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1 Fundamentals 

1.1 INTRODUCTION 

This chapter introduces the essential information required for the rest of the 
book. This includes a description of Boolean algebra, the mathematical language 
of digital electronics, and the logic gates used to implement Boolean functions. 
Also covered are the 'tools' of digital electronics such as truth tables, timing 
diagrams and circuit diagrams. Finally, certain concepts such as duality, positive 
and negative assertion level logic and universal gates, that will be used in later 
chapters, are introduced. 

1.2 BASIC PRINCIPLES 

1.2.1 Boolean algebra- an introduction 

The algebra of a number system basically describes how to perform arithmetic 
using the operators of the system acting upon the system's variables which can 
take any of the allowed values within that system. Boolean algebra describes the 
arithmetic of a two-state system and is therefore the mathematical language of 
digital electronics. The variables in Boolean algebra are represented as symbols 
(e.g. A, B, C, X, Y etc.) which indicate the state (e.g. voltage in a circuit). In this 
book this state will be either 0 or 1. ~ Boolean algebra has only three operators: 
NOT, AND and OR. The symbols representing these operations, their usage and 
how they are used verbally are all shown in Table 1.1. Note that whereas the 
AND 2 and OR operators operate on two or more variables the NOT operator 
works on a single variable. 

Table  1.1 Boolean  variables and  opera to r s  

Operator S y m b o l  Usage Spoken as 
m 

N O T  - A no t  A; or  A bar  

A N D  A .  B A and B 

O R  + A + B  A or  B 

~ln other textbooks, and occasionally later on in this one, you may see these states referred to as HIGH 
and LOW or ON and OFF. 

-'Sometimes the AND symbol, A- B, is omitted and the variables to be AND'd are just placed together as 
AB. This notation will be adopted in later chapters. 
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Example 1.1 

A circuit contains two variables (i.e. signals), X and Y, which must be OR'd 
together. How would this operation be shown using Boolean algebra, and how 
would you describe it verbally? 

Solution 

The operation would be spoken as X or Y and written as X+ Y. 

Example 1.2 

The output Y of a logic circuit with two inputs, A and B, is given by the Boolean 
arithmetic expression, Y= A. B. How would this be described verbally? 

Solution 

This would be spoken as either Y equals A and B bar, or alternatively Y equals A 

and not B. 

1.2.2 The three Boolean operators 

The basic gates (i.e. circuit elements) available in digital electronics perform the 
three Boolean algebraic operations of NOT, AND and OR. The symbols for these 
gates are shown in Fig. 1.1. In order to both design and analyse circuits it is neces- 
sary to know the output of these gates for any given inputs. 

A ~ Y A Y A 

NOT AND OR 
Fig. 1.1 The three basic Boolean operators 

The NOT operator 
Since any Boolean variable can only be either 0 or 1 (Boolean algebra is a two- state 
system) then if it is 0 its complement is 1 and vice versa. The NOT gate performs 
this operation (of producing the complement of a variable) on a logic signal, so if 
A is input to the NOT gate then the output is represented by Y= A. Therefore if 
A =0 then Y= 1, or else A = 1 and Y=0 (there are only two possibilities). 

The truth table of a logic system (e.g. digital electronic circuit) describes the 
output(s) of the system for given input(s). The input(s) and output(s) are used to 
label the columns of a truth table, with the rows representing all possible inputs to 
the circuit and the corresponding outputs. For the NOT gate there is only one 
input (hence one input column, A), which can only have two possible values (0 
and 1), so there are only two r o w s .  3 As there is only one output, Y, there is only 

3The number of possible inputs, and hence rows, is given by 2; (where i is the number of inputs) since each 
of the i inputs can only take one of two possible values (0 and 1 ). 
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one output column. The truth table for the NOT gate in Table 1.2 shows that 

Y= 1 if A = 0, and Y= 0 if A = 1. So Y= A, the complement of A. The NOT gate is 

also sometimes referred to as an inverter due to the fact that it complements 

(inverts) its input. 

Table 1.2 Truth tables for the three basic logic gates 

A 
row 1 0 
row 2 1 

NOT 
Y=A 

Y 
1 

0 

row 1 
row 2 
row 3 1 
row 4 1 

AND 
Y=A .B 

B Y A B Y 
0 0 0 0 0 
1 0 0 1 1 
0 0 1 0 1 
1 1 1 1 1 

OR 
Y=A +B 

T h e  A N D  operator  

The AND operator takes a number of variables as its input and produces one 
output whose value is 1 if and only if all of the inputs are 1. That is the output is 1 

i f  input 1 and input 2 and all the other inputs are 1. Hence its name. 
Considering a two-input (although it can be any number) AND gate its truth 

table will have two input columns, A and B, and one output column, Y. With two 
inputs there are 2 2 =4 input combinations (since both A and B can be either 0 or 1) 
and so four rows. The output of the gate, Y, will be 0 unless all (i.e. both A and B) 
inputs are 1, so only the last row when A and B are 1 gives an output of 1. The 
truth table (see Table 1.2) describes completely the output from an AND gate for 
any combination of inputs. 

Alternative, but exactly equivalent, descriptions of this operation are given by 
use of either the circuit symbol or the Boolean equation, Y= A- B. (This is true of 
all combinational logic circuits.) 

Example 1.3 

Consider a three-input AND gate. How many columns and rows would its truth 
table have? What would the Boolean expression describing its operation be? What 
would its truth table and circuit symbol be? 

Solution 

The truth table would have four columns; three for the inputs and one for the 
output. Since there are three inputs it would have 23= 8 rows corresponding to all 
possible input combinations. Its Boolean algebraic expression would be 
Y= A- B �9 C, assuming the inputs are A, B and C. Its truth table and circuit symbol 
are shown in Fig. 1.2. 
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A B C A . B . C  
0 0 0 0 

o o i o 
0 1 0 0 

o ~ 1 o 
1 0 0 0 

_ �9 _ 

1 0 1 O. 

1 1 0 0 

1 1 1 1 

A m 

C 

Fig. 1.2 Truth table and symbol for a three-input AND gate as discussed in Example 1.3 

The OR operator 
The OR operator takes a number of variables as its input and produces an output 
of 1 if any of the inputs are 1. That is the output is i i f  input I or input 2 or any input 
is 1. The layout of the truth table for a two-input OR gate is the same as that for 
the two-input AND gate for the same reasons given above (since both have two 
inputs and one output). The entries in the output column are all that differ with 
Y= 1 whenever any input, either A or B, is 1. 4 Note that this includes an output of 
1 if both inputs are 1.5 The Boolean algebraic equation for this gate is Y= A + B. 

Example 1.4 

Draw the circuit symbol and truth table for a four-input OR gate. 

Solution 

These are shown in Fig. 1.3. 

1.3 BOOLEAN ALGEBRA 

Boolean algebra is the mathematical language of digital logic circuits, which are 
simply circuits built out of the three gates (operations) introduced above. It 
provides techniques for describing, analysing and designing their operation. 
Using the above descriptions of the operation of the three basic gates, and their 
Boolean descriptions, Y= A, Y= A- B and Y= A + B, the additional rules and laws 
of Boolean logic which are needed will now be introduced. 

1.3.1 Single-variable theorems 

As the heading suggests, this section details those rules which describe the opera- 

4Another way oflooking at this is that the output is only 0 if both input A and input B are 0. This (nega- 
tive logic) approach is discussed in more detail in Section 1.7. 

5A gate which is similar to the OR gate in all but this aspect, the exclusive-OR (XOR) gate, will be consid- 
ered in Section 1.4. 
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A B C 

0 0 0 

0 0 0 

0 0 1 

0 0 1 

0 1 0 

0 1 0 

0 1 

0 1 

1 ) 

1 ~ 

1 3 

' 1  3 

1 1 

1 1 

1 1 1 0 

1 1 1 1 

| 

D 
i ,  

0 

A + B + C + D  

0 

1 1 

0 1 

1 i 1 
l 

0 1 
i 1 1 

1 " 0  1 
, , ,  

1 1 1 
- . .  

0 0 1 
. . . . . .  

0L 1 i 
�9 

1 0 1 
1 1 1 
0 0 1 
0 1 -  1 

1 
1 

L 

Fig. 1.3 Truth table and symbol for a four-input OR gate as discussed in Example 1.4 

t ion of  logic gates when  only one var iable  is present .  No te  tha t  these laws, given in 

Table  1.3, provide  e x a c t l y  the same i n f o r m a t i o n  as the t ru th  tables. 

Table 1.3 Single-variable Boolean theorems 

Idempotent laws: Rows 1 and 4 of the truth tables, demonstrate the effect of a variable oper- 
ating upon itself: 

A . A = A  (1.1) 
A + A = A  (1.2) 

Property of inverse elements: Rows 2 and 3 of the truth tables show the effect of a variable 
operating on its complement: 

A ' A : O  (1.3) 
_ _  

A +A = I (1.4) 

Involution (NOT) law: 
A : A (1.5) 

Property of identity elements: The effect of operating on a variable with 0 or 1: 
A . 0 : 0  (1.6) 
A. 1 : A  (1.7) 

A + 0 :  A (1.8) 
A + 1 : 1 (1.9) 

I d e m p o t e n t  l a w s  

The i dempo ten t  ~ laws describe the effect o f  a var iable  opera t ing  upon  itself (i.e. 

the same var iable  goes to all inputs).  F o r  the two- inpu t  A N D  gate this gives 

Y -  A- A which will give 1 if A - 1, and 0 if A - 0 ;  hence Y= A.  A - A. 

"idern nmans "same" in Lalin. 
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The OR operator gives exactly the same result and these laws give the outputs 
in rows 1 and 4 (see Table 1.2) of the truth tables. 

Inverse elements 
The law of inverse elements describes the effect of operating on a variable, A, with 
its complement, A. For the AND gate this gives Y= A. A =0, since A and A must 
have complementary values and therefore Y= 0. 

For the OR gate Y= A + A = 1, since either A or A must be 1. This law describes 
the operations in rows 2 and 3 of the truth tables. 

Involution law 
This describes the effect of operating on a variable twice with the NOT operator 
(i.e. passing a signal through two NOT gates). The effect of this is to return the 
variable to its original state. So Y= A = A. 

Note that the truth tables could be derived from the above three laws as they give 
exactly the same information. It will become apparent that there is always more 
than one way of representing the information in a digital circuit, and that you 
must be able to choose the most suitable representation for any given situation, 
and also convert readily between them. 

Properties of identity elements 
The above laws give all of the information held in the truth tables. However 
another way of expressing this information is as the properties of identity elements. 
These just give the output of the AND and OR gates when a variable, A, is oper- 
ated on by a constant (an identity element). (So for a two-input gate one of the 
inputs is held at either 0 or 1.) Obviously these laws, shown in Table 1.3, can also 
be used to completely determine the truth tables. 

Note that Equation 1.6 in Table 1.3 states that AND'ing any variable (or 
Boolean expression) with 0 gives 0, whilst Equation 1.9 means that OR'ing any 
variable (or Boolean expression) with 1 gives 1. However AND'ing with 1 
(Equation 1.7) or OR'ing with 0 (Equation 1.8) gives the Boolean value of the 
variable or expression used in the operation. 

Example 1.5 

What is the result of the operations (X. 0) and ((X. Y)+ 1)? 

Solution 

The output from (X-0) will be 0, since anything AND'd with 0 gives a digital 
output of 0. The result of ((X. Y)+ 1) will be 1, since any expression OR'd with 1 
gives 1. Note that in the second example it is the Boolean expression (X- Y) (which 
must be either 0 or 1) that is OR'd with 1. 



Table 1.4 Multivariable Boolean theorems 
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Commutative laws: Show that the order of operation under AND and OR is unimportant: 

A . B = B . A  

A + B = B + A  

Associative laws: Show how variables are grouped together: 
(A.  B). C = A  . B.  C = A . ( B .  C) 

(A+B) + C= A +B+ C= A +(B+ C) 

Distributive laws: Show how to expand equations out: 
A .(B+ C)=A. B+ A. C 
A +(B " C) = (A + B) " (A + C) 

De Morgan's theorem: 
A + B = A . B  =~A+B+C+ . . . .  A . B ' C . . .  

A ' B = A + B = ~ A . B . C . . . = A + B + C . . .  

Other laws which can be proved from the above are the: 

Absorption laws: 

and 'other identities': 

(1.10) 
(I.11) 

(1.12) 
(1.13) 

(1.14) 
(1.15) 

(1.16) 
(1.17) 

A . ( A + B ) = A  (1.18) 
A +(A . B)= A (1.19) 

A . ( A  + B ) = A .  B (1.20) 
A +(a.  B)= A + B (1.21) 

Example 1.6 

What is the result of the operations (Y- 1) and ((X. Y)+ 0)? 

Solution 

The outputs will be whatever the digital values of Y and (X. Y) are, since anything 
AND'd  with 1 or OR'd  with 0 is unchanged. 

1.3.2 Multivariable theorems 

These rules describe the operations of Boolean algebra when more than one vari- 

able is present. This includes defining the equivalence of certain groups of opera- 

tions (i.e. groups of gates forming a circuit). All of the multivariable theorems 

described below are given in Table 1.4. 

Commutative laws 
These simply state that it does not matter which way two variables are AND'd  or 

OR'd  together. So 

Y - - A . B = B . A  and Y - A + B = B + A  

This is the same as saying it does not matter which inputs of a two-input gate the 
two variables are connected to. 
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Associative laws 
These show how operations can be associated with each other (grouped together). 
Essentially if three or more variables are to be AND'd  or OR'd together it does 
not matter in which order it is done. This is relevant if three variables are to be 
operated upon and only gates with two inputs are available. 

Example 1.7 

If only two input OR gates are available draw the circuit to implement the 
Boolean expression Y= A + B + C. 

Solution 

The circuit is shown in Fig. 1.4. Note that because of the associative law it does 
not matter which two of the three variables are OR'd together first. 

c I 

Fig. 1.4 Implementation of Y= A + B + C using two-input OR gates as discussed in Example 1.7 

Distributive laws 
The rules given by the commutative and associative laws are intuitive. However, 
the remaining multivariable theorems require more thought and are less obvious. 
The distributive laws (Equations 1.14 and 1.15) show how to expand out Boolean 
expressions and are important because it is upon them that the factorisation, and 
hence simplification, of such expressions are based. 

Example 1.8 

What does the expression (A + B) . (C + D) become when expanded out? 

Solution 

Doing this rigourously let us replace the Boolean expression (A + B) with X. (This 
sort of substitution of one Boolean expression for another is perfectly legitimate.) 
We then have X. (C+ D) to expand, which using the distributive law becomes 

X. C+ X.  D=(A + B). C+(A + B) .D 

Using the commutative law to reverse these AND'd  expressions and then the 
distributive law again gives the result of 

(A + B ) . ( C + D ) = A  �9 C+ B" C+A" D+ B" D 
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De Morgan's theorem 
De Morgan's theorem states (Equation 1.16) that complementing the result of 
OR'ing variables together is equivalent to AND'ing the complements of the indi- 
vidual variables. Also (Equation 1.17), complementing the result of AND'ing 
variables together is equivalent to OR'ing the complements of the individual vari- 
ables. 

Example 1.9 

Use Boolean algebra and de Morgan's theorem for two variables, A + B=,4. B, to 
show that the form given in Equation 1.16 for three variables is also true. 

S o l u t i o n  

A + B + C = ( A + B ) + C  

=(A+B).C 
: ( A . B ) . C  
= A ' B ' C  

associative law 
De Morgan's theorem 
De Morgan's theorem 
associative law 

Example 1.10 

Draw the circuits that will perform the functions described by both sides of the 
first of De Morgan's theorems (Equation 1.16) given in Table 1.4, and also 
demonstrate the theorem is true using a truth table. 

S o l u t i o n  

The circuits and truth table are shown in Fig. 1.5. 

A 32>  Y 
B 

A B A B A + B  

0 0 1 1 0 

0 1 1 0 1 

1 0 0 1 1 

1 1 0 0 1 

~ - ~ -  y 

A + B  A . B  

1 1 

0 0 

0 0 

0 0 

Fig. 1.5 Solution to Example 1.10 regarding De Morgan's theorem 

De Morgan's theorems prove very useful for simplifying Boolean logic expres- 
sions because of the way they can 'break' an inversion, which could be the 
complement of a complex Boolean expression. 
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Example 1.11 

Use De Morgan's theorems to produce an expression which is equivalent to 
Y- A + B- C but only requires a single inversion. 

Solution 

A +(B. C)-A.(B.  C) 
: A ' ( B +  C) 

=A.B+A.C 

de Morgan's theorem 
de Morgan's theorem 

distributive law 

De Morgan's theorems can also be used to express logic expressions not origi- 
nally containing inversion terms in a different way. This can again prove useful 
when simplifying Boolean equations. When used in this way care must be taken 
not to 'forget' the final inversion, which is easily avoided by complementing both 
sides of the expression to be simplified before applying De Morgan's theorem, and 
then complementing again after simplification. The following example illustrates 
this point. 

Example 1.12 

Use De Morgan's theorem to express Y= A + B, the OR operation, in a different 
form. 

Solution 

The conversion could be performed directly but when used on more complicated 
expressions it is easy to 'forget' an inversion as mentioned above. We therefore 
firstly invert both sides of the expression giving Y= A + B. Applying De Morgan's 
theorem gives Y-A-B, with both sides again inverted to give the final expression 
Y=A.B.  

Finally we note that one way of interpreting De Morgan's theorem is that any 
AND/OR operation can be considered as an OR/AND operation as long as NOT 
gates are used as well (see last example). This approach will be considered later on 
in this chapter when we look at the principle of duality in Section 1.6. 

Absorption laws 
Although these can be proved from the above laws, they nevertheless merit inclu- 
sion in their own right as they are often used to simplify Boolean expressions. 
Their value is clear since they take an expression with two variables and reduce it 
to a single variable. (For example B is 'absorbed' in an expression containing A 
and B leaving only A.) 
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Use Boolean algebra to rigorously prove the first absorption law (Equation 1.18) 

A " (A + B)= A 

Solut ion 

'Other identities' 

A ' ( A + B ) = A ' A + A ' B  

= A ' I + A . B  

=A-(I+B) 
=A.1 
=A 

distributive law, Equation 1.14 
Equations 1.1 and 1.7 
distributive law 
Equation 1.9 
Equation 1.7 again 

The remaining identities are grouped together under this heading since, like the 
absorption laws, they can be proved from the earlier theorems, but nevertheless 
are not entirely obvious or expected. These identities are again valuable when 
trying to simplify complicated Boolean expressions. 

Example 1.14 

Use Boolean algebra and a truth table to rigorously prove the first 'other identity' 
(Equation 1.20) 

m 

A . ( A  + B ) = A .  B 

Solution 
w 

A- (A + B) = A- A + A- B distributive law, Equation 1.14 
=0+A" B Equation 1.3 
=A- B Equation 1.8 

The truth table is shown in Table 1.5. 

Table 1.5 Truth table for Equation t.20 as discussed in Example 1.14 

A B 
0 0 1 1 
0 1 1 1 
1 0 0 0 
1 1 0 1 

, 

o 
A ' B  

o 
o 
o 
1 

The similarity between Boolean and ordinary algebra 

You may have wondered why the AND and OR operations are indicated by the 
symbols for multiplication, -, and addition, +. The reason is that many of the laws 
in Table 1.3 and 1.4 hold for both Boolean and ordinary algebra. Indeed, of all the 
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Boolean laws not involving complements (inversions) the only ones that are not 
true in ordinary algebra are 1.1, 1.2, 1.9,1.15 and the absorption laws. 

It is for this reason that variables AND'd  together are often referred to as 
product  terms and variables OR'd together as sum terms. Hence the expression: 

Y = A . B + A . B  

is a sum o f  products  expression. The two product terms are (A �9 B) and (A �9 B) 
which are then summed (OR'd) together. We will return to the use of this kind of 
terminology in Chapter 3. 

A final point on this topic is that in the same way that multiplication takes 
precedence over addition so too does AND'ing over OR'ing. That is why when 
sum terms are to be AND'd  together they are enclosed in brackets. 

Example 1.15 
_ m 

What type of expression is Y= (A + B). (A + B), what sum terms are included in it, 
and what is its expanded form? 

Solution 

This is a product  o f  sums expression, with two sum terms, (A + B) and (A +B). 
Using Boolean algebra: 

(A+B) . (A + B) - (A + B) . A + (A + B) " B 

= A . A + B . A + A .  B + B . B  

- A . B + A . B  

distributive law 
distributive law 
Equation 1.3 

(This is the Boolean expression for the exclusive-NOR gate discussed in the next 
section.) 

1.4 LOGIC SYMBOLS AND TRUTH TABLES 

Digital electronics is about designing and analysing circuits and although this 
could be done using only the mathematical language of Boolean algebra intro- 
duced above, it is often more convenient to use circuit diagrams to show how the 
logic gates are connected together. The logic symbols for the three basic Boolean 
operators have already been given in Fig. 1.1, and are included again in Fig. 1.6 
which shows all of the logic gates that are commonly used together with their 
Boolean algebraic expressions, truth tables and the alternative IEEE/ANSI 
symbols for the gates. 

The gates shown in Fig. 1.6 include the NAND and NOR gates which are the 
NOT'd versions of the AND and OR gates (i.e. NOT-AND and NOT-OR). This 
simply means that their outputs are inverted, which is indicated by the bubbles on 
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NOT 

AND 

OR 

XOR 

NAND 

Fig. 1.6 

NOR 

XNOR 

B A 

0 1 
1 1 

0 0 

1 0 
N O T  

A . B  A + B  
0 0 
0 1 
0 1 
1 1 

A N D  O R  

A . B  A + B  A ~ ) B  A ~ B  
1 1 0 1 
1 0 1 0 
1 0 1 0 
0 0 0 1 

N A N D  N O R  X O R  X N O R  

Logic symbols, Boolean operators and truth tables of the common logic gates 

the outputs. 7 They are equivalent to AND and OR gates whose outputs are then 
passed through an inverter (NOT gate). 

The exclusive-OR gate 
The other new gate introduced at this stage is the exclusive-OR (XOR) gate whose 
output is 1 if and only if an odd number o f  inputs are 1. So a two-input XOR gate 
differs from the corresponding OR gate because Y=0 if both A and B are 1 since 

7Bubbles are also sometimes used on the inputs to gates to indicate inversion of an input. 



14 Fundamentals 

in this case an even number of inputs is 1. The Boolean expression for the output 
from a two-input XOR gate is: 

Y = A . B + A . B  

Example 1.16 

Write out the truth table for a three-input XOR gate and draw its circuit symbol. 

Solution 

These are shown in Fig. 1.7 

A B 

0 0 
0 0 
0 1 
0 1 
1 0 

1 0 

1 1 

1 1 

c A.B C 

o o 
1 1 

0 1 

1 0 

o 1 
1 o 
o o 
1 1 

B Y 
C 

Fig. 1.7 Truth table and symbol for a three-input XOR gate (see Example 1.16) 

In addition to the operation of logic circuits being described in terms of Boolean 
equations and circuit diagrams, remember that truth tables can also be used, as 
shown in Table 1.2. To recap, a truth table shows how the output(s) of a circuit 
(i.e. whether 0 or 1) depends upon the input(s). We now have three ways of repre- 
senting the operation of a digital circuit: by a Boolean algebraic expression; a 
circuit diagram; or a truth table. Note that the rows of the truth table are ordered 
in binary code: i.e. 000, 001, 010, 011, etc. (for a table with three input variables). 

Example 1.17 

Draw the circuit, and write out the truth table, for the Boolean expression 
Y=(A + B). ( A . B )  stating what single gate it is functionally equivalent to. Then 

prove this equivalence using Boolean algebra. 

Solution 

The circuit and truth table are shown in Fig. 1.8. This complete circuit performs 

the function of an XOR gate. 

(A + B) . (A . B ) =  (A + B) . (A + B) De Morgan's  theorem 
= A.  A + A- B + B. A + B. B distributive law 
= A �9 B + A �9 B Equation 1.3 



Logic symbols and truth tables 15 

A B  

~ Y  

A B A+B (A-B) r 
, , ,  

0 0 0 1 0 
I 

0 1 1 1 1 

1 0 1 1 1 

1 1 1 0 0 

Fig. 1.8 Solution to Example 1.17, which produces the XOR function 

Example 1.18 

Another common Boolean expression is the AND-OR-INVERT function, 
Y=(A.B) + (C.D). Draw out the circuit for this function together with its truth 
table. 

S o l u t i o n  

This is shown in Fig. 1.9. Note that this function has four variables and so there 
are 24= 16 rows in the truth table. 

A B 

1)  
Y 

A 

0 

0 

0 

0 
0 

" 0 

o 
1 

1 

1 

1 

= 1 

1 
. . . .  

1 

B C 

0 0 

0 0 

0 1 

0 1 

1 0 

1 0 

1 1 
, ,  

1 1 

0 0 

0 0 

0 1 

0 1 

1 0 

1 0 

1 1 

1 1 

D A ' B  

0 0 

1 0 
0 0 

1 0 

O" 0 
i"  O 
O" 0 
1 "  0 

0 0 

1 0 

01 o 
1j o 
0 1 

1 1 

0 1 

1 1 

C ' D  

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

1 

(A'm+(C.D) 
0 1 

0 1 
0 1 
1 0 
0 1 
0 1 
o ] 

1 0 
0 1 
0 1 
0 1 
1 0 
] o 

1 o 
] o 
1 0 

Fig. 1.9 Circuit and truth table for the AND-OR-INVERT function, as discussed in Example 1.18 
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E x a m p l e  1 . 1 9  

Use De Morgan's theorem to convert the AND-OR-INVERT function into an 
alternative form using the four input variables in their complemented forms. Then 
draw the circuit to produce this function and the truth tables to prove it is the 
same as the previous circuit. 

Solution 
(A. B) + (C- D) - (A. B)- (C- D) 

=(A +8)- (C+O) 

The circuit and truth tables are shown in Fig. 1.10. 

A B C D 

I 
,, 

~ - - y  

A B c 
0 0 0 0 

0 0 0 1 

" o ' o i 1 " o  
0 0 1 1 

.~ . L l 

i O  1 0 0 
. o i l .  . 0 1 , 1 

:A c b c+D r 
1 1 1 1 1 

1 1 1 0 
/ 

1 .  1 . 0 : 1  
| . ,  

1 1 0 0 
�9 l L 

1 0 1 1 | 

�9 . . ii , i i 

0 1 0 

1 1 
, o = = 

1 1 1 
1 1 : 1 j 

1 0 i 0 
] 1 ] i ~ 

1 1 1 
O , l L 1 .  
o 1~ 1 

. . . . .  ~ l , 

i o o 

0 
1 
0 

1 0 0 1 1 1 1 
1 O ,  0 0 1 0 0 

. i . �9 ,, . 

0 1 1 1 1 1 1 

1 
1 

0 1 0 ' 1  1 ! 0  1 1 

1 0 0 1 ! ' 0  1 1 1 I 1 '  
i 1 0 
. 1 1 
. 1 : 1 

1 1 0 1 0 0 1 0 
= i ,  

0 ' 0 ' 0 ' 0 "  l i l ' '  0 ' 1 .... 0 1 

0 .  1 .  0 L 0 1 . 0 : 0 . 1 0 

i f l 1 0 O:  0 0 1 0 1 0 
: i 1 1 i 1 : 0 ', 0 ', 0 ', 0 : 0 ' ' .... 0 i 0 i 

Fig. 1.10 Solution to Example 1.19 regarding an alternative form for the AND-OR-INVERT function 

1.5 TIMING DIAGRAMS 

Yet another way of demonstrating the operation of a logic circuit is with a timing 
diagram. This shows how the outputs of a circuit change in response to the inputs 
which are varying as a function o f  time. More complex versions of such diagrams 
than the ones considered here appear in the data sheets of components such as 
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analogue-to-digital converters and solid state memory which give the timing 
information which is needed to design circuits containing them. 

For simple circuits like those we have looked at so far the output waveform is 
simply obtained by using the Boolean expression or truth table, s 

Example 1.20 

The inputs to a two-input AND gate have the following values for equal periods 
of time. (A, B)-  (0, 0),(1, 1),(0, 1),(0, 0),(1,0),(1, 1),(0, 0). Draw the timing 
diagrams showing the waveforms for the inputs A and B and the output Y. 

Solution 

The timing diagram is shown in Fig. 1.11. 

A 

B I I I 

Y ! I I I 
Fig, 1.11 Timing diagram for a two-input AND gate for the inputs given in Example 1.20 

Example 1.21 

Given the timing diagram in Fig. 1.12, write out the truth table for the circuit 
responsible for it, the Boolean equation describing its operation and draw the 
actual circuit. 

A ! 

B I ! I .......... 1 I I I I 

c- ! I ,1 ! I I 

Y i I i 1'1 
Fig. 1.12 Timing diagram for Example 1.21 

SNote that in the timing diagrams shown here, the logic gates used to implement the Boolean functions 
have been considered ideal in that the signals are passed through the gates with no delay. The consequences 
of what happens in practice will be considered in Section 4.3. 
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Solution 

From the timing diagram we can determine the values of the output, Y, for given 
input values of A, B and C. These values can be used to produce the truth table in 
Fig. 1.13 together with the circuit. 

A B C Y 

0 0 0 1 

0 0 1 0 

0 1 0 0 

0 1 1 0 

1 0 0 1 

1 0 1 1 

1 1 0 1 
1 1 1 1 

A 

B 
c 

Fig. 1.13 Truth table and circuit produced from the timing diagram in Fig. 1.12 (Example 1.21) 

Then, from the truth table we can see that the output is 1 if either A = 1, irre- 
spective of the values of B and C (i.e. the bottom four rows of the truth table), OR 
if ((B=0) AND (C=0)). So we can deduce that Y=A +(B. C). (We will look at 
more rigorous ways of obtaining such information in later chapters.) Note that 
the truth table has been written in binary ordered fashion, as is usual, even though 
the values are not read off from the waveform in this order. 

1.6 DUALITY AND GATE EQUIVALENCE 

De Morgan's theorem (Section 1.3.2) indicates a certain equivalence between 
AND and OR gates since it states that the result of AND'ing/OR'ing two vari- 
ables together is the same as OR'ing/AND'ing their complements. Consequently 
so long as we have inverters (NOT gates) available we can convert any circuit 
constructed from AND and OR gates to one composed of OR and AND gates. 

This fact is generally referred to as the principle of 'duality' and arises because 
Boolean algebraic variables can only take one of two values and can only be oper- 
ated upon (in combinations) by the two operations (AND and OR). (Its most 
trivial form is that if a variable is not 1 then it must be 0, and vice versa.) Duality 
has wide-ranging implications for digital electronics since it means that any circuit 
must have a 'dual'. That is, a replica of the circuit can be made by basically swap- 
ping bits of the circuit. 

Rules for dualling 
De Morgan's theorem tells us" 

Y = A + B = A . B  

which gives us an alternative way of constructing a NOR gate using an AND gate 
and two inverters. In addition: 

Y = A . B - A + B  
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tells us a NAND gate can be made up of an OR gate and two inverters. 
These equations, and corresponding circuits shown in Fig. 1.14, are duals and 

demonstrate how it is always possible to use AND/OR gates to perform any func- 
tions originally using OR/AND gates (as long as NOT gates are also available). 

,ua,  
Fig. 1.14 The NOR and NAND gates and their duals 

From these simple examples the 'rules' for dualling circuits can be seen to be 
that: 

1. All input and output variables must be complemented ('bubbled') (e.g. A 
becomes A, and B becomes B). Note that a bubbled output feeding a bubbled 
input cancel each other due to Equation 1.5. 

2. The type of operation must be swapped (i.e. OR gates replace AND gates, and 
AND gates replace OR gates). 

This can be applied to any circuit no matter how complex. When using these 
rules to dual circuits, remember that: inverted (bubbled) inputs/outputs can rather 
be used to bubble preceding outputs/following inputs; and that an inverted output 
feeding an inverted input cancel each other. 

Example 1.22 
w w 

Draw the circuit to implement Y=(A +B).(A +B) and its dual. Write out the 
Boolean expression for Y directly from this dualled circuit, and then prove this is 
correct using Boolean algebra. 

Solution 

The circuits are shown in Fig. 1.15. From the dualled circuit: 

Y=(A. 

Using Boolean algebra wc first invert the whole equation as given: 

Y=(A + B) . (A + B) 

= (A + B) + (A + B) De Morgan's theorem 

=(A �9 B) + (A �9 B) De Morgan's theorem 

Hence Y= (A .B)+ (A .B)as  above. 
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A 

B _1" 

l ! 
A 

B 

Y 

Fig. 1.15 Solution to Example 1.22 

A 

B 

y 

Earlier we discussed multivariable theorems which you may recall occurred in 
pairs. We can now see that the reason for this is due to duality, with the pairs of 
Boolean expressions for the associative and distributive laws and 'other identities' 
in Table 1.4 all being duals. (Note however that this does not mean they are equiv- 
alent Boolean expressions.) 

Example 1.23 

Show that the distributive laws: 

and 

A . ( B + C ) - A  . B + A  . C 

A + ( B .  C ) : ( A  + B ) ' ( A  + C) 

are duals. 

Solution 

Using the above 'rule' of complementing all variables and swapping operators the 
first equation becomes: 

A + ( 8 - C ) - ( A  + 8 ) . (A  + C) 
. . . .  

then letting A - X, B -  Y, C -  Z gives" 

x+(Y. z ) - (x+ ~9- (x+z) 

which has the same form as the second equation. 

Example 1.24 
m 

What is the dual of Y= A. (A + B), which is the left-hand side of Equation 1.20 in 

Table 1.4? 
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Solution 

The circuit to implement Y and its dual are shown in Fig. 1.16. This gives 
_ _  

r :  A + (A- 8) 
Using Boolean algebra: 

Y-  A -(A + B) inverting both sides 

= A +(A + B) De Morgan's theorem 

= A + A �9 B De Morgan's theorem 

Hence Y = A + A �9 B as above. 
Note that this has the same form as the left-hand side of Equation 1.211, as 

expected due to duality. 

AB. 
AT 
B 

A i Y 

Fig. 1.16 Circuits relating to Example 1.24 

Example 1.25 

Draw the circuit for Y=A .(B+C) and produce alternative representations of it 
using only a three-input AND and three-input OR gate (assuming NOT gates are 
also available). Also obtain the same expressions using Boolean algebra, and 
write out the truth table of these functions. 

Solution 

The original circuit, and the effects of replacing the NOR and AND operators, 
respectively, are shown in Fig. 1.17. So" 

_ _ m 

Y - A .  B .C  =A + B + C  

which can be implemented using three-input AND and OR gates respectively. 
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A- )--V 

B 

A 

C 

m . l ~ .  

A ,. , ~ y 

C 

Fig. 1.17 Circuits relating to Example 1.25 

Using Boolean algebra, since (B+ C)=(B- C) then Y = A - B .  C, the A N D  gate 

implementation. To obtain the sum expression (OR gate implementation): 

Y= A.. (B + C) inverting both sides 

= A + (B + C) de Morgan's theorem 

= A + B + C  

Hence Y = A + B + C  as above. 
The truth table for these is given in Table 1.6. Note that the A N D  gate produces 

a 1 when A = 1 and B= C=0,  which specifies a single row in the truth table. The 
OR operator can be considered in a slightly different way. This is that Y=0 (or 
alternatively Y=I) when either (A=0) OR (B= 1) OR (C= 1). This is again a 
consequence of duality. 

Table 1.6 Truth table relating to Example 1.25 

A B C Y Y 
0 0 0 0 1 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 0 1 
1 0 0 1 0  
1 0 1 0 1 

1 1 0 0 1 

1 1 1 0 1 
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1.7 POSITIVE AND NEGATIVE ASSERTION LEVEL 
LOGIC 

The idea of positive and negative assertion level logic arises directly out of duality. 
It is again based upon the fact that because Boolean algebra describes a two-state 
system then specifying the input conditions for an output of 1 also gives the condi- 
tions (i.e. all other input combinations) for an output of 0. 

For instance the NOR operator, Y= A + B, tells us that Y= 1 if the result of 
(A + B) is 0 (since it is inverted to give Y). However, an alternative way of inter- 
preting this operation is that Y=0 when (A + B) is 1. Both views tell us all there is 
to know about how the circuit operates. The bubble on the output of the NOR 
gate indicates this second interpretation of the gate's operation since it signifies 
the output is 0 when either of the inputs is 1. 

Regarding positive and negative assertion level logic, a non-bubbled input or 
output indicates a 1 being input or output (positive level logic) whilst a 0 indicates 
a 0 being input or output (negative level logic). In the case of the NOR operator 
such assertion level logic indicates that Y is active-LOW (gives a 0) when either A 
OR B is active-HIGH (an input of 1). The dual of the NOR gate tells us that Y is 
active HIGH if A AND B are active LOW (i.e. both 0). 

The value of assertion level logic is that it is sometimes informative to consider 
the inputs and output(s) from logic circuits in terms of when they are 'active', 
which may be active-HIGH (an input or output of 1 being significant) or active- 
LOW (an input or output of 0 being significant). This is because it is useful to 
design circuits so that their function is as clear as possible from the circuit 
diagram. 

Imagine an alarm is to be turned ON given a certain combination of variables 
whilst a light may have to be turned OFF. It could be helpful to think of the 
output from the corresponding circuits being 1 to turn ON the alarm (active- 
HIGH) and 0 (active-LOW) to turn OFF the light. In this case assertion level logic 
would be being used. Assertion level logic is also useful when interfacing to 
components such as microprocessors which often (because of the circuits from 
which they are constructed) initiate communication with other ICs by sending 
signals LOW. 

Obviously because of duality we can always draw a circuit using the most 
appropriate assertion level logic. (Remember that dualling a circuit always inverts 
the output.) However, although a circuit may be drawn a certain way it may actu- 
ally be implemented, for practical reasons, in its dualled form. 

Example 1.26 

Draw a NAND gate and its dual and describe their outputs in terms of assertion 
level logic. 
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Solution 

These are shown in Fig. 1.18. In the NAND form the output is active-LOW 
(because of the bubble) if both inputs are active-HIGH. In its dualled (OR) form 
the output is active-HIGH if either input is active-LOW (because of the bubbles). 
The two forms effectively describe the neccesary conditions for outputs of 0 
(LOW) and 1 (HIGH) respectively from the circuit. 

Fig. 1.18 A two-input NAND gate and its dual (see Example 1.26) 

E x a m p l e  1.27 

A circuit is needed to give an output of 1 when any of its three inputs are 0. Draw 
the truth table for this circuit and state what single gate could implement this 
circuit. Then derive its dual and state which gives the most appropriate desription 
of the circuit's operation. 

Solution 

The truth table, which clearly describes the NAND function, is shown in Fig. 1.19 
together with the single gate capable of implementing this function, and its dual. 

The NAND based circuit shows the output is active-LOW if all of the inputs are 
active-HIGH, whereas the OR based circuit shows the output is active-HIGH if 
any of the inputs are active-LOW. The OR based circuit is the most appropriate 
given the stated circuit requirements. 

dual ~ 

Fig. 1.19 Truth table and gates relating to Example 1.27 

A B C Y 
0 0 0 1 
0 0 1 1 
0 1 0 1 
0 1 1 1 
1 0 0 1 
1 0 1 1 
1 1 0 [  1 
1" 1 1]o 

E x a m p l e  1.28 

The courtesy light of a car must go off when the door is closed and the light switch 
is off. What gate is required to implement this and what is the alternative way of 

looking at this circuit? 
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Solution 

This function can be implemented by an AND gate with active-LOW inputs and 
outputs. Hence the output will go LOW (and the light OFF) when both inputs are 
LOW (door closed and switch off). 

The alternative interpretation is that the light in on (active-HIGH) when either 
the door is open (active-HIGH) or the switch is on (active-HIGH). This would 
require an OR gate for its implementation. 

1.8 UNIVERSAL GATES 

Universal gates, as the name suggests, are gates from which any digital circuit can 
be built. There are two such gates, but far from being more complex than 
anything considered so far they are in fact the NAND and NOR gates. 

The reason they are universal is that because any circuit can be dualled (by 
complementing all of the variables and swapping operators) then any gate 
capable of being used (either singly or in combinations of itself) to implement 
either the AND or OR operation and the NOT operator must be universal. 

The NAND and NOR gates fulfil these requirements since tying their inputs 
together produces a NOT gate (rows 1 and 4 of the truth tables in Fig. 1.6). 
Therefore any digital circuit can be constructed using only NAND or NOR gates. 
This fact is used in VLSI design where the IC manufacturers supply a 'sea' of 
universal gates which are then connected as necessary to implement the required 
digital circuit. This is called a gate array, and is discussed in more detail in Section 
11.3.2. 

Example 1.29 

How can an AND gate be implemented from NOR gates? 

Solution 

This is shown in Fig. 1.20. 

dual = 

Fig. 1.20 Implementation of an AND gate using NOR gates (Example 1.29) 
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Example 1.30 

How can Y= (A + B). C be implemented only from NAND gates? 

Solution 

This is shown in Fig. 1.21. 

A 

I 1~~_ Y 

A 

-I 

Fig. 1.21 

A : : ~ F - ~  I B 
c I Y 

Implementation of Y= (A +/3) �9 C using NAND gates (see Example 1.30) 

1.9 SELF-ASSESSMENT 

1.1 What possible values can a Boolean variable take? 

1.2 How many basic Boolean operations are there and what are they? 

1.3 A logic circuit has four inputs and two outputs. How many rows and columns 
will the truth table have that describes its operation? 

1.4 Why is a Boolean expression such as (A-B- C) referred to as a product term? 

1.5 Draw out the truth tables and circuit symbols for two- and three-input AND, 
OR and XOR gates. 

1.6 What is meant by a 'sum of products' expression? 

1.7 Why can NAND and NOR gates act as universal gates? 

1.8 Name the different ways that the operation of the same Boolean function can 

be described. 

1.9 What is the result of (a) AND'ing a Boolean expression with 0?; (b) OR'ing a 
Boolean expression with 07; (c) AND'ing a Boolean expression with 1?; (d) 
OWing a Boolean expression with 1? 
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1.10 PROBLEMS 

1.1 Use Boolean algebra to rigorously prove the second absorption law: 

A + ( A ' B ) = A  

1.2 Use Boolean algebra and a truth table to rigorously prove the second 'other 
identity'" 

A + ( A . B ) = A + B  

1.3 The XOR function is usually expressed as: 

A ~g B = A  . B + A  . B 

Use Boolean algebra to show that this expression is also equivalent to: 
m m 

(a) A . B + A .  B 
a 

(b) (A + B) . (A + B) 

(c) (A + B) " (A " B) 

Draw the logic required to directly implement (a). Derive the dual of this 
circuit and state which of the two remaining expressions it directly represents. 
Finally, dual one of the gates in this second circuit to obtain the implementa- 
tion of (c). 

1.4 Using Boolean algebra, expand the Boolean function: 

Y = A ~ B ~ C  
m m 

using P ~9 Q = P .  Q + P-  Q to show directly that the output from an XOR 
gate is high only if an odd number of inputs are high. 

1.5 Use Boolean algebra to demonstrate that AND is distributive over XOR. 
That is: 

A . ( B ~B C )  = A . B EB A . C 

1.6 A combinational circuit responds as shown in the timing diagram in Fig. 1.22. 
Describe this circuit's function in the form of a truth table, a Boolean equa- 
tion and a circuit diagram. 

A I ,,I 

S I I I,, 

r ,,I-I I I I I 

Y r - - [_]~[  i U 

Fig. 1.22 Timing diagram for Problem 1.6 

1.7 Draw the single gate implementation and its dual, of the function Y= A + B. 
Describe the operation of these gates in words, stating how the two descrip- 
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tions differ, and relating this to the truth table of the function. How many 
NAND gates are required to implement this function? 

1.8 A simple logic circuit is required to light an LED (via an active-LOW logic 
signal) if someone is sat in the driving seat of the car with their seatbelt 
undone. Sensors connected to the seat and belt give a logical HIGH if the seat 
is occupied and the belt fastened. 

(a) Write out the approp6ate truth table. 
(b) Draw circuits implementing this truth table using NOT gates and (i) a 

single AND gate, and (ii) a single OR gate. 
(c) Which implementation gives the greater understanding of the underlying 

operation of the circuit? (i.e. which uses assertion level logic)? 
(d) How many (i) NAND and (ii) NOR gates would be needed to implement 

the complete circuit in b(i)? 

1.9 Boolean algebra can be thought of as describing the operation of circuits 
containing switches. Draw the circuit containing two switches, a battery and a 
bulb which demonstrate the AND and OR operators. (Hint: if a switch is 
closed the logic variable associated with it is HIGH; if it is open the variable is 
LOW. So for the AND gate the bulb will be lit if switches A and B are closed.) 



2 Arithmetic and digital 
electronics 

2.1 INTRODUCTION 

Many of the applications of digital electronic circuits involve representing and 
manipulating numbers as binary code (i.e. O's and l's). For instance in order to 
input any analogue value (e.g. a voltage or temperature) into a digital circuit it 
must be first encoded as a binary value, whilst subsequent arithmetic performed 
on such an input must be carried out by further digital circuits. 

The way in which some arithmetic operations are implemented as digital elec- 
tronic circuits is considered in the next chapter. Here, as a prelude to this, some of 
the many ways in which numbers can be represented as binary code are intro- 
duced, followed by a description of how to perform binary arithmetic; that is 
addition, subtraction, multiplication and division on numbers represented only 
by O's and l's. 

2.2 BASES-2, 10 AND 16 (BINARY, DECIMAL AND 
HEXADECIMAL) 

Numbers are most commonly represented using the 10 digits 0 to 9, that is in 
base-10 (or decimal). This widespread use is linked to our possession of 10 fingers 
and their value as a simple counting aid. However, from a purely mathematical 
viewpoint the base system used for counting is unimportant (indeed before metri- 
fication in Europe (use of base-10 in all weights and measures) many other bases 
were common). In digital electronics the only choice of base in which to perform 
arithmetic is base-2, that is binary arithmetic, using the only two digits available, 0 
and 1. ~ Before continuing it is necessary to consider how to convert numbers from 
one base to another. 

2.2.1 Conversion from base-n to decimal 

In order to do this it is essential to realise what a number expressed in any base 
actually represents. For example the number 152m0 in base-10 represents 2 the sum 

~Digital systems using more than two logic levels (multilevel logic) have been proposed and built but are 
not considered here. 

:A subscript is used to denote the base. so 152 in base 10 is written as 152~0. 
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of 1 hundred, 5 tens and2 units giving 152~0 units. From this is can be seen that the 
least significant digit (the one furthest to the right) holds the number of units in 
the number, the digit next to that the number of 10's (i.e. 10 ~) and the next the 
number of 100's (i.e. 102). 

15210 - (1 x 100) + (5x 10)+(2x 1) 
=(1 • 10-') +(5 x 10')+(2• 10 ~ 

The same is true of any number in any base. So for a number in base-n, the least 
significant digit holds the units (i.e. n~ the next the number of n's (i.e. n ~) and the 
next the number of n 2,s. So in general the value of the three-digit number abc in 
base n, i.e. abc,,, is given by: 

abc, = (a x n 2 ) + (b x n') + (c x n ~ 

' 2 '  In binary code this means that successive digits hold the number of 1 s, s, 
4's, 8's etc., that is quantities represented by 2 raised to successively higher 
powers. 

In the above text and examples where it was necessary to use numeric represent- 
ation (e.g. of 102 = 100 and 23 =8) then base-10 was used. It should be appreciated 
that any base could have been chosen, with base-10 selected simply because it is 
the one we are most familiar with. Remember that any written number is basically 
a shorthand way of recording the total number of units with successive single 
digits representing larger and larger quantities (i.e. l's, 10's, 100's etc., for base- 
10). 

Example 2.1 

What is 2367 in base-10? 

Solution 

2367=(2 • x7)+(6 x 1)= 125~0. 

Example 2.2 

What is 1 O011, in base- 1 O? 

Solu t ion  

100112=(1 x 16)+(1 x2)+(1 x 1)= 19~0. 

If a base larger than 10 is being used we have no numbers 3 (from base-10) to 
represent quantities larger that 9. Such a base commonly encountered in digital 
electronics is base-16, which is usually referred to as hexadecimal.  The problem of 

~Any base. n, will have n units with the smallest equal to 0 and the largest equal to (n-  1). 
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representing numbers greater than l0 is overcome by using the letters A to F to 
replace the quantities 10 through to 15. Note that hexadecimal numbers are indi- 
cated by the use of the subscript H rather than 16. 

Example 2.3 

What is the hexadecimal number AB 1 C.  in base-10? 

Solution 

AB1C. =(Ax 163)+(B x 162)+(1 x 16~)+(Cx 16 ~ 
=(10x4096)+(11 x256)+(1 x 16)+(12x 1) 

Therefore AB 1CH = 43804~o. 

2.2.2 Conversion from decimal to base-n 

Conversion from decimal to base-n is performed by repeated subtraction of the 
closest approximate number given by a single digit (in base-n) from the remainder 
of the number to be converted. An example is the best way to illustrate this proce- 
dure and so the conversion of 12510 to base-7 is now given. 

Firstly, since 125~0 is less than 73=343 it is the number of 72-49s that are 
contained in 125~0 that must first be found. There are 2 since (2 x 49)= 98 (which is 
less than 125). This leaves 27~0. 

125 
2 x 49 ~ - 98 .... > 2 X X  7 

27 

The 27~o needs to be made up of 7~'s and 7~ (i.e. units). Since (3x7)= 21 
leaving 6 units, then 125~o= 2367. 

27 
3 x 7 ~ - 2 1  

6 
6 x 1 ~ - 6  

0 

> 23X 7 

> 2367 

Example 2.4 

What is 82~0 in base-5? 

Solution 

The first three digits in base-5 represent quantities (in base-10) of 1, 5, 25. 
Since 82-(3 x25) -7  and 7-(1 x 5)-2,  then 82~0- 3125. 
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Example 2.5 

What is 153~0 in binary? 

Solution 

153~0-128+ 16+8+ 1. Therefore, 153~0= 100110012. 

Example 2.6 

What is 674~0 in hexadecimal? 

So/m/on 

674~0 = (2 x 256) + (10 x 16) + (2 x 1). Therefore, 67410- 2A2 H. 

2.2.3 Binary and hexadecimal 

The bases of most importance in digital electronics are binary and hexadecimal 
(base-2 and base-16). So, it is worth looking at conversion between these as a 
special c a s e .  4 The reason hexadecimal is commonplace is because the wires in digi- 
tial circuits are often grouped into buses of 16 for addressing solid state memory 
and other devices. 

The first four least significant digits of a binary number encode the numbers, in 
base-10, from 0 to 15. This is the range covered by the least significant digit in 
hexadecimal. The next four binary digits allow this range to be extended to cover 
up to 255~0 (by using the numbers 16~0, 32~0, 64~0 and 12810, i.e. the numbers repre- 
sented by these binary digits, as appropriate). Correspondingly, the second hexa- 
decimal digit enables numbers requiring up to F . =  15~0 multiples of 16~0 to be 
encoded. Hence, conversion from base-2 to hexadecimal can be performed by 
operating on blocks of four binary digits to produce the equivalent single hexa- 
decimal digit. 5 

Example 2.7 

What is A4E2. in binary? 

Solution 

Since A= 1010, 4-0100, E -  1110 and 2=0010 then A4E2. = 1010010011100010 z. 

4Conversion between any other bases can always be performed via base-10. That is from base-m to base- 

10 and then from base-10 to base-n. 
5This must be the case since four binary digits and one hexadecimal digit can both encode 16 different 

values. 
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What is 100111110011~ in hexadecimal? 

Solution 

Since 1001-9, l l l l - F  and 0011-3 then 1001111100112-9F3 H. 

In concluding this section it is important to realise that to fully understand 
arithmetic operation in digital circuits, and the addressing of memory locations in 
computer systems, it is necessary to be able to readily convert numbers between 
bases-2, 10 and 16. 

2.3 OTHER BINARY CODING SYSTEMS 

We have just considered how quantities can be represented in binary (base-2) 
when only O's and l's are used. However, this is only one possible code (albeit the 
most logical from the arithmetic viewpoint) which can be used. In certain applica- 
tions other forms of coding numbers, again using only O's and l's, are more 
appropriate. Two of the common alternatives, shown in Table 2.1 are now intro- 
duced. 

Table 2.1 Decimal, hexadecimal, binary, Gray and binary coded 
decimal codes 

0 0 0000 0000 0000 0000 
1 1 0001 0001 0000 0001 
2 2 0010 0011 0000 0010 
3 3 0011 0010 0000 0011 

4 4 0100 0110 0000 0100 

5 5 0101 0111 0000 0101 
6 6 0110 0101 0000 0110 

7 7 0111 0100 �9 0000 0111 

8 8 1000 1100 0000 1000 

9 9 1001 1101 0000 1001 

10 A 1010 1111 0001 0000 

11 B 1011 1110 0001 0001 

12 C 1100 1010 0001 0010 

13 D 1101 1011 0001 0011 

14 E 1110 1001 0001 0100 

15 F l l l l  1000 0001 0101 
Decimal Hexadecimal binary Gray BCD BCD 

lstdigit 2nd digit 
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Binary coded decimal 
A problem of binary arithmetic is that direct conversion from binary to decimal 
(for numbers of many digits) requires a quite complex digital circuit. Therefore 
often when a number is being held in a digital circuit immediately before output to 
a display (in decimal form) binary coded decimal (BCD) rather than straight 
binary code is used. 

BCD encodes each decimal digit with its binary equivalent using four bits. So 
decimal digits are simply represented in four bits by their direct binary values. A 
disadvantage of this is that only 10 of the possible 16 (2 4) codes that four bits can 
produce are used. Hence it is an inefficient code. Nevertheless, the advantages 
usually outweigh this disadvantage and so it is regularly used. 

Example 2.9 

How would 916~0 be represented in binary coded decimal? 

Solution 

Since the binary codes for 9, 1 and 6 are 1001, 0001 and 0110 respectively, then 
916~0 = 100100010110BC D. Note that the BCD code is 12 bits long since each of the 
decimal digits is coded by four bits. 

Gray code 
As with binary code, Gray code uses n digits to produce 2 ~ distinct codes all of 
which are used. The difference is that as successively higher numbers (in base-10) 
are represented in Gray code, only one bit is changed at a time. This is best seen by 
looking at the code which is given in Table 2.1. 

The rule for generating Gray code is to start with all zeros, representing 0, and 
then change the lowest significant bit that will produce a code not used before. So, 
first the LSB is changed to give 0001, then the second LSB to give 0011 and then 
the LSB again to give 0010. The important thing is that only one bit changes 
between adjacent codes. 

Example 2.10 

What is 8~0 in Gray Code? 

Solution 

From Table 2.1, 8~0-1100GRAY. 

Gray code is of benefit when the n digital signals from some device whose 
output consists of an n-bit binary code may not all attain their correct values at 
the same time. For instance consider the output of a four-bit code indicating the 
state of some device. If the output changed from 5 to 6 then using binary code this 
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would mean a change in the bit pattern from 0101 to 0110, and so two bits 
changing their values. If the least significant bit changed more slowly than the 
second then this would lead to a transient indication of 0111, that is state 7. 

If Gray code were used there would be no such problem of a transient state 
since there is only a one-bit difference between adjacent codes. (The only effect of 
a delayed change in one bit would be a correspondingly delayed indication of 
movement to that output.) Gray codes will be discussed again in the next chapter 
regarding their connection with the simplification of Boolean logic expressions. 

2.4 OUTPUT FROM ANALOGUE-TO-DIGITAL 
CONVERTERS 

Analogue-to-digital converters (ADC) take an analogue voltage and convert it to 
binary format (i.e. just O's and l's) for input into a digital circuit. The number of 
bits of the ADC gives the number of binary outputs and sets the resolution (i.e. 
how many discrete voltage levels can be represented). For example a four-bit 
ADC has four digital outputs and can represent 2 4 -  16 distinct voltage levels. 

Example 2.11 

What is the resolution of an eight-bit ADC with an input voltage range of 10V? 

Solution 

An eight-bit ADC can encode 28 = 256 analogue values in binary format. The reso- 
lution of the ADC is the smallest voltage that can be encoded digitally, in other 
words the voltage represented by one bit. This is given by 10 + 255 --0.04 V. 

The different voltage levels that the outputs from the ADC represent must be 
coded appropriately within the digital circuit. Several possible schemes exist of 
which three are considered here. The codes used are shown in Table 2.2. These are 
for the output from a four-bit ADC and so there are 16 voltage values to be 
coded. These values go from +7 to - 8  (i.e. the ADC can accept positive and nega- 
tive voltages). 

Sign magnitude 
In this scheme three bits are used to represent the magnitude of the signal (in 
binary code) with the fourth bit (the most significant) used to give the sign (with 0 
indicating a positive voltage). With this code it is clear what the value represented 
is, but subtracting different stored inputs is not easy. Note also that there are two 
codes to represent zero (and therefore only 15 distinct voltage values). 

Offset binary 
Here the 16 possible voltages are simply represented by binary code with 0000H 
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Table 2.2 Possible coding schemes for the output from a four- 
bit analogue-to-digital converter 

+7 0111 1111 0111 
+6 0110 1110 0110 
+5 0101 1101 0101 
+4 0100 1100 0100 
+3 0011 1011 0011 
+2 0010 1010 0010 
+1 0001 1001 0001 

0 0000 1000 0000 
-1 1001 0111 1111 
-2 1010 0110 1110 
-3 1011 0101 1101 
-4 1100 0100 1100 
-5 1101 0011 1011 
-6 1110 0010 1010 
-7 Il l l  0001 1001 
-8 0000 1000 
(-0) lO00 

Value Sign magnitude OffSet binary Two'scomplement 

representing the lowest. Advantages of offset binary coding are: it has only one code 

for zero; and it possesses a sign bit and the value represented can be obtained by 
simply subtracting the code for 0 (i.e. 8~0 = 10002 in this case). This scheme is also 
obviously well suited to ADCs accepting only positive voltages, with all zeros repre- 
senting ground and all ones the maximum voltage that can be input to the ADC. 

Two's complement 
Two's complement notation is the most commonly used for integer arithmetic 
(since it simplifies binary subtraction) and will be discussed in more detail in 
Section 2.5.2. The other benefit it offers is that it also only possesses one code for 
zero. Note that the most significant bit (MSB) acts as a sign bit and the positive 
values' codes are the same as for sign magnitude. The negative values are in two's 

complement notation (see Section 2.5.2). 

2.5 BINARY ARITHMETIC 

Binary arithmetic is in theory very simple since only O's and l's are used. 

However, subtraction can cause problems if performed conventionally, and so is 

usually carried out using two's complement arithmetic. 

2.5.1 Addition 

Binary addition is no different in principle than in base-10. The only potential 

problem is remembering that (1 +1) gives (0 carry 1) that is 102 (i.e. in decimal 
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(1 + 1)-2); and that (1 + 1 + 1) gives (1 carry 1) that is 112 (i.e. in decimal (1 + 1 + 1) 
=3). 

Example 2.12 

What is 01100101100 + 01101101001? 

Solution 

01100101100 
+01101101001 

=ll010010101 

2.5.2 Subtraction 

Binary subtraction can be performed directly (as for base-10) but it is tricky due to 
the 'borrowing' process. The two's complement approach is easier, less error 
prone, and is therefore recommended. It is based upon the fact that for two 
numbers A and B then A - B = A + ( - B )  where - B  is the complement of B. So 
rather than subtracting B directly from A, the complement of B is added to A. All 
that we need is a way of generating the complement of a number. 

This can be achieved (in any base) by taking the number whose complement is 
required away from the next highest power of the base. So the complement of an 
n-digit number, p, in base-m is given by: 

m n - p  

Example 2.13 

What is the complement (the ten's complement ) of 58~0? 

Solution 

This is a two-digit number in base-10 and so must be subtracted from 102 to give 
the complement of 42. 

Example 2.14 

What is the complement (the two's complement) of 1102 
_ 

Solution 

This three-digit number must be subtracted from 23= 8 giving 2zo = 102. 

Subtraction using the complement is then performed by adding the comple- 
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ment to the number you want it to be subtracted from. In practice it is not quite 
this simple as you need to remember how many digits are involved in the subtrac- 
tion as the following examples demonstrate. 

Example 2.15 

Use ten's complement arithmetic to find (68-  35). 

Solution 

The complement of 35 is 65, so this gives (68 +65)= 133 which gives the correct 
answer 33 if the carry is ignored (i.e. only the 2 LSBs in the answer are used). 

Example 2.16 

Use ten's complement arithmetic to find (42-  7 5). 

So/m/on 

This gives 42 + 25=67, clearly not the correct answer. However, in the previous 
answer one way of considering the carry produced is that it indicated a positive 
answer, so simply removing the 1 gave the correct solution. Here where there is no 
carry this means we have a negative answer which being negative is in ten's 
complement format. Taking the ten's complement of 67 gives 33 meaning that 
4 2 - 7 5 = -  33, the correct answer. 

Quite why complement methods of arithmetic work is best seen by simply 
performing arithmetic graphically using number lines. That is lines are drawn 
whose length represents the numbers being added or subtracted. Using this method 
to perform complement arithmetic the actual processes involved become very clear. 

Obtaining the two's complement 
We have seen how the two's complement of an n-bit number is given by 
subtracting it from 2 ~. 

Example 2.17 

What is the two's complement of 1010? 

So/m/on 

100002 = 24 = 16 so the two's complement is 1610 - 10~0 = 6~0 = 1102. 

However, since we are trying to obtain the two's complement to perform a 
subtraction then using subtraction to obtain it is not ideal! Another, and indeed 
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the most often quoted, way is to invert the number (i.e. rewrite it replacing all the 
O's by l's and all the l's by O's) and then add one. (The inverted number is called 
the one's complement.) This works because inverting an n-bit binary number is 
the same as subtracting it from the n-bit number composed totally of l's, which is 
itself 1 less than 2 ". 

Example 2.18 

What is the one's complement of 10110? 

Solution 

Inverting all bits gives 010012=9~0. Note also that (11111-10110)=(31-22)=9~0. 

Example 2.19 

What is the one's complement of 100101 ? 

Solution 

The answer is 11010. Note that (63 - 37) = 26~0. 

Since adding 1 to an all 1 n-bit number gives 2 ~ then obviously forming the 
one's complement of an n-bit number and adding 1 is the same as subtracting it 
from 2% which gives the two's complement. The advantage of using the one's 
complement is the ease with which it is obtained. 

The most significant bit (MSB) in two's complement notation indicates the sign 
of the number, as in the above ten's complement subtractions. In two's comple- 
ment code if it is 0 the number is positive and if it is 1 the number is negative and 
its two's complement must therefore be taken in order to find its magnitude. (Note 
that the sign bit was not included in Example 2.17.) 

Because the MSB is used to give the sign of a two's complement number this 
means an n-digit number in two's complement form will code the numbers from 
-(2  ~-~) to + (2 ~-~- 1) (e.g. for the four-digit numbers in Table 2.2 the range is from 
- 8 to +7). 

Example 2.20 

What is the two's complement of 0101 ? 

Solution 

Inverting 0101 gives 1010 (the one's complement), adding 1 gives 1011, the two's 
complement of 0101. (The first bit is a sign bit which, being 1, indicates that this is 
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a negative two's complement number.) Note that this shows the two's comple- 
ment of (the four-bit number) 5 is 11, which is as expected since 16- 5 = 11. 

Example 2.21 

What number, given in two's complement notation, is represented by 10110? 

Solution 

Since the number is already in two's complement form and its most significant bit 
is 1 we know it is a negative number. Its two's complement will therefore give its 
magnitude. 

Inverting 10110 gives 01001 which upon adding one becomes 01010. So the 
number represented is-1010. 

Example 2.22 

What number, given in two's complement form, does 110011 represent? 

Solution 

The MSB is l indicating this is a negative number. It has six bits so subtracting its 
decimal equivalent (51) from 26=64 gives its magnitude as 13. It therefore repre- 
sents-13. 

Shorthand method of obtaining the two's complement 
A quicker method of obtaining the two's complement of a number is to invert all 
bits to the left of (i.e. bits more significant than) the first bit that is 1. (Hence, all 
bits less significant than and including the first bit that is 1 remain as they are). 

Example 2.23 

What is the two's complement ofl0110100? 

Solution 

The first bit (starting with the LSB) that is 1 is the third LSB. Therefore, this and 
all bits to its right remain as they are giving XXXXX100. The bits more significant 
than this one are inverted giving 01001XXX. Together this gives the two's comple- 
ment of 10110100 as 01001100. 

This can be confirmed by inverting all bits of 10110100 to give 01001011. 
Adding 1 then gives 01001100 confirming the above (also confirmed by 2 s -  256 

with 256 .... (128+32+16+4)=76).  



Example 2.24 

Binary arithmetic 41 

What is the two's complement of 010111 ? 

Solution 

Only the first bit in this case remains as it is: XXXXX1 with all others being 
inverted, 10100X, giving 101001. 

Subtraction using two's complement 
Binary subtraction can be performed by simply adding the two's complement of a 
number to that from which it is to be subtracted, rather than subtracting it itself. 
The most likely source of error is in making sure the sign bit, which is necessary to 
indicate if a number is positive or negative, is produced and used properly. 
Confusion may arise because in the addition process digits can be 'carried' 
beyond the sign bit. They should be ignored. The following examples illustrate all 
possible cases. 

Example 2.25 

Subtract 5 from 8 using binary notation. 

Solution 

8 01000 two's comp. 01000 
- 5  -00101 ~ +11011 

+ 3 100011 

The fifth bit is the sign bit (it is 0 for the binary codes of + 8 and + 5, but 1 (indi- 
cating a complemented number) f o r -  5). Since it is 0 in the answer this shows that 
the result is positive, with a binary value of 0011 = 3~0. The 'overflow' sixth bit in 
the result is discarded. 

Example 2.26 

Subtract 8 from 5 using binary notation. 

Solution 

5 00101 two's Comp. 00101 
-8  -01000 ~ +11000 

- 3  11101 

Again, the fifth bit is the sign bit which since it is 1 indicates the result is nega- 
tive. In order to find the magnitude of the resulting negative number we must 
two's complement the result. This gives 0011 = 3~0, so the answer is-  3. 
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Example 2.27 

Subtract-5 from-8 using binary notation. 

Solution 

- 8 01000 two's comp. 11000 
-5  -00101 ~ +11011 

- 13 110011 

The sign (fifth bit) indicates that the result is negative. The two's complement of 
10011 is 01101 = 13~0 giving the result as-13.  (Note the sixth 'overflow' bit is 
discarded.) 

2.5.3 Multiplication 

Long multiplication in binary is performed in exactly the same way as in decimal 
arithmetic. However, in binary arithmetic digits can only be multiplied by 0 or 1. 
Multiplying by a power of two, e.g. 22= 1002, simply results in the binary number 
being shifted n digits to the left and n zeros being added as the LSBs. 
Consequently long multiplication is simply performed by shifting (i.e. multiplying 
by powers of two) and adding. 

Note that division by powers of two simply results in shifts to the right. Since 
logic circuits exist that perform these shift operations (see Section 6.3), multiplica- 
tions and divisions by powers of two are very easy and quick to implement in a 
digital circuit. 

Example 2.28 

Calculate 6 x 5 using binary arithmetic. 

Solution 

110 
x 101 

11000 
+ 110 

=11110 

Example 2.29 

Calculate 6.5 • 2.75 using binary 6 arithmetic. 

6In binary arithmetic 0.5= 1/2 ~ which means the first digit after the decimal point is 1. Similarly 0.25 = 1/2-' 
so its binary equivalent is 0.01.0.75=0.5+0.25:  so in binary this is 0.11. 
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Solution 

110.10 
010.11 

11010000 
110100 

11010 

= 10001.1110 

So the product is 17.875. (Note that 0.875=0.5+0.25+0.125.) 

2.5.4 Division 

For completeness an example of binary long division is given. 

Example 2.30 

Perform 10.625 + 2.5 using binary arithmetic. 

Solution 

To simplify the calculation it helps to turn the divisor into an integer by (in this 
case) multiplying both divisor and dividend by 2 (i.e. shifting to the left). This 
turns the calculation into 21.25 + 5 which in binary is 10101.01 + 101. The actual 
division process is shown in Table 2.3. 

