
Members Only Edition

CAN in Automation e. V.

CANopen
Communication Profile
for Industrial Systems

Based on CAL

CiA Draft Standard 301

Revision 3.0

Date: 30.10.96

Table of Contents CANopen Communication Profile CiA
Members Only Edition

i

History

Date Changes

Oct 96 Document completely revised;

Summary of major changes:

· Object Dictionary structure extended (downwards compatible)

· Mapping of Emergency Telegram clarified

· Boot-Up procedure clarified

· Minimum capability device enhanced

· Default Identifiers for Node guarding added

· Transmission types enhanced

· PDO Mapping clarified

· Communication Parameters of supported PDOs made
mandatory

· SDO parameters included in Object Dictionary

· Storing/Restoring of parameters clarified / Objects added

· Object Dictionary structure accessible

· Chapter ãPhysical LayerÒ included

· Electronic Data Sheet specification included

Table of Contents CANopen Communication Profile CiA
Members Only Edition

ii

Errata Sheet for CiA DS-301 V 3.0 22.05.98
CANopen Communication Profile

changes are printed in italics

Chapter 8.1, Top of page 8-5:
Add: Power on values are the last stored parameters. If storing is not supported or has
not been executed or if the reset was preceded by a restore_default command (object
1011H), the power on values are the default values according...

Chapter 10.1, Bottom of page 10-2:
Add: The range 6000H-9FFFH contains the standardised device profile parameters.
The range A000H-FFFFH is reserved for future use.

Chapter 10.1.1, Bottom of page 10-4
Add:.. ...it enables one to upload the entire structure of the object dictionary. This entry
FFh is not counted in the number of entries in sub-index 0.

Chapter 10.1.3, Top of page 10-8
Replace:.. first an Ò8Ó is written to sub-index 0 , thus setting

Chapter 10.1.4, Table 10-11, page 10-9 + 10-10:
Index 100C (guard time): Replace Unsigned 32 by Unsigned16
Index 100D (life time factor): Replace Unsigned32 by Unsigned8
Index 12FF: Replace Server SDO parameter by Client SDO parameter

Chapter 10.3, Page 10-29, Object 1014H COB-ID Emergency Message
Replace: The structure of this object is shown in Figure 10-8 and Table 10-15, it is
similar to the entry 1005h (COB-ID SYNC message).
By: The structure of this object is shown in Figure 10-10 and Table 10-15, it is similar to
the entry 100Eh (Node Guarding Identifier).

Chapter 10.3, Top of page 10-30
Replace:.. All other server SDOs are invalid by default (invalid bit - see table 10-10).

Chapter 10.3, Top of page 10-34:
Change: object code for objects 1600H-17FFH is ARRAY, value range is Unsigned8

Chapter 10.3, Top of page 10-37:
Change: object code for objects 1A00H-1BFFH is ARRAY

Chapter 12.5.1, Top of page 12-5:
Add: ...ANSI character set. The keywords are not case-sensitive.

Chapter 12.5.2, Top of page 12-6:
Add: ..for a particular device class. The EDS consists of sections designated by a
section name. Each section contains entries designated by keywords.

Chapter 12.5.2.1, Page 12-6:
Replace: characters in format ãmm-dd-yyÒ; By: characters in format ãmm-dd-yyyyÒ

Chapter 12.5.2.3.3, Page 12-10:
Add: The entries are numbered decimal beginning with number 1.
Add:.. SubNumber - number of sub-indices available at this index, not counting sub-
index FFh (255dez).
Add: It is not necessary to use all keywords in every section. ParameterName,
ObjectType, DataType, AccessType however must be present in every object section.
The absence of the following keywords means
LowLimit - No
HighLimit - No
DefaultValue - No
All other keywords are handled in the way that keywords for numeric values are
evaluated as 0 and for string values as empty strings.
The absence of a keyword is equal to the statement
<keyword>= without a value.

Chapter 12.5.2.3.4, Middle of page 12-13:
Add between the description of the structure and the example: The list of object links is
numbered decimal beginning with number 1.

Chapter 12.5.2.4, Top of page 12-14:
Add between the description of the structure and the example: The line number is
decimal beginning with number 1.

Table of Contents CANopen Communication Profile CiA
Members Only Edition

iii

Table of Contents

1 SCOPE..1-1

2 REFERENCES...2-1

3 DEFINITIONS..3-1

4 INTRODUCTION...4-1

4.1 CANopen Communication Reference Model ...4-1

4.2 Standardisation Via Profiling..4-2

4.3 The Object Dictionary..4-3

4.3.1 Index and Sub-Index Usage..4-4

5 COMMUNICATION MODEL..5-1

5.1 The Service Data Object..5-2

5.1.1 SDO usage..5-2

5.1.2 Services..5-2

5.1.3 Protocols...5-3

5.2 The Process Data Object..5-5

5.2.1 PDO Usage ...5-5

5.2.1.1 Transmission Modes..5-5

5.2.1.2 Triggering Modes..5-6

5.2.2 PDO Services..5-7

5.2.3 PDO Protocol..5-7

6 SYNCHRONISATION BY THE SYNC MASTER ..6-1

6.1 Transmission of Synchronous PDO Messages...6-1

6.2 Optional High Resolution Synchronisation Protocol...6-2

6.3 Other Synchronisation..6-2

7 PRE-DEFINED COMMUNICATION OBJECTS..7-1

7.1 The SYNC Object...7-1

7.1.1 SYNC Usage ...7-1

7.1.2 SYNC Services..7-1

7.1.3 SYNC Object Protocols...7-2

7.2 The Time Stamp Object ..7-2

7.2.1 Time Stamp Object Usage ...7-2

7.2.2 Time Stamp Object Services..7-2

7.2.3 Time Stamp Object Protocols ..7-2

7.3 The Emergency Object ..7-3

7.3.1 Emergency Object Usage...7-3

7.3.2 Emergency Object Mapping...7-4

7.3.3 Emergency Object Services ...7-5

Table of Contents CANopen Communication Profile CiA
Members Only Edition

iv

7.3.4 Protocols...7-5

8 NETWORK MANAGEMENT AND IDENTIFIER DISTRIBUTION......................8-1

8.1 Services and Protocols...8-1

8.1.1 Enter_Pre-Operational_State Service and Protocol8-6

8.1.2 Reset_Node Service and Protocol ..8-7

8.1.3 Reset_Communication Service and Protocol ...8-7

8.2 Network Initialisation Process (Bootup-Process) ..8-8

8.3 Minimum Capability Device...8-10

8.4 Allocation of COB-ID's and Inhibit-Times ...8-11

8.4.1 Predefined Connection Set ..8-11

8.4.2 Dynamic Distribution...8-12

8.4.3 Naming Conventions...8-14

9 ERROR HANDLING..9-1

9.1 Node Guarding / Life Guarding ..9-2

9.2 Emergency Telegram...9-2

10 DICTIONARY STRUCTURE AND ENTRIES...10-1

10.1 Dictionary Components ..10-2

10.1.1 Data Types..10-3

10.1.2 PDO Communication Parameter ..10-5

10.1.3 PDO Mapping...10-7

10.1.4 SDO Parameter...10-8

10.2 Detailed Object Specification..10-11

10.3 Detailed Specification of Communication Profile specific Objects10-12

11 PHYSICAL LAYER..11-1

11.1 Physical medium Specification ...11-1

11.2 Transceiver...11-1

11.3 Bit Rates, Bit Timing ..11-1

11.4 External Power Supply ...11-2

11.5 Bus Connector..11-2

11.5.1 9-pin D-Sub Connector ...11-2

11.5.2 5-pin Mini Style Connector...11-3

11.5.3 Open Style Connector ..11-4

11.5.4 Multipole Connector...11-4

11.5.5 Other Connectors..11-5

12 APPENDIX...12-1

12.1 Example PDOMapping:..12-1

12.2 Example for Emergency Message ..12-3

12.3 Example for Naming Conventions ..12-3

Table of Contents CANopen Communication Profile CiA
Members Only Edition

v

12.4 Example for Device Profile: Object 6C05H of Analogue I/O Device12-3

12.4.1 Object 6C05H...12-3

12.5 Electronic Data Sheet Specification..12-5

12.5.1 Introduction ..12-5

12.5.1.1 Electronic Data Sheets (EDS) and Device Configuration Files (DCF)12-5

12.5.2 Structure of an EDS (Electronic Data Sheet) ..12-6

12.5.2.1 File Information ..12-6

12.5.2.2 General Device Information..12-7

12.5.2.3 Object Dictionary..12-8

12.5.2.3.1 Data type section ..12-8

12.5.2.3.2 Mapping of dummy entries..12-9

12.5.2.3.3 Object sections ...12-10

12.5.2.3.4 Object Links ..12-13

12.5.2.4 Comments...12-14

12.5.3 Structure of a DCF (Device Configuration File)12-14

12.5.3.1 Additional Entries ...12-14

12.5.3.1.1 File Information Section ...12-14

12.5.3.1.2 Object Sections ..12-14

12.5.3.1.3 Device Commissioning..12-15

Scope CANopen Communication Profile CiA
Members Only Edition

1-1

1 Scope
Devices which have to communicate can be found in nearly every automated system.
Unfortunately there is no standardised product definition with respect to the control
techniques of functional elements. Therefore, each system integrator of automated systems
creates his own standards.

The resulting control and information flow concepts differ between each integrator and in
most cases the employed control devices are not even compatible.

This document contains the description of the CANopen Communication Profile for industrial
applications using CAN as their installation bus. It is based on the CAN Application Layer
(CAL) (see /4, .., 16/) specification from the CAN in Automation international users and
manufacturers group (CiA e.V.).

The CANopen Communication Profile forms the interface between the CAN Application
Layer and the CANopen Device Profiles. It includes the real-time communication model and
the protocols which are common to all devices in the network. Device Profiles, on the other
hand, are a common means to describe device specific functionality.

An introduction to CANopen Device Profiles is given in this document as well, however, the
specification of full device profiles does not fall within the scope of this document.

References CANopen Communication Profile CiA
MembersOnly Edition

2-1

2 References

/1/: ISO 7498, 1984, Information Processing Systems - Open Systems Interconnection -
Basic Reference Model

/2/: ISO 11898, 1993, Road Vehicles, Interchange of Digital Information - Controller
Area Network (CAN) for high-speed Communication

/3/: Robert Bosch GmbH, CAN Specification 2.0 Part A+B, September 1991

/4/: CiA DS-102, CAN Physical Layer for Industrial Applications, April 1994

/5/: CiA DS-201, CAN Reference Model, February 1996

/6/: CiA DS-202/1, CMS Service Specification, February 1996

/7/: CiA DS-202/2, CMS Protocol Specification, February 1996

/8/: CiA DS-202/3, CMS Data Types and Encoding Rules, February 1996

/9/: CiA DS-203/1, NMT Service Specification, February 1996

/10/: CiA DS-203/2, NMT Protocol Specification, February 1996

/11/: CiA DS-204/1, DBT Service Specification, February 1996

/12/: CiA DS-204/2, DBT Protocol Specification, February 1996

/13/: CiA DS-207, Application Layer Naming Specification, February 1996

/14/: CiA DS-205/1, LMT Service Specification, February 1996

/15/: CiA DS-205/2, LMT Protocol Specification, February 1996

Definitions CANopen Communication Profile CiA
Members Only Only

3-1

3 Definitions

CAN Controller Area Network

CiA CAN in Automation international users and manufacturers group e.V.

CMS CAN Message Specification. One of the service elements of the CAN Application
Layer in the CAN Reference Model.

COB Communication Object. (CAN Message) A unit of transportation in a CAN
Network. Data must be sent across a Network inside a COB.

COB-ID COB-Identifier. Identifies a COB uniquely in a Network. The identifier determines
the priority of that COB in the MAC sub-layer too.

DBT Distributor. One of the service elements of the CAN Application Layer in the CAN
Reference Model. Its the responsibility of the DBT to distribute COB-ID's to the
COB's that are used by CMS.

DIN Deutsches Institut f�r Normung

ISO International Standardisation Organisation

LMT Layer Management. One of the service elements of the CAN Application Layer
in the CAN Reference Model. It serves to configure parameters of each layer in
the CAN Reference Model.

NMT Network Management. One of the service elements of the CAN Application Layer
in the CAN Reference Model. It performs initialisation, configuration and error
handling in a CAN network.

OSI Open Systems Interconnection

PDO Process Data Object

SDO Service Data Object

Introduction CANopen Communication Profile CiA
Members Only Only

4-1

4 Introduction

4.1 CANopen Communication Reference Model

The communication concept can be described similar to the ISO-OSI Reference Model.

Device
Profile

A

Device
Profile

B

Device
Profile

C

NMT DBT CMS

OSI Data Link Layer: CAN 2.0 A+B

OSI Physical Layer: ISO 11898

Cable

LMT

Device
Profile

X

ISO/OSI Layer 7: CAN Application Layer (CAL)
Subset, usage defined by communication profi le

Figure 4-1: The CANopen Communication Reference Model

OSI-Layer 1-7:
The layered structure of the communication model is briefly described in /5/.

CANopen Communication Profile:

The CANopen Communication Profile comprises a concept to configure and communicate
real-time-data as well as the mechanisms for synchronisation between devices. Basically the
CANopen Communication Profile describes how a subset of CAN Application Layer (CAL)
services is used by devices.

CANopen Device Profiles:
The device profile describes the functionality of a particular device.

Introduction CANopen Communication Profile CiA
Members Only Only

4-2

4.2 Standardisation Via Profiling

The two principal advantages of the profile approach to device specification are in the areas
of system integration and device standardisation. If two independent device manufacturers
are to design products which are to communicate with each other then each manufacturer
must be provided with a specification of the other manufacturers device. This specification
could take many forms if left to individual manufacturers to produce. The concept of device
profiling provides a standard for producing such specifications. By adopting this approach all
manufacturers will specify their devices in a similar fashion which greatly reduces the effort
involved in system integration.

The other clear advantage of the profile approach to device specification is that it can be
used to guide manufacturers into producing standardised devices. The advantages of
standardised devices are numerous. Perhaps most importantly the idea of a standardised
device de-couples a system integrator from a specific supplier. If one supplier cannot meet
product demand, for example, the integrator can use devices from another supplier without
having to re-configure network software. On the other hand the supplier is not forced any
more to implement a private protocol for each customer.

A device profile defines a standard device. This standard device specifies a basic
functionality which every device within a class must exhibit. This mandatory functionality is
necessary to ensure at least simple non-manufacturer-specific operation of a device is
possible 1.

The concept of device standardisation is extended by the notion of optional functionality
defined within the standard device profiles. Such optional functionality does not have to be
implemented by all manufacturers. However, if a manufacturer wishes to implement such
functionality he must do so in the manner defined for the standard device.

The concept of optional functionality provides a very powerful mechanism to ensure all
manufacturers implementing particular functionality do so in a defined fashion2.

The device profiles provide a mechanism by which manufacturers wishing to implement truly
manufacturer specific functionality can do so. This is clearly necessary since it would be
impossible to anticipate all possible device functionality and define this in the optional
category of each device class. This approach guarantees that the standard device profiles
are 'future-proof'.

By defining mandatory device characteristics basic network operation is guaranteed. By
defining optional device features a degree of defined flexibility can be built in. By leaving
'hooks' for manufacturer specific functionality manufacturers will not be constrained to an
out-of-date standard.

1 For example the standard drive unit provides a 'HALT' function to stop a drive from

moving. This function is defined as mandatory such that any drive unit supporting the
drive profile can be halted using the same message.

2 For example, the standard digital I/O module may define optional functionality to cater
for units with up to 64 I/O channels (This is specified in the device profile). Whilst many
units will not use anything like this number of I/O the definition ensures that 64-channel
I/O modules developed by independent manufacturers will be largely interchangeable.

Introduction CANopen Communication Profile CiA
Members Only Only

4-3

4.3 The Object Dictionary

The most important part of a device profile is the object dictionary description. The object
dictionary is essentially a grouping of objects accessible via the network in an ordered pre-
defined fashion. Each object within the dictionary is addressed using a 16-bit index.

The overall layout of the standard object dictionary is shown below. This layout closely
conforms with other industrial Fieldbus concepts:

Index
(hex)

Object

0000 not used

0001-001F Static Data Types

0020-003F Complex Data Types

0040-005F Manufacturer Specific Data Types

0060-007F Device Profile Specific Static Data Types

0080-009F Device Profile Specific Complex Data
Types

00A0-0FFF Reserved for further use

1000-1FFF Communication Profile Area

2000-5FFF Manufacturer Specific Profile Area

6000-9FFF Standardised Device Profile Area

A000-FFFF Reserved for further use

Table 4-1: Object Dictionary Structure

The Standard Object Dictionary may contain a maximum of 65536 entries which are
addressed through a 16bit index.

The Static Data Types at indices 0001h through 001Fh contain type definitions for standard
data types like Boolean, integer, floating point, string, etc. These entries are included for
reference only, they cannot be read or written.

