136
transition table, 134
with 2 inputs, 139

autonomous synchronous sequential circuit,
180

base- I 0, 29
base- 16, 29
base-2, 29
BiCMOS, 219
binary arithmetic, 29, 36

addition, 36
division, 43
multiplication, 42
subtraction, 37

binary coded decimal, 33
binary subtraction, 37
bipolar

power dissipation, 228
blanking gate, 113, 114
Boolean

algebra, 1,4
and ordinary, 11
minimisation, 50, 52, 72
multivariable theorems, 7
single variable theorems, 4, 6

logic symbols
of all gates, 13

operators, 1, 2
AND, 3
NOT, 2
of all gates, 13
OR, 4
XOR, 13

variables, 1
Boolean algebra

minimisation
of product of sums, 82

bubbles, 13
bus contention, 229
byte, 241

canonical, 48, s e e fundamental
carry

generation, 105
propagation, 105

Clock buffering, 276
CMOS, 208

complex gates, 212
input protection circuitry, 236
NAND/NOR, 212
power dissipation, 209. 228
propagation delay, 211,226
transmission gate, 215

code converter/look up table, 215
combinational logic, 46
combinational logic circuit

compared to sequential, 125
commutative laws, 7
comparator, 96
Computer Aided Design, 278

back annotation, 282
DRC, 286
ERC, 286
event driven simulator, 282

316 Index

Computer Aided Design (cont.)
functional simulation, 282
layout, 282
layout verification tools, 286
net-list, 282
pre-layout simulation, 282
schematic capture, 281
SPICE, 286
standard cell, 286
timing analyser, 283
VHDL, 282

controlled inverter, 96
counter, 164

'mod' of, 164
asynchronous, 164, 165

mod-N, ! 66
down, 165
Johnson, twisted ring etc., 161
ring, 160
ripple, 164
synchronous, 164, 167

mod-2", 167-
mod-N. 166
state diagram, 173
using D-types, i 69
using JKs, 169

CR Pulse Generators, 274
critical race, 145
cut-off, 194

D-type flip-flop, 151
using transmission gates, 216

De Morgan's theorem, 9, 18
decimal, 29

conversion from base-n, 29
conversion to base-n, 31

decoder, 94, 269
decoupling, 237
demultiplexer, 92

as decoder, 93
depletion MOSFETS, 205
diode, 194

forward bias, 195
distributive law, 8
don't care terms, 70
down counter, 165
DRAM, 258

refreshing, 259
timing diagram, 260

dual, 60
duality, 18

of multivariable theorems, 19
dynamic hazards, 116

edge-triggered flip-flop, 151
EEPROM, E 2 P R O M , 250

data polling, 252
endurance, 25 I
floating gate cross-section, 251
MNOS, 250, 252
timing diagram, 252

Electron Beam Masks, 275
electrostatic protection, 236
encoder, 94

priority, 95
enhancement MOSFETS, 205
EPROM, 248

avalanche breakdown, 249
endurance, 249
FAMOS, 249
floating gate cross-section, 248
timing diagrams, 247
write-erase cycles, 247

essential hazard, 147
essential prime implicant, 68
excitation table, 151
exclusive OR, 13

factors, 87
fan out/fan in, 198, 230
Field Programmable Logic, 266, 287

CAD tools, 299
EPLD, 292
EPLD, GAL, 267
FPGA, 267, 295
GAL, 292
NOR array, 288
PAL, 267, 291
PLA, 267, 293
programming, 301
ROM, 267, 288