Table 2.3 Binary division of21.25~0 § 5 (Example 2.30) 

1 0 0 . 0 1  

101l 1 0 1 0 1 . 0 1  
101 

000  
O1 O1 

1 O1 

0 00 

2.6 SELF-ASSESSMENT 

2.1 Why must digital circuits perform arithmetic in base-2? 

2.2 How many units are used, and what are the smallest and largest, in base-8 
arithmetic? 

2.3 What numbers (in base-10) do the first three digits in a base-8 system repre- 
sent? 
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2.4 How many units are used in the hexadecimal system and what are they? 

2.5 How many binary digits are needed to represent a four-digit decimal number 
using BCD? 

2.6 What is the significant feature of Gray code? 

2.7 Write out the Gray code for a three-digit system? 

2.8 How many distinct voltage levels does a 12-bit analogue-to-digital converter 
have? 

2.9 Why can multiplication and division by powers of 2 be pertbrmed efficiently 
by a digital electronics circuit? 

2.7 PROBLEMS 

2.1 What is 346 s in base- 10? 

2.2 What is 6327 in base-10? 

2.3 What is 235~0 in base-5? 

2.4 What is 824~0 in base-6? 

2.5 What is 300~0 in binary? 

2.6 What is 1246~0 in hexadecimal? 

2.7 What is 1010101, in decimal? 

2.8 What is ABE, in decimal? 

2.9 What is 101001010012 in hexadecimal? 

2.10 What is 243~0 in BCD? 

2.11 A four-bit analogue-to-digital converter is used to sample a signal at 200 Hz 
(i.e. 200 samples per second are taken). How many bytes of data will be 
stored if the signal is sampled for 30 seconds? (1 byte= 8 bits). 

2.12 A four-bit analogue-to-digital converter has an input voltage range of 5 V. 
What voltage is represented by 1 bit? 

2.13 What binary pattern would be on a six-bit address bus when it is pointing to 
memory address 23,? How could a six-input NAND gate be used to decode 
the bus to produce an active-LOW signal to indicate when this memory loca- 
tion is accessed? (Inverters can also be used~) 

2.14 Perform 011011101 + 101110110 using binary arithmetic. 

2.15 Perform 76t0-57~0 using ten's complement arithmetic. 

2.16 Perform 6420- 83~0 using ten's complement arithmetic. 
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2.17 Redo Examples 2.20, 2.21 and 2.22 using the alternative methods of 
obtaining the two's complements. 

2.18 Perform the following using two's complement arithmetic (all numbers are 
given in natural binary notation): 

(a) 10011 - 10101 
(b) 10111-10110 
(c) 1011- 101101 
(d)  10101 - 1110 

(e) 1011-11011 

2.19 Perform 3.5~0x 7.25~0 using binary arithmetic. 

2.20 Perform 16.875~0+ 4.5~o using binary arithmetic. 
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3.1 INTRODUCTION 

At any time a combinational logic circuit's output(s) depends only upon the 
combination of its inputs at that time. The important point is that the output is 
not influenced by previous inputs, or in other words the circuit has no memory. 

The uses to which combinational logic circuits are put can be broadly classed as: 

�9 data transfer circuits to control the flow of logic around a system; 
�9 data processing circuits that process or transform data (i.e. perform useful 

computations). 

Common examples are: multiplexers, encoders, adders, parity checkers and 
comparators, all of which we will look at in the next chapter. 

Summary of basic logic theory 
All of the Boolean expressions considered in Chapter 1 have been examples of 
combinational logic, with the output from a circuit described in terms of the 
Boolean operations (AND, OR and NOT) performed on its inputs. 

For example, the Boolean expression 

Y=(A-B) + 

tells us that the output, Y, will be I when either of the terms (A- B) OR (B. C) is I. 
(That is either ((A=0) AND (B= I)) OR ((B=0) AND (C= I).) Since Y only 
depends upon the present inputs A, B and C this is a combinational logic expres- 
sion. 

As was described at the end of Section 1.3.2 this is in fact a sum of  products 
combinational logic expression with (A- B) and (B- C) the product terms which are 
then summed (AND'd) together. It is called a sum of products expression because 
of the similarities between the AND and OR Boolean algebraic operations and 
multipication and addition in ordinary algebra (see Chapter 1).1 This is the reason 
why the symbols �9 and + are used to represent the AND and OR operations 
respectively. 

~There is also an equivalence between the AND and OR Boolean operators and the intersection, c~, and 
union, u,  of sets in set theory. 
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Shorthand notation for the AND operator 
Because of the similarity between the AND operation and multiplication, in the 
same way that the multiplication of two variables, a and b, can be indicated by 
juxtaposition (placing the variables next to each other, e.g. a • b is represented by 
ab) then so too can the AND operator,. ,  be omitted and the two variables to be 
AND'd  simply placed together (e.g. A-B is represented by AB). This convention 
will be adopted for the remainder of the book. 

Using this notation the above expression can be written as Y= AB + BC. The 
truth table, which describes the dependence of Y on A, B and C is shown in Fig. 
3.1. For this example the truth table gives the output, Y, for each of the 2 3 = 8  

possible combinations of the three inputs. Remember that in general the opera- 
tion of any combinational circuit with n inputs and z outputs can be represented 
by a truth table with (n + z) columns (n for the inputs and z for the outputs) and 2 ~ 
rows to show the outputs for each of the 2 ~ possible combinations of inputs. 

A B C Y 

o o o o XB 
0 0 1 1 A 

0 1 0 1 B " 

0 1 1 1 

1 0 0 0 . . . .  

1 0 1 1 C . . . . . . .  tz . ._ . ._~ _ 

1 1 0 0 B C  

1 1 1 0 

Fig. 3.1 Truth table and circuit for Y=AB + BC 

m 

Y - A B + B C  

Also shown in Fig. 3.1 is the circuit diagram that will implement Y. This 
consists of two AND gates, to produce the two product terms, and an OR gate to 
give the sum of these products. 

Example 3.1 

Write out the truth table and draw the circuit corresponding to the Boolean func- 
tion Y= A C+ AB. 

Solution 

These are shown in Fig. 3.2. Note that the NOT gates to obtain A, B and C have 
been omitted, and their availability for input into the AND gates simply assumed. 
This convention will also be used for other circuits in this book. 

We will now look in more detail at the relationships between: 

�9 the Boolean algebraic expression; 
�9 the truth table; 
�9 and the circuit diagram; 
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A B C 

0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

Y 

1 

1 

0 

1 

0 

0 

0 

0 

C 
m 

B 

y 

Fig. 3.2 Truth table and circuit for Y= AC+ A B (see Example 3.1) 

which all describe the operation of sum of products combinational circuits. This 
will initially involve describing the circuit's operation in a more fundamental but 
expansive form. 

3.2 COMBINATIONAL LOGIC THEORY 

3.2.1 Fundamental sum of products expressions 

We know from the Boolean algebraic expression, Y=AB+ BC, introduced in 
Section 3.1, that Y= 1 when either of the product terms AB or BC is 1. (This is due 
to the fact that any Boolean expression OR'd with 1 gives a result of 1, Equation 
1.9.) Now if (A =0) and (B= 1) are necessary for Y= 1 (i.e. the product term AB 
being 1) then the value of C does not matter. 2 Therefore there are two rows of the 
truth table (ABC (010) and ABC (011)) which will give an output of 1 because 
AB= 1. Similarly the two rows corresponding to the product terms ABC and ABC 
will also give an output of 1 since for both of these BC= 1 irrespective of A. 

The two rows giving Y= 1 for AB= 1 correspond to the two product terms, ABC 
and ABC, which contain all three input variables. Such product terms (which 
contain all of the input variables) are calledfundamentalproduct terms. 3 

Because each fundamental product term specifies the input conditions which 
produce an output of I in a single row of the truth table then there must be as 
many of these terms as there are l 's in the truth table. So, in this example, the 
product terms: ABC, ABC, ABC and ABC (reading them off from the truth table 
beginning at the top) are the fundamental product terms, one of which will be 
equal to 1 for each of the four input combinations that give an output of Y= 1. 

Now, since any Boolean expression OR'd with 1 gives a result of 1, if these 
fundamental product terms are OR'd together then if any one of them is 1 the 
result will be 1. The Boolean expression for this is: 

Y=ABC+ABC+ABC+ABC 

2The strict Boolean algebraic proof of this is as follows: 

AB=AB. I=AB(C+C)=ABC+ABC 

which uses Equations 1.7, 1.4, 1.14. 
3Sometimes the word 'fundamental' is replaced by 'canonical'. 
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and gives exactly the same information as the truth table with each fundamental 
product term corresponding to a row. Moreover, since each product term 
contains all of the three input variables these are fundamental product terms, and 
so this is a fundamental sum of products expression. 

Since there is a one-to-one correspondence between each fundamental product 
term and a row in the truth table, then obviously the truth table of any combina- 
tional function can be used to obtain the fundamental Boolean logic expression 
for that function. 

Example 3.2 

Write out the Boolean expression for Y= A C+ AB in fundamental sum of prod- 
ucts form. 

Solution 

Using the truth table written out for this function in Fig. 3.2 

Y=ABC+ABC+ABC 

Note that, in this example, there are only three fundamental product terms. This 
is because the ABC term is common to both A C (i.e. A(B)C) and AB (i.e. AB(C)). 

An alternative notation 
Since each fundamental product term corresponds to a row in the truth table an 
alternative way of describing a fundamental sum of products expression is simply 
to list the rows. To do this all that is required is to decide upon an appropriate 
code. The obvious choice is to use the decimal equivalent of the binary code held 
by the input variables. So for a truth table with three inputs we have row 0 (ABC), 
row 1 (ABC) through to row 7 (ABC). 

Using this notation, the expression Y= AB + BC would be written as: 

Y : Z ( 1 ,  2, 3, 5) 

Example 3.3 

Express the function Y= A C + AB in this form. 

Solution 

Y=Z(O, 1, 3) 

3.2.2 Two-level circuits 

The circuit to implement Y= AB + BC was given in Fig. 3.1. It is shown again in 
Fig. 3.3 together with the circuit to implement the fundamental sum of products 
form. Since both of these circuits implement sum of products expressions they 
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D 

A ., 

A 

C A 

C 

Fig. 3.3 Y= ~B+ BC as a minimised and fundamental two-level circuit 

~ ' ~ y  

have the same basic form of AND gates to produce the required product expres- 
sions, and a single OR gate to perform the summing. 

Such implementations are called two-level circuits since they consist of a layer 
of AND gates feeding a single OR gate. Consequently each input signal only has 
to pass through two gates to reach the output. (Note that this assumes that all of 
the input variables and their complements are available for input to the AND 
gates.) Two-level implementations are important because since each signal only 
passes through two gates, and in real circuits it takes a finite time for a signal to 
propagate through a gate (see Section 9.7.4), this is (theoretically) the fastest 
possible implementation for a combinational logic circuit. 

In practice, as we will discover via the example in Section 4.2, the practical 
implementation of two-level circuits often causes problems. The most obvious, 
and common, are that: 

�9 an OR gate with too many inputs is required (to sum all of the required product 
terms); 

�9 one input may have to feed into too many AND gates 
�9 and that AND gates with too many inputs may be needed. 

3.2.3 Minimisation of fundamental sum of products expressions 

In this section we began with a Boolean expression containing three variables and 
have seen how it can be expanded, using either Boolean algebra or a truth table, to 
its fundamental sum of products form. When designing logic circuits it will 
usually be the truth table we need to implement that we have to begin with, from 
which we need to extract a Boolean expression. 

We know we can always do this because the fundamental sum of products form 
can be produced directly from the truth table. However, this will in general give 
an unwieldy Boolean function with many fundamental product terms, with its 
two-level (AND-OR) implementation being correspondingly unsatisfactory. 
Clearly what is required is to be able to reverse the process we used earlier to 
generate the fundamental sum of products expression from its simpler form. This 
process is know as minimisation. 
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It is based upon the distributive law (Equation 1.14) and the property of inverse 
elements (Equation 1.4). Using the fundamental product terms A B C  and A B C  as 
an example. 

m _ m 

A B C  + A B C = ( A  + A ) .  B C  Equation 1.14 
m 

= 1 �9 B C  Equation 1.4 
= B C  Equation 1.7 

An important point to note is that the fundamental terms which are combined 
differ only in that one of the variables in the two terms is complemented (e.g. in 

m 

this example we have A in one term and A in the other). This is essential for 
minimisation to be possible, and product terms which can be minimised because 
of this are said to be logically adjacent. Note that this is the reverse process of that 
described in an earlier footnote for rigorously producing the fundamental 
product terms (Section 3.2.1). 

Example 3.4 
m n D 

Minimise Y= A B C +  A B C .  

Solution 

A B C  + A B C =  A B  " (C + C) 

= A B .  1 

= A B  

Example 3.5 

Draw the circuit to implement the following fundamental sum of products expres- 
sion and then minimise it to obtain the Boolean expression used in a previous 
example in this section. 

Y = A B C + A B C + A B C  

The circuit is shown in Fig. 3.4. 

A 

C 

A 

c 

A 

C 

Fig. 3.4 Fundamental and minimised sum of product forms of the circuit discussed in Example 3.5 
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Solution 

To minimise we must first use the fact the X+ X= X (Equation 1.2) to give 

ABC= ABC+ ABC 

sincethistermisneededtwiceintheminimisationprocess.  Then: 

ABC+ABC+ABC-ABC+ABC+ABC+ABC 
. . . .  

= A B . ( C + Q + A C . ( B + B )  
=AB+AC 

The circuit in its minimised form, which we have studied in earlier examples, is 
also shown. 

Minimisation of combinational logic functions is a major part in the design of 
digital systems. For this reason, although Boolean algebra can always be used, 
alternative methods have been developed which are less cumbersome. However, 
they are still based upon the Boolean algebra described above, and essentially 
allow logically adjacent product terms to be easily and/or rigorously recognised 
and combined. Such methods are described in Section 3.3. 

3.2.4 Summary 
In summary, Boolean algebraic expressions, truth tables and circuit diagrams are 
all ways of describing the operation of a combinational logic circuit and all 
contain the same information. The Boolean algebraic expression may be in funda- 
mental sum of products form, in which case it can be derived directly from the 
truth table, or in minimised (simplified) form. The fundamental sum of products 
form has a fundamental product term (containing all of the input variables) corre- 
sponding to each row of the truth table with an output of 1. 

Minimisation of Boolean expressions is based upon recognising the occurrence 
of logically adjacent product terms and can be performed algebraically or using 
one of a number of other methods (see Section 3.3). 

Sum of products expressions are implemented in two-level form with an AND 
gate used to produce each product term which are then summed by a single n- 
input OR gate where n is the number of product terms. These are, in theory, the 
fastest possible general implementation of a combinational circuit although they 
often prove impractical. 

3.3 MINIMISATION OF COMBINATIONAL LOGIC 
EXPRESSIONS 

From the above we have seen how the operation of any combinational circuit can 
always be expressed in fundamental sum of products form. However, it is also 
clear (from the simple examples examined so far) that this is an extremely 
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unwieldy form, both to write and implement. It is for this reason that the minimi- 
sation of combinational logic expressions is so important, allowing, as it does, 
circuits to be implemented in simpler forms. 

Minimisation can be performed using Boolean algebra, or by inspection of 
truth tables, however the most commonly used manual method is the Karnaugh 
map. In this section we look at these methods of minimisation plus the 
Quine-McCluskey technique which is particularly suitable for algorithmic imple- 
mention in software. 

3.3.1 Minimisation via Boolean algebra 

This is best illustrated by an example. 

Example 3.6 

Use Boolean algebra to simplify the Boolean expression: 

Y = A B + A B  

Solution 

A B + A B =  A . (B+B) distributive law 
= A-1 Equation 1.4 
= A Equation 1.7 

Hence the expression originally containing two Boolean variables, but which 
significantly has two terms (AB) and (AB) which only differ in that one contains 
the variable B and the other its complement B, now only has one. 

What minimisation depends upon is the fact that ifA = 1 and also B= 1, then AB 
_ .  

=1 and so Y=I. If B - 0  (with A still 1) then yet again Y = A B = I .  So, Y is 
independent of the value of B. Therefore the original function can be minimised to 
Y= A. All of the following examples ofminimisation are based upon this principle. 

Example 3.7 

Minimise" Y= ABC+ ABC+ A B C  

Solution 
_ m _ 

Y = A B C + A B C + A B C  

= A B C + A B C + A B C + A B C  Equation 1.2 
. . . .  

= A B ( C + C ) + ( A  +A)BC 

= A B + B C  

Note that in this example the A B C  term is used twice (Equation 1.2), and all of the 
AND operators have now been replaced by juxtaposition. 
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Example 3.8 

Minimise" Y = A B C + A B C + A B C + A B C  

Solution 

Y= AB(C+ C)+ AB(C+ C) 

= A B + A B  

=A 

In this example four logically adjacent fundamental product terms have been 
combined into a single variable. What this tells us is that the expression for Y, 

which is a function of three variables, is independent of B and C. Consequently, 
four rows of the (eight-row) truth table are 1 corresponding to A = 1. 

The above examples demonstrate the minimisation of fundamental sum of 
products expressions using Boolean algebra. It should be noted that it is also 
sometimes possible to spot how a function may be minimised directly from the 

truth table. 

Example  3.9 

Derive minimised expressions for X and Y from the truth table given in Table 3.1. 
Note that this truth table gives the outputs for two combinational logic functions, 
X and Y. 

Table 3.1 The truth table from which minimised functions for 
X and Y are found in Example 3.9 

Solution 

A B C  

0 0 0 
0 0 1 
0 1 o 
0 1 1 
! o o 
1 0 1 

1 1 0 

1 1 1 

x Y 
0 0 
0 1 
1 0 
1 1 
0 1 
0 1 
1 0 
1 0 

m ~ m 

From the truth table it is clear that X=B and Y = A C + A B .  Note that the A C 

product term in Y arises from rows 2 and 4, and the AB term from rows 5 and 6. 

3 .3 .2  M i n i m i s a t i o n  via K a r n a u g h  m a p s  

Karnaugh maps contain exactly the same information as truth tables. The differ- 
ence is that the Karnaugh map uses a 'matrix' format to hold the output values. 
The Karnaugh map is arranged so that, as far as possible, logically adjacent 

product terms are also adjacent in the 'matrix' and so can be logically combined 
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and hence minimised. Essentially the minimisation process, described above using 
Boolean algebra, is performed visually. 

What does a Karnaugh map looks like? 
A truth table for two variables has two input columns, one output column and 
four rows (one for each possible combination of inputs). The corresponding 
Karnaugh map has four cells arranged as a square, with the two inputs, A and B, 
used to label the columns and rows as shown in Table 3.2, which also shows the 
equivalence between the two for an AND gate. The information is transferred 
from a truth table to a Karnaugh map by simply entering the appropriate Boolean 
value for Y into the corresponding cell of the map. 

In the case of the AND gate the only cell with a 1 in is the one in the bottom 
right-hand corner since this holds the output when A = 1 (the right-hand column) 
and B = 1 (the bottom row). 

Table 3.2 The truth table and Karnaugh map for a two-input A N D  gate 

A B Y 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

B--0 0 0 
. ,  

B--I 0 1 

E x a m p l e  3 . 1 0  

Draw the Karnaugh maps for two-input OR and XOR gates. 

Solution 

These are shown in Table 3.3. Note the distinctive 'chequerboard' pattern of alter- 
nate O's and l's that appears in the Karnaugh map of functions containing the 
XOR operator. 

Table 3.3 Karnaugh maps for two-input OR and XOR gates (see Example 3.10) 

B=O 

B=I 

B=O 

B=I 

OR XOR 
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Obviously because each cell of the Karnaugh map corresponds to a row in the 
truth table it also corresponds to a fundamental product term, given by the 
column and row labels used to indicate its position. For example the top right- 
hand cell is indexed by A = 1 and B=0, and indicates whether the fundamental 
product term AB gives 1 for the function Y that the Karnaugh map is drawn for. 
In other words if the cell has a 1 in, then Y contains this fundamental prod'uct 
term (i.e. Y= 1 when (A = 1) AND (B=0)), but does not if the cell has a 0 in it. 

This leads us on to an alternative way of indexing the Karnaugh map which is 
to replace A = 1 by A, and A - 0  by A for the columns, with B and B used to index 
the rows. Table 3.4 shows the two notations with the fundamental product terms 
actually written in the apppropriate cells, together with the row numbers used in 
Section 3.2.1 to code fundamental sum of products expressions. 

Table 3.4 Alternative notation for labelling a Kamaugh map 

B = 0  

B = l  

0AB 

~AB 

~AB 

3AB 

Y 

0AB 

~AB 

2AB 

3AB 

E x a m p l e  3.11 

Draw the truth table and Karnaugh map for Y= AB+ AB. What function is this? 

Solution 

These are shown in Table 3.5 and are clearly for the XNOR function. 

Table 3.5 Truth table and Karnaugh map for a two-input XNOR gate (see Example 3.11) 

Y 

A B Y 
o 1 
1 o 
o o 
1 1 

0 B 1 0 
o 
1 

, 

1 B 0 1 

Minimisation using Karnaugh maps 
Although using a two-variable Karnaugh map for minimisation is a rather trivial 
process it nevertheless serves to illustrate the minimisation process, which as we 
have seen consists of combining logically adjacent fundamental product terms. 
We now look at examples of minimisation using Karnaugh maps. 
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Draw the Karnaugh map for Y= AB+ AB, and then use it to obtain a minimised 
expression. 

Solution 

The Karnaugh map is shown in Table 3.6. From the minimisation examples using 
Boolean algebra given above it is clear that 

- -  w 

Y=AB+AB=A(B+B)-A 

Table 3.6 The Karnaugh map for Y=AB+AB, discussed in Example 3.12 

Y 

Using the Karnaugh map for minimisation we see that the two fundamental 
product terms (AB and AB) are logically adjacent (they are in the same column and 
so only differ in one variable), and hence know they can be combined. The way we 
know that it is the variable B that is eliminated is that the adjacent terms differ in 
this variable (one has B, the other B) across the rows, whereas both contain A, since 
they are in the column labelled A. Hence, the expression minimises to Y= A. 

It is important to fully appreciate that Karnaugh maps are simply a graphical 
aid to the minimisation process that could always be (although usually less 
simply) achieved using Boolean algebra. 

Example 3.13 

Use a Karnaugh map to minimise Y= AB + AB. 

Solution 

From the Karnaugh map in Table 3.7 we see that the two fundamental product 
terms are logically adjacent and differ in A across the columns, whilst B is the 
common term (i.e. they are in the top row). So Y= B. 

In these examples the expressions minimise to a single variable. We now return 
to the Karnaugh maps drawn earlier for the OR and XOR operators to demon- 
strate other possibilities. 
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Table 3.7 Karnaugh map for Y= A B  + A B ,  discussed in Example 3.13 

Y 

B 

Example 3.14 

Minimise the two-input OR function using the Karnaugh map drawn in Table 
3.3. 

Solution 

Here we can combine the two terms in the A column to obtain the 'product' term 
A and the two terms in the B row to obtain B. So, as expected, OR'ing these 
together gives Y= A + B for the two-input OR gate. 

The combination of logically adjacent fundamental product terms is indicated 
by a looping together of the combined terms as shown in the redrawn Karnaugh 
map in Table 3.8. Looking at. this process using Boolean algebra: 

Y = A B + A B + A B  
w 

= A B + A B + A B + A B  Equation 1.2 
m 

=,4(B+B)+(A+A)B 
= A + B  

Note that the A B  term is used twice in the minimisation processes using both 
Boolean algebra and the Karnaugh map (since it is included in both loops). 

Table 3.8 Karnaugh map for a two-input OR gate demonstrating the grouping and looping of 
logically adjacent product terms (see Example 3.14) 

1 
l 

I 

i 1 " t-- A 

Example 3.15 

Minimise the two-input XOR function using the Karnaugh map drawn in Table 

3.3. 
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S o l u t i o n  

Here we see that the two fundamental product terms, ABand A B ,  are not  logi- 
cally adjacent and so the expression cannot be nfinimised. Note that we can still 
read off the Boolean expression for the XOR gate directly from the Karnaugh 
map since the top right and bottom left cells correspond to the A B  and A B  

fundamental product terms giving Y = A B + A B ,  the XOR function. 

These simple examples serve to illustrate all there is to know about Karnaugh 

maps. This is basically: 

�9 how to draw them; 
�9 how to spot logically adjacent fundamental product terms that can be 

combined to minimise the fundamental sum of products expression corre- 
sponding to the map; 

�9 and how to extract the product terms from the map to give a minimised sum of 
products expression for the Boolean function in question. 

We now turn to examples of minimising expressions with more than two vari- 
ables, and formalising some of the points that have been introduced above. 

Maps for more than two variables 
Since truth tables and Karnaugh maps contain exactly the same information, then 
obviously a Karnaugh map for n variables must contain 2 ~ cells. In practice 
Karnaugh maps become unmanageable for more than five variables (i.e. 32 cells). 

A three-variable map will have eight cells and its layout is shown in Table 3.9. 
We will now look at some examples of using three-variable Karnaugh maps for 
minimisation. 

Table 3.9 Layout and labelling of a three-variable truth table and Kamaugh map illustrating 
the fundamental product terms occupying each cell 

B C row 

0 0 0 

0 1 1 
1 0 2 

1 1 3 

0 0 4 

0 1 5 

1 0 6 

1 1 7 

Y Y 

C 

C 

ABC 

ABC 

ABC 

ABC 

ABC 

ABC 

ABC 

ABC 



60 Combinational logic basics 

Example 3.16 

Draw the truth table and Karnaugh map for the function 

Y=AB+AC 

Solution 

This expression has three variables and so the Karnaugh map must contain eight 
cells. The variables A and B are used to label the four columns in the map (with 
the tbur possible combinations of these two variables), with the third variable, C, 
used to label the two rows (for C=0 and C -  1) as shown in Table 3.9. 

The outputs, Y, for the various inputs to the circuit represented by the truth 
table are entered into the corresponding cells in the Karnaugh map as shown in 
Table 3.10. To minimise we note that there are two logically adjacent funda- 
mental product terms in column AB (ABC and ABC), and a further two in row C 
(ABC and ABC) which can be combined to give AC (as B+B-1). Therefore 

Y=AB+AC. 

Table 3.10 Karnaugh  map for Y= AB + A C, discussed in Example  3.16 

A B C Y 

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 1 

l o o 0  
1 0 1 0 

1 1 0 1 

1 1 1 1 

Y 

C 

C 

i , 

1 

The grouping of logically adjacent product terms for minimisation is indicated 
by looping them on the Karnaugh map, as illustrated in the above example. 
Obviously all fundamental product terms (i.e. l's on the Karnaugh map) must be 
looped and so contribute to the final minimised sum of products expression. Two 
grouped and looped fundamental product terms are referred to as a dual. 

To obtain the minimised product terms any variable existing in both uncomple- 
mented and complemented forms within the looped product term is omitted. This 
is easy to see from the Karnaugh map because the labelling of adjacent columns 
and rows differs only by one variable (being in complemented form) which is 

therefore the one that is eliminated. 

Example 3.17 
_ m 

Draw the Karnaugh map for the expression Y=ABC+AC. 

Solution 

This is shown in Table 3.11. Note that the ABC term cannot be combined with 
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any other product term and so remains in the minimised expression (as given). 

Table 3.11 The Karnaugh map for Y-- ABC+ A C, discussed in Example 3.17 

Y 

G 
1 1) 

Example 3.18 

Draw the Karnaugh map for Y = A B C + A B C  and use it to minimise this expres- 

sion. 

Solution 

On first inspection it appears as if no fundamental product terms can be combined 

(grouped) in the map in Table 3.12. However, whereas in a two-variable map all 

logically adjacent product terms are actually next to each other, this cannot be the 
case for more than two variables. 

For the three-variable map although AB and AB are logically adjacent they are 

not physically next to each other in the Karnaugh map as they index the first and 

last columns. However, they are connected if the map is 'rolled' to effectively form 

a cylinder by connecting columns 1 and 4. In this case the terms can be looped as 
shown to give Y - B C .  

Table 3.12 The Karnaugh map for Y= ABC + ABC, discussed in Example 3.18 

Y 

1) 

Example 3.19 

Use the Karnaugh map in Table 3.13 to find a minimised expression for Y. 

Solution 

Here we have four logically adjacent fundamental product terms (ABC, ABC,  
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Table 3.13 Kamaugh map used to demonstrate minimisation in Example 3.19 

Y 

C 0 1 

(~  

1 
J 

ABC and ABC) in which only A does not appear in uncomplemented and comple- 
mented forms. This produces the term A to be included in the sum of products 
expression. This grouping and looping of four fundamental product terms 
produces what is called a quad. We can also group and loop the ABC term with 
ABC by rolling the map to give the dual BC. This gives the minimised form of Y as 
Y=A+BC. 

Example 3.20 

Draw the Karnaugh map for the function Y= A C+ AB, used in earlier examples in 
this chapter, and from it obtain the fundamental sum of product expression for Y. 

Solution 

From the Karnaugh map in Table 3.14 we can see there are three fundamental 
product terms giving: 

Y = A B C + A B C + A B C  

Table 3.14 Kamaugh map for function Y= AC+ AB, discussed in Example 3.20 

Y 

C 

C 

1 0 

Four-variable Karnaugh maps 
For a four-variable Karnaugh map, two pairs of variables are used to label the 
four columns and four rows respectively as shown in Table 3.15. Continuing the 
map 'rolling' idea introduced above, note that the top and bottom rows are logi- 

cally connected. 
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Table 3.15 Layout and labelling of a four-variable Karnaugh map 

A B C 
0 0 0 
0 0 0 
0 0 1 
0 0 1 
0 1 0 
0 1 0 
0 1 1 
0 1 1 

D row A B C D row 

o o i o o o 8 
1 1 1 0 0 1 9 
0 2 1 0 1 0 10 
1 3 1 0 1 1 l l  
0 4 1 1 0 0 1 2  
1 5 1 1 0 1 13 
0 6 1 1 1 0 14 
1 7 1 1 1 1 15 

Y 

~5 

CD 

CD 

CD 

12 

13 

15 

14 

11 

10 

CD 

CD 

CD 

CD 

ABCD 

ABCD 

AB CD 

ABCD 

ABCD 

iABCD 

ABCD 

ABCD 

A B C D A B C D  

A B C D A B C D  

AB CD AB CD 

m 

A B C D A B C D  

E x a m p l e  3.21 

W h a t  Boolean expression is represented by the K a r n a u g h  m a p  in Table 3.16? 

Table 3.16 Kamaugh map of the function minimised in Example 3.21 

~ 5  

~O 

CD 

CD 

G 
o 

o 

0 0 

S o l u t i o n  

This map  contains  two duals (two grouped and looped fundamenta l  p roduc t  

terms) and a fundamenta l  product  term that  has no logically adjacent  p roduc t  

terms giving: 

Y = A B C + A C D + A B C D  
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Example 3.22 

What Boolean expression is represented by the Karnaugh map in Table 3.17? 

Table 3.17 Kamaugh map of the function minimised in Example 3.22 

Y 

CD 

CD 

u 

CD 

0 

(1 

f 

1 

1 
J 

_ _ L  1 

Solution 

This map contains a quad, CD (four grouped and looped fundamental product 
terms) and an octet, A, (eight grouped and looped fundamental product terms) 

giving: 
Y=A +CD 

Example 3.23 

What Boolean expression is represented by the Karnaugh map in Table 3.18? 

Table 3.18 Karnaugh map of the function minimised in Example 3.23 

Y 

CD 

w 

CD 

CD 

CD 

0 

0 

0 

0 

II 

~ I 
Solution 

This Karnaugh map contains two quads both of which are obtained by 'rolling' 
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the map; firstly around the first and last columns, secondly between the top and 

bottom rows. This gives: 
Y =  B D  + B D  

Note that this is an XOR function, in B and D, which is to be expected because of 
the 'chequerboard' pattern in the map. 

Five-variable Karnaugh maps 
For a five-variable map, two four-variable maps must be drawn with the fifth vari- 
able E used to index the two maps. The layout is shown in Tables 3.19 and 3.20. 

Table 3.19 Row numbering for a five-variable truth table�9 See Table 3.20 for the 
corresponding Karnaugh map 

r 

A B C D E row,  A 

0 0 0 0 0 0 1 

0 0 0 0 1 1 1 

0 0 0 1 0 2 1 
. 

0 0 0 1 1 3 1 

0 0 1 0 0 4 1 
. J 

0 0 1 0 1 5 1 

0 0 1 1 0 6 1 

0 0 1 1 1 7 1 

0 1 o o 0 8 !  11 
0 1 0 0 1 9 1 

0 1 0 1 0 10 1 

0 1 0 1 1 11 1 

0 1 1 0 0 1 2 .  . 1 

0 1 1 0 1 13 1 

0 1 1 1 0 14 . 1 

0 1 1 1 1 15 1 

B C D E 
| 

0 0 0 0 

0 0 ~ 0 1 
0 Or 1 0 

0 0 1 1 

0 1 0 0 

0 1 0 1 

0 1 1 0 

0 1 '  1 1 

1 0 i  0 0 
1 0 : 0  1 

1 O i l  0 
1 0 1 1 

1 1 0 0 

1 1 0 1 
1 1 1 0 
1 1 1 1 

r o w  

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

3O 

31 

Table 3.20 Layout and labelling of a five-variable Karnaugh map. See Table 3.19 for 
the corresponding row numbering of  the truth table 

Y 

C D  

C D  

CD 

C D  

12 

13 

15 

14 

11 

10 

Y 

C D  

C D  

CD 

C D  

16 

17 

19 

18 

20 

21 

23 

22 

28 

29 

31 

30 

24 

25 

27 

26 

E E 
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E x a m p l e  3.24 

The five-variable t ruth table in Table 3.21 gives the outputs ,  X and Y, f rom two 

combina t iona l  logic circuits. Use Ka rnaugh  maps  to minimise these functions.  

Table 3.21 Truth tables of the functions minimised in Example 3.24 

A 
0 
0 
0 
0 
0 
0 
0 
0 

! 0 
-0  
~0 

0 
0 
0 

" ' 0  

B C D E X Y 
0 0 0 0 0 1 
0 0 0 1 [  1 '  1 ~ 

p. 

0 0 1 0 1 1 
i �9 

0 0 1 1 0 1 
0 1 0 0 0 1 
0 1 0 1 1 0 
0 1 1 0 0 0 
0 1 1 1 0 0 
1 0 0 0 1 1 

1 0 0 1 1 0 
1 0 1 0 1 1 
1 0 1 1 0 1 
1 1 0 0 1 i 1 
1 1 0 1 1 1 
1 1 1 0 i 0  0 

0 1 1 1 1 0 0 
, 

1 0 0 
_ 

1 0 0 

. 1 0 i 0  
1 0 1 
1 0 1 
1 0 1 

. 

1 0 1 
1 1 0 

. 

1 1 0 
~ 1 1 0 
~ 1 1 0 
" 1 1 '  1 

1 1 1 
1 1 1 

L 1 1 1 

A B C D e X  
i | �9 

1 0 0 0 0 1 

Ol 1 .  0 
1L O.  1 " 
1 1 .  0 
0 0 0 
0 1 0 
1 '  0 "  0 
1 1 0 
0 0 1 
O! 1"  1 
1 0 0 
1 1 1 
0 '  0~ 1 

�9 

0 1 1 
�9 

1 0 1 
1 1 0 

Y 
1 

1 
l i  

o 
0 
0 
1 
0 
0 
1 

1 

0 
1 

0 
1 

Solution 

F r o m  the Karnaugh  map in Table 3.22: 

X= A C+ CDE+ A B C D +  BDE+ A B D E  

Table 3.22 Karnaugh map for the function X, minimised in Example 3.24, whose truth table is 
given in Table 3.21 

X 

CD 

CD 

w 

CD 

f 

1 

1 

1 

X 

CD 

CD 

CD 

CD 

1 1 \ 

, , - - - . - . - ~  

! . . . . . . . .  

i 

o 

o 

E E 
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The product terms containing E and E are obtained solely from the Karnaugh 
w 

maps for E and E respectively. Those terms not containing either E or E are for 
product terms obtained by grouping and looping the same fundamental product 
terms on both maps. For example the term A C occurs because of the quads in the 
top right-hand corner of the maps for both E and E. From the Karnaugh map in 
Table 3.23: 

Y= AB + CDE+ BC+ ABCD+ CDE 

Table 3.23 Kamaugh map for the function Y, minimised in Example 3.24, whose truth table 
is given in Table 3.21 

Y 

~2D 1 

CD - ~ 1  F, 

Y 

~O 

cB  

l 

- - - - ~ .  

c D  1 

E E 

The layout of Karnaugh maps 
It may seem as if the labelling of the columns and rows of the above Karnaugh 
maps was chosen at random, but this is certainly not so. In all the examples in this 
book the same format for Karnaugh maps will be used which is that truth tables 
will be drawn with A as the most significant bit. Then for three-variable maps, as 
used above, A and B will be used to index the columns and C the rows, whilst for 
four-variable maps C and D will be used to index the rows. 

A significant advantage of keeping to the same convention for labelling 
Karnaugh maps is that it simplifies greatly the process of writing them out from 
truth tables since the filling pattern remains the same. This pattern can be seen by 
observing Tables 3.9, 3.15, 3.19 and 3.20, which show which rows of the truth 
tables (and hence fundamental products) correspond to which cells in the 
Karnaugh maps. 

This is an appropriate point to bring attention to the link between Karnaugh 
maps and Gray code, introduced in Section 2.3. This coding scheme is distin- 
guished by the fact that adjacent codes only differ in one variable, and it is there- 
fore of no surprise to discover a connection with Karnaugh maps since these are 
also based upon this principle. The link can be seen by filling in the cells of a four- 
variable Karnaugh map with the decimal codes used to index the Gray code given in 
Table 2.1 as shown in Table 3.24. Note that the codes representing all adjacent 
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Table 3.24 The link between Gray  code and Karnaugh  maps 

CD 

CD 

CD 

CD 

0 i 

I I i  
I 

I 

I 

21 
I 

I 

I 

3t 

I ! 

I 
I 

I 
I 

I 
I 

I 

I 
! 

I 

I 

I 

I 
I 

J 

f 
\ 

8~ 

I 
91 

I 

I 

I 

101 
I 

1 

I 

l l t  

A, 15 
I I 

1 t 

I I 

114 
I 

I 

I 

I 

!13 
I 

1 

I 

)12 
J 

cells differ by only one variable (e.g. 0 and 7 have Gray codes 0000 and 0100 
(corresponding to fundamental product terms ABCD and ABCD), and 9 and 14 
have codes 1101 and 1001). 

Minterms, prime implicants and essential prime implicants 
Since each fundamental product term occupies a single cell in the Karnaugh map 
it is called a minterm (as it specifics the minimum area of l's, i.e. a single cell, in the 
Karnaugh map). Once the minterms have been looped and grouped in the 
minimisation process (to duals, quads and octets) then the resulting minimised 
(simplified) products arc known as prime implicants. 4 

In order to minimisc a function all of the minterms in the Karnaugh map must 
be covered (i.e. grouped and looped), since they must be contained in the 
minimised Boolean expression. However, if all of the possible groups, that is the 
prime implicants, are used in the final minimised sum of product expression there 
may be more of them than are strictly necessary to cover the whole map (in the 
previous examples we have used just sufficient prime implicants to cover all of the 
minterms). Those prime implicants which describe product terms which must be 
used for all minterms to be covered are called essential prime impficants. This is 
best illustrated by example. 

Example 3.25 

Obtain minimised expressions for X and Y from the Karnaugh map in Table 3.25. 

Solution 

The map for X contains four prime implicants: the quad, BD; and duals ABC, 
ABC and A CD. However, only three of these are essential prime implicants since 

4An implicant refers to any product term consisting of looped and grouped minterms. This includes a 
product term that may be able to be combined with another implicant to produce a prime implicant (e.g. 
two duals combined to give a quad which is a prime implicant). 
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CD 

M 

CD 

CD 

CD 
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Table 3.25 Kamaugh maps of the functions which are minimised in Example 3.25 

Y 

(1 

0 

1 

II 

A A~ 

0 

0 

~ m  

AB 

CD 

CD 

CD 

CD 

~B 

0 

1 

AB 

0 

o 

ABC is also covered by BD and A CD. The minimised expression is therefore: 

X = B D + A B C + A C D  

The map tbr Y contains six prime implicants: the quads CD and AB; and duals 
A BD, ABC, A CD and BCD. Only two of these are essential prime implicants, 

. . . . . .  

namely" AB and CD. The remaining three minterms ABCD, ABCD and ABCD 

must also be covered by choosing appropriate non-essential prime implicants 
from the four remaining. This can be achieved a number of ways, any of which 
provide a complete and therefore adequate minimised expression. These are" 

Y= CD + AB + ABD + BCD 

Y = C D + A B + A B C + B C D  

Y = C D + A B + A B C + A C D  

It is instructive to compare minimisation of an expression with more prime impli- 
cants than are required using both a Karnaugh map and Boolean algebra. 

Example  3.26 

List all of the prime implicants from the Karnaugh map in Table 3.26, and then 
give a minimised expression for Y. Then beginning with the expression containing 
all of the prime implicants minimise this to the form produced from the Karnaugh 
map. 

Solution 

The map contains three prime implicants AB, A C and BC. Of these AB and A C 
are essential prime implicants with BC non-essential since it is also covered by 
these two. Therefore, the minimised form is" 

Y = A B + A C  
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Table 3.26 Karnaugh map of the function minimised in Example 3.26 

Y 

CD 

m 

CD 

CD 

CD 

0 

0 

f 

1 

I 1 

0 

0 

1 

1 

1 

1 

Using Boolean algebra: 

Y=AB+BC+AC 
=AB+AC+BC(A+A) 

=AB+AC+ABC+ABC 
=AB(1 + C) +AC(I +B) 
=AB+AC 

This demonstrates how the layout of the Karnaugh map allows this process to be 

performed 'visually'. 

'Don't  Care' product terms 
Sometimes, when defining a combinational logic function, the output for certain 
inputs will not matter (e.g. certain input combinations may never occur). In this 
case these outputs are known as 'don't care' terms, and can be made either 0 or 1. 

It is usual to choose the output which will aid the minimisation process. 5 

E x a m p l e  3 .27  

Obtain a minimised expression for Y from the Karnaugh map in Table 3.27. 

Table 3.27 Karnaugh map of a function containing 'don ' t  
care' terms which is minimised in Example 3.27 

Y 

X 

X 

5For some circuits a more important factor than aiding the minimisation process is to ensure the circuit 
always functions correctly. This is particularly true in the design of sequential circuits. 
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Solution 

It is clear that if we set ABC to 1 then we can group the quad, A, which, if the 
other don't  care term, ABC, is set to 0 will cover all minterms in the map giving a 
minimised form o f Y= A. 

Karnaugh maps: summary of rules for minimisation 

Karnaugh maps 'work' because adjacent cells (and therefore rows and columns) 

are the same except that one contains one of the variables in its complemented 

form. Tables 3.9, 3.15, 3.19 and 3.20 show the notation used for drawing 

Karnaugh maps with three, four and five variables, respectively. 

When used for five variables, two maps of four variables are employed with 

looping and grouping across the two maps. For more than five variables the 
benefit of Karnaugh maps (which is their ease of use for looping adjacent 
minterms) disappears. The following section introduces Quine-McCluskey 
minimisation which is an alternative that is theoretically not limited in the number 

of variables that can be used. 

In summary, the rules for using Karnaugh maps are as follows: 

�9 Draw the map, remembering the 'pattern' when filling from a truth table. (For 
this to work the same layout of Karnaugh map must be adhered to.) 

�9 Loop all octets, quads and duals (groups of eight, four and two adjacent 
minterms). These are the prime implicants. It does not matter if some minterms 
are covered more than once, although duals should not be totally enclosed in 
quads, and quads in octets as this simply means full minimisation has not been 
performed. 

�9 Remember the map can be 'rolled' across its edges, or across the two maps in 
the case of a five-variable map. 

�9 Remember that you can set 'don't  care' or 'can't happen' terms to either 0 or 1 
to aid minimisation. 

�9 Determine which prime implicants are essential and so must be used in the 
minimised sum of products expression. 

�9 Pick enough prime implicants which together with the essential prime impli- 
cants already selected will cover the whole map. Other non-essential prime 
implicants need not be included in the minimised expression. 6 

�9 Also bear in mind: 
�9 Although the minimised expression is obtained it may not be the best expres- 

sion for your particular problem (e.g. you may already have generated other 
product terms, for some other circuit, which could be used). 

�9 Look out for the characteristic XOR pattern that cannot be minimised but 
which is implemented easily using XOR gates. 

�9 Do not forget that it is sometimes easier to minimise by inspection from the 

6We will see in the next chapter how the inclusion of non-essential prime implicants can sometimes ensure 
the correct operation of a real circuit. 
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truth table (i.e. a Karnaugh map may not offer the best route to minimisation). 

3.3.3 Minimisation via the Quine-McCluskey technique 

The Quinc-McCluskcy method of minimisation is introduced here for two 
reasons. Firstly it provides a method by which Boolean expressions with more 
than five variables can be minimiscd. Secondly it relics upon the systematic 
combination of adjacent mintcrms, then duals, then quads, then octets, etc., 
which is an algorithmic method which can be readily programmed, thus allowing 
minimisation to be performed automatically by computer. (Programs offering 
this facility arc readily available.) 

The basic procedure is: 

�9 Find all of the prime implicants by systematically combining logically adjacent 
product terms (this produces firstly duals, then quads, then octets, etc.). 

�9 Select a minimal set of prime implicants to cover all mintcrms (using all the 
essential prime implicants, and sufficient non-essential prime implicants for 
sufficient coverage). 

The stages are as follows" 

1. Firstly express the function to be minimised in terms of its minterms, Y-E(  ) 
(as described in Section 3.2.1). 

2. The minterms must then be grouped in tabular form according to how many 
l's the codes for these minterms contain (e.g. minterm 13 (fundamental 

_ _  

product ABCD) which has four variables is coded by 1101 and so has three 
l 'S ) .  7 

3. Then each term in each group (of terms with the same number of l's) is 
compared with all terms in the next group (containing terms with an additional 
1). 

If  they differ by one term only (and so can be minimised like a dual on a 
Karnaugh map) then they are combined and retabulated as duals. The 
common terms should be marked (here a dash is used), and combined 
minterms in the first table marked (here with a cross) to indicate that they have 
been combined into a dual. 

This is the systematic combination of logically adjacent terms, and the 
process (i.e. this stage) is repeated until only one combined group is left. 

4. Once this phase has been completed then all uncrossed (unmarked) terms from 
all of the earlier tables and (non-duplicated) terms from the final table should 
be collected as these are the prime implicants. (Duplicated terms may appear 
because of terms being combined in more than one way.) 

5. All that now remains is to choose sufficient prime implicants to effect total 
coverage of the Karnaugh map. To aid in this process it is helpful to draw up a 

VThe significance of this is that fundamental product terms differing only by one variable being in 
complemented form in one of the terms must be logically adjacent, and so can be minimised. 
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table indicating which minterms (used to label the table's columns) are 
included in which minimised (duals, quads, octets, etc.) terms, which are used 
to label the table's rows. 

A cross can then be entered into this table to indicate coverage of a minterm 
by a prime implicant. For total coverage all columns must contain at least one 

c r o s s .  

Those columns containing only one cross indicate minterms covered by only 
one, and therefore an essential, prime implicant. So these essential prime impli- 

cants must be included in the final minimised expression. If these essential 

prime implicants cover all of the minterms then no other prime implicants are 
needed, otherwise additional prime implicants must be used to effect total 
coverage. 

The implementation of this procedure is best illustrated by an example. 

Quine-McCluskey minimisation: Case 1 
Minimise Y, given in fundamental sum of products form, using the 
Quine-McCluskey method. 

Y= ABCD+ ABCD+ ABCD+ ABCD + ABCD 

+ A B C D + A B C D + A B C D  +ABCD 

This Boolean logic expression can be written as: 

Y:]~(2, 3, 5, 6, 7, 8, 9, 10, 11) 

Of the codes for these minterms: 

�9 two have a single 1 (2 and 8) 
�9 five have two l's (3, 5, 6, 9 and 10) 
o. two have three l's (7 and 11). 

This information can then be tabulated as shown in Table 3.28. The next stage is 
to combine logically adjacent product terms, which is achieved by comparing 
terms with a single 1 with those with two, then those with two with those with 
three. So, for example, minterms 2 and 3 differ only in D and so can be combined 
to give 2-3 which is the dual ABC. This dual is therefore entered into the next 
table (of duals), a cross used in the first table to indicate the inclusion of minterms 
2 and 3 in a dual, and the fact that D has been eliminated by a dash in the table of 
duals for 2.3. 

This procedure is carried out for all minterms, thus producing a table of all 
duals as shown in Table 3.29. Note that this table is still split into those terms with 
a single 1 and those with two l's. This is essential since it is the members of these 
two groups that must now be compared to see if any duals can be combined to 
produce a quad. 

Repeating the process for the table of duals, to produce a table of quads shown 
in Table 3.30, we see, for example, that duals 2-3 and 6-7 only differ in B (the 
dashes must match) and so can be combined to give 2- 3-6-7 which is quad AC. 
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Table 3.30 Minimisation process for Case 1 resulting in tabulation of all dual and quad 

implicants 

min te rms  duals 

A B C D A B C D 

2 x 0 0 1 0 2.3 x 0 0 1 

8 x 1 0 0 0 2.6 x 0 - 1 0 

2.10 x - 0 1 0 

3 x 0 0 1 1 8.9 x 1 0 0 

5 x 0 1 0 1 8.10 x 1 0 - 0 

6 x 0 1 1 0 

9 x 1 0 

1 0 x  1 0 

0 1 3.7 x 0 - 1 

1 0 3 .11  x - 0 1 

5.7 0 1 - 

1 1 6 . 7  x 0 1 1 

1 1 9 .11  x 1 0 - 

10 .11  x 1 0 1 

7 x 0 1 

11 x 1 0 

1 

1 

Pr ime 

Impl ican t  

quads  

A B C D 

2.3.6.7 0 - 1 - ,I 

2.3.10.11 - 0 1 - "~ 

2.6.3.7 0 - 1 - dupl icate  

2.10.3.11 - 0 1 - dupl icate  

8.9.10.11 1 0 - - 

8.10.9.11 1 0 - - dupl icate  

Pr ime 
Impl icants  

This is entered into the table of  quads and the inclusion of  the two duals in this 

quad indicated again by crosses in the dual table, with the el iminat ion of  B shown 

by the dash. 

F r o m  the table of quads all terms now have a single 1 which means none can be 

combined to give an octet (since this would require a quad differing in only one 

variable, which must  therefore have either two O's or two l's). The combina t ion  of  
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logically adjacent product terms is now complete and we are left with a list of 
prime implicants. 

Note: 

�9 The quad table contains duplicates (e.g. 2 . 3 - 6 . 7  and 2 -6 -3 .7 ) .  This will 

happen for all quads because there are always two ways in which the four 

minterms can be combined into pairs of duals. 

�9 There is a dual, 5.7,  which cannot be combined into a quad and so is itself a 

prime implicant. Such duals and minterms which cannot be reduced must 

always be looked for. 

We can now produce the table of prime implicants (the rows) and minterms (the 

columns) in Table 3.31. A cross indicates that a minterm is included in a prime 
implicant. A circle around a cross indicates that the row containing it is an essen- 

tial prime implicant (epi). This is so if there is only a single cross in the column and 

therefore this is the only prime implicant containing this minterm. 

Table 3.31 Prime implicant table for Case 1 

5.7 

2.3.6.7 

2.3.10.11 

8.9.10.11 

| 

Q 

Q 

All that remains is to pick out the essentiai prime implicants from this table, 
plus sufficient prime implicants (if required) to ensure all minterms are included in 

the final expression. 

Table 3.32 Karnaugh map for the function minimised in Case 1 which illustrates the process 
employed in Quine-McCluskey minimisation 

Y 

CD 

CD 

CD 

CD 

0 

0 

f 

1 ' I 
t 

I 

I 

! 1 , 

0 

1 

m 

1 
J 

0 

1 

1 

f 

i / 1 

I 

I 

~ - -  

,., 

Y[ 
CD 0 

eD 

CD 

CD 

12 

13 

15 
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11 

10 
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For this example we get three essential prime implicants, 5.7, 2.3.6.7 and 
8.9.10.11, which cover all minterms which means the remaining prime implicant, 
2.3.10.11, is non-essential. This gives: 

Y= 5.7 +2.3.6.7 + 8.9.10.11 
Y - A B D + A C + A B  

It is instructive to look at the Karnaugh map that would be used to minimise 
this function which is shown in Table 3.32 together with the codes for the 
minterms in their corresponding cells in the map. From these the process used in 
Quine-McCluskey minimisation can clearly be seen. 

Quine-McCluskey minimisation: Case 2 
Minimise Y=~(0,  4, 5, 7, 10, 12, 13, 14, 15). 

�9 one has no l's (0) 
�9 one has a single 1 (4) 
�9 three have two l's (5,10 and 12) 
�9 three have three l's (7, 13 and 14) 
�9 one has four l's (15). 

The minimisation process is shown in Table 3.33. The prime implicants are: 

0.4, 10.14, 4.5.12.13, 5.7.13.15 and 12.13.14.15 

The table of prime implicants, Table 3.34, is now used to produce a minimised 
expression with coverage of all minterms. From Table 3.34 we see there are three 
essential prime implicants, 0.4, 10.14 and 5.7.13.15, with either of the non-essen- 
tial prime implicants, 4.5.12.13 or 12.13.14.15, also required to give full coverage. 
Therefore" 

Y = A C D + A C D + B D + A B  

o r  

Y = A  CD + A CD+ BD+ BC 

Drawing the Karnaugh map, Table 3.35 (although not necessary), serves again to 
illustrate the stages ofminimisation used in the Quine-McCluskey method. 

3.4 PRODUCT OF SUMS" THE NEGATIVE LOGIC 
APPROACH 

So far in this chapter we have approached all topics using positive level logic. In 
other words we have always considered the output and minimisation of combina- 
tional logic expressions in terms of the input combinations giving an output of 1. 
(For example we have considered the position of minterms in the Karnaugh 
maps.) 

Given the principle of duality it should come as no surprise to learn that we 
could instead have used a negative level logic appproach. As we will now see this 



78 Combinational logic basics 

Table 3.33 Quine-McCluskey minimisation process for Case 2 

minte rms  duals  

A B C D A B C D 

0 x 0 0 0 0 0.4 0 - 0 0 " ~ ~  

4 x 0 1 0 0 4.5 x 0 1 0 

5 x 0 1 0 1 

1 0 x  1 0 

12 x 1 1 

4.12 x - 1 0 0 

7 x 0 1 

13 x 1 1 

1 0 5 . 7  x 0 1 - 1 

0 0 5.13 x - 1 0 1 

10.14 1 - 1 0 " ~ ~  

1 1 1 2 . 1 3  x 1 1 0 - 

0 1 12.14 x 1 1 - 0 

14 x 1 1 1 0 

15 x 1 1 1 1 

7.15 x - 1 1 1 

13.15 x 

14.15 x 

1 1 - 1 

1 1 1 

quads  

A B C D 

4.5.12.13 

4.12.5.13 

1 0 - 

1 0 - dupl icate  

5.7.13.15 

5.13.7.15 

12.13.14.15 

12.14.13.15 

1 1 

1 - 1 dupl icate  

1 1 - - dupl icate  

Pr ime 

Impl ican ts  

Pr ime 
Impl ican t  

Pr ime 
Impl ican t  

approach  is linked to the use offundamentalproduct of  sums expressions, and the 

posit ion of  maxterms (the max imum area of  l 's, and hence the posi t ion of  a single 

zero) on a Karnaugh  map.  
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Table 3.34 Prime implicant table for Case 2 

0.4 

10.14 

4.5.12.13 

5.7.13.15 

12.13.14.15 

| 

Q 

Q 

Y 

~5  

CD 

CD 

CD 

Table 3.35 Kamaugh map of the function minimised in Case 2 

I 

I 

r 
1 

1,.!_ 

I I 

I I 

I I I  
I I 

I ~ I 

I I 

I I 

I I 
I 

i I 
i ! 

,) 

Y 

CD 

CD 

CD 

CD 

12 

13 

15 

14 

Fundamental product of sums form 

Using the function considered earlier: 

Y = A B + B C  

from its truth table, shown again in Table 3.36, we can see (in a similar way to that 
used when obtaining the fundamental sum of products form) that Y=0 if: 

((A =0) AND (B-0)  AND (C=0)) OR 
((A- 1) AND (B-0)  AND (C= 0)) OR 
((A- 1) AND (B-  1) AND (C=0)) OR 

((A- 1) AND (B= 1) AND (C= 1) 

which in Boolean form is: 

Y -  A B C + A B C + A B C + A B C  

This means that Y = 1 (i.e. Y= 0) if any of these fundamental product terms are 1. 



80 Combinational logic basics 

Table 3.36 Truth table of Y= AB + BC 

A B c 
0 0 0 0 
0 0 1 1 
0 1 0 1 
0 1 1 1 
1 o o o 
1 0 1 1 

1 i 0 0  
1 1 1 0 

(This is a fundamental sum of products expression for Y.) This expression can be 
dualled to give: 

r'=(A + B+ 63-(3+ B+ 63-(2+ B+C)-(2+ B+ 

which expresses Y in f undamen ta l  product  o f  sums form (i.e. fundamental sum 
terms (as they contain all three variables) are AND'd  together to give their 
product). (Note that the- has been used to emphasise that the sum terms are being 
AND'd together.) This, and the fundamental sum of products expression 

Y = A B  C + A B C + A B C + A B  C 

are identical expressions for Y in different forms. 
Although the above dualling process can be performed directly, by swapping all 

operators and inverting all variables, it is instructive to consider it in more detail. 
Firstly, De  Morgan's theorem, P - Q = P +  Q, is applied to the individual funda- 
mental product terms to give: 

~'=(A +B+ C)+(2+B+ C)+(2+B + C)+(A +B +C) 

Then the second of De Morgan's theorems, P + Q= P- Q, is used to give: 

Y= (A + B + C) . (A + B + C) " (A + B + C) . (A + B + C) 

Finally, inverting both sides gives: 

Y = ( A  + B+ C) . (A + B+ C) " (A + B + C) . (A + B + C) 

P r o d u c t  o f  s u m s  and m a x t e r m s  

With the sum of products form, if any one of the product terms is 1 then the 
output will be 1 because any Boolean expression OR'd with 1 gives a result of 1 
(Equation 1.9). Regarding the product of sums form, the significant point is that 
anything AND'd  with 0 gives 0 (Equation 1.6). Consequently, in the fundamental 
product of sums form if any of the sum terms is 0 then Y=0. 

These processes are illustrated in Table 3.37. This shows how OR'ing (on the 
left-hand side) the Karnaugh maps for the individual product terms in the funda- 
mental sum of products expression for Y leads to the overall map for Y, together 
with how AND'ing (forming the product) of the individual sum terms in the 
fundamental product of sums expression for Y also leads to the same map. 
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Table 3.37 The production of the overall Karnaugh map for Y from the maps of the indi- 
vidual fundamental product and sum terms. The sum of products form is shown 
on the left, with the product of sums form on the right 

OR AND 

OR AND 

1 0 

1 1 

Y 

OR AND 

The important points to note are that the fundamental product terms specify 

where the minterms are in the final map, whereas the fundamental sum terms 

specify where a zero appears in the final map. However, an alternative way of 

viewing this is that the fundamental sum terms rather specify that all cells except 

one have a 1 in them. It is for this reason that the fundamental sum terms are 
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known as maxterms, since they specify the maximum area of l's (i.e. all cells 
except one) in the Karnaugh map. 

In the same way that we could describe any combinational logic expression as a 
list of minterms, we can also describe it as a list of sum terms (maxterms). These 
will be those which were not minterms. So Y= AB+ BC can be written as either 
Y=Z(1, 2, 3, 5) or Y=l'I(0, 4, 6, 7). 

Example 3.28 

In Sections 3.1 and 3.2.1 the Boolean expression Y = A C + A B  was used as an 
example. Write out the fundamental sum of products expression for Y and then 
dual it to give the fundamental product of sums expression for Y. Also give an 
expression for Y in terms of the codes for the maxterms. 

Solution 

From the earlier truth table in Fig. 3.2" 

Y = A B C + A B C + A B C + A B C + A B C  

DuaUing this gives" 

Y=(A + B+ C) " (A + B+ C) " (A + B+ C) " (A + B+ C) " (A + B+ C) 

Finally, Y= 1-[(2, 4, 5, 6, 7). 

Minimisation of product of sums expressions using Boolean algebra 
Minimisation of the fundamental product of sums expression can of course be 
performed algebraically. To do this it is easiest to simplify the expression for Y: 

Y= A B C + A B C + A B C + A B C  

=(A + A ) B C + ( B + B ) A C + A B ( C + C )  

= B C + A C + A B  

Dualling gives: 

Y= (B + C) " (A + C) " (A + B) 

The final expression for Y gives the product terms which correspond to the 
three 'prime implicants' for the O's in the Karnaugh map. This is because this is a 
sum of products expression for Y. The product of sums expression for Y is 
composed of the prime implicates which are the corresponding sum expressions to 
prime implicants. It is important to note that whereas the 'prime implicants' for Y 
specify where the O's are in the Karnaugh map (for each product term), see Table 
3.37, the prime implicates rather specify where the l's are. 

It is clear from the Karnaugh map that this is not a minimised product of sums 
expression for Y because A t~ is a non-essential prime implicate. This is confirmed 
by Boolean algebra as follows: 
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Y -  BC+AC+AB 

= B C + A B C + A B C + A B  

= BC(1 +A)+AB(1 + ~  

=BC+AB 

Dualling gives" 
m 

r = ( s + G - ( A  +s) 

The sum of products and product of sums form are complementary and both 
produce the same Boolean function with two-level circuits. The circuit for the 
minimised product of sums form of Y is shown in Fig. 3.5. 

B 
c 

A 
B 

m u 

Fig. 3.5 The two-level circuit for Y= (B+ C). (A + B) 

Y 

Minimisation using Karnaugh maps 
The above illustrates how we can use a Karnaugh map to produce a minimised 
product of sums expression. Basically the process is exactly the same as usual 
except the O's are grouped and looped rather than the l's. This gives a sum of 
products expression for Y, which is then simply dualled to give the minimised 
product of sums form for Y. 

Example 3.29 

Minimise the fundamental product of sums expression from Example 3.28: 

r'=(A +8+ C). (A +8+63 .(A +8+ C)- (A + 8+ C)- (A +B+C) 

firstly using Boolean algebra and then a Karnaugh map. Then draw the circuit 
which implements the minimised form of Y. 

Solution 

Using the dual of Y (from the previous example) 
Y= ABC+ABC+ABC+ ABC+ABC 

- (A + A)BC + (g  + B)A c + (g  + B)A C 

= B C + A C + A C  

=A+BC 
Dualling this expression gives: 

r=A-(B+C) 
From the Karnaugh map for Y in Table 3.38, looping and grouping the O's 

gives 
Y=A+BC 
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Table 3.38 Karnaugh map for the function discussed in Example 3.29 

Y 

0) 

0 

which can be dualled to give the same result as above. The circuit to implement 

this minimised product of sums form is shown in Fig. 3.6. 

......... i ~ ' ~ - -  Y 
B 

Fig. 3.6 Minimised product of sums form of Boolean expression considered in Example 3.29 

3.5 SELF-ASSESSMENT 

3.1 What characteristic defines a combinational logic circuit? 

3.2 What are product terms and sum terms? 

3.3 What are the two (functionally identical) forms that can be used to describe 
the operation of a combinational logic circuit? 

3.4 What different ways are there of describing the operation of a combina- 
tional logic circuit? 

3.5 How does the number of columns and rows in a truth table relate to the 
number of input and output variables? 

3.6 What is meant by a fundamental product term, and how are they related to 
the outputs from a truth table? 

3.7 What form of circuit does a two-level circuit implement and what are the 
advantages of this type of circuit? 

3.8 What is the effect of minimising a fundamental sum of products expression? 

3.9 Which single-variable theorem is the minimisation of fundamental sum of 

products expressions dependent upon? 

3.10 Why can Karnaugh maps be used for 'visually' minimising Boolean expres- 

sions. 

3.11 Draw out the basic form of Karnaugh maps for three and four variables, 
together with the corresponding truth tables, indicating the link between the 
cells of the Karnaugh maps and rows of the truth table. 
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3.12 What are octets, quads and duals? 

3.13 What are minterms, prime implicants and essential prime implicants? 

3.14 What is meant by 'don't care' product terms and what is their significance 
regarding minimising Boolean expressions? 

3.15 How does the description and implementation of a combinational logic 
circuit differ when a product of sums rather than sum of products form is 
used? 

3.16 The minimisation of fundamental forms via a Karnaugh map relies upon 
grouping and looping either minterms or maxterms. If in general n terms are 
looped how many variables are eliminated? 

3.6 PROBLEMS 

The first eight problems refer to the truth tables in Table 3.39. 

Table  3.39 T r u t h  tables o f  funct ions  referred to in the fol lowing p rob lems  

C J K L M N P Q A B 

0 0 0 1 0 1 0 0 1 1 

0 0 1 1 0 0 1 1 0 1 

0 1 0 0 1 0 0 1 1 0 

0 1 1 0 1 1 1 1 0 0 

1 0 0 1 1 1 1 0 0 1 
1 0 1 0 0 0 1 1 0 0 

1 1 0 0 1 1 1 1 1 1 

1 1 1 1 1 1 0 0 1 0 

C D R S T U V W X 

0 0 0 0 1 0 1 1 1 

0 1 1 0 0 0 0 1 1 

1 0 0 0 0 0 1 0 0 

1 1 1 0 0 0 0 0 0 
0 0 1 0 1 1 1 1 1 

0 1 1 1 0 1 1 1 1 

1 0 1 0 0 1 1 0 0 

1 1 0 0 1 1 1 0 0 

0 0 0 1 1 1 1 1 1 

0 1 1 0 1 1 0 1 1 

1 0 0 0 1 1 1 0 0 

1 1 1 0 1 1 1 0 0 

0 0 1 1 0 0 1 0 1 

0 1 1 1 0 0 0 1 0 

1 0 1 1 0 0 1 0 0 

1 1 1 0 0 0 0 1 0 
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3.1 For all of the outputs (J to Q) from the three input variable truth table above: 

�9 Give the output from the the truth table as a fundamental sum of products 
expression. 

�9 Use Boolean algebra to simplify this expression. 
�9 Confirm that this is correct by minimising using a Karnaugh map. 
�9 Using OR and AND gates draw the two-level circuits required to imple- 

ment the functions described by these truth tables. 
�9 Use the Karnaugh maps to derive minimised product of sums expressions 

for the outputs, and then use Boolean algebra to confirm their equivalence 
to the minimised sum of products form. 

3.2 Use the Quine-McCluskey method to minimise M. 

3.3 Draw circuits to implement J using firstly only NAND gates and then only 
NOR gates. 

3.4 Draw the Karnaugh map for R and use it to determine all of the prime impli- 
cants. Which ones are essential prime implicants? Give a minimised sum of 
products expression for R. 

Verify that all of the prime implicants have been found using the 
Quine-McCluskey technique. 

Use the Karnaugh map to derive a minimised product of sums expression for 
R, and then demonstrate its equivalence to the sum of products form using 
Boolean algebra. 

How could R be implemented using one each of: a two-input OR gate, a two- 
input AND gate, a four-input NAND gate and an inverter? 

3.5 Write out expressions for S and T in sum of fundamental products form and 
then minimise them using Boolean algebra. Check the results using Karnaugh 
maps. 

3.6 Minimise functions U, V and W. Draw the circuit required to implement U 
using firstly AND and OR gates and then only NAND gates. What single 
gate could be used instead? Express U in minimised product of sums form. 

3.7 Minimise X into both sum of products and products of sums form. Show, via 
Boolean algebra, the relation between the two forms and how many gates are 
necessary to implement them. Then consider the product of sums implemen- 
tation using a maxterm and an octet of O's (i.e. a non-minimised implementa- 
tion) which leads to a form for X consisting of an octet of l's minus a single 
minterm (produced by AND'ing the octet with the complement of the missing 
minterm). 

3.8 Using Karnaugh maps find the prime implicants of Y and Z. Which are essen- 
tial prime implicants? Give minimised expressions for these functions. 

Confirm these results using the Quine-McCluskey method. 
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3.9 Boolean expressions can be factored via the distributive law with a basic 
example being: 

AC+AD+BC+BD=(A +B).(C+D) 

Draw Karnaugh maps of the left-hand side of this equation and the two sum 
terms (i.e. factors) on the right-hand side to prove that this equation is 
correct. 