Complex Data Types at indices 0020h through 003Fh are pre-defined structures that are
composed of standard data types and are common to all devices.

Manufacturer Specific Data Types at indices 0040h through 005Fh are also structures
composed of standard data types but are specific to a particular device.

Device Profiles may define additional data types specific to their device type. The static
data types defined by the device profile are listed at indices 0060h - 007Fh, the complex
ones at indices 0080h - 009Fh.

A device may optionally provide the structure of the supported complex data types (indices
0020h - 005Fh and 0080h - 009Fh) at read access to the corresponding index. Sub-index 0
then provides the number of entries at this index, and the following sub-indices contain the
data type encoded as Unsigned16 according to table 10-4.

The Communication Profile Area at indices 1000 through 1FFF contains the communication
specific parameters for the CAN network. These entries are common to all devices.

The Standardised Device Profile Area at indices 6000h through 9FFFh contains all data
objects common to a class of devices that can be read or written via the network. The object
dictionary for each device type has a range of mandatory entries. These entries ensure that
all devices of a particular type behave in a defined manner (at least from a basic
functionality viewpoint).

Introduction CANopen Communication Profile CiA
Members Only Only

4-4

The object dictionary concept caters for optional device features which means a
manufacturer does not have to provide certain extended functionality on his devices but if he
wishes to do so he must do it in a pre-defined fashion3.

By defining object dictionary entries for anticipated increased functionality in an optional
category manufacturers wishing to implement enhanced functionality will all do so in the
same way4.

4.3.1 Index and Sub-Index Usage

A 16-bit index is used to address all entries within the object dictionary. In case of a simple
variable this references the value of this variable directly. In case of records and arrays
however, the index addresses the whole data structure.

To allow individual elements of structures of data to be accessed via the network a sub-index
has been defined. For single object dictionary entries such as an unsigned8, Boolean,
integer32 etc. the value for the sub-index is always zero. For complex object dictionary
entries such as arrays or records with multiple data fields the sub-index references fields
within a data-structure pointed to by the main index. For example on a single channel
RS232 interface module there may exist a data-structure at index 6092h which defines the
communication parameters for that module. This structure may contain fields for baud-rate,
number of data bits, number of stop bits and parity type. The sub-index concept can be used
to access these individual fields5 as shown below:

Main Index Sub Index Variable Accessed Data Type

6092 0 Number of Entries Unsigned8

1 Baud Rate Unsigned16

2 Number Of Data Bits Unsigned8

3 Number Of Stop Bits Unsigned8

4 Parity Unsigned8

Table 4-2: Use of Index and Sub-Index

A sub-index can also be used to reference a similar data field for more than one channel. For
example a digital output module may have the capability to configure individual output
signals for different polarity. The object dictionary entry at index 6022h may define the
polarity information. A manufacturer could define his object dictionary such that the polarity
of channel 1 was set by writing data to index 6022 sub-index 1. Similarly the polarity for
channel 3 could be configured by writing the polarity information to index 6022 sub-index 3.
This is allowed since the sub-index is meant to index elements of a data structure. Multiple
channels of the same type can be viewed as an array of channels 6 of the same type - which
is a structure.

3 For example the mandatory part of the object dictionary for a digital output module

could define how to access a minimum number of outputs (8 for example).
Manufacturers wishing to implement devices with eight outputs would merely conform
with the defined standard. However manufacturers wishing to make modules with a
greater number of outputs would have no standard to operate within. They would be free
to define the communication with the other output signals as they wished. This could
lead to module incompatibility problems.

4 Space is left in the object dictionary at indices 2000h through 5FFFh for truly
manufacturer specific functionality.

5 The fields accessed by the sub-index can be of differing data types.
6 Channel numbering must begin at sub-index 1, be consecutive, and the entry for sub-

index 0 must reflect the number of channels implemented on a device (Unsigned8).

Communication Model CANopen Communication Profile CiA
Members Only Edition

5-1

5 Communication Model
The CANopen communication model specifies the different communication objects and
services and the available modes of message transmission triggering.

The communication model supports the transmission of synchronous and asynchronous
messages. By means of synchronous message transmission a network wide co-ordinated data
acquisition and actuation is possible. The synchronous transmission of messages is supported
by pre-defined communication objects (Sync message, time stamp message). Synchronous
messages are transmitted with respect to a pre-defined synchronisation message,
asynchronous message may be transmitted at any time.

With respect to their functionality, four types of messages (objects) are distinguished:

· Administrative Messages (Layer Management, Network Management and Identifier
Distribution Messages)

· Service Data Messages

· Process Data Messages

· Pre-defined Messages (Synchronisation-, Time Stamp-, Emergency Messages)

By means of Administrative Messages the setting up of layer specific parameters (Layer
Management services), the initialisation, configuration (see chapter 8.2) and supervision of
the network is performed. Services and protocols of these functions are according to the LMT
(Layer Management), NMT (Network Management) and DBT (Distributor) service entities of
the CAL specification (/9/, /10/, /11/, /12/, /14/, /15/).

Service Data Messages are used for read and write access to all entries of the object
dictionary of a device. The main usage of this facility is device configuration.

By means of Process Data Messages the real-time data transmission is performed.

The main features of Service and Process Data Objects are shown in table 5-1.

Process Data Object Service Data Object

used for real-time data exchange access to a device object dictionary
entry by index and sub-index

typically high priority messages low priority messages

synchronous and asynchronous
message transmission7

transmitted asynchronously

cyclic and acyclic transmission8

data content configurable via SDOs usage of data field determined by
CMS Multiplexed Domain protocol

Table 5-1: Main Features of Process Data and Service Data Objects

By means of Pre-defined Messages node synchronisation, time stamping and emergency
notification is supported optionally. The corresponding objects are described in chapter 7.

7 see chapter 5.2
8 see chapter 5.2

Communication Model CANopen Communication Profile CiA
Members Only Edition

5-2

5.1 The Service Data Object

5.1.1 SDO usage

With "Service Data Objects (SDOs)" the access to entries of a device object dictionary is
provided. A SDO is represented by a CMS object of type "Multiplexed Domain" according to
the CAL specification /6, 7/. By means of a SDO a peer-to-peer communication channel
between two devices may be established. The owner of the accessed object dictionary is the
server of the SDO. A device may support more than one SDO. One supported SDO is the
default case.

5.1.2 Services

According to the CAL specification /6/ the following services can be applied onto a SDO
depending on the application requirements:

· Define Domain

· Domain Download

· Domain Upload

· Initiate Domain Download

· Download Domain Segment

· Initiate Domain Upload

· Upload Domain Segment

· Abort Domain Transfer

The following attributes specify a SDO domain object:

· name: according to CMS naming conventions with

<application-specific name> = "SDO_xxxÒ with ãxxxÒ as the
number of the SDO, starting with 001.

xxx = 001 - 128 for Server SDOs, 129 - 256 for Client SDOs.

· user type: client or server (owner of accessed object dictionary = server)

· class: Multiplexed Domain

· priority: application specific, suggested between [6,7]

· mux data type: STRUCTURE OF UNSIGNED (16) index,

 UNSIGNED (8) sub-index

with "index" specifying an entry of the device object
dictionary and "sub-index" specifying a component of a
device object dictionary entry

Communication Model CANopen Communication Profile CiA
Members Only Edition

5-3

5.1.3 Protocols

The specification of the Multiplexed Domain protocol is according to /7/.

For transmission of messages with data length less than 5 bytes an "expedited" transfer may
be performed by means of the "Initiate Domain Download/Upload" protocols. With these
protocols the data transmission is performed within the initiate protocol. The transfer of
messages of more than 4 data bytes has to be initiated by the "Initiate Domain Down- or
Upload"-protocol.

It shall be pointed out that the CMS domain protocols indicate a failure response by
initiating the Abort-Protocol. For the CANopen Communication Profile the reason of an abort
is coded within a 4 byte "application error code" as shown in Table 5-2 and Table 5-3.

The application error codes are a small subset of the error classes of the PROFIBUS-
specification (EN 50170) represented by a 4 byte value composed of an "error class", "error
code" and "additional code" field (Figure 5-1).

In addition to the protocol specification (see /7/) the CANopen Communication Profile
defines the application error codes carried by the abort domain transfer protocol9.

The appl-error-codes field is a 32bit value composed of the following elements:

· Error-Class: 1 Octet

· Error-Code: 1 Octet

· Additional Code: 2 Octets

Byte: 4 6 7 8

Additional Code Error-Code Error- Class

Figure 5-1: Structure of the Application Error Codes

The Additional Code is also broken up into the following fields:

Bit: 15 8 7 4 3 0

Reserved Global-Code Specific-
Code

Figure 5-2: Structure of the Additional Code

The combination of the Error Class and the Error Code (see Table 5-2) explain the error
which has been occurred. The Additional Code (see Table 5-3) is necessary with some error
types to give further details of the fault.

9 The Index and Sub-Index parameters in the Abort Transfer protocol are optional. Since

there can be only one Domain Protocol outstanding at any time which is already
identified by the COB-ID, the transmission of Index/Sub-index parameters is redundant. If
Index/Sub-index fields are not valid, they must be set to 0.

Communication Model CANopen Communication Profile CiA
Members Only Edition

5-4

Error

Class Value

Error

Code Value Meaning

Example

5 Service
error

3 Parameter Inconsistent Toggle bit not alternated.

4 Illegal Parameter Time out value reached.

6 Access error 1 Object Access
Unsupported

Attempt to write a read-only or to
read a write-only parameter.

2 Object non-existent The object does not exist in the
dictionary.

6 Hardware fault Access failed because of an
hardware error.

7 Type Conflict Data type does not match.

9 Object attribute
inconsistent

The sub-index does not exist.

8 Other error 0 Transfer was aborted by user.

Table 5-2: Error Class and Code

The error classes/codes not listed here are reserved.

Additional Code Meaning

0 No precise details for the reason for the error

10H Service parameter with an invalid value

11H Sub-Index does not exist

12H Length of service parameter too high

13H Length of service parameter too low

20H Service cannot currently be executed

21H because of local control

22H because of the present device state

30H Value range of parameter exceeded

31H Value of parameter written too high

32H Value of parameter written too low

36H Maximum value is less than minimum value

40H Incompatibility with other values

41H data cannot be mapped to the PDO

42H PDO length exceeded

43H General parameter incompatibility reason

47H General internal incompatibility in the device

Table 5-3: Additional Code (Global Code and Specific Code)

The additional codes not listed here are reserved.

Communication Model CANopen Communication Profile CiA
Members Only Edition

5-5

5.2 The Process Data Object

5.2.1 PDO Usage

The real-time data transfer is performed by means of "Process Data Objects (PDO)". PDOs are
represented by CMS objects of type "Stored-Event" according to the CAL specification /6, 7/.
Hence the transfer of PDOs is performed with no protocol overhead.

The PDOs correspond to entries in the device Object Dictionary and provide the interface to
the application objects. Data type and mapping of application objects into a PDO is
determined by a corresponding default PDO mapping structure within the Device Object
Dictionary. If variable PDO-mapping is supported the number of PDOs and the mapping of
application objects into a PDO may be transmitted to a device during the device
configuration process (see chapter 8.2) by applying the corresponding SDO services.

Number and length of PDOs of a device is application specific and have to be specified
within the device profile.

5.2.1.1 Transmission Modes

The following PDO transmission modes are distinguished:

· Synchronous Transmission

· Asynchronous Transmission

In order to synchronise devices a synchronisation object (SYNC object) is transmitted
periodically by a synchronisation application. The SYNC object is represented by a pre-
defined communication object (see chapter 7.1). In Figure 5-3 the principle of synchronous
and asynchronous transmission is shown. Synchronous PDOs are transmitted within a pre-
defined time-window immediately after the SYNC object. The principle of synchronous
transmission is described in more detail in chapter 6.

SYNC SYNCSYNCSynchronous

Asynchronous

time

Synchronous
PDOs

Window

PDOs

Object Object Object Object

Figure 5-3: Synchronous and Asynchronous Transmission

The transmission rate (see also: Table 10-7) of a synchronous PDO is specified within the
entry "Transmission Type" in the Device Object Dictionary in form of a factor (PDO-rate) of
the basic SYNC-object transmission period. A transmission type of zero means that the
message shall be transmitted synchronously with the SYNC object but acyclic (not
periodically).

Communication Model CANopen Communication Profile CiA
Members Only Edition

5-6

Asynchronous PDOs may be transmitted without any relation to a SYNC (PDO-rate = 254,
255).

In Figure 5-4 the classification of synchronous and asynchronous PDOs is shown.

process data objects (PDO)

synchronous PDO asynchronous PDO

acycliccyclic

Figure 5-4: Synchronous and Asynchronous PDOs

5.2.1.2 Triggering Modes

The CANopen Communication Profile distinguishes two message triggering modes:

· Event Driven
Message transmission is triggered by the occurrence of an object specific event. For
synchronous PDOs this is the expiration of the specified transmission period, synchronised
by the reception of the SYNC object.

For acyclically transmitted synchronous PDOs and asynchronous PDOs the triggering of a
message transmission is an application specific event specified in the device profile.

· Remotely requested
The transmission of asynchronous PDOs may be initiated on receipt of a remote request
initiated by another device.

Communication Model CANopen Communication Profile CiA
Members Only Edition

5-7

5.2.2 PDO Services

The specified PDO triggering modes of the CANopen Communication Profile are modelled
by services onto the CMS object type "Stored-Events" according to /6/. CMS objects of type
Stored-Event provide event-driven and remotely-requested transmission.

According to CMS the following services on Events are relevant:

· Define Event

· Store (and immediately Notify) Event

· Read Event

The following CMS event object attributes are specified for event PDOs:

· name: according to the CMS naming conventions with

<application-specific-name> = "xPDOyyy" with ãyyyÒ as the
number of the PDO, starting with 001, and with x = {ãTÒ|ÒRÒ} for
a receive or transmit PDO.

· user type: depending on the role-in-service of the device;

transmitter of event data: server

receiver or requester of event data: client

· class: Stored Event

· priority: application specific, suggested between [2, 5]

· data type: determined by corresponding PDO-mapping entry of the PDO

· inhibit time: application specific

5.2.3 PDO Protocol

The Stored-Event protocols are according to /7/.

Synchronisation by the SYNC Master CANopen Communication Profile CiA
Members Only Edition

6-1

6 Synchronisation by the SYNC Master

6.1 Transmission of Synchronous PDO Messages

Synchronous transmission of a message means that the transmission of the message is fixed
in time with respect to the transmission of the SYNC message. The synchronous message is
transmitted within a given time window with respect to the SYNC transmission, and at most
once for every period of the SYNC.

In general the fixing of the transmission time of synchronous PDO messages coupled with the
periodicity of transmission of the SYNC message guarantees that sensor devices may arrange
to sample process variables and that actuator devices may apply their actuation in a co-
ordinated fashion.

Assuming a structure where a master device controls a number of slave devices by issuing a
COMMAND message and receiving the ACTUAL messages from the slave devices.
Synchronous COMMAND messages transmitted by the master device will occur in a definite
time period with respect to the transmission of the SYNC message.

In general the COMMAND cyclic message will be transmitted before a SYNC and the device
will actuate based on this COMMAND at the next SYNC. Simple devices operating in the
cyclic mode may therefore use the SYNC message as a trigger to output or actuate based
upon their previous COMMAND.

Depending upon its capabilities, a device may also be parameterised with the time period
synchronous window length after the SYNC at which it is guaranteed that its COMMAND has
arrived. It may therefore perform any processing on the COMMAND data which is required in
order to actuate at the next SYNC message.

The arrival of a SYNC will also prompt a device operating in the cyclic mode to sample its
feedback data and transmit an ACTUAL back to the master device as soon as possible
afterwards.

Communication_Cycle_Period

SYNC
Message

Messages MessagesMessages
Command
Messages

SYNC
Message

CommandActual_ Actual_

Actuation based on
COMMAND at next SYNC

Samples taken at SYNC
for ACTUAL message

synchronous window length

Figure 6-1: Bus Synchronisation and Sampling/Actuation

Synchronisation by the SYNC Master CANopen Communication Profile CiA
Members Only Edition

6-2

6.2 Optional High Resolution Synchronisation Protocol

The standard synchronisation mechanism provides for a lean implementation. The
synchronisation message carries no data and is easy to generate. However, the jitter of this
SYNC depends on the bit rate of the bus as even the very high priority SYNC has to wait for
the current message on the bus to be transmitted before it gains bus access.

Some time critical applications especially in large networks with reduced transmission rates
require more accurate synchronisation; it may be necessary to synchronise the local clocks
with an accuracy in the order of microseconds. This is achieved by using the optional high
resolution synchronisation protocol which employs a special form of time stamp message
(see Figure 6.2) to adjust the inevitable drift of the local clocks.