FLASH E 2 P R O M , 253
timing diagrams, 253

flip-flop, 150
clear input, 153
D-type, 151,216
edge-triggered, 153
excitation table, 152
JK, 151
Karnaugh map for, 151
level-triggered, 153
master-slave, 153, 162
next state equation, 151
present input, 153
set-up and hold times, 153
SR (Set-Reset), 155
T (Toggle), 151
toggling, 150
transparent, 153
truth table, 151

floating inputs, 236
flow table, 134
Fowler Nordheim tunnelling, 254
FPGA

Comparisons, 297
EPROM Type, 296
Fuse Type, 297
granularity, 296
programming technique, 296
re-programmability, 296
SRAM-MUX Type, 296
volatility, 296

full adder, 98, 102
serial, 311

fundamental
product of sums, 80
product term, 48, 56
sum of products, 47

fundamental mode, 129

Gallium Arsenide, 222
gate delay, 108, 110
gate equivalence, 18
Gated clocks, 270

Index 317

general memory architecture, 242
glitches, 109, 269, 281
gray code, 34

and Karnaugh maps, 67
grouping, 60

dual, 60
octet, 64
quad, 62

hazards 108
and Karnaugh maps, 112
dynamic, 116
essential, 147
glitches, 109
linked to minimisation, 112
multiplexer, 111
spikes, 109
static, 109

elimination, 113
static-0, 109
static- 1, 110
summary, 119

heuristic design, 102
hexadecimal, 29, 32
high impedance or high Z, 231
holding gate, 113

idempotent law, 5
identity elements, 6
implicant, 68

essential prime, 68
prime, 68

increasing memory capacity, 244
inherent capacitance, 210
interfacing CMOS and TTL, 234, 235
internal state, 126
intersection, 48
inverse elements law, 5
reverter, 3
involution law, 5
lterative array, 103

JK flip-flop, 151
Johnson counter, 161

Karnaugh map, 54
2 variable, 55
3 variable, 59
4 variable, 62
5 variable, 65
and gray code, 67
and hazards, 112
don't care terms, 70
for XOR, 55, 57, 65
minimisation, 56, 83
minimisation summary, 71
rolling, 62

law
absorption, 10
associative, 8
communtative, 7
De Morgan's theorem, 9, 18
distributive, 7
idempotent, 5
identity elements, 6

inverse elements, 5
involution, 5
other identities, 11

leakage current
BJT, 194
CMOS, 229
MOSFET, 209

level-triggered flip-flop, 151
linear region, 205
logic families, 191

4000B, 217
74AC/ACT, 219
74AS/ALS/F, 204
74BCT, 221
74C, 217
74HC/HCT, 218
74LS, 203
74LVX/LV etc, 221
74S, 202
CMOS, 208
diode transistor logic, 194
emitter couple logic, ECL, 221
NMOS, 207
TTL, 74 series, 196

logic symbols, 12
of all gates, 13

logically adjacent, 50, 54, 58
look ahead carry adder; 103

alternative implementation, 105
looping, s e e grouping
looping product terms, 58
low voltage operation, 220

Mask Prog. Gate Arrays
CAD tools, 281
channelled, 279
cost limitations, 280
gate count, 281
gates, 279
sea of gates, 279
Utilisation, 280

Mask Programmable, 266, 275
full custom, 266, 287
gate array, 266, 279
standard cell, 266, 284

mask programmed ROM, 242
access time, 244
read timing diagram, 245

master-slave flip-flop, 151, 162
maxterms, 80
Mealy circuit, 180
memory comparisons, 263
minimisation, 50, 52

Karnaugh map, 56, 84
of product of sums, 83
Quine-McCluskey, 72
via Boolean algebra, 53
via Karnaugh maps, 54

minterm, 68
mod, of counter, 164
Monostables, 270

alternative approach, 271
Moore circuit, 180
MOSFET, 204
multiplexer

product of sums form, 113
Multi Project Wafers, MPW, 280, 285

318 Index

multiplexer, 88
as universal logic solution, 90
hazard, I11
using transmission gates, 216

multivariable theorems, 7

NAND, 12
negative level logic, 77
next state, 125
next state equation, 15 I
NMOS, 207
noise margin, 224
Non Recurring Expenditure, NRE, 279, 281
non-critical race, 144
non-volatile, 241
NOR, 12
NOT, 2