3.10 Use Karnaugh maps to show that (AC+AC) and (C~D) are factors of 
(ABCD+ ABCD) and find a suitable third and final factor. 

3.11 Minimise the following function using firstly a Karnaugh map and then the 
Quine-McCluskey method. 

Y=~(1, 2, 5, 8, 9, 10, 12, 13, 16, 18, 24, 25, 26, 28, 29, 31) 



4 Combinational logic circuits 

4.1 COMMON COMBINATIONAL LOGIC CIRCUITS 

There are a number of combinational logic circuits which are used so frequently 
that they are often considered to exist as circuit elements (like logic gates) in their 
own right. Note that the forms of these circuits given here are those that imple- 
ment the basic functions. When provided as 'building blocks' for digital design 
some of these may have additional combinational logic circuits attached to their 
inputs that allow extra control of their action. 

4.1.1 Multiplexers 

Multiplexers provide a way of selecting one out of many digital signals. A multi- 
plexer will in general have n inputs, and obviously one output, with m control 
lines which are used to select one of the n inputs. The block diagram of a multi- 
plexer (mux) is shown in Fig. 4. 1. 

m control lines 

n inputs MULTIPLEXER single output 

Fig. 4.1 Block diagram of an n-to-1 multiplexer 

Which of the n-input channels is routed through to the output is determined by 
the bit pattern on the m control lines. Hence, n, the number of input lines that can 
be multiplexed is 2". The basic structure of an n-input multiplexer is n (m + 1)- 
input AND gates (that is one AND gate to decode each of the n= 2"' possible 
combinations of the m control inputs), all feeding into a single OR gate. The extra 
(to the m control lines) input to each gate is connected to one of the n inputs. 
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Multiplexers are usually referred to as n-to-1 or 1-of-n multiplexers or data selec- 
tors. 

The operation is based upon the fact that only one of the 2 m possible input 
combinations can ever be applied to the control inputs at any one time, and there- 
fore only the corresponding AND gate will be capable of giving an output other 
than 0. This is the gate whose input will be routed through to the output. 

A (m=l) 

D 

D 

(n-2) 

Fig. 4.2 A 2-to-1 multiplexer 

Y 

2-to-I multiplexer 

Figure 4.2 is the circuit diagram of a 2-to-1 multiplexer. Note that it has two 
inputs (n= 2), with a single control line (m= 1). If A =0 then the output from the 
AND gate with D~ as an input must be 0 (since anything AND'd  with 0 is 0, 
Equation 1.6)  whilst the output from the other AND gate will be 
A. D O = 1 �9 D O = D 0. So, the output from the multiplexer is Y= D O + 0 = D O (Equation 
1.8). By similar reasoning if A = 1 then Y= D,. In Boolean algebraic terms: 

Y=A.Do+A.D  ~ 

One way of thinking of the action of a multiplexer is that only one of the AND 
gates is ever activated and so allows the input signal fed to it through to the OR 
gate. This is illustrated in Fig. 4.3 which shows one of the AND gates from an 8- 
to-1 multiplexer which therefore has three control signals A, B and C. The gate 
shown controls the passage of input D 3 which will be selected for an input of ABC. 
The output from this gate is ((ABC).D3),which will be 0 3 when the product term 
ABC= 1, and 0 otherwise. Hence the presence of this product term effectively 
'activates' the gate, meaning the output is then D 3. Any other input combination 

D 3 

input 
(1-of-8) 

A 

l 
B C control lines 

to OR gate 

Fig. 4.3 The 'activation' of an AND gate in an 8-to-1 multiplexer 
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means the output from the gate is always 0. Only one AND gate in a multiplexer is 
activated at a time and it is therefore its output that appears as Y, the output from 
the OR gate and hence the multiplexer. 

E xam p le  4.1 

Draw the circuit diagram and truth table, and give the Boolean equation 
describing the output, of a 4-to-1 multiplexer. 

S o l u t i o n  

These are shown in Fig. 4.4 

Y = A B D  o + A B D  ! + A B D  2 + A B D  3 

A A B B 

D 

D I 

D 2 

D 3 

0 
I 
I 

.... [ j 

/ 

A B Y 

0 0 D O 

0 1 D l 

1 0 D., 
1 1 D3. 

Fig. 4.4 A 4-to-1 multiplexer and its truth table, as discussed in Example 4.1 

Y 

The multiplexer as a universal logic solution 
Because all 2 m possible combinations of the m control lines of a multiplexer are fed 
to 2'" AND gates then there is an AND gate for all of the fundamental product 
terms of the m variables. A multiplexer therefore provides a way of synthesising 
the logic function of any m-input truth table in fundamental sum of products 
form. All that has to be done is to connect the input lines of the multiplexer to 
either 0 or 1 depending upon the desired output for the particular fundamental 
product. So any m-input (n-row) truth table can be implemented by a n-input 
multiplexer. The advantage of this type of implementation of a combinational 
logic circuit is that it requires only a single circuit element and that no minimisa- 
tion is required since the circuit is in fundamental sum of products form. 
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Implement the truth table in Table 4.1 using a multiplexer. 

Table 4.1 Truth table implemented via a multiplexer in Example 4.2 

A B r  

o o 1 

o 1 o 

1 o 1 

1 1 1 

S o l u t i o n  

This will require a 4-to-1 multiplexer (i. e. two control inputs) with inputs D o 
through to 0 3 tied to 1, 0, 1 and 1, respectively (i.e. the output from the truth 
table) as shown in Fig. 4.5. 

~ m 

A A B B 

D O 

D1 

D , ~  

D 3 

0 1 
I I i )  

---q )7 

I j 

Fig. 4.5 Multiplexer used as a universal logic solution, as described in Example 4.2 

Furthermore, an n-input multiplexer and  an inverter  can be used to implement 
any 2n row truth table. To achieve this all inputs to the truth table e x c e p t  one are 
connected to the multiplexer's control lines. This means that each AND gate is 
now activated for two rows of the truth table, i.e. two input patterns differing in 
the variable not  connected to a control line. 

These two rows have four possible output combinations: both 0; both 1; one 0 
and the other 1; or vice versa. For the same value in both rows the activated AND 
gate can be tied to either 0 or 1 as required, whilst for different values it can be 
connected to the least significant input or its inverse (this is why the inverter is 
needed). 

Example 4.3 

How can the truth table in Table 4.2 be implemented using a four-input multi- 
plexer and an inverter? 



92 Combinational logic circuits 

Table 4.2 The eight-row truth table implemented using a four-input multiplexer as described 
in Example 4.3, and shown in Figure 4.6 

A B C Y 

o o o 1 
0 0 1 1 

0 1 0 0 

0 1 1 0 

1 0 0 1 

1 0 1 0 

1 1 0 0 

1 1 1 1 

Solution 

This is a three input, eight row (2n = 8) truth table which we are going to implement 

using a four-input (n =4 and m = 2) multiplexer. The two most significant inputs to 
the truth table, ,4 and B, are connected to the two control lines of the multiplexer. 

This relates each of the four AND gates in the multiplexer to a pair of rows in 
the truth table (for fixed values of A and B). For A B  we see that Y= 1 and for A B  

that Y=O. For AB, Y= C and for AB, Y= C. Consequently, the multiplexer must 
be wired as in Fig. 4.6. 

0 1 A B 

o0 I 1, i i 
D I ~' 4-to- 1 MUX Y 
D 2 

D3 " I 

l 
C 

Fig. 4.6 Use of a four-input multiplexer to implement the truth table shown in Table 4.2, as described 
in Example 4.3 

4.1.2 Demultiplexers 

Demultiplexers provide the reverse operation of multiplexers since they allow a 
single input to be routed to one of n outputs, selected via m control lines (n-2'"). 
This circuit element is usually referred to as a 1-of-n demultiplexer. The circuit 
basically consists of n AND gates, one for each of the 2'" possible combinations of 
the m control inputs, with the single line input fed to all of these gates. Since only 
one AND gate will ever be active this determines which output the input is fed to. 
The block, and circuit, diagram of a 1-of-4 demultiplexer is shown in Fig. 4.7. 
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X 

input 

A B 

i ! 

1-of-4 DEMUX 

control inputs 

Y 
0 

Y 1 
Y 

2 
Y 

3 

outputs 

A A B B 

X __  �9 t 
- - I  

i 

. . . .  Y 

) Y 

Y 

Y j 3 

Fig. 4.7 The block and circuit diagrams of a 1-of-4 demultiplexer 

Decoders 
A decoder is essentially a demultiplexer with no input line. So instead of feeding 
an input line through to the selected output, rather the selected output will simply 
become active (this may be either active-HIGH or LOW, with a N A N D  rather 
than an A N D  used for the latter). Obviously a demultiplexer can be used as a 
decoder by tying the input line to the appropriate value. A 2-to-4 line decoder 
implemented using a 1-of-4 demultiplexer is shown in Fig. 4.8. 

2 inputs 

A A B B 

Y 0  

J 

~ ----- Y 2 

4 outputs 

Fig. 4.8 An active-HIGH 2-to-4 line decoder implemented using a 1-of-4 demultiplexer. (Note that an 
active-LOW device would have the AND gates replaced with NAND gates) 
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Example  4.4 

Draw the truth table of a BCD-to-decimal decoder, and show how the generation 

of the first four codes could be achieved using a demultiplexer. 

Solution 

Table 4.3 shows the truth table. To produce a decoder for the first four codes (0 to 

3) requires a 2-to-4 decoder (i. e. a 1-of-4 demultiplexer). Note  that  the first four 

codes have A = B = 0  so these two inputs are not needed. The circuit to implement 

this using a demultiplexer is shown in Fig. 4.9. 

Table 4.3 

A 
0 

0 
0 
0 
0 

Truth table for a BCD-to-decimal decoder as discussed in Example 4.4 

BCD 
B C D 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 

0 1 0 1 
0 1 1 0 
0 1 1 i  
l O O O  

1 0 0 1 

Decimal 
0 1 2 3 4 5 6 7 8 9 
1 0 0 0 0 0 0 0 0 0  

, 

0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
o o o o o o o o 1 o 

0 0 0 0 0 0 0 0 0 1 

BCD 
C D 

" 0 

) 1 

3 

Fig. 4.9 The BCD-to-decimal decoder designed in Example 4.4 

decimal 

Some decoders have more than one output  active at a time, an example being a 

BCD to 7-segrnent decimal display decoder. Here, rather than a single output  

layer of  A N D  gates (one for each possible input pattern), a two-level output  is 

required to allow the OR' ing  together of the outputs  that  may become active for 

many different input patterns. (See Problem 4.3.) 

4 . 1 . 3  E n c o d e r s  

These are the opposite of decoders in that they convert  a single active signal (out 
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of r inputs) into a coded binary, s-bit, output (this would be referred to as an r- 
line-to-s-line encoder). Often encoders are of a type called priority encoders which 
means that more than one of the r inputs may be active, in which case the output 
pattern produced is that for the highest priority input. 

Encoders have a less general form than multiplexers and demultiplexers, being 
specifically designed for the required task. Their usual form is of s combinational 
circuits (e. g. AND-OR design),with r inputs. 

Example 4.5 

Write out the truth table for the 4-1ine-to-2-1ine encoder that takes a four-line 
decimal signal and converts it to binary code. Design, and draw, the circuit to 
implement this encoder. 

Solution 

The required truth table is shown in Table 4.4. This truth table is incomplete since 
it has four input columns but only four rows. However, we know that for all of the 
input combinations not given we need A =0 and B=0. So we can pick out the 
fundamental sum of product terms for A and B directly from the truth table to 
give: 

A = 0 1 2 3 + 0 1 2 3  
B = 0 1 2 3 + 0 1 2 3  

Table 4.4 Truth table for a 4-line decimal-to-binary encoder as discussed in Example 4.5 

Decimal Binary 

0 1 2 3 A B 

1 0 0 0 0 0 

0 1 0 0 0 1 
0 0 1 0 1 0 

0 0 0 1 1 1 

The circuit is shown in Fig. 4.10. 

0 1 2 3 

r 

Fig. 4.10 Circuit that implements the truth table shown in Table 4.4, discussed in Example 4.5 
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As with decoders, encoders are often used in an active-LOW input and/or 
output form. 

4.1.4 X O R  gate based circuits 

The truth table for the XOR operation, Y=AB+AB, is given in Table 4.5. 

Table 4.5 The truth table for a two-input XOR gate 

A B Y 

o o o 
o 1 1 
1 o 1 
] ] o 

Controlled inverter 
From either the truth table or the Boolean logic expression for the XOR gate it is 
clear that if A =0 then Y= B, whereas if A = 1 then Y= B. Consequently a two- 

input XOR gate can be used as a controlled inverter, with, in this example, the 
value of A used to determine whether the output, Y, is equal to B or its comple- 
ment. 

Comparator 
The output of a two-input XOR gate is 0 if the inputs are the same and 1 if they 
differ. This means that XOR gates can be used as the basis of comparators,  which 
are circuits used to check whether two digital words (a sequence of binary digits, 
i.e. bits) are the same. 

Example 4.6 

Design, using two-input XOR gates, a comparator  which will give an active-LOW 
output if two four-bit words, A and B, are the same. 

So/ut/on 

The necessary circuit is shown in Fig. 4.11. Y will be 0 only if the outputs from all 

of the XOR gates are 0, that is if all corresponding bits (e. g. A 0 and B0) in the two 
words are the same. 

Example 4.7 

A two-bit comparator  gives an active-HIGH output, Y, if two two-bit words, A 
and B, are the same. Give Y in fundamental sum of products form and then use 

Boolean algebra to show that 

Y=(Ao (B Bo)+(AI ~) B,) 
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A 

B 

B 1 

B 2 

A3 
B 3 

0 ifA 0 = B 0 

o 

Y---O if A=B 

A four-bit comparator constructed using XOR gates, discussed in Example 4.6 

Solution 

Y = A o A~ B o B~ + AoA ~ B o B~ + AoA ~ BoB ~ + AoA ~ BoB ~ 

=AoBo(A R B~ +AIB~)+AoBo(A ~ B~ +A~B~) 

: (AoB o +AoBo)" (A~ BI +A~B~) 
: ( (Ao �9 �9 (A, �9 

=(A 0 ~ Bo)+(A ~ ~) B~) De Morgan's theorem 

Parity generators and checkers 
When sending n bits of data along a serial line (i.e. one bit after another) a simple 
way of checking whether an error (in a single bit) has occurred is to use a parity 
bit. This is an extra bit which is added on to the n-bit word, and whose value is set 

at either 0 or 1, to ensure that the total number of bits that are 1 in the complete 
(n + 1)-bit word sent is either odd or even (i.e. odd or even parity). 

The XOR gate can be used for this purpose since it only gives an output of 1 if 

an odd number of its inputs are 1. Parity generation refers to the process of deter- 
mining the value of the parity bit; parity checking is performed on the received 
(n + 1)-bit word to see if an error has occurred. 

Example 4.8 

Use two-input XOR gates to produce the parity generation and checking systems 
to ensure the four-bit data sent over a serial link is transmitted and received as an 
odd parity word. 

Solution 

The circuit is shown in Fig. 4.12. The output from gates 1 and 2 will be 1 if their 

inputs have odd parity (i.e. a 0 and a 1), as will the output from gate 3. (Note that 

if gates 1 and 2 both output 1 to indicate odd parity of the two bits they have 

compared, then when used as the inputs to gate 3, its output will ~ indicate even 

parity, which is correct.) If the four-bit word has odd parity then the parity bit must 
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1 if odd parity A0 / 
4bit A, P ity 
data word A 2 [ Bit 

A 3 

GENERATOR 1 
controlled 
inverter 

A 0 

A 1 

A 2 

A 3 

Parity bit 
CHECKER 

) ~  ___ 1 if 
no error 

Fig. 4.12 Parity generator and checker constructed using XOR gates as discussed in Example 4.8 

be zero and so the output from gate 3 is passed through an inverter to generate the 
parity bit. (The use of a controlled inverter means that by simply changing the 
control bit to 0 the parity bit can be generated for an even parity system.) 

An output of 1 from the parity checker  indicates that the data has been 
correctly received with odd parity. 

4.1.5 Full adders 

A full adder circuit is central to most digital circuits that perform addition or 
subtraction. It is so called because it adds together two binary digits, plus a carry- 
in digit to produce a sum and carry-out digit. ~ It therefore has three inputs and 
two outputs. The truth table and corresponding Karnaugh maps for it are shown 
in Table 4.6. 

Example 4.9 

Two l 's with no carry-in are added using a full adder. What  are the outputs? 

Solution 

Adding two l 's in binary gives a result of 0 with a carry-out of  1. So S = 0  and Cou ~ 

= 1. (In decimal this is saying 1 + 1 - 2 ,  in binary 01 +01 - 10.) 

Example 4.10 

Two l 's with a carry-in of 1 are added using a full adder. What  are the outputs? 

IA half adder only adds two bits together with no carry-in. 
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Table 4.6 The truth table and Karnaugh maps for a full adder. X and Y are the two bits to be 
added, C~, and Cou t the carry-in and carry-out bits, and S the sum 

X Y C i n S C o u ,  
0 0 0 0 0 
0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 
1 1 1 1 1 

C. 
m 

C. 
In 

C out 

C. 
In 

C in 

S o l u t i o n  

Here the result is 1 carry 1, that  is S =  1 and Cou,= 1. (In decimal 1 + 1 + 1 (carry-in) 

= 3; in binary 01 + 01 + 1 (carry- in)= 11 .) 

Using the K a r n a u g h  maps  to obta in  minimised expressions for S and Cou ,, we 

notice the chequerboard  pa t te rn  of  an X O R  gate in the sum term to give: 

S-- ~,~r (~) Y ~ Cin 
whilst 

Cou t - X Y +  XCin + YCin 

The circuit to implement  the full adder  is shown in Fig. 4.13. 

X 

Y 

C, 
in  

. . . . . . . .  

, ! )  
t ) -  

Fig. 4.13 Circuit diagram of a full adder 

Cout 
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4.2 COMBINATIONAL LOGIC DESIGN EXAMPLE: 
A FOUR-BIT ADDER 

In this section we consider the design of a four-bit adder; i.e. a circuit that adds 

together two four-bit binary numbers. This needs to be a combinational logic 
circuit and therefore serves as a useful exercise to apply what we have learnt. 

To recap, we know that any truth table can be implemented using a product 
of sums or sum of products expression in either a fundamental or minimised (via 
Boolean algebra or Karnaugh maps for example) form. Using this approach we 

end up with a two-level circuit implementation of AND-OR, OR-AND, 
NAND-NAND or NOR-NOR. We have not yet considered the practicalities of 
any circuits we have designed or analysed, which is one of the purposes of this 
section. 

We begin by looking again at both the benefits and problems of two-level 
circuits, before considering this means of implementation for the four-bit adder. 
We then move on to two other methods of implementation which rely upon a 
more thorough look at what we want the circuit to do, rather than simply treating 
it as a combinational logic problem to be approached using fixed 'rules'. 

4.2.1 Two-level circuits 

Two-level circuits are direct implementations of sum of products and product of 
sums forms, either in fundamental form (straight from the truth table) or after 
minimisation. We now consider the advantages and disadvantages of this type of 
circuit: 

�9 Advantages: 
�9 Any combinational logic function can be realised as a two-level circuit. 
�9 This is theoretically the fastest implementation since signals have only to 

propagate through two gates. 2 
�9 They can be implemented in a variety of ways, e. g. AND-OR, OR-AND, etc. 

�9 Disadvantages: 
�9 A very large number of gates may be required. 
�9 Gates with a prohibitively large number of inputs may be needed. 
�9 Signals may be required to feed to more gates than is possible (because of the 

electrical characteristics of the circuit). 
�9 The task of minimisation increases exponentially with the number of input 

variables (although computer programs can obviously help reduce this 
problem). 

The effect of minimising a fundamental two-level circuit is to reduce the first three 
disadvantages although it cannot be guaranteed to remove them. Note that the 

-'Note however that a single large multi-input gate may be slower than the equivalent constructed from 
several gates with fewer inputs (see Section 9.3.5) .  
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second disadvantage can always be overcome by using more gates (e. g. by using 
three two-input AND gates to implement a four-input AND gate) but that this 
means a single-level gate has itself become a two-level circuit. 

4.2.2 Specification for the four-bit binary adder 

A four-bit binary adder is required to add together two four-bit binary numbers 
plus one carry-in bit, and produce a four-bit sum plus a carry-out bit. This is 
shown diagramatically in Fig. 4.14. 

B 13 3 2 2 1 1 0 0 in 

4 bit adder 

i i 1 i i 
C out S 3 S 2 S 1 S 0 

Fig. 4.14 Block diagram of a four-bit adder 

By definition this is a combinational logic problem as no memory is involved, 
and the outputs (the sum and carry-out) depend solely upon the inputs. The truth 
table for this circuit will have nine input columns, and hence 29= 512 rows, and 
five output columns. We will now look at four different ways this four-bit adder 
could be constructed. The first two consider the use of fundamental and then 
minimised two-level circuits; the second two are developed by taking a closer look 
at the mechanics of the addition process. 

4.2.3 Two-level circuit implementation 

Fundamental form 
We begin to consider the feasibility of constructing the four-bit adder in funda- 
mental two-level form by looking at the output from the first sum bit, S O . Since the 
result of the addition will be equally odd andeven then the output column for S O 
will contain 256 l's and 256 0's. Since the truth table has nine inputs, and we need 
to use all of these as we are considering a fundamental sum of products implemen- 
tation, then our two-level circuit will need 256 nine-input AND gates plus a 256- 
input OR gate to perform the summing. This is clearly impractical so we 
immediately rule out this method. 
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Minimised form 
The most complex Boolean function in the circuit is the one for Coo ~ since it 
depends on all of the nine inputs. The minimised expression for Co~ , contains over 
30 essential prime implicants, which means that this many AND gates plus an OR 
gate with this number of inputs would be needed for a minimised two-level imple- 
mentation. Furthermore, some of the input variables (or their complements) must 
be fed to up to 15 of the 31 essential prime implicants. 

Clearly the large number of gates required, the large number of inputs they 
must possess, and the fact that some signals must feed into many gates, means 
that this implementation is also impractical, although it is an improvement on the 
fundamental two-level form. So although the two-level implementation is theoret- 
ically the fastest (assuming ideal gates) we see that for this application it is not 
really practical. 

4.2.4 Heuristic implementation 

Heuristic implementations can broadly be considered as those that are not 
produced by rigorous application of Boolean logic theory. (Remember that any 
truth table can, in theory, be implemented in fundamental or minimised two-level 
form.) Heuristic implementations are found by looking at the overall problem, 
often considering the way in which the task would be tackled manually. 

Ripple carry adder 
The ripple carry, or parallel adder, arises out of considering how we perform addi- 
tion, and is therefore a heuristic solution. Two numbers can be added by begin- 
ning with the two least significant digits to produce their sum, plus a carry-out bit 
(if necessary). Then the next two digits are added (together with any carry-in bit 
from the addition of the first two digits) to produce the next sum digit and any 
carry-out bit produced at this stage. This process is then repeated until the most 
significant digits are reached (see Section 2. 5. 1). 

To implement this procedure, for binary arithmetic, what is required is a logic 
block which can take two input bits, and add them together with a carry-in bit to 
produce their sum and a carry-out bit. This is exactly what the full adder, 
described earlier in Section 4.1.5, does. Consequently by joining four full adders 
together, with the carry-out from one adder connected to the carry-in of the next, 
a four-bit adder can be produced. This is shown in Fig. 4.15. 

This implementation is called a parallel adder because all of the inputs are 
entered into the circuit at the same time (i.e. in parallel, as opposed to serially 
which means one bit entered after another). The name ripple carry adder arises 
because of the way the carry signal is passed along, or ripples, from one full adder 
to the next. This is in fact the main disadvantage of the circuit because the output, 
S 3, may depend upon a carry out which has rippled along, through the second and 
third adders, after being generated from the addition of the first two bits. 
Consequently the outputs from the ripple carry adder cannot be guaranteed 



Combinational logic design example: a four-bit adder 103 
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B 3 B 2 
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Adder Adder - - - 4 -  
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Fig. 4.15 A four-bit ripple carry adder constructed from four full adders 
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stable until enough time has elapsed 3 to ensure that a carry, if generated, has 
propagated right through the circuit. 

This rippling limits the operational speed of the circuit which is dependent upon 
the number of gates the carry signal has to pass through. Since each full adder is a 
two-level circuit, the full four-bit ripple carry adder is an eight-level implementa- 
tion. So after applying the inputs to the adder, the correct output cannot be guar- 
anteed to appear until a time equal to eight propagation delays of the gates being 
used has elapsed. 

The advantage of the circuit is that as each full adder is composed of five gates 4 
then only 20 gates are needed. The ripple carry, or parallel adder, is therefore a 
practical solution to the production of a four-bit adder. This circuit is an example 
of an iterative or systolic array, which is the name given to a combinational circuit 
that uses relatively simple blocks (the full adders) connected together to perform a 
more complex function. 

Look-ahead carry adder 

The fourth possible implementation of a four-bit binary adder bears some resem- 
blance to the ripple carry adder, but overcomes the problem of the 'rippling' carry 
by using extra circuitry to predict this rippling in advance. This gives a speed 
advantage at the expense of a more complex circuit, which is a demonstration of a 
general rule that any gain in performance in some aspect of a circuit is usually 
matched by a loss in performance of another. 

Reconsidering the ripple carry adder and denoting the carry-out from each 
stage by C,, where n is the stage number, and the initial carry-in bit as C;, we begin 
with the first stage and derive the Boolean expression for C o . (We know what it is 
from the Karnaugh map in Section 4.1.5). So: 

C O - AoB o + AoCi+ BoCi 

= Ao o + (Ao + 80)" C, 

'Remember that it takes a finite time for a logic signal to propagate through a real logic gate. 
"~Note however that the XOR is not strictly a single gate, with a two-input XOR gate requiring two two- 

input ANDs and a two-input OR gate for its implementaton. 
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Similarly for the second stage: 

C ! - A I B  I +AIC  o +BIC0 
= A1B l + (Al + B1)" C o 

This expression demonstrates the problem of the ripple carry adder, beca'use C, 
depends upon C o which must be produced first. However, we already have an 
expression for C o in terms of the actual inputs to the adder, so we can substitute 
this into C~ so removing the rippling problem. This gives" 

C , - A ~ B  z + (A, + Ol) . (AoO o + (A o + Oo) " Ci) 

This is a rather unwieldy expression, but we can simplify it by letting, for a general 
stage,j: 

Gj = AjBj and Pj= A j+ Bj 

This gives 

Co - Oo + eo " Ci 

C1 : GI + PI Co 
: G, + P, (Go + Po C,) 
= G1 + Pl Go + PtPoCi " 

Continuing this process also gives: 

C2 - G2 + P2 Cl 

= G 2 +P2(GI + PiGo + P, PoCi) 

= G2 + P2GI + P2Pl Go + P2PiPoCi 

C3-  G3 + P3 C2 
= G 3 +P3(G2+P2GI + P2P~Go + P2P1PoCi) 

= G 3 + P3G2 + P3P2GI + P3P2PI Go + P3P2P~PoCi 

This gives all four carry-outs in terms of the inputs, which means they can be 
produced as soon as the inputs are applied to the circuit. Hence, there is no 
'rippling' delay, although there will still be a delay given by the number of levels 
required to implement these expressions. (Two-level circuits could be used but, as 
shown in the following circuit diagram, other implementations are usually 
employed.) From the above it is clear that there is a distinct pattern for the carry- 
outs which can be used to continue this process further if required. 

The use of P and G to simplify the above expressions was not an arbitrary 
choice and by looking again at the truth table for the carry-out, shown in Table 
4.7, we can see their origin. By looping the minterms to produce the A B  product 
we note that a carry-out is generated (hence the use of G) if: 

G = A B  
_ m 

that is if both inputs are 1. The remaining two minterms for C O ( A B C  and ABC)  

show that a carry-in to the full adder (i.e. C, = 1) is propagated (hence the use of P) 
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Table 4.7 Tru th  table and Karnaugh  map for the carry-out  bit, Q,u~, and its use in the 

look-ahead carry adder  

A B C. C 
1 o 

0 0 0 0 
0 0 1 0 

0 1 0 0 

0 1 1 1 . ~  

1 0 0 0 

1 0 1 1 " ~ -  

1 1 0 1 

1 1 1 1 ~ -~  

Propagate 

Generate 

C out 

C in 

C ~ 

in 
1 

1 0 

,)- 

- Generate 

Propagate 

if either A or B are 1. So, these two minterms are covered by the Boolean expres- 
sion: 

AC,+ BC~=(A +B)" C~= PC~ 

where P=(A +B). Note that this expression for P means that the ABQ minterm is 
covered by both G and p.5 

Implementat ion  of  the look-ahead carry adder 

The implementation of the four-bit look-ahead carry adder using the forms of the 
carry-outs derived above is shown in Fig. 4.16. As shown the circuit requires 19 
gates with a maximum delay of four levels. Note: this does not include production 
of the final carry-out (C3); that some gates have four inputs; and that this imple- 
mentation requires four three-input XOR gates which we know is not a basic 
Boolean operator. 

A more  practical  implementat ion  

The four-bit look-ahead carry adder is available (as are many of the circuits we 
have already discussed) as a single integrated circuit (IC).  6 It is instructive to 

consider this circuit since it employs a different implementation that eliminates 

SThis fact is mentioned because some texts use P = A ~ B  to explicitly exclude (from P C  i) the A B C  i 
minterm, since it is included in the generate, G, term (as A B =  1 ). 

~This IC is the '283' four-bit adder which belongs to a family of logic devices. Such 'families' are 
discussed in more detail in Chapter 9. 
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Fig. 4.16 A circuit for a four-bit look-ahead carry adder 

the need for three-input XOR gates. Looking at how this is achieved serves as a 

useful exercise in Boolean algebra. 
The sum of the two bits A and B can be written as: 

A ~ B = A B + A B  

= (A + B) . (A + B) distributive law 
= (A + B) . (AB)  De Morgan's theorem 

=PG 

This means that to produce the sum term, S, rather than use a three-input 
XOR gate, a two-input one fed with the above result (generated from the P and 
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G terms which are needed anyway for the look-ahead carry) and the carry-in can 
be used. 

In addition: 7 

Co = Go + Po " C i 

= PoGo + PoCi see footnote 7 

= Po " ( Go + Ci) 

= Po +(Go + C,) De Morgan's theorem 

Hence: 

Co - eo + Go Ci 

Similarly it can be shown that 

C 1 -  PI + G1 Co 

= P, +G,(P  o +G O C,) 

= Pl + Gl Po + Gi Go Ci 

From this it can be seen that a pattern is emerging, as before, but in this case 
for C-j. To implement the circuit in this form requires 25 gates (excluding 
inverters) and has a longest delay, for $3, of four levels. Although this is more 
gates than the previous implementation, only two-input XOR gates are needed. 
(Remember that three-input XOR gates actually implement quite a complex 
Boolean function. 8) 

4.2.5 Summary 

In this section we have considered four ways of implementing a combinational 
digital Circuit, namely a four-bit binary adder. This serves to illustrate that there 
are always several ways any circuit can be designed. We firstly considered a two- 
level implementation in both fundamental and minimised sum of products form, 
which both proved impractical. (A product of sums approach would have had the 
same outcome.) 

A heuristic approach was then tried via consideration of the mechanics of the 
addition process. This led directly to the ripple carry, or parallel, adder which 
produces a practical ,implementation with a reasonable number of gates, but 
suffers from the problem of a rippling carry which reduces the speed of the 
circuit. 

Finally in order to overcome the problem of the rippling carry, we developed 
the look-ahead carry adder which calculates the carry-out at each stage using the 
initial inputs, by 'looking ahead'. This produces a faster design but does require 
more gates. 

7Note that: 

P G = ( A  + B)(AB) = A A B  + A B B =  A B  + A B =  A B =  G 

8This demonstrates that when comparing a circuit's relative complexity a simple gate count is not suffi- 
cient since some gates have a more complex construction than others. For example a NAND gate may actu- 
ally be simpler than an AND gate. 
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43 HAZARDS 

4.3.1 Introduction 

So far we have usually considered the logic gates we have discussed to be ideal. 
One of the characteristics of such gates is that their outputs change instanta- 
neously in response to changes in their inputs. In practice this is not the case 
because the actual circuit which performs the required operation of the gate 
cannot respond immediately, and so there will be an inevitable delay between a 
change in the inputs affecting the output. 

These delays can lead to race conditions, so called because two signals, origi- 
nally from the same source, may take different paths through the circuit and so 
end up 'racing' each other. I f  one wins then this may lead to a hazard which basi- 
cally means the output may have the wrong value for a short period of time (until 
the other signal catches up). 

The basic idea is introduced in Fig. 4.17 which shows how, in practice, the 
response to a change in the input, A, of the output, Y, from a NOT gate will be 
delayed by a small amount. This delay, labelled XpH L, is the time it takes for the 
circuit's output to go from a HIGH to LOW state (1 to 0), whilst XpL H is the time 
taken for the output to go from a LOW to HIGH state, in general these will not 
be the same, and will depend upon how the analogue circuit implementing the 
gate actually operates. 

A Y = A  

Y - A  

Y = A  

l~pH L, 'l~PLHi 

A'Y 

A +Y 

1 
0 

~ 

Fig 4 17 The output from a real NOT gate 

Ideal Gate 

Real Gate 

Output from 

real gates 

An important point to note, since it is the fundamental cause of some hazards, 
is that because of this delay A. A ~0, since the delay in the output falling to 0 
means that for XpHL both A and Y=,4 (from the real gate) are 1, and therefore 
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A- Y= 1. Also A + A ~ 1 since the delay in the output rising to 1 means that for l~pL H 

both A and Y= A are 0 and so A + Y=0. 
The approach adopted in this section is to firstly investigate examples of 

hazards in a simple and intuitive manner, and then to look into their cause in 

more detail. 

4.3.2 Static hazards 

Consider the circuit shown in Fig. 4.18 where the NOT gate is considered real 
(and so has a delay) but the XNOR gate is ideal. (Although an artificial situation 
this serves to illustrate all of the important problems of real circuits.) We know 
that the NOT gate will delay the signal .4 into the XOR gate, and so for a short 
period of time after a rising edge input A-A ~ 0, and similarly after a falling edge, 

A + A ~ I .  

Y 

/ 

A 

A 

Y ! 

: ' l~PHLi 

, 

I 
:'~PLH[ 

Fig 4.18 An example of a static-0 hazard 

The effects of these anomalies are shown in the timing diagram in Fig. 4.18 and 
are that every time A changes state a short pulse (equal to XPHL or XPLH) is produced 
at the output of the XNOR gate. This is because A and A are not always the 
complement of each other, which the XNOR gate responds to with an output of 1. 
These short pulses are known as spikes or glitches, which is a general name for any 
unwanted short pulses that appear in a digital electronics circuit. 

This non-ideal operation of the circuit is an example of a static hazard which 
refers to two changes in the logic level of a digital signal when none is expected. 
(There are two changes because the signal should ideally stay at 0 but rather goes 
first to 1 and then back to 0.) This is in fact a static-0 hazard because the signal 
was expected to stay at 0. Its occurrence is due to the fact that the input A traces 
two different paths through the circuit (one straight into the XNOR gate and the 
other via the NOT gate) and so there is the opportunity for race conditions. It is 
important to realise that when A changes state, eventually this will be reflected in 
all paths traced by A changing state, and so the output goes to its expected value. 
The hazard occurs because the different paths traced by A attain their final values 
at different times because of the race. 
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Example 4.11 

What type of hazard is obtained if the XNOR gate in Fig. 4.18 is replaced by an 
XOR gate. 

Solution 

The circuit and associated timing diagrams are shown in Fig. 4.19. These show 
that every change in the input produces a static-1 hazard in the output. 

A 

A 

A 

Y 
, 

Fig. 4.19 Static-1 hazard produced by a delay into an XOR gate (see Example 4.11) 

We can look at the cause of the static-0 hazard from the XNOR based circuit 
(Fig. 4.18) using Boolean algebra. The output from the circuit is" 

Y = A ~ A  

= A A + A A  

= A A + A A  

= A + A  

= 1 note the use of A + A = 1 

=0  

This shows that for an ideal gate the output Y will always be 0 because 
A + A = 1. However, with a real NOT gate this cannot be guarateed (because of the 
propagation delay of the gate) and so the hazard occurs when this condition is not 

met. 

A practical use of hazards 
Although not particularly recommended unless the propagation delay of the NOT 
gates being used can be guaranteed, and even then not an ideal method of logic 
design, the hazards that occur in circuits can be used to generate pulses from an 

edge signal. 
We have already seen how this is achieved in Fig. 4.17 where it can be seen that 

if the input and output from the NOT gate are fed through an AND gate a posi- 
tive pulse will be produced on the input's leading edge. If an OR gate is used a 
negative pulse will be produced on the input's falling edge. Using a N A N D  or 
NOR gate will give the opposite polarity pulses from the same edges. 
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What simple circuit will produce a short negative pulse on the input of a rising 
edge. (Note that this is not a recommended design procedure.) 

Solution 

It can be seen from Fig. 4.17 that a rising edge is delayed upon passing through an 
inverter, and so i fAND'd with the circuit's input gives a glitch since A.A ~:0. Using 
a N A N D  gate will produce the required negative pulse. (Note that to produce 

m 

similar pulses from a falling edge an (N)OR gate must be used since then A + A ~ 1. 

Although hazards are used in this manner by many digital designers, it is not to 
be recommended and alternative design techniques, as discussed in Section 11.3.1, 
should be employed. 

The multiplexer hazard 
The 2-to-1 multiplexer provides an ideal circuit to demonstrate the problem of 
static hazards in a more complex circuit. The output of the multiplexer shown in 
Fig. 4.20 is: 

Y = A C + B C  

where C is the control line. So if C= 1, Y= A or alternatively C=0 and Y= B. 

A 

Y - AC + BC 

to- 1 multiplexer 

Fig. 4.20 Circuit diagram of a 2-to-1 multiplexer 

We know from the simple examples above that if a hazard occurs it will be 
because of the two paths traced by C (a race), which are then eventually OR'd 
together (the multiplexer is in sum of products two-level form). The error will 
occur because C+ C ~ 1. 

m 

In order to get Y= C+ C we need A = 1 and B= 1, and so anticipate that any 
hazard will occur under these conditions when C changes state. The timing 
diagram in Fig. 4.21 demonstrates that a static-1 hazard is indeed produced. (It is 
assumed all gates, except the NOT gate, are ideal (no delay or variable delays on 
any paths through them) which in no way affects the important findings.) As C 
changes, its complement through the NOT gate is delayed, consequently when 
this and C are OR'd together we get the negative pulse we have seen previously. It 
is a static-1 hazard as C goes LOW. 



112 Combinational logic circuits 

Y-c+  l I 
Fig. 4.21 Output from the 2-to-1 multiplexer, for inputs of A= 1 and B= 1 with C changing state, 
demonstrating the occurrence of the static-1 hazard 

Hazards and Karnaugh maps 

The reason for the occurrence of this hazard in the 2-to-1 multiplexer can be seen 
by considering the Karnaugh map and its use in minimising the Boolean expres- 
sion for the circuit. The Karnaugh map for the 2-to-1 multiplexer is shown in 
Table 4.8. There are three prime implicants which if all are used gives: 

Y = A C + A B + B C  

Previously in this section we have not used the non-essential prime implicant AB. 

Table 4.8 Karnaugh map for the output from a 2-to-1 multiplexer 

Y 

! 

C 
! 

I 'C i 1 

0 
I 
I 

I 
7 -  

If instead of minimising directly from the Karnaugh map, we use Boolean 
algebra to minimise the expression containing the three prime implicants we gain 
an important insight into the origin of hazards and how to prevent them. 

Minimising: 

Y = A C + A B + B C  

= A C+ AB(C+ C) + BC note the use of 1 = C + C 
= A C + A B C + A B C + B C  

= AC(1 +B)+ BC(A + 1) 
- A C + B C  

The important point is that this minimisation depends upon the use of the 
Boolean identity C+C= 1, which we know, because of the action of the NOT 
gate, is not always true and may introduce a hazard. This suggests how we may 
eliminate the static hazard, which is to include the non-essential prime implicant 
so that the expression for Y will not then have been minimised using this identity. 
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To see the effect of including the AB term, we note that if we use 

Y=AC+AB+BC 

then if ((A = 1) AND (B= 1)) (the conditions which lead to the hazard, and define 
the non-essential prime implicant) this expression becomes" 

Y=C+I+C=I  

(since anything OR'd with 1 is 1). 
So the inclusion of the AB non-essential prime implicant (whose elimination 

relies upon the use of C+ C= 1 during minimisation) cures the problem of the 
static hazard. The circuit for this form of the multiplexer is shown in Fig. 4.22; the 
extra AND gate forming the product AB is sometimes referred to as a blanking, 
or holding, gate. 

C 

A 

Y - AC + BC + AB 
B 

to- 1 multiplexer 

(with blanking gate) 

Fig. 4.22 2-to-1 multiplexer with holding gate which has no static hazards 

As a general rule, static hazards can be eliminated by the inclusion of non- 
essential prime implicants in the 'minimised' Boolean expression. More specifi- 
cally they will be non-essential prime implicants whose 'removal' relies upon the 
use of X+ X= 1 where X is a variable for which a race condition may exist. 

Example 4.13 

Derive the product of sums form of a 2-to-1 multiplexer and then, performing the 
corresponding analysis to that for the sum of products form, determine whether 
any static hazards occur, and if they do how they may be eliminated. 

Solution 

From Table 4.8 looping and grouping the zeros gives: 

Y=AC+BC 

Dualling gives the required product of sums form of: 
w 

Y=(A+C)'(B+C) 
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Due to the final product produced we anticipate a hazard if both racing versions 
m 

of C reach the AND gate. For a hazard to occur requires C" C which needs both A 
=0 and B-0 .  This will be, as we saw in Fig. 4.17, a static-0 hazard produced as C 
goes high. 

Using Boolean algebra to confirm this, from the Karnaugh map using all 

'prime implicants' for Y: 
w 

Y = A C + B C + A B  

Dualling to get the product of sums form, and using the fact that C. C=0: 

Y=(A  + C) " (B+ C) " (A + B) 

= (A + ~ "  (B+ C) "(A + B+ C" C) using 0 = C- C 
= (A + C). (A + B + C). (B+ C). (A + B+ C) using Equation I. 15 
=(A + C)- (1 +B)" (B+ C)" (1 +A) using Equation 1.14 
=(A+C).(8+C) 

So the minimisation process relies upon the fact that C- C= 0 which is where the 
hazard arises from. The equivalent 'blanking gate' in this product of sums imple- 
mentation is (A + B) since for a hazard to occur both A and B must be 0 meaning 
A +B=0.  This gate will hold the output, Y, low, thus preventing the static-0 
hazard. Note the similarity between the sum of products and product of sums 
forms which is again a consequence of duality. 

A m o r e  r i g o r o u s  a p p r o a c h  

We now consider a more rigorous analysis of the 2-to-1 multiplexer circuit, which, 
although it offers no more understanding of the hazards in that circuit, serves as 
an introduction to a method that can be applied generally to other types of 
hazard. We know that any hazard in the sum of products multiplexer circuit will 
arise because of the fact that C+ C~ 1, and therefore will occur when C changes 
state. In addition for a static hazard to occur the change in C must not cause a 
change in the output, y.9  

We firstly draw up the truth table for the circuit including columns with the 
value that C will change to (i.e. C as this is a digital circuit), denoted by C ~ and the 
value of Y this will give, Y§ as shown in Table 4.9. From this we see that there are 

Table 4.9 Truth table required for the rigorous analysis of potential hazards in a multiplexer 

A 
0 
0 
0 
0 
1 
1 
1 
1 

B C C 

0 0 1 

0 1 0 

1 0 1 

1 1 0 

0 0 1 

0 1 0 

1 0 1 

1 1 0 

y Y+ 

0 0 
0 0 
1 0 
0 1 
0 1 
1 0 
1 1 
1 1 

"If the output does change then the only effect of the race will be to delay this change. 
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four input conditions for which when C changes state the output, Y, will remain 
the same and so a static hazard may occur. These are ABC, ABC, ABC and ABC 
(i.e. the conditions when A -  B). 

When C changes, one way of considering its propagation through the circuit is 
that it consists of two signals, C~ and G,  one of which forms the product A C~ and 
the other BC2 (which are then summed). Both of these signals must eventually. 

have the same value, but because of the race condition they may transiently be 
different. What this means is that if C, and therefore C~ and C 2, is 0, and then 
changes, then either C~ or ~ may change first. Eventually they will both be 1 but 
the change may take place as either: 

(C 1 C2)-(0, 0), (0, 1), (1, 1) or (0, 0), (1, 0), (1, 1) 

Similarly in C changing from 1 to 0 there are two possible 'routes' depending 
upon which of Ci or C_~ changes first. 

We can draw up a kind of truth table which allows us to see the effect of these 
transient values of C~ and ~ on the output Y. We do so for expressions for Y 
using the values of A and B we have identified from above as likely to lead to static 
hazards. This table is shown in Table 4.10. The four rows hold the initial and end 
values (rows 1 and 4) of C~ and C 2 when they will be the same, whilst rows 2 and 3 
hold the transient conditions when they may differ. We have already considered 
how in changing C from 0 to 1 the transition may take place via row 2 or 3 
depending upon whether C 2 or C l changes first, whilst for C changing from 1 to 0 
the transition will be via row 2 if C~ changes first, else via row 3. 

Table 4.10 Table used to find hazards in the 2-to-1 multiplexer. The loops and arrows indi- 

cate a change in C from 1 to 0 via row 2 which leads to the static-1 hazard in Y 

A = 0  A = I  
B = 0  B = I  

C 2 

row 1 0 0 

row 2 A 0 1 

row 3 1 0 

row 4 1 1 

C 1 Y='0 Y = C l  + C2 

0 1 

0 0 

0 1 

0 1 

The last two columns hold the values of Y showing how they depend upon C~ 
and C 2 for when ( (A-0)  AND (B=0)), and ((A = 1) A N D  (B= 1)), the previously 
identified conditions when a static hazard may occur since the output, Y, should 
remain unchanged. For the first condition Y=0 for all values of C, therefore it 
does not matter which of C~ or C 2 changes first since the output remains at 0. 
However, for A = 1 and B -  1, and hence Y= C~ + ~ ,  we can anticipate a problem, 
and see that if when C changes from 0 to 1, C 2 changes first, then the circuit tran- 
siently enters row 2 and the output will momentarily go to 0, giving a static-1 
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hazard. Similiarly when C goes from 1 to 0, if C~ changes first then row 2 will 
again be entered giving the same error. Using this different approach we have 
again found the conditions that lead to the static hazard, that is C changing when 
both A and B are 1. 

As the final point we note that because it is C 2 that goes through the NOT gate 
it will be this signal that is delayed and therefore C t will always change first. 
Consequently we will only see the possible static-1 hazard indicated by the above 
analysis when C is changing from 1 to 0. (It is for the same reason that the inverter 
and OR gate circuit gives a negative going pulse on a negative, and not a positive, 
edge). 

More complex hazards 
That concludes our look at static hazards. However, if a hazard can be produced 
by a signal changing state twice when it should remain the same, could we not also 
have an error when a signal changes three times instead of just once? That is we 
get the sequence 0101 being output instead of 01. This could possibly happen for 
the four input combinations to the multiplexer when the output Y does change as 
C is changed (see Table 4.9) which in this case is for when A and B have different 
values. 

However, further consideration of the necessary conditions to produce this 
type of hazard shows that it cannot happen when the signal producing the race 
condition only has two paths through the circuit. When there are only two paths 
we get a two-variable (i.e. the two paths C~ and C2) 'truth table' (e.g. Table 4.10) 
and so only one transient state can be visited before arriving at the eventual values 
for the two signal paths (e.g. row 1 to row 2 to row 4). To produce a hazard where 
there are three changes of state clearly requires a 'truth table' with more rows and 
hence at least three 'input variables', that is three paths for the same signal 
through the circuit. This brings us on to the subject of dynamic hazards. 

o 

4.3.3 Dynamic  hazards 

Dynamic hazards can occur when a signal has three or more paths through a 
combinational logic circuit. Their effect is to cause a signal which is expected to 
change state to do so, then transiently change back to the original state, before 
making the final transition to the expected state (e.g. the signal gives 1010 rather 
than just 10). The analysis of a circuit for a dynamic hazard is essentially a contin- 
uation of the 'rigorous approach' for static hazards described above. You should 
therefore be familiar with this material before continuing. 

Consider the circuit shown in Fig. 4.23 together with its truth table and 
Karnaugh map. From this implementation we get: 

Y=(B+C)'(AC+BC) 

and note that C has three paths through the circuit" via gates l, 5; gates 2, 4, 5; and 
gates 3, 4, 5. Therefore there is the possibility of race conditions in three paths 
which may lead to a dynamic hazard. 
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A 

C 

B 

y 

Y 

C 

C 

1 1) 

A B C Y 
0 0 0 0 
0 0 1 0 
0 1 0 1 
0 1 1 0 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 0 

Fig. 4.23 Combinational logic circuit, its Karnaugh map and truth table, which may possess a dynamic 
hazard due to the three paths for signal C through the circuit 

E x a m p l e  4 . 1 4  

Use Boolean algebra to prove that this implementation of the circuit is function- 
ally equivalent to the minimised expression obtained from the Karnaugh map. 

Solution 

Y= (B + C). (A C+ BC) 

= A B C +  B B C + A  CC+ BCC 

= A B C + B C  as from the Karnaugh map 

From the truth table we see that for inputs of (A, B) of (0,1), (1,0) and (1,1), the 
output, Y, changes as C changes. Therefore there is the possibility of a dynamic 
hazard as the output may change state, then go back to the initial value, before 
changing again to the final expected output. 

Continuing our analysis we see that if B - 0  then B= 1 and so the output, (1 + ~ ,  
from gate 1 is always 1. This means C now only has two paths through the circuit 
and so a dynamic hazard is not possible. Similarly, if A =0 then the output from 
gate 2 must be 0 and so again there are only two paths for C through the circuit. 

This leaves inputs of A -  1 and B -  1 to consider. (Remember it is C changing 
that will lead to any hazard so we are looking at the effect of this whilst the other 
inputs are fixed.) Using a subscript, corresponding to the first gate passed 
through, for the three possible paths through the ciricuit, for A = 1 and B -  1 we 
write: 
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Y= (B + C,) " (A C 2 + O f  3) 

=(0+ C,)" (1 " C2+ 1 �9 C3) 

-- C l .  ( C  2 -+- C3) 

Remember that the reason we get hazards is that transiently these three values for 

C may not be equal (although they will be once the races have finished), which is 
why we are treating them as three separate variables to determine the transient 

values of Y. The truth table for the transient values of Y as a function of the three 

values of C is shown in Table 4.11. 

Table 4.11 Truth table for the transient states of the circuit in Fig. 4.23 

row C~ 

1 0 

2 0 
3 0 
4 0 
5 1 
6 1 
7 1 
8 1 

C 2 C 3 

0 0 
0 1 
1 0 
1 1 

0 0 
0 1 

1 0 

1 1 

This truth table shows that when the circuit has stabilised (all signals have 
affected the output) then all the values of C will be 0 or 1. Therefore the first and 
last rows of this truth table correspond to inputs of A B C  and A B C  in the truth 

table of Fig. 4.23. 
The final stage in our analysis is to use the truth table in Table 4.11 to see if any 

dynamic hazards do occur. We know that for the possibility of a dynamic hazard 
both A and B must be 1 with C then changing state. This will correspond to 
moving from either the top to the bot tom (for C going from 0 to 1) or the bot tom 
to the top row of the truth table in Table 4.11. 

Now, since (because of the races) there are effectively three variables C which 
all must change, there are many possibilities as to which rows of the truth table 
will be visited transiently. For instance for C changing from 0 to 1, then if C 3 
changes first, then C 2 followed by C 1, then the circuit will move from row 1 to 8, 
transiently visiting rows 2 and 4. This will give transient outputs of 0 and 1 (for 
rows 2 and 4) and hence a possible dynamic hazard since the output will give 1010. 
This is the only possible hazard for C going from 0 to 1 because of the need for the 

output to go to 0 first to give the incorrect transient state. 
For C changing from 1 to 0, we note the possible dynamic hazard if the transi- 

tion is from row 8 to 1 via rows 4 and 2 (the reverse route to the above). Again this 
is the only possibility since we need the output, Y, to go H I G H  first (so it can go 

LOW again to give the hazard). The output here will be 0101. 
So we have identified two possible situations in which a dynamic hazard may 

occur, depending upon the relative speed of propagation of C~, C2 and C 3. For  the 
first possible hazard C 3 must change first then C2, and for the second C l first and 
then ~ .  Now since C~ only travels through two levels (gates 1 and 5) it will change 
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faster than both C2 and C 3. This rules out the first possible hazard as being likely, 
leaving only the second. This will only occur if, assuming C, does change first, C 2 
then changes before C3 (to give the transient output of 0 from row 2). 

The timing diagram in Fig. 4.24 illustrates how this dynamic hazard will occur 
for these conditions. Note that C must go from 1 to 0 and so C, will do the oppo- 
site, as shown in the figure. This concludes our analysis of this circuit for dynamic 
hazards. (Note that we have not considered whether any static hazards are present 
in this circuit.) 

C 
1 

C 
l 

C 2 

3 

C2+C 3 I ] 

m D 

C1(C2+ C3 ) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

, 

Dynamic 
Hazard 

Fig. 4.24 Timing diagram illustrating the occurrence of the dynamic hazard in the circuit shown in Fig. 
4.23. For the hazard to occur C 1 must change first (which can be assumed the case as it only has a two- 
gate delay), followed by C 2 and then C a 

4.3.4 S u m m a r y  

The aim of this section was to introduce some of the problems that can be encoun- 
tered when transferring combinational logic designs into practical circuits. In par- 
ticular, we have seen how the finite time it takes a digital signal to pass through a 
logic gate (the propagation delay) can cause problems if a logic signal has two or 
more paths through the circuit along which the signals can 'race' each other (race 
conditions). 

If there are two paths then static hazards may occur (where a signal changes 
state twice instead of not at all), whereas for three or more paths dynamic hazards 
may occur (where the signal changes place three times rather than once). Both 
types of hazard give rise to a short transient pulse (spike). 

We have determined the cause of these hazards using Boolean algebra, and how 
this allows them to be predicted and, to a certain extent, overcome. However, in 
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an introductory text such as this there is only room for limited examples. So 
although those given demonstrate clearly the principles behind the occurrence of 
hazards, in practice their prediction and elimination, although based upon the 
methods presented here, are somewhat more complex. Many of the ideas intro- 
duced here will be revisited, in later chapters, regarding the design of error-free 
asynchronous sequential circuits. 

In practice hazards can cause particular problems if they occur in asynchronous 
circuits (Chapter 5) or when driving the clock lines of synchronous circuits (see 
Chapter 6). In other circumstances, when driving non-clock lines, the transient 
conditions resulting from hazards can be 'overcome' simply by delaying the 
sampling of such outputs until they have stabilised. 

4.4 SELF-ASSESSMENT 

4.1 What is the function of an 8-to-1 multiplexer? 

4.2 Why can a multiplexer be used a a 'universal logic block'? 

4.3 What does a demultiplexer do? 

4.4 Why can a decoder be constructed from a demultiplexer? 

4.5 What three types of combinational logic circuits can an XOR gate be used to 
construct? 

4.6 What does a full adder do? 

4.7 What type of circuit is a ripple carry adder, what basic unit is it built from, 
and what is its major disadvantage? 

4.8 What advantage does the look-ahead carry adder have over the ripple carry 
adder? 

4.9 What is the fundamental cause of hazards in combinational logic circuits? 

4.10 What is a static hazard; what causes it and what are the two types? 

4.11 What is a dynamic hazard and what causes it? 

4.12 How can static hazards be overcome? 

4.5 PROBLEMS 

4.1 (a) How could a 1-of-8 multiplexer be used to generate functions X, Y shown 
in Table 4.12? 
(b) How could a 1-of-4 multiplexer plus one other gate be used for the same 

purpose? 
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Table 4.12 Truth table to be implemented using a multiplexer in Problem 4.1 

A B C X Y 
0 0 0 1 1 
0 0 1 0 1 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 0 0 

1 0 1 0 0 

1 1 0 1 1 

1 1 1 1 0 

4.2 If the data and select variables are only available in their uncomplemented 
forms how many two-input N A N D  gates would be needed to construct: 
(a) a 4-to-1 multiplexer and 
(b) a 1-of-4 demultiplexer. 

4.3 Design the necessary combinational logic circuits to act as: 
(a) an active-LOW BCD-to-decimal decoder 
(b) an active-HIGH BCD-to-7-segment decoder 

Assume for both decoders that the outputs for inputs greater than nine will 
never be input to the circuit and so can be used as 'don't  care' conditions. 
Note that for the BCD-to-7-segment decoder some outputs are active for 
more than one input condition. The layout of a 7-segment display is shown in 
Fig. 4.25. 

f 

e Ig l a  [ I I I [ I I I I I I I I [ 

dl Ib I I I I I I I I I I I I I 
C 

Fig. 4.25 Layout o! a 7-segment display; see Problem 4.3 

4.4 Assuming that only one of the inputs is ever high at any one time, give the 
Boolean expressions for the outputs from an active-LOW decimal-to-BCD 
encoder. 

4.5 Design a two-level positive logic decimal-to-BCD priority encoder for 
decimal inputs from 0 to 4. 

4.6 Fig. 4.26 shows a common implementation of a combinational logic circuit. 
What single gate does it represent? 

4.7 How could changing a single gate in a parity checker used for a four-bit word 
(three data and one parity bit) constructed for two-input XOR gates be 
converted into a comparator for use on two-bit words? 

4.8 Fig. 4.27 shows part of a standard design for a common digital circuit. Write 
down the Boolean functions produced at D and E, and then convert them to a 
form which demonstrates directly the purpose of this circuit. 
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A 

C 

Fig. 4.26 Circuit to be analysed in Problem 4.6 

Y 

A 

i 
i 

I 

I 

Fig. 4.27 Circuit to be analysed in Problem 4.8 

D 

4.9 How can a parallel (ripple carry adder) be converted to a parallel subtractor 
using XOR gates. (Hint: use two's complement subtraction.) 

4.10 Table 4.13 shows part of the truth table describing the operation of the '  181' 
Arithmetic Logic Unit (ALU) integrated circuit shown in Fig. 4.28. An 
input, M of 0 and 1 means the ALU is operating in Boolean and arithmetic 
modes respectively; input C is the carry bit. 

Table4.13 Truth table showing some of the functions performed bythe'181' ALU 
(see Problem 4. 10) 

$3 S~ S~ So M C F 
0 0 0 0 1 - A - 

1 0 0 1 1 A ~ B  

1 0 1 1 1 A B  

1 1 1 1 1 A 

1 0 0 1 0 0 A plus B 

0 1 1 0 0 0 A minus B 
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Confirm that for the given bit patterns in Table 4.13 the stated functions 
are implemented at the output, F. (Note that this circuit can perform further 
functions than these.) 

$ 3 ~  

S 2 

S 1 

A 

S O 

LD 
! )  

M 

Fig. 4.28 The '181' arithmetic logic unit to be analysed in Problem 4.10 

4.11 What is the output of the circuit in Fig. 4.29 for inputs ,4BCD of 1110; 1011; 
0101 and 0010? What function does it perform? 

A W 
A 

X 

c z 

D 

Fig. 4.29 Circuit to be analysed in Problem 4.11 

4.12 The design of a circuit to perform binary multiplication could be 
approached by writing out the necessary truth table. Do this for the multipli- 
cation of two two-bit words. 

In general if an m-bit and n-bit number are multiplied together, then (in 
terms of rn and n) how many input and output columns, and rows, will the 
truth table have? 

4.13 Devise a circuit which will produce a short positive going pulse on the input 
of a falling edge. Is this type of design to be recommended? 
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4.14 A function of three variables is minimised to Y = A B + A C .  Draw the 
Karnaugh map of this function and state whether you would expect any 
static hazards to cccur, and if so under what input conditions this would be. 

If the circuit is not hazard free, how could it be made so? 



5 Asynchronous sequential 
logic 

5.1 SEQUENTIAL LOGIC CIRCUITS" AN OVERVIEW 

All of the circuits so far considered in this book have been combinational. This 
means that their outputs are dependent only upon the inputs at that time. We now 
turn our attention to sequential logic circuits whose outputs are also dependent 
upon past inputs, and hence outputs. Put another way, the output of a sequential 
circuit may depend upon its previous outputs and so in effect has some form of 
'memory'. 

General form of a sequential circuit 
Sequential circuits are essentially combinational circuits with feedback. A block 
diagram of a generalised sequential circuit is shown in Fig. 5.1. The generalised 

circuit contains a block of combinational logic which has two sets of inputs and 
two sets of outputs. The inputs ~ are: 

�9 A, the present (external) inputs to the circuit; 
�9 y, the inputs fed back from the outputs; 
�9 Z, the present (external) outputs from the combinational circuit; 
�9 Y, the outputs that are fed back into the combinational circuit. 

External 
Inputs 

A 

Internal Inputs 
(Present State variabl~) 

Combinational 
Logic 

Memory I ~ 

Y 

Z External 
Outputs 

Internal Outputs 
(Next State variables) 

Fig. 5.1 The general form of a sequential logic circuit 

Note that the outputs, Y, are fed back via the memory block to become the 
inputs, y, and that y are called the 'present state' variables because they determine 

~The letters (e.g. A, y) represent, in general, a number of inputs. 
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the current state of the circuit, with Y the 'next state' variables as they will deter- 
mine the next state the circuit will enter. 

It is often useful to think in terms of two independent combinational circuits, 
one each for the two sets of outputs, Z (external) and Y (internal), as shown in 
Fig. 5.2. Both of these outputs will in general depend upon the external, A, and 
internal, y, (fed back) inputs. 

A 

Y 

Combinational circuit to 
produce outputs, Z 

Combinational circuit to 
produce outputs, Y 

_ . . , 1  Memory I-" 

Z 
1,=.._ 
v 

Fig. 5.2 A general sequential circuit emphasising how the outputs from the combinational logic block 
are functions of both the external and internal inputs 

'States' and sequential circuits 
An important concept to appreciate is that sequential circuits can be considered at 
any time to occupy a certain 'state'. These 'states' are dependent upon the internal 
feedback, and in the case of asynchronous sequential circuits, the external inputs 
as well. At this early stage we simply note that if the memory in a circuit has i 
digital lines leading to and from it then it can store 2 i different patterns and hence 
the circuit possesses 2 ~ internal states. (We call these internal states to distinguish 
them from the total states of the circuit which are also dependent upon the 
external inputs.) 

This idea of the circuit possessing states is fundamental to sequential circuits 
since they are often designed and analysed by the manner, or sequence, in which 
the available states are visited for given sequences of inputs. This is why in Fig. 5.1 
the internal inputs, y, and outputs, Y, are labelled as the present and next state 
variables respectively (since they determine the current and next state of the 
circuit). 

5.1.1 Asynchronous and synchronous circuits 

In this introductory text we will define two broad classes of sequential circuits, 
namely: asynchronous and synchronous. 

�9 The timing of the operation of asynchronous circuits, as the name implies, is not 
controlled by any external timing mechanism. Rather, as soon as changes are 
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made at the inputs of such a circuit they take effect at the outputs. The simplest 
form of memory in such circuits is just a wire forming the feedback connection. 2 

�9 Synchronous circuits are those which possess a clock of some sort which regu- 
lates the feedback process. Hence the timing of changes in the outputs, in 
response to changes at the inputs (which may have occurred some time before), 
are controlled by the 'ticking' of a clock. Consequently, the timing of the opera- 
tion of sequential circuits can be, and usually is, synchronised to other parts of a 
larger circuit. The memory in such circuits is itself made up ot" specialised logic 
circuits (called flip-flops) that essentially act as digital storage elements. 

Fig. 5.3 shows the block diagrams for these two types of sequential circuits. For 
obvious reasons, synchronous sequential circuits are also referred to as clocked 

circuits, whilst asynchronous ones are known as unclocked or free running. 
Although asynchronous circuits are more difficult to design than synchronous 
ones they do have certain benefits. These include the fact that because they are 
free running their speed of operation is limited solely by the characteristics of the 
components from which they are built and not by the speed at which they are 
clocked. Consequently, asynchronous circuits have the potential to work at 
higher speeds than synchronous ones. Also: some systems may require a circuit to 
respond immediately to changing inputs (i.e. the inputs cannot be synchronised to 
the rest of the circuit); in very large circuits the unavoidable delays as a signal 

Asynchronous 

Combinational 
Logic 

y Y 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Z 
v 

Synchronous 

A 
I 

Combinational I 
Logic ,lj 

Y 
Y Digital Storage 

Clock 

Z 
=,,,...= 
v 

Fig. 5.3 General asynchronous and synchronous sequential circuits showing the difference between 
their respective 'memory' 

-'This is the only type of asynchronous circuit we will consider. 



128 Asynchronous sequential logic 

traverses the whole circuit may mean exact synchronisation is not possible; and 
finally flip-flops which are essential digital circuit components are themselves 
asynchronous circuits. 

Summary 
In this brief introduction the general properties and structure of sequential circuits 
have been introduced, together with the idea of a broad classification of s~ch 
circuits as either asynchronous or synchronous. 

The remainder of the chapter is split into three sections. The first is an introduc- 
tion to asynchronous sequential logic circuits; the second looks at how asynchro- 
nous circuits operate via the analysis of a number of such circuits; whilst the third 
considers the design, and associated problems, of these circuits. 

The following three chapters are also concerned with sequential logic. Chapter 
6 covers flip-flops which are themselves asynchronous circuits that act as digital 
storage elements and are used as the memory in synchronous sequential circuits. 

Chapters 7 and 8 cover synchronous sequential circuits, beginning with coun- 
ters before moving on to more general examples. 

5.2 INTRODUCTION TO ASYNCHRONOUS 
SEQUENTIAL CIRCUITS 

The 'memory' of previous outputs in an asynchronous sequential circuit is 
provided by direct feedback from the internal output(s), Y, to the internal 
input(s), y, of the combinational logic block (see Fig. 5.3). The essence of under- 
standing asynchronous circuits is to realise that for the circuit to be stable the 
outputs generated by the input(s) must be equal (i.e. Y=y), since these two sets of 
signals are connected via the feedback. 

If this is not so then the circuit will be unstable with the output(s) (unmatched 
to the input(s)) acting as different input(s) and so producing new output(s) which 
will then be fed back again. This process will repeat until a stable condition is 
reached. This concept will become clearer as we analyse actual asynchronous 
sequential circuits. 

The first stage of asynchronous sequential circuit analysis is to 'break' the feed- 
back paths and treat the output(s) being fed back and the corresponding input(s), 
linked via the feedback, as separate variables. The circuit will only be stable when 

these signals have the same values. 
The conditions for which the circuit is stable are known as the 'stable states'. 

(Note that for asynchronous sequential circuits these total stable states depend 
upon all of the inputs, i.e. both internal and external ones, and not just the values 
of the feedback, i.e. the present state, variables). Circuit analysis involves finding 
out how these stable states are both reached and related to one another, whilst 
design involves producing a circuit which enters the required stable states for the 

desired input patterns. 
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5.2.1 Inputs and race conditions 

For an asynchronous circuit to be of use it must have more than one external 
input (otherwise all the circuit has to respond to is a signal alternately changing 
its value from 0 to 1 to 0 and so on3). If two of these multiple inputs are meant to 
change simultaneously we know that for a real circuit this can never be guaran- 

teed and one of them will always change slightly before the other. The effect of 
this uncertainty, in which signal (and not always the same one) arrives first, is 
that the circuit may not operate as expected and actually end up in the 'wrong' 

state. This will make the circuit's operation unpredictable and hence render it 
useless. 

This problem can be overcome by making sure that only one input to the circuit 
changes at a time and that there is sufficient time between changes in the inputs 
for the circuit to stabilise. This is called fundamental mode operation, which 
although providing a solution does inhibit the way that the circuit can be used. 4 

5.3 ANALYSIS 

We now turn our attention to the actual analysis of asynchronous sequential 
circuits. The first three circuits are very simple examples whose operation can be 
determined intuitively. These serve to introduce some of the basic concepts of 
asynchronous sequential circuits such as stable states and the idea of 'memory'. 
The final three examples include circuits with one and two feedback signals. 