The synchronisation master time-stamps the interrupt generated at t1 by the successful
transmission of the SYNC message (this takes until t2). After that (at t4) he sends a time-stamp
message containing the corrected time-stamp (t1) for the SYNC transmission success
indication. The slaves that have taken local time-stamps (t3) on the reception (t1) of the
SYNC can now compare their corrected time-stamp (t1) with the one received in the time-
stamp message from the master. The difference between these values determines the
amount of time to adjust the local clock. With this protocol only the local latencies (t2-t1 on
the master and t3-t1 on the slave) are time critical. These latencies depend on local
parameters (like interrupt processing times and hardware delays) on the nodes which have to
be determined once. The accuracy of this determination is implementation specific, it forms
the limiting factor of the synchronisation (or clock adjustment) accuracy. Note that each
node only has to know its own latency time as the time-stamp message contains the
corrected value t1 and not t2.

The time-stamp is encoded as unsigned32 with a resolution of 1 microsecond which means
that the time counter restarts every 72 minutes. It is configured by mapping the high
resolution time-stamp (Object 1013h) into a PDO.

It is reasonable to repeat the clock adjustment only when the maximum drift of the local
clock exceeds the synchronisation accuracy. For most implementations this means that it is
sufficient to add this time-stamp message to the standard SYNC once every second.

This principle enables the best accuracy that can be achieved with bus-based
synchronisation, especially when implemented on CAN controllers that support time-
stamping. Note that the accuracy is widely independent of the transmission rate. Further
improvement requires separate hardware (e.g. wiring).

master

slave

time
t1 t2 t3 t4 t5

SYNC TIMESTAMP

Figure 6-2: Optional High Resolution Synchronisation Protocol

6.3 Other Synchronisation

The synchronisation mechanisms described in the preceding sections are mainly optimised
for a synchronisation between a master and other devices. For special applications however,
further synchronisation between (slave-) devices may be required as well. For instance, in
order to allow multiple drive units to operate as an electronic gear, it may be necessary to
configure one drive as the gearing master which broadcasts a master angle message to all
slave drives at much shorter time intervals than the Communication Cycle. For these
purposes, further synchronisation messages may be defined between any devices on the
network. However, care should be taken not to increase the jitter of the SYNC when broadcast
messages are to be transmitted at higher frequencies than the SYNC.

Pre-defined Communication Objects CANopen Communication Profile CiA
Members Only Edition

7-1

7 Pre-defined Communication Objects
There are three pre-defined Communication Objects. The implementation of these objects is
optional.

7.1 The SYNC Object

7.1.1 SYNC Usage

The SYNC object is broadcasted periodically by the synchronisation device to all
application devices. This SYNC object provides the basic network clock. The time period
between the SYNC objects is specified by the standard parameter communication cycle
period, which may be written by a configuration tool to the application devices during the
boot-up process. There can be a time jitter in transmission by the SYNC master
corresponding approximately to the latency due to some other message being transmitted
just before the SYNC.

In order to guarantee timely access to the CAN bus the SYNC object is given a very high
priority identifier 10. Devices which operate synchronously may use the SYNC object to
synchronise their own timing with that of the synchronisation device. The details of this
synchronisation are device dependent and do not fall within the scope of this document.
Devices which require a more accurate common time base may use the time stamp
synchronisation mechanism described in chapter 6.2.

7.1.2 SYNC Services

The SYNC object is implemented as CMS object of type "Basic Variable" with the
synchronisation device acting as the client of that object.

According to CMS the following services on variables are relevant:

· Define Variable

· Write Variable

The following CMS variable object attributes are specified for the SYNC object:

· name: according to the CMS naming conventions with
<application-specific-name> = "SYNC000"

· user type: synchronisation master device: client
receiving device: server

· class: Basic Variable

· priority: 0 (suggested)

· data type: NIL

· access
type:

Write_Only

· inhibit time: <communication period>

10 For the SYNC message identifier 128 in priority group 0 is suggested

Pre-defined Communication Objects CANopen Communication Profile CiA
Members Only Edition

7-2

7.1.3 SYNC Object Protocols

See specification of Basic Variable protocols /7/.

7.2 The Time Stamp Object

7.2.1 Time Stamp Object Usage

By means of the Time-Stamp-Object a common time frame reference is provided to
application devices11.

7.2.2 Time Stamp Object Services

The Time-Stamp object is implemented as CMS object of type Stored Event with the
transmitting device acting as the server of the event.

According to CMS the following services on Stored Events are relevant:

· Define Event

· Notify Event

· Read Event

The following CMS event object attributes are specified for the Time-Stamp object:

· name: according to the CMS naming conventions with
<application-specific-name> = "TIME000"

· user type: Time stamp provider: server
Time stamp consumers: clients

· class: Stored Event

· priority: 1 (suggested)

· data type: TIME-of-DAY 12

· inhibit time: application specific

7.2.3 Time Stamp Object Protocols

See specification of the Stored Event protocols /7/.

11 For the Time Stamp message identifier 256 in priority group 1 is suggested.
12 Additional Time Stamp messages with different data types (e.g. DATE) can be defined

by mapping the appropriate data types into standard PDOs.

Pre-defined Communication Objects CANopen Communication Profile CiA
Members Only Edition

7-3

7.3 The Emergency Object

7.3.1 Emergency Object Usage

Emergency messages are triggered by the occurrence of a device internal fatal error
situation and are transmitted from the concerned application device to the other devices
with highest priority. This makes them suitable for interrupt type error alerts13.

By means of CANopen Communication Profile defined emergency error codes (Table 7-1),
the error register (Table 10-14) and device specific additional information, specified in the
device profile the emergency condition is specified.

Error Code (hex) Meaning

00xx Error Reset or No Error

10xx Generic Error

20xx Current

21xx Current, device input side

22xx Current inside the device

23xx Current, device output side

30xx Voltage

31xx Mains Voltage

32xx Voltage inside the device

33xx Output Voltage

40xx Temperature

41xx Ambient Temperature

42xx Device Temperature

50xx Device Hardware

60xx Device Software

61xx Internal Software

62xx User Software

63xx Data Set

70xx Additional Modules

80xx Monitoring

81xx Communication

90xx External Error

F0xx Additional Functions

FFxx Device specific

Table 7-1: Emergency Error Code

13 An Emergency Telegram may be sent only once per 'error event', i.e. the emergency
messages must not be repeated. As long as no new errors occur on a device no further
emergency messages must be sent.

Pre-defined Communication Objects CANopen Communication Profile CiA
Members Only Edition

7-4

The emergency object is optional. If a device supports the emergency object, it has to
support at least the two error codes 00xx and 10xx. All other error codes are optional.

A device may be in one of two emergency states (Figure 7-1). Dependent on the transitions
emergency objects will be transmitted.

1. After initialisation the device enters the error free state if no error is detected. No error
message is sent.

2. The device detects an internal error indicated in the first three bytes of the emergency
message (error code and error register). The device enters the error state. An emergency
object with the appropriate error code and error register is transmitted14. The error code is
filled in at the location of object 1003H (pre-defined error field).

3. One, but not all error reasons are gone. An emergency message containing error code
0000 (Error reset) may be transmitted together with the remaining errors in the error
register and in the manufacturer specific error field.

4. A new error occurs on the device. The device remains in error state and transmits an
emergency object with the appropriate error code. The new error code is filled in at the
top of the array of error codes. If one error is repaired the appropriate error code is erased
from the array. It has to be guaranteed that the error codes are sorted in a timely manner
(oldest error - highest sub-index, see Object 1003H).

5. All errors are repaired. The device enters the error free state and transmits an emergency
object with the error code Ôreset error / no error'.

Figure 7-1: Emergency State Transition Diagram

7.3.2 Emergency Object Mapping

The Emergency Telegram consists of 8 bytes with the mapping as shown in Figure 7-2.

Byte 0 1 2 3 4 5 6 7

Content Emergency Error
Code

(see Table 7-1)

Error
register
(Object
1001H)

Manufacturer specific Error Field

Figure 7-2: Mapping Emergency Object

14 If the error is indicated only in the manufacturer specific part (last five bytes) of the

emergency message the emergency message may be transmitted

error free

error occured

0

1

2
2

3

4

Pre-defined Communication Objects CANopen Communication Profile CiA
Members Only Edition

7-5

7.3.3 Emergency Object Services

The Emergency object is implemented as a CMS object of type Stored Event with the
notifying device acting as server of the event.

According to CMS the following services on Stored Events are relevant:

· Define Event

· Notify Event

· Read Event

The following CMS event object attributes are specified for the Emergency object:

· name: according to the CMS naming conventions with <application-
specific-name> = "EMCY000"

· user type: notifying device: server

other devices: clients

· class: Stored Event

· priority: 0 or 1 suggested

· data type: STRUCTURE OF UNSIGNED(16) emergency_error_code,
UNSIGNED(8) error_register, ARRAY (5) of UNSIGNED(8)
manufacturer_specific_error_field

· inhibit time: application specific

7.3.4 Protocols

See specification of the Stored Event protocols /7/.

Network Management and Identifier Distribution CANopen Communication Profile CiA
Members Only Edition

8-1

8 Network Management and Identifier Distribution

8.1 Services and Protocols

NMT services (/9/, /10/) provide a means for identification and monitoring of all nodes in the
network. NMT requires one device in the network which fulfils the function of the NMT
Master. NMT offers the following functionality groups:

· Module Control Services for initialisation of NMT Slaves that want to take part in the
distributed application

·

· Error Control Services for supervision of the nodes and networks communication status

·

· Configuration Control Services for up- and downloading of configuration data from
respectively to a module of the network.

A NMT Slave represents that part of a node which is responsible for the nodeÕs NMT
functionality. A NMT Slave is uniquely identified by its Module ID or Name. Module ID (node
identification number) and Module Name are configurable by LMT (/14/, /15/) services and
protocols or other local means (e.g. DIP-Switch).

The NMT Master can identify NMT Slaves, setting up of NMT parameters, download
configuration data if necessary, allow the DBT Slave to request COB-IDs via DBT services
and protocols (/11/, /12/) and enable or disable the CMS services at a certain node or
simultaneously at all nodes.

Error Control services are achieved principally through periodically transmitting of life
guarding messages by the NMT Master. If a NMT Slave doesnÕt respond within a defined span
of time or if the NMT SlaveÕs communication status has changed, the NMT Master informs its
NMT Master Application about that event. Also if a NMT Slave is not guarded within the
nodeÕs life time, the NMT Slave informs its local Application about that event.

The node initialisation process is controlled by a NMT Master Application during the network
boot-up process via NMT services according to /9/.

In addition to the node states of the state diagram specified in /9/, the CANopen
Communication Profile introduces the two status's "Pre-Operational" and "initialising"
according to Figure 8-1. In Table 8-1 the state transitions of the NMT Slave state diagram
according to the CAL specification are described in detail, in Table 8-2 the additional,
profile specific transitions are described in detail.

Network Management and Identifier Distribution CANopen Communication Profile CiA
Members Only Edition

8-2

R e s e t C o m m u n i c a t i o n

I n i t

P r e - O p e r a t i o n a l

D i s c o n n e c t e d

O p e r a t i o n a l

I n i t i a l i s a t i o n

p o w e r o n

(1 0)

(1 1)

(1 2)

(0) (2)

(8)

(6)

(7)

(8)

(3)

(4)

(5)

(6)
(7)

(6) (8)

CAL

Connecting

Preparing

Prepared

Reset Application

(0)

Figure 8-1: Extended NMT Node State Diagram

(0) Disconnect_Remote_Node indication
Disconnect_Node request
Error response

(2) Delete_Node request (local service)
(3) Connect_Node request
(4) Connect_Remote_Node response
(5) Prepare_Remote_Node response
(6) Start_Remote_Node indication
(7) Stop_Remote_Node indication
(8) Enter_Pre-Operational_State indication
(10) Reset_Node indication
(11) Reset_Communication indication
(12) Initialisation finished - enter Pre-Operational automatically

Network Management and Identifier Distribution CANopen Communication Profile CiA
Members Only Edition

8-3

NMT Master

Direction
of

telegram
NMT Slave

(0) Disconnect_Node request

NMT local service request to set
node state to DISCONNECTED

(0) Disconnect_Remote_Node
request

NMT service request to set the state
of the remote node object and
remote node to DISCONNECTED

(0) Disconnect_Remote_Node
indication

NMT service indication to set node
state to DISCONNECTED

(0) Error confirmation

NMT service confirmation
informing NMT Master Application
of an error (in response to
Connect_Remote_Node or
Prepare_Remote_Node request)

(0) Error response

NMT service response forcing node
to set its state to DISCONNECTED
in response to
Connect_Remote_Node or
Prepare_Remote_Node indication
from NMT Master

(1) Add_Remote_Node request

NMT local service request to create
remote node object

(1) Create_Node request

NMT local service request to create
node object

(2) Remove_Remote_Node
request

NMT local service request to delete
remote node object

(2) Delete_Node request

NMT local service request to delete
node object

(3) Connect_Node request

NMT local service request to set
node state to CONNECTING

(3) Connect_Remote_Node
confirmation

Confirmation to the NMT Master
Application that node state is
CONNECTED (in response to a
NMT Master
Connect_Remote_Node request)

(4) Connect_Remote_Node
response

NMT service response confirming
node state as CONNECTING in
response to a NMT Master
Connect_Remote_Node indication.
After successful transmission of the
response the NMT slave enters the
node state PREPARING

(4) Prepare_Remote_Node
confirmation

NMT service confirmation
informing NMT Master Application
about successful remote node
preparing

(5) Prepare_Remote_Node
response

NMT service response confirming
the end of node preparing in
response to NMT Master
Prepare_Remote_Node indication

(5) Start_Remote_Node request

NMT service request to enable
communication via PDOs and
SDOs

(6) Start_Remote_Node indication

NMT service indication informing
node that communication via
PDOs and SDOs is enabled

(6) Stop_Remote_Node request

NMT service request to disable
communication

(7) Stop_Remote_Node indication

NMT service indication informing
node to disable communication

Table 8-1: State Transitions of the extended NMT Slave State Diagram according to the
CAL specification

Network Management and Identifier Distribution CANopen Communication Profile CiA
Members Only Edition

8-4

The right hand part of Table 8-1 describes state transitions of NMT Slaves corresponding to
the state diagram of Figure 8-1.

NMT Master

Direction
of
telegram

NMT Slave

(8) Enter_Pre-Operational_State
request

NMT service allowing NMT Master
to enable SDOs

(8) Enter_Pre-Operational_State
indication

NMT service informing NMT Slave
that SDOs are enabled

(9) Prepare_Remote_Node request

NMT service requesting NMT Slave
to request

COB-Identifiers for not allocated
PDOs

(9) Prepare_Remote_Node
indication

NMT service informing NMT Slave
to request

COB-IDs for not allocated PDOs

(10) Reset_Node request

NMT service allowing NMT Master
to reset node applications

(10) Reset_Node indication

NMT service informing the NMT
Slave(s) to reset local application

(11) Reset_Communication
request

NMT service allowing NMT Master
to reset communication parameters
at the slave node(s)

(11) Reset_Communication
indication

NMT service informing the NMT
Slave to reset the communication
parameters in the object dictionary
to default values

(12) Initialisation finished

The NMT Slave enters this state
automatically after finishing the
initialisation tasks. This means that
every reset request leads to the
state Pre-Operational.

(13, 14) Application or
Communication Reset performed

These state transitions are
performed automatically.

Table 8-2: Profile Specific State Transitions of the extended NMT Slave State Diagram

After its initialisation, the device enters the ãPre-OperationalÒ state autonomously. In this
state, only communication via SDOs is operational, using the default COB-IDs derived from
the module-ID. Configuration of PDOs, device parameters and also the allocation of
application objects (PDO-mapping) may be performed by a configuration application.

Then the extended boot-up is started by disconnecting the node (Disconnect_Node request).
Alternatively, the node may be switched into the operational stage directly by sending a
Start_Remote_Node request (Minimum Boot-Up).

If a node is guarded via the node guarding protocol the state transferred from the slave back
to the NMT Master should be 127 (see /10/) if the NMT Slave is in Pre-Operational state.

Network Management and Identifier Distribution CANopen Communication Profile CiA
Members Only Edition

8-5

With the introduction of the "initialisation" state a complete or a partial reset of a node is
possible via the network. The ãinitialisationÒ state is divided into three sub-states (see Figure 8-
2).

1. Reset_Application: In this state the parameters of the manufacturer specific profile area
and in the standardised device profile area are set to their default values. After setting of
the power-on values the state Reset_Communication is entered.

2. Reset_Communication: In this state the parameters of the communication profile area are
set to their power-on values. After this the state Initialising is entered.

3. Initialising: This is the first sub-state the device enters after power-on. After performing the
basic node initialisation in this state the state Pre-Operational is entered automatically.

Power-on values are the last stored parameters. If storing is not supported or has not been
executed, the power-on values are the default values according to the CANopen
communication and device profiles.