octet, 64
offset binary, 36
one's complement, 38
open collector/drain, 229
OR,4
other identities, 11
OTPROM, 246

programmable time, 247
timing diagram, 247

parallel adder, 102
parity generator/checker, 98
PCMCIA, 263
photo or electron beam mask, 243,275
power delay product (PDP), 233
power dissipation, 228
present state, 125
prime implicants, 68
prime implicates, 82
primitive flow table, 146
priority encoder, 96
product of sums, 12

fundamental, 80
maxterms, 80
minimisation, 82

via Karnaugh maps, 83
multiplexer, 113
negative level logic, 77

product term, 46, 48
fundamental, 49, 55
grouping

dual, 60
octet, 64
quad, 62

logically adjacent, 50, 58
looping, 58

PROM, 246
propagation delay, see gate delay, 226
PSRAM, 261
pulse synchronisation, 156

quad, 62
Quine-McCluskey, 72

race conditions, 108, 144
RAM, 240, 241,256

dynamic or DRAM. 241,258
NOVRAM. 241
PSRAM. 241

static or SRAM, 241,258
RC Integrator, 269
Reset technique, 274
ring counter, 160
ripple carry adder, 102
ripple counter, 164
ROM, 240, 242, 288

EEPROM E 2 PROM, 240, 250
EPROM, 242,248
FLASH E 2 PROM, 241,253
fuse programmed, 240
mask programmed, 240, 242
NMOS ROM, 242
NOR Type array, 242
OPTROM, 240
PROM, 240, 246

row and column decoder, 241

Safe ASIC techniques, 277
saturation

bipolar, 194
MOSFET, 204

Schmitt, 237, 269
Schottky logic, 202
selective implantation, 243
Sequence/Waveform Generator, 290
sequential logic circuit, 125

asynchronous, 126
external inputs to, 125
internal state, 126
next state, 126
present state, 125
synchronous, 126, 179
total state, 126

set theory, 47
set-up and hold times, 153,282, 302
shift register, 158

as delay line, 160
as sequence generator, 160
malfunction, 283
parallel-in serial-out, 160
serial-in parallel out, 159
serial-in serial-out, 159

sign bit, 39
sign magnitude, 35
SIMM, 263
single variable theorems, 4, 6
spikes, 109, 269, 28 I
SR flip-flop, 150

asynchronous sequential circuit, 145
SRAM, 256

NOVSRAM, 257
timing diagrams, 258

state diagram, 136, 274
static hazards, 109

elimination, 113
static-0 hazard, 109
static- 1 hazard, 110
subtractor, 122
sum of products, 12, 46

fundamental, 48
alternative notation, 49
minimisation, 50

switch debouncing, 154
synchronous counter, 164, 167

mod-2" ! 67
mod-N. 169

Index 319

synchronous counter (cont.)
state diagram, 173
using D-types, 169
using JKs, 169

synchronous sequential circuit, 126, 179
autonomous, 180
classification, 180
Mealy model, 180
Mealy outputs 185
Moore model, 181

systolic array, 103

T (Toggle) flip-flop, 150
ten's complement, 36
theorem, see law
three state logic, 229
threshold voltage, 204
timing diagrams, 16, 258
total state, 126
totem-pole output, 199
transfer characteristic, 223
transistor, 193

BJT, 193
MOSFET, 204
NMOS, 207
PMOS, 207
Schottky clamped, 200

transition table, 134
transmission gate, 215
transparent flip-flop, 150
tri-state, 231,244
truth table, 3, 12

of all gates, 13
twisted ring counter, 161
two's complement, 36, 37

for binary subtraction, 37
obtaining the, 38
shorthand method, 40

two-level circuit, 49, 101

union, 47
universal gates, 25
universal logic element, 91

VHDL, 302
volatile, 241,257

wired or, 231

XOR, 13, 15
as comparator, 96
as controlled inverter, 96
as parity generator/checker, 98
based circuits, 96