5.3.1 Circuit 1: stable and unstable states 

Consider the circuit in Fig. 5.4 which is simply an XOR gate with one of the inputs 
being the output which is fed back, so making it an asynchronous sequential 
circuit. 5 (Note that in this case, Z, the external output is the same as Y, the internal 
output.) 

A Z 

y Y y 1 0 

Fig. 5.4 XOR gate based asynchronous sequential circuit. This circuit is only stable when the present, 
y, and next, Y, state variables, which are connected, are the same 

~ln an asynchronous circuit the outputs change immediately in response to a change in the inputs. 
Therefore it is not even possible to encode any time information, to which the circuit may respond, onto 
such a single signal. 

4An alternative 'safe' means of operating such circuit is pulse mode, where the inputs to the circuit are 
given a pulse (i.e. go from 0 to 1 and back) when active. 

5Although it is not actually useful since it only has one external input. 
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If A - 0  and y -  1 then the output Y= 1, so the output produced, and fed back to 
the inputs, matches the input (i.e. y = Y) and the circuit is stable. Similarly, if A =0 
and y=0,  then Y=0, and so y= Y and the circuit is again stable. The fact that the 
circuit is stable means that all of the variables will remain unchanged until the 
input A is changed (as this is the only variable that can be accessed, i.e. the only 

external input). 
Now, ifA is changed to 1 then i fy=0  then Y= 1; and i f y -  1 then Y=0. Hence, 

y~  Y. This will clearly lead to an unstable circuit that will continually oscillate. 
For example, if y - 0  the output will be 1, which will be fed back to y causing the 
output to go to 0 which will be fed back and so cause the output to go to 1 and so 
on. The speed of oscillation will be determined chiefly by the time it takes the 
signals to propagate through the XOR gate and back along the feedback path. 

The Karnaugh map for Y in terms of A and y is also shown in Fig. 5.4 and illus- 
trates the operation of the circuit. For the circuit to be stable Y must equal y, 
therefore for the top row, ~ (and hence y=0),  the circuit will only be stable when 
the corresponding cell of the Karnaugh map has a 0 in it (i.e. the internal output Y 
=0). For the bottom row the circuit will only be stable when Y= 1. We therefore 
see that only two stable conditions for this circuit exist. Firstly, A =0 and y=0  and 
secondly A - 0  and y= 1, that is when A - 0  (the left hand column of the Karnaugh 
map) as we deduced above. 

The Karnaugh map confirms the instability of the circuit when A = 1, since 
nowhere in the right-hand column (A = 1) does y=  Y. All of the remaining circuit 
analyses are based upon the use of such Karnaugh maps. 

5.3.2 Circuit 2: movement between states 

The previous example introduced the idea of stable and unstable total states. 
Using the circuit shown in Fig. 5.5 we now look at how asynchronous sequential 
circuits have the potential to possess memory. This circuit has two external inputs 
and a single internal input which feed into a three-input OR gate. 

0 1 1 1 

y 1 1 1 1 

Fig. 5.5 Three-input OR gate based asynchronous sequential circuit 

If either A or B are 1 then Y= 1, and so y=  1 which has no effect on the output, 
hence the circuit is stable. If A and B are both 0 then: 

Y-A+B+y 
= 0 + 0 + y  
=y  
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so the circuit is again stable, but whether the output is 0 or 1 depends upon what 
the output was before both external inputs went to 0. Hence the circuit has 
memory since its output under these input conditions depends upon what state it 

was in beforehand (i.e. whether Y was 0 or 1). 
However, since for any external inputs other than A =0 and B=0  the output is 

always 1, this means when A and B do both equal 0 the output will still always 

be 1. 
Referring to the Karnaugh map in Fig. 5.5 we see that when either A or B are 1 

the stable state is when y=  Y= 1. This is because for these inputs the l 's in the top 

row, y, indicate that the output, Y, is 1, which will then feed back making y = 1 and 
so causing the state of the circuit to 'move' to the bottom row of the truth table 

where the states are stable since then y= Y= 1. The idea that each cell of the 
Karnaugh map contains a state of the circuit which will be stable if y=  Y, or else is 
unstable (such as when the top row contains a 1) is central to the analysis and 
design of asynchronous sequential circuits. 

For A and B both 0, an output of either 0 or 1 gives a stable condition (since the 
output simply equals the internal input). However, when the external inputs are 
changed this effectively causes a horizontal movement across the Karnaugh map 
(as each column represents one of the possible input conditions) to a new cell and 
hence state. Now, since the only stable states are for y=  1 (the bottom row) this 
means that horizontal movement in the map, as the inputs change, will always be 
within the bottom row. Consequently for A and B both 0, movement will always 
be to cell (ABy), and so the output will be 1. The lack of stable states for which 
y = 0  when A or B are 1 means that as soon as either of the external inputs are 1 the 
circuit is confined to operate within the bottom row of the Karnaugh map. So the 
circuit will never give an output of 0. 

Summary 
The concept of the circuit moving within the Karnaugh map from state to state 
(cell to cell) is vital to understanding the analysis and design of these circuits. 
Changes in the external variables cause horizontal movement in the map (to a 
new column and hence input condition), whilst changes from an unstable to 
stable state (for fixed external inputs, i.e. within a column) cause vertical move- 
ment. 

5.3.3 Circuit 3: memory 

We have seen how asynchronous circuits can be considered to have total states 

(depending upon both the internal and external inputs), some stable and some 
unstable, and how changing the external inputs causes the circuit to move 

between these states. We now look at a circuit which demonstrates how this type 
of circuit can possess a memory of its previous states. This is shown in Fig. 5.6 
together with the corresponding Karnaugh map for Y= A + By. 

If A = 1 then Y= 1 and so the only possible stable states for this input condition 
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A Z Y 

[ Y 
Y Y 

1 1 

1 1 

Fig. 5.6 Asynchronous sequential analysis (Circuit 3) which demonstrates the concept of memory. 
For inputs A,B the circuit has two stable states 

will be when y= 1, the bottom row of the Karnaugh map. When A - 0  and B= 1 
then 

Y=A+By=O 

hence the only stable state possible is y=  Y=0, the top row. This leaves the input 
condition of A and B both 0 to consider, which gives 

Y=O+l.y=y 

for which Y being either 0 or 1 is a stable condition. We know from the last 
example that which of these stable states is entered depends upon which row of 
the Karnaugh map the circuit was 'in' before the inputs were changed, thus 
causing a horizontal movement to the AB (in this example) column. 

If the inputs were previously A - 0  and B= 1 (AB), then y -  Y=0 and the hori- 
zontal movement left (from cell ABy) will take the circuit to the stable state with 
A =0, B=0 and y = 0  (i.e. cell ABy). However, if previously A = 1 and B = 0  then 
y= Y= 1 (cell ABy) and the horizontal movement is to the right (looping around 
the map) taking the circuit to stable cell ABy. So, for inputs A and B both 0, the 
output, Y, will depend upon what the previous inputs were and therefore from 
which direction the column in the Karnaugh map corresponding to these inputs 
was entered. Hence the circuit has memory. 

The addition of a simple logic circuit as shown in Fig. 5.7 serves to decode state 
ABy which will give an output of 1 whenever the circuit enters this state and hence 

A 

, 

~ 

~ 

~ 

~ 

[-)  

~ 

Fig. 5.7 Analysis Circuit 3 with additional output circuitry (the three-input AND gate) 



Analysis 133 

when the inputs (A,B) have gone from (1,0) to (0,0) (since this is the only way to 
enter this state). Note that this circuit now has the form of a general asynchronous 
sequential circuit (see Figs 5.2 and 5.3). Remember that because we are only 
allowing one input to change at a time (fundamental mode operation) this means 
the circuit can only move one column at a time as the inputs change. 

Summary 
These three examples have served to introduce asynchronous sequential circuits. 
We now consider three further examples which will be analysed more rigorously. 
Finally, note that in the first example of the XOR circuit we did not at the time 
discuss how the two possible stable states could be entered. It should now be clear 
that if A = 1, with the circuit's output oscillating, then switching A to 0 will result 
in a stable output whose value is dependent upon which state the oscillating 
circuit was in at the time that A was taken low. 

5.3.4 Circuit 4: rigorous analysis 

The largely intuitive analysis of the above three circuits has served to illustrate the 
majority of the basic concepts of asynchronous sequential circuit analysis. We 
now consider three further examples, beginning with a full and rigorous analysis 
which amounts largely to formalising the methods we used above. The headings 
below relate to the various stages of the procedure. 

The circuit 
This circuit is shown in Fig. 5.8. It has two external inputs, A and B, and one feed- 
back signal, labelled y. The basic AND-OR circuit forms the combinational logic 
for the signal, Y, which is fed back, whilst the output circuit producing Z is simply 
an AND gate. We will assume that we are operating in fundamental mode, that is 
that only one of the external inputs can change at a time. 

A Z 

Fig. 5.8 Analysis Circuit 4 

I )  

I- 
Y 
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'Breaking' the feedback path 
The first step when rigorously analysing an asynchronous sequential circuit is to 
'break' all of the feedback paths. The reason for this is that we know for a stable 
circuit the values of the signals at each end of the feedback path(s) must be equal. 
By breaking the feedback path(s) and treating the signal(s) at either end as inde- 
pendent (e.g. y and Y) we can begin the analysis. Here there is only one feedback 
path with labels y and Yused for the internal input and output respecti,,ely. 

Boolean expressions for the internal variables and external output 
Once the loop is broken we can consider the signal Y (the internal output from the 
next state combinational logic) and y (the input to the whole combinational logic 
block) to be separate variables. Hence the Boolean expressions for Y and Z can be 
written (by studying the combinational logic circuit) as: 

Y=AB+Ay 

Z=ABy 

Transition table and output map 
Using these Boolean equations we next draw the Karnaugh maps for Y and Z for 
the variables A, B and y. For this type of circuit analysis the convention is to use 
the external inputs to label the columns and the internal variables the rows. This 
gives the maps shown in Table 5.1. The one showing the next state variable, Y, in 
terms of the present state variable, y, is referred to as the transition tab le .  6 

Table 5.1 Transition table and output  Kamaugh map for Circuit 4 

Y 

y 0 0 

y 0 

y 0 0 

0 1 1 y 0 0 1 

0 0 

Flow tables 
The next, crucial, stage is to decide which combinations of the three inputs repre- 
sent stable states for the circuit. That is for which inputs does the fed back signal, 
Y, correspond to the input signal, y? If these differ, then if they are 'reconnected' 
(since we have 'broken' the loop) clearly the circuit cannot be stable and will 
therefore be trying to change. 

The circuit will be stable (as we have deduced in the previous examples) when- 
ever Y=0 in the top row of the Y transition table (i.e. y=0) or Y= 1 in the bottom 
row (i.e. y= 1). These 'states' can be given numbers to code them and the Y transi- 
tion table redrawn showing the stable states (the given number to code that state 
within a circle) and the unstable states Oust a number with no circle) which indi- 

6This is sometimes called the excitation table or map. 
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cates to which stable state the circuit will progress. This is shown in Table 5.2 and 

is called theflow table since it shows how the circuit 'flows' between states. 

The stable states correspond to those cells in the transition table for which the 

next state variable, Y, equals the present state variable, y. Note that the transition 
table was drawn (by using the external inputs to label the columns) such that a 
change in the external inputs causes a horizontal movement in the table, which 
because we are operating in fundamental mode, can only be one column at a time. 
We see that for this circuit, all columns have a stable state, so every combination 

of external inputs will produce a stable output of both Y and Z. 
Whilst changing the external inputs causes horizontal  movements, note that a 

vertical movement represents a change in the feedback signal. In this example, 
since all columns have a stable state, if the circuit enters an unstable state it will 
'move' vertically into a stable condition where it will remain. (This is sometimes 
indicated by drawing arrows within the flow table to show the circuit's action 
when it enters an unstable state.) 

For example if A - B - 0  and y - 1  then Y=0 and the circuit is unstable since 
y~: Y, but the signal Ywill feedback to y (after some delay) and so eventually y=0.  
For A - B-y=O, Y=0 and so the circuit is now in stable state 1. (This is the reason 
why all stable states in the row indexed by y = 0  have Y=0 and all unstable states 
(e.g. 5) have Y= 1 which causes vertical movement to a stable state (e.g. down- 
wards to stable state 5 in cell A By). 

We will now look at some examples of the operation of this circuit for different 
inputs. We begin by assuming we are in stable state 3 (i.e. A -  B -  1 and y - 0 )  and 
are operating in fundamental mode. Changing an input will move us across one 
column in the flow table, in this case from the AB labelled column. If this hori- 
zontal movement takes us to a cell with a stable state the circuit will obviously 
remain there (with the appropriate output for Z); if it moves the circuit to an 
unstable state then the circuit shifts vertically to the stable state (as indicated by 
the arrows) corresponding to the unstable state (the number not in a circle) in the 
transiently occupied cell of the flow table. 

Operation of circuit: Case 1 

If A - B= 1 and y - 0  then Y=0 and the cell is in stable state 3 (i.e. in cell ABy). If 
input B is then changed (to 0) the circuit shifts horizontally to the right to cell 
ABy. This cell is unstable since y = 0  but Y=(AB+Ay) -  1, so there is a downward 
vertical movement to cell ABy (stable state 5), where Y= i. The circuit then 



remains in this stable state since y=  Y= 1. This movement of the circuit from one 

stable state to another via a transient unstable state is shown in Table 5.3. 

Table 5.3 Flow table for Circuit 4: Case 1 

Y 

y=O 

y = l  

AB AB 

B goes low 
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, Q Q  
. . . . . .  

Y 
Y= 1 fed back to y 

Operation of circuit: Case 2 
What if the circuit is again in stable state 3 and then A is taken LOW? This will 

cause a horizontal movement to the left to cell ABy which is another stable state, 

namely 2. So the circuit comes to rest in this state with A =0, B= 1 and y= Y= 1. 

Summary: use of flow tables 
To summarise the use of the flow table to determine the circuit's operation, firstly 

find which stable state (i.e. cell of the flow table) the circuit is in for the given 

inputs, and then note that: 

�9 Changing an external input causes a horizontal movement in the flow table. 

�9 If the circuit enters an unstable state 0 ' 4  Y) there is vertical movement to a 

stable state (if one exists) in the column relating to the present external inputs. 
�9 If the circuit immediately enters a stable state it will remain in it. 
�9 If there is no stable state in a column then the circuit will simply continually 

enter and exit unstable states (i.e. oscillate) as y and Y continually follow each 

other. 

State diagram 
We can redraw the flow table as a state diagram which contains exactly the same 

information but for some purposes is more convenient. In the state diagram each 

state is represented by a node (a circle with a number in) with the states joined by 

arrows. These indicate how the circuit moves from state to state with the inputs 

causing the change indicated on the arrows. The state diagram for Circuit 4 is 

shown in Fig. 5.9. The number of arrows leading to each node gives the number of 

stable states from which that node (stable state) can be reached. (For example 

state 5 can be reached from states 1, 3, and 4 and so has three arrows leading to it.) 

There are twice as many arrows as states (nodes) since there are two input vari- 

ables one of which can be changed (in fundamental mode operation). 

Note that in the state diagram the states have been coded to indicate whether 

the ouput Z is 0 or 1. Either this diagram, or the transition table, can be used to 

determine how changing the inputs to the circuit cause the state occupied to 

change. 
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Fig. 5.9 State diagram for Circuit 4 
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Use of the state diagram 
As an example, if A - B - 0  the circuit is in state 1. Changing B causes a shift to 
state 2 (along the arrow labelled 01), then changing A causes a shift (along arrow 
11) to state 3. 

Example 5.1 

The inputs (A,B) take the following values. Determine which states will the circuit 
be occupied by and illustrate this, and the output, Z, on a timing diagram. 

(A,B) - (0,0), ( 1,0),( 1,1 ),(0,1 ),( 1,1 ),(1,0), (0,0) 

Solution 

For these inputs the circuit will go into states: 1, 5, 4, 2, 3, 5, 1. The timing diagram 
is shown in Fig. 5.10. 

A ! I I I 

S i- I 

z I-1 
Fig. 5.10 Timing diagram for Circuit 4; see Example 5.1 
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What is the circuit's function? 
We have now fully analysed this circuit and can predict what state it will be in for 
any given sequence of inputs. So, what is its function? 

This is best investigated by considering under what conditions the external 
output, Z, becomes 1. This is when the circuit enters state 4, which is when both 
inputs are 1. This state can only be reached via state 5, which is entered when A = 1 
and B-0 .  So, Z=  1 when the inputs (A,B) are (1,0) and then change directly to 
(1,1). In other words, the circuit detects an input sequence of (1,0), (1,1).7 This can 
be seen from the above example where the output goes high indicating this input 
sequence. 

Summary 
This completes the analysis of this circuit, which obviously possesses memory 
because of the way the stable state entered (when both inputs go to 1) is dependent 
upon the previous input conditions, and hence previous stable state. 

5.3.5 Summary of analysis procedure 

Now we have completed our first rigorous analysis of an asynchronous sequential 
circuit we can outline the analysis procedure. We will then use it to analyse two 
further circuits and then consider the design process. 

Procedure: 

1. Break the feedback loop(s). 
2. Draw the transition tables for the next state variable(s) and Karnaugh map(s) 

for the external output(s) in terms of the external inputs and the present state 
variable(s). Remember to use the external inputs to index the columns and the 
present state variables to index the rows. 

3. Determine which cells in the transition table give stable states, assign each of 
these a number and then draw the flow table. 

4. Draw the state diagram if required. 

5.3.6 Circuit 5: two internal inputs 

This circuit, shown in Fig. 5.11, has two external inputs, A and B, two internal 
inputs, X and Y, and one external output, Z. 

Breaking the feedback paths 
This circuit has two internal outputs, X and Y, feeding back to two internal 
inputs, x and y. So these feedback paths are broken. 

Boolean expression of outputs 
From the circuit we see that: 

7Note the similarity between the structure and function of this circuit and Circuit 3 in Section 5.3.3 which 
detected the sequence (1,0), (0,0). 
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X 
Z 

Fig. 5.11 Analysis Circuit 5, which has two external and two internal inputs 

X=AB~,+Ax~ 

Y= AB2 + ABx + Ay 

with the output circuit (in this case using no logic) giving: 

Z = x = X  

Using these equations we can draw the Karnaugh maps for these as shown in 
Table 5.4. 

Table 5.4 Karnaugh maps for the outputs from Circuit 5 

X 

o 

~y 0 

xy 0 

0 

Y 

~Y 

~y 

xy 

~Y 

~y 

xy 

0 0 0 

0 0 0 

1 1 1 

1 1 1 

T r a n s i t i o n  t a b l e  

The next stage is to determine under what conditions the circuit is stable which, by 
extending the argument used in the previous examples, will be when both internal 
inputs, x and y, match the signals being fed back to them, X and Y. In order to see 

this it is helpful to combine the Karnaugh maps for X and Y into the single transi- 

tion table shown in Table 5.5. The stable total states will be those cells where the 
values of X Y  match those of the variables x and y labelling the rows. 

Flow table 

The stable total states can then be given numbers and circled whilst the unstable 
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Table 5.5 Transition table for Circuit 5 

STATE XY 

~Y 

~y 

xy 

x~ 

00 

00 

00 

00 

01 

01 

00 

00 

10 

01 

01 

10 

00 

01 

01 

11 

states are simply labelled with the states they will lead to, as shown in Table 5.6. 

Note that because this circuit has two feedback signals there are four possible 

internal states corresponding to the four possible combinations of these vari- 

ables, and hence four rows in the excitation matrix. This means that when the 

circuit is unstable in any cell it now has three cells (in the same column) into 

which it can move (with one internal input there is only one other cell in each 

column). 

Table 5.6 Flow table for Circuit 5 

STATE 

xy 

xy 

x~ 

@ 
Q Q 

@ 

Q 
@ 

With this circuit when both A and B are 0 all unstable states lead to stable state 

1; similarly in the second column when A =0 and B -  1 there is a single stable state 

to which all unstable states (the other three cells in this column) lead. Note that in 

this column, AB, rows 3 and 4 do not lead directly to the stable state, but rather 

get there indirectly via row 1 (since in these rows, (X, Y)-(0,0)), which leads 

directly to state 3 (row 2). 
In the third column, which has inputs of both A and B being 1, there are two 

stable states, 4 ar-d 6, with one each of the two unstable states leading to state 4 

and 6 respectively. 
The fourth column, ,~B, also has two stable states, 2 and 5, but here the two 

feedback variable combinations giving unstable states both lead to state 5 (the one 

from row 4 indirectly via row 3). Hence the only way of entering state 2 is from 

state 1. 
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State diagram 
Finally we can draw the state diagram (for fundamental mode operation) as 
shown in Fig. 5.12. There is a node for each stable state, with two arrows leading 
from every node (corresponding to movement to the left and right in the flow 
table as one of the two external input variables is changed). 

lO 11 

/ \ \ \ 

~ 5 J  ~ 4 J  ~ 3 J  ~ l J  2 J  

oi 

A B - I O  

Fig. 5.12 State diagram for Circuit 5. Note the dashed states have an external output Z= 0, and the 
solid Z= 1 

Circuit operation 
Having completed the basic analysis we can examine the circuit's operation under 
certain conditions. To do this we look at which states give an output of 1 which by 
comparing the flow table for the circuit (Table 5.6) and the Karnaugh map for Z 
(in Table 5.4) can be seen to be only stable state 6. From the state diagram (Fig. 
5.12) it can be seen that this state is only reached from state 2 when the inputs 
(A,B) are (1,1). However, state 2 can only be reached from state 1 with inputs of 
(1,0), whilst state 1 can only be entered with inputs of (0,0). This circuit therefore 
uniquely detects an input sequence of (A,B)= (0,0),(1,0) and then (1,1) to which it 
responds by sending the external output, Z, high. This completes the analysis, 
with the consequence of any input sequence capable of being found from either 
the flow table or state diagram. 

Example 5.2 

Which states would the circuit enter for inputs of: 

(a)01, 11,01,00, 10, 11,01, 11 
(b) 00, 10, 00, 10, 11, 10, 11, O1 
(c) 01,00, 10, 00, 10, 11, 10, 11 
(d) 00, 01, 11, 10, 00, 10, 11, 01 

Draw the output waveforms for these inputs. 
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So/m/on 

(a) 3, 4, 3, 1 ,2 ,6 ,3 ,4  
(b) 1,2, 1,2, 6, 5, 4, 3 
(c) 3, 1,2, 1,2, 6, 5,4 
(d) 1,3,4,5,  1,2, 6,3 
The corresponding output waveforms are shown in Fig. 5.13. 

a, I I 
b, L ! 

d) [ - - - ] ~  

Fig. 5.13 Output waveforms from Circuit 5 for the inputs given in Example 5.2 

5.4 CIRCUIT 6: A BINARY STORAGE ELEMENT 

The final asynchronous sequential circuit we are going to analyse is shown in Fig. 
5.14 and consists of two cross-coupled NOR gates. As well as analysing its opera- 
tion like the previous circuits we will also use it to investigate the consequence of 
relaxing the restriction of fundamental mode operation. 

R Q 

S 

Fig. 5.14 Analysis Circuit 6: the SR flip-flop 

5.4.1 Analysis 

Breaking the feedback path 
This circuit has two feedback paths. However, the circuit can be redrawn as 
shown in Fig. 5.15 which demonstrates that we only need to split one of the paths 
because in this circuit they are not independent. 8 

8The circuit can be analysed by considering two feedback paths but this will obviously be more compli- 
cated and results in exactly the same conclusions. 
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R Q 

Fig. 5.15 Circuit 6 redrawn to show that only one dependent feedback path exists 

Boolean expression of outputs 

From the circuit we see that: 

Q=R+(S+q)-R. (S+q)-SR +RQ 

Transition table 
We can now draw the transition table as shown in Table 5.7 which shows that all 

possible input combinations possess a stable state. These are shown numbered 

and circled in the flow table also in Table 5.7. 

Table 5.7 The transition table and flow table for Circuit 6 

0 

q 1 

0 0 1 

0 0 1 

Q 

q 

|  

2 3 ( ~  

State diagram 
We can draw the state diagram (for fundamental mode operation) which is shown 

in Fig. 5.16. Having completed the basic analysis we can examine the circuit's 
operation under certain conditions. 

01 

SR =10 

/ \ 

/ 

J 

10 

O1 

Fig. 5.16 The state diagram for Circuit 6. Solid circles indicate the states for which Q= 1 
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Example 5.3 

If the inputs (S,R) take the following values then what states does the circuit 
occupy and what happens to the output, Q. 

(S,R) = (1,1),(0,1 ),(0,0),(1,0),(0,0) 

Solution 

Changing the inputs causes horizontal movement in the maps, which will be 
followed by a vertical movement to a stable state should one not be entered 
initially. The circuit goes firstly to state 3 (inputs (1,1)): 

�9 (0,1) causes movement to the left to stable state 2; 
�9 (0,0) causes movement to the left to stable state 1; 
�9 (1,0) causes movement to the 'left' (to the far right hand column) and unstable 

(transient) state 5, which is followed by vertical movement to stable state 5; 
�9 (0,0) causes movement to the right, back to the first column, but with the circuit 

now occupying state 4 (due to downward movement when in column 4 (inputs 
(1,0)) to stable state 5). 

The output, Q, will be 0 until state 5 is entered (since this is in the bottom row of 
the flow table) when it will become 1 and remain 1 as the circuit moves into state 4. 

Example 5.4 

What states will the circuit occupy for the following inputs? 

(S ,R) :  (0,1 ),(0,0),(0,1 ),( 1,1 ),( 1,0),(0,0),(0,1 ),(0,0) 

Solution 

The circuit will occupy states: 2, 1, 2, 3, 5, 4, 2, 1 with corresponding outputs of 
0, 0, 0 , 0 ,  1, 1, 0, 0. 

5.4.2 Race conditions 

In order to study some important features of asynchronous and other circuits we 
now relax the fundamental mode conditions and so allow more than one input to 

change at the same time. 

Non-critical races 
Consider Circuit 6 in the above section with inputs (S,R)=(0,1) and therefore in 
state 2 (cell SR-q), with both inputs then changing to give (S,R)=(1,0). We now 
have the situation for a race condition since both S and R must change. If S 
changes first the circuit goes transiently to state 3, cell SR-q and then, as R 
changes, on to stable state 5, cell SRq (via unstable state, SR-q). However, alterna- 
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tively R may change first in which case the circuit will transiently enter state 1 (cell 

SR-q) before finally settling in state 5 (again via unstable state, SR-q). 

The important point to note is that whichever signal changes first the circuit 
eventually ends up in state 5. This is therefore an example of what is called a non- 

cri t ical  race. It is a race condition because there are two signals changing simulta- 
neously and hence 'racing' each other to see which one effects a change first. It is a 
non-critical race because the final result, that is the eventual stable state, does not  

depend upon which signal arrives first at, or travels fastest through, the circuit. 

Critical races 
Now consider (S,R)-(1,1) ~ (0,0). Initially the circuit is in stable state 3. If S 

changes first then the circuit goes from state 3 to 2 and finally settles in state 1 as R 

changes. However, if R is the first to change the circuit goes firstly to state 5 and 
then settles in state 4. Here we have an example of a crit ical  race since the eventual 
state of the circuit (for the same inputs) is critically dependent upon which signal 
arrives first. 

This critical race condition clearly renders this circuit's operation unpre- 
dictable, and therefore unusable, unless it is either operated in fundamental mode 
(remember we had relaxed this restriction) or alternatively the input conditions 
S - R  = 1 are not allowed since it is only by entering this state that the unpredicata- 
bility occurs. The first option demonstrates why fundamental mode operation is 
such a powerful restriction because of the way it helps eliminate race conditions. 

5.4.3 The SR flip-flop 

We now consider the second option which basically removes state 3, leaving four 
states. Since of these four states, two each have an output of 0 and 1, then we can 
combine these into a state diagram with two nodes, corresponding to outputs of 0 
and 1 as shown in Fig. 5.17. 

This state diagram shows that the output, Q, is set  to 1 when S= 1 and reset  to 0 

SR =10 

oo Q =o~ ( ~  o o 
Ol ~ lO 

O1 

Fig. 5.17 State diagram for Circuit 6, in terms of the output, Q, rather than the circuit's states 

when R = 1 (remember we are not allowing both inputs to be 1). If the inputs then 
both become 0 the circuit retains the same output due to the existence of the two 
stable states (1 and 4) for these input conditions (column 1). 

This circuit, operated under the conditions that both inputs must not be 1 
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simultaneously, 9 is what is known as a Set-Reset (SR) flip-flop. As the name 
implies the output of this flip-flop can be set to 1 by making S= 1 or reset to 0 by 
making R = 1. If both inputs are 0 then the circuit remains in the same state, and 
hence the output is unchanged. 

Clearly the circuit has 'memory' since when both inputs are 0 it remembers 
what the output was before this input condition (since it has two stable conditions 
and different outputs for an input of (0,0)). A flip-flop can therefore act as a 
digital storage element that can store a 0 or 1 (i.e. a binary digit or bit) and is the 
basis for SRAM devices (see Section 10.3.1). As we will see in the next chapter, 
other types of flip-flop also exist. 

The function of the SR flip-flop can be expressed in a variety of ways. 
Obviously the flow table and state diagrams completely describe its action, but 
more typically it is the truth table, shown in Table 5.8 or Boolean description: 

M _ _  

Q = SR + Rq 

that is used. These are considered again, together with the operation of other 
types of flip-flop, in the next chapter. 

Table 5.8 Tru th  table of  the SR flip-flop 
, ,  

S R Q 
, , ,  

0 0 unchanged 

0 1 0 R E S E T  

1 0 1 SET 

1 1 not  used 

5.5 INTRODUCTION TO ASYNCHRONOUS 
SEQUENTIAL CIRCUIT DESIGN 

The design of asynchronous sequential circuits follows essentially the reverse of 
the analysis procedure. That is from flow table, to transition table, to Karnaugh 
maps for the individual output variables and finally the Boolean equations. 
However, in order to produce reliable circuits the procedure becomes somewhat 
more complex than this simplified description suggests. 

Consequently, what follows is a discussion of the design process, rather than its 
application which can be found in other texts. 

The design route 
Asynchronous circuit design usually begins with the primitive f low table which is 
similar to the flow table but only possesses one stable state per row. This is then 

9It is worth reiterating that the reason is that if both of the inputs are 1 and then change together, there is 
a critical race condition which may lead to an output of either 0 or 1, i.e. unpredictable behaviour. 
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studied tosee whether any of the resulting states are equivalent (in terms of their 
stable states, where their unstable states lead and the associated outputs). If any 
states are equivalent then they can be combined to produce the minimum-row 
primitive flow table (still with one stable state per row) which can be further 
reduced by merging equivalent rows to give the flow table we have used during 
circuit analysis. 

The state assignment is then performed in which binary codes are given to the 
states in the flow table. Note that there are many state assignments possible (i.e. 
any binary code can be given to any state). This leads to the transition table and 
then on to the final Boolean equations for the output variables. 

Hazards 
Unfortunately the process is not quite this straightforward, and further thought is 
necessary to produce a reliable circuit. We saw in Section 4.3 that combinational 
circuits can contain hazards and therefore the effects of these in the combina- 
tional block of our asynchronous circuit must be taken into account. In addition 
asynchronous circuits possess their own potential hazards. 

We have seen how relaxation of fundamental mode operation can lead to race 
conditions. In a similar way if a circuit possesses more than two internal variables 
and these change 'simultaneously' then the order in which they change may result 
in different eventual states being reached. (In this situation the flow table will have 
more than two rows, and the order in which these rows are visited within the same 
column, upon external inputs being changed, may differ and lead to an unex- 
pected stable state.) Techniques for predicting and eliminating such problems 
exist and this is done during state assignment. It may involve the introduction of 
additional intermediate states which are visited transiently during the actual 
required transition. 

Spikes in the outputs may occur due to the same cause (i.e. transiently visited 
states) and can be eliminated by consideration of the 'don't  care' conditions when 
drawing up the output table. 

Finally, even if neither critical races nor hazards in the combinational logic 
block exist an asynchronous circuit may still possess essential hazards. These are 
due to internal delays in the circuit which make it appear as if a single external 
input has changed three times (i.e. 0 --) 1 --) 0 --) 1) rather than just once. These can 
be eliminated by adding in appropriate delays to the circuit to ensure signals prop- 
agate in the 'correct' order. 

Summary 
In principle asynchronous design is straightforward but the presence of hazards 
means that care must be taken for such designs to function correctly. The hazards 
are usually dealt with by: firstly eliminating critical races; then ensuring all combi- 
national logic is free of hazards; and finally spotting and eliminating essential 
hazards by the addition of strategically placed delays. 
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5.6 SELF-ASSESSMENT 

5.1 What is the basic difference between sequential and combinational logic 
circuits? 

5.2 What is the general form of a sequential logic circuit? 

5.3 How does the number of &ternal and total states of a sequential circuit relate 
to the number of outputs from the circuit's 'memory' and the circuit's inputs? 

5.4 What are the basic differences between asynchronous and synchronous 
sequential circuits? 

5.5 What conditions must be met for an asynchronous sequential circuit to be 
stable? 

5.6 In what way can changes in the inputs to an asynchronous sequential circuit 
be restricted to ensure correct operation? 

5.7 What is meant by 'breaking the feedback path' in the analysis of an asyn- 
chronous sequential circuit? 

5.8 What are the: transition table,flow table and state diagram? 

5.9 What movement in the flow table is caused by: 
(a) a change in the inputs to an asynchronous sequential circuit 
(b) movement to an unstable state? 

5.10 If no stable state exists for certain input conditions what will happen to the 
output of an asynchronous sequential circuit when these conditions are 
present? 

5.11 What is the difference between non-critical and critical races? 

5.7 PROBLEMS 

5.1 Analyse fully the circuit shown in Fig. 5.18 by producing the transition table 
and output map, the flow table and finally the state diagram. What function 
does the circuit perform? Comment on any similarites with Circuit 4. 

A 

Fig. 5.18 Circuit to be analysed in Problem 5.1 
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5.2 Analyse fully the circuit shown in Fig. 5.19 by producing the transition table 
and output map, the flow table and finally the state diagram. Compare the 
function of this circuit with that in Problem 5.1. 

A 

Fig. 5.19 Circuit to be analysed in Problem 5.2 

5.3 Analyse fully the circuit shown in Fig. 5.20 by producing the transition table 
and output map, the flow table and finally the state diagram. Comment on 
any similarities to Circuit 4 and those analysed in Problems 5.1 and 5.2. How 
could this circuit be used to detect (i.e. produce an output Z= 1) an input 
sequence of (0,1),(1,1)? 

A 

Fig. 5.20 Circuit to be analysed in Problem 5.3 

5.4 Analyse the operation of a circuit constructed from cross-coupled NAND 
gates (see Circuit 6, Section 5.4). 

5.5 Once Problems 5.1, 5.2 and 5.3 have been completed use what you have 
learned to design a circuit to detect the input sequence (0,1),(0,0). 

Comment on any similarities between your design and Circuit 3. 

5.6 Analyse Circuit 6, the cross-coupled NOR gates, as a circuit with two feed- 
back paths (i.e. without combining the dependent feedback signals). 



6 Flip-flops and flip-flop based 
circuits 

6.1 INTRODUCTION 

Flip-flops 1 are vital ingredients in all except purely combinational logic circuits 
and are therefore extremely important. The SR (Set-Reset) flip-flop was intro- 
duced in the last chapter and illustrates an important point, namely that all flip- 
flops are asynchronous sequential logic circuits. However, by controlling their use 
they can be considered as synchronous circuit elements, which is exactly the 
approach taken here. Rather than providing a detailed description of how flip- 
flops are designed and operate, they are presented as discrete circuit elements (e.g. 
like a multiplexer or full adder) to be used in subsequent designs. 

In general, flip-flops possess data inputs (e.g. the S and R inputs), an output, Q 
(and its complement, Q), and also (as we will see) a 'clock' input which controls 
the activation, or clocking, of the flip-flop. That is the timing of the change in the 
flip-flop's output in response to its inputs. 

6.1.1 Ffip-flop types 

The SR flip-flop can be set, or reset, or held in the same state via control of its inputs. 
However, it cannot be made to change state (i.e. its output give the complementary 
value) or toggle. Further thought reveals that if it could its operation would be 
unpredictable since it is an asynchronous circuit and therefore if made to toggle it 
would do so continuously (i.e. oscillate) until new inputs were presented. 

However, by gating the inputs to an SR flip-flop via AND gates under control of 
the flip-flop's complementary outputs (Q and Q) it is possible to produce a flip-flop 
whose output can be made to toggle (i.e. go from 0 to 1 or vice versa) when acti- 
vated (see Problem 6.1). This is then an example of a T-type (Toggle) flip-flop whose 
output either remains the same (when the input T=0) or toggles (when T= 1). 

Alternative input gating (again using AND gates via control of the flip-flop's 
outputs) allows the SR flip-flop to be transformed into a device called a JK flip- 
flop which combines the characteristics of the both the SR and T-types (see 
Problem 6.2). The JK operates as for an SR flip-flop with the addition that both of 
its inputs can be 1, in which case the output toggles. 

~A flip-flop is basically a circuit capable of storing a 0 or 1. 
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The fourth and final type of flip-flop has the simplest operation acting only to 
delay the transfer of its input to its output. Clearly the activation of this D-type 
(Delay) flip-flop must be controlled externally since otherwise it would simply be a 
wire link. Hence it has three external connections" the input, D, and output, Q, and 
a clock input which controls the timing of the transfer of the input value to the 
output. 

In fact all types of flip-flops are available in clocked form which basically means 
that they have an additional clock input, with the flip-flop's outputs only 
responding to the input conditions when the clock line goes active (i.e. the flip-flop 
is 'clocked'). 

To summarise, there are four types of flip-flop: 

SR Set-Reset; must not allow both inputs to be 1 simultaneously. 
T Toggle type; on clocking the output either remains the same or toggles 

depending if the input is 0 or 1. 
JK Offering the capabilities of both the SR and T types. 
D Delay-type flip-flop; upon clocking the output follows the input. 

The operation of these four flip-flops can be described in several ways. 

�9 A truth table which shows what the flip-flop's output, Q+, will be for all possible 
m 

input combinations. (Note the use of Q and Q in. the output column which 
respectively mean that the output either remains as it is or toggles.) 

�9 An excitation table which gives the inputs that must be used to produce a given 
output transition. 

�9 A Karnaugh map containing the same information as the truth table but in a 
different format. (Note there is a cell for every possible value of Q, and so more 
cells than rows in the truth table.) 

�9 The next  state equation which is the minimised form of the output, Q+, from the 
Karnaugh map as a function of the flip-flop's inputs and the flip-flop's present 
output (state), Q. 

These are shown for all types of flip-flop in Table 6.1. 

6.1.2 Flip-flop operation 

Being asynchronous circuits the brief description of flip-flops given above clearly 
cannot adequately describe their precise operation. 2 Although the SR flip-flop 
does find uses in its basic (unclocked) form (see Section 6.2.1), the other three 
types are always clocked, that is the changes in the outputs occur under the 
control of a clock 3 signal. 

2For example the JK flip-flop is usually implemented as a master-slave device in order to give reliable 
operation. This consists of two appropriately gated SR flip-flops (see Problem 6.3). Also D-type flip-flops 
may not be constructed from basic logic gates at all, but rather from circuit elements called transmission 
gates (see Section 9.3.6) which are not logic gates. 

3The clock input to a flip-flop is sometimes labelled as the strobe or enable input. 
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Table 6.1 

s O 
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R Q 

T o l  
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Q 

The four types of flip-flop, and their truth and excitation tables, 
Karnaugh maps and next state equations 

truth tables 
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Given that a flip-flop is clocked there are still several ways in which this can be 
performed. For instance the clock (or control) line going active may then mean 
that any changes in the inputs (during the active clock signal) take effect at the 
outputs. In this case the flip-flop is said to be transparent (since as long as the 
clock is active the outputs can 'see' right through to the inputs). 
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With such a clock signal the flip-flop is effectively a level triggered device with 
the inputs taking effect as soon as the clock line reaches, and whilst it remains at, 
its active level. Obviously in order for such devices to operate correctly it will 
usually be necessary to ensure the inputs do not change when the clock is active. 

Alternatively flip-flops may be edge triggered. An edge refers to a rising or 
falling logic signal (e.g. going from 0 to 1 or 1 to 0), referred to as positive and 
negative edges respectively. An edge-triggered flip-flop will change its outputs in 
response to the inputs when an edge appears on the clock line. Therefore it is not 
transparent since ideally it responds to the inputs at a particular instant in time. 
This is the most common form of flip-flop used and the one that we will use in 
subsequent designs. 

6.1.3 Timing requirements 

In order for flip-flops to perform correctly (and effectively as synchronous 
components) they must be operated within certain timing constraints. These are 
the set-up and hold times, and refer respectively to the times that the inputs must 
be held at the required values before and after being clocked. Adhering to these 
times guarantees correct operation of the asynchronous flip-flops. 

This requirement imposes a limit on the speed at which a flip-flop can be 
toggled (changed repeatedly between states), with the fundamental frequency of 
this toggling being one of the parameters used to describe the performance of a 
flip-flop. 

6.1.4 Other inputs 

In addition to the inputs and outputs shown in Table 6.1, flip-flops (available as 
circuit elements) usually possess preset (i.e. set Q= 1) and clear (i.e. reset Q=0) 
inputs. These inputs may be synchronous in which case the flip-flop's outputs will 
change when it is next clocked, or asynchronous which means the outputs will 
change immediately in response to either of these inputs being active. 

Figure 6.1 shows a positive edge triggered JK flip-flop with active-LOW preset, 
Pr, and clear, CI, and a negative edge triggered D-type with active-HIGH preset 

Fig. 6.1 
flip-flop 

m 

Pr 

J Q 
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, Q 
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clk 

I 
Cl 
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Q 

Circuit symbols for a positive edge triggered JK flip-flop and a negative edge triggered D-type 
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and clear. Remember that a bubble indicates inversion and that active-LOW 
means the signal must be LOW to take effect (assertion level logic). The wedge 
symbol on the clock input indicates edge triggering, so a bubble and a wedge 
means negative edge triggered. 

Finally it should be noted that many elegant heuristic designs using flip-flops 
exist which make use of the preset and clear inputs to perform the required circuit 
operation in a simple manner (e.g. Problem 6.5). 

6.2 SINGLE FLIP-FLOP APPLICATIONS 

The following are two common uses of single flip-flops, one clocked and the other 
unclocked. 

6.2.1 Switch debouncing 

All mechanical switches will 'bounce' when closed which means the contacts do 
not make immediate firm contact. The consequence of this is that the actual 
voltage from the switch oscillates when contact is made. If this signal is to act as 
the input to a digital circuit then instead of the circuit seeing only a single transi- 
tion it will actually see many. A common use of an SR flip-flop is to clean up this 
signal to ensure-only a single transition is produced. The SR can do this because 
once set or reset it will remain in this state if both inputs are held at 0 (and so be 
immune to the oscillations). 

Example 6.1 

Draw the outputs that will be obtained from the circuit in Fig. 6.2 and determine 
how an SR flip-flop can be used to clean up these signals. 

T 

5V  

T 

5V 

- A 
w 

Fig. 6.2 Switch circuit whose output, exhibiting contact bounce, is 'cleaned up' as described in 
Example 6.-I 
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Solution 

Fig. 6.3 shows the signals that will be obtained from points A and B. We note that 
the contact bounce gives conditions of A and B both 1 during which time we 
require the outputs to remain constant. We cannot use inputs of S =R = 1 for an 
SR flip-flop but note that if both inputs to the flip-flop are inverted (to give an SR 
flip-flop) then we will obtain the required clean waveform shown in Fig. 6.4. 

switch thrown 
from A to B 

Switch A I / ] I 
Position B 

contact 
bounce 

0 V 
threshold 

5v / 
OV ~ ~  

Fig. 6.3 Output from the circuit in Fig. 6.2 which illustrates the problem of contact bounce. A logic level 
of 1 is represented by a voltage above the illustrated threshold 

switch thrown 
from A to B 
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B 
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s Q 
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R Q 

Q I I 
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Fig. 6.4 Switch debouncing using an SR flip-flop; see Example 6.1 

m 

Input A going LOW, and so S LOW, will set Q-1 .  Then as this transition 
occurs the contact bounce giving A and B both HIGH will cause both S and R to 
be HIGH (i.e. S =R =0) and so the flip-flop will remain in the same (Q= 1) state as 
required. Similarly, input B going LOW will reset Q to 0. Contact bounce giving 
A =B= 1 will not affect Q which remains LOW. 
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6.2.2 Pulse synchroniser 

In synchronous circuits it is vital that events (signals) are correctly synchronised 
to one another. Consider an asynchronous pulse which must be synchronised to 
the master clock within the digital system it is entering. How can this be achieved? 
A D-type flip-flop provides a solution since it 'allows' the pulse to enter the system 
only when it has been clocked as shown in Fig. 6.5. 

I O m 

CLK 

cL~ I-1 I -  

' 1 
O 

I I I L ~ l }  

Fig. 6.5 Synchronisation of a pulse using a negative edge-triggered D-type flip-flop 

Example 6.2 

Draw the relevant waveforms showing pulse synchronisation using a positive 
edge triggered flip-flop. 

Solution 

These are shown in Fig. 6.6. 

CLKI  I I I ....... ,! i ~  

' I 
Q 

1 

Fig. 6.6 The use of a positive edge triggered flip-flop for pulse synchronisation, as discussed in 
Example 6.2 

Use of an AND gate allows synchronised gating of the clock by the input pulse 
as shown in Fig. 6.7 where Q. CLK is the clock signal and the output from the D- 
type AND'd together. Note that the propagation delay of the D-type has been 
included. 
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eLK ! I 

Q. CLK I I 

I i ! l 
o 

Fig. 6.7 Synchronised gating of a clock using a negative edge triggered D-type. Note that the delay of 
the D-type is shown (as the lag in Q changing state) 

Example 6.3 

Consider the use of the positive edge triggered D-type synchroniser from the last 
example for the synchronised gating of a clock. 

Solut ion 

The waveforms are shown in Fig. 6.8. The important thing to notice is that in this 
case the propagation delay of the D-type causes the production of spikes (and 
shortening of the initial gated clock pulse) following the AND'ing process which 
would be liable to cause incorrect circuit operation. This circuit should therefore 
not be used. Further examples of this type are discussed in Sections 11.2 and 11.3. 

CLK 

Q- CLK 

I I 

I I -1 I l 
Fig. 6.8 Synchronised gating of a clock using a positive edge triggered D-type, as discussed in 
Example 6.3 
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6.3 REGISTERS 

Because it possesses 'memory', a single flip-flop can be used to store a single 
binary digit (a bit), hence n flip-flops can store an n-bit word. Such an arrange- 
ment is called a register. Considered as circuit elements in their own right registers 
have many applications including arithmetic operations, special types of counter 
and the simple storage of binary patterns. We will now look at some of the most 
common of these. 

6.3.1 Shift registers 

A shift register is simply a collection of clocked flip-flops linearly connected 
together so that information can be passed between them. That is the value stored 
in one flip-flop is shifted to the next in line when the register is clocked. Each flip- 
flop has its output(s) connected to the input(s) of the next in line. Obviously to be 
of use data must be able to be moved in and out of this structure, and this can be 
performed either serially or in parallel. 

Used serially, data is passed into the flip-flop at the end of the line and then fed 
along from flip-flop to flip-flop. In parallel mode data is input to all flip-flops 
simultaneously. Fig. 6.9 shows a three-bit shift register constructed out of D-type 
flip-flops. Note how: the inputs and outputs of adjacent flip-flops are connected; 
all the clear and clock lines are tied together; and the gated preset arrangement 
allows the register to be parallel loaded with any desired pattern. 

Preset 

(Parallel 
Load) 

Clear 

Q2 (~ 

m ~  

Pr 2 

Q2 Pr D 2 

clk<( - 

Q2 (:l 

T 

M 

Pr I Pr o 
1 QO 

~ o . _ ~  

Q1 Pr D 1 

clk ~ ~  

QI Cl 

I 

_ . . _ _ ~  ~ _ _ . _  

Q0 Pr D O 

elk<: ~ 

Qo C~l 

Y 

Data 
Input 

- - - -  Clock 

Fig. 6.9 A three-bit shift register 

Because there are two ways of entering and extracting data from the shift 
register this gives four possible modes of operation: serial in, parallel out (SIPO); 
serial in, serial out (SISO); parallel in, serial out (PISO); and parallel in, parallel 
out (PIPO). 
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Although some of these forms are of more use than others we will briefly look 
at how the shift register shown in Fig. 6.9 would be used in each of these four 
modes. 

SIPO 
�9 Clear all flip-flops by taking clear LOW. 
�9 Set clear and preset HIGH for normal flip-flop operation. 
�9 Apply serial data train to the first flip-flop and clock at a rate synchronised to 

the data train so that one bit is entered for each clock trigger (for three bits of 
data for this shift register). 

�9 Data is now residing in the shift register and can be read out in parallel from all 
three flip-flops simultaneously using Q0, Q~ and Q2. 

Example 6.4 

Draw the contents of a four-bit shift register, at each clock pulse, which has the 
binary pattern 0110 serially loaded into it. 

Solution 

This is shown in Fig. 6.10. 

Q3 Q2 Q1 Q0 
Reset 0 0 0 0 
Clock 1 0 0 0 0 

J 
Clock 2 0 0 0 1 
Clock 3 0 0 1 1 
Clock 4 0 1 1 0 

Fig. 6.10 Contents of a four-bit shift register when being serially loaded with binary pattern 0110 (see 
Example 6.4) 

Note that in the SIPO shift register the data is transformed from being sepa- 
rated in time (temporally) to separated in space (spatially), within the individual 
flip-flops. 

SISO 
For the serial in, serial out shift register data is loaded in exactly the same way as 
for the SIPO but is then simply clocked out serially via Q2. Obviously once loaded 
the data need not be accessed immediately and so can be stored. Also, it can be 
clocked out at a different rate, so providing a method of buffering data between 
two digital systems running at different clock speeds. 

Note that because a SISO can be operated with only two connections (to get the 
data in and out) its size is not constrained by necessary access to any other inputs 
and outputs. 
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PISO 
�9 Clear all flip-flops by taking clear LOW. 
�9 Present the parallel data (a three-bit word) to the preset input lines Pr 2, Pr~, Pro. 
�9 Write this data into the register by taking preset enable HIGH. 

This means the three-bit word is stored in the register, and can be read out as 
for the SISO using three clock pulses. Note that the PISO performs a spatial-to- 
temporal conversion of data. 

PIPO 
The PIPO shift register takes the data in and outputs it in parallel. Hence there is 
no shifting of data within the circuit, rather it simply acts as three memory cells. 

The register discussed here can only shift data in one direction. Bidirectional 
shift registers are also available that can shift data in either direction. Note that 
one potential use of shift registers is for the multiplication or division by factors of 
two (by simply shifting data left or right respectively, see Section 2.5). 

6.3.2 Applications of shift registers 

Digital delay lines 
If a single-bit data stream is fed serially into a shift register and then read out seri- 
ally from the output of one of the register's flip-flops then the effect is that of 
delaying the data stream. For a clock period T then if the data is read from the nth 
stage of the register, the data is delayed by (n-  1)T. 

Sequence generator 
If a binary pattern is fed into a shift register it can then be output serially to 
produce a known binary sequence. Moreover, if the output is also fed back into 
the input (to form a SISO connected to itself) the same binary sequence can be 
generated indefinitely. 

When a SISO shift register is connected to itself this is usually referred to as a 
re-entrant shift register, dynamic shift register, ring buffer or circulating memory. 
Variations on this type of circuit are used for data encryption, error checking and 
for holding data during digital signal processing. 

Ring counters 
Shift registers can be used to produce a type of simple counter whose advantage 
(in addition to the simplicity) is that they can operate at very high speeds since 
there is no need for any external control or decoding circuitry (necessary for most 
counters as we will see in the next chapter). 

Such counters are formed by simply using a re-entrant shift register (the serial 
output is fed back to the serial input) which is (usually) loaded with a solitary high 
value. The register is then clocked and the output, taken from any one of the flip- 
flops, simply goes high every time the single stored bit arrives at that flip-flop (i.e. 
after N clock cycles giving what is known as a mod-N counter). 
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B 

A second type of counter can be produced by connecting the Q output from the 
last flip-flop of a SISO back to the input and then loading a single 1. This is 
usually referred to as one of the following" twisted ring, switched tail, Johnson or 
Moebius 4 counter. A mod-2N twisted ring counter requires N flip-flops. 

E x a m p l e  6 .5  

Tabulate the contents of four-bit ring and Johnson counters which have a single 
bit entered and are then clocked. 

Solution 

These are shown in Fig. 6.11. 

4-bit Ring 4-bit Johnson 

Q3 Q2 Q1 Q0 Q3 Q2 Q1 Q0 
Reset 0 0 0 0 Reset 0 0 0 0 

0 0 0 1 0 0 0 1 

0 0 1 0 0 0 1 1 
0 1 0 0 0 1 1 1 
1 0 0 0 1 1 1 1 

0 0 0 1 1 1 1 0 

0 0 1 0 1 1 0 0 

0 1 0 0 mod-4  1 0 0 0 

1 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 1 

0 0 1 0 0 0 1 1 

Fig. 6.11 The outputs from four-bit ring and Johnson counters; see Example 6.5 

- mod-8 

6.4 SELF-ASSESSMENT 

6.1 What are the four types of flip-flop? 

6.2 Why must the T and JK flip-flops be clocked (synchronous). 

6.3 In what ways can the operation of a flip-flop be described; what does the exci- 
tation table tell you? 

6.4 Draw the truth table and excitation table for a JK flip-flop and relate their 
respective entries to each other (i.e. which entries in the two tables correspond 
to each other?). 

4A Moebius strip is a loop made from a strip of paper with a single twist in, meaning it only has one side. 
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6.5 What does the next state equation for a flip-flop tell you? 

6.6 What do the terms transparent; level triggered and edge triggered mean? 

6.7 What happens to the output Q when a flip-flop is preset or reset; and what do 
asynchronous and synchronous mean when referred to these operations? 

6.8 What is a shift register, and why can such a circuit be used to multiply a 
binary number by 2". 

6.9 How many flip-flops are required to construct mod-12 ring and Johnson 
counters? 

6.5 PROBLEMS 

6.1 Determine how the circuit shown in Fig. 6.12 functions as a T-type flip-flop. 
What problem would there be when T= 1 and how could it be resolved. (Hint: 
remember that the SR flip-flop must have a propagation delay.) 

, i - )  

QI 1 Q 

Fig. 6.12 Circuit to be analysed in Problem 6.1 

6.2 Determine how the circuit shown in Fig. 6.13 functions as a JK-type flip-flop. 
Under what input conditions may a problem occur? 

j I 1 )  

K V) 
I 

S Q Q 

m 

R Q 

Fig. 6.13 Circuit to be analysed in Problem 6.2 

6.3 Fig. 6.14 shows a master-slave flip-flop where the C input is a square-wave 
clock signal. Analyse its operation and find why it does not suffer from the 
problems afflicting the circuits in Problems 6.1 and 6.2. 

6.4 How could: 
(a) a JK flip-flop be used as a D-type? 
(b) a JK flip-flop be used as a T-type? 
(c) a D-type flip-flop be used as a T-type? 
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Q c~ 

Fig. 6.14 Circuit to be analysed in Problem 6.3 

6.5 What does the circuit in Fig. 6.15 do? 

Q 

c - A T d T F L  

Pr 

clk 

Z 

Fig. 6.15 Circuit to be analysed in Problem 6.5 

6.6 Show the circuits for, and outputs from, a mod-6 ring counter and Johnson 
counter. What problems would arise if somehow one of the unused states (i.e. 
binary patterns not held by the flip-flops during normal operation of the 
Johnson counter) was entered. 
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7.1 INTRODUCTION 

Counters are one of the most widely used logic components in digital electronic 

circuits. In addition to simply counting they can be used: to measure time and 

frequency; increment memory addresses; and divide down clock signals amongst 
a host of other applications. They are basically special forms of synchronous 
sequential circuits in which the state of the circuit is equivalent to the count held 
by the flip-flops used in the circuit. In this chapter we will look only at counters 
which count in binary sequence, although the next chapter describes how to 
design circuits with any required count sequence, such as Gray code for instance. 

The 'mod' of the counter is the number of states the counter cycles through 
before resetting back to its initial state. So a binary mod-8 counter has eight count 
states, from 0002 to 1112 (e.g. the mod-8 counter actually counts from 0 to 7). All 
of the counters we will look at use flip-flops as the storage elements that hold the 
count state. Therefore, a mod-N counter will need to contain n flip-flops, where 

2">N. 

7.1.1 Asynchronous and synchronous counters 

To divide the counters we will look at into two types: asynchronous and synchro- 

nous. When used with respect to counters ~ these adjectives describe whether the 
flip-flops holding the states of the circuit are all clocked together (i.e. synchro- 
nously) by a master clock or rather asynchronously, with each flip-flop clocked by 

the one preceding it. 

�9 Asynchronous counters: 
�9 are also known as ripple counters; 

�9 are very simple; 
�9 use the minimum possible hardware (logic gates); 
�9 employ flip-flops connected serially, with each one triggering (clocking) the 

next; 
�9 have an overall count which 'ripples' through, meaning the overall operation 

is relatively slow; 

~Note that asynchronous counters are not asynchronous circuits as described in Chapter 5. 
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�9 require virtually no design. 

�9 Synchronous counters: 
�9 use interconnected flip-flops, but all are clocked together by the system clock; 
�9 use the outputs from the flip-flops, to determine the next states of the 

following flip-flops (rather than simply clocking them); 
�9 require no settling time due to rippling (as all flip-flops are clocked synchro- 

nously); 
�9 need designing, to determine how the present state of the circuit must be used 

to determine the next state (i.e. count); 
�9 usually need more logic gates for their implementation. 

Although we will not consider such circuits it is possible to design hybrid 
asynchronous/synchronous counters (e.g. two synchronous four-bit counters 
connected asynchronously to produce an eight-bit hybrid) that possess some of 
the advantages of both types and which are appropriate in some applications. 

Due to their universal use in logic circuits, counters are widely available as logic 
elements in a wide range of forms. These often include clear and preset facilities 
(which can be used to load a particular count state), and up-down counts available 
within the same device. Because the design of binary counters is largely intuitive the 
approach we will take is to firstly consider simple circuits that act as mod-2" coun- 
ters, and then how they must be modified to produce a general mod-N count. 

7.2 ASYNCHRONOUS COUNTERS 

The output of a T-type flip-flop with T -  1 will simply toggle every time it is clocked. 
So the circuit in Fig. 7.1 constructed from negative edge triggered T-type flip-flops 
will give the waveforms shown. Note that each flip-flop is clocked by the output 
from the preceding flip-flop with all flip-flop inputs tied HIGH so they toggle. 

The outputs of the flip-flops will only change when the output from the 
preceding flip-flop changes to produce a negative edge. Since this will be once 
every clock period of the preceding flip-flop, the effect is for each flip-flop to 
produce an output with twice the period of the one clocking it. In effect the clock 
is divided down by 2 at each stage. Two flip-flops connected like this will produce 
a four-bit counter, and the three in Fig. 7.1 an eight-bit counter  (2 3-  8). 

Any 2"-bit counter can be produced like this, whilst any particular count state 
for a counter built from n flip-flops can be decoded using an n-input AND gate (or 
equivalent circuit) connected to the Q or Q from all flip-flops as required. 

Down counters 

A count down circuit can be produced by either simply replacing the negative 
edge triggered flip-flops for positive edge triggered ones o r  using the Q outputs to 
trigger the next flip-flop (see Problem 7.1). 
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Count 0 1 2 3 4 5 6 7 0 1 
State 

Fig. 7.1 The count action of rippled T-type flip-flops 

7.2.1 Mod-N asynchronous counters 

A mod-N (or divide-by-N) as3/nchronous counter, where N= 2", will count up to 
(N-1)  (an output of all l's) before resetting to all O's and beginning the count 
sequence again. 

A general mod-N counter can be produced by using flip-flops with clear inputs 
and then simply decoding the Nth count state and using this to reset all flip-flops 
to zero. The count will therefore be from 0 to (N-1 )  repeated since the circuit 
resets when the count gets to N. Note that because the Nth state must exist before 
it can be used to reset all of the flip-flops there is the likelihood that glitches will 
occur in some of the output lines during the resetting phase (since an output may 
go high as the reset count is reached, and then be reset to 0). 

Example 7.1 

Design a mod-10 binary up-counter using negative edge JK flip-flops with active- 

LOW clear. 

Solution 

Four flip-flops are required, and decimal state 10 must be decoded and used to 
reset all flip-flops to give a repeated count from 0 to 9 (0000 to 1001). State 10 is 
given by Q3Q2Q~Qo (1010) so a four-input N A N D  gate (as the clear is active- 
LOW) could be used to decode this count and clear all flip-flops. However, since 
states 11 to 15 will never be entered they can be considered as 'don't  care' condi- 
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tions and used to simplify the logic. From the Karnaugh map in Fig. 7.2 it can be 
seen that the count state Q3Q~ can be used to perform the reset with the subse- 
quent circuit also shown. 

--  Q3 J Q2 J - Q1 J ~ Q0 J 

_ clk c l k  c lk  _ c lk  _ _ ~  

C I  K - C1 K " " C1 K C1 K 
I 

- - - C L O C K  

R e s e t  al l  

f l i p - f l o p s  

Q I %  
0 0 

0 0 

0 0 

0 0 

x indicates state is unused 

x 0 1 indicates state when circuit 
must be reset 

x 0 

X X ] -"" 

1 

11 

Q3Q1 

Fig. 7.2 The binary mod-10 asynchronous up-counter designed in Example 7.1 

Summary 
Asynchronous (ripple) counters are easy to design but, because the count has to 
ripple through the system, timing problems can occur and glitches can be gener- 
ated. Consequently the speed of operation of this type of counter is limited. 

7.3 MOD-2 n S Y N C H R O N O U S  C O U N T E R S  

Synchronous binary counters are arguably the simplest sequential synchronous 
circuits. They use the flip-flops to store the circuit's count state and (usually) have 
no external inputs. Thus the next state (count) is determined solely by the last 
state (count). We again initially take an intuitive look at mod-2" counters. 

The waveforms required for a mod-8 counter were shown in Fig. 7.1, being the 
outputs, Q2, Q~ and Q0, from the three flip-flops. If this synchronous mod-8 
counter is to be built from negative edge triggered T-type flip-flops, then since all 
three flip-flops will be clocked together (as this is to be a synchronous circuit) we 
need to determine for each clock input whether the T input for each flip-flop must 
be 0 (for the output to remain the same) or 1 (for it to toggle). 
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By inspection of the waveforms in Fig. 7.1 it is clear that" 

~ Q0 must toggle on every negative edge of the system clock and so we need 
T0- 1; 

�9 Q~ must only toggle when Q0-1, and so we need T~- Q0; 
~ Q~ must only toggle when Q0-Q~- 1 and so we need T 2- Q0" Q~- 

We must therefore use an AND gate to produce the steering logic (as it is 
known) to enable the toggling action of the flip-flops as required. The circuit for 
the mod-8 synchronous counter is shown in Fig. 7.3. 

Q2c, I ! 
- v 

Q0 J 

c lock  

Fig. 7.3 A mod-8 synchronous counter constructed from negative edge triggered T-types 

From the above analysis of the required steering logic a clear pattern emerges 
of how to produce any mod-2" counter (where n is the number of flip-flops used). 
This is that the T input of each flip-flop must be the outputs from all preceding 
flip-flops AND'd together. 

7.3.1 Implementation of the steering logic 

Since for this type of counter in general we need the input to the nth T-type used to 
construct the circuit to be T,= Qo'Q~" Q2""Q,-~ = T,-I'Q,-~ it is clear there are 
two ways in which the steering logic can be generated. One approach is to actually 
AND together all of the previous outputs, which for a counter with n flip-flops 
requires AND gates with from 2 up to (n-1) inputs. The advantage of this parallel 
implementation is the only delay introduced is that of the single AND gate with 
the disadvantage that an AND gate with a prohibitively large number of inputs 
may be required 2 and the outputs from the flip-flops may also have to feed a 
prohibitively large number of inputs. 

The alternative, serial approach, is to use only two-input AND gates and at 
each stage AND together the output from the each flip-flop with its input (i.e. its 
steering logic), for example ~ = ~ .  Q2.The disadvantage here is that this intro- 
duces a delay because the output of the steering logic is using a signal that must 
propagate (ripple) through all of the AND gates. 

-'Note also that in practice, as mentioned in Section 4.2.1, a gate with a large number of inputs will have a 
longer propagation delay than its two,input counterpart. 
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7.4 MOD-N SYNCHRONOUS COUNTERS 

We have seen that the design of mod-2" binary up-counters is straightforward, 
with all 2" states produced, and cycled through in sequence. For general mod-N 
counters we must begin to use (simplified) synchronous sequential circuit design 
techniques, with each present state of the circuit used to produce the necessary 
steering logic to take the circuit into the desired next state. Note that because the 
circuit is clocked the outputs are always stable. This is because although the next 
state is determined by the present state, the next state and present state variables 
are separated by the flip-flops, unlike the asynchronous sequential circuits studied 
in Chapter 5. 

We begin by redesigning the mod-8 counter, which should give the circuit 
produced above (see the end of this section). Firstly we look at how D-type flip- 
flops could be used and then JK-types. This will also give us our first insight into 
the general differences in circuits designed using these two types of flip-flop. 

7.4.1 Mod-8 cou~.ter using D-type flip-flops 

We will need three flip-flops to give the necessary eight states from 000 (state 0) 
through to 111 (state 7). We begin by, as shown in Table 7.1, listing the eight 
possible present states of the circuit alongsidethe next states that must follow. 
The design task is to use the present state outputs from the three flip-flops to 
produce the required next states for the three flip-flops. 

Since we are using D-type flip-flops and their outputs will equal their inputs 
when clocked (i.e. the next state equation is Q+= D), we must simply ensure that 
the present states are used to produce the required next state for each flip-flop. 
This is easily achieved by producing a Karnaugh map for each of the three flip- 
flop's D-inputs in terms of the (present) outputs of the three flip-flops. 

These Karnaugh maps are also shown in Table 7.1 and are (because the output 
of a D-type simply follows its input, i.e. Q*= D) just the required next states for 
the circuit entered across the three maps as functions of the circuit's present states. 

To complete the design we simply need to use the Karnaugh maps to simplify 
the required steering logic they define. This gives: 

D2- Q2Qo + Q2Q, + Q:Q, Qo 
D,-  Q, Qo + Q, Qo 
Do-Q o 

The circuit to implement this is shown in Fig. 7.4. 

7.4.2 Mod-8 counter using JK flip-flops 

The procedure for designing the counter using JK type flip-flops is fundamentally 
the same as for the D-type design. The major difference is that whereas the output 



170 Counters 

Table 7.1 Present and next states for a mod-8 binary up-counter, and 
the associated Kamaugh maps for the design of a D-type based circuit 

Present State Next State 

STATE Q 2 Q 1 Q o Q +2Q]Q0+ + 

0 0 0 0 0 0 1 

1 0 0 1 0 1 0 

2 0 1 0 0 1 1 

3 0 1 1 1 0 0 

4 1 0 0 1 0 1 

5 1 0 1 1 1 0 

6 1 1 0 1 1 1 

7 1 1 1 0 0 0 
I I I I 

I I 

D21 

Current output 

from flip-flops 

Required output 

from flip-flops 

Q.o 0 o 1 1 Qo 0 1 1 0 

Qo o 1 o 1 Oo 1 o o 1 

D01 
Qo 1 1 1 1 

Qo 0 0 0 0 

O n- (~ 

I 

Fig. 7.4 Mod-8, D-type based, binary up-counter 

from a D-type is simply its input, the output  from a JK  is given by the excitation 

function and depends upon the values on the J and K inputs (see Table 6.1). 