Figure 8-2: Sub-states of the initialisation state

(1) Create_Node request

(2) Delete Node request

(10) Reset_Node indication

(11) Reset_Communication indication

(12) Initialisation finished - enter Pre-Operational automatically

(13) Application Reset performed

(14) Communication Reset performed

To control the different state transitions three additional services are introduced.

power-on

(11)

(10)

Reset
Application

Reset
Communication

(12)

13)

Init

(14)

(1) (2)

Network Management and Identifier Distribution CANopen Communication Profile CiA
Members Only Edition

8-6

8.1.1 Enter_Pre-Operational_State Service and Protocol

With this service a NMT Slave may be forced into the Pre-Operational state.

Parameter Request/Indication

Argument

Node-ID

All

mandatory

selection

selection

The service will only be executed for the selected remote node objects whose state is
"prepared" or "operational". Through this service the NMT Master sets the state of the
selected NMT Slave(s) from "prepared" or "operational" to "Pre-Operational". In this state a
node can communicate only via its SDOs. Therefore the service may also be used to switch
off PDOs with a transition from "operational" to "Pre-OperationalÒ state.

The service is unconfirmed and mandatory.

In Figure 8-3 the protocol of the Enter_Pre-Operational_State service is shown15.

Figure 8-3: Enter_Pre-Operational_State, Reset_Node
and Reset_Communication protocols

· CS = 128: Enter_Pre-Operational_State Service
CS = 129: Reset_Node Service
CS = 130: Reset_Communication Service

· Node ID: Node-ID of the NMT Slave as assigned by the NMT Master in the Node
connect protocol or zero. If zero, the protocol addresses all NMT Slaves.

15 Due to the introduction of the new services the reservation of command specifiers of

value 128, 129 and 130 is necessary in the CAL Standard.

CS Node-ID
0 1

COB-ID = 0

NMT Slave(s)

Indication(s)

NMT Master

Request

Network Management and Identifier Distribution CANopen Communication Profile CiA
Members Only Edition

8-7

8.1.2 Reset_Node Service and Protocol

With this service the NMT Master may force a complete reset of a distinct or of all nodes.

Parameter Request/Indication

Argument

Node-ID

All

mandatory

selection

selection

The service will only be executed for the selected remote node objects independent of the
state of the object. Through this service the NMT Master sets the state of the selected NMT
Slave(s) from any state except DISCONNECTED to the "reset application" state. In this state a
reset of the node application will be performed. The parameters of the entire object
dictionary are set to their power-on values.

The service is unconfirmed and mandatory for all devices.

In Figure 8-3 the protocol of the Reset_Node-service is shown.

8.1.3 Reset_Communication Service and Protocol

With this service the NMT Master may force a reset of the communication parameters of a
distinct or of all nodes.

Parameter Request/Indication

Argument

Node-ID

All

mandatory

selection

selection

The service will only be executed for the selected remote node objects independent of the
state of the object. Through this service the NMT Master sets the state of the selected NMT
Slave(s) from any state except DISCONNECTED to the "reset communication" state. In this
state the parameters of the communication area in the object dictionary are set to their
power-on values.

The service is unconfirmed and mandatory for all devices.

In Figure 8-3 the protocol of the Reset_Communication service is shown.

Network Management and Identifier Distribution CANopen Communication Profile CiA
Members Only Edition

8-8

8.2 Network Initialisation Process (Bootup-Process)

In Figure 8-4 the general flow chart of the extended network initialisation process, controlled
by a NMT Master Application or Configuration Application is shown.

Figure 8-4: Flow Chart of the Extended Network Initialisation Process

In step 1 the devices are in the node state Pre-Operational which is entered automatically
after power-on. In this state the devices are accessible via their Default-SDO using identifiers
that have been assigned according to the Predefined Connection Set. In this step the
configuration of device parameters takes place on all nodes which support parameter
configuration.

This is done from a Configuration Application (which can reside on the same node as the
NMT Master Application or from a Configuration Tool via the Default-SDO. For devices that
support these features the selection and/or configuration of PDOs, the mapping of
application objects (PDO mapping), the configuration of additional SDOs and optionally the
setting of COB-IDs may be performed via the Default-SDO objects.

Configuration of device parameters,
Configuration of dynamically defined PDOs,

Mapping of application objects to PDOs
(via Default SDO)

Execution of
Disconnect_Remote_Node Service

Identification of Network Configuration
 and Start of Node Guarding

Distribution of COB-IDs for
additional SDOs and configured PDOs

of all devices

(Optional)
Start transmission of SYNC

Wait for synchronisation of devices

Setting of all nodes to
the operational state

1

2

3

4

5

6

Network Management and Identifier Distribution CANopen Communication Profile CiA
Members Only Edition

8-9

In step 2 the Disconnect_Remote_Node service is executed. By receiving the service
indication the devices enter the node state Disconnected. After entering this state (and
optionally performing an additional local initialisation depending on the configured
parameters) the devices have to execute the local Connect_Node service for entering the
node state Connecting.

During step 3 the NMT Master Application performs the identification of all nodes in the
network by repeated execution of the Connect_Remote_Node service. Within this service
also the node guarding parameters are negotiated between NMT Master and NMT Slaves
and node guarding is started.

In step 4 the assignment of COB-IDs to the configured PDOs and additional SDOs is
performed by the DBT (if COB-ID distribution shall be performed). The COB-IDs for the
default-SDOs according to the Predefined Connection Set should not be changed.

Step 5 is an optional step. It can be used to ensure that all nodes are synchronised by the
SYNC object before entering the node state Operational in step 6. The synchronisation is
done by starting the cyclic transmission of the SYNC object and waiting a sufficient span of
time to allow all nodes to synchronise.

With step 6 all nodes are enabled to communicate via their PDO objects.

If the extended network initialisation process is not supported by a device (e.g. Minimum
Capability Device, see 8.3) or if e.g. the devices have already been configured completely in
a previous extended boot-up and have stored their configuration, the minimum boot-up
shown in Figure 8-5 can be applied.

The minimum boot-up has to be supported by all CANopen devices.

Figure 8-5: Flow Chart of the Minimum Network Initialisation Process

Step A corresponds to step 1 of the extended network initialisation process.

Step B corresponds to step 5 of the extended network initialisation process.

In Step C Node guarding can be activated (if supported) using the guarding parameters
configured in step A.

With step D all nodes are enabled to communicate via their PDO objects.

Configuration of all device parameters,
including communication parameters

 (via Default SDO)

(Optional)
start transmission of SYNC, wait for

synchronisation of all devices

(Optional)
Start of Node Guarding

Setting of all nodes to
the operational state

A

B

C

D

Network Management and Identifier Distribution CANopen Communication Profile CiA
Members Only Edition

8-10

8.3 Minimum Capability Device

To enable devices which do not support the complete DBT- and NMT Slave functionality to
co-operate with full capability devices, the following minimal capabilities are required:

· Module-ID,

· Object dictionary, depending on the device functionality,

· One SDO, supporting the mandatory entries (read only)

· Support of the following services as NMT Slave: Reset_Node, Enter_Pre-
Operational_State, Start_Remote_Node, Stop_Remote_Node, Reset_Communication

· Default profile ID-allocation scheme

In Figure 8-6 the state diagram of a node with minimum capability is shown. Minimum
capability devices enter the Pre-Operational state directly after finishing the device
initialisation. During this state device parameterisation and ID-allocation via SDO (e.g. using
a configuration tool) is possible. Then the nodes can be switched directly into the
Operational state. By switching a device into the Prepared 16 state it is forced to stop the
communication altogether (except node guarding, if active). Furthermore, this state can be
used to achieve certain application behaviour. The definition of this behaviour falls into the
scope of device profiles.

Pre-Operational

Operational

Initialisation

power on

(10)(11) (12)

(6)

(7)

Prepared

(7)

(6)

(8)

(8)

Figure 8-6: State Diagram of a Minimum Capability Device

(6) Start_Remote_Node indication

(7) Stop_Remote_Node indication

(8) Enter_Pre-Operational_State indication

(10) Reset_Node indication

(11) Reset_Communication indication

(12) Initialisation finished - enter Pre-Operational
automatically

16 Note that the NMT master does not have to use the Prepared state during boot-up.

Minimal Boot-Up consists of one CAN message: a broadcast Start_Remote_Node
indication.

Network Management and Identifier Distribution CANopen Communication Profile CiA
Members Only Edition

8-11

8.4 Allocation of COB-ID's and Inhibit-Times

As CAN is a communication object (COB-) based network where each communication object
has an associated identifier which specifies its priority implicitly, the allocation of identifiers
to the COB's is an essential issue in the system design. Inhibit-times are defined by CMS to
prevent high priority messages to flood the bus to such an extent, that lower priority messages
are denied bus access at all times. The inhibit-time specifies the time period during which a
certain COB must not be transmitted again.

The communication object identifiers (COB-ID's) and inhibit-times may be distributed to the
devices either statically or dynamically.

Static distribution means that the identifiers and inhibit-times are fixed by the module
suppliers and may be changed by the system integrator through module specific means such
as setting dip-switches, adapting firmware, etc.

Dynamic distribution means that the identifiers and inhibit-times are distributed via the CAN
network through standard DBT services and protocols or via SDO. The dynamic distribution is
the preferred method in the CANopen Communication Profile.

Some identifiers (1-7, 1740-1760dec) have been reserved by CANopen for future
enhancements of the communication profile. They may still be used in applications
employing dynamic distribution on all devices, but it is not recommended to use them.

8.4.1 Predefined Connection Set

In order to reduce configuration effort for simple networks a mandatory default identifier
allocation scheme is defined. These identifiers are available in the Pre-Operational state
directly after initialisation (if no modifications have been stored) and may be modified by
means of dynamic distribution. A device has to provide the corresponding identifiers only for
the supported communication objects.

The default profile ID-allocation scheme (Table 8-3 + 8-4) consists of a functional part,
which determines the object priority and a module-ID-part, which allows to distinguish
between devices of the same functionality. The ID-allocation scheme corresponds to a pre-
defined master/slave connection set and allows a peer-to-peer communication between a
single master device and up to 127 slave devices. It also supports the broadcasting of non-
confirmed NMT-services, SYNC- and Time-Stamp-objects and node guarding. Broadcasting
is indicated by a module-Id of zero.

The pre-defined master/slave connection set supports one emergency object, one SDO, at
maximum 2 Receive-PDOs and 2 Transmit-PDOs and the node guarding object.

Figure 8-7: Identifier allocation scheme for the pre-defined master/slave connection set

Function
C d

Module-ID

Bit-Nr.:
COB-Identifier

10 0

Network Management and Identifier Distribution CANopen Communication Profile CiA
Members Only Edition

8-12

Table 8-3 and Table 8-4 show the supported objects and their allocated COB-IDs.

object function
code (binary)

resulting COB-ID Communication
Parameters at

Index

CMS
priority
group

NMT 0000 0 - 0

SYNC 0001 128 (1005h) 0

TIME STAMP 0010 256 - 1

Table 8-3: Broadcast Objects of the Pre-defined Master/Slave Connection Set

object function
code (binary)

resulting COB-IDs Communication
Parameters at

Index

CMS
priority
group

EMERGENCY 0001 129 - 255 - 0 , 1

PDO1 (tx) 0011 385 - 511 1800h 1 , 2

PDO1 (rx) 0100 513 - 639 1400h 2

PDO 2 (tx) 0101 641 - 767 1801h 2 , 3

PDO2 (rx) 0110 769 - 895 1401h 3 , 4

SDO (tx) 1011 1409 - 1535 6

SDO (rx) 1100 1537 - 1663 6 , 7

Nodeguard 1110 1793-1919 (100Eh) -

Table 8-4: Peer-to-Peer Objects of the Pre-defined Master/Slave Connection Set17

If devices with and without DBT capability shall operate in the same network, it is necessary
to reserve the corresponding default-COB-IDs in the DBT data base by predefinitions during
the boot-up process. If the default ID-allocation is overwritten by a configuration tool, the
corresponding predefinitions should be deleted in the COB data base.

8.4.2 Dynamic Distribution

CAN Application Layer (CAL) uses a CMS priority level model (see /11/). It describes 8 priority
levels with 220 identifiers each and comprises the identifiers 1 to 1760. The remaining
identifiers (0, 1761-2031) are reserved for network control by NMT, DBT and LMT.

The first step in the system design is to allocate the appropriate priority levels to the various
communication objects. As CANopen devices feature a default identifier allocation for a
basic set of communication objects, one can start from there and modify the allocation if
necessary using either SDO services or DBT (if the extended boot-up is supported).

In order to guarantee a minimum jitter the synchronisation message (SYNC) has the highest
priority of all messages that occur in normal operation.

For transmitting emergency messages each node in the network must be able to use
messages with the highest available priority. For these exceptional messages a number of
identifiers in priority level 0 and 1 have been reserved.

The time stamp messages have been allocated to priority level 1, with lower priority than the
emergency messages . The remaining identifiers above the PDOs are reserved for other
synchronisation purposes.

17 The table has to be seen from the devices point of view.

Network Management and Identifier Distribution CANopen Communication Profile CiA
Members Only Edition

8-13

The CANopen Communication Profile describes two different PDO modes (see chapter 5).
One is used for synchronous data exchange and the other one for asynchronous message
transfer. To guarantee the cyclic behaviour of the system data exchange a higher priority
(suggested: level 2) is allocated to the synchronous PDO's than to the asynchronous PDO's
(level 3 - 5). Priority level 6 - 7 has been suggested for the SDO's.

A special feature of the Network Management (NMT) is the life guarding/node guarding
capability. For that purpose a range of 255 identifiers have been reserved starting at 1761.

CMS priority level message / object

0 (Id 1 - 220) - Synchronisation

- Emergency (fault)

1 (Id 221 - 440) - Emergency (fault)

- Network timing (SYNC, time stamp)

- other high priority sync. Messages

2 (Id 441 - 660) - PDO (synchronous)

3 (Id 661 - 880)

4 (Id 881 - 1100)

5 (Id 1101 - 1320)

- PDO (asynchronous)

6 (Id 1321 - 1540) - SDO's

7 (Id 1541 - 1760) reserved for SDO's

Table 8-5: Suggested Message Priorities

Network Management and Identifier Distribution CANopen Communication Profile CiA
Members Only Edition

8-14

8.4.3 Naming Conventions

CMS Naming Conventions

The CMS Naming Conventions of the CAN Application Layer define a syntax to create the
names of CMS objects and COB's. The dynamic distribution of COB-ID's is based on CMS
object names.

CMS Object Name Syntax: <prof-id> <appl-spec-name> <node-ID>

<prof-id>:

3 numeric characters for a device profile number registered by the CiA18.

<appl-spec-name>:
The first four (1 - 4) characters should identify what part of the CANopen Communication
Profile is modelled by this particular CMS object.

Abbreviation part of communication profile

SYNC SYNC message

TIME time stamp message

EMCY emergency message

SDO_ service data object (SDO)

TPDO or RPDO process data object (PDO)

The remaining three characters (5 - 7) should be interpreted as three ASCII-numbers.

<node-ID> :

3 numerical characters represent the node-ID of the module where the CMS object is used.
The node-ID is defined by the NMT.

The CMS names can be automatically generated by using these naming conventions. This is
useful if the number of used PDO's is not fixed. Names will only be generated for the needed
PDO's.

18 For instance '401' is used for the I/O modulesÕ profile.

Error Handling CANopen Communication Profile CiA
Members Only Edition

9-1

9 Error Handling
All types of errors detectable by the devices in an industrial system can be grouped into the
five classes shown below:

· Bus errors - usually electrical and wiring faults.

· Communications or protocol errors - for example, a specific bit in a telegram is not set as
expected.

· Life guarding errors - life guarding telegrams have not been received by a device within a
specified time-out period.

· Applications errors - such as accessing a device which is not available.

· Device failures - such as hardware failures on a device.

Bus Errors - Low level communications errors are catered for implicitly by the CAN
specification. Only under complete bus failure would a node be aware of such errors. The
error response then would be to go 'bus-off' and attempt to achieve a 'safe' hardware state.
The NMT master is aware of the devices active on the bus via the node guarding
mechanism.

Protocol Errors - Such errors can occur for example during domain downloads. A typical
response to this kind of error would be to signal failure via the appropriate protocol (e.g.
initiating the abort of a domain transfer) and ignoring the contents of the partially received
information. The device would still maintain its current state of readiness i.e. remain
operational.

Life guarding Errors - are dependent upon what type of life guarding is supported by a
device. If the device possesses full NMT life guarding the error mechanism depends on
whether the NMT Master detects a time out receiving a response from the device to a life
guarding telegram or whether the module itself detects a time out because no life guarding
telegram has been received from the NMT Master within its defined time out period. In the
first case, it should be tried to shut-down all devices in the network and then perform a warm-
start. In the second case, the device would assume that the NMT Master is not operational
and must indicate this to its application19.

Application Errors - Such errors could occur, for example, in a Programmable Logic
Controller (PLC) if an application program tried to access an output signal which did not
exist. A typical response would be to indicate to the application that an error had occurred
and send an emergency telegram.

Device Failures - Such errors could occur, for example, in a Drive Unit when the
temperature of power components exceeds a critical limit. To allow the response to such
cases to be application dependent such an error would result in the transmission of an
emergency telegram. A time-out period would be initiated and if the device did not get any
response within the device dependent time limit the device would take its own safe action
e.g. put all outputs into a default 'safe' state.