We again write out the present and next states for the circuit (see Table 7.2) and 

hence the three individual flip-flops, but now also include tables for each of  the 
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Table 7.2 The present and next states, and excitation requirements for a JK based 
mod-8 binary up-counter, together with the associated Karnaugh maps 

Present State Next State 
+ + + 

Q2 Q1 Qo Q2 Q1 Qo STATE 

o o o |  o 00- 
1 0 0 1 0 1 0 
2 0 1 0 0 1 1 
3 0 1 1 1 0 0 
4 1 0 0 1 0 1 

5 1 0 1 1 1 0 
6 1 1 0 1 1 1 
7 1 1 ( ~  0 0 @ _  

I , I  
I 

Required output 

from flip-flops 

I I 
I 

Current output 
from flip-flops 

J2K2 J1K1 JoK0 

ox o 
0 x  I x  x l  

0 x  x 0  I x  
I x  x l  x l  
x 0  0 x  l x  
x 0  l x  x l  
x 0  x 0  l x  
x l  x l  ( ~  

I 
i 

Necessary inputs 
for the 3 flip-flops 

J2 

% 

% 

0 0 X X 

0 1 X X 

(~0 X 

X 

x 0 0 

x 1 0 

J 
1 

% 

% 

0 x x 0 

1 x x 1 

Qo x 0 0 x 

Qo x 1 1 x 

Jo 

Qo 1 1 1 1 

% X X X X 

X 

% , 

X X X 

1 1 1 

three flip-flops showing the necessary J and K inputs to produce the desired 
changes. These inputs are found from the JK excitation table. For instance, in 
state 0 then Q0 is 0, and must go to 1 for state 1. So, the inputs to flip-flop 0 must 
be (J0, K0)= (1, x). In state 7, Q0 = 1 and must become 0 for state 0, hence we need 
(Jo, Ko)= (x, 1). 
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Derivation of steering logic: Method 1 
Once this table is complete we are at the same stage as for the D-type design 
except, rather than using three Karnaugh maps, for the three inputs to the D- 
types we now need six maps, one each for the J and K inputs to the flip-flops as 
shown in Table 7.2. 

We can then minimise the steering logic using the Karnaugh maps to give: 

J2=K2=Q0- Q, 
Jl =KI =Qo 
Jo=Ko= 1 

Derivation of steering logic: Method 2 
Rather than using the excitation tables of the JK flip-flops to find the required 
steering logic, as demonstrated in Method 1, alternatively the next state equation 
for the JK flip-flops can be employed. Here, Karnaugh maps for the next state 
outputs are firstly drawn in terms of the present state outputs, which are of course 
the Karnaugh maps used in the D-type design shown in Table 7.1. 

However, whereas for the D-type these were the expressions that had to be sent 
to the inputs (since the next state equation for a D-type is Q+-D) the next state 
equation for a JK flip-flop is Q + - J Q  + KQ. Hence, the J and K inputs required for 
each flip-flop are given by the coefficients for Q and Q respectively, taken from the 
minimised expressions derived from the Karnaugh maps for Q+ for each of the 
flip-flops. 

The minimised expressions from the Karnaugh map give (as we used for the D- 
type design): 3 

Q0 + Q2 Q, + Q: Q, Q0 
= (QoQ,) Q~_+(Qo + Q , ) Q 2  

Q+I = Qo " Q-l + Qo " Q l 
Qo=Qo 

= 1 Q o + O  Qo 

Therefore: ~ = QoQ~ and ~ = QoQt (using De Morgan's theorem); J~ = K , -  Qo; 

and Jo= K o- 1. 

Circuit dependence on flip-flop type 
Note that this circuit demonstrates that in general the use of D-type flip-flops will 
require more logic gates, since the operation of the flip-flop itself is simpler. 
However, this must be offset against the fact that because the D-type is simpler it 
can be fabricated on a smaller area (see Section 9.3.6). 

We now consider how the mod-8 counters designed using T, D and JK flip- 
flops relate to one another (see Problem 6.4). From the intuitive design using T- 
types: ~ -  Q~ Qo; T~ =Qo and T o = 1. A JK flip-flop with its inputs tied together acts 

;Since the expression lbr Oois minimised, then it does not contain Q.. Consequently in order to obtain its 
coefficient (which is Ko) it must be reintroduced. An alternative approach, used in the next section, is to 
ensure the terms whose coefficients are required are n o t  minimised out. 
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as a T-type, which is the outcome of the JK design, since both inputs to all three 

flip-flops are the same as in the T-type design. 

For  a D-type Q+= D, so for it to act as a T-type, the input to the flip-flop must 

pass through some simple combinational logic together with the flip-flop's output 
so that the signal fed to the D-type's input is DQ + DQ = D ~ Q. Then if D is 0 the 

flip-flop remains in the same state, whilst if it is 1 it toggles (either the output or its 

complement is fed back). 

For the D-type design we found that D o -Q0,  so flip-flop 0 always toggles.Flip- 
flop 1 is fed D~ = Q0 ~ Q~ which from the above we can see means it is wired as a T- 

type with an input of Q0, whilst 

D2-Q2Qo +Q2Q~ +Q2Q, Qo-Q2 ~(Q, Qo) 

meaning this is also wired as a T-type but now with an input of Q~ Qo- So all three 
circuits are identically equivalent, demonstrating the relationships between these 
three types of flip-flop. 

7.5 EXAMPLE" MOD-6 COUNTER 

Design a mod-6 binary up-counter using firstly D-type and then JK type flip-flops. 
A mod-6 counter will require three flip-flops. The required relationship between 

the present and next states plus the required inputs to the JK flip-flops is shown in 
Table 7.3. Note that two states are unused. 

Table 7.3 Present and next state variable for a mod-6 binary up-counter 

Present State 

STATE Q 2 Q 1 Q o 

0 0 0 0 
1 0 0 1 

2 0 1 0 
3 0 1 1 
4 1 0 0 
5 1 0 1 

6 1 1 0 

7 1 1 1 

Next State 
+ + + 

Q 2 Q 1  Qo J2K2 JIKI JoKo 

0 0 1 0 x  0 x  l x  
0 1 0 0 x  l x  x l  
0 1 1 0 x  x 0  l x  
1 0 0 l x  x l  x l  
l 0 1 x 0  0 x  l x  
0 0 0 x l  0 x  x l  

X X X X X  X X  X X  

X X X X X  X X  X X  

7 . 5 . 1  D - t y p e  i m p l e m e n t a t i o n  

The Karnaugh maps for the next state variables are shown in Table 7.4. From 
these, and minimising taking advantage of the 'don' t  care' conditions: 

Q~-D2-QzQo+Q,Q o 
Q] - D,-  Q, Q-o + Q2Q-~ Qo 
Qo-Do-Qo 
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Table 7.4 Karnaugh maps for the next state variables for a mod-6 binary up-counter 

% 

% 0 

0 x 1 

1 x 0 

Q0 0 1 x 0 
. . . .  

Qo 1 0 x 0 

Q3 1 1 x 1 

Q0 0 0 x 0 
. . . . . . .  

Using the above equations to determine the next state values for the unused 

states of 6 (i.e. Q2Q~ Q0 = 110) and 7, we find that they lead to states 7 and 4, respec- 

tively. (The states can also be found by considering the Boolean values used in the 
'don't  care' conditions in the Karnaugh maps during minimisation.) These are 
shown, together with the state diagram in Fig. 7.5 which illustrates the sequence of 

states the circuit moves through as it is clocked. 

Q2 Q, Qo Q ~ Q ~ Q o  + 

STATE 6 1 1 0 1 1 1 STATE 7 

STATE 7 1 1 1 1 0 0 STATE 4 

Present State Next State 

| @ 

@--- @ @ 

Fig. 7.5 State diagram for the mod-6 binary up-counter implemented using D-type flip-flops 

Note that rather than using the 'don't  care' states to aid minimisation they 

could have been used to ensure the unused count states led to specific states. A 

common choice is for them to lead to state 0 so that if either state was entered due 

to a circuit error then at the next clock cycle the counter would 'reset'. (To achieve 

this O's are simply entered in place of the x's before the Karnaugh maps are used 

for minimisation.) 
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7 . 5 . 2  J K - t y p e  i m p l e m e n t a t i o n  

The Karnaugh maps for the necessary J and K inputs are shown in Table 7.5. 

Table 7.5 Karnaugh maps for the J and K inputs for a mod-6 binary counter 

J2 

00 0 0 x x 

Qo 0 1 x x 

Qo x x x 0 
, 

Qo x x x 1 

J1 

Qo 0 x x 

Qo 1 x x 

Qo x o 

Qo x 1 

x x 

x x 

Jo 

% 1 1 x 1 Qo x x x x 

Qo x x x x Qo 1 1 x 1 

Method 1 
Minimising directly from the Karnaugh maps and using the 'don' t  care' states to 
aid minimisation gives" 

J2-Q, Qo K2=Qo 

J1-  Q2Qo KI = Qo 

J 0 - g 0 - 1  i.e. it is wired as a T-type. 

Method 2 
Using the Karnaugh maps in Table 7.4 we again minimise using the 'don ' t  care' 
states to aid this process. Note that since we are looking for the coefficients of the 
Q. and Q. terms from the Q.th flip-flop we do not minimise out these terms. This 

gives" 

02-(a~ O0)" 02 + O0" 02 
0+1-(O2Oo)'O~ + Oo " Q~ 
Oo-1. Oo + O" Oo 

On picking out the relevant coefficients these give the same Boolean expressions 
for the J and K inputs as obtained above. 
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Again we determine the results of entering states 6 and 7, which are shown in 
Fig. 7.6. Here state 6 leads to state 7 which leads to state 0 so the design is 'safe' in 

that it will reset to state 0 if an error occurs. The worst-case scenario would be if 

minimisation meant states 6 and 7 led to each other since then if either was entered 

the circuit would be stuck and simply move between these two states. 

Q2 Q, Qo Q ? Q ? Q o  + 

STATE 6 1 1 0 1 1 1 STATE 7 

STATE 7 1 1 1 0 0 0 STATE 0 

t 
-| 

Fig. 7.6 State diagram for the mod-6 counter implemented using JK flip-flops 

The reason that state 7 leads to state 0 for the JK based design (and not state 4 
as when using D-types) is because a 0 rather than a 1 was used as the 'don ' t  care' 

condition in cell Q2Q~Qo for Q2- 

Summary 
Synchronous binary counters can be designed by simply writing out a table 
containing all possible states the circuit can hold as the present states, and the 
states that must follow these as the next states. If D-type flip-flops are used (which 
will generally lead to a requirement for more steering logic) then the Karnaugh 
maps for each of the next state variables in terms of the present state variables 

simply need minimising. 
To use JK flip-flops the same method can be used. This requires the minimised 

expression to be matched with the JK's next state equation to allow the coeffi- 
cients corresponding to the J and K inputs to be found. Alternatively, the required 
flip-flop inputs to produce the required change of output can be tabulated (using 
the excitation table), with this information used to produce the Karnaugh map for 

each of the flip-flop's inputs. 
Any unused states may be used to aid minimisation or ensure that if they are 

entered erroneously the circuit will be eventually reset in some way. Different 

designs may lead to different state diagrams regarding the unused states. 
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7.6 SELF-ASSESSMENT 

7.1 What is the 'mod' of a counter? 

7.2 What are the differences between asynchronous and synchronous counters? 

7.3 What do the terms preset and reset mean when referred to counters? 

7.4 What design changes are necessary to turn an asynchronous up-counter into 
the corresponding down-counter? 

7.5 What is the procedure for producing an asynchronous binary mod-N 
counter, and what problems may be encountered when using such a circuit in 
practice? 

7.6 How is a synchronous binary mod-2" counter produced? 

7.7 What is the procedure for producing a synchronous binary mod-N counter? 

7.8 In general how may flip-flops are required to produce a mod-N counter, how 
many unused states will there be, and what is the outcome of entering these 
'unused states'? 

7.7. PROBLEMS 

7.1 A logic signal is to be used to select either count-up or count-down operation 
from a ripple counter. What combinational logic is required between succes- 
sive flip-flops to produce the required circuit? 

7.2 What type of counter is shown in Fig. 7.7, and what is its exact function? 
Show how a three-input NOR gate could be used to decode count state 3, and 
draw the resultant output waveform. 

Q2 
clk 

Q1 

_ clk ] 

Ol 

Fig. 7.7 Circuit to be analysed in Problem 7.2 

Qo 
_ clk 

Qo 

clock 

7.3 What function does the circuit in Fig. 7.8 perform? 

7.4 Design a mod-5 binary ripple counter. 

7.5 Compare the use of D-type and JK-type flip-flops in the mod-6 counter 
designed as an example of a synchronous binary counter in Section 7.5. 
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I 
Q2 J Q1 

clk clk 

Q2 C1 Q1 C1 
Y 

Fig. 7.8 Circuit to be analysed in Problem 7.3 

Q0 'J 

_ __clk 

QoC1 K[ .... 
Y 

clock 

7.6 Design a: 
(a) mod-5 synchronous binary counter using D-type flip-flops; 
(b) mod-5 synchronous binary counter using JK flip-flops; 
(c) mod-9 synchronous binary counter using D-type flip-flops; 
(d) mod-9 synchronous binary counter using JK flip-flops. 
For all four counters use the unused states to aid minimisation. Determine 
what happens if the count goes into the unused state and show the results on a 
state diagram. 

7.7 Design a mod-7 synchronous binary counter using JK flip-flops. Determine 
what happens if the count goes into any of the unused states and show the 
results on a state diagram. 
How must the circuit be modified if the unused state is to lead to state 4 (i.e. 
outputs of 100 from the flip-flops (MSB first)). 



8 Synchronous sequential 
circuits 

8.1 INTRODUCTION 

Synchronous sequential circuits were introduced in Section 5.1 where firstly 
sequential circuits as a whole (being circuits with 'memory') and then the differ- 
ences between asynchronous and synchronous sequential circuits were discussed. 
You should be familiar with these ideas, and in particular the general form of a 
synchronous sequential circuit (see Figs 8.1 and 5.3) before continuing with this 
chapter. 

As with asynchronous sequential circuits, the operation of synchronous 
sequential systems is based around the circuit moving from state to state. 
However, with synchronous circuits the state is determined solely by the binary 
pattern stored by the flip-flops within the circuit. (In Chapter 5 this was referred to 
as the internal state of the circuit.) Since each flip-flop can store a 0 or 1 then a 
circuit with n flip-flops has 2" possible states. Note that all states are stable since 
the present and next state variables are not connected directly but isolated due to 
the (not-transparent) flip-flops. The analysis and design of these circuits is based 
upon determining the next state of the circuit (and the external outputs) given the 
present state and the external inputs. This is therefore one application of the flip- 
flops' next state equations introduced in Chapter 6. 

Following the introduction to sequential circuits in Section 5.1, Chapter 5 then 
dealt exclusively with asynchronous sequential circuits, concluding with an in- 
depth analysis of an SR flip-flop. Chapter 6 continued this theme of flip-flops 
which then meant that we could begin to look at synchronous sequential circuits 
since these use flip-flops as their 'memory'. 

Chapter 7 looked at counters, which themselves are often considered as basic 
digital building blocks, and are therefore important digital circuits. The syn- 
chronous counters designed in Chapter 7 are in fact (simple types of) synchronous 
sequential circuits. In this chapter following a description of the way that 
synchronous sequential circuits can be classified, we will look at further examples 
of such circuits. 
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8.2 CLASSIF ICATION 

The general form of a synchronous sequential circuit is shown in Fig. 8.1. To 
recap, this has: external inputs, A, and outputs, Z; a combinational block which 
can be considered in two parts; and 'memory' in the form of flip-flops. The two 
parts of the combinational block serve to provide the internal outputs to the flip- 
flops, Y, and the external outputs, Z. 

A 

External 
Inputs 

Present state 
variables 

=[ Combinational circuit to 
produce outputs, Z 

_.__•[ Combinational circuit to 
produce outputs, Y 

Dig i ta lS  to;age ..... ! 
1 

Clock 

Z 
v 

External 
Outputs 

Next state 
variables 

Fig. 8.1 General form of a synchronous sequential circuit 

Obviously a circuit could have a simpler form and still be a synchronous 
sequential circuit. For instance it may have no external inputs or the external 
outputs may be functions of only the flip-flop's outputs (the present state vari- 
ables). Consideration of such simplified circuits leads to a useful way of classifying 
sequential synchronous circuits. 

8.2.1 Autonomous circuits 

Autonomous circuits are those with no external inputs (except for the clock line) 
and which therefore perform independently (autonomously) of other circuits 
around them. Such circuits move through a set cycle of states as the circuit is 
clocked. The synchronous counters in the last chapter come into this category. 
However, the states of a general autonomous circuit obviously need not follow a 
binary sequence and furthermore the external ouputs need not simply be the 
outputs from the flip-flops (as with the synchronous counters) but could be func- 
tions of these (present state) signals. An example of an autonomous circuit is 

presented in Section 8.3.1. 

8.2.2 General (Moore and Mealy) circuits 

The next state of a general synchronous sequential circuit is dependent not only 



Design examples 181 

on the present state, as in an autonomous circuit, but also on the external inputs. 
Such general circuits can be further subdivided into two classes which are 
commonly referred to as Moore and Mealy models, l 

Moore model 
The Moore model describes a general synchronous sequential circuit where the 
external outputs are only functions of the circuit's present states (i.e. the flip-flops' 
outputs). Because of this in the state diagram of such a circuit the external outputs 
can be linked explicitly to the nodes (i.e. states). An example of such a circuit is 
given in Section 8.3.2. 

Mealy model 
The Mealy model is the most general since not only is the next state dependent 
upon the present state and the external inputs, but the external outputs are also 
functions of both of these sets of variables. Since the external outputs also depend 
upon the external inputs then in the state diagram of Mealy circuits the external 
outputs cannot simply be associated with a node but rather must be linked to the 
arrows (connecting the nodes) which are labelled with the output conditions as 
appropriate. 

8.3 DESIGN EXAMPLES 

8.3.1 Autonomous circuit 

We shall design a mod-6 Gray code counter using JK flip-flops. 

Design 
A mod-6 counter has six states and therefore three flip-flips are needed. The 
required next states from the present states are shown in Table 8.1 together with 
the necessary J and K inputs to the flip-flops (obtained from the JK excitation 
table) and the Karnaugh maps for the six inputs. Note that the states have been 
labelled using their binary codes and therefore the Gray code count sequence is 
0, 1, 3, 2, 6, 7, 0, 1, etc. (Design Method 1 (see last chapter) is being used.) The 
unused states are used to aid minimisation, the consequences of which will 
become clear when the state diagram is produced. 

From the Karnaugh maps: 

J2= Q, Oo  =O0 
Jl = Qo Kt = Q2 Qo 

Jo= Ql + Oz Ko= Ql 

which completes the design. 

~After the people who suggested such a classification. 



182 Synchronous sequential circuits 

Table 8.1 

STATE 

Required states for the mod-6 Gray code counter, together 
with the required inputs to the JK flip-flops 

Present State Next State 
+ + + 

Q 2 Q 1 Qo Q 2 Q 1 Qo J2 K2 Jl KI JoKo 

0 0 0 0 0 1 0 x  0 x  l x  

0 0 1 0 1 1 0 x  l x  x 0  

0 1 1 0 1 0 0 x  x 0  x l  

0 1 0 1 1 0 l x  x 0  0 x  

1 1 0 1 1 1 x 0  x 0  l x  

1 1 1 0 0 0 x l  x l  x l  

5 1 0 1 x x x x x  x x  x x  

4 1 0 0 x x x x x  x x  x x  

J2 

Qo 0 1 x x 

Qo 0 0 x x 

Qo x x 

X X 

0 x 

1 x 

Jl 

% 

% 

0 x x x 

1 x x x 

w 

Qo x 0 0 x 

Qo x o 1 x 

J0 

% 1 

X 

0 1 x 

X X X 

X X X X 

Qo 0 1 1 x 

S t a t e  d i a g r a m  

The consequences of  (accidentally) entering one of  the two unused states are 

shown in Fig. 8.2 together with the state d iagram.  Note  tha t  the states are indexed 

by their binary rather  than Gray  codes. I f  either unused state is entered the circuit 

will lead back to the correct count  sequence so the design is 'safe'. 



Q Q,% 

STATE 5 1 0 1 0 1 1 

STATE 4 1 0 0 1 0 1 

Present State Next State 

I@--. | 
@ @ 

@ @.*--@ 

Fig. 8.2 State diagram for the mod-6 Gray code counter 
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STATE 3 

STATE 5 

8.3.2 Moore  model circuit 

Now we shall design a D-type based circuit that will count up or down, under the 
control of a single external input, through the first five prime numbers (in binary). 
We must ensure that the circuit will return to state (binary count of) 1 if an unused 
state is entered. 

Design 
Taking 1 as a prime number the first five primes are 1, 2, 3, 5 and 7. Therefore 
three flip-flops are required. States (i.e. binary counts) 0, 4 and 6 are unused and 
must lead to state 1 (i.e. 0012)- 

Fig. 8.3 shows: the state diagram; the necessary next states in terms of the 
present states and external input control, X; together with the Karnaugh maps for 
the next states, Q+, of the three flip-flops in terms of the present states and X. By 
minimising the Karnaugh maps we determine that we need" 

O~- D: -  Oo " (O2O~ X+ O2O~ X+ O2O~ X+ Q2Q~X) - Qo "(02 ~9 Q~ �9 Qo) 

0+1 - D~ - O~ Oo + Q2Qo X+ Q2Q~ Qo X 

Q,+~-Do-Q2+Qo+Q~X+Q~X=Q2+Qo+(Q ~ ~ x )  

These give the Boolean expressions that must be implemented using combina- 
tional logic and used as the inputs to the three D-type flip-flops. 

Mealy outputs 
In this design the 'count' state can be taken straight from the flip-flops' outputs. 
Alternatively a particular state could be decoded using appropriate combina- 
tional logic. In both cases these would fit the Moore model since the outputs 
would be independent of the external input, X. 

A further option would be to additionally use the input X to decode the arrival 
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0 
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6 
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0 

Present State 

Q 2 Q I  Qo 
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either 0 or 1 

(count up) (count down) 

Next State Next State 

X = O  X = I  
+ + + + + + 

Q2 Q1 Q0 Q2 Q1 Q0 

0 0 0 0 0 1 0 0 l reset t o l  

0 0 l 0 l 0 l l l 

0 l 0 0 1 l 0 0 1 

0 l l l 0 1 0 l 0 

l 0 0 0 0 l 0 0 1 reset t o l  

l 0 l l l l 0 l 1 
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+ 

Q2 
w 
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%x 

0 0 

0 0 
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0 1 

( 

(~x 

(~x 

+ 

Oo 

1 l 

l l 

l 0 

0 l 

Fig. 8.3 State diagram, state tables and appropriate Karnaugh maps for the D-type based prime 
number up-down 'counter' discussed in Section 8.3.2 
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into a particular state from a particular count direction. This would give a circuit 
that would conform to the Mealy model. With such circuits care must be taken 
because changes in the external inputs may not be synchronised to the clock, in 
which case neither will changes to the external outputs. This may lead to transient 
states (and so spikes) in the outputs. 

8.4 ANALYSIS 

8.4.1 Case 1 

The circuit to be analysed is shown in Fig. 8.4. From this it can be seen that it is an 
autonomous sequential synchronous circuit composed of two flip-flops (and 
therefore possessing four states) with a single output, Z = Q0. The next state equa- 
tions are: 

O~- D~- O~ ~ Q0 

O+o- Do- Ol 

From these the state table can be written (Fig. 8.5). We then assign letters to the 
four states and draw the state diagram using the state table. The timing diagram 
for the circuit is shown in Fig. 8.6. 

Fig. 8.4 

Q1 

clock 

Circuit analysed in Case 1 

Present State Next State 

STATE Q 1 Q 0 Z Q +lQ o§ STATE 

A 0 0 1 0 .1 B 

B 0 1 0 1 1 C 

| 

| 

C 1 1 0 0 0 A 

D 1 0 1 1 0 D 

Fig. 8.5 Next and present state table and state diagram for the circuit in Fig. 8.4 
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Fig. 8.6 Timing diagram for the circuit in Fig. 8.4 
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C A B C A 

From these it is clear that this is a mod-3 counter with the output giving a pulse 
every third clock cycle. In effect it is therefore a divide-by-3 circuit. Note that if 
the circuit somehow entered state D it would remain there. This is therefore a 
poor design. 

8 .4 .2  Case  2 

The circuit for this example is shown in Fig. 8.7. This is another two flip-flop 
autonomous circuit with in this case: 

Q+l = Qo 

Q+o= Q, 

This gives the state table and state diagram shown in Fig. 8.8. From this, the 
timing diagram in Fig. 8.9 can be drawn which shows that the circuit produces 
four waveforms out of phase with each other by 1/4 of their period, which is four 
times that of the clock. 

clock 

I,D, Q,I Qo 
k ~1 I [c~ Q0 

Fig. 8.7 Circuit analysed in Case 2 

Present State 

STATE Q1 Q0 

A 0 0 
B 0 1 

C 1 1 

D 1 0 

Next State 

Q +IQ 0+ STATE 

1 0 D 

0 0 A 
0 1 B 

1 1 C 

Fig. 8.8 State table and diagram for the circuit analysed in Fig. 8.7 

|  @ 

t 
| �9 
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Fig. 8.9 Timing diagram for the circuit in Fig. 8.7 

8.5 SUMMARY 

In this chapter we have seen how synchronous sequential circuits can be classified 
into different types (with the synchronous counters described in Chapter 7 being 
autonomous). Examples of a further autonomous design, together with a more 
general design (fitting the Moore model) in which the circuit's operation is also 
dependent upon an external input have also been given. In addition, two simple 
autonomous synchronous sequential circuits have been analysed. 

Although these examples use only simple circuits, they demonstrate the princi- 
ples underlying more complex ones. Additional complexity could come via the 
Mealy type circuit described in Section 8.2.2, via additional external inputs and a 
greater number of flip-flops. 

The analysis of the circuits in the last two chapters has ultimately led to the 
state diagram. This is the usual starting point in the design of general synchronous 
sequential circuits. At this initial stage of a design the important feature is that the 
circuit 'moves' between states as required (possibly under the control of external 
inputs), which is what the state diagram describes. From this the state table can be 
produced and then state assignment performed. This is the assignment of the 
codes (the bit patterns held by the flip-flops) to particular states. Note that there 
may be more codes available than states (and hence unused states). 

Although for counters the state assignment to use is obvious this is not gener- 
ally so and many possible assignments will exist, all of which will give functionally 
(in terms of the state diagram) identical circuits. Once states have been assigned 
codes it is a relatively straightforward process to produce the Karnaugh maps for 
the next states, in terms of the present states and any external inputs, and so 
complete the design. 

Such general design is beyond the scope of this book, but can be found in more 
advanced texts, and should be readily accessible to the reader with a firm grasp of 
the material presented in this and the preceding chapter. Some of the concepts 
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regarding state diagrams and synchronous sequential circuit design are taken up 
in the following problems. 

8.6 SELF-ASSESSMENT 

8.1 What is a synchronous sequential circuit? 

8.2 How can synchronous sequential circuits be classified? Illustrate your answer 
by drawing the modified general forms for these classes. 

8.3 What is the basic design process for an autonomous synchronous sequential 
circuit, and how must this be amended for a general design (i.e. one with 
external inputs)? 

8.4 What are, and happens to, the unused states in synchronous sequential 
circuits? 

8.7 PROBLEMS 

8.1 Redesign the mod-6 Gray code counter from Section 8.3.1 using D-type flip- 
flops and compare the result with the JK design. 

8.2 Design a circuit using three D-type flip-flops which goes through the binary 
count sequence of 0, 2, 4, 6, 5, 3, 1, 0, 2, 4, 6 etc., with count state 7, if entered, 
leading to state 0. To what class of circuit does this design belong? 

8.3 Modify the mod-7 counter designed in Problem 7.7 so that it is able to count 
either up and down under the control of an external input, I (count up for 
I= 1), ensuring all unused states lead to state 0. 

8.4 Modify the mod-5 D-type flip-flop synchronous binary counter designed in 
Problem 7.6(a) so that it counts either up or down under the control of an 
external input, I (count up if I= 1). 

8.5 What function does the circuit in Fig. 8.10 perform? (This should include 
production of the state diagram.) State what problems there could be with 
this circuit and produce a solution. 

8.6 Analyse the operation of the circuit in Fig. 8.11. Compare this with Case 1 in 
Section 8.4.1. 

8.7 A circuit contains two D-type flip-flops with inputs: 

D~- Oo I + O~ Qo + O~ Oo I D o- O~I + Oo I 

Determine its state diagram. 
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clock 
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Q Q2 

Fig. 8.10 Circuit to be analysed in Problem 8.5 
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clock 

ii_ 
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j 

Fig. 8.11 Circuit to be analysed in Problem 8.6 

8.8 Draw the state diagram for a JK flip-flop by considering it as a synchronous 
sequential circuit in its own right. (See Fig. 5.17 for the equivalent state 
diagram for an SR flip-flop.) Also draw the state table with the J and K inputs 
labelling the columns and the internal input (present state) labelling the rows. 
To what class circuit does this belong? 

8.9 Produce Karnaugh maps for the internal state (i.e. the state table) and Z for 
the circuit in Fig. 8.12. Use the state table to derive the state diagram (which 
will be similar in form to the one in Problem 8.8). What variables is Z depen- 
dent upon, and therefore to what class does this circuit belong? Add values 

)E> z 

c,oc   D 

Fig. 8.12 Circuit to be analysed in Problem 8.9 
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for Z to the state diagram (see Section 8.2.2). State what arithmetic function 
this circuit performs and compare this implementation with the combina- 
tional equivalent discussed in Chapter 4. 

8.10 Draw the state diagrams for circuits that are to act as: (i) a parity checker 
and (ii) a comparator. Hints: Binary words to be operated upon are input to 
the circuit one bit at a time for (i) and two bits at a time for (ii); the state of 
the circuit should indicate odd or even parity for (i) arid whether the words 
are equal for (ii). 

8.11 Synchronous sequential circuits can be used to detect specific binary 
sequences entered one bit at a time. This is achieved by the circuit moving 
through different states (as bits are entered) until the desired pattern is 
received (and hence the final state is reached). Design a circuit that will 
detect the self-contained input sequence 1101. (That is, the final 1 in the 
sequence may n o t  be taken as the first 1 in a following sequence.) 



9 Choosing a means of 
implementation 

9.1 INTRODUCTION 

So far we have seen how to design both combinational and sequential circuits. 
These will, on paper, successfully perform many different functions but may well 
fail if the practicality of the hardware implementation issues are ignored. Ten 
years ago the choice of hardware options was limited; however, nowadays many 
choices exist for the designer, some of which are more accessible than others. The 
aim of this chapter is to introduce the technology options that are available so 
that the appropriate selection can be made from a sound engineering basis. 

As far as technology is concerned designers must choose the balance they 
require between the circuit speed of operation and its power consumption. The 
two choices available are typically either bipolar or Complementary Metal Oxide 
Semiconductor (CMOS). However, other more exotic high-speed options are 
available such as Emitter Coupled Logic (ECL) and Gallium Arsenide (GaAs). 
CMOS offers low power consumption with moderate speeds. Alternatively, 
bipolar offers high speed but high power consumption. A combination of both is 
the ideal but was not available until only a few years ago. A mixed bipolar and 
CMOS technology (called BiCMOS) is now available and has an excellent combi- 
nation of high speed and low power with the exception that this involves a more 
complex manufacturing procedure and hence is currently more expensive. As with 
most aspects of electronics technology the cost will certainly fall and BiCMOS 
may well be a low-cost technology option for the future. 

The most common technology 10-15 years ago was bipolar (i.e. TTL 
(Transistor Transistor Logic) or ECL) but now CMOS is the preferred choice. 
Table 9.1 provides a comparison of logic families for various technology options. 
This table will provide a useful reference throughout this chapter. We shall start 
with a description of bipolar logic so that its limitations can be appreciated before 
moving to the more popular CMOS technology. 



Table 9.1 Comparison of logic families 

Device Description Technology Delay(ns) Pstatic Vohmin 
Volmax 
@Iomax 

Vihmin 
Vilmax 

lihmax 
Iilmax 

lohmax 
Iolmax 

74 

74S 

74LS 

74AS 

74ALS 

74F 

74C 

74HC 

74HCT 

74AC 

74ACT 

Standard TTL 

Schottky clamped TTL-  transistors do not enter saturation 

Low power Schottky - as 74S but larger resistor values 

Advanced Schottky- same as 74S but improved processing 

Advanced low power Schottky - low power version of 74AS 

Fast--compromise between S and ALS 

Standard CMOS - first CMOS parts in TTL pinout 

High speed CMOS - improved CMOS 

High speed CMOS with TTL i/p voltage levels 

Advanced high speed CMOS (1.5 lgn CMOS) 

Advanced high speed CMOS with TTL i/p voltage levels 

74(A)BCT High speed BiCMOS for line drivers 

74LVC 

74LV 

74LVT 

74ALVC 

4000B 

F100K 

Low voltage (2.7-3.6 V) 1 ~rn CMOS 

Low voltage (2.7-3.6 V) 2 lma CMOS 

Low voltage BiCMOS (optional 5 V inputs, 3 V outputs) 

Advanced low voltage 1 larn CMOS 

Early CMOS, not TTL pin compatible, 5--12 V supply 

100K ECL series- very fast but poor noise margins 

TTL 10 10mW 

TTL 3 20mW 

TTL 10 2mW 

TTL 2 8mW 

TTL 4 1 mW 

TTL 3 4 mW 

CMOS 30 50gW 

CMOS 9 25 gW 

CMOS 10 25 ~tW 

CMOS 4 25 gW 

CMOS 6 25 gW 

BiCMOS 3.5 600 gW 

CMOS 5 50 gW 

CMOS 9 50 gW 

BiCMOS 4 400 laW 

CMOS 3 50 laW 

CMOS 75 50 laW 

ECL 0.75 20mW 

2.4/0.4 

2.7/0.5 

2.7/0.5 

2.7/0.5 

2.7/0.5 

2.7/0.5 

4.2/0.4 

4.3/0.33 

4.3/0.33 

4.3/0.44 

4.3/0.44 

2/0.55 

2/0.55 

2.4/0.4 

2/0.5 

2/0.55 

2.5/0.4 

-0.9/-1.7 

2/0.8 

2/0.8 

2/0.8 

2/0.8 

2/0.8 

2/0.8 

3.5/1 

3.5/1 

2/0.8 

3.5/1.5 

2/0.8 

2/0.8 

2/0.8 

2/0.8 

2/0.8 

2/0.8 

3.5/1.5 

--1.2/-1.4 

40 laA/- 1.6 mA 

50 laA/-2 mA 

20 laA/-0.4 mA 

20 gA/-0.5 mA 

20 laA/-0.1 mA 

20 gA/-0.6 mA 

+2laA 

_+o.l~h 

+_0.1~n 

+_0.1~A 

_+0.1 ~A 

0.07 mA/0.65 mA 

___lgA 

+_lgA 

_+lgA 

+_5laA 

+0.1 gA 

240 ~A, 0.5 gA 

- 0 . 4  m A / 1 6  mA 

- 1 mA/20 mA 

-0.4 mM8 mA 

-2 mA/20 mA 

-0.4 mh/8 mA 

- 1 mA/20 mA 

+ 4mA 

+4mA 

+4mA 

+ 24mA 

+ 24mA 

- 15 mA/64 mA 

+ 24mA 

+6mA 

+ 32mA 

+ 24mA 

0.6 mA/2.3 mA 

_+ 40 mA 
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9.2 THE BIPOLAR JUNCTION TRANSISTOR 

9.2.1 The B J T  as a switch 

The bipolar junction transistor or BJT as it is more commonly known can be 
considered in digital terms as a simple single-pole switch. It physically consists of 
three layers of semiconductor (which can be either N-type or P-type) of which two 

transistor types exist - NPN or PNP. We shall consider the operation of the NPN 
device since this device is used mainly in bipolar digital switching circuits. 

The symbol for the NPN transistor is shown in Fig. 9.1 and is connected as a 
simple switch. The transistor consists of three terminals: base (b); emitter (e); and 
collector (c). Notice that the arrow on this type of transistor is pointing out from 
the emitter which indicates the direction of current flow. For the PNP the arrow 
points in. A simple rule for remembering the direction of the arrow is that with an 
NPN transistor the arrow is Not Pointing iN? 

Vin 

Fig. 9.1 A transistor switch 

Vcc 

Ib 

Rb 

" " Ic 

1 Rc 
o/p 

o 

Vout 

The input to the circuit in Fig. 9.1 is connected to the base terminal via the 
resistor R b whilst the output is taken from the collector. Several text books are 
available that discuss the operation of a bipolar transistor in detail. ~ However, for 
this simple BJT switch, and other BJT applications to follow, we just need to 
know the following. 

1. To turn the transistor on a voltage at the base with respect to the emitter of 

greater than 0.7 V is needed. Under this condition a large collector current, I~, 
flows through the transistor. The amount of current that flows is related to the 

LB. Hart, Introduction to Analogue Electronics, in this series. 



194 Choosing a means of implementation 

base current, I b, by I~ =hf~Ib, where hfe is called the current gain and is typically 
100. In this condition the transistor is in the on state, called saturation, and the 

voltage across the collector to emitter is approximately 0.2 V and is called V ~ .  

2. To turn the transistor off the voltage at the base with respect to the emitter has 

to be less than 0.7 V. The collector current that flows is now zero (or more 

accurately a very small current called the leakage current). The transistor in 

this off state is called cut-off and the voltage across it is the supply voltage, Vcc, 
which is usually 5 V. 

Example 9.1 

Determine the value of R b needed in Fig. 9.1 to place the transistor in the satu- 

rated state when the input is 5 V. Assume that hfe = 100 and R c-  1 k~.  

Solution 

In the saturated state the voltage across the transistor is 0.2 V. We need to work 
back from the collector side to the base input. Using Kirchhoff's Voltage Law 
(KVL) 

Vcc-I~R~+ Vcesa t 

5=I~x 1 • i 0  3 +0.2 

Hence I c = 4.8 mA and so I b = IJhfe-48 laA. Using KVL on the input side: 

Vin = IbRb + V~ 

To turn the transistor on requires the base-emitter voltage to be at least 0.7 V. 
Hence 

Rb-(5  - 0.7)/48 gA =89.6 kf~ 

Consequently, when the input is 5 V the transistor is turned on (saturated) and 
hence the output is Fcesa t or 0.2 V. With the input at 0 V the transistor is turned off 
(cut-off) and the output is 5 V. If we let 5 V represent a logic '1' and 0.2 V a logic 
'0' then 2 the circuit in Fig. 9.1 performs the operation of an inverter or a NOT 

gate. 
We shall now look at how other logic gates are implemented with BJT devices. 

9.2.2 The BJT as a logic gate 

Diode transistor logic 
The DTL or diode transistor logic first became available commercially in 1962. 
The circuit diagram for a two-input DTL N A N D  gate is shown in Fig. 9.2(a) and 
although it is no longer available it does provide a useful introduction to the TTL 

-'As we shall see both logic levels are assigned to a voltage range rather than a single voltage. 
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logic family which follows. Before proceeding we need to point out that when the 

voltage across a diode equals 0.7 V (anode (A) voltage with respect to cathode 
(K)) then current will flow and this is called forward bias. Any voltage less than 
0.7 V will result in negligible current flow. The two conditions are shown on a 
current/voltage plot in Fig. 9.2(b). 

i/Po 

i/p 

o H 

R1 

'i D1 

D2 

Vcc 

R3 ( I K ~ )  

o/p 

D3 D4 Ib 

Vout 

R2 
(5Kf~) 

12 

-2V 
A K 

Reverse bias 

A K 

Forward bias 

0.7V V 

(a) (b) 

Fig. 9.2 Diode transistor logic circuit and ideal diode II Vcharacterist ic 

The circuit in Fig. 9.2(a) is actually a two-input AND gate followed by a NOT 
gate (i.e. a N A N D  gate) and functions as follows. If one input is low (less than 
0.2 V) then the corresponding diode is forward biased and the voltage appearing 
at point 'P' is 0.9 V (since 0.7 V exists across a forward biased diode).This voltage, 
however, is insufficient to turn on diodes D3 and D4 and so the voltage appearing 
at the base of T1 is insufficient to turn on transistor T1. The current flowing 
through T1 is small and so the voltage dropped across R3 is also small and the 
output voltage is therefore close to 5 V i.e. a logic 1. Thus when either or both of 
the inputs are low the output is high. 

Now if both inputs are high then the diodes D 1 and D2 are turned off and the 
voltage at point 'P' rises to turn on diodes D3 and D4. Hence the voltage 
appearing at the base of T 1 is dictated by the values of resistors R 1 and R2. If R1 
and R2 are chosen carefully then transistor T1 can be turned on and the output 
will be V~,~ or 0.2 V. 

So to summarise: if either or both inputs are low the output transistor, T1, is 
turned off and hence the output is high; if, however, both inputs are high (' 1') then 
the transistor T1 is turned on and the output is low ('0'). The circuit thus operates 
as a two-input N A N D  gate. 

Example 9.2 

For Fig. 9.2(a) what value of R 1 should be chosen to turn on T1 when both inputs 
are high? Assume that the hfe of T 1 is 100. 
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So/ut/on 

To turn on T 1 we need a base-emitter voltage of 0.7 V. Hence using KVL from R 1 
to R2 reveals: 

V~c=ItR l + VD3 -I- VD4-t- Vbl-- I~R~ +0.7 +0.7 +0.7 =I tR  ~ + 2.1 

Since we know Vc~ then to find R~ we need to know I 1, which from Kirchhoff's 
Current Law (KCL) is equal to the sum of 12 and I b since D1 and D2 are off. 
Calculating each of these currents gives: 

I2 = (Vb,- (-2))/Rz 

L = (0.7- (-2))/(5 • 103)=0.54 mA 

Ib=Ic/hf~=((V~c-O.2)lR3)/hr~=4.8/(1 • 103•  100)=48 gA 

Therefore I~ =0.588 mA and substituting this into the above equation for V~ to 
find R~ gives: 

5=(0.588• 10-3)R~ +2.1 =~ R~ =4932 ~ 

Standard TTL (Transistor Transistor Logic)- 74 series 
The standard TTL (short for Transistor Transistor Logic) logic gate was first 
marketed in 1963 under part numbers 74XXX. For example the 7400 is a 
quadruple (i.e. it contains four) two-input N A N D  gate in one package whilst the 
74174 is a Hex D-type (i.e. six D-types in one package). The circuit diagram for a 
single two-input NAND gate implemented in TTL is shown in Fig. 9.3. Although 
it is not immediately obvious it does build on the DTL design of Fig. 9.2(a). The 
diodes D1, D2 and D3 have been replaced by a single transistor (T1) that has a 
multiemitter (two emitters in this case). The diode D4 and resistor R2 is replaced 
by the R2, T2 and R3 configuration. Finally the output stage has been replaced by 
a circuit that is called a totem pole 3 output. The multiemitter input transistor is 
quite simply an NPN transistor with more than one emitter which mimics the 
operation of the two diodes D 1 and D2. The circuit operates as follows. 

If at least one input is low (0.2 V) then that emitter is forward biased and the 
transistor is turned on (with current flowing out of the input that is low). A 
voltage of V~,  (0.2 V) appears across T1 and hence the voltage at the base ofT2 is 
0.4 V (i.e. 0.2 +0.2). This is insufficient to turn on transistor T2 and hence the 
current through R2 and R3 is negligible. Consequently, the voltage at the base of 
T3 is 0 V and at the base ofT4 is approximately 5 V. Hence T4 is turned on but not 
quite saturated and the output is h igh-  but how high? 

Example 9.3 

What is the output high voltage when at least one of the inputs is low and what 

current would flow out of the input? 

3The term totem pole is used simply because the components are arranged above each other. 
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i /Po  , 
i/pO , 

I 

I 

I 

I 

I1 

/fT,\ 
I 

I 

I 

R1 

(4K~) 

Vcc 

R2 R4 

(1.6K~) (130~) 

T4 

2 

(1Kn) 

D1 

o/p 
o 

Vout 

Fig. 9.3 Standard TTL two-input NAND gate-  74XXX series 

Solution 

From the above analysis we know that the voltage at the base of T4 is approxi- 
mately 5 V when at least one input is low. Hence the output voltage is" 

Voo~- Vb4- (Vb~4+ VD~)-5-(0.7 +0 .7 ) -  3.6 V 

This is classed as a TTL logic high voltage under no load and is called Vou. Note 
that if a load is added which draws current through T4 then the output voltage 
will fall. This is caused by the voltage dropped across R2 as the base current 

through T4 increases and an additional volt drop across D1 and Vb~ 4 due to their 
internal resistances. A minimum value for VOH for the 74 series is consequently set 

below 3.6 V at 2.4 V and is called VOHmm- 
Since one input is low then the emitter-base ofT1 is forward biased and current 

will flow out of the emitter. Since T2 is off then the current must be supplied via 

R1. Thus" 

V~c-I,R, + Vb~ , + V 
Substituting" 

Therefore: 

5-I~ x 4 x  103+0.7 +0.2 

I , - ( 5  - 0 .7-  0.2)/(4 x 103) - 1.025 mA 

This current is referred to as the input low current (or I~L ) and any stage driving 

this input must be able to receive (or sink) this current and still maintain an input 

low of 0.2 V. Precise control of resistance values from chip to chip is difficult and 
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hence IIL c a n  vary considerably. To account for the wide tolerance in resistor 
values the maximum value quoted for I~L is 1.6mA and is called I~Lmax" It is 
possible to apply a larger value of input voltage than 0.2 V and for it still to be 
recognised as a logic '0'. The maximum input low voltage for the 74XXX series is 

quoted at 0.8 V and is called V~Lma x. This will provide 0.6 V immunity (0.8-0.2) 
against a noise signal appearing at the input which would corrupt a logic ' 0 ' -  such 
a safety tolerance is called the noise margin and is discussed later in this chapter. 

Now, with both inputs high (3.6 V, from Example 9.3) the two emitter-bases of 
T1 are reverse biased and the current through R 1 falls thus increasing the voltage 
at the base of T1 until its base-collector is forward biased. This will provide base 
current to turn on T2 which then turns on T3 and hence the output will be equal to 
Vcesa t or 0.2 V - which is sufficiently low to drive other TTL inputs. When the 
output drives other TTL loads then this output transistor (T3) must be able to 
sink I~L (1.6 mA) and still maintain a valid logic zero. In fact the output of any 
TTL gate may well drive more than one TTL input and hence the output must 
have sufficient current drive to drive several loads without the voltage at the 
output rising above 0.8 V (ViLmax). The capacity for the output to drive more than 
one TTL input is called its fan out. Now, if the output is at 0.8 V then any slight 
noise will result in the output no longer providing a valid logic zero. Thus a safety 
margin is allowed of 0.4 V and the output low voltage must not be allowed to rise 
above 0.4 V - called VOLma x- 

So in summary if at least one of the inputs is low then the output is high, whilst 
if both inputs are high then the output is low. The circuit thus operates as a two- 
input NAND gate. 

The two diodes (shown by dotted lines in Fig. 9.3) at the input are protection 
diodes to protect the gate against negative going voltages at the input caused by 
ringing of fast signals on the inputs. The presence of a negative voltage at the 
input will turn on the diodes and hence limit the input to a maximum negative 
voltage of-0.7 V. 

Example 9.4 

The output of a standard TTL gate is low when both inputs are high. What is the 
minimum value of input voltage that can be classed as a logic '1'? 

Solution 

Using Fig. 9.3, when the output is low, T3 is turned on and we can work back- 
wards from here. The base of T3 will be at 0.7 V and in order to generate this 
voltage across R3 then T2 must be turned on, i.e. its base must be at 1.4 V. To turn 
on T2 we require a base current from T1 into T2 and hence the base-collector of 
T1 must be forward biased, i.e. 2.1 V. In other words, the base of T1 will be at 
three forward biased diode voltage drops. So that the input voltage does not influ- 
ence the base of T1 we must reverse bias the emitter bases of T1. In order to 
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achieve this we need to have a voltage at the input of greater than 2.1 V. In fact it 
is found for TTL that input voltages slightly less than 2.1 V (i.e. 2.0 V) are suffi- 
cient to turn on the output transistor. 

The valid voltage levels for a 74 series standard TTL are thus summarised as: 

ViHmin=2.0V; ViLmax:0.8 V; VoHmin=2.4V; and VoLmax=0.4V as can be seen in 
Table 9.1. 

The totem-pole output stage 
At the output of all gates there is a capacitive load (CL) caused by the input capac- 
itance of the next stage. This could be a printed circuit board interconnect or quite 

simply an oscilloscope lead. With the DTL circuit of Fig. 9.2(a) when the output 

changes from low to high, this capacitance (C L) has to be charged through the 
collector resistor R3. Hence the delay time for the output to charge from low to 
high (i.e. '0' to '1') is limited by the time constant R3 x C L. To reduce this we could 
just reduce the value of R3 but then the power consumption will increase when the 

output transistor T1 is on. 
The totem-pole output Fig. 9.3 gets around these problems. When the output is 

charging, the time constant is now dependent uponthe resistance of the transistor 
T4, diode D 1 and R4. Since R4 is only 130 fl and both T4 and D I are on then the 
time constant is much smaller than the DTL output circuit and hence the low-to- 
high delay is greatly reduced. In this case the transistor T3 is off and power 
consumption is low. This type of circuit is called an active pull-up. 

The presence of both D1 and R4 are essential for the reliable operation of the 
TTL output stage. When the output is low, i.e. T3 on, the base ofT4 is at a poten- 
tial of: Vbe 3"k- Vc~s,,,2 =0.7 +0.2 =0.9 V. Since the output is 0.2 V then this is insuffi- 
cient to turn on the combination of T4 and D 1 which results in no current being 
drawn from the supply. However, without the diode D 1, then T4 will turn on and 
current will flow into T3 thus consuming power and the output voltage will rise 
(due to the resistance of T3) to a level between a 'low' and a 'high' (i.e. an illegal 
state). Hence D 1 is inserted to keep T4 turned off when T3 is on. Resistor R4 is 
present so as to limit the current when the output is high and thus provides a short 
circuit protection if the output is inadvertently tied to 0 V. 

Example 9.5 

Given that the input and output currents for a standard 74 series TTL gate are as 
shown in Table 9.1 then how many standard 74 series TTL inputs will a single 
standard 74 series device drive? 

Solution 

This is called the fan out and is equal to the lesser of IOLmax/llLma x or IOHmax]lIHma,~ ,. 

In both cases this is 10. Hence a 74 device can drive 10 other 74 series devices, 
i.e. it has a fan out of 10. 
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Example  9.6 

Many other logic gates can be implemented with the standard 74 series. What  

function does the circuit in Fig. 9.4 perform? Assume V~L--0.2 V and V~H--3.6 V. 

4K I 

Ao . ,/IT, \ 

BO 
/,L \ 

1 4K~ 

ill  ~ 

Vcc = 5V 

1.6K ~ 130 

T6 

1 

5 

o/p 
�9 

Vout 

Fig. 9.4 Circuit for Example 9.6 

Solution 

A = 0.2 V, B= 0.2 V. Both input transistors T 1 and T2 are on and thus the bases of 

both T3 and T4 are at 0.4 V. This is insufficient to turn on the output transistor T5 
and the collectors of both T3 and T4 are high which turns on transistor T6, thus 

pulling the output high. 
A =0.2 V, B=3.6V. T1 is on but T2 is off. With T1 on then the voltage at the 

base ofT3 is 0.4 V and so this is insufficient to turn on both T3 and T5. However, 

since T2 is off then the base of T4 can rise so as to turn on T4 and then T5. The 

output is thus low. 
A = 3.6 V, B=0.2 V. This time T2 is on and T1 off and the transistors T3 and T5 

are on, forcing the output low. 
A = 3.6 V, B= 3.6 V. Both T1 and T2 are turned off and so both T3 and T4 are 

on which therefore turns on T5 and the output is low. 
Since the output is only high when both inputs are low then the circuit functions 

as a two-input NOR gate. 

Schottky clamped T T L -  74S series 
The standard TTL series has a typical propagation delay of 10ns (the term propa- 

gation delay was introduced in Chapter 4 and will be covered in more detail later 
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in this chapter). By this we mean that when an input change occurs it takes 10 ns 
for the effect to propagate to the output. In the early 1970s it was found that this 
propagation delay could be decreased by replacing those transistors that saturate 
with Schottky clamped transistors. 

So far we have seen that when a transistor turns on it enters saturation. This 
name is given to this condition because the base is saturated with charge. Before a 
saturated transistor can be turned off this charge must first be removed. This can 
take a considerable amount of time and thus slows down the switching speed of 
the device. Preventing the transistor from entering saturation will therefore 
increase the switching speed. The Schottky TTL series uses such a technique by 
connecting a Schottky diode between the base and collector of the transistor to 
stop the device entering saturation. Hence these circuits are much faster than the 
non-Schottky clamped series. 

A Schottky diode is a metal-semiconductor diode that has a forward volt drop 
of only 0.3 V as opposed to the standard PN junction diode that has a forward 
voltage drop of 0.7 V. The Schottky diode is connected as shown in Fig. 9.5(a) 
between the base and collector. Without the Schottky diode, when the transistor 
is turned on, the base is 0.7 V above the emitter, the collector-emitter voltage is 
0.2 V and this is called saturation. However, addition of the Schottky diode 
(which will be forward biased due to the base at 0.7 V) clamps the collector at a 
voltage this time of 0.4V with respect to the emitter. Remember, a forward biased 
Schottky diode has 0.3 V across it. Hence the transistor is on but is not in satura- 
tion. When such a transistor is turned off it will now not take as long to change 
state since the base is not saturated with charge. The resulting Schottky transistor 
is represented by the symbol illustrated in Fig. 9.5(b). 

(a) (b) 

Fig. 9.5 Schottky clamped transistor and its associated symbol 

The Schottky series (labelled the 74S series) thus emerged as a high-speed 
replacement for the standard 74 series. The circuit diagram of a two-input NAND 
gate implemented with Schottky clamped transistors is shown in Fig. 9.6. Apart 
from the use of Schottky transistors the circuit also has other improvements. The 
output diode D1 has been replaced with two transistor stages T3 and T5. This 
again provides two 0.7 V drops between the T2 collector and the output so that T5 
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is not turned on at the same time as T6. However, the two-transistor arrangement 
without the diode also improves the output current drive when the output is in the 
high state. In addition, Schottky transistor T4 is included so as to improve the 
switch-off time of transistor T6. 

A o 
B 0 

Vcc--5V 

R4 
R1 (900 ff~) (50 ~) 

y U 
T3 T5 

/ 3.5K o/p 

j 500 f~ 
R 6 0 D ~  q'6 R2 

4 

- $ 

Fig. 9.6 Schottky clamped TTL NAND gate- 74SXXX series 

The 74S series has a typical propagation delay of 3 ns and a power dissipation 
of 20 mW. The voltage levels at the output are changed slightly. In the high state 
since the diode has been removed then the minimum output high voltage is 
increased to 2.7 V. In the low state since the output transistor does not saturate 
then the maximum output low voltage has been increased to 0.5 V. 

Due to these circuit changes the input and output currents for a Schottky 
clamped 74S series are different from the 74 series. From Table 9.1 we can see that 
the fan out is 10 when the output is low but 20 when the output is high. However, 
it is the lower value (i.e. 10) that indicates the number of loads that can be driven. 

Low-power Schottky- 74LS series 
The low-power Schottky clamped TTL logic family (74LS series) was released in 
1975. This, as the name suggests, has a lower power dissipation than the 74S 
series. A circuit diagram for a two-input NAND gate is shown in Fig. 9.7. The 

main  differences from the 74S series are: 
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Fig. 9.7 Low-power Schottky clamped TTL NAND gate - 74LSXXX series 

1. larger resistors are used throughout to reduce power consumption at the 
expense of longer propagation delays; 

2. the multiemitter input trarisistor is replaced by Schottky diodes D1 and D2. 
This is because these diodes can take up a smaller area on chip; 

3. the Schottky diodes D3 and D4 assist in the removal of charge from T5 thus 
speeding up the high-to-low propagation delay. 

Typical delays for the 74LS series are 10 ns with a power dissipation of 2 mW. 
The logic levels are the same as the 74S series whilst the input and output currents 
for a 74LS series are such that the fan out is now 20. 

Advanced Schottky TTL- 74AS, 74ALS and 74F series 
In approximately 1980 advancements in manufacturing of the 74S and 74LS 
series resulted in the release of the Advanced Schottky (74AS) and Advanced 
Low-power Schottky series (74ALS), respectively. As can be seen in Table 9.1, the 
ALS and AS series provide a much faster propagation delay time than the LS and 
S series, respectively. Also the ALS and AS series have a significant reduction in 
power consumption when compared to their associated LS and S series. These 
improvements have been achieved by implementing the design with smaller tran- 
sistors (due to improvements in manufacturing), by increasing resistor values 
slightly and by using subtle circuit modifications. 
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Another family appeared at this time and that was the 74F series (sometimes 
referred to as Fast). This family is a compromise between the AS and ALS series 
having a typical delay of 3 ns and a power dissipation of 4 mW. 

9.3 THE MOSFET 

9.3.1 The M O S F E T  as a switch 

The Metal Oxide Semiconductor Field Effect Transistor (or MOSFET) has proved 
over the past 15 years to be a very attractive alternative to the BJT. In recent years 
the MOSFET has become the preferred technology mainly because manufacturing 
improvements have advanced further with FET processes compared to bipolar 
processes. A cross-section of an N-channel MOSFET is shown in Fig. 9.8(a). We 
shall study the device at this level since this will help in our understanding of how 
memory devices opera te -  see Chapter 10. The transistor has four terminals: 
gate(G); source(S); drain (D); and substrate. Just as in the BJT the MOSFET is 
composed of three semiconductor layers. However, for the FET the middle 
terminal (the gate) is separated from the P-type semiconductor substrate by a thin 
gate oxide of approximately 0.05 Ima in thickness. The drain and source are 
connected to the N-type regions either side of the gate. The original MOSFETs 
used a metal gate but now all MOSFETs are manufactured with a polysilicon 
gate. 4 One symbol for an N-channel MOSFET is shown in Fig. 9.8(b). 

Fig. 9.8 Metal Oxide Semiconductor Field Effect Transistor 

The device operates by using the voltage on the gate to control the current 
flowing between source and drain. When VGs is zero, application of a positive 
voltage between the drain and source (VDs) will result in a negligible current flow 
since the drain to substrate is reverse biased. When VGs is increased in a positive 
direction electrons are attracted to the gate oxide-semiconductor interface. When 
VBs is greater than a voltage called the threshold voltage (VT) the P-type material 
close to the gate oxide changes to N-type and hence the source and drain are 

4L. lbbotson, Introduction to Solid State Devices, in this series. 
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connected together by a very thin channel. Now, when a positive voltage, VDS, is 
applied a current, IDS, will flow from drain to source and the transistor is said to be 
turned on. The transistor can be turned on even more by further increasing the 
gate voltage. This is because more electrons are attracted to the oxide-semicon- 
ductor interface and the depth of the channel increases. Consequently the resis- 

tance between source and drain reduces thus increasing the current IDS" 

The current-voltage relationship of the MOS transistor can be modelled 

approximately with two equations depending upon the value of VDS: 

If lids < VGs- V v then the device is in the linear 5 region and 

IDS-- K[( Vcs- Vv) lids- VDS/2 ] 

If VDS > VGs- V v then the device is in the sa tura t ion  region and 

IDS-- [K/2][ VGs- VT] 2 

(9.1) 

(9.2) 

where K=(W/L)#Cox and W and L are the width and length of the gate; # is the 
mobility of carriers (this is a measure of the ease at which a carrier can pass 
through a semiconductor material); and Cox is the oxide capacitance per unit area 
of the thin gate oxide region. Physically, the length of the gate is the distance 
between the drain and source and is marked as L in Fig. 9.8(a), whilst the width W 
is the dimension into the page. Since increasing K increases IDS then K is some- 
times referred to as the gain of the transistor even though it has dimensions of 
#A V 2. These MOS equations thus allow the voltages around the transistor to be 
calculated. 

Let us look at a simple N-channel MOSFET inverter (illustrated in Fig. 9.9(a)) 
as a means of illustrating the application of this type of transistor. Here, the tran- 
sistor can be thought of as a switch such that when VGs is greater than the 
threshold voltage, V T (typically 1 V), then the transistor will turn on. Therefore 
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Fig. 9.9 MOS inverter 

5The term linear is used because for small values of VDS the current It) s is linearly related to VDS. 
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current flows from the supply through the load resistor RL, through the transistor 
to ground (V~). As VGS increases the current flowing will increase and by choosing 
the appropriate value of R E then the voltage at the output will be pulled down 

towards 0 V. If on the other hand the gate-source voltage is less than V T then the 

transistor is turned off (i.e. the switch is open) and the output is pulled up to Vjd 
(usually 5 V). This circuit thus operates as an inverter or a NOT gate. From the 
bipolar section we can see that the NMOS device operates as an active pull-down, 

whilst the resistor R E is called a passive pull-up. 

Example 9.7 

For the circuit shown in Fig. 9.9(a) what value should be chosen for R L such that 
the output will be 0.5 V when the input voltage is 5 V. Assume that K for the tran- 
sistor is 128 gA V -2. 

Solution 

We need to decide which of the two Equations 9.1 and 9.2 to use. Since the input 
voltage (VGs) is 5 V and the output voltage is 0.5 V (VDs) then VDs < VGs- V T and 
hence the device is in the linear region, i.e. we use Equation 9.1: 

IDs=K[(VGs - V+) VDS- V~s/2] = 128• 10-6[(5 - 1)0.5- 0.25/2] =0.24 mA 

Since we want an output voltage of 0.5V then the voltage across the load 

resistor, R E, will be 4.5 V and so: 

4.5V=IDs•215 L ~ RE= 18 750 f~ 

To create a resistor of this size would require a large area on an integrated 
circuit. Hence the resistor is replaced with an MOS transistor which is wired by 
attaching the gate to the drain and hence the device is always in saturation. The 
MOS transistor wired in this manner is shown in Fig. 9.9(b) and is called an active 

resistor. The area taken up by the transistor is approximately 1/200 of that of an 

equivalent value resistor. 
There are two points to notice about the symbol for the N-channel device. 

Firstly the arrow pointing in on the substrate terminal indicates that the device is 
N-channel. Secondly, the dotted line indicates that this device is an enhancement 

mode device. With enhancement mode devices a current will only flow when a 
voltage above the threshold voltage is applied to the gate. Depletion mode devices 
exist where a current will flow even if the gate is at zero volts. The symbol for these 
has a continuous line between source and drain. Since we shall only be using 
enhancement mode devices and to simplify the drawing of the transistor symbol 
we shall use the symbol shown in Fig. 9.9(c) to represent an n-channel enhance- 
ment mode MOSFET which is easier to draw. Also it will be assumed that the 
substrate for all n-channel devices is always connected to 0 V. PMOS enhance- 

ment mode devices exist and these have the substrate connected to VDD. 
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9.3.2 The M O S F E T  as a logic gate 

Apart from the inverter shown in Fig. 9.9(b) and (c) it is possible to use the 
NMOS transistor to form other logic gates as we shall see in the next example. 

Example 9.8 

For the circuits in Fig. 9.10(a) and (b) determine the functions implemented. 

[j 
] 

i1 

Vdd Vdd 

Vss 

T j f 
o/p oo/P 

o 

J 
A B 
o o 

- "~ Vss- 

(a) NAND (b) NOR 

Fig. 9.10 NMOS NAND and NOR gates 

Solution 

Fig. 9.10(a): if either or both of the inputs A and B are low (i.e. less than VT) then 
one of the NMOS transistors will be off and hence the output voltage will be 
pulled up to Vdd. The only way for the output to go low is for both A and B to be 
high. The circuit thus operates as a two-input NAND gate. 
Fig. 9.IO(b): if either A or B or both are high then the output is pulled to ground. 
The only way for the output to go high is for both A and B to be low. The circuit 
thus operates as a two-input NOR gate. 

This type of logic is called NMOS logic. Historically the first MOS logic that 
appeared was in 1970 and used PMOS transistors. It was not possible at the time 
to produce NMOS devices due to problems with processing. However, in 1975 
these problems were remedied and NMOS logic gates were manufactured taking 
advantage of the higher mobility of the N-channel carriers in NMOS transistors 
compared to the P-channel carriers in PMOS devices. We can see from K= 
[W/L]#Co~ that a higher mobility will result in a higher value of K allowing a 
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larger current to be passed within the same size transistor. In addition the higher 
the mobility, the faster the switching speed. In fact N-channel mobility is 2-3 
times that of P-channel carriers and hence the NMOS logic operates at 2-3 times 
the speed of PMOS. 

One problem of the NMOS gates (and for that matter PMOS) is that the upper 
transistor load is just acting as a resistor. When the lower transistor is on then 
current will flow from Vdd to V~ and hence these types of devices consume a 
moderate amount of power. Consequently in 1978 both PMOS and NMOS 
devices were combined on to the same chip to produce the Complementary Metal 
Oxide Semiconductor family or CMOS as it is more commonly known. 

9.3.3 CMOS inverter 

A CMOS inverter is shown in Fig. 9.11. It consists of one NMOS and one PMOS 
transistor. The PMOS device is indicated by the negation sign (i.e. a bubble) on its 
gate and has a negative threshold voltage of typically-1V. To turn on a PMOS 
device we require a voltage, VGs, more negative t han -1  V. Notice that the two 
drains of the two MOS transistors are connected together and form the output 
whilst the two gates form the single input. Due to the difference in the mobilities 
of the two devices the PMOS device is made with its WIL ratio 2-3 times larger 
than the NMOS device. This results in the two transistors having the same value 
of K so that both will have the same electrical performance. 

i/p 
c 

f 

Vdd 

Vss 

Fig. 9.11 CMOS inverter 

The circuit operation depends upon the individual gate-source voltages. When 
the input voltage is 5 V then the NMOS VGs is 5 V and hence this device is on. 
However, the PMOS VGs is 0 V and so this device is turned off. The output voltage 
is thus pulled down to 0 V. Now with the input at 0 V the NMOS VGs is 0 V and 
hence is turned off. However, the PMOS VGs i s - 5 V  and is thus turned on 
(remember a voltage more negative than the threshold voltage is needed to turn 
on a PMOS device). With the PMOS device on, the output voltage is pulled up to 

Voo. The circuit thus operates as an inverter or a NOT gate. 
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CMOS inverter power dissipation 
You should notice that when the input is steady at either a high or a low voltage 
(static condition) then one transistor is always off between V~d and V~s. Hence the 
current flowing is extremely small - equal to the leakage current of the off tran- 
sistor which is typically 100 nA. As a result of this the static power dissipation is 
extremely low and it is this reason that has made CMOS such a popular choice of 

technology. 
For input voltages between V T and Vd~- V T then the individual MOS transis- 

tors will be switched on by an amount dictated by Equations 9.1 and 9.2 and 
thus current will flow from Vd~ to V~. When the input voltage is V~J2 both 
transistors will be turned on by the same amount and hence the current will rise 
to a maximum and power will be dissipated. On many integrated circuits, 
several thousand gates exist and hence this power dissipation can be large. It is 
for this reason that the input voltage to a CMOS circuit must not be held at 
Vd,]2. When the inputs are switching the power dissipated is called dynamic 
power dissipation. However, as long as the input signals have a fast rise and fall 
time then this form of dynamic power dissipation is small. The main cause of 
dynamic power dissipation, however, in a CMOS circuit is due to the charge 
and discharge of capacitance at each gate output. The dynamic power dissipa- 
tion of a CMOS gate is therefore dependent upon the number of times a capac- 
itor is charged and discharged. Hence as the frequency of switching increases so 
the dynamic power dissipation increases. The dynamic power dissipation for a 
CMOS gate is equal to 

edynamic- CL X V~d x f  (9.3) 

wherefis  the switching frequency and C L is the load capacitance. 
The total power dissipated in a CMOS inverter is thus the sum of the static and 

dynamic components. 

Example 9.9 

Compare the power dissipated by a CMOS inverter driving a 50pF load at (a) 
10 kHz and (b) 10 MHz. What average current flows in each case. Assume a 5 V 
power supply. 

Solution 

(a) 10 kHz: 

Also: 

(b) 10 MHz: 

Pdynami~- CL • V~o •  50• 10-12 • • 10• 103= 12.5 ~W 

Pdynamic- Vdd X [average ~ ]average- 12.5 • 10-6/5 - 2.5 gA 

Pdynamic = C L x V~,jxf= 50x 10-12 x 25 x 10• 106-12.5 mW 
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Also" 

edynamir = Vdd X/average ~/average-- 12.5 x 10-3/5-- 2.5 mm 

Example 9.10 

Calculate the output voltage and the current los flowing between V~ and V~ when 
the input to the CMOS inverter in Fig. 9.11 is 2.5V. Assume that K N - K  P-  
128 ~A V -2. 

Solution 

When the input voltage is 2.5 V then VGS N =-VGS P = 2.5 V. Hence both devices will 
be turned on by the same amount. Since K N = Kp then the output voltage will equal 

( Vd~- Vs~)/2 = 2.5 V. 
The current, IDS, is determined by using one of the two Equations 9.1 or 9.2. 

Since VDS > VGS- V s for both the NMOS and PMOS transistors then both devices 
are in saturation and Equation 9.2 is used. Thus: 

IDs- KN( VGs- VT)e/2 -- 128 X 10-6(2.5 - 1)2/2 = 0.144 mA 

CMOS inverter delay 
The delay for a CMOS inverter depends upon the rate of charge or discharge of all 
capacitors at the output. This load capacitance is due to two components called 
the inherent capacitance and the external load capacitance. The inherent capaci- 
tance is due to the drain regions of each transistor and the wiring connecting these 
two drains together. The external capacitance is due either to the input capaci- 
tance of the next stage or any parasitic off-chip capacitance. The propagation 
delay (Xp) of a CMOS inverter, and for that matter all CMOS gates, is approxi- 
mately equal to 

Xp - 2 CLIKVdd (9.4) 

Example 9.11 

A CMOS inverter has a total inherent drain capacitance at the output of 1 pF 
before any external load is added. What is the propagation delay for this inverter 
unloaded? Also, plot a graph of inverter propagation delay versus external load 

capacitance. Assume that K N - K  e - 64 ~ V -2. 

Solution 

Before any load is added (i.e. with 1 pF inherent capacitance) the inherent propa- 
gation delay of this inverter can be calculated from Equation 9.4. Now, since K s = 
K e then the high-to-low delay will equal the low-to-high delay and it does not 

matter which of the two we use. Hence 

17p(inherent)= 2 X 1X 10-~2/64 X 10-6X 5 =6.25 ns 
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As external load capacitance is added the propagation delay will increase linearly 
at a rate of 6.25 ns/pF. A graph of propagation delay versus external load capaci- 
tance can be plotted and is shown in Fig. 9.12. The graph does not pass through 
the zero delay point since the intercept on the y-axis is the inherent delay before 
any external load is added. If we wish to decrease the delay of a CMOS gate then 
we must do one of two things. Either decrease the capacitance or increase K. The 
capacitance is decreased by reducing the size of the devices but this is limited to 
the minimum linewidth 6 achievable with the process. Hence if the designer is 
already at the limit of the process then all that remains is to increase K which is 
implemented by increasing the W/L ratio. 

Fig. 9.12 

318.75 

Propagation 
Delay (ns) 

6.25 
(~inh) 

0pF 50pF 

External Load Capacitor (CL) 

Propagation delay versus load capacitance 

Note: It is also possible with some CMOS processes to reduce delays by either 
increasing Vdd (you should check the data sheet before doing this!) or by reducing 
the temperature (this results in an increase in mobility and hence an increase in K). 

9.3.4 CMOS logic gates 

We have seen how to implement the logic gates NAND and NOR using NMOS 
technology. In CMOS the process is just the same except that the complementary 
PMOS transistors are added. 

Example 9.12 

What function is implemented by the circuits shown in Fig. 9.13(a) and (b)? 
Although not shown you should assume that the gate inputs labelled A are 
connected together (similarly for gate input B). 

6The minimum linewidth is the narrowest feature that an IC manufacturing process can produce. The 
smaller the feature size the more transistors per unit area. 
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Fig. 9.13 CMOS circuits for Example 9.12 
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Solution 

Fig. 9.13 (a): with either A or B or both high then at least one NMOS transistor is 
on and the output is pulled down to ground. As far as the PMOS transistors are 

concerned if an input is low then that PMOS transistor is turned on. Now, in this 
case the PMOS transistors are in series and hence only when both inputs are low 
will the output be pulled high. The circuit of Fig. 9.13(a) is thus a NOR gate. 

Fig. 9.13(b): this time the PMOS transistors are in parallel and hence we only 
need one input to be low for the output to go high. Conversely, the NMOS tran- 
sistors are in series and the only way for the output to go low is for both inputs to 
be high. The circuit of Fig. 9.13(b) is thus a N A N D  gate. 

Note: as for the CMOS inverter when the inputs are held static at either logic 1 
or logic 0 then one transistor is always off between Vdd and V~ and the current 
flow is just due to the leakage current of the off transistor. The static power dissi- 

pation is therefore again extremely low. 

9.3.5 Complex gates with CMOS 

As we have seen in earlier chapters we can implement many complex combina- 
tional functions by connecting together the basic gates NAND and NOR. 
However, the result is not an efficient use of transistors. If we introduce some 
basic rules we can produce a more efficient CMOS transistor implementation. 
Consider for example Fig. 9.14(a) which shows a CMOS circuit which implements 

the function: 
f=(A+B).(C+D) 
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Fig. 9.14 CMOS implementation of the function f= (A + B).(C+ D) 

The basic rules are as follows. 

1. Concentrate on the NMOS network and note that from the function 'f' we can 

see that terms OR'd are represented as transistors in parallel and those A N D ' d  
are transistors in series, i.e. A is in parallel with B and C is in parallel with D, 
whilst these two networks are in series with each other. 

2. To produce the PMOS network we just replace series networks with parallel 
networks and parallel with series. 7 

Notice that the number of transistors needed for this function is eight. If we try to 
implement this function directly with a NAND/NOT/NOR gate approach the 

circuit shown in Fig. 9.14(b) would be needed and the number of transistors 
required would be 16-  a rather wasteful use of silicon. 

E x a m p l e  9 . 1 3  

Produce an efficient CMOS transistor circuit diagram for the function: 

f =A .(B+C+D) 

7This is another illustration of the principle of duality which we introduced in Chapter 1. 
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Solution 

Using the above rules we concentrate on the NMOS network first. AND func- 
tions are networks in series whilst OR functions are networks in parallel. Since B, 
C, and D are OR'd together then they are drawn in parallel. This parallel network 
is in series with A since they are AND'd  together. The network for the NMOS side 
is thus as shown in Fig. 9.15(a). 

(b) PMOS 

B 
--C 

Vdd 

J 

] 

i 

(a) NMOS 

(c) Complete 

o/p I 

,,, ~ 

Vss 

Fig. 9.15 CMOS circuit for Example 9.13 
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The PMOS side is the reverse of the NMOS circuit, i.e. all series networks are in 
parallel and all parallel are in series. The circuit for the PMOS side is thus as 
shown in Fig. 9.15(b). The complete CMOS circuit is as shown in Fig. 9.15(c). 

We stated in Chapter 4 that if we reduce the number of gates or levels then the 
total delay for the circuit reduces. However, we should be careful with this tech- 
nique since if we tried to produce an eight input NAND gate using a minimum 
number of transistors then we would have eight NMOS transistors in series and 
eight PMOS transistors in parallel. If R~= is the resistance of a transistor when 
turned on, then the output resistance for a high-to-low transition will be 8Ra~, 
whilst for a low-to-high transition it will be just Ra,. Thus the high-to-low delay 
will be eight times that of the low-to-high delay. Hence for large input gates the 
minimum transistor count may not give the shortest delay. In these cases it is 
sometimes better to use two four-input NAND gates feeding into an OR gate. 
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9.3.6 CMOS transmission gate 

The CMOS transmission gate (TG) is a single-pole switch that has a low on resis- 
tance and a near infinite off resistance. The device consists of two complementary 
MOS transistors back to back and is shown in Fig. 9.16(a) with its symbol in Fig. 
9.16(b).The device has one input, V~n, and one output Vou ~. The gate of the NMOS 

transistor is driven from a control signal V c whilst the PMOS transistor gate is 

driven from V c via an inverter (not shown). 

-• 
, , ,  

Vin I ~ Vout 

~ T s _ J  ~ 
I [ 

Vc 

Fig. 9.16 CMOS transmission gate 
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Vout 
o 

Consider what happens when V c is held high (i.e. 5 V). With Vin at 0 V then the 
NMOS VGS is 5 V and this device is turned on and the output will equal the input, 
i.e. 0 V. Notice that VGS for the PMOS device is 0 V and hence this device is turned 
off. The reverse is true when ~n is held high, i.e. PMOS VGS is -5 V and is switched 
on whilst the NMOS VGs is 0 V and is turned off. In either case an on transistor 
exists between Win and Vo~ , and hence the input will follow the output, i.e. the 
switch is closed when V c is held high. 

Now when V c is held low then the NMOS VGS is 0 V and the PMOS VGS is 5 V 
and so both devices are off. The switch is therefore open and the output is said to 
befloating or high impedance. 

One application of this device is as a tri-state circuit which is discussed later in 
this chapter. However, many other uses have been made of this CMOS TG. Some 
of these are shown in Fig. 9.17(a) and Fig. 9.18(a). Fig. 9.17(a) shows a 2-to-1 
multiplexer circuit. When the select line is high then 'bit 0' is selected and passed 
to the output whilst if select is low then 'bit 1' is passed to the output. Notice that 
the non-TG version of this circuit, illustrated in Fig. 9.17(b), uses many more 
transistors than the simple TG version. 

Fig. 9.18(a) shows the use of a transmission gate as a feedback element in a level 
triggered D-type latch. When the clock signal is high then TG 1 is closed and data 
at D is passed to the output (TG2 is open). When the clock goes low then TG 1 is 
open and the data at the output is passed around the feedback loop via TG2 
which is now closed. Data is therefore latched into the circuit. The equivalent 
non-TG version using logic gates (introduced in Problem 5.4) is shown in Fig. 
9.18(b) and again uses many more transistors than the TG version. As a result of 
this, all CMOS flip-flops are designed using the space saving TG technique. To 
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Fig. 9.17 Digital multiplexer implemented with (a) TGs and (b) logic gates 
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Fig. 9.18 D-type latch implemented with (a) TGs and (b) logic gates 
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produce a JK with CMOS TGs it is necessary to add the appropriate circuitry to a 
TG based D-type (see Problem 11.4). Hence CMOS JKs use more gates than D- 
types. It is for this reason that CMOS designs use the D-type as the basic flip-flop 
rather than the JK. 

9.3.7 CMOS 4000 series logic 

The 4000 series was the first CMOS logic family marketed. It was basically the 
raw CMOS logic gates shown in Figs 9.13-9.18 directly driving external load 
capacitances or other loads such as TTL gates. The circuit impedance seen 
looking back into the output depends upon which transistors are on or off. For 
example the two-input NOR gate when the output is low will present a different 
output impedance depending upon whether one transistor is on or both are on. 
This will result in differing propagation delays and variable output drive capa- 

bility. Nevertheless, these devices had very low static power dissipation and 
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with a wide power supply range of 3-15 V had good noise immunity (see later). 
The 4000 series was eventually replaced by the 4000B series. This logic family is 

essentially the original 4000 series but with the outputs double buffered. This 
double buffering was quite simply two inverter stages with WIL ratios increasing 
at each stage so that the last stage is able to drive the off chip capacitances and 
other TTL loads without compromising logic levels. A transistor circuit diagram 
illustrating the double buffering (with approximate WIL ratios in microns) is 
shown in Fig. 9.19 for a two-input NOR gate in the 4000B series. These devices 
have a transfer characteristic which changes more abruptly from one logic level to 
the other compared to the 4000 series. This is due to the two extra stages at the 
output which also results in a much better noise margin. Delays of the order of 
50-100ns are obtainable with this process. 
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Fig. 9.19 A CMOS 4000B double buffered NOR gate 

9.3.8 CMOS 74 series logic 

Many digital electronic systems were designed at first with the 74 series TTL 
devices. Since the 4000B series were not pin-for-pin compatible with the TTL 
devices then replacement with CMOS was only possible if a complete board 
redesign was implemented. Hence, in order to take advantage of the low static 
power consumption of CMOS logic the TTL series has been gradually replaced 
with CMOS equivalents that have the same pin out. These CMOS logic gates all 
have outputs that arc double buffered and buffers on the inputs which result in a 
good noise margin. A plethora of logic gate families now exist under the 74 
CMOS series and we shall look chronologically at most of these. 

74C series 
The 74C family was the first CMOS version of the TTL 74XXX series on the 
market. It used 5 tun technology with all outputs double buffered, as in the 
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4000B series, so that they can drive other TTL logic gates as well as large off- 
chip capacitances. This family is now obsolete being replaced by the HC and 
HCT versions. 

74HC/I-ICT series 
The 74 HC series are fabricated with 3 grn CMOS and an increased value of K (see 
Section 9.3.1). This results in a shorter propagation delay and increased output 
drive capability. These devices have a speed performance similar to the 74LS 
series but with a greatly reduced power consumption. Unloaded the output volt- 
ages are guaranteed to be within 100mV of the supply. However, under a load 
such as driving a TTL input the voltage across the MOS output transistors will 
increase as current passes through them. The value of K of the output stage is 
therefore designed such that the output voltage will still produce a legal logic 1 or 
0 (i.e. a large WIL ratio is used-  see Problem 9.11 at the end of this chapter). 

Although the HC series have the same speed as 74LS parts (see Table 9.1) they 
cannot be driven by LS parts. This is because the minimum V~H (called VIHmin) of 
the HC is approximately 3.5 V whilst the minimum VOH for the LS part is 2.7 V and 
hence will not be recognised by the HC series device as a legal logic 1. To avoid this 
problem the 74HCT was introduced. This series again uses CMOS technology but 
the inputs are designed to be TTL input voltage level compatible i.e. ViHmin'-2.0 V 
and V~Lm,~ = 0.8V. This is achieved by adjusting the WIL ratios ofthe two MOS tran- 
sistors in the input buffers so as to move the switching point. In the HC series the 
PMOS width is 2-3 times that of the NMOS (to compensate for the difference in 
mobilities) and the device switches at VdJ2. However, for the HCT devices the 
NMOS width is approximately ten times that of the PMOS device such that the 
value of V~H is reduced to 2 V and V~L to 0.8 V - compatible with TTL logic levels. 

Example 9.14 

What should be the relative width-to-length ratios of the NMOS and PMOS tran- 
sistors for the CMOS input buffer to create a TTL input compatible device. 
Assume that the mobility of NMOS carriers is three times that of the PMOS 

carriers. 

Solution 

The TTL input logic levels are: ViHmin=2.0V and ViLmax -- 0.8 V, Hence the 
switching point should be chosen half-way between these levels i.e. at 1.4 V. The 
switching point will occur when both transistors are on by the same amount and 
from Equation 9.2 

KN( VGs N - VT)2/2 = Kp( VGS P -- VT)2/2 
KN( Vin- VT)2/2-'- gp( Vdd-- Fin- VT)2/2 

KNIKp=(3.6-1)2/(1.4 - 1)2=42.25 



BiCMOS- the best of both worlds 219 

From K=(WIL)xl, tXCox and given that lXn=3 ~ then the NMOS WIL ratio 
should be set at 14.08 times that of the PMOS transistor. 

74ACIACT series 
Continual improvements in CMOS processing have led to the introduction of an 
improved high-speed CMOS family called the advanced CMOS logic designated 
as 74AC and 74ACT. They are direct replacements for the 74AS and 74ALS series 
and in some cases the 74F series. These devices use 1.5grn CMOS technology with 
a very thin gate oxide of approximately 400,/k (one A= 10-1~ This results in 
very high speed CMOS devices with delays of typically 5 ns. This range of devices 
also has a very high output current drive of 24 mA (see Table 9.1) due to the 
higher K caused by the thin gate oxide and large WIL ratios at the output. The 
ACT series is TTL input voltage level compatible and can be mixed with ALS and 
AS devices. It has the added advantage of a very low power consumption as with 
all CMOS devices. This range of devices is sometimes referred to as advanced 
CMOS logic (ACL) by Texas Instruments or FACT by National and Fairchild. 

Undoubtedly more and more logic families will become available to the 
designer. Currently we are at the advanced, advanced stage of high-speed CMOS 
devices, the latest being the 74VHC series offered by National Semiconductors 
and the 74AHC/AHCT series marketed by Texas Instruments. We may well be 
approaching the limit of CMOS and the use of BiCMOS could well be the next 
technology choice on offer to the logic designer. 

9.4 BiCMOS- THE BEST OF BOTH WORLDS 

The advances in integrated circuit processing have led to ever decreasing tran- 
sistor sizes. However, for the same quality process a MOS transistor consumes 
considerably less space than a bipolar transistor. Hence CMOS chips are much 
smaller than bipolar equivalents and hence internal capacitances are greatly 
reduced resulting in ever decreasing propagation delays and manufacturing costs. 
However, the CMOS families are limited when driving large capacitive loads such 
as off-chip capacitances present on data buses, and even oscilloscope leads. The 
bipolar transistor is much better at driving these large capacitances since for the 
same size device the bipolar transistor has a larger effective K than the MOS 
device. A new technology has therefore emerged called BiCMOS that combines 
the best of both worlds, i.e. CMOS and bipolar. It contains the small CMOS logic 
gates but in any places where it is necessary to drive large capacitive loads then the 
bipolar totem-pole stage is used. 

A typical BiCMOS inverter is shown in Fig. 9.20. The device operates as 
tbllows. When the input is high then the base of T1 is low and is turned off. 
Transistor MN is turned on and since MN2 is off then T2 turns on and the output 
is low. When the input switches to zero volts then the base of T1 goes high and 
turns on T1. Since the base ofT1 is high then MN2 is turned on and the base ofT2 
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is low and is thus turned off and the output goes high. Notice that when T1 turns 
off then MN 1 provides a base discharge path, whilst when T2 turns off the base 
discharge path is provided by MN2. 

The bipolar output thus allows large capacitances to be driven, whilst the 
CMOS part implements the desired function internally. A typical BiCMOS logic 
family is the 74BCT series which tends to have devices that are only for bus 
driving such as octal buffers and octal latches. These have similar speeds to the 
74F family but with greatly reduced power consumption (see Table 9.1). 

9.5 LOW-VOLTAGE OPERATION 

Battery operated equipment such as lap-top computers and hand-held instruments 
require low-power devices. As we have seen CMOS offers extremely low power, an 
approximate value of which can be obtained from Equation 9.3, i.e. C L Voo2f 

As device dimensions reduce in size, the capacitance reduces leading to further 
reductions in the power consumed. However, a reduction in Vod will lead to a 
larger reduction in power consumption due to the square term in Equation 9.3. In 
addition the use of a lower Voo will result in fewer batteries needed and hence a 
lighter instrument. Consequently most portable digital equipment is made nowa- 

days with a reduced Vdd. 
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Since alkaline batteries have a typical voltage of 1.35 V and NiCd have a typical 
voltage of 1.2 V then a multiple of this is usually needed for the power supply. A 
range of 2.7-3.6 V will require either two alkaline or three NiCd. Although the 
HC, AC and 4000B series will operate at 3 V these devices have not been opti- 
mised for this supply voltage and hence they are a compromise that will satisfy all 
power supply voltages. Consequently, a range of CMOS devices is now available 
that has been specifically designed for this lower voltage. These low-voltage 
devices are labelled by National Semiconductor as 74LVX or by Texas 
Instruments for example as 74LV, 74LVC and 74ALVC. It is also possible to 
obtain low-voltage BiCMOS devices which again are able to drive large capacitive 
loads. These not only operate with a 3 V supply but also have the capability of 
being driven from 5 V input signals. A typical range of devices of this type is the 
74LVT series by Texas Instruments (see again Table 9.1). 

Example 9.15 

What percentage saving in dynamic power consumption will be obtained by 
reducing the power supply from 5 V to 3 V? 

Solution 

From Equation 9.3 the power consumption will reduce from: CLXfX25 to 
C L x fx  9, i.e. a saving of 64% in power consumed. 

9.6 OTHER TECHNOLOGY OPTIONS 

9.6.1 Emitter coupled logic- ECL 

The emitter coupled logic family has been available for the digital designer since 
the early TTL days. A circuit configuration for a two-input OR/NOR gate is 
shown in Fig. 9.21. 

This family has delays of the order of 1 ns and achieves this by (a) ensuring that 
the transistors do not enter saturation and (b) having a smaller voltage swing. The 
circuit contains two inputs A and B and two outputs Vo,~ (NOR) and Vo,,2 (OR). 
The outputs are taken from the emitters of T5 and T6. Although these emitters 
appear to be floating they are assumed to be driving other ECL gate inputs which, 
as can be seen, have a 50 k~ resistor between its input and -5.2 V. The output 
circuit is thus acting as a voltage follower. 8 Note also that the power supplies are 
0 V and--5.2 V which are not compatible with TTL, CMOS or BiCMOS. In ECL 
technology a logic 0 is defined as having a larger negative voltage than a logic 1. 

This ECL logic gate functions as follows. Firstly, the circuit inside the dotted 
box is a voltage reference circuit providing a reference voltage at the base ofT2. If 

8B. Hart, Introduction to Analogue Electronics, in this series. 
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Fig. 9.21 ECL NOR/OR gate 
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both inputs A and B are taken low (i.e. a large negative voltage) then transistors 
T1 and T3 are turned off and current flows through T2 and hence the output Vo~,~ 
(NOR) is pulled towards 0 V (i.e. a logic 1) and Vow,2 (OR) moves towards-5.2 V 
(i.e. a logic 0). When one or both of the inputs are held high then the current 
passes through the transistor which has a high on its base and T2 turns off. Hence 
Vo~t~ (NOR) is now pulled towards -5.2 V and Vout2 (OR) pulled towards 0 V. The 
circuit thus functions as an OR/NOR gate. 

Two families have been marketed in ECL logic. These are the 10K series and 
the 100K series, the 100K series being the most recent. The voltage levels for this 
family are (see Table 9.1): 

VOH=-O.9V; VOL=-I.7V; V~H=-I.2V; and VIL=-I.4V 

As can be seen these logic levels are not TTL or CMOS level compatible. 
The 100K series differs from the 10K series by having a more temperature 

stable characteristic and a faster speed of operation, with a delay of 0.75 ns and a 
power consumption of 20mW. These devices tend to be used in specialist high- 
speed logic requirements such as digital telephone exchanges or high-speed super- 
computers. 

9.6.2 Gallium arsenide- GaAs 

All the technologies we have looked at so far have been implemented in silicon. 
Alternative semiconductors, such as gallium arsenide (GaAs) and germanium 
(Ge) exist. The use of GaAs in digital applications such as telecommunications 
has been marketed for some time. GaAs has an electron mobility approximately 
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five times that of silicon and hence can operate at much higher frequencies. 
Consequently a lot of research effort has been spent on exploiting this speed 
advantage. However, the processing that is needed with GaAs is much more 
complicated than silicon and hence these devices are used only for the specialist 
high-speed digital market. Typical operating delays of lOOps with power 
consumptions of 1 mW per gate are available. Since these devices are to comple- 
ment ECL they use ECL logic levels with similar power supply requiremenl~s. 

9.7 GATE CHARACTERISTICS 

We should now be more familiar with the various technology options so let us 
investigate how the gate characteristics vary from technology to technology. A 
logic gate is characterised in terms of various parameters. Some of the more 
important parameters are: transfer characteristics; noise margin; output drive 
(fan out and fan in); propagation delay; power dissipation; and power delay 
product. 

9.7.1 Transfer characteristics 

A transfer characteristic plots the output voltage versus the input voltage for a 
logic gate. A transfer characteristic for a non-inverting logic gate is shown in 
Fig. 9.22. 
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Fig. 9.22 Logic gate transfer function 

The ideal characteristic (shown by the solid line) illustrates that below a 
switching voltage (Vs) the output will equal the most negative voltage (usually 
ground or V~). With the input above V~ the output will equal the most positive 
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voltage (referred to as Vcc for bipolar or Voo for CMOS). The switching voltage V~ 
is usually at half the supply voltage and the change from one logic state to the 
other occurs very sharply. 

In reality the transfer characteristic is as shown by the dotted line. In this case 
the switching voltage may not be at half the supply, the switching region is 
gradual and the output voltage may not reach the supply rails. For TTL V~ is 
1.4V whilst for CMOS V s-  Vdo/2 (unless of course the CMOS is TTL input 
compatible when it too will be 1.4 V - see Section 9.10.1). 

Various significant voltages are defined for a logic gate. For the gate input, the 
two logic level voltages are 

�9 ViLma x" the maximum value of input voltage that can be recognised as a logic '0'; 
�9 VIHmin: the minimum value of input voltage that can be recognised as a logic' 1'; 

whilst for the gate output the two logic levels are 

�9 VOLmax: the maximum value of output voltage for a legal logic '0'; 
�9 VOHmi n" the minimum value of output voltage for a legal logic '1'. 

Input voltages between ViLma x and ViHmi n will result in an indeterminate value of 
output voltage and hence are not allowed. In addition the output of a gate is not 

allowed to have values between VOLma x and VoHm.i.. 

9.7.2 Noise margin 

Noise in a digital system is mainly caused by switching transients which cause 
perturbations in the power supply or generate crosstalk between adjacent wires on 
the chip or circuit board. These disturbances are propagated to the output or the 
input and can either add or subtract to the existing signals and hence change the 
voltage appearing at the output. If the noise is large enough it can change a legal 
logic level into an illegal value. The magnitude of the voltage required to reach 
this illegal state is called the noise margin and is specified for both logic high and 
logic low conditions. It indicates the maximum noise voltage that can appear on 
an output before the output level is deemed illegal. 

Consider two non-inverting gates in series as shown in Fig. 9.23 and the associ- 
ated voltage levels. The maximum high and low noise voltages that can be allowed 
on the output of the first buffer are thus 

NM H = VoHmi n - ViHmi n and NML= ViLma x - VOLma x 

Example 9.16 

Two inverters from a 74LS04 hex inverter IC (i.e. six inverters in one package) are 
connected in series such that one inverter is driving the other. From Table 9.1 
determine the high and low noise margins. 
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Fig. 9.23 Logic levels and noise margins 

Solu t ion  

N M  H - V o H m i  n - V iHmi  n - -  2.7 - 2 .0-  0.7 V 

N M  L -  VILma x -- VOLmax -- 0. 8 -- 0.  5 -- 0 . 3  V 

Example 9.17 

Repeat 9.16 for a 74HCT04 (CMOS version of 74LS04). 

Solu t ion  

N M  H = V O H m i  n - V i H m i  n =4 .3-  2.0= 2.3 V 

N M  L = V i L m a  x - VOLmax = 0 . 8 -  0 . 3 3  = 0 . 4 7  V 

Hence an improved noise margin is obtained with CMOS. It should be noted, 
however, that since the CMOS output is driving another CMOS device then the 
current drawn from the output is small. Hence the output voltage levels for a 
CMOS device will be much closer to the supply than indicated in Table 9.1 
resulting in an even larger noise margin. 

9.7.3 Output drive (fan out/fan in) 

One of the requirements of a logic gate is that sufficient output current drive is 
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available to drive other inputs. However, as the output current increases the 
voltage dropped across the 'on' output transistor will increase. It is essential that 
this voltage does not rise above the point at which the voltage levels become illegal 

(i.e. below VOHmi n OI" above VOLm~). The number of inputs which a gate output can 
drive before the output becomes invalid is called the fan-out or output drive capa- 
bility. This fan-out is expressed as 

fanouthig h = IOHmax/IiHma x and fanoutlow = IOLmax/IiLma x 

The fan-in on the other hand is the load that an input places on an output. This 
is sometimes expressed as the input capacitance, the input current or sometimes as 
the number of inputs to a gate. 

Example 9.18 

How many standard 74 series gates can a 74ACT series drive? 

So/m/on 

From Table 9.1 the output current drive of a 74ACT device is 24 mA.The worst 
case fan-out calculations will be for the logic low case since this requires the 
largest input current. Hence 

fanout low = IOLmax/IiLmax-- 24/1.6= 15 

i.e. the 74ACT series will drive 15 standard 74 series devices. If we compare this 
with a 74LS series device driving a standard 74 series the output drive current is 
only 8 mA (IOLmax) and thus its fan-out is only 5. 

Example 9.19 

Repeat Example 9.18 for a 74ACT driving other 74ACT devices. 

So/m/on 

Since the input current to a 74ACT device is negligible (due to the fact that it uses 
MOS transistors), then the load it places on the output is minimal and the fan out 
is very large (much greater than 15). However, the inputs do have an input capac- 
itance and this will affect the propagation delay, as discussed in the next section. 

9.7.4 Propagation delay 

As we have already seen the propagation delay is defined as the time it takes for a 
signal at the input to pass to the output. It is usually defined between the 50% 
points as illustrated in Fig. 9.24. Two propagation delays are quoted for a logic 
gate depending upon whether the output is going low to high (XpLH) or high to low 
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(XPHL). Notice that the ideal input (shown dotted) has an immediate change from 0 
to 1 and from 1 to 0. However, in reality this response is not as sharp as this and 
hence the input has a rise time and a fal l  time. The rise and fall times are defined as 
being between the 10% and the 90% points. Notice that the definition of the prop- 
agation delay time is unaffected by the value of the rise and fall time. 

As we have seen from Equation 9.4 for CMOS circuits, the propagation delay 
depends upon the capacitance being driven and the effective value of K for the 
output transistor- a similar relationship holds for bipolar technology. A plot of 
relative propagation delay versus external load capacitance is given in Fig. 9.25 
for the three main families of CMOS, TTL (or BiCMOS) and ECL. At low capac- 
itances the CMOS family has a smaller delay than TTL or BiCMOS. This is 
because the external load capacitance on the x-axis does not include the internal 
capacitance of the logic gate. For MOS devices this internal capacitance is smaller 
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Fig. 9.25 Comparison of propagation delay versus load capacitance for different technologies 
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than bipolar devices partly because the processing of MOS devices has advanced 
considerably over the years and partly because a bipolar transistor takes up more 
space on the chip and hence has a higher capacitance. However, as the external 
load capacitance increases it soon dominates over the small internal load capaci- 
tance. The rate of increase of propagation delay with capacitance depends upon 
the effective K of the output transistor. The effective K is larger for a bipolar tran- 
sistor than for a MOS transistor and hence with large load capacitance the delays 
for CMOS are larger than for BiCMOS or TTL. Consequently if you are driving a 
large capacitance, i.e. several other inputs (or large fan-in), then it is preferable to 
use a bipolar output. If, however, the output is driving a low capacitance, i.e. less 
than 30 pF, then use CMOS outputs. Drawn on the same axis is the ECL delay 
versus capacitance. As expected these devices are faster since they do not enter 
saturation. 

Example 9.20 

Compare the delay of a TTL device driving 15 CMOS devices with that of a 
CMOS device driving the same load. Assume that the TTL output can drive at 
20 ps/pF whilst the CMOS device has a drive of 67 ps/pF and that each CMOS 
input has a capacitance of 10 pF. 

So/ut/on 

Total load from 15 CMOS devices= 15 x 10 pF = 150 pF 

TTL driving: loading delay = 150 pF x 20 ps/pF = 3 ns 

CMOS driving: loading delay = 150 pF x 67 ps/pF = 10.05 ns 

9.7.5 Power dissipation 

The power dissipation of logic gates is characterised under two modes. These are 
static and dynamic. Under static conditions the input is held at either logic '1' or 
'0'. The static power consumption is thus 

Pstatic = Vdd X Is,pply 

Under dynamic conditions the inputs are changing state and hence the transis- 
tors between the supplies will either be both on or require energy to charge and 
discharge output capacitances. Hence the dynamic power dissipation will depend 
upon the number of times the transistors switch per second, i.e. the signal 
frequency. If the rise and fall times of the input signal are small then the dynamic 
power dissipation is due solely to the energy required to charge and discharge the 
load capacitances. As seen in Equation 9.3 for CMOS, this is equal to 

P yoamic = C,. X x f  



Open collector and three-state logic 229 

where C L is the total capacitance seen at the output and f is the signal frequency. 
This equation also applies to bipolar technology. The total power dissipated is 
therefore the sum of the static and dynamic power dissipations. 

Consider the comparison of power consumptions between TTL and CMOS. 
With TTL devices the static power dissipation is quite large. Fig. 9.3 shows that 
for the TTL family, with a low at the input, a current must flow out of the input 
(typically 1.6 mA). Now, with the inputs high the second stage will be on and 
drawing current from the supply. However, for CMOS devices one transistor is 
always off between the supplies and hence the static current drawn is only due to 
the off transistor. This is called the leakage current, and is very small. Hence the 
total power dissipation for CMOS is due mainly to dynamic effects and is very 
small at low frequencies. This is the reason why CMOS is such a popular choice. 

However, Equation 9.3 shows that as the frequency increases the power dissi- 
pation of the CMOS devices will increase. The same component is present in TTL 
devices but since the static power consumption is high in the first place it does not 
show itself until relatively high frequencies are reached. A typical plot of power 
dissipation versus operating frequency is shown in Fig. 9.26 for a 74LS00 device 
and a 74HC00 device (quad two-input NAND gate). Notice that it is not until 
frequencies above 5 MHz that the CMOS device has similar power consumption 
to the TTL device. Below this the power dissipation of the CMOS device is very 
low. 
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Fig. 9.26 Comparison of power consumption versus frequency for CMOS and 74LS series 

9.8 OPEN COLLECTOR AND THREE-STATE LOGIC 

In cases where data has to pass off-chip to a single interconnect that is used by 
other output devices (called a bus) then the traditional totem-pole output of 
bipolar, or the standard complementary pair of CMOS, cannot be used in its 
present form. This is illustrated in Fig. 9.27 where two outputs drive the same line. 
If the output of gate 1 is high and that of gate 2 is low then a condition called bus 
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Fig. 9.27 Bus contention with logic gates 

contention occurs. Current passes from gate 1 to gate 2 and an unknown voltage is 
presented to the line and in some cases may result in damage to either or both of 
the output stages. Two remedies exist to this problem: use open collector (or open 
drain) outputs; or use three-state output circuits. 

9.8.1 Open collector/drain 

The open collector output (or open drain for MOS devices) is quite simply the 
same output as a TTL totem pole (or CMOS output buffer) but with the top half 
of the output circuit removed to just leave the lower transistor with its collector 
o p e n -  hence its name. An example of two open collector gate outputs driving a 

Vcc 

gate 1 

gate 2 _ /  

~ Rpull-up 

1 
data bus / 

Fig. 9.28 Open collector outputs driving a common data bus 
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common data bus is shown in Fig. 9.28. The advantage of this type of output is 
that they can be wired together and bus contention is no longer a problem. If both 
output transistors are turned off then the output is pulled up to a logic '1' via the 
single pull-up resistor. The case of bus contention when one output transistor is 
on and another is off is avoided because the off transistor presents an open circuit 
to the common line and does not interfere with the logic level. Such a wiring 
arrangeme~lt is often called a wired-or connection. 

9 . 8 . 2  T h r e e - s t a t e  l o g i c  

Two disadvantages exist with the wired-or connection. The first is that power is 
consumed with the pull-up resistor via the on transistor and secondly that the 
switching speed is reduced due to the arrangement having no active pull-up. The 
low-to-high switching time is now dictated by the time constant of the pull-up 
resistor with the external load capacitor. An alternative to the open collector or 
open drain output is to use a three-state circuit. 
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Fig. 9.29 Three-state logic TTL 74S circuit 

The term three-state logic is a most misleading term in digital logic, especially 
since we have been using the binary system which only has two values! Three-state 
logic is a term given to the ability of an output stage to: drive a logic 1; drive a 
logic 0; and a third state where the output presents a high impedance to the 
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common data bus and hence does not drive the output to any voltage. This third 
state has many other names, these being high impedance, high Z and tri-state to 
name but a few. They all produce the same function of having this third mode 
where the output does not drive any voltage on to the common data bus and 
presents a high impedance to the line as though it were not connected. 

A circuit diagram for a three-state logic TTL 74S series circuit is shown in Fig. 
9.29. The circuit is exactly the same as the 74S series device illustrated in Fig. 9.6 
except that an extra control input is added via two Schottky barrier diodes. When 
the control is high both diodes SB1 and SB2 are reverse biased and the circuit 
operates as normal with the output either driving a logic 1 or a logic 0. When the 
control is held low the diodes are forward biased and the bases of T2 and T3 are 
held low. The two output driving transistors T5 and T6 are therefore turned off 
and hence present a high impedance to the output and the common data bus. 

Example 9.21 

A CMOS version of a three-state logic output buffer is shown in Fig. 9.30. 
Explain how the circuit operates. 
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o . , .  

control 

Vdd 

Vss 

Fig. 9.30 A CMOS three-state logic circuit 

Solution 

With the control line high, a logic ' l '  appears at the gate of the PMOS and a logic 
'0' at the gate of the NMOS. Hence both the PMOS and NMOS transistors are 
turned off and the output presents a high impedance. However, when the control 
line is low the data at D can pass through to the output and the gate operates 

normally. 

9.9 COMPARISONS OF LOGIC FAMILIES 

So how does a designer decide which logic family to choose? The answer depends 
upon whether one is looking for high speed, low power, special power supply 
voltage, what level of noise immunity, and/or cost. In other words there is no 
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single answer and it depends upon the requirements. As we have seen, Table 9.1 
summarises the main features for each logic family. 

Some of the more important observations from this table are: 

�9 the 74F series is the fastest of the commonly available TTL series with a 
moderate power consumption; 

�9 the CMOS 74ACT series is an excellent low-power, high-speed replacement for 
TTL devices; 

�9 the CMOS 74AC is low power, with a good speed performance and a low 
voltage operation if required; 

�9 the ECL/GaAs range offer the fastest families but with non-standard power 
supplies and high cost; 

�9 the 4000B CMOS series has a wide power supply range and a good noise 
immunity but is relatively slow; 

�9 the CMOS 74HC/HCT series is an earlier low-cost option to the AC/ACT series 
but with reduced speed of operation; 

�9 dedicated 3 V series (LV, etc.) offer good speed and low power for battery appli- 
cations; 

�9 BiCMOS provides low power, good speed and excellent drive capability but at 
an increased cost compared to CMOS. 

As can be seen, with the exception of cost, the combination of delay and power 
is the main issue facing a designer in making a logic family selection. A useful 
figure of merit is therefore the power-delay product (PDP) which has units of 
Joules and is the energy dissipated per logic gate. Fig. 9.31 shows a plot of power 
versus delay for the various technology families with constant PDP lines drawn 
in. As can be seen the BiCMOS family has just the edge on this figure of merit but 
CMOS is an excellent low cost alternative that is used in most new designs today. 

Fig. 9.31 Power delay product for different logic families 
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9.10 MISCELLANEOUS PRACTICAL PROBLEMS 

The use of these various logic technologies can present many practical problems. 
This section will briefly discuss some of these issues. 

9.10.1 Interfacing 

It may be necessary on occasions to mix technologies on a single PCB, for 
example TTL and CMOS devices. The main concerns are: 

1. Do the logic output levels from one device fall inside the legal input levels for 
the next device? 

2. Can the output transistors provide sufficient current for driving the next stage 
without producing illegal logic levels? 

Table 9.1 (on p. 192) will again help answer these questions. 

CMOS to TTL 
Figure 9.32 shows a CMOS output stage driving a typical TTL input. No special 
interfacing circuitry is required as long as the CMOS output can source and sink 
I~L and/in for the TTL input. If we look at Table 9.1 we can see that all the CMOS 
outputs can source and sink at least 4 mA with output voltage levels of 4.2-4.3 V 
(VOHmin) and 0.33-0.44 V (VOLmax). This current drive is sufficient for the TTL 
inputs and provides adequate TTL voltage levels. 
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Fig. 9.32 Interfacing CMOS to TTL 
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TTL to CMOS 
Fig. 9.33 shows a TTL output driving a CMOS input. It is necessary to be very 
careful here. If we connect a 74ALS to a 74AC then when the TTL output goes 
high the minimum output voltage level could be as low as 2.7 V. This is less than 
the minimum legal high input voltage for the 74AC device which is 3.5 V and the 
CMOS output will be indeterminate. Two methods are used for TTL driving 
CMOS. The first is to use TTL input compatible CMOS devices. These are the 
devices which have a T in their code, i.e. 74HCT, 74ACT, etc. In this case an input 
inverter is included which has its W/L ratios adjusted such that the switching 
point is halfway between the TTL input voltage levels, i.e. at 1.4 V for 74X or 
1.6 V for other TTL devices. The second method is to use the non-TTL com- 
patible CMOS devices (i.e. 74HC, 74AC, etc.) and add a pull-up resistor at the 
input to the CMOS device. This is the resistor, Rp, in Fig. 9.33. 

Example 9.22 

From Table 9.1 what is the maximum value of pull-up resistor, Rp, that can be 
used for a 74ALS device (TTL) driving a 74AC (CMOS) device? What would the 
input time constant be if the 74AC input capacitance is 10 pF? 

Solution 

From Fig. 9.33 when the output of the TTL circuit is driven high, due to T3 
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turning 'off' and T4 turning 'on', the resistor Rp pulls the output high and thus 
turns off T4. Current, Ip, flowing through Rp is therefore due to the input current 
for the CMOS device (approximately 1 gA) plus the current through the off tran- 
sistor T3 (approximately 10 gA). Hence 

Vcc = Ip x Rp + V I H min 

and so Rp =(Vcc- Vi.m,,)llp=(5--3.5)/11X 10 -6- 136.4 k~. 
The input time constant is gp X Cin - 136.4 x 103 x 10 x 10 -~2-1364 ns! This delay 

is very large and can seriously affect power consumption of the following CMOS 
stage. This is simply because the input voltage will be around 2.5 V for a relatively 
long time. During this time both MOS transistors will be on between V~o and V~ 
and hence a large current will flow. The solution is either to use a much lower 
value of Rp (typically 2.2 k~) or as stated before to use the CMOS TTL input 
voltage compatible series (i.e. HCT, ACT, etc). 

9.10.2 Unused inputs 

To understand what to do with unused inputs take another look at the input of 
each of the three technologies that we have studied so far, i.e. Fig. 9.3 for TTL, 
Fig. 9.11 for CMOS and Fig. 9.21 for ECL. 

From Fig. 9.3, unused inputs on TTL gates can be left unconnected and will 
float and give the appearance of a logic 1 at the input. However, it is best that 
these inputs are tied to either ground directly or to the supply via a 2.2 k~  resistor 
since the input may pick up noise and oscillate between a logic 1 and logic 0. 

CMOS inputs (Fig. 9.11) are simply the two complementary MOS transistors. 
Two problems occur when the input(s) of a CMOS gate is left floating. The first 
problem is due to the very high input impedance of MOS devices. When an input 
is left unconnected the input terminal can float to high voltages due to a build up 
of electrostatic charge that cannot leak away. The gate oxide of a MOS device is 
extremely thin and hence very high fields can be generated at the input sufficient 
to destroy this oxide. To avoid this problem all CMOS inputs are designed with 
electrostatic protection (and a CMOS inverter for pulse sharpening). The 
resulting CMOS input circuit is shown in Fig. 9.34. To avoid undue stress on these 
protection circuits the inputs nevertheless should be tied to either ground or 
supply. The second reason for tying the inputs to ground or supply is because if 
they are left to float they can obtain voltages that can turn both of the MOS tran- 
sistors on and thus result in a large power consumption. Hence all unused inputs 
on a CMOS chip must be tied high or low. 

ECL circuits (Fig. 9.21) have their inputs already tied to -5.2 V by the 50 kff2 
resistor and hence they can be left unconnected. 

A final note about inputs. Any input signal that has a slow rise or fall time of 
the order of 50 ns or  greater must not be applied to a gate until it has been sent 
through a pulse sharpening circuit. This is particularly true for clock signals. 
These pulse sharpening circuits can simply be a two-stage CMOS inverter as in the 
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to rest of chip 

double buffered outputs of the CMOS logic families. However, a Schmitt trigger 
device is the more common pulse sharpener device in use and is available in both 
the TTL (74LS14) and CMOS (74HC14) families. 

9 . 1 0 . 3  D e c o u p l i n g  

When the output of a logic gate switches from one state to another then a large 
power supply current will flow for a very short time. These fast changing current 
spikes and the inductance of the power supply wiring feeding the chip will cause 
voltage transients on the power supply which are passed to the next stage hence 
appearing at its output. This is then passed on to the input of the following stage 
and may well produce an illegal state. The solution is to stop the voltage spike 
from passing down the power supply line by adding bypass or decoupling capaci- 
tors as close as possible to the source of the problem. This usually means adding 
decoupling capacitors to every chip. Typically two capacitors are placed in 
parallel with the supply: a 4.7 laF tantalum (good for low frequencies) and a 10 nF 
disk ceramic (for high frequencies). The liberal use of decoupling capacitors 
cannot be overemphasised. 

9.11 SELF-ASSESSMENT 

9.1 What is the voltage across a saturated bipolar transistor? 

9.2 What base-emitter voltage is needed to turn on a bipolar transistor? 

9.3 What is hfo? 

9.4 What do the following acronyms stand for: DTL; TTL; NMOS; CMOS; 
ECL; BiCMOS? 

9.5 A diode is forward biased if the cathode is more negative than the anode. 
True or False? 
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9.6 Place in chronological date order the following: 
74ALS; 74; 74LS; 74F. 

9.7 Group into CMOS and TTL the following devices: 
74ALS; 74HC; 74; 74LS; 74AC; 74ACT; 74F; 74HCT; 74AHC and 4000B. 

9.8 What is the difference between 74ACT and 74AC? 

9.9 For a TTL device which is the larger: IILmax or ]IHmax ? 

9.10 Repeat Question 9.9 for a CMOS device. 

9.11 When would you use the technologies CMOS and TTL? 

9.12 Why is a Schottky clamped bipolar transistor faster than an unclamped 
device? 

9.13 State the MOS transistor//Vequations. 

9.14 Write down the equation for K for a MOS transistor. 

9.15 Explain why an NMOS device is smaller than an electrically identical PMOS 
device. 

9.16 A two-input NOR gate has its PMOS transistors in series. True or False? 

9.17 Write down the ex.pression for dynamic power consumption in a CMOS 
device. 

9.18 Repeat Question 9.17 for propagation delay. 

9.19 In CMOS combinational logic what is the relationship between the NMOS 
transistors and the PMOS transistors? 

9.20 What is a CMOS transmission gate? 

9.21 Place in decreasing speed order the following: 74LS; 74HC; 74ALS; 74AC; 
F100K. 

9.22 Place in increasing power consumption order the devices in Question 9.21. 

9.23 Define PDP. 

9.24 Place in increasing PDP order the following: CMOS; TTL; ECL; BiCMOS. 

9.25 A 74LS device is connected directly to a 74HC device- is this acceptable? 

9.12 PROBLEMS 

9.1 For the circuit shown in Fig. 9.1 determine the value of R~ needed such that 
the transistor is saturated when the input is 5 V. Assume that R b = 100 kf~ and 

hf~ = 100. 
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9.2 A two-input DTL NAND circuit is shown in Fig. 9.2(a). If R 1 =4.9 kt2 then 
determine the approximate power consumption when both inputs are low 
and both inputs held high. Assume a low-0.2 V, a high > 3 V and Vcc- 5 V. 

9.3 How many 74S gates will a 74ALS gate drive? 

9.4 From Table 9.1 determine the high and low noise margins for the following 
gate combinations: (a) 74 driving 74; (b) 74ALS driving 74S; (c) 74HCT 
driving 74AS; (d) F100K driving F100K. Comment on the accuracy of these 
values. 

9.5 For the NMOS resistive load inverter of Fig. 9.9(a) calculate the W I L  ratio 
of the MOS transistor to obtain an output voltage of 0.25 V when the input 
is 5 V. Assume that R L = 2 kf~, V T - 1 V and ~tCox- 32 gA V -2. 

9.6 A CMOS inverter is powered from a 5 V supply. What supply current will 
flow when the input voltage is 2.5V. Assume that VTN--0.8V, Kp= 
200 gA V -2, Vvp =-0.8 V, Kp- 200 gA V -2 and that the gate is unloaded. 

9.7 The CMOS inverter in Problem 9.6 is to drive ten similar gates each having 
an input capacitance of 0.3 pF. Calculate the propagation delay for this 
inverter. Assume that the inherent capacitance is zero. Without reprocessing 
this chip how could you reduce its delay? 

9.8 The circuit shown in Fig. 9.13(a) is a two-input NOR gate. Calculate XpL H 
and Xp. L when both inputs are tied together. Assume that KN-Kp= 
200 gA V -2 for each transistor, the output is driving a 50 pF load and a 5 V 
supply is used. Hint: for transistors in series the effective K halves; for tran- 
sistors in parallel the effective K doubles. 

9.9 Draw the minimum CMOS transistor circuit configuration that will 
implement the function: f =  A . B . (D  + C). 

9.10 A 74HC series logic gate is to drive an LED such that when the output is 
high the LED will be illuminated. What value current limiting resistor would 
be required to switch on the LED. Assume that the forward current of the 
LED is 4 mA and that the voltage across the LED when on is 1.8 V. 

9.11 A CMOS inverting output stage is to be designed such that it will drive a 74 
series TTL load. Calculate the corresponding values of K required for both 
the NMOS and PMOS transistors. Comment on the relative transistor sizes. 
Assume that a CMOS legal logic '1' is no less than 4.2 V and a legal logic '0' 
is no more than 0.4 V. Also assume that VvN= 1V and VTp=-I V. 



10 Semiconductor memories 

10.1 INTRODUCTION 

In general semiconductor memories are used when fast access of data is required. 
Semiconductor memories are historically divided into two types. These are Read 
Only Memory (ROM) and Random Access Memory (RAM). The main members 
of each family are shown in Fig. 10.1. 
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Fig. 10.1 Semiconductor memory types 

Read only memory overview 
ROM devices are used for storage of data that does not require modification, 
hence the name 'read only memory'. This definition however, has become less 
clear over the years and now includes devices whose data are occasionally modi- 
fied. The original true ROM types are mask programmable ROM and fuse 
programmable ROM (or PROM). The mask programmed ROM devices are 
programmed at the factory during manufacture whilst the fuse programmed 
ROM devices are programmed by blowing small fuses and hence are sometimes 
called One Time Programmable ROM or OTPROM. Both mask ROM and 
OTPROM devices are true read only memory devices which are written only 
once. Other ROM devices that are, paradoxically, written more than once are: 
Erasable PROM (called E P R O M ) -  these devices are programmed electrically but 
are fully erased with ultraviolet light; Electrically Erasable ROM (referred to as 
E E P R O M  or E2pROM) - these devices can be both programmed and erased elec- 
trically; FLASH memory -  these devices use the same technology as EPROM but 
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not only are they electrically programmed, they can be erased electrically in a very 

short time. The great advantage of all these ROM devices is that they are non- 

volatile. This means that when the power is removed the stored data is not lost. 

Random access memory overview 

The RAM device family is divided into two types. These are Static RAM (SRAM) 

and Dynamic RAM (DRAM). The SRAM device retains its data as long as the 

supply is maintained. The storage element used is the transmission gate latch 
introduced in Chapter 9 (see Fig. 9.18(a)). On the other hand, DRAM devices 
retain their information as charge on MOS transistor gates. This charge can leak 

away and so must be periodically refreshed by the user. In both cases these devices 
are volatile, i.e. when the power is removed the data is lost. However, newer 

devices are available which muddy the water, such as non-volatile SRAM 

(NOVRAM) which have small batteries located within their packages. If the 
external supply is removed the data is retained by the on-board battery. Another 
relatively new device is the Pseudo Static RAM (PSRAM). This is a DRAM 

device with on-board refresh circuitry that partially relieves the user from 
refreshing the DRAM and hence from the outside it has a similar appearance to 
that of an SRAM device. 

The term 'random access memory' is given to this family for historical reasons 
as opposed to the magnetic storage media devices, such as tape drives, which are 
sequential. In RAM devices any data location can be read and written in approxi- 
mately equal access times hence the name 'random access memory'. 

Semiconductor memory architecture 

Most semiconductor memories are organised in the general form as shown in Fig. 
10.2. The chip consists of an array of cells with each cell holding a single bit of 
data as either a logic '1' or a logic '0'. The memory cells are arranged in rows and 
columns. Each row is individually accessed by a row decoder. As seen in Chapter 
4, a decoder is a device which has n inputs and 2" outputs such that only one 
output line goes high when an n-input data string is applied. When a row goes high 
the data for that row is presented at the bottom of the array on the column lines. 
A second decoder, called a column decoder, is used in conjunction with the row 
decoder thus allowing a single cell or bit to be individually accessed. Hence by 
applying a row and a column address the data of a single bit can be either read (R) 
or written (W) via a single input/output pin under the control of a R/W pin. 

In some cases the data is organised as more than one bit, e.g. an eight-bit data 

word called a byte and the chip therefore has eight data inputs and outputs. In this 
case eight column decoders could be used to access in parallel eight different data 
bits from a single row. This structure is true for both RAMs and ROMs, although 
mask programmable ROMs of course would only have a DATA OUT pin(s) and 
no R/W pin. 

This chapter will focus on the structure of a single memory cell and we shall 

assume that the row lines (sometimes called WORD) and column lines (some- 
times called BIT) are decoded such that only one row and column line is high at 
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Fig. 10.2 Generic semiconductor memory architecture 

any one time to select that particular cell. However, in order to visualise the 
memory layout, other cells may have to be included. In addition to looking at 
each cell we shall discuss the relative timing requirements for the input and output 
signals in order to read and write data. 

10.2 READ ONLY MEMORY-  ROM 

ROMs are read only memory devices, or nowadays more strictly RMM (Read 
Mostly Memory). As stated, an important property of all ROMs is that they are 
non-volatile, i.e. when the power is interrupted the data is retained. Most semi- 
conductor memories are implemented with MOS technology due to its high 
packing density and low power consumption compared to bipolar. 

10.2.1 Mask programmed ROMs 

Mask programmable ROMs are programmed during manufacture and hence 
cannot be changed once programmed. These devices are thus used for program 
storage where the data stored is not required tochange. 

A section of a programmed NMOS ROM array holding eight bits is shown in 
Fig. 10.3. This type of array is called a NOR type memory array. Data is stored by 
the presence or non-presence of an NMOS drain connection to the COLUMN 
lines. When a ROW is high then the NMOS transistors connected to that ROW 
will be turned on and the output on the column line will be '0'. Those locations 
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Fig. 10.3 Mask programmed ROM 

with no NMOS drain connections on the column line are pulled up to '1' by the 
enhancement mode NMOS devices acting as a load. 

Alternative ways of pregramming ROM devices during processing exist. For 
example omitting the source connection at locations where a logic '1' is desired is 
just as effective. Alternatively the threshold voltage of those transistors which are 
not to turn on can be increased by using a selective implantation of P-type 
dopants into the MOS substrate. These processing steps are performed by use of a 
processing tool called a photo or electron beam mask (for further reading on semi- 
conductor processing the reader is referred to an alternative text in this series~). 
Since these processing steps are performed near the end of the process then a large 
inventory of uncommitted ROM wafers with most of the processing completed 
are kept on the shelf. All that is required is for the customer to specify the data to 
be stored and hence the mask step can be implemented. 

It should be noted that this mask step is very expensive and usually mask 
programmed ROMs are used only when large volumes are required - greater than 
10 000 pieces. The delivery time for such devices is approximately 3-6 weeks and 
hence mistakes incur a heavy financial and time penalty. 

The inputs and outputs for a typical mask programmed ROM are as follows: 

�9 Inputs: address lines; chip enable (CE); output enable (OE); 
�9 Outputs: data out; 

�9 Power: Voj and ~ .  

The address lines and data output lines require no explanation. The chip enable 
pin is quite simply used to 'wake up' the chip from its low power, stand-by mode. 

~L. I bbotson. Introduction to Solid State Devices. in this series. 
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When 'chip enable' is low the device operates normally but when it is high the 
device is 'off' and in 'stand by'. Since a low turns the device on then this pin is said 
to be active low and hence it is labelled as CE. This pin can be used as an extra 
address line for cascading two or more ROM devices when larger memory capaci- 
ties are required. This is illustrated in Fig. 10.4 where an extra address line is used 
with an inverter to select either ROM 1 or ROM2 via CE. The output enable pin is 
used for shared data buses, with microprocessors for example, where the data 
output pins can be made tri-state by holding OE high. When OE (and CE) is low 
then data is presented at the output pins. Since it is active low it is therefore 
labelled OE. 

Fig. 10.4 
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The timing diagram for a read operation of a mask programmable ROM is 
shown in Fig. 10.5. Although these diagrams appear daunting at first they are in 
fact essential to the system designer so that the device can be correctly interfaced 
to other devices. This timing diagram shows that we must first set up a. valid 
address and then bring chip enable (CE) and output enable (OE) low in order to 
read data. Three signal types 'a', 'b', and 'c' are labelled in Fig. 10.5. Type 'a' indi- 
cates that the signal can be either ' l '  or '0'; type 'b' is the tri-state or high imped- 
ance condition where the outputs are floating (see Chapter 9); and type 'c' refers 
to an unknown state that occurs whilst the system is changing states. We can see 
that once the address is set up (i.e. valid) and CE and OE are low then valid data 
can be read out of the ROM but only after a time t~c c called the address access 
time. This access time is an important figure of merit for all types of memory 
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Fig. 10.5. ROM read timing diagram 

devices. For a ROM device it is typically lOOns whilst for a hard disk on a 

computer it can be as large as 100 ms! 

In semiconductor memories this access time is limited by the resistance and 

capacitance of the row and column lines which act as an RC delay line. The row 

and column lines are usually made from metal since this has a low resistance but 

unfortunately it will also have wiring capacitance as well as the gate capacitance 

of each of the storage transistors. Hence the larger the array the longer the row 

and column lines and so the larger the value of the RC component. Large memory 

arrays, using the same technology, therefore have longer access times. 

Like all of the semiconductor memory market, single chip mask ROM packing 

densities have grown over the years from 256 Kbit in 1986 to 16 Mbit now. 

Example 10.1 

For the mask programmable ROM layout shown in Fig. 10.3 determine the data 

appearing on the column lines when both rows 1 and 2 are accessed. 

Solution 

To access a row the row decoder output (not shown) for that row must be high. 
When this happens all other row lines will be low. Hence to access row 1 a high 
must be present on the decoder output. All transistors with the drain connected to 
the column line will produce a 0 and those not connected will produce a 1 on the 

column line. Hence: 

Row 1 selected: then data out=C~C2C3C4=OIO1 

Row 2 selected: then data out=CiCzC3C4=O010 

Example 10.2 

Assume that the memory array shown in Fig. 10.3 are two rows of a larger array 

of size 64 by 4 bits. What would the row address be to access these two rows if they 

are the last two rows in the array? 
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Solution 

This chip would have 64 rows with each row four bits in length. To address all 64 
rows we would need a decoder which has six address inputs and 64 outputs each 

connected to a single row. The address 000000 will produce a '1' on the first row 

with a '0' on all the other rows. Hence in order to address the last two rows we will 
need row addresses of 111110 and 111111, respectively. 

10.2.2 PROMs 

A PROM, or programmable read only memory device, is programmed by 
blowing small fusible links which are made of nichrome or polycrystalline silicon. 

Since fuses are blown the result is irreversible and hence the devices are sometimes 
called one-time programmable ROMs (or OTPROMs). The early PROM devices 

were mainly of bipolar form which have a higher effective K than MOSFETs and 
thus can generate the 15-20mA needed to blow a fuse without the use of large 
WIL ratio MOS transistors. 

A schematic for an eight-bit bipolar fuse PROM is shown in Fig. 10.6. before 
the fuses are blown. To blow a fuse the row is selected and the corresponding 
column line held low in order to program a zero. The power supply Vpp is then 
held at typically 12.5V for approximately 501as which is sufficient to generate 
enough power to blow the fuse. In this case the devices are supplied to the 
customer with a 1 in every location and the user is able to program a 0 where 
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Fig. 10.6 A bipolar fuse programmable ROM - OTPROM 
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required by blowing the small fuses. During normal operation the power supply 
voltage is 5 V and so there is no danger of accidentally blowing the fuses. 

The increased packing density of MOS transistors over bipolar has resulted in 
PROMs now being predominantly fabricated using MOS techniques. These MOS 
devices are in some cases quite simply MOS EPROM devices (see next section) 
with no transparent window hence stopping erasure by ultraviolet light. In both 
cases the pin-out for bipolar or MOS OTPROMs are: 

�9 Inputs: address lines; data in; chip enable (CE); output enable (OE); 
�9 Outputs: data out; 
�9 Power: Vdd, Vpp and Vss or Vcc, Vpp and Vee (for bipolar). 

The difference in pin-outs between mask and one-time programmable ROMs is 
the addition of the higher power supply voltage pin (Vpp) and that the data pins 
are bidirectional, i.e. having both input and output capability for programming 
purposes. The read timing diagram is the same as for mask programmable ROMs 
with similar address access times. However, since these devices need to be 
programmed by the user then a write program timing sequence is supplied in the 
data sheet. A simplified write or fuse program timing diagram is shown in Fig. 
10.7 which actually consists of two stages: data programming and then data verifi- 
cation. As can be seen the address and data are set up first and Vpp is pulled up to 
12.5 V and Vcc to 6.25 V. The actual programming operation occurs when CE is 
held low for typically 50-1001as (tpw). To verify that the correct data was 
programmed into the PROM the data is read back out again by pulling OE low 
for a short time (approximately 200 ns). This process is repeated for every address 
value and hence the total time taken to program a PROM depends upon the total 
number of addresses and can take as long as 10 minutes in some cases. This timing 
diagram is fairly complex but fortunately PROM programmers are readily avail- 
able that will operate automatically from PCs. 

Single-chip OTPROM packing densities are currently at 4 Mbit. 

Fig. 10.7 Program timing diagram for fuse programmable ROMs 
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Example 10.3 

A PROM of size 4Mbit, organised as 0.5 Mbit by 8 bit, is to be programmed using 
the CE pulse technique described above. If the CE minimum low pulse width is 
100 ~ts then what is the maximum programming time to program all bits? Assume 
that all other timing parameters can be neglected. 

Solution 

A total of 0.5 Mbytes require to be programmed. Since each byte is programmed 
in 100 laS then the total approximate programming time, ignoring tas , tdh and toe s, 
etc., is 

rtota I -- 0 . 5  X 106 X 1 O0 x 10 -6 -" 5 0  s e c o n d s  

10.2.3 E P R O M  

The problem with the OTPROM devices is that for program development they 
are inefficient since only one address change will require a completely new device. 
Hence OTPROMs are only used when the program is settled and contains no 
known bugs. However, during system development several iterations are usually 
required, hence devices which can be reprogrammed are more useful. The erasable 
programmable ROM, more commonly known as an EPROM, is not only electri- 
cally programmed but can be fully erased by exposure to ultraviolet light. Hence 
the device can be reUsed over and over again until the design is completed. The 
code on the EPROM can then be transferred to either an OTPROM or a mask 
programmable ROM. 

The cross-section of a single EPROM cell is shown in Fig. 10.8. It consists of 
two gates: 

(i) FG1 - Floating gate not connected in the array and insulated from the 
channel by an oxide layer of standard thickness of 0.05 pro. 

(ii) G 2 -  Polysilicon gate used as the normal memory transistor on the row or 
word line. 

Fig. 10.8 Cross-section of a single EPROM cell 

This device fits into the same NOR array as in Fig. 10.3 with inverters on the 
column line outputs and some additional circuitry. The floating gate (FG1) is 
used to store charge which thus modifies the threshold voltage (V~) of G2. 
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Assume initially that FG 1 has zero charge and thus when G2 (or ROW) is held 
high then the transistor conducts as normal and the column line is 1 (due to the 
column inverters). Hence unprogrammed EPROM devices have all bits at logic 1. 

To write a '0' into the EPROM cell, the row and column lines are both held at a 
sufficiently high voltage (typically 12.5 V) to cause the drain to enter a condition 
called avalanche breakdown and a large current flows. The high field from D to S 
accelerates these electrons to high velocities and some of these electrons (called 
hot electrons) have sufficient energy to jump to FG1 where they are trapped. (It 
should be noted that these hot electrons pass over a potential barrier which is 
larger when looking back from FG to substrate. These hot electrons do not tunnel 
through the oxide. For a more detailed explanation of the MOS device the reader 
is referred to Hart2). Now since FG1 is totally insulated then on removing this 
voltage a negative charge is left on FG 1 and under normal conditions it will not 
leak away for typically 5-10 years. 

This negative charge on FG1 will attract holes to the silicon/silicon dioxide 
interface and so raises the threshold voltage seen by G2. Thus the row voltage at 
G2 will not turn this device on and so the drain will be pulled up to logic 1 and the 
column output will be programmed as a logic 0. This avalanche hot electron MOS 
technique is known as the floating gate avalanche MOS or FAMOS process. 

The only way to remove the charge from FG 1 and hence erase the device is to 
make the silicon dioxide conductive by using light of energy greater than its 
energy gap. This is usually light in the ultraviolet region and the whole process 
takes approximately 20 minutes to erase. Since these devices are erased optically 
by the user they must have a transparent window in the package which adds 
slightly to the cost of the EPROM compared to OTPROMs. It should be noted 
that daylight also contains the correct wavelength for erasing EPROMs. 
Consequently once an EPROM has been programmed then the quartz window 
must be covered with an opaque label. (The MOS OTPROMs discussed in the 
previous section are nowadays actually made by using EPROM technology but 
with no transparent window present for erasing. Hence the device can only be 
programmed once.) 

The input and output pins for an EPROM device are exactly the same as for the 
OTPROM including power supplies (i.e. Vdd, Vpp and Vss ). Consequently the read 
and write timing diagrams are also identical and it is not surprising that EPROM 
devices are programmed by the same programmer as that which programmed an 
OTPROM. However, since an EPROM device is reprogrammable it is necessary 
to erase the device completely before every write operation. This is because the 
write operation can only program a logic '0' and will not reprogram a logic '0' to a 
logic '1'. Finally the number of write/erase cycles is an important f ac to r -  this is 
usually called endurance in memory terminology. The use of hot electrons gradu- 
ally damages the gate oxide and hence the number of write/erase cycles is typically 
only 100 for an EPROM device. 

2B. Hart, Introduction to Analogue Electronics, in this series. 
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In 1986 EPROM packing densities were typically 256 Kbit. Currently this 
figure stands at 4 Mbit. 

Example 10.4 

How much current is required to charge the floating gate of a 1 grn EPROM cell 
to 5 V from 0 V over a write time of 50 las? Assume that the capacitance of the 
floating gate is 8 x 10 -4 pF/grn 2. 

Solution 

The total capacitance of the floating gate is 

Cfg- 8 x 10-4x 1 x 1-0.8 fF 

Hence the charge current, derived from I= Cd Vldt, is 

I~ha~g~--0.8 X 10-tSX 5 +(50X 10-6)-- 80 pA 

i.e. only a small fraction of the avalanche current (which is of the order of 1 mA) is 
required to charge the floating gate. 

10.2.4 EZPROM 

Although the EPROM is an extremely mature technology having been available 
for more than 15 years its main disadvantage, apart from requiring an ultraviolet 
light source to erase, is that this erase is not selective and all cells are erased at 
once. The electrically erasable PROM (EEPROM or E2PROM), on the other 
hand, is not only programmed electrically but the cells can be erased electrically. 
This allows the devices to be programmed whilst still in the system. Hence these 
devices can be used not only for programs and program upgrades but also for 
storing data that occasionally require updating whilst in use (for example tele- 
phone numbers on mobile telephones). 

One variant of the E2pROM device employs an MNOS (Metal Nitride Oxide 
Semiconductor) transistor as the memory element. This MOS transistor, shown in 
Fig. 10.9, consists of an insulator which is composed of two layers - a silicon 
nitride layer of thickness 0.05 lain and a very thin silicon dioxide layer of thickness 

Fig. 10.9 Cross-section of a single E2PROM cell 
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0.005 grn. The principle of operation relies on the fact that the interface between 
the oxide and nitride is capable of trapping electrons. Assuming that this interface 
has zero charge initially then as in the EPROM a '1' on the r o w  line will result in 
the column line reading '1' (remember that an inverter is present on the column 
line). 

To write a '0', 12.5V is applied to the gate with respect to the source and 

substrate for approximately 10 ms. The high field generated across the very thin 
oxide layer allows electrons to tunnel through which are caught by the electron 
traps at the oxide/nitride interface. The presence of this negative charge will 
increase the threshold voltage seen by the r o w  line. When r o w  goes high next time 
then the MNOS transistor will not conduct and the column output will indicate a 
logic '0'. Just as in the EPROM the charge can stay at this interface for many 
years. 