19 The definition of device reactions to life guarding errors falls in the scope of the device

profile.

Error Handling CANopen Communication Profile CiA
Members Only Edition

9-2

9.1 Node Guarding / Life Guarding

The communication interface of a particular device is assumed to be in a certain state in
order to be able to process these messages correctly. However there could occur local events
on a device that force it to a different state than was assumed by the transmitter of a
message. Especially, it could happen that due to an error a particular device goes to the
Disconnected State and does no longer take part on the bus communication.

To detect these errors with devices that do not transmit PDO's regularly, the NMT Master
manages a network database where, besides other information, the expected states of all
connected devices are recorded. The NMT Master regularly retrieves the actual states of all
devices on the network and compares them to the states recorded in the network database.
Mismatches are indicated first locally on the NMT Master through the Network Event service.
Consequently the application must take appropriate actions to ensure that all devices on the
bus will go to a save state. Generally, the application will first force all devices to the
Disconnected State and then perform a new boot-up sequence.

Node Guarding is optional. It starts for the slave when the first remote-transmit-request for its
guarding identifier is received. This may be during the node-connect phase (extended boot-
up) or later. The slave uses the guard time and life-time factor from its object dictionary
(either default values or modified at any stage). If guard time and life time factor are zero
(default values), the NMT Slave does not guard the NMT Master (lifeguarding).

If the extended boot-up is used, it is recommended that the NMT Master distributes node-
guarding identifiers starting from 1793dec, as this enables him to include very simple devices
in the network without readjustments.

With devices which are configured to use a PDO on a cyclic basis the application may be
able to detect fatal errors by means of missing telegrams. These devices do not have to
support guarding services. Whether or not a device needs to be guarded can be indicated to
the NMT Master during the boot-up phase of the network.

9.2 Emergency Telegram

The Life Guarding mechanism provides a means for detecting errors in the network interfaces
of devices. However, it cannot detect failures within the device itself. For instance, the
temperature of some power components on a device could exceed a critical limit whereas
the network interface could still be in good working condition. For notification of this type of
errors emergency telegrams have been introduced (see chapter 7.3).

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-1

10 Dictionary Structure and Entries
This section details the Object Dictionary structure and entries which are common to all
devices. The format of the object dictionary entries is shown below:

Index

(hex)

Object

(Symbolic Name)

Name Type Attrib. M/
O

Table 10-1: Format of Object Dictionary Headings

The complete object dictionary consists of the six columns shown above. The Index column
denotes the objects position within the object dictionary. This acts as a kind of address to
reference the desired data field. The sub-index is not specified here. The sub-index is used to
reference data fields within a complex object such as an array or record.

The Object column contains the Object Name according to the table below and is used to
denote what kind of object is at that particular index within the object dictionary. The
following definitions are used:

Object Name Comments Object
Code

NULL A dictionary entry with no data
fields

0

DOMAIN Large variable amount of data e.g.
executable program code

2

DEFTYPE Denotes a type definition such as a
Boolean, unsigned16, float and so
on

5

DEFSTRUCT Defines a new record type e.g. the
PDOMapping structure at 21 Hex

6

VAR A single value such as an
unsigned8, Boolean, float,
integer16, visible string etc.

7

ARRAY A multiple data field object where
each data field is a simple
variable of the SAME basic data
type e.g. array of unsigned16 etc.

8

RECORD A multiple data field object where
the data fields may be any
combination of simple variables

9

Table 10-2: Object Dictionary Object Definitions

The name column provides a simple textual description of the function of that particular
object. The type column gives information as to the type of the object 20. These include the
following pre-defined types: Boolean, floating point number, Unsigned Integer, Signed
Integer, visible/octett string, date, time-of-day, time-difference and domain (see /8/). It also
includes the pre-defined complex data type PDOMapping and may also include others
which are either manufacturer or device specific. The Attribute column defines the access
rights for a particular object.

20 It is not possible to define records of records, arrays of records or records with arrays as

fields of that record. In the case where an object is an array or a record the sub-index is
used to reference one data field within the object. Note that sub-index 0 contains the
number of elements and therefore itself is not part of the array.

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-2

It can be of the following:

Attribute Description

rw read and write access

wo write only access

ro read only access

const read only access, value is
constant

Table 10-3: Access Attributes for Data Objects

The M/O column defines whether the object is Mandatory or Optional. A mandatory object
must be implemented on a device. An optional object need not be implemented on a
device.

10.1 Dictionary Components

The overall layout of the object dictionary is shown in Table 4-1.

Index 01h-1Fh contain the standard data types, index 20h - 22h contain predefined complex
data types. The range of indices from 23-3FH is not defined yet but reserved for future
standard data structures.

The range of indices from 40-5FH is free for manufacturers to define custom data types. The
range 60-0FFFH is reserved for possible future enhancements of the CANopen
Communication Profile. The range 1000H-1FFFH contains the communication specific
object dictionary entries defined by the CANopen Communication Profile.

These parameters are called communication entries, their specification is common to all
device types, regardless of the device profile they use. The objects in range 1000H-1FFFH
not specified by this communication profile are reserved for further use. The range 2000H-
5FFFH is free for manufacturer specific profile definition.

The range 6000H-FFFH contains the standardised device profile parameters.

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-3

10.1.1 Data Types

The static data types are placed in the object dictionary for definition purposes only.
However, indices in the range 1-7 can be mapped as well in order to define the appropriate
space in the PDO as not being used by this device (donÕt care). An example mapping can be
found in the appendix.

The order of the data types is as follows:

Index Object Name

0001 DEFTYPE Boolean

0002 DEFTYPE Integer8

0003 DEFTYPE Integer16

0004 DEFTYPE Integer32

0005 DEFTYPE Unsigned8

0006 DEFTYPE Unsigned16

0007 DEFTYPE Unsigned32

0008 DEFTYPE Floating Point (Float)

0009 DEFTYPE Visible String

000A DEFTYPE Octet String

000B DEFTYPE Date

000C DEFTYPE Time Of Day

000D DEFTYPE Time Difference

000E DEFTYPE Bit String

000F DEFTYPE Domain

0010-
001F

Null Objects (reserved)

0020 DEFSTRUCT PDO CommPar

0021 DEFSTRUCT PDO Mapping

0022 DEFSTRUCT SDO Parameter

0023-
003F

Null Objects (reserved)

0040-
005F

DEFTYPE Manufacturer Specific Data Types

0060-
007F

DEFTYPE Device Profile Specific Standard Data
Types

0080-
009F

DEFSTRUCT Device Profile Specific Complex Data
Types

Table 10-4: Object Dictionary Data Types

The data type representations used are detailed in /8/ . Every device does not need to
support all the defined data types. A device only has to support the data-types it uses with the
objects in the range 1000H-9FFFH.

The predefined complex data-types are placed after the standard data-types. Three types are
defined at present, the PDO Communication Parameter (PDO CommPar) the PDO Mapping
record and the SDO Parameter record (SDO_Par). They are placed at index 20H, 21H and
22H.

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-4

A device may optionally provide the length of the standard data types encoded as
Unsigned32 at read access to the index that refers to the data type. E.g. index 000Bh (Date)
contains the value 38h=56dec as the data type ãDateÒ is encoded using 56 bits (see /8/). If
the length is variable (e.g. 000Fh = Domain), the entry contains 0h.

For the supported complex data types a device may optionally provide the structure of that
data type at read access to the corresponding index. Sub-index 0 then provides the number
of entries at this index (not counting sub-indices 0 and 255), and the following sub-indices
contain the data type according to table 10-4 encoded as Unsigned8. The entry at Index
20h describing the structure of the PDO Communication Parameter then looks as follows (see
also 10.1.2):

Subindex Value (Description)

0h 04h (4 subindices follow)

1h 07h (Unsigned32)

2h 05h (Unsigned8)

3h 06h (Unsigned16)

4h 05h (Unsigned8)

Standard (simple) and complex manufacturer specific data types can be distinguished by
attempting to read sub-index 1h: At a complex data type the device returns a value and sub-
index 0h contains the number of sub-indices that follow, at a standard data type the device
aborts the domain transfer as no sub-index 1h available. In that case sub-index 0h contains
the length of the simple data type in bits.

Note that some entries of data type Unsigned32 have the character of a structure (e.g. PDO
COB-ID entry, see Figure 10-1).

If an object dictionary entry (index) contains several sub-indices, then sub-index 0 describes
the number of entries (sub-indices) that follow (not counting sub-indices 0 and FFh). The
number of entries is encoded as Unsigned8.

Sub-index FFh (255dec) describes the structure of the entry by providing the data type and
the object type of the entry. It is encoded as Unsigned32 and organised as follows:

MSB LSB

bits 31-16 15-8 7-0

value reserved (value: 00 00h) Data Type

(see Table 10-4)

Object

(see Table 10-2)

encoded
as

 - Unsigned8 Unsigned8

It is optional to support Sub-Index FFh. If it is supported throughout the object dictionary and
the structure of the complex data tapes is provided as well, it enables one to upload the
entire structure of the object dictionary.

As Sub-index has the same structure and meaning throughout the object dictionary, it is not
described at each detailed object description (Chapter 10.3).

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-5

10.1.2 PDO Communication Parameter

The format of the structure is as follows:

Index Sub-Index Field In PDO Communication Record Data Type

0020H 0H number of supported entries in the record Unsigned8

1H COB-ID used by PDO Unsigned32

2H transmission type Unsigned8

3H inhibit time Unsigned16

4H CMS priority group Unsigned8

Table 10-5: PDO Communication Parameter Record

If the device supports the identifier distribution via DBT the value on sub-index 0H is 4
otherwise it is 2 (inhibit time not supported) or 3. The COB-ID at Index 20H, Sub-Index 1H is
defined using data type Unsigned32 in order to cater for 11-bit CAN Identifiers (CAN 2.0A) as
well as for 29-bit CAN identifiers (CAN 2.0B). The entry has to be interpreted as defined in
Figure 10-1 and Table 10-6.

Unsigned32

MSB LSB

bits 31 30 29 28-11 10-0

11-bit-ID 0/1 0/1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0

11-bit Identifier

29-bit-ID 0/1 0/1 1 29-bit Identifier

Figure 10-1: Structure of PDO COB-ID entry

bit number value meaning

31 (MSB) 0 PDO valid

1 PDO not valid

30 0 RTR allowed on this PDO

1 no RTR allowed on this PDO

29 0 11-bit ID (CAN 2.0A)

1 29-bit ID (CAN 2.0B)

28 - 11 0 if bit 29=0

X if bit 29=1: bits 28-11 of 29-bit-COB-ID

10-0 (LSB) X bits 10-0 of COB-ID

Table 10-6: Description of PDO COB-ID entry

The PDO valid/not valid allows to select which PDOs are used in the operational stage.
There may be PDOs fully configured (e.g. by default) but not used, and therefore set to "not
valid". Bit 29 and 30 may be static (not changeable), e.g. due to hardware restrictions. In that
case no error is signalled on the attempt to change them.

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-6

The transmission type (sub-index 2) defines the transmission character of the PDO (see
section 5.2). Table 10-7 describes the usage of this entry.

transmission type PDO transmission

cycli
c

acycli
c

synchronou
s

asynchronous RTR only

0 X X

1-240 X X

241-251 - reserved -

252 X X

253 X X

254 21 X

255 22 X

Table 10-7: Description of transmission type

Synchronous (transmission types 0-240 and 252) means that the transmission of the PDO shall
be related to the SYNC object as described in chapter 6.1. Preferably the devices use the
SYNC as a trigger to output or actuate based on the previous synchronous Receive-PDO
respectively to update the data transmitted at the following synchronous Transmit-PDO.
Details of this mechanism depend on the device type and are defined in the device profile if
applicable.

Asynchronous means that the transmission of the PDO is not related to the SYNC object.

A transmission type of zero means that the message shall be transmitted synchronously with
the SYNC object but not periodically.

A value between 1 and 240 means that the PDO is transmitted synchronously and cyclically,
the transmission type indicating the number of SYNC objects between two PDO
transmissions.

The transmission types 252 and 253 mean that the PDO is an event without immediate
notification and is only transmitted on remote transmission request. At transmission type 252,
the data is updated (but not sent) immediately after reception of the SYNC object. At
transmission type 253 the data is updated at the reception of the remote transmission request
(hardware and software restrictions may apply).

Transmission type 254 means, the application event is manufacturer specific (manufacturer
specific part of the object dictionary), transmission type 255 means, the application event is
defined in the device profile.

Sub-index 3H contains the inhibit time as specified in /11/. If the inhibit time feature is not
supported, the entry at sub-index 0H is set to 2.

Sub-index 4H contains the CMS priority group as specified in /11/ that the device requests for
this PDO if DBT services are executed. Devices that do not support DBT do not need to
support this entry (value at sub-index 0H is set to 3H). The value range is 0...7.

21 The transmission of this PDO is initiated by an event on the device. The event is

manufacturer specific.
22 The transmission of this PDO is initiated by an event on the device. This event must be

defined in the device profile.

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-7

10.1.3 PDO Mapping

The PDOMapping entry describes the PDO content by listing the sequence and length of the
mapped object dictionary entries (see Figure 10-2).

Figure 10-2 : Principle of PDOMapping

The PDOMapping is structured as follows:

Index Sub-Index Field in PDOMapping Record Data Type

0021H 0H number of mapped objects in PDO Unsigned8

1H 1st object to be mapped Unsigned32

2H 2nd object to be mapped Unsigned32

: : : : :
:

: : : : : : : : : : : : : : : : : : : :

40H 64th object to be mapped Unsigned32

Table 10-8: PDO Mapping

The structure of the entries from sub-index 1H - 40H is as follows:

Byte: MSB LSB

index (16 bit) sub-index (8 bit) object length (8
bit)

Figure 10-3: Structure of PDO Mapping Entry

Object dictionary

xxxxh xxh Application Object
1

yyyyh yyh Application Object
2

zzzzh zzh Application Object
3

PDOMapping

0 3
1 yyyyh yyh 8

2 zzzzh zzh 16

3 xxxxh xxh 8

PDO: Appl. Obj. 2 Application Object 3 Appl. Obj. 1

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-8

The object length is encoded as unsigned8 with a value range of 1...64. This parameter can
be used to verify the overall mapping length. It is mandatory.

If the change of the PDO mapping cannot be executed (e.g. the PDO length is exceeded or
the SDO client attempts to map an object that cannot be mapped) the device responds with
an Abort_Domain_Transfer service.

Writing to sub-index 0 determines the valid number of objects that have been mapped. E.g. if
64 objects of data type Boolean in the mapping structure are to be replaced by 8 objects of
data type Unsigned8, first an ã8Ò is written to sub-index 8, thus setting valid only the first 8
objects. These can then be re-mapped without immediately exceeding the length of the
PDO.

If data types (Index 1-7h) are mapped they serve as ãdummy entriesÒ. The corresponding data
in the PDO is not evaluated by the device. This optional feature is useful e.g. to transmit data
to several devices using one PDO, each device only utilising a part of the PDO.

A device that supports dynamic mapping of PDOs must support this during the Pre-
Operational state. If dynamic mapping during the Operational state is supported, the SDO
client is responsible for data consistency.

10.1.4 SDO Parameter

In order to describe the SDOs used on a device the data type SDO parameter object is
introduced. The data type has the index 22h in the object dictionary. The object is
structured as follows:

Index Sub-Index Field in SDOParameter Record Data Type

0022H 0H number of supported entries Unsigned8

1H COB-ID client -> server Unsigned32

2H COB-ID server -> client Unsigned32

3H node ID of SDOÕs client resp. server Unsigned8

Table 10-9: SDO Parameter Record

The number of supported entries in the SDO object record is specified at sub-index 0H. The
values at 1H and 2H specify the COB-ID for this SDO. The usage of extended identifiers is
possible (if DBT is not used). Subindex 3 gives the server of the SDO in case the record
describes an SDO for which the device is client and gives the client of the SDO if the record
describes an SDO for which the device is server.

Devices which are clients for the SDO must support the entry 3H (they must know the node id
of the SDO server). If the device is the server of the SDO the sub-index 3H is optional.

Unsigned32

MSB LSB

bits 31 30 29 28-11 10-0

11-bit-ID 0/1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0

11-bit Identifier

29-bit-ID 0/1 0 1 29-bit Identifier

Figure 10-4: Structure of SDO COB-ID entry

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-9

bit number value meaning

31 (MSB) 0 SDO valid

1 SDO not valid

30 0 reserved (always 0)

29 0 11-bit ID (CAN 2.0A)

1 29-bit ID (CAN 2.0B)

28 - 11 0 if bit 29=0

X if bit 29=1: bits 28-11 of 29-bit-COB-
ID

10-0 (LSB) X bits 10-0 of COB-ID

Table 10-10: Description of SDO COB-ID entry

An SDO is only valid if booth SDO-valid-bits are 0. Bit 29 may be static (not changeable) e.g.
due to hardware restrictions.