The advantage of this tunnelling action is that it is reversible. Hence to erase, all 
that is required is to apply-12.5 V on the gate which repels electrons from the 
oxide/nitride interface. No distinct erase operation is needed; only a write cycle is 
required which loads in either a logic '1' or a logic '0'. 

This type of device has high reliability. For example, in the event of a pinhole or 
a defect in the oxide then only the charge at the oxide/nitride interface above the 
pinhole or defect will leak away. The rest of the charge at the interface is trapped 
in the non-conductive layers and so the cell retains its state. The device thus has a 
very high endurance in that at least 104 write/erase operations can be carried out 
before the device shows signs of degradation. 

An alternative to the MNOS E2pROM cell is to use a variation of the EPROM 
floating gate cell. In this case the floating gate is extended over the drain and here 
the oxide is thinned down to 0.01 gm from 0.05 pan. The cross-section for this 
structure is shown in Fig. 10.10. The advantage of this structure is that the thin 
oxide region is limited to a small area and hence reliability problems caused by 
defects and pinholes in the oxide are greatly reduced due to the small area occu- 
pied by this thin oxide. The device is programmed by holding the gate at a high 
positive voltage with respect to the drain. Electrons tunnel through to the floating 
gate and thus become trapped. To erase the cell the process is reversible and thus a 
high positive voltage is applied to the drain with respect to the gate and electrons 
are withdrawn from the floating gate. Note that since in a memory array all the 

Fig. 10.10 Cross-section of a single floating gate E2PROM cell 
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drains in one column are connected together, then the application of a large posi- 
tive voltage to the drain during erase will also be passed to other cells on that 
column. Hence with the floating gate E2pROM device each memory element must 
have its own select transistor to individually access each transistor which reduces 
the packing density. 

Whichever cell is used the pin-out for an E2PROM has typically the following 
pins: 

�9 Inputs: address; data in; chip enable (CE); output enable (OE); write enable 
( WE); 

�9 Outputs: data out; RDY/BUS Y; 

�9 Power: Vdd; V~s. 

The first thing to note about these pins is that no high voltage supply (Vpp) is 
necessary. This is generated automatically on chip for both a logic '0' and logic 
'1'. Since this device can be both written and read then a write enable pin (WE) is 
needed to indicate to the array that data is to be written. Hence the read timing 
diagram for the E2pROM is the same as for the mask programmed ROM but with 
WEheld high. Due to the E2PROM cell having a slightly larger capacitance on the 
row lines its access time is slightly larger than an EPROM at typically 150 ns. 

A simplified write timing diagram for an EZPROM is shown in Figure. 10.11. 
Since the data is usually byte wide then eight bits at a time are written in parallel- 
this being true for most memories. A pin to indicate that the device is busy writing 
is provided, called RDY/B US Y. When WE goes from low to high B US Y goes low 
indicating that the array is busy writing. Only when B U S Y  goes high impedance 
has the data been correctly written. The complete cycle takes approximately 
10ms. Another way of indicating successful data writing is by using the data 
polling method. In this case the data is latched into the chip and an inverted data 
value appears at the output. When the data has been correctly written this data 
changes to non-inverted. 

Fig. 10.11 Write timing diagram for an E2PROM device 
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The current state of the art of E2pROM using MNOS is approximately 1 Mbit 
compared to 64 Kbit in 1986. However, because the floating gate version has to 
have an extra transistor per cell these versions are lower capacity being typically 
256 Kbit. 

Example 10.5 

How many pins would an E2pROM chip have if it has a capacity of 256 Kbit 
organised as 32 Kbits by 8 bit? 

So/m/on 

This chip has 32 Kbytes of storage space. To address this storage space we need 15 
address lines. Hence the total pin-out would be: 15 Address lines;eight data bits; 
CE, OE, WE, BUSY, Vdd and V~s, i.e. 29 pins in total. 

10.2.5 F L A S H  E 2 P R O M  

Although the MNOS E2pROM device has a relatively high capacity the fabrica- 
tion of the nitride layer and the very thin oxide layer (0.005 lma) is more expensive 
to manufacture than the floating gate EPROM transistor. The alternative 
EapROM utilising a thinned down oxide transistor over the drain also requires 
extra processing steps, has an extra select transistor and it too is expensive per bit. 
To take advantage of the higher packing density of EPROM arrays and its lower 
manufacturing costs recent processing improvements have allowed a complete 
thinning down of the oxide under the whole length of the floating gate. The 
process of charge storage could now be reversed by simply reversing the applied 
potential. Hence the need for ultraviolet light to erase the device is no longer 
necessary. This type of memory element is called a Flash EapROM cell and is 
shown in Fig. 10.12. 

Fig. 10.12 Cross-section for a single flash E2PROM cell 

A single flash cell is basically the same as the EPROM cell (i.e. having a floating 
gate) but the oxide under the floating gate is reduced in thickness from 0.05 pan to 
0.01 ~n. As a reminder, to program the floating gate EPROM a large positive 
voltage is applied to the drain and gate with respect to the source and the device 
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enters breakdown. This creates hot electrons of which some pass to the floating 
gate therefore programming the cell. Now, to program the flash device 5 V is 
applied to the drain and a large positive voltage (12 V) is applied to the gate with 

respect to the source. Since for the flash device the oxide under the floating gate is 
much thinner then electrons are able to tunnel through this gate oxide using a 

mechanism called Fowler-Nordheim tunnelling. Unlike the EPROM this process 
is reversible and to erase the stored charge all that is required is to apply +12 V to 
the source with the gate grounded (drain floating) thus returning the electrons on 
FG 1 to the source. Since the drain is never held at a high positive voltage then the 
use of a select transistor to isolate other cells as in the alternative E2PROM is 
unnecessary. The problem with this structure is that a much larger area of thin 

oxide exists and hence the device is much more susceptible to damage. In addition 
if a cell is erased that is already erased then the MOS device will over time acquire 
a negative threshold voltage and will not program properly. Hence in order to 

ensure that this problem does not occur all cells must be preprogrammed before 
erasure can start. In this way all cells will be erased by the same amount and the 
problem of over erasure will not occur. Since all cells are erased at the same time 
the device is called flash. Note that before erasure a preprogram time must be 
allowed for of approximately the product of the number of bytes and the data 
write time. For 1 Mbyte arrays the total pre-write and erase time for the complete 
chip is typically 2-3 seconds. It should also be noted that before programming can 
commence the memory array must be erased (i.e. all cells at logic '1') since the 
action of programming only writes a logic '0'. The diagrams in Fig. 10.13(a), (b) 
and (c) illustrate these write, erase and read modes on a small 2 x 2 array. 

WRITE to T4 ERASE all CELLS READ T3 and T4 

Row I (word 1) 

source T ~ . ~  

Row 2(word2) 

5V Float Float 

T ~ _ ~  OV 

OV T 3 ~  T 4 ~  ! 2 V 

- I I - I 

T3 1 !"-" 

(a) (b) (c) 

I 
T~~_~  ~ OV 

T 4 ~  ' 0V 

5V 

Fig. 10.13 Write, erase and read programming for a flash E2PROM array 

The input and output pins for a flash E2pROM are as follows: 

�9 Inputs: address; data in; chip enable (CE); output enable (OE); write enable 

(WE) 
�9 Outputs: RDY/BUSY; data out; 

�9 Power: Vdd; Vs~; Vpp. 

However, on some of the more recent flash devices the Vpp pin is removed as in 
the EZPROM and is generated on chip. 

The timing diagrams for a flash read are the same as in EZPROM but the timing 

diagrams for write and erase are much more complicated than EZPROM and 
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require 2-3 write cycles to load in not only data but also commands indicating 
whether the operation is to be a write, an erase, a data verify, etc. The timing 
diagrams for these devices will not be included here so as not to detract your 
interest from this exciting new product! For these details you are advised to 
consult the manufacturers' data sheets although it is expected that as with the 

trend of all memory products the complexity of writing and erasing will ease as 
more and more circuitry is included within the chip. The flash memory device is a 

relatively new entry into the memory market and is starting to provide strong 
competition to hard disk drives especially in mobile computers where the lack of 

moving parts is a great boost for reliability. 

Example 10.6 

A 1 Mbit flash memory, organised as 128 K by 8 bits, has a byte write time of 

10 ~ts, a flash erase time of 10ms and a verify time of 6 laS. Calculate the total 

length of time for a complete memory write and then a complete erase. 

Solution 

To write a byte of data takes 10 gs but each byte should be verified and so the total 
write time per byte is 16N. Hence the total write time for the array is: 
128 x 103 x 16 x 10-6= 2.048 seconds. 

To completely erase we must first prewrite all bytes with a logic 0, then erase 
and finally perform an erase verify. The total erase time is thus: 

T~,~e = 2.048 + 10ms + 128 x 103X 6 ~ts 
=2.048+0.01 +0.768 
=2.826 seconds 

10.3 R A N D O M  A C C E S S  M E M O R Y  - R A M  

All the programmable ROM devices we have looked at have read times of the 
order of 100 ns but byte write times from 10 ~ to 10 ms. This is acceptable when 
holding programs or storing data that change fairly infrequently but in cases 
where fast write times are needed such as in computers during mathematical 
calculations then these devices are inappropriate. For such applications RAM 
devices are more suitable. RAM or random access memories (more appropriately 
called read write memories) can be both written to or read from in a very fast time 
of typically 100 ns. They are classed as either static or dynamic. 

Static RAMs retain their data indefinitely unless the power to the circuit is 
interrupted. Dynamic RAMs require that the data stored in each cell be refreshed 
periodically to retain the stored information. Again the data is lost if the power is 

interrupted. 
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10.3.1 Static RAMs 

The basic schematic structure of a single static RAM cell is shown in Fig. 10.14. 
This cell consists of two inverters connected back to back in what is called a flip- 
flop arrangement. Two switches, S 1 and $2, are controlled by the row line so that 
data may be read from or written to this cell. The output of one inverter reinforces 
the output of the other and hence the state of the circuit is locked. By closing 
switches S 1 and $2 the cell can be accessed and data can be read. Alternatively the 
cell can again be accessed and by forcing column (and column) to the required 
voltage, data can be written accordingly. 
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Fig. 10.14 Schematic for a single SRAM cell 

SRAMs can be implemented with MOS or bipolar transistors. However, as 
mentioned in Chapter 9 the bipolar device is fast but consumes more space than 
the MOS cell and hence is only used in specialist applications. As shown in 
Chapter 9 BiCMOS is becoming popular when driving large capacitances which is 
especially important on the row lines for memory devices. Nevertheless, the MOS 
route is the most economical and hence is still the most popular technology for 
SRAMs. 

The MOS transistor circuit diagram for an SRAM cell is shown in Fig. 10.15. 
Transistors T5 and T6 act as access transistors to the cell and implement the 
switches S1 and $2 from Fig. 10.14. Transistor pairs T l/T3 and T2/T4 are 
NMOS inverters (as described in Chapter 9) and are arranged in cross-coupled 
form as in Fig. 10.14. Access to the cell is achieved by a high on the row line 
which allows the state of the cell to be read out from the column lines. If T3 is off 
and T4 on then column will be high and column low and the cell is said to be in 
the logic '1' state. To write a '0' in the cell the row line is held high and column is 
forced low and column high. Thus T4 turns off and T3 turns on. When row is 
held low again the access transistors T5 and T6 turn off, but due to the cross- 
coupled nature of the two inverters the data is retained in the cell. However, if 
the power is removed the data will be lost and hence these devices are called 



ROW 

(word line) 

Random access memory- RAM 257 

Vdd 
. .  

T2 

I ' X 5 

4 

Vss 

L 1 
T6 

COLUMN COLUMN 

(bit line) (bit line) 

Fig. 10.15 MOS implementation of a single SRAM cell 

volatile. It is possible to obtain pin compatible, directly replaceable, non-volatile 
SRAM (called NOVSRAM) which contains small batteries integrated into the 
package which cut-in when the main power is lost. However, although these 
batteries last for two years it is usually not possible to replace them since they 
are totally encapsulated. 

It should be noted that using NMOS transistors as the load can result in unnec- 
essary power consumption since a current will always flow between V~d and V~ 
when one of the driver transistors (T3 or T4) is on. Having small W/L ratios for 
the loads will keep this consumption low although two other techniques are used, 
namely" CMOS logic used for the inverters, or the load is replaced with a high- 
value polysilicon resistor. A cross-section of one-half of the flip-flop arrangement 
using this latter technique is shown in Fig. 10.16. This cross-section utilises two 
layers of polysilicon, one for the gate and the other for the load resistor. The 
resistor is positioned on top of the transistor thus saving space. 

Fig. 10.16 Cross-section for one-half of an MOS SRAM cell 
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Typical input and output pins for an SRAM are: 

�9 Input" address; data in; CE; OE; WE; 
�9 Output: data out; 
�9 Power: V~d; V~. 

The CE pin is often referred to as the Chip Select pin or CS. The SRAM read 
timing diagram is the same as in Fig. 10.5 for the mask ROM but with WE held 
high. The write timing diagram is the same as in Fig. 10.11 for an E2pROM, but 
without the BUSY pin. Data is written into the SRAM as soon as WE goes high 
from its low state. 

Low-power stand-by modes are possible with most SRAM devices, reducing 
the power consumption when not in use by a factor of 1000. This is achieved quite 
simply by holding CE high. In some devices the power can be reduced further by 
lowering Vdd to 2 V without corrupting the stored data. Remember though that 
removing the power altogether will result in a complete loss of data. 

Example 10.7 

A single cell of an SRAM uses 20 Mr2 load resistors. If the chip operates at 5 V 
and contains 64 Kbits then what is its power consumption? Assume that the 
voltage across an MOS transistor when on is 0 V. 

So/ut/on 

When one of the inverter outputs is low then current flows through the load 
resistor from Vdo to V~. The power consumed for one cell is thus 

V~J20 x 10 6 = 1.25 lxW 

Hence for a 64Kbit SRAM the total power consumed is 80 mW. 
Notice that if the power supply is reduced to 2 V then the total power consumed 

reduces to 12.8 mW. If CMOS is used this static power consumption is reduced 
but with the added disadvantage of a lower packing density due to more transis- 
tors per bit. 

10.3.2 Dynamic RAMs 

Each SRAM cell either uses four transistors and two resistors or six transistors for 
CMOS logic. Hence each cell consumes a relatively large area of silicon compared 
to other semiconductor memory options. Using 1 jma technology a single SRAM 
cell in CMOS covers approximately 10 lma x 10 lma and thus a large multibit chip 
quickly becomes too large to manufacture. 

The dynamic RAM or DRAM uses fewer transistors per cell than the SRAM. 
Hence more bits can be achieved per mm 2 albeit at the expense of more complex 
peripheral circuitry to refresh the data. All DRAMs use MOS technology and 
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data is stored as charge on a capacitor. The highest density DRAM is obtained 
with the one transistor cell. There are many variations but the most common form 
is shown in Fig. 10.17. It consists of a single access transistor and a storage capac- 
itor, C~. 
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Fig. 10.17 A one-transistor dynamic RAM cell 
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To read the cell, row is held high and hence T 1 is turned ON. The voltage stored 
on C~ is transferred to the column line and sensed by a sense amplifier (not 
shown). 

To write to the cell the row is again held high turning on T1. I fa  logic '1' is to be 
stored then the column line is held high and C s charges up to a logic '1'. When row 

is held low T 1 is then turned off thus holding the charge on Cs. The charge stored 
on C~ can, however, leak away through T1 due to its small leakage current when 
the transistor is off. Consequently the data must be periodically refreshed which 
thus requires extra circuitry on the chip. In fact the operation of reading the cell 
also results in the data being lost. This is because the storage capacitor is designed 
to be deliberately small for compactness. However, the column line feeds many 
cells and hence the capacitance of this line is very high (shown dotted as Cc). Each 
time the transistor T1 is turned on the charge on C~ is distributed between these 
two capacitors and hence its voltage will drop (see Example 10.9 below). 
Consequently each time the cell is read it must be refreshed. This is usually 
performed automatically after every read with on-chip refresh circuitry. However, 
cells that lose their charge through leakage currents via the off transistor must be 
periodically refreshed by the user. 

Typical input and output pins for a DRAM are: 

�9 Inputs: address; data in; RAS; CAS; OE; WE; 

~ Outputs: data out; 
�9 Power: Vjj; V~. 

As can be seen two new pins, CAS and R A S ,  are present with the DRAM and 
are called 'column address select' and 'row address select', respectively. Since 
DRAM devices have a large capacity then the number of address lines would be 
large. In order to reduce the number of address pins these are multiplexed into 
row and column addresses via the two select lines RAS and CAS. Hence a 1 M by 
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16 bit DRAM would require 20 address lines but with address multiplexing this 
can be reduced to 10 address lines plus CAS and RAS. This results in a smaller 
and hence lower cost chip. The problem with this for the user is that the timing 
diagrams are more complicated. For example a read timing diagram is shown in 
Fig. 10.18. Although not indicated, WE is held high and OE is held low 
throughout. Notice that the row address is latched into the chip on the falling 
edge of RAS and then the column address is latched on the falling edge of CAS. 
After a short time, t~,~, called 'access time from CAS' the data becomes valid on 
Data out. It remains valid until CAS goes high and tort seconds later Data out goes 
high impedance. Typical values of tcac and tof r are 20 ns. 

Fig. 10.18 DRAM read timing diagram 

To write data into a DRAM two methods are available which provide the user 
with design flexibility. These are early write and late write. Both these modes are 
illustrated in Fig. 10.19. In both cases RAS,  CAS and the address lines are set up 

Fig. 10.19 Two techniques for writing data into a DRAM 
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as before, however, in early write the WE line is taken low before CAS. When 
CAS falls the data is written into the array. For late write the WE is taken low 
after CAS at which point data is written into the array. 

As stated the charge on the storage capacitor can leak away within a few 
milliseconds, hence the whole chip must be periodically refreshed. Several 
methods exist for the user t~o refresh the data. For example, every time a read 
operation is performed on a~a address then the data at that address is refreshed. 
Another method is called 'Ix'AS only refresh' and the timing diagram for this 
mode is shown in Fig. 10.20. Yt consists of holding CAS high and each time RAS 
goes low the data on the whole row that is being addressed will be refreshed. For 
other refresh modes the reader is referred to the manufacturer's data book. 

Fig. 10.20 DRAM RAS-only refresh 

As can be seen the timing diagrams for DRAMs are more complex than 
SRAMs and hence some semiconductor manufacturers have added extra circuitry 
on board to relieve the system designer from complicated refreshing and address 
multiplexing. These devices are called 'Pseudo Static RAMs or PSRAM and are 
pin compatible with SRAMs (plus a B'USY pin) with only minor timing limita- 
tions required to allow for the chip to refresh itself. 

Typical DRAM sizes are currently at ,16 Mbit. The yield of such highly packed, 
very large, integrated circuits, needless to say, is low. However, for the cost to be 
kept competitive the yield must be kept high. The yield of DRAMS is dramati- 
cally increased by incorporating redundant (or spare) rows and columns of bits 
which can be exchanged for faulty ones. 

Example 10.8 

How often must a DRAM cell be refreshed .if C~-0.01 pF, the leakage current of 
the off transistor is 10 pA and the voltage across the capacitor is 2 V for a logic' 1' 
and 0 V for a logic '0'. 

Solution 

When C~ is fully charged then 2 V appears across it. This voltage gradually falls as 
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charge leaks away through the off transistor and must be refreshed before it 
changes to a logic '0'. The switching point is half-way between the two logic levels 
i.e. at 1 V. Hence using the equation for the discharge of  a capacitor we can work 
out the time it will take for the voltage to fall from 2 V to 1 V, i.e. I= 6'8 V/St. 

Rearranging to find 8t: 

8t=CSV/I=O.O1 x 10-12 X 1/10pA= 1 ms 

i.e. the data must be refreshed every 1 ms. 

Example 10.9 

Consider the DRAM cell shown in Fig. 10.17. The capacitance of the column line 
(C~) is twenty times that of the storage capacitor (C)  and the voltage across each 
capacitor is V c and V~ respectively. If a read signal is applied then what will be the 
change in voltage on the column line? 

Solution 

Before a read occurs the charges on the two capacitances are Qc = C c v~ and 
Q~= C~ vs. When a read occurs the charge is d:wided amongst these two capacitors 
which are now connected in parallel. Hence the new charge on the column line is 
the sum of these two charges: 

Qr, ew~=CcV~+C~V~ 

These two capacitors can be treated in parallel and hence 

Qnewc=(Cc+C~)V,r 

Equating these two expressions and substituting 20Cs = Cc we obtain 

20C~ V c + C s V~= (20C~ + C) V.~wc 

Thus V.~w~ = (20 V c + V~)/21. 
The change in voltage on the column line is 8V c and hence V.~w~= V~ +8 V~. 

Substituting for V.~w~ into the above equation: 

Vc+SVr162 V~)/21 

Rearranging: 

Vc = ( 2 0  + v3/21 - = 0 / 2 1  

Hence if F~ is 2 V and V c is 1 V then the column line voltage will only change by 
47.6 mV. This is for a logic '1' stored and a similar value change (but negative) for 
a logic '0' stored. Consequently the sense amplifiers on the column line must be 
able to detect this small change in voltage. Needless to say one of the key compo- 
nents of a DRAM is a sensitive, noise-free, high-quality, sense amplifier. 
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10.4 MEMORY MODULES 

In order to increase the memory capacity and to take advantage of the highly 
reliable semiconductor memories several semiconductor memory chips are incor- 
porated onto a small PCB or substrate called 'memory modules'. Two main types 
of memory modules are in use today: SIMM and PCMCIA. The SIMM or single 
in-line memory module devices are those used in most PC based computers and 
consist of several DRAM chips on one board having either 30 or 72 pins arranged 
in a single line. The PCMCIA memory modules are actually memory cards which 
look like a typical bankers card. PCMCIA cards (standing for personal computer 
memory card international association) have 68 pins arranged in two socketed rows 
of 34 pins each. Most laptops and some PCs nowadays contain a PCMCIA slot. 
The card consists of an array of memory chips which could either be: flash, battery 
backed SRAM, E2pROM or ROM. Three types exist: Type 1 (3.3 mmin  thickness); 
Type 2 (5 mm in thickness); and Type 3 (10.5 mm in thickness). However, only 
Types 1 and 2 are used for memory whilst Types 2 and 3 are used for hard disks and 
fax cards. PCMCIA cards that use SRAM have a small lithium disk battery such 
that data is retained when the card is removed from the computer. 

10.5 SELECTING THE APPROPRIATE MEMORY 

To conclude this chapter let us try and briefly summarise these memory options as 
an aid to providing a selection guide. The first requirement is usually capac i ty -  
what is the maximum number of bits that can be obtained with a single chip? As 
you can imagine this figure is continually increasing as semiconductor processing 
advances. The second consideration is the write time (the read times for all types 
of semiconductor memory are all very similar of the order of 10ns-100ns). Fig. 
10.21(a) and (b) shows histograms of the current capacity and the write time of 
each of the memory options discussed in this chapter. As expected these capacities 
have steadily increased over the years due to improvements in semiconductor 
processing. It can be seen that the highest capacity ROM is the mask program- 
mable device but this is programmed once at the factory for a high cost. The 
DRAM is the largest read/write chip available with a very high speed write time. 
However, it is volatile and requires careful timing considerations. The SRAM has 
a medium capacity, is easy to interface to other devices, but is expensive per bit 
and is also volatile. The flash is a new market which is catching up with DRAMs 
and has the advantage of being both non-volatile and low cost but currently also 
requires careful timing. It is expected that these devices will become easier to use 
as this technology advances. EPROMs are very low cost and are ideal for 
program development but are totally inappropriate where in-circuit modifications 
are required. This area is covered by E2pROM devices but write times of 
10 ms/byte make its use limited. The 10 lxs byte write times for flash make this the 
product to watch for the future. 



264 Semiconductor memories 

Densi ty  

(Mbit) 

,6t 
1 2 -  

8 - 

4 -  

ROM OTPROM EPROM E2pROM E2pROM FLASH SRAM 
(mask) (MNOS) (FG) 

(a) 

DRAM 

Fig. 10.21 

10,000 

Write time 1000 

per byte 100 
(~)  

10 

1 

0.1 

(b) 

Capacity and write time comparisons for semiconductor memories 

10.6 SELF-ASSESSMENT 

10.1 Define the terms ROM, RAM, SRAM, DRAM, EPROM, RWM, PSRAM, 
NOVRAM, OTPROM, EZPROM. 

10.2 The power is removed from the devices in Question 10.1. Which devices will 
retain their data? 

10.3 What does non-volatile mean? 

10.4 Define access time. 

10.5 Which of the memory types uses the most transistors per bit and which uses 
the least? 

10.6 Which has the longest write time: a hard disk or an SRAM? 

10.7 Place in increasing write time order the memory options described in this 
chapter. 

10.8 Which type of memory device is used as the main semiconductor memory in 
PC computers? 
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10.9 What is a SIMM? 

10.10 What is a PCMCIA card? 

10.11 What voltage levels should the pins CE, OE, WE be in order to read data 
from a DRAM? 

10.12 Why do you have to refresh a DRAM memory device? 

10.13 What power supply voltages are needed for EPROM, flash, SRAM, 
E2PROM? 

10.14 What happens when CE is held high for an SRAM device? 

10.15 Which of these devices must be erased before they can be written: EPROM; 
E2PROM; SRAM; flash? 

10.7 PROBLEMS 

10.1 A semiconductor memory chip is specified as 2 K by 8" 
(a) How many words (exactly) can be stored on this chip? 
(b) What is the word size? 
(c) How many total bits can this chip store? 

10.2 (a) How many pins would a 4 M by 8 bit mask ROM have? 
(b) Repeat (a) for a multiplexed address DRAM. 

10.3 Illustrate with a sketch how to combine 256 K by 4 bit SRAM chips (having 
a single CE pin and bidirectional I/O pins) to produce a: 
(a) 256 K by 8 memory; 
(b) 512 K by 4 memory (use only 19 address lines); 
(c) 1024 K by 4 memory (use only 20 address lines). 

10.4 A DRAM has a column line capacitance of 3.8 pF. What value of C~ is 
required such that at least 250 mV change on the column line occurs when 
reading a logic zero (0 V) or a logic one (5 V)? Assume that the column line is 
precharged to 2.5 V before reading. 

10.5 A flash memory device organised as 256 K by 8 bits has a total write time of 
4.2 seconds and a total erase time of 5.8 seconds. If the flash erase time is 
9.5 ms then what are the values of byte write time and byte verify time? 

10.6 A 5V NMOS SRAM cell is to have a stand-by power consumption of 
0.1 mW. What value of load resistor is required? Assume the voltage across 
the 'on' MOS transistor is 0 V. 

10.7 A 5V, 512 K by 8 bit CMOS SRAM is to be used in a three hour battery 
powered application. If the leakage current of an off transistor is 0.5 nA then 
what is the total static power dissipation and the total ampere hours 
required. Comment on the validity of your answer. 



11 Selecting a design route 

11.1 INTRODUCTION 

The preceding chapters have described the various techniques used to design 

combinational and sequential circuits. We have also discussed the advantages and 

disadvantages of each of the technology options, i.e. bipolar, CMOS, ECL, etc. 
This final chapter describes the various design routes which can be used to imple- 
ment a design. The decision regarding which of these design routes to use depends 
upon the following issues: 

�9 When should the first prototype be ready? 
�9 How many units are needed? 
�9 What are the power requirements? 
�9 What is the budget for the product? 
�9 What are the physical size limitations? 
�9 How complex is the design (gate count, if known)? 
�9 What is the maximum frequency for the design? 
�9 What loads will the system be driving? 
�9 What other components are needed to complete your design? 
�9 What experience have you or your group had to date in the design of digital 

systems? 

These are the questions that must be asked before starting any design. The aim 
of this chapter is to provide background to the various design routes that are 
available. Armed with this knowledge, the answers (where possible) to the above 
questions should allow the reader to decide which route to select or recommend. 

11.1.1 Brief overview ofdesign routes 

The various design options are illustrated in Fig. 11.1. As can be seen the choice is 
either to use standard products or to enter the world of application specific inte- 
grated circuits (ASICs). The 'standard product' route is to choose one, or a 
mixture, of the logic families discussed in Chapter 9 such as 74HCT, 74LS, 4000 
series, etc. On the other hand, an ASIC is simply an IC customised by the designer 
for a specific application. Various ASIC options exist which can be subdivided 
into either field programmable or mask programmable devices. Field program- 
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Fig. 11.1 Design options 

mable devices (i.e. ROM, PAL, PLA, GAL, EPLD and FPGA) are all 
programmed in the laboratory. However, mask programmable devices must be 
sent to a manufacturer for at least one mask layer to be implemented. These mask 
programmable devices may be exclusively digital or analogue, or alternatively 
what is known as a mixed ASIC which will contain both. 

The mask programmable devices can be further subdivided into full custom, 
standard cell and gate array. With full custom design the designer has the option 
of designing the whole chip, down to the transistor level, exactly as required. 
Standard cell design again presents the designer with a clean slice of silicon but 
provides standard cells (e.g. gates, flip-flops, counters, op-amps, etc.) in a soft- 
ware library. These can be automatically positioned and connected on the chip as 
required (known as 'place and route'). Both of these levels of design complexity 
are used for digital and analogue design, and are characterised by long develop- 
ment times and high prototyping costs. The third and lowest level in terms of 
complexity is the gate array. With the gate array the designer is presented with a 
'sea' of universal logic gates and is required onl:y to indicate how these gates are to 
be connected which thus defines the circuit function. This approach offers a less 
complex, and hence cheaper, design route than standard cell and full custom. 

Until the late 1980s the cheapest route to a digital ASIC was via the use of a mask 
programmable gate array. These devices are still widely used but since the late 1980s 
have had to face strong competition from field programmable gate arrays (FPGAs) 
where the interconnection and functionality are dictated by electrically program- 
mable links and hence appear in the field programmable devices section. 

With regard to the above ten questions, the overriding issue is usually when the 
first prototype should be ready. ASICs require computer aided design (CAD) 
tools of differing complexities. Designs that use such tools provide elegant solu- 
tions but can be very time consuming especially if your team have no experience in 
this field. However, designs that use 'standard products' are quick to realise but 
can be bulky and expensive when high volumes are required. 

With the exception of microcontrollers/processors and DSPs this chapter will 
describe the design options in Fig. 11.1 in more detail. It should be noted, 
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however, that as you move from left to right across this diagram, each option 
becomes more complex to implement resulting in a longer design time and greater 
expenditure. 

11.2 DISCRETE IMPLEMENTATION 

As has been seen in Chapter 9 the 74 series offers a whole range of devices at 
various levels of integration. These levels of integration are defined as" 

�9 SSI - Small-scale integration (less than 100 transistors per chip); 
�9 M S I -  Medium-scale integration (100-1000 transistors per chip); 
�9 LSI - Large-scale integration (1000-10 000 transistors per chip); 
�9 V L S I -  Very large-scale integration (greater than 10 000 transistors per chip). 

The VLSI devices are mainly microcontrollers and microprocessors which are 
outside the scope of this book. 

Designs using these standard parts are quick to realise and relatively easy to 
debug. However, they are bulky and expensive when high volumes are required. 
The various functions available allow all sorts of digital systems to be imple- 
mented with minimal overheads and tooling. For expediency these designs can be 
ad hoc and incorporate poor digital design techniques. We shall look at some of 
these pitfalls and suggest alternative safe design practices. 

One such standard product is the 74HCT139 which consists of two 2-to-4 
decoders in a single IC package. A logic diagram for this IC is shown in Fig. 11.2. 
A decoder was introduced in Chapter 4 and, as seen in Chapter 10, it can be used 
in memories for addressing purposes where only one output goes high for each 
address applied. Such a device has many other uses. However, as we saw in 
Chapter 4 one must be careful w~th this type of circuit since any of the decoder 
outputs can produce spurious signals called static hazards. These static hazards 
are called 'spikes'and 'glitches'. 

Y1 

Y3 

[ ~ ~  Y4 

Fig. 11.2 74HCT139: two-to-four decoder 
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11.2.1 Spikes and glitches 

Consider the case of output Y3 in Fig. 11.2. A timing diagram is shown in Fig. 
11.3 for this output for various combinations of A and B. At first AB=00 and so 
Y3=0. Next, AB= 10 and Y3 goes high. With AB returning to 00 the output goes 
low again. All seems satisfactory so far but i fAB= 11, then due to the propagation 
delay of the inverter the output will go high for a short time equal to the inverter 
propagation delay. As we shall see, although this spike is only a few nanoseconds 
in duration it is sufficiently long to create havoc when driving clock lines and may 
inadvertedly clock a flip-flop. This phenomenon is not limited to decoders. All 
combinational circuits will produce these spikes or glitches as they are known. 

A I I I 

B 1 

B 

�9 . 

�9 , 

Y3 [ [ ~ s p i k e  

Fig. 11.3 Spike generation on output Y3 of the 2-to-4 decoder 

Propagation delay 

To appreciate the problem when driving clock lines consider a circuit counting 
the number of times a four-bit counter produces the state 1001. A possible design 
using 74 series logic is shown in Fig. 11.4(a). This consists of a 4-to-16 decoder 
(74HC154) ~ being used to detect the state 1001 from a four-bit counter 
(74HC161). (For clarity the four-bit counter output connected to the four inputs 
of the decoder is represented as a data bus having more than one line. The number 
of signals in the line is indicated alongside the bus.) The 10th output line of the 
decoder is used to clock a 12 bit counter (74HC4040). However, although this will 
detect the state 1001 at the required time it will also detect it at other times due to 
the differing propagation delays in the 4-to-16 decoder. These spikes and glitches 
will trigger the larger counter and result in a false count.There are two solutions to 
this: an elegant one and one that some undergraduates fall mercy to! The latter 
method, illustrated in Fig. 11.4(b), is to use art RC network (connected as an inte- 
grator or a low-pass filter) and a Schmitt trigger which together remove the spike 
or glitch. The values of R and C are chosen so as to filter out this fast transient - 
usually RC is set to be 10 times the glitch or spike pulse width. Due to this long 

~This decoder has outputs which are active low: however, for this application we shall assume that the 
outputs are active high. 
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Fig. 11.4 Using a decoder as a state detector 

12 
/ 

time constant the signal presented at the input to the Schmitt is now only a frac- 
tion of the magnitude of the original spike. To remove this signal completely it is 
passed through a Schmitt. This device has a voltage transfer characteristic which 
has two switching points. When the input is rising (from 0 V) the Schmitt switches 
at typically 0.66 Va0. However, when the input is falling (from Voa) the Schmitt 
now switches at 0.33Vdo. Hence any signal that does not deviate by more than 
two-thirds of the supply will be removed. This circuit, although successful, cannot 
be used in any of the other design options in this chapter since large values of R 
and C are not provided on chip. In addition the provision of extra inputs and 
outputs for these passive components will produce an unnecessarily large chip. 
The elegant solution, shown in Fig. 11.4(c), is to detect the previous state with the 
decoder and present this to the D input of a D-type. The clean output of the flip- 
flop is then used to drive the 12 bit counter. 

To summarise, an important rule for all digital designers is that clock inputs 
must not be driven from any combinational circuit, even a single two-input logic 
gate. This can be stated quite succinctly as no gated clocks. In fact the same is true 
for reset and set lines since thesewill also respond to spikes and glitches thus 
causing spurious resetting of the circuit. 

11.2.2 Monostables 

Another tempting circuit much frowned upon by the purist is the monostable. 
The monostable or 'one shot' produces a pulse of variable width in response to 



Discrete implementation 271 

either a high-to-low or a low-to-high transition at the input. The output pulse 
width is set via an external resistor and capacitor. 

One application of the use of a monostable is shown in Fig. 11.5(a). Suppose 
that we require an eight-bit parallel in, serial out shift register (PISO) to be loaded 
with an eight-bit data word when a line called interrupt goes high. An active high 
load signal must be produced which will load the eight-bit data. This load sigmil 
must be returned low before the next rising clock edge so that serial data can 
continue to be clocked out. It should be noted that in this case theinterrupt line is 
assumed to be synchronised with the clock. By adjusting the value of R and C the 
required parallel load pulse width (kRC, where k is a constant) is set to be no 
longer than the clock pulse width less the load to clock set-up time. The corre- 
sponding timing diagram is shown in Fig. 11.5(b). 

INTERRUPT __~ 
, 

CLOCK 

T Vcc 

R 
C 

MONO 

Tw=kRC 

I I ~ load 

data in "8 
serial out 

(a) 

CLOCK 8 

INTERRUPT[ 

LOAD [ [ 

Tw=kRC 

(b) 

Fig. 11.5 Use of a monostable to produce a short pulse 

! I 

Circuits that use monostables, however, exhibit several limitations. The first is 
that it is necessary to use an external R and C which will require a redesign when 
migrating to an ASIC. Other problems related to the analogue nature of the 
device are: the pulse width varies with temperature, V~c and from device to device; 
poor noise margin (see Chapter 9) thus generating spurious pulses; oscillatory 
signal edges are generated for narrow pulse widths (less than approximately 
30 ns); and long pulses require large capacitors which are bulky. 

An alternative to the circuit in Fig. 11.5(a) is to use the circuit in Fig. 11.6(a) 
which uses the reset technique with a purely digital synchronous approach. The 
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Fig. 11.6 Alternative circuit to the monostable circuit in Fig. 11.5 

resulting timing diagram for this circuit is shown in Fig. 11.6(b). The circuit oper- 
ates by using a clock frequency of twice the PISO register clock (2-clock). When 
interrupt goes from low to high, Q 1 (i.e. load) will go high. This will load in the 
parallel data. At the next rising 2-clock edge Q2 goes high (as its input, Q 1, is now 
high) and clears or resets the load line. Because of the higher clock frequency used 
this all occurs within half a clock cycle. A divide-by-two counter is used to divide 
2-clock down to clock so that the new data loaded into the PISO can be serially 
shifted out on the immediately following rising edge of clock. Load will not go 
high again until another low to high transition on interrupt occurs. 

The following example shows how pulses of a longer time duration can be 
produced. 

Example 11.1 

Consider the circuit in Fig. 11.7. What pulse width is produced at the Q output of 
the D-type (74HC74) device? Assume that both 'CLR' and 'RESET' are active 
high. 
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Solution 

When a BEGIN low-to-high transition occurs the Q output goes high which 
releases the counter from its reset position. The counter proceeds to count until 
the Q 11 output goes high, at which point the D-type flip-flop is cleared and the Q 
output goes low again awaiting the arrival of the next BEGIN rising edge. The Q 
output is thus high for 2 ~~ clock pulses. 

Taking the clear input from any of the other outputs of the counter will 
produce pulses of varying width. The higher the input clock frequency the better 
the resolution of the pulse width. 

It should be noted that if BEGIN is synchronised with the clock then the rising 
edge of the output pulse will also be synchronised (albeit delayed by one D-type 
flip-flop delay). However, the falling edge of the Q output pulse is delayed with 
respect to the clock. This is because the counter used is an asynchronous or ripple 
counter. The Q ll output will only go high after the clock signal has passed 
through 11 flip-flop delays-  this could be typically 100-400ns. This may not 
cause a problem but is something to be aware of. The solution is to use either a 
synchronous counter or detect the state before with a 10-input decoder and a D- 
type as described earlier. 

Example 11.2 

The circuit of Fig. 11.6(a) was designed in an ad hoc manner with the reset tech- 
nique. Using the state diagram techniques of Chapter 8 produces a circuit that will 
implement the same timing diagram of Fig. 11.6(b). 

Solution 

The first task is to use the timing diagram of Fig. 11.6(b) to produce a state 
diagram. At the bottom of Fig. 11.6(b) are the states A and B at each rising 2- 
clock edge. Remember, that the interrupt (/) line is generated by 2-clock (i.e. 
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synchronised) and thus changes after the 2-clock rising edge. Hence the state 
diagram, shown in Fig. 11.8(a), can be drawn. The corresponding state transition 
table is shown in Fig. 11.8(b) and since there are only two states then only one flip- 
flop is needed. Assigning A =0 and B= 1 results in Fig. 11.8(c). From this we 
produce the K-maps for the next state Q+ and present output LOAD(L). These 
produce the functions Q+= I and L= I. 0. The resulting circuit diagram is shown 
in Fig. l l.8(e). It should be remembered that the clock input is the higher 
frequency 2-clock. 
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(a) State Diagram 
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Fig. 11.8 Using a state diagram to implement the timing diagram of Fig. 11.6(b) 

11.2.3 CR pulse generator 

The practice of using monostablcs has already been frowned upon and safe alter- 
native circuit techniques have been suggested. However, monostables are 
tempting, quick to use and can still be found in many designs. Another design 
technique that is also simple and tempting to use but should be avoided is the CR 
pulse generator or diffcrentiator circuit shown in Fig. 11.9(a). The circuit is the 
opposite of the integrator shown in Fig. 11.4. This circuit is used to 'massage' a 
long pulse into a shorter one and so gives the appearance of a one-shot reacting at 

I' - ,  
�9 5_1 L_ 1 or o 0 

(a) 

Fig. 11.9 Using a CR network to produce a narrow pulse 

(b) 
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either rising or falling edges. If a 5 V pulse is applied to the circuit in Fig. 11.9(a) 
two short pulses are produced, one at the rising edge and one at the falling edge. 
At the rising edge when the input goes instantaneously from 0 V to 5 V the output 
momentarily produces 5V. As the capacitor charges the voltage across the 
resistor starts to fall as the charging current falls, hence the corresponding rising 
edge waveform. When the input changes from 5 V to 0 V the capacitor cannot 
change its state instantly and so both plates of the capacitor drop by 5 V. Hence 
the output momentarily produces-5 V. The capacitor then discharges, resulting 
in the falling edge waveform. 

To convert this signal into a digital form the output is fed into a Schmitt trigger 
and thus produces a short pulse from 5 V to 0 V whose duration is determined by 
the value of R and C and the Schmitt switching point. This pulse is only present on 
the rising edge of the input since the falling edge produces a negative voltage 
which the Schmitt does not respond to. However, this circuit should again be 
avoided as the migration to an ASIC would require a redesign whilst in addition 
the negative voltage may in time damage the Schmitt component. Consequently, 
it is therefore recommended that the pulse shortening techniques described 
earlier, which use a higher clock frequency, are employed. 

11.3 MASK PROGRAMMABLE ASICs 

The use of standard products (74 series, etc.) to implement a design becomes inef- 
ficient when large volumes are required. Hence the facility for the independent 
customer to design their own integrated circuits was provided by IC manufac- 
turers. This required the designer to use either a gate array, standard cell or full 
custom approach. In each case the manufacturer uses photomasks (or electron- 
beam lithography) to fabricate the devices according to the customer's require- 
ments. These devices are therefore collectively named mask programmable ASICs. 

11.3.1 Safe designfor mask programmable ASICs 

A limitation of mask programmable ASICs is that since the layers are etched 
using these masks any design errors require a completely new set of masks. This is 
very expensive and time consuming and hence safe design techniques which work 
first time must be employed. A designer must avoid monostables and CRIRC type 
circuits and be aware that a manufacturing process can vary from run to run and 
sometimes across a wafer. Consequently, propagation delays vary quite consider- 
ably from chip to chip or even across a chip. Hence the use of gates to provide a 
delay (see Fig. 11.10(a)) is a poor design technique since the value of this delay 
cannot be guaranteed. Three poor ASIC circuit techniques where these delay 
chains are used are shown in Figs. 11.10(b)-(d) and were discussed in Section 
4.3.2. Essentially the designer must use synchronised signals and a higher clock 
frequency to generate short predictable pulses. 
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Fig. 11.10 Examples of poor ASIC circuit techniques 

The use of synchronous techniques is not a panacea for all timing problems. 
Take for example the master clock in a synchronous system driving several 
different circuits. The total capacitance being driven by the master clock can be 
extremely large thus delaying the clock quite considerably. In order to isolate this 
large capacitance from the master clock, buffers are used leading to each circuit. 
These are quite simply two CMOS inverters in series. This reduces the capacitance 
seen directly by the master clock circuit and hence reduces the clock delay to each 
circuit. However, the input capacitance between the smallest and largest of these 
circuits may differ by an order of magnitude. Hence the clock will arrive at 
different times to each of these circuits and the whole system will appear asyn- 
chronous in nature (see Problem 11.10). A better buffering technique is therefore 
required. Two improved buffering techniques are shown in Figs 11.11 (a) and (b). 
The first is to use an even number of inverters driving the large load. At first it just 
looks like our poor delay line shown in Fig. 11.10(a). However, each inverter is 
larger than the previous one by a factorf(i.e, the W/L ratios of the MOS transis- 
tors are increased by f a t  each stage). The load capacitance gradually increases at 
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Two techniques for buffering the ASIC clock driver from a large capacitance 

each stage but the drive strength also increases. The optimum value o f f  is in fact e 
or 2.718 but the number of stages required for this case would be quite large. A 
compromise is to use an increased value o f f  and a reduced number of stages (see 
Problem 11.11). Another technique is to use tree buffering which consists of 
several small inverters arranged in a tree structure. This is illustrated in Fig. 
11.11 (b). In this case each inverting buffer is arranged such that it drives the same 
load. Hence the relative clock signal delay will be kept to a minimum. 

Example 11.3 

One of the small inverters in Fig. 11.11 (b) is used to drive 64 loads each of 1 pF. 
Determine the delay of this inverter when driv'ug this load directly and what the 
delay would be if the tree buffering of Fig. 11.1 l(b) is used. Assume that the 
inherent delay of a single inverter is 1 ns, its output drive capability is 20 ns/pF 
and has an input capacitance of 0.01 pF. 

Solution 

Unbuffered 

Buffered 

Delay-  1 + 20 x 64-1281 ns 

Delay=(1 + 20• x4) + (1 + 20x0.01 • + (1 + 20• 

Delay = 1.8 ns + 1.8 ns + 81 ns - 84.6 ns 

Hence a great saving in delay is achieved at the expense of more gates. 
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These safe mask programmable ASIC design techniques can therefore be 
summarised as follows: 

1. no gated clocks or resets; 
2. no monostables; 
3. no RC or CR type circuits; 
4. use synchronous techniques wherever possible; 
5. use a high-frequency clock subdivided down for control; 
6. no delay chains; 
7. use clock tree buffering. 

In the early days ASIC designs were breadboarded (i.e. a hardware prototype 
was produced) using 74 series devices in order to confirm that the design functions 
correctly. However, nowadays the designer has available very accurate computer 
simulators that can be run in conjunction with drawing packages and chip layout. 
Together these computer programs are called computer aided design (CAD) 
tools. Since a mask programmable ASIC cannot be modified once fabricated 
without incurring additional charges, the design cycle relies very heavily upon 
these CAD tools. The process of fabricating a chip and then finding a design fault 
is an unforgivable and costly error. We shall look at the various CAD tools 
employed to guarantee a 'right first time' design. 

11.3.2 Mask programmable gate arrays 

The first mask programmable ASIC that we shall look at is the mask program- 
mable gate array. This device consists of a large array of unconnected blocks of 
transistors called gates. All the layers required to form these gates are prefabri- 
cated except for the metal interconnect. The IC manufacturer therefore has a 
'stock-pile' of uncommitted wafers awaiting a metal mask. The user or designer 
only needs to specify to the manufacturer how these gates are to be connected 
with the metal layer (i.e. customised). 

The basic building block or gate in a CMOS gate array is a versatile cell 
consisting of four transistors. These blocks of four transistors are repeated many 
times across the array. Mask programmable gate arrays are characterised in terms 
of the number of four transistor blocks or gates in the array. The gate is called a 
versatile cell since it contains two NMOS and two PMOS transistors which can 
form simple logic gates such as NOR and NAND as illustrated in Chapter 9. 

Two types of arrays exist - channelled and sea of  gates. These are illustrated in 
Figs. 11.12(a) and (b). The channelled array has a routing channel between each 
row of gates. These routing channels allow metal tracks on a fixed pitch to be used 
for interconnection across the array. Each channel can contain typically 20 wiring 
routes. The sea of gates on the other hand does not contain any dedicated routing 
channels and as a result contains more gates. The routing is implemented across 
each gate at points where no other metal exists. However, with the sea of gates the 
routing over long distances is more difficult and hence places a limit on the 
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(a) Channelled Array (b) Sea of Gates Array 

Fig. 11.12 Channelled and sea of gates mask programmable gate arrays 

number of gates that can be accessed. This raises the important issue of utilisation. 

This is the percentage of gates which the designer can access. As more gates on the 
array are utilised the routing ability for both array types is reduced. There comes a 
point where there are not enough routes available to complete the design and 
because of this manufacturers quote a utilisation figure. As you can imagine the 
channelled array has a better utilisation than the sea of gates. A simple single layer 
metal channelled array has a utilisation of 80% whilst a double layer metal has a 
utilisation of 95%. Many mask programmable gate array manufacturers use three 
and four layer metal processes in order to fully utilise the array. 

For any design it is the gate count that is the most important issue. It is there- 
fore useful to know how many gates typical functions consume in CMOS tech- 
nology. For example a two-input NOR or NAND uses one gate, whilst a D-type 
and a JK consume five and eight gates, respectively. Hence if a design schematic 
exists then a quick gate count is always useful to specify what gate array size to 
use. The selection of an optimum array size is crucial in gate array design since 
array sizes can vary from 1000 to 500 000 gates! 

The cost of a mask programmable gate array depends upon: 

1. number of gates required (or the number of I/Os); 
2. number of parts required per year; 
3. maximum frequency of operation; 
4. number of metal layers. 

All mask programmable gate array, manufacturers charge a tooling cost for 
production of the metal mask(s). This charge is called a non-recurring expendi- 
ture or NRE. Quotes from three reputable ASIC suppliers for a 2000 gate design, 
commercialised by the authors, revealed the following prices on a small volume of 
1000 parts per year: 
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�9 Firm X (2 micron) NRE of s 10 000 at s unit cost; 
�9 Firm Y (1.2 micron) NRE of s 12 000 at s unit cost; 
�9 Firm Z (3 micron) NRE of s at s unit cost. 

The numbers in brackets indicate the minimum feature size on the chip which is 
inversely proportional to the maximum operating frequency. Although the prod- 
ucts are not fully comparable one can see that the costs of mask programmable 
gate arrays involves the user in large initial charges. Hence the importance of 
accurate CAD simulator tools prior to mask manufacture. 

Because the gate array wafers before metallisation are customer independent, 
the costs up to this stage are divided amongst all customers. It is only the metalli- 
sation masks that are customer dependent and so these costs make up the bulk of 
the NRE. These NRE charges can be greatly reduced by sharing the prototyping 
costs even further by using a technique called a multiproject wafer (MPW). This is 
a metal mask which contains many different customer designs. The NREs are 
thus reduced approximately by a factor of N where N is the number of designers 
sharing that mask. Hence prototyping costs with mask programmable gate arrays 
are less of a financial risk when a manufacturer offers an MPW service. The 
typical prototyping costs for a 2000 gate design, with MPW, are now as low as 
s 1000 for 10 devices. 

Of all the mask programmable ASICs the gate array has the fastest fabrication 
route, since a reduced mask set is required depending upon the number of metal 
layers used for the interconnect. The typical time to manufacture such a device 
(referred as the turnaround time) is four weeks. 

Example 11.4 

How many masks are needed for a double layer metal, mask programmable gate 
array? 

So/ut/on 

The answer is not two since it is necessary to insulate one metal layer from the 
next and provide vias (holes etched in the insulating layers deposited between the 
first and second layer metal) where connections are needed between layers. Hence 
the number is three, i.e. two metal masks and one via mask. 

Example 11.5 

A schematic for a control circuit consists of four 16 bit D-type based synchronous 
counters, 20 two-input NAND gates and 24 two-input NOR gates. Estimate the 
total number of gates required for this design. 

Solution 

Gate count for each part: 
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A 16 bit synchronous counter contains 16 D-type bistables plus combinational 
logic to generate the next state. This logic is typically comparable to the total gate 
count of the bistable part of the counter. Hence the total gate count for the 
counter will be approximately 160 gates (i.e. 16 x 5 x 2). A two-input NAND gate 
will require four transistors and hence one gate. Thus 20 will consume 20 gates of 
the array. Finally a single two-input NOR gate can be made from four transistors. 
Hence 24 will consume 24 gates of the array. 

The total gate count required for this control circuit is 160 + 20 + 24= 204 
gates. 

CAD tools for mask programmable gate arrays 
A mask programmable gate array cannot be modified once it has been fabricated 
without incurring a second NRE. Consequently a large reliance is placed upon the 
CAD tools, in particular the simulator, before releasing a design for fabrication. 
The generic CAD stages involved in the design of both mask and field program- 
mable ASICs is illustrated in Fig. 11.13. For mask programmable gate arrays this 
design flow is discussed below: 
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Fig. 11.13 Generic CAD stages involved in the design of ASICs 

1. System description The most common way of entering the circuit desCription 
is via a drawing package, called schematic capture. The user has a library of 
components to call upon, varying in complexity from a two-input NAND gate 
through to counters/decoders, PISO/SIPOs and arithmetic logic units (as 
described in Problem 4.10). At no stage does the designer see the individual 
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transistors that make up the logic gates. For large circuits (greater than 
approximately 10000 gates) the description of the circuit using schematic 
capture becomes rather tedious and error prone. Consequently high-level, 
textual, programming languages have been developed to describe the system in 
terms of its behaviour. The one language adopted as a standard is that 
recommended by the USA Department of Defense called VHDL. A brief 
introduction to VHDL is presented.later in this chapter. 

If the system is described in schematic form it is then converted into a net- 
list. This is a textual description of how the circuit is interconnected and is 
needed for the simulator. If the system is described in VHDL form then for the 
sake of brevity this can be considered as a net-list description already. 

2. Prelayout simulation Once the system has been described the next stage is to 
simulate the system prior to layout. The components used in the schematic or 
VHDL are represented as digital (or behavioural) models. A digital simulator, 
called an event-driven simulator, is used to simulate the system by applying input 
vectors to the system, i.e. a stream of l 's and O's. This simulator obtains its name 
since only the gates whose inputs are changing (i.e. an event is occurring) are 
updated. The outputs then drive other gates and hence a new event is scheduled 
some time later. In some cases, to simplify the simulation, all gates are assumed 
to have a 1 ns delay or a unit delay and wire delays are set at zero. This is because 
the chip has not been laid out and therefore no information is available yet about 
wire delays. This type of simulation is called in some CAD manuals functional 
simulation. It is, however, advisable to simulate with the gate propagation delays 
which include fan-out loading thus allowing the simulator to perform more 
realistic flip-flop timing checks such as: set-up and hold times; minimum clock 
and reset pulse widths, etc. This will identify, early in the design cycle, poor 
design techniques such as asynchronous events which violate set-up and hold 
time, or gated clocks which are revealed as spikes and glitches on clock lines. 

3. Layout Next, the chip is laid out and this consists of a two-stage process of 
place and route. First the gates used to describe the system are placed on to the 
array and implemented using the versatile four transistor cell. Optimum place- 
ment algorithms are run which aim to reduce the total wire length. The cells are 
then connected together by using the available routing channels. The I/O posi- 
tions may be left to the software to decide on the best position so as to assist the 
place and routing software, or may be specified by the user at the placement 
stage. 

4. Back annotation of  routing delays The metal used for the interconnect 
contains resistance and capacitance and will introduce delays. Hence these 
delays need to be added to the original system description, i.e. the schematic or 
VHDL file. This step is called back annotation and these extra delays are 
referred to as wiring parasitics. 

5. Postlayout simulation The perfomaance of the original prelayout system will 
now have changed, which in some cases may result in the delays increasing 
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from 1 ns to lOOns. The system therefore needs to be resimulated with the 
parasitic delays included. This final simulation is called postlayout simulation 
and includes the timing delays of both the wiring and logic gates. The simula- 
tion is now called a full timing simulation since the true delays of the chip are 
included} Any errors appearing in the simulation at this stage must be 
corrected by modifying the original schematic or VHDL file and rerunning 
the layout. This iterative process is characteristic of all ASIC CAD design 
tools. 

An example of a layout induced timing error is demonstrated with a two-stage 
shift register in Fig. 11.14. The delay element indicated by the dotted box repre- 
sents additional wire delay on the clock line. If this delay is greater than the prop- 
agation delay of the flip-flop then data is lost. This is because when a shift register 
shifts data it is assumed that all clocks arrive at the same time at each flip-flop. 
However, if a clock arrives at the first flip-flop before the second by at least one 
flip-flop delay then the data at the input to the second flip-flop will change before 
the arrival of its clock pulse. This data has been overwritten and therefore lost. To 
avoid this problem occurring the place and route software allows the designer to 
influence the layout in several ways. Firstly, the clock line can be given priority 
(called seeding) and it is routed first before all the other routes. It will therefore 
have the shortest and hence the fastest path. Another technique is to label groups 
such as shift registers so that they are not broken up during placement. All flip- 
flops are consequently placed close to each other and hence clock delays are 
reduced. 

D D Q 
data 

c lock delay 

Fig. 11.14 Layout delays on clock lines can cause a shift register to malfunction 

When the postlayout simulation has been successfully completed the designer 
has to pass an intensive sign-off procedure which needs to be countersigned by the 
project manager and an engineer at the ASIC manufacturer. The final file that is 
passed to the manufacturer is in a syntax which is applicable for mask manufac- 

21n some environments a separate static timing analyser is available. This checks all timing delays around 
bistables with regard to clock and data and confirms that no set-up and hold time violations are present. 
This removes the time consuming process of writing a stimulus file for the timing simulator that covers all 
possible combinations of inputs around all bistables. 
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turing machines and allows the metal interconnection layer(s) to be added to the 
base wafers in order to customise the array. 

The CAD tools described here are either supplied by the IC manufacturer or by 
generic CAD software houses such as Mentor and Cadence. These tools take a 
design from schematic through to layout. Alternative tools, such as Viewlogic, are 
used for just the prelayout stage. These so-called front end tools are popular PC 
based commodities and are used extensively in FPGA design. 

11.3.3 Standard cell 

The advantages of fast turnaround time and relatively low cost offered by gate 
arrays is counterbalanced by several problems. The first is that silicon is wasted 
because a design does not useall the available gates on the array. Also, it is not 
known by the manufacturer which pad on the array is to be an input or an output 
and so silicon is further wasted by the inclusion of both input and output circuits 
at every pad. As the chip price is proportional to die size then this can be uneco- 
nomical when large volumes are required. In addition, because all the transistors 
in a gate array are the same size then when transistors are placed in series long 
delays occur. This happens on the PMOS chain for NOR and the NMOS chain 
for NAND. Consequently the gates cannot be optimally designed and the delays 
~p~h and Xphl a re  asymmetrical. If the W/L's of the transistors were individually 
adjusted for each gate type the delays would be shorter. 

The standard cell approach gets around these problems. Here, the designer 
again has available a library of logic gates but the design starts with a clean 
piece of silicon. Hence only those gates selected for a design appear on the final 
chip and no silicon is wasted. It is also known which pads are to be input and 
output thus further saving silicon. The standard cell chip is therefore smaller 
than the gate array. This device is also faster partly because it is smaller and the 
routing is shorter (hence smaller wire delays) and partly because the library of 
logic gates is optimally designed by the manufacturer. This is achieved by 
adjusting the W/L's of the transistors in each gate so as to achieve optimum 
delay. 

Since the standard cell only uses those gates that are needed for a design then 
each chip is of different size and is unique. Hence all masks are required, which 
can be of the order of 8-16 masks where each mask costs s 1000-s The NRE 
costs are therefore considerably higher and the production times longer compared 
to a mask programmable gate array. This approach is therefore only economical 
when relatively large volumes are involved. However, reduced prototyping costs 
are again available by using multiproject wafers. 

Libraries for standard cell (and gate arrays) have become quite sophisticated. 
Not only are the basic and complex gates provided but also counters and UARTs 
(serial interface) exist. Incredibly some manufacturers are even offering complete 
processor cores such as the Z180 by VLSI Technology, TMS320C50 by TI and 
the 80486 by SGS Thomson. 
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Example 11.6 

Compare the transistor count of a complex combinational gate that is offered in 
the manufacturer's library that produces the function f=  A B + CD implemented 
in a mask programmable gate array with a standard cell approach. 

Solution 

The gate array approach would require De Morgan's theorem to implement this 
function using the blocks of four transistors (i.e. using either two-input NAND or 
two-input NOR gates). Choosing NAND gates results in: 

f =  A B  + CD = A B .  CD 

The function using NAND gates is shown in Fig. 11.15(a). Note that it is not 
possible to directly produce an AND gate with CMOS. This must be produced by 
using a NAND with an inverter. Thus the total number of gates required is 3.5 or 

14 transistors. 
Consider now the standard cell. To implement the above function the library 

designer uses the technique presented in Chapter 9: 

1. Concentrate on the NMOS network first: those terms that are AND'd are 
placed in series whilst those. OR'd are placed in parallel. 

2. The PMOS network is just a reverse of the NMOS network. 

The final circuit diagram is shown in Fig. 11.15(b). Notice that the number of 
transistors used is now only eight, a great saving on silicon. In addition the gate 
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(a) Inefficient ( 14 transistors) (b) Efficient (8 transistors) 

Fig. 11.15 Inefficient and efficient implementation of the function AB+ CD 

o/p - f 



286 Selecting a design route 

array approach uses a three-level logic whilst the standard cell uses only a single- 
level, giving the gate a much smaller propagation delay. 

CAD tools for standard cell 
The CAD tools for a standard cell follow those for mask programmable gate 
arrays with a slight exception at the layout stage. Here the designer can intercon- 
nect each cell without the restriction of a fixed number of routing channels. This 
results in a chip that is much easier to route but may cause errors in the layout due 
to incorrect connectivity caused by designer intervention. To avoid this problem 
the designer has available layout verification tools which perform various checks 
on the layout. These are shown dotted in Fig ! 1.13 and consist of." design rule 
check (DRC), where the spacing of the metal interconnect is checked; electrical 
rule check (ERC), where the electrical correctness of the circuit is confirmed, i.e. 
outputs not shorted to supply, no outputs tied together etc.; and finally layout 
versus schematic (LVS), where a net-list is extracted from the layout and is 
compared with the original schematic. Since the NRE costs are high (especially 
for non-MPW processes) these verification tools are an essential component in 
standard cell design. Both Mentor and Cadence offer such tools and so are suit- 
able for standard cell design. 

11.3.4 Full custom 

This is the traditional method of designing integrated circuits. With a standard 
cell and gate array the lowest level that the design is performed at is the logic gate 
level, i.e. NAND, NOR, D-Type, etc. No individual transistors are seen. 
However, full custom design involves working down at this transistor level where 
each transistor is handcrafted depending upon what it is driving. Thus a much 
longer development time occurs and consequently the development costs are 
larger. The production costs are also large since all masks are required and each 
design presents new production problems. 

Full custom integrated circuits are not so common nowadays unless it is for an 
analogue or a high-speed digital design. A mixed approach tends to be used which 
combines full custom and standard cells. In this way a designer can use previously 
designed cells and for those parts of the circuit that require a higher performance 
then a full custom part can be made. 

CAD tools for full custom 
The CAD tools follow the general form described for a standard cell. However, 
since the design of full custom parts involves more manual human involvement 
then the chances of error are increased. The designer thus relies very heavily on 
simulation and verification tools. In addition since cells are designed from individ- 
ually handcrafted transistors then they must be simulated with an analogue circuit 
simulator such as SPICE before being released as a digital part. Needless to say, 
the choice of a design route that incorporates full custom design is one that should 

not be taken lightly. 



Field programmable logic 287 

11.4 FIELD PROGRAMMABLE LOGIC 

So far we have seen two extremes in the design options available to a digital 
designer- namely standard products and mask programmable ASICs. Although 
mask programmable ASICs offer extremely high performance they carry a large 
risk in terms of time and expenditure. To provide the designer with the flexibility 
of both, the industry has gradually developed a class of logic that can be 
programmed with a personal computer in the laboratory. These devices are called 
field programmable logic and can be either one-time programmable (utilising small 
fuses) or many times programmable (using either ultraviolet erasable connections 
or an SRAM/MUX). Because these devices contain the extra circuitry to control 
interconnect and functionality this overhead results in a family which is less 
complex and slower than the mask programmable ASICs. However, the attrac- 
tion of a much lower risk can outweigh the performance problems especially for 
prototyping purposes. 

These field programmable logic devices are divided into two groups: 

�9 AND-OR programmable architectures; 
�9 field programmable gate arrays or FPGAs. 

11.4.1 AND-OR programmable architectures 

The AND-OR programmable architecture devices were the first programmable 
logic chips available on the market and still exist today. The reason for the interest 
in such structures is because all combinational logic circuits can be expressed in 
this AND-OR form. 

Three types of programmable AND-OR arrays are available: 

�9 fixed A N D -  programmable OR (ROM); 
�9 programmable A N D -  fixed OR (PAL); 
�9 programmable A N D -  programmable OR (PLA). 

A block schematic of an AND-OR array is shown in Fig. 11.16. Inputs are 
passed to the AND array whose outputs are fed into the OR array which provide 

AND ll > OR 
! 

inputs 

Fig. 11.16 Schematic for an AND-OR array 

i 
outputs 
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the outputs of the chip. Each of these AND-OR array types will now be discussed 
in more detail. 

11.4.2 ROM: fixed AND-programmable OR 

As was seen in Chapter 10 a ROM is a read only memory device. It consists of a 
decoder with n inputs (or addresses) whose 2" outputs drive a memory array. As 
seen in Fig. 11.2 a decoder can be implemented with AND gates and hence this is 
called the AND array. Since all possible input and output combinations exist then 

this is classed as afixed array, i.e. an n input decoder requires 2" n-input AND gates 
to generate all product terms. As we have also seen (see Fig. 10.3), the memory 
array is in fact a NOR array. However, the inclusion of an inverter on each column 

line will turn this into an OR array. Hence if the decoder has 2" outputs then the 
OR array must contain m OR gates with each gate having up to 2" inputs, where in 
this case m is the number of bits in a word. Notice that we have said 'up to' 2" inputs. 
This is because the OR array contains the data which is programmable. The ROM 
architecture is thus a f ixed AND-programmable OR array. 

The complete circuit for a 4 x 3 bit ROM is shown in Fig. 11.17(a). Note that it 
consists of a fixed AND structure (i.e. a 2-to-4 decoder) and a programmable OR 
array (i.e. a 4-to-3 encoder).The three-bit words stored in the four addresses are 
programmed by simply connecting each decoder output to the appropriate input 
of an OR gate when a logic' l ' is to be stored. 
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It 
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A B Y2 Y1 Y0 
i i i 

0 0 0 1 0 

0 1 0 1 1 

1 0 1 0 0 

1 1 0 1 0 

(a) (b) 

Fig. 11.17 A 4 x 3 bit ROM shown storing the data in the truth table 

This circuit shows the ROM storing the data in the truth table of Fig. 11.17(b). 
The Boolean equations, in fundamental sum of products form, are: 

Y2=AB 
Yl = AB  + A B  + A B  

ro=A  
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Note that rather than thinking of the ROM storing four three-bit words, an alter- 
native view is that it is implementing a two-input, three-output truth table. 

The same circuit is shown again in Fig. 11.18 but this time the 2" inputs to each 
OR gate are shown, for simplicity, as a single input. A cross indicates a connection 
from the address line to the gate. The same data as in Fig. 11.17 are shown stored. 
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Fig. 11.18 A 4 x 3 bit ROM using an abbreviated notation for the OR array 

As seen in Chapter 10 the physical implementation of the programmable OR 
array is achieved via the presence or absence of a transistor connection. This is 
achieved either by omitting the source or drain connections of MOS transistors or 
blowing fuses which are connected to the transistor terminals. Apart from using 
ROMs to store data or programs they can also be used to perform many digital 
operations, some of which are described below. 

Universal combinational logic function 
As we have seen a ROM has all fundamental product terms available for 
summing and can implement an m-output, n-input truth table. This is simply 
achieved by connecting the address lines to the n input variables, and each output 
line programmed to give the appropriate output values. The advantages of such a 
ROM based design are: it is particularly applicable ifn is large; no minimisation is 
needed; it is cheap if mass produced; and only one IC is needed. 

Example 11.7 

How would the truth table shown in Fig. 11.19(a) be implemented using a ROM? 

Solution 

A ROM of at least size 16 x 3 would be needed. The four address lines would be 
connected to the input variables A, B, C and D with the three outputs providing 
X, Y and Z. The required outputs (three-bit word) for each of the 16 possible 
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A B C D X Y 2 

0 0 0 0 0 0 0 

0 1 1 0 

1 0 0 0 

1 1 0 1 

0 0 0 

0 1 1 

1 0 0 

1 1 1 

0 0 0 

0 1 0 

1 0 1 

1 1 0 

0 0 0 

0 1 0 

1 0 1 

1 1 0 

1 

1 0 

0 0 

0 0 

0 1 

1 1 

0 0 

1 1 

0 0 

1 0 

0 0 

1 1 

0 0 

WORD 0 

WORD 1 

WORD 2 

WORD 3 

I 
A0 IA1 A2 A3 O0 O1 02  

0 0 0 0 0 0 0 

0 0 0 1 1 0 1 

0 0 1 0 0 0 0 

0 0 1 1 0 1 1 

(a) 

Fig. 11.19 Truth table used in Example 11.7 for implementation in ROM 

(b) 

input combinations would be programmed into the ROM, straight from the truth 
table. This is shown in Fig. 11.19(b) for the first four addresses, where A, and O, 
are the nth address line and output respectively of the ROM. 

Note that because all the fundamental product terms are produced by the fixed 
AND array of the ROM then no minimisation can take place. 

Code converter and look-up table 
A ROM can be used to convert an n-bit binary code (presented to the address 
lines) into an m-bit code (which appears at the outputs).The desired m-bit code is 
simply stored at the appropriate address location. Considered in this way it is a 
general n-to-m encoder or code converter. 

Another ROM application similar to the code converter is the look-up table. 
Here, a ROM could be used to look up the values of, for example, a trigonometric 
function (e.g. sin x), by storing the values of the function in ROM. By addressing 
the appropriate location with a digitised version of x the value for the function 

stored would be output. 

Sequence generator and waveform generator 
A ROM can be used as a sequence generator in that if the data from an n • ROM 
are output, address by address, then this will generate n binary data sequences. 
Also, if the ROM output is passed to an m bit digital-to-analogue converter 
(DAC) then an analogue representation of the stored function will be produced. 

Hence a ROM with a DAC can be used as a waveform generator. 
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11.4.3 PAL: programmable AND-fixed OR 

ROM provides a fixed AND-programmable OR array in which all fundamental 
product terms are available, thus providing a universal combinational logic solu- 
tion. However, ROM is only available in limited sizes and with a restricted 
number of inputs. Adding an extra input means doubling the size of the ROM. 
Clearly a means of retaining the flexibility of the AND-OR structure whilst also 
overcoming this problem would produce a useful structure. 

Virtually all combinational logic functions can be minimised to some degree, 
therefore allowing non-fundamental product terms to be used. Therefore, a 
programmable AND array would allow only the necessary product terms, after 
minimisation, to be produced. Followed by a fixed OR array this would allow a 
fixed number of product terms to be summed and so a minimised sum of products 
expression implemented. This type of structure is called a programmable array 

logic or PAL.  
The structure of a hypothetical PAL is shown in Fig. 11.20. This circuit has two 

input variables and three outputs, each of which can be composed of two product 
terms. The product terms are programmable via the AND array. For the connec- 
tions shown the outputs are: 

Y2 =AB + A B  
r,=A+a 
r 0 = A a  

(Note that Y0 only has one product term so only one of the two available AND 
gates is used.) 

Commercially available PAL part numbers are coded according to the number 
of inputs and outputs. For example the hypothetical PAL shown in Fig. 11.20 

m 

A A B 
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Fig. 11.20 A programmable AND-fixed OR logic structure (i.e. PAL) with two inputs, six program- 
mable product terms and three outputs (each summing two of the six product terms) 



292 Selecting a design route 

would be coded PAL2H3, i.e. it is a PAL having two inputs and three outputs. 
The H indicates that the outputs are active high. One of the smallest PALs on the 
market is a PAL16L8 offered by Texas Instruments, AMD and several other 
manufacturers. This has 16 input terms and eight outputs. The L indicates that 
the outputs are active low. This device actually shares some of its inputs with its 
ouputs, i.e. it has feedback. Hence if all eight outputs are required then only eight 
inputs are available. The other piece of information that is required about a PAL 
is how many product terms each OR gate can support. This is supplied on the 
data sheet, and for the PAL16L8, for example, it is seven. 

By adding flip-flops at the output, the designer is able to use PALs as sequential 
elements. The nomenclature for the device would now be PAL16R8 for example 
where R stands for registered output. The early PALs were fuse programmable. 
However, companies such as Altera, Intel and Texas Instruments added EPROM 
technology to these registered output PALs so that the devices could be 
programmed many times. These devices are called erasable programmable logic 

devices or EPLDs. 
Very large PALs exist having gate equivalents of over 2000 gates quoted 

(remember a gate is defined as a two-input NAND gate). The inflexibility of only 
having the flip-flops at the outputs and not buried within the array (as in mask 
programmable ASICs) resulted in the GAL. The GAL (generic array logic) is an 
ultraviolet-erasable PAL with a programmable cell at each output, called an 
output logic macro cell (OLMC). Each OLMC contains a register and multi- 
plexers to allow connections to and from adjacent OLMCs and from the 
AND/OR array. The GAL (trademark of Lattice Semiconductors) has a similar 
nomenclature to PALs. For example the GAL16V8 has 16 inputs and eight 
outputs using a versatile cell (i.e. V in the device name). However, because it uses 
OLMCs then it can emulate many different PAL devices in one package, having a 
range of inputs (up to 16) and outputs (up to eight). 

Example 11.8 

How could the truth table in Fig. 11.19(a) be implemented using a (hypothetical) 
PAL with four inputs, three outputs and a total of 12 programmable product 
terms (i.e. four to each output)? 

Solution 

First, we use Karnaugh maps (Fig. 11.21) to minimise the functions X, Y and Z. 
From these Karnaugh maps: 

Z -  A BD + A CD + A CD + A BD 

Y = A B C D  + BCD + A D  

X = A C D  + A B D  + A C D  

The PAL, a PAL4H3, would therefore be programmed as shown in Fig. 11.22. 
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Using a PAL to implement the truth table in Figure 11.19 

Y X 

11.4.4 PLA: programmable AND-programmable  O R  

The final variant of the AND-OR architectures is the programmable A N D -  
programmable OR array or programmable logic array (PLA). With this the 
desired product terms can be programmed using the AND array and then as 
many of these terms summed together as required, via a programmable OR array, 
to give the desired function. 

The structure of such an array with two inputs, three outputs and six program- 
mable product terms available is shown in Fig. 11.23. For the connections shown 
the outputs are: 
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Y o - A B  + A B  + B 

Y~ = A B  + A B  + A B  

Y 2 - A B  + A + B + A B  

Note that any product term can be formed by the AND gates, and that any 
number of these product terms can be summed by the OR gates. 
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Fig. 11.23 A programmable AND-programmable OR logic array (i.e. PLA) with two inputs, six 
programmable product terms and three programmable outputs 

Example 11.9 

How would the truth table shown in Fig. 11.19(a) be implemented using a (hypo- 
thetical) four-input, three-output PLA with eight product terms? 

Solution 

From the minimisation performed to implement this truth table using the PAL in 
Example 11.8 it can be seen that the three Boolean expressions for X, Y and Z 
contain a total of nine different product terms (A C/) is common to both X and Z). 
This PLA can only produce eight which means that product terms common to 
the three expressions must be found, effectively de-minimising them to some 
degree. 

This can be achieved by reconsidering the Karnaugh maps and not fully 
minimising them, but rather looking for common implicants in the three expres- 
sions: 

Z - A B D  + A B C D  + A CD + A B C D  

Y= B C D  + A B C D  + A CD + A B C D  

X = A C D  + A B C D  + A C D  

In this form only seven different product terms are required to implement all 
three functions and so the given PLA can be used as shown in Fig. 11.24. 
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Fig. 11.24 A programmable AND-programmable OR logic array (PLA) with four inputs, eight 
programmable product terms and three programmable outputs 

11.4.5 Field programmable gate arrays 

The advancement in on-chip field programmable techniques combined with ever 
increasing packing densities has led to the introduction of field programmable gate 
arrays or FPGAs. These devices can be considered as being the same as mask 
programmable gate arrays except the functionality and interconnect is 
programmed in the laboratory at a greatly reduced financial risk. The popularity 
of FPGAs is indicated by the large number of companies who currently manufac- 
ture such devices. These include Actel, Altera, AMD, Atmel, Crosspoint, Lattice, 
Plessey, Quicklogic, Texas Instruments, and Xilinx, to name but a few. Of these, 
the three that are perhaps the best known are Altera, Xilinx and Actel. In order to 
introduce FPGAs, some of the devices provided by these three companies will 
therefore be discussed. Essentially they differ in terms of: granularity; program- 
ming technique; volatility; and reprogrammability. All FPGAs consist of a versatile 
cell that is repeated across the chip with its size and hence cell complexity referred 
to as the granularity. These cells are multifunctional such that they can produce 
many different logic gates from a single cell. The larger the cell the greater the 
complexity of gate each cell can produce. Those arrays that use a small simple cell, 
duplicated many times, are referred to as having fine granularity, whilst arrays 
with few, but large, complex cells are defined as coarse grain. These versatile cells 
have been given different names by the manufacturers, for example: modules; 
macrocells; and combinatorial logic blocks. The programming of the function of 
each cell and how each cell is interconnected is achieved via either: small fuses; on- 
board RAM elements that control multiplexers; or erasable programmable read 
only memory (EPROM) type transistors. Consequently some devices are volatile 
and lose their functionality when the power is removed whilst others retain their 
functionality even with no supply connected. Finally these devices can be divided 
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into those that can be reprogrammed many times and those that are one-time 
programmable. 

Let us now look more closely at the FPGA types, which will be divided into: 

EPROM type; SRAM/MUX type; and fuse type. 

EPROM type FPGAs 

The most common EPROM type FPGA device is that supplied by Altera. The 

range of devices available from Altera are the MAX 5000, .7000 and 9000 series 
(part numbers: EPM5XXX, EPM7XXX and EPM9XXX). These devices are the 

furthest from the true FPGAs and can be considered really as large PAL struc- 
tures. They offer coarse granularity and are more an extension to Altera's own 

range of electrically programmable, ultraviolet-erasable logic devices (EPLD). 
The versatile cell of these devices is called a 'macrocell'. This cell is basically a 
PAL with a registered output. Between 16 and 256 macrocells are grouped 
together into an array inside another block called a logic array block (LAB) of 
which an FPGA can contain between 1 and 16. In addition to the macrocell array 
each LAB contains an I/O block and an expander which allows a larger number of 
product terms to be summed. Routing between the LABs is achieved via a 
programmable interconnect array (PIA) which has a fixed delay (3 ns worst case) 
that reduces the routing dependence of a design's timing characteristics. 

Since these devices are derived from EPLD technology the programming is 
achieved in a similar manner to an EPROM via an Altera logic programmer card 
in a PC connected to a master programming unit. The MAX 7000 is similar to the 
5000 series except that the logic block has two more input variables. The MAX 9000 
is similar to the 7000 device except that it has two levels of PIA. One is a PIA local 
to each LAB whilst the other PIA connects all LABs together. Both the 7000 and 
9000 series are EZPROM devices and hence do not need an ultraviolet source to be 
erased. 

It should be noted though that these devices are not true FPGAs and have a 
limited number of flip-flops available (one per macrocell). Hence the Altera Max 
5000/7000/9000 series is more suited to combinatorially intensive circuits. For 
more register intensive designs Altera offer the Flex 8000 and 10K series of 
FPGAs which uses an SRAM memory cell based programming technique (as 
used by Xi l inx-  see next section); although currently rather expensive it will in 
time become an attractive economical option. The Flex 8000 series (part number: 
EPF8XXX) has gate counts from 2000 to 16000 gates. The 10K series (part 

number: EPF 10XXX) however, has gate counts from 10 000 to 100 000 gates! 

SRAM/MUX type FPGAs 
The most common FPGA that uses the SRAM/MUX programming environment 
is that supplied by Xilinx. The range of devices provided by Xilinx consists of the 
XC2000, XC3000 and XC4000. The versatile cell of these devices is the 'con- 
figurable logic block' (CLB) with each FPGA consisting of an array of these 
surrounded by a periphery of I/O blocks. Each CLB contains combinational logic, 
registers and multiplexers and so, like the Altera devices, has a relatively coarse 
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granularity. The Xilinx devices are programmed via the contents of an on- board 
static RAM array which gives these FPGAs the capability of being reprogrammed 
(even whilst in operation). However, the volatility of SRAM memory cells requires 
the circuit configuration to be held in an EPROM alongside the Xilinx FPGA. 

A recent addition to the Xilinx family is the XC6000 range. This family has the 
same reprogrammability nature as the other devices except it is possible to 
partially reconfigure these devices. This opens up the potential for fast in-circuit 
reprogramming of small parts of the device for learning applications such as 
neural networks. 

Fuse type FPGAs 
The most common fuse type FPGA is that supplied by Actel. These devices are 
divided into the Act l, Act2 and Act3 families. The Act 1 FPGAs (part numbers: 
A I0XX) contain two programmable cells: 'Actmod' and 'IOmod'. The versatile 
core cell is the 'Actmod' which is simply based around a 4-to-1 multiplexer for 
Act 1. This versatile cell is shown in Fig. 11.25. Since this cell is relatively small the 
array is classed asfine grain. By tying the inputs to either a logic '0' or logic '1' this 
versatile cell can perform 722 different digital functions. The programmable 
'IOmod' cell is used to connect the logic created from the 'Actmods' to the outside 
world. This cell can be configured as various types of inputs and/or outputs (bi- 
directional, tristate, CMOS, TTL, etc.). Unlike the Xilinx and Altera devices the 
Actel range are programmed using fuse technology with desired connections 
simply blown (strictly cailed an antifuse). These devices are therefore 'one time 
programmable' (OTP) and cannot be reprogrammed. The arrays have an archi- 
tecture similar to a channelled gate array with the repeating cell (Actmod) 
arranged in rows with routing between each row.The routing contains horizontal 
and vertical metal wires with antifuses at the intersection points. 
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S4 

o/p 

Fig. 11.25 Versatile cell used for Actel Act1 range of fused FPGAs 



298 Selecting a design route 

Other devices in the Actel range are the Act2 (part numbers:A12XX) and the 

Act3 (part numbers:A14XX) devices. These use two repeating cells in the array. 

The first is a more complex 'Actmod' cell called Cmod used for combinational 

purposes whilst the other cell is a Cmod with a flip-flop. 

Table 11.1 shows a comparison of some of the FPGA devices offered by Altera, 

Xilinx and Actel. 

Table 11.1 Comparison of some FPGA types 

Manufacturer Part Gates D-types Cost Programming Speed I/Os 
(k) (s technique (MHz) 

Altera EPM5X 8 21-252 1 4 - 5 5  EPROM 60 100 
EPM7X 10 40-400 12-100 EPROM 70 288 
EPM9X 20 400-700 50-140 EPROM 65 100 
EPF8X 2.5-16 7 8 - 2 0 8  1 5 - 9 0  SRAM 100 208 
EPF10KX 10-100 148-420 25-550 SRAM 120 300 

Xilinx XC2X 0.6-1.5 64-100 1 0-15 SRAM 60 74 
XC3X 1-7.5 256-1320 10-60 SRAM 70 176 
XC4X 2-25 256-2560 15-190 SRAM 60 256 

A c t e l  A10X(Actl) 1 . 2 - 2  147-273 1 2 - 2 0  Antifuse 37 69 
A12X(Act2) 2-8 5 6 5 - 9 9 8  1 7 - 5 5  Antifuse 41 140 
A14X(Act3) 1.5-10 264-1153 15-250 Antifuse 125 228 

Example 11.10 

Consider the versatile Actel cell shown in Fig. 11.25. What functions are 

produced if the following signals are applied to its inputs: 

(a) S1S2S3S4=O00A and WXYZ=O001  

(b) S, $2S3S 4 = 0BAA and W X Y Z =  1110 

(c) S1S2S3S4=OCA1 and WXYZ=OB11 .  

Assume that the signals A and B are inputs having values of '0' or '1' and that 
for each multiplexer when the select line is low the lower input is selected. 

S o l u t i o n  

(a) In this case the OR gate output is always zero and so the lower line is selected. 

This is derived from the lower multiplexer whose select line is controlled by the 

only input 'A'. With the inputs to this multiplexer at '0' for the upper line and '1' 

for the lower line the output thus follows that of an inverter. 

(b) Here it is helpful to construct a truth table and include in this table the output 

of the OR gate, called sel. 

A B Sel olp 
0 0 0 0 
0 1 1 1 
1 0 0 1 
1 1 1 1 

We can thus see that the function is a two-input OR gate. 



Field programmable logic 299 

(c) Again a truth table (including sel)  is useful to work out the function imple- 
mented: 

a n CSeIlo[p 
0 0 0 0 1 

0 0 1 1 0 

0 1 0 0 1 

0 1 1 1 1 

1 0 0 0  1 

1 0 1 1 0 

1 1 0 0 1 

1 1 1 1 0 

A Karnaugh map for the output is shown below which generates the function 

o/p = C + A B 

A B  A B  A B  A B  

C 1 1 1 1 

C 0 1 0 0 

11.4.6 CAD tools for field programmable logic 

The programming of field programmable logic devices is implemented directly via 
a computer. The software needed for PALs and PLAs is usually a simple matter of 
producing a programming file called a fuse or an EPROM bit file. This file has a 
standard format (called JEDEC) and contains a list of l's and 0's. This file is auto- 
matically generated from either Boolean equations, truth tables or state diagrams 
using programs such as ABEL (DatalO Corp.), PALASM (AMD Inc.) and 
CUPL (Logical Devices Inc.). In other words the minimisation is done for you 
and it is not necessary to draw out any Karnaugh maps. Software programs that 
can directly convert a schematic representation into a JEDEC file are also avail- 
able. Since these devices have only an MSI complexity level then the software 
tools are relatively simple to use and also inexpensive. 

The FPGAs, on the other hand, have capacities of LSI and VLSI level and are 
much more complex. Since FPGAs are similar in nature to mask programmable 
gate arrays the associated CAD tools have been derived from mask program- 
mable ASICs and follow that of Fig. 11.13; that is: schematic capture (or VHDL), 
prelayout simulation, layout, back annotation and postlayout simulation. 

It should be noted that FPGA simulation philosophy is somewhat different 
from mask programmable gate arrays. With mask programmable devices, 100% 
simulation is absolutely essential since these circuits cannot be rectified after fabri- 
cation without incurring large financial and time penalties. These penalties are 
virtually eliminated with FPGA technology due to the fast programming time in 
the laboratory and the low cost of devices. For one-time programmable devices 
(such as Actel) the penalty is the price of one chip whilst for erasable devices (such 
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as Xilinx) the devices can simply be reprogrammed. Hence the pressure to simu- 
late 100% is not as great. 

For those devices that are reprogrammable this results in an inexpensive itera- 
tive procedure whereby a device is programmed and then tested in the final 
system. If the device fails it can be reprogrammed with the fault corrected. For 
OTP type FPGAs then a new device will have to be blown at each iteration; 
although it will incur a small charge the cost is considerably less than mask 
programmable arrays. It is not uncommon for FPGA designs (both reprogram- 
mable and OTP) to experience four iterations before a working device is obtained. 
This is totally unthinkable for mask programmable designs where a 'right first 
time approach' has to be employed- hence the reliance on the simulator. 

Since fuses, SRAM/MUX cells, etc., are used to control the connectivity the 
delays caused by these elements must be added to the wire delays for postlayout 
simulation. Hence it is for this reason that FPGAs operate at a lower frequency 
than mask programmable gate arrays. The large delays in the routing path also 
mean that timing characteristics are routing dependent. Hence, changing the 
placement positions of core cells (by altering the pin out for example) will result in 
a different timing performance. If the design is synchronous then this should not 
be a problem with the exception of the shift register problem referred to in Figure. 
11.14. It should also be noted that the prelayout simulation of FPGAs on some 
occasions is only a unit delay (i.e. 1 ns for all gates) or functional simulation. It 
does not take into account fan-out, individual gate delays, set-up and hold time, 
minimum clock pulse widths (i.e. spike and glitch detector), etc., and does not 
make any estimate of the wire delay. Hence the simulation at this stage is not 
reflective of how the final design will perform. To obtain the true delays the 
FPGA must be laid out and the delays back annotated for a postlayout simula- 
tion. This will provide an accurate simulation and hence reveal any design errors. 
Unfortunately, if a mistake is found then the designer must return all the way 
back to the original schematic. The design must again be prelayout simulated, laid 
out and delays back annotated before the postlayout simulation can be repeated. 
This tedious ~terative procedure is another reason why FPGAs are usually 
programmed prematurely with a limited simulation. It should be mentioned that 
an FPGA is sometimes used as a prototyping route prior to migrating to a mask 
programmable ASIC. Hence the practice of postlayout simulation using back 
annotated delays is an important discipline for an engineer to learn in preparation 
for moving to mask programmable ASICs. 

When all the CAD stages are completed the FPGA net-list file is converted into 
a programming file to program the device. This is either a standard EPROM bit 
file for the Xilinx and Altera arrays or a fuse file for the Actel devices. Once a 
device is programmed, debug and diagnostic facilities are available. These allow 
the logic state of any node in the circuit to be investigated after a series of signals 
has been passed to the chip via the PC serial or parallel port. This feature is unique 
to FPGAs since each node is addressable unlike mask programmable devices. 

FPGA CAD tools are usually divided into two parts. The first is the prelayout 
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stage or front-end software, i.e. schematic and prelayout simulation. The CAD 
tools here are generic (suitable for any FPGA) and are provided by proprietary 
packages such as Mentor Graphics, Cadence, Viewlogic, Orcad, etc. However, to 
access the FPGAs the corresponding libraries are required for schematic symbols 
and models. 

The second part is called the back-end software incorporating: layout; back 
annotation of routing delays; programming file generation and debug. The soft- 
ware for this part is usually tied to a particular type of FPGA and is supplied by 
the FPGA manufacturer. 

For example consider a typical CAD route with Actel on a PC. The prelayout 
(or front end) tools supplied by Viewlogic can be used to draw the schematic using 
a package called Viewdraw and the prelayout functional simulation is performed 
with Viewsim. In both cases library files are needed for the desired FPGA. Once 
the design is correct it can be converted into an Actel net-list using a net-list trans- 
lator. This new file is then passed into the CAD tools supplied by Actel (called 
Actel Logic System- ALS) ready for place and routing. The parasitic delays can 
be extracted and back annotated out of ALS back into Viewlogic so that a post- 
layout simulation can be performed again with Viewsim. If the simulation is not 
correct then the circuit schematic must be modified and the array is placed and 
routed again. Actel provide a static timer to check set-up and hold time and calcu- 
late the delays down all wires indicating which wire is the heaviest loaded. A 
useful facility is the net criticality assignment which allows nets to be tagged 
depending on how speed critical they are. This facility controls the placing and 
routing of the logic in order to minimise wiring delays wherever possible. The 
device is finally programmed by first creating a fuse file and then blowing the fuses 
via a piece of hardware called an activator. This connects to an Actel program- 
ming card inside the PC. As an example of the length of time the place and route 
software can take to complete the authors ran a design for a 68 pin Actel 1020 
device. The layout process took approximately 10 minutes using a 486, 66 MHz 
PC and utilised 514 (approximately 1200 gates) of the 547 modules available (i.e. a 
utilisation of 94%). In addition on the same computer the fuse programming via 
the activator took around 1 minute to complete its program. With mask program- 
mable ASICs, however, the programming step can take at least four weeks to 
complete! This is one of the great advantages that FPGAs have over mask 
programmable ASICs. Note, however, that as with mask programmable arrays 
the FPGA manufacturers only provide a limited range of array sizes. The final 
design thus never ever uses all of the gates available and hence silicon is wasted. 
Also, as the gates are used up on the array the ability for the router to access the 
remaining gates decreases and hence although a manufacturer may quote a 
maximum gate count for the array the important figure is the percentage utilisa- 
tion. 

Actel FPGAs also have comprehensive postprogramming test facilities avail- 
able under the option 'Debug'. These consist of: the functional debug option; and 
the in-circuit diagnostic tool. The functional debug test involves sending test 
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vectors from the PC to the activator, which houses the FPGA during program- 
ming, and simple tests can be carried out. The in-circuit diagnostic tool is used to 
check the real time operation of the device when in the final PCB. This test is 100% 
observable in that any node within the chip can be monitored in real time with an 
oscilloscope via two dedicated pins on the FPGA. 

The Xilinx FPGA devices are programmed in a similar way by using two pieces 
of software. Again typical front-end software for these devices is Viewlogic util- 
ising Viewdraw and Viewsim for circuit entry and functional simulation respec- 
tively. The net-list for the schematic is this time converted into a Xilinx net-list 
and the design can now move into the Xilinx development software supplied by 
Xilinx (called XACT). Although individual programs exist for place and route, 
parasitic extract, programming file generation, etc., Xilinx provide a simple to use 
compilation utility called XMAKE. This runs all of these steps in one process. 
Parasitic delays can again be back annotated to Viewsim for a timing simulation 
with parasitics included. A static timing analyser is again available so that the 
effects of delays can be observed on set-up and hold time without having to apply 
input stimuli. Bit stream configuration data, used in conjunction with a Xilinx 
provided cable, allow the data to be down-loaded to the chip for configuration. 
As with Actel both debug and diagnostic software exist such that the device can be 
tested and any node in the circuit monitored in real time. The bit stream data can 
be converted into either Intel (MCS-86), Motorola (EXORMAX) or Tektronix 
(TEKHEX) PROM file formats for subsequent PROM or EPROM program- 
ming. The one disadvantage of these devices as compared to the Actel devices is 
that when in final use the device needs to have an associated PROM or EPROM 
which increases the component count. 

11.5 VHDL 

As systems become more complex the use of schematic capture programs to 
specify the design becomes unmanageable. For designs above 10000 gates an 
alternative design entry technique of behavioural specification is invariably 
employed. This is a high-level programming language that is textual in nature, 
describes behaviour and maps to hardware. The most commonly accepted behav- 
ioural language is that standardised by the IEEE (standard 1076) in 1987 called 
VHDL. VHDL is an acronym for VHSIC Hardware Description Language where 
VHSIC (Very High Scale Integrated Circuits) is the next level of integration above 
VLSI. This language was developed by the USA Department of Defense and is 
now a world-wide standard for describing general digital hardware. The language 
allows a system to be described at many different levels from the lowest level of 
logic gates (called structural) through to behavioural level. At behavioural level 
the design is represented in terms of programming statements which makes no use 
of logic gates. This behaviour can use a digital (i.e. Boolean), integer or real repre- 
sentation of the circuit operation. A system designer can specify the design at a 
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high level (i.e. in integer behavioural) and then pass this source code to another 
member of the group to break the design down into individual smaller blocks 
(partitioning). A block in behavioural form requires only a few lines of code and 
hence is not as complex as a structural logic gate description and hence has a 
shorter simulation time. Since the code supports mixed levels (i.e. gate and behav- 

iour) then the system can be represented with some blocks represented at the gate 

level and the rest at behavioural. Thus the complete system can be simulated in a 
much shorter time. 

One of the biggest problems of designing an ASIC is the interpretation of the 

specification required by the customer. Because VHDL has a high-level descrip- 
tion capability it can be used also as a formal specification language and estab- 
lishes a common communication between contractors or within a group. Another 
problem of ASIC design is that you have to choose a foundry before a design is 
started thus committing you to that manufacturer. Hence, it is usual to insist on 
second sourcing outlets to avoid production hold-ups. However, VHDL at the 
high level is technology and process independent and is therefore transportable 
into other processes and CAD tools. It is not surprising that many companies are 
now insisting on a VHDL description for their system as an extra deliverable as 
well as the chip itself. 

A simple example of a VHDL behavioural code for a 2-to-1 multiplexer is 
shown in Table 11.2. This source code is divided into two parts: entity and archi- 
tecture. The entity lists the input and output pins and what form they are - bit or 
binary in this case - whilst the architecture describes the behaviour of the multi- 
plexer. The process labelledfl is only run if any of the inputs dO, dl or sel change, 
i.e. it is an event driven simulator. If one of these events occurs the IF statement is 
processed and the output q is set depending upon the value of sel. 

Table 11.2 VHDL behavioural code for a 2-to-1 multiplexer 

ENTITY mux IS 
PORT (dO, dl, sel:IN bit; q:OUT I~it); 

END mux; 
ARCHITECTURE behaviour OF mux IS 

BEGIN 
fl: 
PROCESS (d0,d 1,sel)~sensitivity list 
BEGIN 
IF' sel--0 THEN 

q <=dl; 
ELSE 
q <=dO; 

END IF; 
END behaviour; 

Notice that since this is a behavioural description then no logic gates are used in 
the architecture. The next stage would be to convert this design into logic gates. 
This can be performed in two ways: automatically or manually. With the auto- 
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matic approach an additional CAD software package is required called a synthe- 
siser. These are available at an extra charge and will generate the logic gates 

required to implement the desired behaviour. Alternatively this step can be 
performed manually. A typical VHDL structural description of the above multi- 

plexer implemented with logic gates is shown in Table 11.3. 

Table 11.3 VHDL structure code for a 2-to-1 multiplexer 

ENTITY mux IS 
PORT (dO, d 1, sel:IN bit; q:OUT bit); 

END mux; 
ARCHITECTURE structure OF mux IS 

COMPONENT and2 
PORT (inl, in2:IN bit; f:OUT bit); 

END COMPONENT; 
COMPONENT or2 

PORT (inl, in2:IN bit; f:OUT bit); 
END COMPONENT; 
COMPONENT inv 

PORT (inl, in2:IN bit; f:OUT bit); 
END COMPONENT; 
SIGNAL x, y, nsel: bit; 
FOR Ul:inv USE ENTITY work.inv; 
FOR U2:and2 USE ENTITY work.and2; 
FOR U3:or2 USE ENTITY work.or2; 
BEGIN 

UI: inv PORT MAP(sel, nsel) 
U2:and2 PORT MAP(nsel, dl, y) 
U3:and2 PORT MAP(d0, sel, x) 
U4:or2 PORT MAP(x,y,q) 

END structure; 

Since this is only a trivial example then a manual synthesis is possible. It is also 
apparent that a behavioural code is more succinct than a structural one hence the 
simulation is faster. As the design becomes more complex then the use of an auto- 

matic synthesiser is essential. 

11.6 CHOOSING A DESIGN ROUTE 

So we now know all the options available to a digital circuit designer. The deci- 

sion is now to choose the appropriate route. It is wise at this point to revisit the ten 
questions that were raised at the beginning of this chapter and to consider them in 
the light of the summarised information given in Table 11.4. 

A standard part (called 'Std. Part' in the table) design route (i.e. 74HCT, etc.) is 
certainly the quickest to get started and can handle large and complex designs. 
However, it may well be limited when the design needs to be miniaturised or put 
into production. Also design techniques with standard products often tend to be 
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Table 11.4 Comparison of digital design routes 

FC SC MPGA FPGA PAL/PLA Std. Part 

Design time (months) 6-12 2-6 1-6 1-30 days 1-14days 1-30days 
Fab. time (months) 2-4 1-3 2-6 wks 1-10 mins 1-5mins 14 days 
Time to mkt. (months) 8-16 3-9 1.5-7.5 30 days 14 days 6 wks 
Prototype cost hi hi med. lo V.lo V.lo 
Production cost med./lo lo lo hi med./lo hi 
Speed V.hi hi hi/med, med./slow med. /hi  med./hi 
Complexity V.hi hi hi/med, med./lo 1o V.hi 
Redesign time (months) 3-5 2-4 3-6 wks 5 days 2 days 1-14 days 
CAD complexity V.hi  hi/med, m e d .  med./lo 1o Io 
Risk V.hi hi med. lo V.lo V.lo 

ad hoc and in some instances not synchronous. The design may use RC compo- 

nents, 555 timers and gated clocks. If the design is only a one-off and it functions 
correctly then this will be perfectly satisfactory if size and power are not an issue. 
However, if the design requires miniaturisation or transfer to an ASIC for power 

consumption reasons then the circuit will have to be redesigned for a totally 
synchronous approach as discussed in Chapter 8. 

Of the AND-OR array devices a ROM device can be used to efficiently 
perform a number of digital tasks, whilst PALs and PLAs are also widely avail- 
able providing much of the capability of ROM but with smaller circuits. 
However, it is necessary to minimise the Boolean functions before they can be 
implemented in a PAL or PLA. A PAL allows a fixed number of minimised 
product terms to be summed whilst a PLA enables any number of the product 
terms formed to be summed. However, although PALs and PLAs are quite 
adequate for gate counts of the order of 500 they are limited due to having no 
buried registers. 

Obviously no one route will satisfy all options but FPGAs are becoming a 
strong prototyping contender. At present FPGA performance is still below that of 
mask programmable gate arrays (MPGA) which still have the edge in terms of 
high performance (high speed, low power consumption), high gate density or 
large volumes. However, for small volumes, FPGAs offer a virtually immediate 
turn around time and relatively low cost (particularly in terms of the non-recur- 
ring engineering (NRE) costs which can be very large for many ASIC designs). In 

addition since a single FPGA is relatively inexpensive the risk factor is signifi- 
cantly less and hence the emphasis on the simulation stage is reduced. An FPGA 

can thus be programmed and tested rapidly. However, if a design fault exists then 
the fault can be quickly corrected and the device reprogrammed. The use of an 

FPGA is a very powerful vehicle for testing out an idea before going to volume 

production. Translators are available which can convert FPGA designs into mask 
progl'ammable ASICs once the design is confirmed at the prototype stage. FPGAs 
also/support VHDL description and since VHDL is transportable it can be trans- 
ferred into standard cell (SC) options if sufficient volume is expected. 
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The standard cell (SC) and full custom (FC) route appear at first sight to be 
much too expensive to consider in small volumes. However, processes such as 
multiproject wafers and the Europractice initiative have brought these routes into 
the reach of small companies and universities. Europractice (previously called 
Eurochip) provides low-cost access to both CAD software and foundries. A very 
competitive service for standard cell and full custom designs is offered. For 
example a typical standard cell charge for a 2000 gate design costs approximately 
s for 10 devices. It is initiatives such as these that provide training for future 
IC designers to move into industry and take advantage of the latest technology. 
For those of you who wish to explore further the Europractice route then visit the 
web site: http: /Iwww. te. rl. ac. ukleuropractice or http: llwww, imec. beleuropractice. 

11.7 SELF-ASSESSMENT 

11.1 Define the acronym 'ASIC'. 

11.2 List the safe rules to follow for mask programmable ASIC design. 

11.3 Explain what is meant by the term gated clock. 

11.4 Why should gated clocks be avoided? 

11.5 What problems do monostables have for digital design? 

11.6 Why should delay lines be avoided in ASIC designs? 

11.7 Name three ways in which programmable logic devices can be 
programmed. 

11.8 What is the difference in architecture between a ROM, PAL and a PLA? 

11.9 Define utilisation with respect to gate arrays. 

11.10 What does the acronym VHDL stand for? 

11.11 Why is it necessary to resimulate after a chip is laid out? 

11.12 What is meant by a functional simulation? 

11.13 Define an event driven simulator. 

11.14 Is the following statement true or false: 'A gate array has more customer 
specific masks than a standard cell design'? 

11.15 Name two pieces of software for producing a JEDEC file for a PAL type 

device. 

11.16 How does a GAL differ from a PAL? 

11.17 A hypothetical PAL has 10 input terms and four outputs (active high). 
What is its part number? 
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11.18 Repeat Question 11.17 for a GAL. 

11.19 A VHDL description is divided into two parts. Name these parts. 

11.20 With respect to VHDL what is the difference between a structural descrip- 
tion and a behavioural description? 

11.21 Define NRE with respect to ASICs. 

11.8 PROBLEMS 

11.1 Assuming that you are the first digital designer employed by a company, 
choose a design option for the following digital circuits: 
(a) seven input, three output truth table (low volume); 
(b) controller using 200 gates (high volume); 
(c) controller using 1500 gates (small size, low volume); 
(d) high-speed synchronous sequencer with 1000 miscellaneous logic gates 

(very high volume); 
(e) controller using 15 000 gates (high volume); 
(f) a single PCB for the control of a multisite temperature measurement 

system (no size and power restrictions but required within two weeks). 

11.2 How could an eight-bit ROM with 2048 memory locations be used as a 
look-up table for the function y= sin x? 

11.3 How could the ROM used as a look-up table for y= sin x in Problem 11.2 be 
used to generate a 500 Hz sine wave? 

11.4 A digital designer designing with a gate array requires a JK flip-flop. 
However, the library contains only D-type flip-flops and basic gates. Using a 
state diagram approach design a circuit that will implement the JK function 
from a D-type and these basic gates. 

11.5 The system in Fig. 11.8 assumes that the interrupt input line is synchronised 
to the clock. If interrupt can now arrive at any time (i.e. asynchronously) 
then redesign the circuit such that the load line must go high for one clock 
pulse after interrupt goes high. Hint: redraw the timing diagram and label 
the states (you will now need three states). 

11.6 Using the PAL in Fig. 11.22 produce a fuse map for the truth table shown in 
Fig. 11.26. What software is available to produce a JEDEC file directly from 
a truth table without having to draw the Karnaugh maps? 

11.7 A 10 MHz clock is applied to the 12 bit counter in Fig. 11.7 with the 74HC74 
device cleared by the Q4 output. Given that the propagation delay of each 
bistable in the counter is 10 ns what is the exact pulse width produced at the 
Q output of the 74HC74 device? Assume all other delays are zero. 
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Fig. 11.26 Truth table for Problem 11.6 
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11.8 The inverter chain buffer circuit of Fig. 11.11 (a) is used to drive a load of 24 
unit loads where one unit load is equal to the input capacitance of the first 
inverter. If N = 4 , f =  3 and the delay of the first inverter driving itself is 2 ns 
then what is the total delay for this network? 

11.9 The basic cell used in the Actel Act l FPGA (see Fig. 11.25) has the 
following input signals applied: SIS2S3S4=OABC and WXYZ=OAO1. If 
'A', 'B' and 'C' are inputs having values of '0' or '1', and for each multi- 
plexer when the select line is low the lower input is selected, what function is 
performed by this circuit? 

11.10 A master clock circuit is to drive two circuits, A and B, having input capac- 
itances of 5 and 10 unit loads respectively. Each circuit is buffered by a non- 
inverting buffer having an inherent delay of 1 ns and output drive 
capability of 15 ns/unit load. What is the relative delay between the clock 
signals arriving at each circuit? 

11.11 A small CMOS inverter is to drive a 50 pF load via two inverting buffers 
whose WIL ratios increase by a factor off,  as shown in Figure 11.1 l(a). 
Calculate the value o f f  to achieve a minimum delay and the magnitude 
of this delay. Assume that each inverter has a zero inherent delay and 
the small CMOS inverter has a loading delay of 12.5 ns/pF and an input 
capacitance of 0.01 pF. 



12 Answers to selected 
self-assessment questions 
and problems 

Chapter 1 

Self-assessment 
1.1:0 or 1 (HIGH or LOW). 1.2: 3; NOT, AND, OR. 1.3: six columns; 16 rows. 
1.4: As variables are AND'd together. 1.6: A number of product terms are OR'd 
(summed) together. 1.7: Can implement NOT function; and then use duality for 
other functions. 1.8: Boolean algebra; truth table; circuit diagram; timing 
diagram. 1.9: (a) 0; (b) no change; (c) no change; (d) 1. 

Problems 
1.1" Use Equation 1.7, then see Ex. 1.13. 1.2: Similar to Ex. 1.14, except use 
Equation 1.15 first. 1.3: Begin by using De Morgan's theorem twice. 1.6: 
Y= A +B~  C. 1.7: See Ex. 1.26; 3 NANDs. 1.8: (c) AND gate; (d) 2 NAND; 3 NOR. 

Chapter 2 

Self-assessment 
2.1: Variables can only be 0 or 1.2.2:8 units; 0 through to 7.2.3:8 ~ 8 ~ and 8 -~. 2.4: 
16 units; 0 to 9, then A to F. 2.5:4 x 4.2.6: Adjacent codes differ only by 1 bit. 2.7: 
000, 001, 011,010, 110, 111,101,100.2.8:2 ~2 =4096.2.9: As can multiply/divide 
by 2 by simply shifting binary representation of number. 

Problems 
2.1: 230.2.2: 317.2.3:1425. 2.4:34526. 2.5:100101100.2.6: 4DE. 2.7: 85.2.8: 2750. 
2.9: A59. 2.10: 0010:0100:0011.2.11:4x200x30=24000 bits=3000 bytes. 2.12: 
5+(2 4- 1)= 333mV. 2.13:100011 (Wire 0's to gate via inverters). 2.15: 76+43= 119; 
giving + 19.2.16: 64+ 17 =81; but is negative result; giving-19. 

Chapter 3 

Self-assessment 
3.1: Outputs only depend upon inputs (no memory). 3.2: Respectively variables 
AND'd/OR'd together. 3.3: Sum of products/product of sums. 3.4: As for SA 
question 1.8 plus a Karnaugh map. 3.5: For m-input and n-output variables; get 
(re+n) columns and 2'" rows. 3.6: Has all input variables AND'd together; is 
linked to single row of the truth table. 3.7: Sum of products or product of sums; 
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theoretically the fastest. 3.8: Gives sum of products expression with fewer, non- 
fundamental product terms. 3.9: Property of inverse elements (after use of distrib- 
utive law). 3.10: They place logically adjacent product terms next to each other. 
3.12: Groupings of 8, 4 and 2 minterms. 3.13: Single cell in Karnaugh map; 
minimised product term; minimised product term that must be used for minimisa- 
tion. 3.14: A product term whose value is not defined; can be set to 0 or 1 to aid 
minimisation. 3.15: SOP/POS describe where the l's/0's are on a Karnaugh map. 
3.16: log2n. 

Chapter 4 

Self-assessment 
4.1" To route 1 of 8 inputs to single output (selected via three control lines). 4.2: As 
all fundamental product terms are decoded by the multiplexer (mux). 4.3: Routes 
single input to one of n outputs (selected via m control lines (n = 2m)).  4.4: Just hold 
input to de-mux HIGH or LOW as required. 4.5: Programmable inverter; parity 
generator/checker; comparator, 4.6: Adds two bits plus carry-in bit to give sum 
and carry-out bits. 4.7: Iterative array; full-adder; rippling carry makes it slow. 
4.8: Carry signals generated directly from inputs (hence name); therefore faster. 
4.9: Race conditions so that signals do not have expected values at all times. 4.10: 
Signal goes transiently to other state; caused by race conditions for two paths; 
static-0 and static-1.4.11: Signal expected to change state actually doe~so twice; 
caused by race conditions for three or more paths. 4.12: By including non- 
essential prime implicants in minimised expression. 

Problems 
4.2: (a) 19; (b) 18 gates. 4.6: three-input XOR gate. 4.7: Swap final XOR for NOR 
gate. 4.8: Full adder with inverted carry-out. 4.9: Invert all inputs and add 1 using 
carry-in. 4.11- Gives two's complement of input word. 4.12: (re+n) input and 
output columns; 2 t'''+"~ rows. 4.13: Need NOT and OR gate. 4.14:Static-1 hazard 
for BC; use this product term for blanking gate. 

Chapter 5 

Self-assessment 
5.1: Sequential circuits have 'memory' because their outputs depend, in part, 
upon past outputs. 5.2: Combinational logic plus 'memory'. 5.3: For n-outputs 
from 'memory', and m-external inputs; have: 2" internal and 2 m+n possible total 
states. 5.4: Memory elements in synchronous circuits are flip-flops which are 
clocked. Asynchronous circuits are unclocked. 5.5: The internal inputs and 
outputs must match (as they are connected). 5.6: Only one input can change at a 
time (fundamental mode operation). 5.7: 'Cutting' the connection between 
internal inputs and outputs. 5.9: (a) Horizontal; (b) vertical. 5.10: Oscillation. 
5.11: Non-critical races do not affect final output; critical races do. 
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Problems 
5.1: Detects input sequence (1,0), (1,1), as Circuit 4. 5.2: State diagram has 
same form as P5.1. 5.3: Functionally same state diagram as others; Z=ABy. 
5.4: SR flip-flop. 5.5: Circuit similar in form to 5.1, 5.2 and 5.3; two stable states 
for inputs (0, 0): Z= 1 when entered from (0,1). 

Chapter 6 

Self-assessment 
6.1: SR, T, JK, D. 6.2: They can be toggled so if unclocked when toggled would 
oscillate. 6.3: Truth table; excitation table; Karnaugh map; next state equations. 
Gives necessary inputs for specific outputs. 6.5: Gives next state of output, Q§ in 
terms of present output, Q, and inputs. 6.6: Inputs affect outputs: immediately; 
when clock line reaches (and remains at) a certain level; at the instant an edge 
occurs on the clock line. 6.7: Goes to 1 or 0; either immediately or when next 
clocked. 6.8: Series of flip-flops whose outputs/inputs are linked. Shifting 
performs multiplication or division. 6.9:12 and 6. 

Problems 
6.1,2: Use short pulses as inputs. 6.3: Feedback path is broken. 6.4: (a) J=K; (b) 
J=  K; (c) D= T ~  Q. 6.5: Q= 1 when X= 1 else Q= C. 6.6: Oscillates between state 
010 and 101. 

Chapter 7 

Self-assessment 
7.1- The number of count states it possesses. 7.2: Asynchronous: each flip-flop is 
clocked by the last (ripple counters); synchronous: all flip-flops clocked simulta- 
neously under control of a combinational logic function of flip-flops' outputs. 7.3: 
Set count state; reset count to 0.7.4: Either use Q outputs as clock or use positive 
edge triggered flip-flops. 7.5: Decode Nth count state and use it to reset all flip- 
flops; spikes in output. 7.6: Use T-type flip-flops; always toggle first flip-flop and 
only toggle others when all preceding flip-flops have an output of 1.7.7: Use 
present outputs (via combinational logic) to determine next outputs. 7.8: Need M, 
with 2M___N; will have (2M-N) unused states; depends upon minimisation of 
'don't care' states. 

Problems 
7.1: Mux to route either Q or Q to next FF's  clock. 7.2:Mod-8 binary ripple down 

m 

counter; 3=Q2+Q~+Qo. 7 .3 :Mod-6  binary ripple up counter. 7.4: Reset 

using 0200- 7.6(a): D2= Q~ Q0, D~ = Qi ~9 Q0, Do= Q2Qo; J2- Q~ Qo K,_= 1, J~- Qo 
K~=Qo, J0 = Q2 K0 = 1.7.7: J2-QiQo, K2=Q~, Jl=Q0, K~=Q2+Qo, J0 = Q2 + Q~, 
K0=l. 
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Chapter 8 

Self-assessment 
8.1: Possesses memory in the form of flip-flops which are clocked together. 8.2: 
Autonomous (no external inputs); general synchronous sequential circuit with 
outputs either depending upon internal inputs only (Moore model) or upon 
external inputs as well (Mealy model). 8.3: Write table for present and next states; 
produce Karnaugh maps for next state variables; minimise to find inputs to flip- 
flops. 8.4: Those not required in the design. If entered, erroneous circuit operation 
may occur; so often made to lead to some specified state. 

Problems 
8.2: Autonomous. 8.5: States 4 and 5 cycle; lead them to another state. 8.6: I 
controls direction through states. 8.7: For I = 1 sequence of states. A, B, C, D, A; 
for I = 0 sequence is A, B, D, C, A. 8.8: Moore. 8.9: Mealy; serial adder. 

Chapter 9 

Self-assessment 
9.1:0.2 V. 9.2:0.7 V. 9.3: Transistor current gain or IJI  b . 9.4: Diode Transistor 
Logic, Transistor Transistor Logic, N-channel Metal Oxide Semiconductor, 
Complementary MOS, Emitter Coupled Logic, Bipolar and CMOS. 9.5: True. 
9.6: 74, 74LS, 74F, 74ALS. 9.7: CMOS: 74HC, 74AC, 74ACT, 74HCT, 74AHC, 
4000B. TTL: 74ALS, 74LS, 74F, 74. 9.8: Both devices are CMOS and pin 
compatible with TTL devices but the ACT device has input voltage levels that are 
TTL voltage levels. 9.9: I~em,x" 9.10: Both currents are equal and very low (0.1 ~A). 
9.11: CMOS: low power, high density. TTL: high speed but now being superseded 
by high-speed CMOS processes. 9.12: Because the transistors are prevented from 
entering saturation. 9.13: If Vos < VGS- V T then the device is in the linear region 
and los = K[( VGs- Vv). VDS- V~s/2 ]. If however, Vos > VGs- V v then the device is in 
the saturation region and IDs=[K/2][VGs--VT] 2. 9.14: K=(WIL)IXCox. 9.15: Since 
/z, >/Zp then in order to ensure that KN= Kp the PMOS device is larger than the 
NMOS. 9.16: True. 9.17: P~ynamic=CL.V~d.f. 9.18: Xp=2CL/(KN.Vd~). 9.19: Series 
NMOS parallel PMOS, parallel NMOS series PMOS. 9.20: One NMOS and one 
PMOS transistor back to back. 9.21: F100K, 74AC/74ALS, 74HC, 74LS. 9.22: 
74AC/74HC, 74ALS, 74LS, F100K. 9.23: Product of power and delay. 9.24: 
BiCMOS, CMOS, GaAs, ECL, TTL. 9.25: No. 

Problems 
9.1" 1.17 k~. 9.2: Plow- 4.18 mW (T 1 is off), Phigh ----- 26.96 mW (T 1 is on). 9.3:8 
(high), 4 (low). 9.4: 0.4(high)/0.4(low), 0.7/0.3, 2.3/0.47, 0.3/0.3. This assumes that 
o/p's are at the minimum and maximum conditions. 9.5: 76.6.9.6:0.289 mA. 9.7: 
6 ns, increase Vaa and/or decrease temperature. 9.8:200 ns, 50 ns. 9.9: NMOS: A in 
series with B in series with a parallel combination of D and C. Reverse for PMOS. 
9.10:625 f2.9.11: KN= 1053 ~ V -2, Kp= 13.9 laA V -2. 
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Chapter I0 

Self-assessment 
10.1- Read only memory; random access memory; static RAM; dynamic RAM; 
erasable PROM; read-write memory; pseudo SRAM; non-volatile SRAM; one- 
time PROM; electrically erasable and programmable ROM. 10.2: Retains data; 
loses data; loses; loses; retains; depends if EEPROM/FLASH (retains) or RAM 
(loses); loses; retains; retains; retains. 10.3: When the power is removed the data is 
retained. 10.4: Time taken to read data from memory. 10.5: In ascending tran- 
sistor count per bit: mask ROM; EPROM; FLASH; EEPROM(MNOS); 
OTPROM; DRAM; EEPROM(floating gate); SRAM. 10.6: Hard disk write 
times are typically lOOms whilst SRAM is 0.1 ps. 10.7: SRAM/DRAM (0.1 ~) ;  
FLASH (10 lus); EPROM (50 las but takes 20 minutes to erase); OTPROM(100 
but only one write operation); EEPROM (10 ms); hard disk (100 ms). 10.8: 
DRAM due to its high capacity and fast write times. 10.9: Single in line memory 
module. 10.10: A thin plastic card containing memory chips with a standard 68 
pin connector. 10.11" CE=O, OE=O, WE = 1.10.12: Data is stored as charge on a 
capacitor via an off transistor. This charge can leak away through the off tran- 
sistor and hence must be periodically recharged. 10.13: All need Vdd and Vs~ except 
the EPROM and FLASH which currently require an extra high voltage pin, Vpp. 
10.14: SRAM device goes into low-power mode. 10.15: EPROM and FLASH. 

Problems 
10.1- (a) 2048 words, (b) 8 bits, (c) 16 384 bits. 10.2: (a) 32 pins, (b) 24 pins. 10.3: 
(a), (b) drive A19 to CE of one chip and A19 to CE on the other chip, (c) CE~ = 
A19+A20, CE2=A19+A20 , CE3=A19+A20 , CE4-A19.A20. 10.4: 0.42pF. 
10.5:tbyteverify=6.21 ILLS, /byte write--10.19 ~ .  10.6: 250kf2. 10.7: 20mW, 12mAhours 
- but does not include dynamic power dissipation. 

Chapter II 

Self-assessment 
II .I :  Application Specific Integrated Circuit. 11.2: No gated clocks/resets, mono- 
stables, RC/CR circuits and delay chains; use synchronous techniques, use a high 
frequency clock; use clock buffering. 11.3: A clock signal passed through a logic 
gate such as an AND gate. 11.4: These can cause spikes and glitches on clock lines 
and hence can cause incorrect clocking of flip-flops. 11.5: A monostable is a device 
that in response to a rising (or falling edge) will produce a pulse of duration 
dictated by external C and R. External R and C required (not suitable for ASICs); 
pulse width varies with temperature, Vcc and from device to device; poor noise 
margin; unclean signal for narrow pulses. 11.6: The propagation delay on a chip 
(and across it) varies considerably. 11.7: SRAM, fuse, EPROM. 11.8: ROM: fixed 
AND-programmable OR; PAL: programmable OR-fixed OR; PLA: program- 
mable OR-programmable AND. 11.9: The percentage of gates used in a design. 
11.10: VHSIC (Very High Scale Integrated Circuits) Hardware Description 
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Language. 11.11" When a chip is laid out the interconnect and other layers add R 
and C and so slow down signals- hence it must be resimulated. 11.12: All gates 
have the same delay (typically 1 ns) and no set-up, hold and pulse width checks are 
carried out. 11.13: Only when an input to a gate changes will the gate output be 
computed. 11.14: False. 11.15: ABEL, PALASM, CUPL. 11.16: Generic Array 
Logic-  a PAL with a versatile cell at the output called an OLMC (output logic 
macro cell). 11.17: PAL10H4. 11.18: GAL10V4. 11.19: Entity and architecture. 
11.20: Structure: logic gates and blocks connected together; behaviour: use of 
high-level statements (i.e. IF THEN etc.) to describe function of system. 11.21" 
Non-recurrent engineering charges- tooling costs. 

Problems 
11.1: (a) PAL, FPGA; (b) GAL, standard cell; (c) FPGA, standard products; (d) 
standard cell, full custom; (e) gate array, standard cell; (f) standard products, 
FPGA. 11.2: ROM would need to have 11 address lines (i.e. 2048 locations) and 
eight data bits. 11.3: Add DAC to output of ROM at an addressing clock 
frequency of 0.9 MHz. 11.4: D=J.Q+Q.K. 11.5: Two D-types: Do=Qo.Q~ + i. Q0; 
D~=I.Qo.Q~ where D~ output is LOAD. 11.6: X=A.C+A.B.C.D; 
Y=A.C.D+A.C.D+A.B.C.D; Z=A.B.C.D+A.B.C.D+A.B.C.D + A.B.C.D; use 
ABEL or PALASM. 11.7: 840ns. 11.8:19.8 ns (both the input capacitance and K 
increases by 'f' at each stage). 11.9: output=A.C+A.B. 11.10: 75ns. 11.11" 
f=  17.1, minimum delay = 6.42 ns. 
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"283' adder, 105 

absorption laws, 10 
adder 

'283', 105 
design example, 100 
full, 98, 102 
half, 98 
look ahead carry, 103 

alternative implementation, 105 
ripple carry, 102 

analogue-to-digital converter 
output from, 35 

offset binary, 35 
sign magnitude, 35 
two's complement, 36 

AND, 3 
operator shorthand, 47 

AND-OR Architectures, 287 
AND-OR-INVERT, 15 
ASIC's, 266 

field programmable, 266 
mask programmable, 266 

assertion level logic, 23, 77 
associative laws, 8 
asynchronous counter, 164, i 65 

mod-N, 166 
asynchronous logic circuit, 126 
asynchronous sequential circuit, 128 

breaking feedback path, 134 
design, 146 

essential hazard, 147 
hazards, 147 
merging rows, 147 
primitive flow table, 147 
transition table, 147 

flow table, 134 
fundamental mode, 129 
race conditions, 144 

critical race, 145 
non-critical race, 144 

stability, 128 
stable and unstable states, 129 
state diagram, 136 
transition table, 134 
with 2 inputs, 139 

autonomous synchronous sequential circuit, 
180 

base- I 0, 29 
base- 16, 29 
base-2, 29 
BiCMOS, 219 
binary arithmetic, 29, 36 

addition, 36 
division, 43 
multiplication, 42 
subtraction, 37 

binary coded decimal, 33 
binary subtraction, 37 
bipolar 

power dissipation, 228 
blanking gate, 113, 114 
Boolean 

algebra, 1,4 
and ordinary, 11 
minimisation, 50, 52, 72 
multivariable theorems, 7 
single variable theorems, 4, 6 

logic symbols 
of all gates, 13 

operators, 1, 2 
AND, 3 
NOT, 2 
of all gates, 13 
OR, 4 
XOR, 13 

variables, 1 
Boolean algebra 

minimisation 
of product of sums, 82 

bubbles, 13 
bus contention, 229 
byte, 241 

canonical, 48, s e e  fundamental 
carry 

generation, 105 
propagation, 105 

Clock buffering, 276 
CMOS, 208 

complex gates, 212 
input protection circuitry, 236 
NAND/NOR, 212 
power dissipation, 209. 228 
propagation delay, 211,226 
transmission gate, 215 

code converter/look up table, 215 
combinational logic, 46 
combinational logic circuit 

compared to sequential, 125 
commutative laws, 7 
comparator, 96 
Computer Aided Design, 278 

back annotation, 282 
DRC, 286 
ERC, 286 
event driven simulator, 282 
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Computer Aided Design (cont.) 
functional simulation, 282 
layout, 282 
layout verification tools, 286 
net-list, 282 
pre-layout simulation, 282 
schematic capture, 281 
SPICE, 286 
standard cell, 286 
timing analyser, 283 
VHDL, 282 

controlled inverter, 96 
counter, 164 

'mod' of, 164 
asynchronous, 164, 165 

mod-N, ! 66 
down, 165 
Johnson, twisted ring etc., 161 
ring, 160 
ripple, 164 
synchronous, 164, 167 

mod-2", 167- 
mod-N. 166 
state diagram, 173 
using D-types, i 69 
using JKs, 169 

CR Pulse Generators, 274 
critical race, 145 
cut-off, 194 

D-type flip-flop, 151 
using transmission gates, 216 

De Morgan's theorem, 9, 18 
decimal, 29 

conversion from base-n, 29 
conversion to base-n, 31 

decoder, 94, 269 
decoupling, 237 
demultiplexer, 92 

as decoder, 93 
depletion MOSFETS, 205 
diode, 194 

forward bias, 195 
distributive law, 8 
don't care terms, 70 
down counter, 165 
DRAM, 258 

refreshing, 259 
timing diagram, 260 

dual, 60 
duality, 18 

of multivariable theorems, 19 
dynamic hazards, 116 

edge-triggered flip-flop, 151 
EEPROM, E 2 P R O M ,  250 

data polling, 252 
endurance, 25 I 
floating gate cross-section, 251 
MNOS, 250, 252 
timing diagram, 252 

Electron Beam Masks, 275 
electrostatic protection, 236 
encoder, 94 

priority, 95 
enhancement MOSFETS, 205 
EPROM, 248 

avalanche breakdown, 249 
endurance, 249 
FAMOS, 249 
floating gate cross-section, 248 
timing diagrams, 247 
write-erase cycles, 247 

essential hazard, 147 
essential prime implicant, 68 
excitation table, 151 
exclusive OR, 13 

factors, 87 
fan out/fan in, 198, 230 
Field Programmable Logic, 266, 287 

CAD tools, 299 
EPLD, 292 
EPLD, GAL, 267 
FPGA, 267, 295 
GAL, 292 
NOR array, 288 
PAL, 267, 291 
PLA, 267, 293 
programming, 301 
ROM, 267, 288 

FLASH E 2 P R O M ,  253 
timing diagrams, 253 

flip-flop, 150 
clear input, 153 
D-type, 151,216 
edge-triggered, 153 
excitation table, 152 
JK, 151 
Karnaugh map for, 151 
level-triggered, 153 
master-slave, 153, 162 
next state equation, 151 
present input, 153 
set-up and hold times, 153 
SR (Set-Reset), 155 
T (Toggle), 151 
toggling, 150 
transparent, 153 
truth table, 151 

floating inputs, 236 
flow table, 134 
Fowler Nordheim tunnelling, 254 
FPGA 

Comparisons, 297 
EPROM Type, 296 
Fuse Type, 297 
granularity, 296 
programming technique, 296 
re-programmability, 296 
SRAM-MUX Type, 296 
volatility, 296 

full adder, 98, 102 
serial, 311 

fundamental 
product of sums, 80 
product term, 48, 56 
sum of products, 47 

fundamental mode, 129 

Gallium Arsenide, 222 
gate delay, 108, 110 
gate equivalence, 18 
Gated clocks, 270 
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general memory architecture, 242 
glitches, 109, 269, 281 
gray code, 34 

and Karnaugh maps, 67 
grouping, 60 

dual, 60 
octet, 64 
quad, 62 

hazards 108 
and Karnaugh maps, 112 
dynamic, 116 
essential, 147 
glitches, 109 
linked to minimisation, 112 
multiplexer, 111 
spikes, 109 
static, 109 

elimination, 113 
static-0, 109 
static- 1, 110 
summary, 119 

heuristic design, 102 
hexadecimal, 29, 32 
high impedance or high Z, 231 
holding gate, 113 

idempotent law, 5 
identity elements, 6 
implicant, 68 

essential prime, 68 
prime, 68 

increasing memory capacity, 244 
inherent capacitance, 210 
interfacing CMOS and TTL, 234, 235 
internal state, 126 
intersection, 48 
inverse elements law, 5 
reverter, 3 
involution law, 5 
lterative array, 103 

JK flip-flop, 151 
Johnson counter, 161 

Karnaugh map, 54 
2 variable, 55 
3 variable, 59 
4 variable, 62 
5 variable, 65 
and gray code, 67 
and hazards, 112 
don't care terms, 70 
for XOR, 55, 57, 65 
minimisation, 56, 83 
minimisation summary, 71 
rolling, 62 

law 
absorption, 10 
associative, 8 
communtative, 7 
De Morgan's theorem, 9, 18 
distributive, 7 
idempotent, 5 
identity elements, 6 

inverse elements, 5 
involution, 5 
other identities, 11 

leakage current 
BJT, 194 
CMOS, 229 
MOSFET, 209 

level-triggered flip-flop, 151 
linear region, 205 
logic families, 191 

4000B, 217 
74AC/ACT, 219 
74AS/ALS/F, 204 
74BCT, 221 
74C, 217 
74HC/HCT, 218 
74LS, 203 
74LVX/LV etc, 221 
74S, 202 
CMOS, 208 
diode transistor logic, 194 
emitter couple logic, ECL, 221 
NMOS, 207 
TTL, 74 series, 196 

logic symbols, 12 
of all gates, 13 

logically adjacent, 50, 54, 58 
look ahead carry adder; 103 

alternative implementation, 105 
looping, s e e  grouping 
looping product terms, 58 
low voltage operation, 220 

Mask Prog. Gate Arrays 
CAD tools, 281 
channelled, 279 
cost limitations, 280 
gate count, 281 
gates, 279 
sea of gates, 279 
Utilisation, 280 

Mask Programmable, 266, 275 
full custom, 266, 287 
gate array, 266, 279 
standard cell, 266, 284 

mask programmed ROM, 242 
access time, 244 
read timing diagram, 245 

master-slave flip-flop, 151, 162 
maxterms, 80 
Mealy circuit, 180 
memory comparisons, 263 
minimisation, 50, 52 

Karnaugh map, 56, 84 
of product of sums, 83 
Quine-McCluskey, 72 
via Boolean algebra, 53 
via Karnaugh maps, 54 

minterm, 68 
mod, of counter, 164 
Monostables, 270 

alternative approach, 271 
Moore circuit, 180 
MOSFET, 204 
multiplexer 

product of sums form, 113 
Multi Project Wafers, MPW, 280, 285 
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multiplexer, 88 
as universal logic solution, 90 
hazard, I11 
using transmission gates, 216 

multivariable theorems, 7 

NAND, 12 
negative level logic, 77 
next state, 125 
next state equation, 15 I 
NMOS, 207 
noise margin, 224 
Non Recurring Expenditure, NRE, 279, 281 
non-critical race, 144 
non-volatile, 241 
NOR, 12 
NOT, 2 

octet, 64 
offset binary, 36 
one's complement, 38 
open collector/drain, 229 
OR,4  
other identities, 11 
OTPROM, 246 

programmable time, 247 
timing diagram, 247 

parallel adder, 102 
parity generator/checker, 98 
PCMCIA, 263 
photo or electron beam mask, 243,275 
power delay product (PDP), 233 
power dissipation, 228 
present state, 125 
prime implicants, 68 
prime implicates, 82 
primitive flow table, 146 
priority encoder, 96 
product of sums, 12 

fundamental, 80 
maxterms, 80 
minimisation, 82 

via Karnaugh maps, 83 
multiplexer, 113 
negative level logic, 77 

product term, 46, 48 
fundamental, 49, 55 
grouping 

dual, 60 
octet, 64 
quad, 62 

logically adjacent, 50, 58 
looping, 58 

PROM, 246 
propagation delay, see gate delay, 226 
PSRAM, 261 
pulse synchronisation, 156 

quad, 62 
Quine-McCluskey, 72 

race conditions, 108, 144 
RAM, 240, 241,256 

dynamic or DRAM. 241,258 
NOVRAM. 241 
PSRAM. 241 

static or SRAM, 241,258 
RC Integrator, 269 
Reset technique, 274 
ring counter, 160 
ripple carry adder, 102 
ripple counter, 164 
ROM, 240, 242, 288 

EEPROM E 2 PROM, 240, 250 
EPROM, 242,248 
FLASH E 2 PROM, 241,253 
fuse programmed, 240 
mask programmed, 240, 242 
NMOS ROM, 242 
NOR Type array, 242 
OPTROM, 240 
PROM, 240, 246 

row and column decoder, 241 

Safe ASIC techniques, 277 
saturation 

bipolar, 194 
MOSFET, 204 

Schmitt, 237, 269 
Schottky logic, 202 
selective implantation, 243 
Sequence/Waveform Generator, 290 
sequential logic circuit, 125 

asynchronous, 126 
external inputs to, 125 
internal state, 126 
next state, 126 
present state, 125 
synchronous, 126, 179 
total state, 126 

set theory, 47 
set-up and hold times, 153,282, 302 
shift register, 158 

as delay line, 160 
as sequence generator, 160 
malfunction, 283 
parallel-in serial-out, 160 
serial-in parallel out, 159 
serial-in serial-out, 159 

sign bit, 39 
sign magnitude, 35 
SIMM, 263 
single variable theorems, 4, 6 
spikes, 109, 269, 28 I 
SR flip-flop, 150 

asynchronous sequential circuit, 145 
SRAM, 256 

NOVSRAM, 257 
timing diagrams, 258 

state diagram, 136, 274 
static hazards, 109 

elimination, 113 
static-0 hazard, 109 
static- 1 hazard, 110 
subtractor, 122 
sum of products, 12, 46 

fundamental, 48 
alternative notation, 49 
minimisation, 50 

switch debouncing, 154 
synchronous counter, 164, 167 

mod-2" ! 67 
mod-N. 169 
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synchronous counter (cont.) 
state diagram, 173 
using D-types, 169 
using JKs, 169 

synchronous sequential circuit, 126, 179 
autonomous, 180 
classification, 180 
Mealy model, 180 
Mealy outputs 185 
Moore model, 181 

systolic array, 103 

T (Toggle) flip-flop, 150 
ten's complement, 36 
theorem, see law 
three state logic, 229 
threshold voltage, 204 
timing diagrams, 16, 258 
total state, 126 
totem-pole output, 199 
transfer characteristic, 223 
transistor, 193 

BJT, 193 
MOSFET, 204 
NMOS, 207 
PMOS, 207 
Schottky clamped, 200 

transition table, 134 
transmission gate, 215 
transparent flip-flop, 150 
tri-state, 231,244 
truth table, 3, 12 

of all gates, 13 
twisted ring counter, 161 
two's complement, 36, 37 

for binary subtraction, 37 
obtaining the, 38 
shorthand method, 40 

two-level circuit, 49, 101 

union, 47 
universal gates, 25 
universal logic element, 91 

VHDL, 302 
volatile, 241,257 

wired or, 231 

XOR, 13, 15 
as comparator, 96 
as controlled inverter, 96 
as parity generator/checker, 98 
based circuits, 96 