Overview Communication Profile Object Dictionary Entries

Table 10-11 gives an overview over the object dictionary entries defined by the
communication profile:

Index

(hex)

Object

(Symbolic
Name)

Name Type Acc.
23

M/O

1000 VAR device type Unsigned32 ro M

1001 VAR error register Unsigned8 ro M

1002 VAR manufacturer status register Unsigned32 ro O

1003 ARRAY pre-defined error field Unsigned32 ro O

1004 ARRAY number of PDOs supported Unsigned32 ro O

1005 VAR COB-ID SYNC-message Unsigned32 rw O

1006 VAR communication cycle period Unsigned32 rw O

1007 VAR synchronous window length Unsigned32 rw O

1008 VAR manufacturer device name Vis-String ro O

1009 VAR manufacturer hardware
version

Vis-String ro O

100A VAR manufacturer software version Vis-String ro O

100B VAR Node-ID Unsigned32 ro O

100C VAR guard time Unsigned32 rw O

100D VAR life time factor Unsigned32 rw O

100E VAR COB-ID guarding protocol Unsigned32 rw O

100F VAR number of SDOs supported Unsigned32 ro O

1010 VAR store parameters Unsigned32 rw O

1011 VAR restore default parameters Unsigned32 rw O

23 Access type listed here may vary for certain sub-indices. See detailed object

specification.

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-10

1012 VAR COB-ID time stamp Unsigned32 rw O

1013 VAR high resolution time stamp Unsigned32 rw O

1014 VAR COB-ID Emergency Unsigned32 rw O

1015 reserved

::::: ::::: ::::: ::::: ::::: :::::

11FF reserved

Server SDO Parameter (22H)

1200 RECORD 1st Server SDO parameter SDOParameter ro O

1201 RECORD 2nd Server SDO parameter SDOParameter rw O

::::: ::::: ::::: ::::: ::::: :::::

127F RECORD 128th Server SDO parameter SDOParameter rw O

Client SDO Parameter (22H)

1280 RECORD 1st Client SDO parameter SDOParameter rw O

1281 RECORD 2nd Client SDO parameter SDOParameter rw O

::::: ::::: ::::: ::::: ::::: :::::

12FF RECORD 128th Server SDO parameter SDOParameter rw O

1300 reserved

::::: ::::: ::::: ::::: ::::: :::::

13FF reserved

Receive PDO Communication Parameter (20H)

1400 RECORD 1st receive PDO Parameter PDOCommPar rw M/O*

1401 RECORD 2nd receive PDO Parameter PDOCommPar M/O*

::::: ::::: ::::: ::::: ::::: :::::

15FF RECORD 512th receive PDO Parameter PDOCommPar rw M/O*

Receive PDO Mapping Parameter (21H)

1600 ARRAY 1st receive PDO mapping PDOMapping rw M/O*

1601 ARRAY 2nd receive PDO mapping PDOMapping rw M/O*

::::: ::::: ::::: ::::: ::::: :::::

17FF ARRAY 512th receive PDO mapping PDOMapping rw M/O*

Transmit PDO Communication Parameter (20H)

1800 RECORD 1st transmit PDO Parameter PDOCommPar rw M/O*

1801 RECORD 2nd transmit PDO Parameter PDOCommPar rw M/O*

::::: ::::: ::::: ::::: ::::: ::::

19FF RECORD 512th transmit PDO Parameter PDOCommPar rw M/O
O

Transmit PDO Mapping Parameter (21H)

1A00 ARRAY 1st transmit PDO mapping PDOMapping rw M/O*

1A01 ARRAY 2nd transmit PDO mapping PDOMapping rw M/O*

::::: ::::: ::::: ::::: ::::: :::::

1BFF ARRAY 512th transmit PDO mapping PDOMapping rw M/O*

* If a device supports PDOs, the according PDO communication parameter and PDO
mapping entries in the object dictionary are mandatory. These may be read_only.

Table 10-11: Standard Objects

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-11

10.2 Detailed Object Specification

So far, parts of the object dictionary have been illustrated in tabular form. All device profiles
should contain a full object dictionary definition in this format. However this provides only an
overall description of a moduleÕs capabilities. Each object dictionary entry needs to be
specified precisely.

Every object dictionary entry must be described in the following manner:

OBJECT DESCRIPTION

INDEX Profile Index Number e.g. 6059H

Name Name of parameter e.g. 'Frequency-Motor-Min-Max'

Object Code Variable classification e.g. 8H (=Array)

Number Of
Elements

not counting sub-indices 0h (contains no. of elements) and
FFh (contains data type), e.g. 4H = 4 elements (this field is
used only if object is not a simple variable)

Data Type Profile type number e.g. 7H => Integer32

Table 10-12: Format of an Object Description

The Object Code must be one of those defined in Table 10-2 above. For better readability,
the Object Description should contain the symbolic Object Name rather than the numeric
Object Code, e.g. ARRAY instead of 8H.

VALUE DESCRIPTION

Sub-Index number of sub-index being described (field only used for arrays
& records)

Description Description of the functionality of the entry.

Object Class Optional Or Mandatory

Access Read Only (ro) or Read/Write (rw) or Write Only (wo)

PDO Mapping Optional/Default/No - can this object be mapped to a PDO.
Description:

Optional: Object may be mapped into a PDO

Default: Object is part of the default mapping (see device
profile)

No: Object must not be mapped into a PDO

Value Range size of data e.g. Unsigned32

Mandatory
Range

(No) not applicable or range defined as a min & max. value
e.g. -50 to +200

Default Value (No) not applicable or default value of an object after device
initialisation

Table 10-13: Object Value Description Format

For simple variables the value description appears once without the sub-index field. For
arrays or records the value description must be defined for each element (sub-index).

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-12

10.3 Detailed Specification of Communication Profile specific Objects

Object 1000H: Device Type

Contains information about the device type. The object at index 1000H describes the type of
device and its functionality. It is composed of a 16bit field which describes the device profile
that is used and a second 16bit field which gives additional information about optional
functionality of the device. The Additional Information parameter may be device specific. Its
specification does not fall within the scope of this document, it is defined in the appropriate
device profile.

OBJECT DESCRIPTION

INDEX 1000H

Name device type

Object Code VAR

Data Type Unsigned32

VALUE DESCRIPTION

Object Class Mandatory

Access ro

PDO Mapping No

Value Range Unsigned32

Mandatory Range No

Default Value No

Byte: MSB LSB

Additional Information Device Profile Number

Figure 10-5: Structure of the Device Type Parameter

Object 1001H: Error Register

This object is an error register for the device. The device can map internal errors in this byte.

OBJECT DESCRIPTION

INDEX 1001H

Name error register

Object Code VAR

Data Type Unsigned8

VALUE DESCRIPTION

Object Class Mandatory

Access ro

PDO Mapping Optional

Value Range Unsigned8

Mandatory Range No

Default Value No

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-13

Bit M/O Meaning

0 M generic error

1 O current

2 O voltage

3 O temperature

4 O communication error (overrun, error state)

5 O device profile specific

6 O reserved

7 O manufacturer specific

Table 10-14: Structure of the Error Register

If a bit is set to 1 the specified error has occurred. The only mandatory error that has to be
signalled is the generic error.

Object 1002H: Manufacturer Status Register

This object is a common status register for manufacturer specific purposes. In this document
only the size and the location of this object is defined.

OBJECT DESCRIPTION

INDEX 1002H

Name manufacturer status register

Object Code VAR

Data Type Unsigned32

VALUE DESCRIPTION

Object Class Optional

Access ro

PDO Mapping Optional

Value Range Unsigned32

Mandatory Range No

Default Value No

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-14

Object 1003H: Pre-defined Error Field

The object at index 1003H holds the errors that have occurred on the device and have been
signalled via the Emergency Object. In doing so it provides an error history.

1. The entry at sub-index 0 contains the number of actual errors that are recorded in the
array starting at sub-index 1.

2. Every new error is stored at sub-index 1, the older ones move down the list.

3. Writing a ã0Ò to sub-index 0 deletes the entire error history (empties the array)

4. The error numbers are of type Unsigned32 and are composed of a 16bit error code (see
Table 7-1) and a 16bit additional error information field which may be device specific.
The error code is contained in the lower 2 bytes (LSB) and the additional information is
included in the upper 2 bytes (MSB). If this object is supported it must consist of two
entries at least. The length entry on sub-index 0H and at least one error entry at sub-index
1H.

Byte: MSB LSB

Additional Information Error code

Figure 10-6: Structure of the pre-defined error field

OBJECT DESCRIPTION

INDEX 1003H

Name pre-defined error field

Object Code ARRAY

Number of Elements 1(Mandatory), 2-254 (Optional)

Data Type Unsigned32

VALUE DESCRIPTION

Sub-Index 0H

Description number of errors
Object Class Mandatory
Access rw
PDO Mapping No
Value Range Unsigned8
Mandatory Range 1
Default Value No

Sub-Index 1H

Description standard error field
Object Class Mandatory
Access ro
PDO Mapping No
Value Range Unsigned32
Mandatory Range No
Default Value No

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-15

Sub-Index 2H

Description standard error field
Object Class Optional
Access ro
PDO Mapping No
Value Range Unsigned32
Mandatory Range No
Default Value No

to

Sub-Index FEH

Description standard error field
Object Class Optional
Access ro
PDO Mapping No
Value Range Unsigned32
Mandatory Range No
Default Value No

Object 1004H: Number of PDOs supported

Index 1004H contains information about the maximum number of PDOs supported by the
device. It is distinguished between input and output PDOs and between synchronous and
asynchronous transmission. Sub-index 0 describes the overall number of PDOs supported
(Synchronous and Asynchronous)24. Sub-index 1 describes the number of synchronous PDOs
that is supported by the device, sub-index 2 the number of asynchronous PDOs that is
supported. Each of the values is of type Unsigned16. Figure 10-7 shows the structure of this
entry.

OBJECT DESCRIPTION

INDEX 1004H

Name number of PDOs supported

Object Code ARRAY

Number of Elements 2

Data Type Unsigned32

24 A device may support a fixed number of PDOs, each of which may either be of

synchronous and asynchronous transmission type.

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-16

VALUE DESCRIPTION

Sub-Index 0H

Description number of PDOs supported

Object Class Optional

Access ro

PDO Mapping No

Value Range unsigned32

Mandatory Range 0H - 1FF01FFH

Default Value No

Sub-Index 1H

Description number of synchronous PDOs

Object Class Optional

Access ro

PDO Mapping No

Value Range unsigned32

Mandatory Range 0H - 1FF01FFH

Default Value No

Sub-Index 2H

Description number of asynchronous PDOs

Object Class Optional

Access ro

PDO Mapping No

Value Range unsigned32

Mandatory Range 0H - 1FF01FFH

Default Value No

Sub-index MSB LSB

0 No. of Receive PDOs supported No. of Transmit PDOs supported

1 No. of synchronous Receive PDOs No. of synchronous Transmit PDOs

2 No. of asynchronous Receive
PDOs

No. of asynchronous Transmit PDOs

Figure 10-7: Structure of entry 1004H

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-17

Object 1005H: COB-ID SYNC message

Index 1005H defines the COB-ID of the Synchronisation Object (SYNC). Further, it defines
whether the device consumes the SYNC or whether the device generates the SYNC. The
structure of this object is shown in Figure 10-8 and Table 10-15. The default value for the
SNYC COB-ID is given in chapter 7.1.

OBJECT DESCRIPTION

INDEX 1005H

Name COB-ID SYNC message

Object Code VAR

Data Type Unsigned32

VALUE DESCRIPTION

Object Class Optional

Access rw

PDO Mapping No

Value Range Unsigned32

Mandatory Range No

Default Value 80h

Unsigned32

MSB LSB

bits 31 30 29 28-11 10-0

11-bit-ID 0/1 0/1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0

11-bit Identifier

29-bit-ID 0/1 0/1 1 29 -bit Identifier

Figure 10-8: Structure of SYNC COB-ID entry

bit number value meaning

31 (MSB) 0 Device does not consume SYNC message

1 Device consumes SYNC message

30 0 Device does not generate SYNC message

1 Device generates SYNC message

29 0 11-bit ID (CAN 2.0A)

1 29-bit ID (CAN 2.0B)

28 - 11 0 if bit 29=0

X if bit 29=1: bits 28-11 of 29-bit-SYNC-COB-ID

10-0 (LSB) X bits 10-0 of SYNC-COB-ID

Table 10-15: Description of SYNC COB-ID entry

Bit 29 may be static (not changeable) e.g. due to hardware restrictions.

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-18

Object 1006H: Communication Cycle Period

This object defines the communication cycle period in msec. 0 if not used.

OBJECT DESCRIPTION

INDEX 1006H

Name communication cycle period

Object Code VAR

Data Type Unsigned32

VALUE DESCRIPTION

Object Class Optional

Access rw

PDO Mapping No

Value Range Unsigned32

Mandatory Range No

Default Value 00Õ00Õ00Õ00h

Object 1007H: Synchronous Window Length

Contains the length of the time window for synchronous messages in msec. 0 if not used.

OBJECT DESCRIPTION

INDEX 1007H

Name synchronous window length

Object Code VAR

Data Type Unsigned32

VALUE DESCRIPTION

Object Class Optional

Access rw

PDO Mapping No

Value Range Unsigned32

Mandatory Range No

Default Value 00Õ00Õ00Õ00h

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-19

Object 1008H: Manufacturer Device Name

Contains the manufacturer device name.

OBJECT DESCRIPTION

INDEX 1008H

Name manufacturer device name

Object Code VAR

Data Type Visible String

VALUE DESCRIPTION

Object Class Optional

Access ro

PDO Mapping No

Value Range No

Mandatory Range No

Default Value No

Object 1009H: Manufacturer Hardware Version

Contains the manufacturer hardware version description.

OBJECT DESCRIPTION

INDEX 1009H

Name manufacturer hardware version

Object Code VAR

Data Type Visible String

VALUE DESCRIPTION

Object Class Optional

Access ro

PDO Mapping No

Value Range No

Mandatory Range No

Default Value No

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-20

Object 100AH: Manufacturer Software Version

Contains the manufacturer software version description.

OBJECT DESCRIPTION

INDEX 100AH

Name manufacturer software version

Object Code VAR

Data Type Visible String

VALUE DESCRIPTION

Object Class Optional

Access ro

PDO Mapping No

Value Range No

Mandatory Range No

Default Value No

Object 100BH: Node-ID

The object at Index 100BH contains the Node-ID. The node ID entry has the access type
"read only" as it can not be changed using SDO services. However, it is feasible to change it
via LMT (see /14/), via hardware (e.g. dip-switch).

OBJECT DESCRIPTION

INDEX 100BH

Name Node-ID

Object Code VAR

Data Type Unsigned32

VALUE DESCRIPTION

Object Class Optional

Access ro

PDO Mapping No

Value Range 1 - 256

Mandatory Range 1 - 127

Default Value No

MSB LSB

Reserved Reserved Reserved Node -ID

Figure 10-9: Structure of the Node-ID Parameter

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-21

Object 100CH: Guard Time

The objects at index 100CH and 100DH include the guard time in milli-seconds and the life
time factor. The life time factor multiplied with the guard time gives the life time for the
Node Guarding Protocol (see /10/).

OBJECT DESCRIPTION

INDEX 100CH

Name guard time

Object Code VAR

Data Type Unsigned16

VALUE DESCRIPTION

Object Class Optional

Access rw

PDO Mapping No

Value Range Unsigned16

Mandatory Range No

Default Value 0h

Object 100DH: Life Time Factor

The life time factor multiplied with the guard time gives the life time for the node guarding
protocol (see /10/).

OBJECT DESCRIPTION

INDEX 100DH

Name life time factor

Object Code VAR

Data Type Unsigned8

VALUE DESCRIPTION

Object Class Optional

Access rw

PDO Mapping No

Value Range Unsigned8

Mandatory Range No

Default Value 0h

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-22

Object 100EH: Node Guarding Identifier

The identifier used for node guarding and life guarding procedure (see chapter 9.1)

OBJECT DESCRIPTION

INDEX 100EH

Name node guarding identifier

Object Code VAR

Data Type Unsigned32

VALUE DESCRIPTION

Object Class Optional

Access rw

PDO Mapping No

Value Range Unsigned32

Mandatory Range No

Default Value 700h + node-ID

Unsigned32

MSB LSB

bits 31 30 29 28-11 10-0

11-bit-ID reserved 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0

11-bit Identifier

29-bit-ID reserved 1 29 -bit Identifier

Figure 10-10: Structure of the Node Guarding Identifier entry

Bit 29 may be static (not changeable) e.g. due to hardware restrictions.

Object 100FH: Number of SDOs Supported

If a device supports more than the default SDO the number of supported SDOs is described in
this object. This entry shows all available SDOs including the default SDO. The object is
composed of a 16bit field which describes the number of Client SDOs and a 16bit field
which describes the number of Server SDOs.

OBJECT DESCRIPTION

INDEX 100FH

Name number of SDOs supported

Object Code VAR

Data Type Unsigned32

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-23

VALUE DESCRIPTION

Object Class Optional

Access ro

PDO Mapping No

Value Range Unsigned32

Mandatory Range 1h-80h (server), 0-80h (client)

Default Value No

Byte: MSB LSB

number of client SDOs number of server SDOs

Figure 10-11: Structure of the Number of SDOs entry

Object 1010H: Store parameters

This Object supports the saving of parameters in non volatile memory. By read access the
device provides information about its saving capabilities. Several parameter groups are
distinguished:

Sub-Index 0 contains the largest Sub-Index that is supported.

Sub-Index 1 refers to all parameters that can be stored on the device.

Sub-Index 2 refers to communication related parameters (Index 1000h - 1FFFh manufacturer
specific communication parameters).

Sub-Index 3 refers to application related parameters (Index 6000h - 9FFFh manufacturer
specific application parameters).

At Sub-Index 4 - 127 manufacturers may store their choice of parameters individually.

Sub-Index 128 - 254 are reserved for future use.

In order to avoid storage of parameters by mistake, storage is only executed when a specific
signature is written to the appropriate Sub-Index. The signature is ãsaveÒ.

Signature MSB LSB
ASCII e v a s
hex 65h 76h 61h 73h

Figure 10-12: Storage write access signature

On reception of the correct signature in the appropriate Sub-Index the device stores the
parameter and then confirms the SDO transmission (initiate download response). If the storing
failed, the device responds with abort domain transfer, error class 6h, error code 6h
(hardware fault).

If a wrong signature is written, the device refuses to store and responds with abort domain
transfer, error class 8h, error code 0h (other error).

On read access to the appropriate Sub-Index the device provides information about its
storage functionality with the following format:

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-24

Unsigned32

MSB LSB

bits 31-2 1 0

reserved (=0) 0/1 0/1

Figure 10-13: Storage read access structure

bit number value meaning

31-2 0 reserved

1 0 Device does not save parameters
autonomously

1 Device saves parameters autonomously

0 0 Device does not save parameters on command

1 Device saves parameters on command

Autonomous saving means that a device stores the storable parameters in a non-volatile
manner without user request.

OBJECT DESCRIPTION

INDEX 1010H

Name store parameters

Object Code ARRAY

Number of Elements 1H - 7FH

Data Type Unsigned32

VALUE DESCRIPTION

Sub-Index 0H

Description largest supported Sub-Index

Object Class Optional

Access ro

PDO Mapping No

Value Range Unsigned8

Mandatory Range No

Default Value No

Sub-Index 1H

Description save all parameters

Object Class Optional

Access rw

PDO Mapping No

Value Range Unsigned32 (see Fig. 10-
12+13)

Mandatory Range No

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-25

Default Value No

Sub-Index 2H

Description save communication
parameters

Object Class Optional

Access rw

PDO Mapping No

Value Range Unsigned32 (see Fig. 10-
12+13)

Mandatory Range No

Default Value No

Sub-Index 3H

Description save application parameters

Object Class Optional

Access rw

PDO Mapping No

Value Range Unsigned32 (see Fig. 10-
12+13)

Mandatory Range No

Default Value No

Sub-Index 4H - 7FH

Description save manufacturer defined
parameters

Object Class Optional

Access rw

PDO Mapping No

Value Range Unsigned32 (see Fig. 10-
12+13)

Mandatory Range No

Default Value No

Object 1011H: Restore default parameters

With this object the default values of parameters according to the communication or device
profile are restored. By read access the device provides information about its capabilities to
restore these values. Several parameter groups are distinguished:

Sub-Index 0 contains the largest Sub-Index that is supported.

Sub-Index 1 refers to all parameters that can be restored.

Sub-Index 2 refers to communication related parameters (Index 1000h - 1FFFh manufacturer
specific communication parameters).

Sub-Index 3 refers to application related parameters (Index 6000h - 9FFFh manufacturer
specific application parameters).

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-26

At Sub-Index 4 - 127 manufacturers may restore their individual choice of parameters.

Sub-Index 128 - 254 are reserved for future use.

In order to avoid the restoring of default parameters by mistake, restoring is only executed
when a specific signature is written to the appropriate Sub-Index. The signature is ãloadÒ.

Signature MSB LSB
ASCII d a o l
hex 64h 61h 6Fh 6Ch

Figure 10-14: Restoring write access signature

On reception of the correct signature in the appropriate Sub-Index the device restores the
default parameters and then confirms the SDO transmission (initiate download response). If
the restoring failed, the device responds with abort domain transfer, error class 6h, error code
6h (hardware fault). If a wrong signature is written, the device refuses to restore the defaults
and responds with abort domain transfer, error class 8h, error code 0h (other error).

The default values are set valid after the device is reset (reset node for subindex 1h - 127h,
reset communication for subindex 2h). If the device requires storing on command (see
1010h), the appropriate command has to be executed after the reset if the default
parameters are to be stored permanently.

restore defaults

reset

default values valid

(save)

On read access to the appropriate Sub-Index the device provides information about its
default parameter restoring capability with the following format:

Unsigned32

MSB LSB

bits 31-1 0

reserved (=0) 0/1

Figure 10-15: Restoring default values read access structure

bit number value meaning

31-1 0 reserved

0 0 Device does not restore default parameters

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-27

1 Device restores parameters

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-28

OBJECT DESCRIPTION

INDEX 1011H

Name restore default parameters

Object Code ARRAY

Number of Elements 1H - 7FH

Data Type Unsigned32

VALUE DESCRIPTION

Sub-Index 0H

Description largest supported Sub-Index

Object Class Optional

Access ro

PDO Mapping No

Value Range Unsigned8

Mandatory Range No

Default Value No

Sub-Index 1H

Description restore all default parameters

Object Class Optional

Access rw

PDO Mapping No

Value Range Unsigned32 (see Fig. 10-
14+15)

Mandatory Range No

Default Value No

Sub-Index 2H

Description restore communication default
parameters

Object Class Optional

Access rw

PDO Mapping No

Value Range Unsigned32 (see Fig. 10-
14+15)

Mandatory Range No

Default Value No

Sub-Index 3H

Description restore application default
parameters

Object Class Optional

Access rw

PDO Mapping No

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-29

Value Range Unsigned32 (see Fig. 10-
14+15)

Mandatory Range No

Default Value No

Sub-Index 4H - 7FH

Description restore manufacturer defined
default parameters

Object Class Optional

PDO Mapping No

Value Range Unsigned32 (see Fig. 10-
14+15)

Mandatory Range No

Object 1012H: COB-ID Time-stamp message

Index 1012H defines the COB-ID of the Time-Stamp Object (TIME). Further, it defines
whether the device consumes the TIME or whether the device generates the TIME. The
structure of this object is shown in Figure 10-8 and Table 10-15, it is similar to the entry
1005h (COB-ID SYNC message).

OBJECT DESCRIPTION

INDEX 1012H

Name COB-ID time stamp message

Object Code VAR

Data Type Unsigned32

VALUE DESCRIPTION

Object Class Optional

Access rw

PDO Mapping No

Value Range Unsigned32

Mandatory Range No

Default Value 100h

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-30

Object 1013H: High Resolution Time Stamp

This object contains a time stamp with a resolution of 1 msec. It can be mapped into a PDO
in order to define a high resolution time stamp message. (Note that the data type of the
standard time stamp message (TIME) is fixed). Further application specific use is
encouraged.

OBJECT DESCRIPTION

INDEX 1013H

Name high resolution time stamp

Object Code VAR

Data Type Unsigned32

VALUE DESCRIPTION

Object Class Optional

Access rw

PDO Mapping Optional

Value Range Unsigned32

Mandatory Range No

Default Value 00Õ00Õ00Õ00h

Object 1014H: COB-ID Emergency Message

Index 1014H defines the COB-ID of the Emergency Object (EMCY). The structure of this
object is shown in Figure 10-8 and Table 10-15, it is similar to the entry 1005h (COB-ID
SYNC message).

OBJECT DESCRIPTION

INDEX 1014H

Name COB-ID Emergency message

Object Code VAR

Data Type Unsigned32

VALUE DESCRIPTION

Object Class Optional

Access rw

PDO Mapping No

Value Range Unsigned32

Mandatory Range No

Default Value 80h + node-ID

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-31

Object 1200H - 127FH: Server SDO Parameter

These objects contain the parameters for the SDOs for which the device is the server. If a
device handles more than one server SDO the default SDO must be located at index 1200H
as the first server SDO. This entry is read only 25. All additional server SDOs are invalid by
default (invalid bit - see table 10-6).

The description of the Client of the SDO (Sub-index 3h) is optional. It is not available for the
default SDO (no Sub-index 3h at Index 1200H), as this entry is read_only.

OBJECT DESCRIPTION

INDEX 1200H - 127FH

Name Server SDO parameter

Object Code RECORD

Number of Elements 3H

Data Type SDOPar

VALUE DESCRIPTION

Sub-Index 0H

Description number of entries

Object Class Optional

Access ro

PDO Mapping No

Value Range Unsigned8

Mandatory Range 2

Default Value No

Sub-Index 1H

Description COB-ID Client->Server (rx)

Object Class Optional

Access Index 1200h: ro,

Index 1201h-127Fh: rw

PDO Mapping No

Value Range Unsigned32 (figure 10-4)

Mandatory Range No

Default Value Index 1200h: 600h+Node-ID,

Index 1201h-127Fh: No

25 It must be ensured that the COB-IDs of the default SDO can not be manipulated by

writing to the object dictionary.

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-32

Sub-Index 2H

Description COB-ID Server -> Client (tx)

Object Class Optional

Access Index 1200h: ro

Index 1201-127Fh: rw

PDO Mapping No

Value Range Unsigned32 (figure 10-4)

Mandatory Range No

Default Value Index 1200h: 580h+Node-ID,

Index 1201h-127Fh: No

Sub-Index 3H

Description node ID of the SDO client

Object Class Optional

Access rw

PDO Mapping No

Value Range Unsigned8

Mandatory Range No

Default Value No

Object 1280H - 12FFH: Client SDO Parameter
These objects contain the parameters for the SDOs for which the device is the client. If the
entry is supported, all sub-indices must be available.

OBJECT DESCRIPTION

INDEX 1280H - 12FFH

Name Client SDO parameter

Object Code RECORD

Number of Elements 3H

Data Type SDOPar

VALUE DESCRIPTION

Sub-Index 0H

Description number of entries

Object Class Optional

Access ro

PDO Mapping No

Value Range Unsigned8

Mandatory Range 3

Default Value 3

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-33

Sub-Index 1H

Description COB-ID Client->Server (tx)

Object Class Optional

Access rw

PDO Mapping No

Value Range Unsigned32 (figure 10-4)

Mandatory Range No

Default Value No

Sub-Index 2H

Description COB-ID Server -> Client (rx)

Object Class Optional

Access rw

PDO Mapping No

Value Range Unsigned32 (figure 10-4)

Mandatory Range No

Default Value No

Sub-Index 3H

Description node ID of the SDO server

Object Class Optional

Access rw

PDO Mapping No

Value Range Unsigned8

Mandatory Range No

Default Value No

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-34

Object 1400H - 15FFH: Receive PDO Communication Parameter

Contains the communication parameters for the PDOs the device is able to receive.

OBJECT DESCRIPTION

INDEX 1400H - 15FFH

Name receive PDO parameter

Object Code RECORD

Number of Elements 2 (Mandatory), 3-4 (Optional)

Data Type PDOCommPar

VALUE DESCRIPTION

Sub-Index 0H

Description number of entries

Object Class Optional

Access ro

PDO Mapping No

Value Range Unsigned8

Mandatory Range 2 - 4

Sub-Index 1H

Description COB-ID used by PDO

Object Class Optional

Access rw

PDO Mapping No

Value Range Unsigned32 (Figure 10-6)

Mandatory Range No

Default Value Index 1400h: 200h + Node-ID,

Index 1401h: 300h + Node-ID,

Index 1402h - 15FFh: No

Sub-Index 2H

Description transmission type

Object Class Optional

Access rw

PDO Mapping No

Value Range Unsigned8 (Table 10-7)

Mandatory Range No

Default Value (Device Profile dependent)

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-35

Sub-Index 3H

Description inhibit time

Object Class Optional

Access rw

PDO Mapping No

Value Range Unsigned16

Mandatory Range No

Default Value No

Sub-Index 4H

Description CMS priority group

Object Class Optional

Access rw

PDO Mapping No

Value Range Unsigned8

Mandatory Range 0 - 7

Default Value No

Object 1600H - 17FFH: Receive PDO Mapping Parameter

Contains the mapping for the PDOs the device is able to receive.

OBJECT DESCRIPTION

INDEX 1600H - 17FFH

Name receive PDO mapping

Object Code RECORD

Number of Elements 1H-64H

Data Type PDOMapping

VALUE DESCRIPTION

Sub-Index 0H

Description number of mapped application
objects in PDO

Object Class Optional

Access rw

PDO Mapping No

Value Range Unsigned32

Mandatory Range 1 - 64

Default Value (Device Profile dependent)

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-36

Sub-Index 1H - 40H

Description PDO mapping for the nth
application object to be
mapped

Object Class Optional

Access rw

PDO Mapping No

Value Range Unsigned32

Mandatory Range No

Default Value (Device Profile dependent)

Object 1800H - 19FFH: Transmit PDO Communication Parameter

Contains the communication parameters for the PDOs the device is able to transmit.

OBJECT DESCRIPTION

INDEX 1800H - 19FFH

Name transmit PDO parameter

Object Code RECORD

Number of Elements 2 (Mandatory), 3-4 (Optional)

Data Type PDOCommPar

VALUE DESCRIPTION

Sub-Index 0H

Description number of entries

Object Class Optional

Access ro

PDO Mapping No

Value Range Unsigned8

Mandatory Range 2 - 4

Sub-Index 1H

Description COB-ID used by PDO

Object Class Optional

Access rw

PDO Mapping No

Value Range Unsigned32 (Figure 10-6)

Mandatory Range No

Default Value Index 1800h: 180h + Node-ID,

Index 1801h: 280h + Node-ID,

Index 1802h - 18FFh: No

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-37

Sub-Index 2H

Description transmission type

Object Class Optional

Access rw

PDO Mapping No

Value Range Unsigned8 (Table 10-7)

Mandatory Range No

Default Value (Device Profile dependent)

Sub-Index 3H

Description inhibit time

Object Class Optional

Access rw

PDO Mapping No

Value Range Unsigned16

Mandatory Range No

Default Value No

Sub-Index 4H

Description CMS priority group

Object Class Optional

Access rw

PDO Mapping No

Value Range Unsigned8

Mandatory Range 0 - 7

Default Value No

Dictionary Structure and EntriesCANopen Communication Profile CiA
Members Only Edition

10-38

Object 1A00H - 1BFFH: Transmit PDO Mapping Parameter

Contains the mapping for the PDOs the device is able to transmit.

OBJECT DESCRIPTION

INDEX 1A00H - 1BFFH

Name transmit PDO mapping

Object Code RECORD

Number of Elements 1H-64H

Data Type PDOMapping

VALUE DESCRIPTION

See Value Description of objects 1600H - 17FFH.

Physical Layer CANopen Communication Profile CiA
Members Only Edition

11-1

11 Physical Layer
The physical medium for CANopen devices is a differentially driven two-wire bus line with
common return according to ISO 11898 /2/.

11.1 Physical medium Specification

See /4/.

11.2 Transceiver

See /2/. The maximum rating for VCAN_H and VCAN_L is +16V. Galvanic isolation between bus
nodes is optional.

11.3 Bit Rates, Bit Timing

Every module has to support a bit rate of 20 kbit/s. The recommended bit rates and
corresponding bit timing recommendations are listed in table 11-1.

Bit rate

Bus length (1)

Nominal

bit time

tb

Number of

time quanta

per bit

Length of

time

quantum tq

Location of

sample

point

1 Mbit/s

25 m

1 ms 8 125 ns 6 tq

(750 ns)

800 kbit/s

50 m

1.25 ms 10 125 ns 8 tq

(1 ms)

500 kbit/s

100 m

2 ms 16 125 ns 14 tq

(1.75 ms)

250 kbit/s

250 m (2)

4 ms 16 250 ns 14 tq

(3.5 ms)

125 kbit/s

500 m (2)

8 ms 16 500 ns 14 tq

(7 ms)

50 kbit/s

1000 m (3)

20 ms 16 1.25 ms 14 tq
(17.5 ms)

20 kbit/s

2500 m (3)

50 ms 16 3.125 ms 14 tq
(43.75 ms)

10 kbit/s

5000 m (3)

100 ms 16 6.25 ms 14 tq
(87.5 ms)

Table 11-1: Recommended Bit Timing Settings

Oscillator frequency 16 MHz +/-0.1% (1000 ppm)

Sampling mode Single sampling SAM = 0

Synchronisation mode Recessive to dominant edges only SYNC = 0

Synchronisation jump width 1 * tq SJW = 0

Phase Segment 2 2 * tq TSEG2 = 1

Physical Layer CANopen Communication Profile CiA
Members Only Edition

11-2

Note 1: Rounded bus length estimation (worst case) on basis 5 ns/m propagation
delay and a total effective ECU-internal (Elec. Control Unit) in-out delay
as follows: 1M-800 kbit/s: 210ns

500 - 250 kbit/s: 300 ns (includes 2 * 40 ns for optocouplers)
124 kbit/s: 450 ns (includes 2 * 100 ns for optocouplers)
50 - 10 kbit/s: 1.5 tq; Effective delay = delay recessive to

dominant plus dominant to recessive
divided

by two.
Note 2: For bus length greater than about 200 m the use of optocouplers is

recommended. If optocouplers are placed between CAN controller and
transceiver this affects the maximum bus length depending upon the
propagation delay of the optocouplers i.e. -4m per 10 ns propagation
delay of employed optocoupler type.

Note 3: For bus length greater than about 1 km bridge or repeater devices may
be needed.

A module shall support as many of the recommended bit rates as possible. It is not required,
that a module has to support all recommended bit rates.

11.4 External Power Supply

The recommended output voltage at the optional external power supply is +18VDC < V+ <
+30VDC in order to enable the use of standard industrial power supplies (24VDC).

11.5 Bus Connector

11.5.1 9-pin D-Sub Connector

CAN_GND

CAN_H

CAN_L

(GND) CAN_V+

(CAN_SHLD)

54321

9876

male

12345

6789

female

It is recommended to use a 9-pin D-Sub connector (DIN 41652 or corresponding international
standard) with the pinning according to CiA DS 102 /4/. For convenience the pinning is
repeated here:

Physical Layer CANopen Communication Profile CiA
Members Only Edition

11-3

Pin Signal Description

1 - Reserved

2 CAN_L CAN_L bus line (dominant low)

3 CAN_GND CAN Ground

4 - Reserved

5 (CAN_SHLD) Optional CAN Shield

6 (GND) Optional Ground

7 CAN_H CAN_H bus line (dominant high)

8 - Reserved

9 (CAN_V+) Optional CAN external positive supply (dedicated for
supply of transceiver and optocouplers, if galvanic
isolation of the bus node applies)

If 9-pin D-Sub connector is supported, a male connector meeting the above specification
has to be provided by the bus node. Within the modules, pin 3 and pin 6 have to be
interconnected. Inside of such modules providing two bus connections, and inside the T-
connectors, all the pins (including the reserved ones) have to be connected. The intention is,
that there shall be no interruption of any of the wires in the bus cable, assuming a future
specification of the use of the reserved pins.

By using the pin V+ for supplying transceivers in case of galvanic isolation, the necessity of
an extra local power isolation (e.g. DC/DC-converter) is avoided.

If an error line is needed within a system, then pin 8 shall be used for this purpose.

11.5.2 5-pin Mini Style Connector

m a l e

1

2

3

4

5

f e m a l e

1

2

3

4

5

If 5-pin Mini Style Connectors are used the following pinning applies:

Pin Signal Description

1 (CAN_SHLD) Optional CAN Shield

2 (CAN_V+) Optional CAN external positive supply (dedicated for
supply of transceiver and optocouplers, if galvanic
isolation of the bus node applies)

3 CAN_GND Ground / 0V / V-

4 CAN_H CAN_H bus line (dominant high)

5 CAN_L CAN_L bus line (dominant low)

The bus node provides the male pins of the connector.

Physical Layer CANopen Communication Profile CiA
Members Only Edition

11-4

11.5.3 Open Style Connector

1 2 3 4 5

1 2 3 4 5

female

male

If Open Style Connectors are used the following pinning is recommended:

Pin Signal Description

1 CAN_GND Ground / 0 V / V-

2 CAN_L CAN_L bus line (dominant low)

3 (CAN_SHLD) Optional CAN Shield

4 CAN_H CAN_H bus line (dominant high)

5 (CAN_V+) Optional CAN external positive supply (dedicated for
supply of transceiver and optocouplers, if galvanic
isolation of the bus node applies)

4-pin Open Style Connectors either use pins 1-4 (Version A) or pins 2-5 (Version B). 3-pin
Open Style Connectors use pins 2-4. The bus node provides the male pins of the connector.

11.5.4 Multipole Connector

1

2

1 0

9

1

1 0

If (5 x 2) multipole connectors are used (e.g. inside EMI protected housings) the following
pinning is recommended, as it supports direct connection of the flat cables to 9-pin D-sub
connectors:

Physical Layer CANopen Communication Profile CiA
Members Only Edition

11-5

Pin Signal Description

1 reserved

2 (GND) Optional Ground

3 CAN_L CAN_L bus line (dominant low)

4 CAN_H CAN_H bus line (dominant high)

5 CAN_GND CAN Ground

6 reserved

7 reserved

8 (CAN_V+) Optional CAN external positive supply

9 reserved

10 reserved

11.5.5 Other Connectors

If different connectors are used, the pins have to be named (either in the accompanying
manual or directly on the device) using the following terminology:

Signal description notation

CAN_L bus line (dominant low) CAN_L or CANlow or CAN-

CAN_H bus line (dominant high) CAN_H or CANhigh or CAN+

CAN Ground CAN_GND or CANGND or Ground or GND

Optional CAN Shield CAN_SHLD or CANSHIELD or Shield or SHLD

Optional CAN external positive
supply

CAN_V+ or CANV+ or V+ or UC or UCAN

Optional Ground OPT_GND or GNDopt or V- or 0V

APPENDIX CANopen Communication Profile CiA
Members Only Edition

12-1

12 APPENDIX

12.1 Example PDOMapping:

Consider a device which has the following object dictionary entries:

Index Sub-Index Object Name Data Type

6060 - variable_1 Unsigned16

6091 - variable_2 Unsigned32

6092 - variable_3 Unsigned32

60AE - variable_4 Unsigned16

60D0 0 rec_elem_0 Unsigned8

1 rec_elem_1 Unsigned8

2 rec_elem_2 Unsigned8

3 rec_elem_3 Unsigned8

Table A.1: Example of Device Profile Description

If we wish to configure the receive PDO defined on index 1600h to have the following
structure:

Figure A.1: Desired Input PDO Configuration

Then we would have to write the following values to the corresponding PDOMapping
structure at index 1600h in the object dictionary:

Sub-Index
(hex)

Value (hex) Comment

0 3 Number of objects in input = 3

1 60 91 00 20 First object mapped is at index 6091.0 (32 bit length)

2 60 AE 00 10 Second object mapped is at index 60AE.0 (16 bit
length)

3 60 D0 02 08 Third object mapped is at index 60D0.2 (8 bit length)

Table A.2: Mapping of receive PDO

0 1 2 3 4 5 6 7

Not Used
rec_elem_2
variable_4
variable_2

Byte

APPENDIX CANopen Communication Profile CiA
Members Only Edition

12-2

If we want this PDO to be reveived synchronously every communication cycle with the COB-
ID 300 we have to write the following values in the communication parameter located at
1400H.

Sub-Index
(hex)

Value (hex) Comment

0 4 number of supported entries

1 12C COB-ID = 300

2 1 transmission type = 1 (cyclic, synchronous)

3 0 no inhibit time

4 0 no priority group (ID is distributed statically)

Table A.3: Communication parameters for receive PDO

If we wish to configure the transmit PDO defined at index 1A00h to have the following
structure:

0 1 2 3 4 5 6 7

Not Used
variable_3
variable_1

Byte

Figure A.2: Desired transmit PDO Configuration

Then we would have to write the following values to the corresponding PDOMapping
structure at index 1A00h in the object dictionary:

Sub-Index
(hex)

Value (hex) Comment

0 2 Number of objects in transmit PDO = 2

1 60 60 00
10

First object mapped is at index 6060.0 (16 bit length)

2 60 92 00
20

Second object mapped is at index 6092.0 (32 bit
length)

Table A.4: Mapping of transmit PDO

If we want this PDO to be transmitted asynchronously on an device specific event specified
in the device profile with the COB-ID 400 we have to write the following values in the
communication parameter located at 1800H.

Sub-Index
(hex)

Value (hex) Comment

0 4 number of supported entries

1 190 COB-ID = 400

2 FF transmission type = 255 (asynchronous, profile
specific)

3 0 no inhibit time

4 0 no priority group (ID is distributed statically)

Table A.5: Communication parameters for transmit PDO

APPENDIX CANopen Communication Profile CiA
Members Only Edition

12-3

12.2 Example for Emergency Message

A Temperature Error is signaled as follows (if detailed error source supported):

Error Code: 40xx (xx = additional information, specified by the device profile)

Error Register: Bit 7 6 5 4 3 2 1 0 = 09H

Content 0 0 0 0 1 0 0 1

Emergency Message: xx 40 09 yy yy yy yy yy (yy = manufacturer specific)

12.3 Example for Naming Conventions

A device needs identifiers for two synchronous PDO (COMMAND and ACTUAL) and two
asynchronous PDO's (device = server). The table lists the COB names used by the device in
order to request the identifiers via DBT. The device's node-ID is 1. In ãxxxÒ the device profile
number used for this particular device is coded (e.g. 401 for I/O device profile).

COB name Communication Parameter at
Index

PDOMapping at Index

xxxSYNC000001X 1005h (COB-ID only) -

xxxSDO_001001C -

xxxSDO_001001S -

xxxRPDO001001X 1400h (1st receive PDO) 1600H (1st receive PDO)

xxxTPDO001001X 1800h (1st transmit PDO) 1A00H (1st transmit PDO)

xxxRPDO002001X 1401h (2nd receive PDO) 1601H (2nd receive PDO)

xxxTPDO002001X 1801h (2nd transmit PDO) 1A01H (2nd transmit PDO)

xxxEMCY000001X - -

12.4 Example for Device Profile: Object 6C05H of Analogue I/O Device

12.4.1 Object 6C05H

Writes the value to the output channel 'n' (unconverted). Value is 32 bits wide or less.

OBJECT DESCRIPTION

INDEX 6C05H

Name Write_Analogue_Output_32

Object Code RECORD

Number Of
Elements

0H(Mandatory) 1H-20H(Optional)

Object Class Mandatory

PDO Mapping 0H(Mandatory) 1H-20H(Optional)

APPENDIX CANopen Communication Profile CiA
Members Only Edition

12-4

VALUE DESCRIPTION

Sub-Index 0H

Description Number_Analogue_Outputs

Data Type Unsigned8

Length 1

Object Class Mandatory

PDO Mapping NO

Value Range 0H -20H

Mandatory Range NO

Sub-Index 1H

Description Output_1H

Data Type Unsigned32

Length 2

Object Class Optional

PDO Mapping Possible

Value Range Unsigned32

Mandatory Range NO

Sub-Index 2H

Description Output_2H

Data Type Unsigned32

Length 2

Object Class Optional

PDO Mapping Possible

Value Range Unsigned32

Mandatory Range NO

to

Sub-Index 20H

Description Output_20H

Data Type Unsigned32

Length 2

Object Class Optional

PDO Mapping Possible

Value Range Unsigned32

Mandatory Range NO

APPENDIX CANopen Communication Profile CiA
Members Only Edition

12-5

12.5 Electronic Data Sheet Specification

12.5.1 Introduction

In order to give the user of a CANopen device more support the deviceÕs description should
be available in a standardised way. This gives the opportunity to create standardised tools
for:

· configuration of CANopen devices,

· designing networks with CANopen devices,

· managing project information on different platforms.

Therefore two types of files are introduced to define a CANopen device with electronically
means. The files are ASCII-coded and it is recommended to use the ANSI character set.

12.5.1.1 Electronic Data Sheets (EDS) and Device Configuration Files (DCF)

An EDS can be used to describe the:
· Communication functionality and objects as defined in the CANopen CAL-based

Communication Profile DS-301,

· Device specific objects as defined in the device profiles DS-4XX.

The EDS is the template for a device ãXYÒ of the vendor ãUVÒ. The DCF describes the
incarnation of a device not only with the objects but also with the values of the objects.
Furthermore a value for the baudrate of a device and for the module-id are added.

APPENDIX CANopen Communication Profile CiA
Members Only Edition

12-6

12.5.2 Structure of an EDS (Electronic Data Sheet)

An EDS should be supplied by the vendor of a particular device. If a vendor has no EDS
available for his CANopen devices a default EDS can be used. The default EDS comprises
all entries of a device profile for a particular device class.

An EDS can be divided into three parts:
· informations regarding the EDS file (creation time, version etc.),

· general device information (name, serial number, hardware revision etc.),

· object dictionary with default values.

12.5.2.1 File Information

Information regarding
· file description,

· creation date and time

· modification date and time

· version management

can be found in the section FileInfo.

The following keywords are used:

FileName - file name (according to DOS restrictions),

FileVersion - actual file version (Unsigned8),

FileRevision - actual file revision (Unsigned8),

Description - file description (255 characters),

CreationTime - file creation time (characters in format ãhh:mm(AM|PM)Ò),

CreationDate - date of file creation (characters in format ãmm-dd-yyÒ),

CreatedBy - name or description of file creator (255 characters),

ModificationTime - time of last modification (characters in format ãhh:mm(AM|PM)Ò),

ModificationDate - date of last file modification (characters in format ãmm-dd-yyÒ),

ModifiedBy - name or description of the modification (255 characters).

Example:

[FileInfo]

FileName=vendor1.eds

FileVersion=1

FileRevision=2

Description=EDS for simple I/O-device

CreationTime=09:45AM

CreationDate=05-15-95

CreatedBy=Zaphod Beeblebrox

ModificationTime=11:30PM

ModificationDate=08-21-95

ModifiedBy=Zaphod Beeblebrox

APPENDIX CANopen Communication Profile CiA
Members Only Edition

12-7

12.5.2.2 General Device Information

The device specific information
· vendor name,

· vendor code,

· device name,

· device code,

· version information,

· LMT-information (parts of the LMT-address),

· device abilities.

can be found in the section DeviceInfo.

The following keywords are used:
VendorName - vendor name (255 characters)

VendorNumber - vendor code (Unsigned32)

ProductName - product name (255 characters)

ProductNumber - product number (Unsigned32)

ProductVersion - product version (Unsigned8)

ProductRevision - product revision (Unsigned8)

OrderCode - order code for this product (255 characters)

LMT_ManufacturerName - manufacturer name part of LMT-address (7 characters)

LMT_ProductName - product name part of LMT-address (7 characters)

BaudRate_10 - supported baud rates (Boolean, 0 = not supported, 1 =
supported)

BaudRate_20

BaudRate_50

BaudRate_100

BaudRate_125

BaudRate_250

BaudRate_500

BaudRate_800

BaudRate_1000

SimpleBootUpMaster - simple boot-up master functionality (Boolean, 0 = not
supported, 1 = supported),

SimpleBootUpSlave - simple boot-up slave functionality (Boolean, 0 = not supported,
1 = supported),

ExtendedBootUpMaster - extended boot-up master functionality (Boolean, 0 = not
supported, 1 = supported),

ExtendedBootUpSlave - simple boot-up slave functionality (Boolean, 0 = not supported,
1 = supported),

Granularity - This value gives you the granularity allowed for the mapping
on this device - most of the existing devices supports a
granularity of 8 (Unsigned8; 0 - mapping not modifiable, 1-64
granularity)

APPENDIX CANopen Communication Profile CiA
Members Only Edition

12-8

Example:

[DeviceInfo]

VendorName=Nepp Ltd.

VendorNumber=156678

ProductName=E/A 64

ProductNumber=45570

ProductVersion=4

ProductRevision=1

OrderCode=BUY ME - 177/65/0815

LMT_ManufacturerName=NEPPLTD

LMT_ProductName=E/AXY64

BaudRate_50=1

BaudRate_250=1

BaudRate_500=1

BaudRate_1000=1

SimpleBootUpSlave=1

ExtendedBootUpMaster=0

SimpleBootUpMaster=0

ExtendedBootUpSlave=0

12.5.2.3 Object Dictionary

In this section of the EDS the following information can be found:
1. which object of the object dictionary is supported,

2. limit values for parameters,

3. default values.

The description of the objects take place in four separate sections corresponding to:
· data types,

· mandatory objects,

· optional objects,

· manufacturer specific objects.

12.5.2.3.1 Data type section

The section StandardDataTypes lists all standard data types available on the device. Data
types are listed according to their index (table 11.1-1 in DS301). Additional the complex
standard data types PDO Communication Parameter Record and PDO Mapping Record are
known.

The entries follow this scheme:

<data type index>={0|1}

APPENDIX CANopen Communication Profile CiA
Members Only Edition

12-9

Example:

[StandardDataTypes]
0x0001=1

0x0002=1

0x0003=1

0x0004=1

0x0005=1

0x0006=1

0x0007=1

0x0008=0

0x0009=1

0x000A=0

0x000B=0

0x000C=0

0x000D=0

0x000E=0

0x000F=0

0x0020=1

0x0021=1

0x0022=0

12.5.2.3.2 Mapping of dummy entries

Sometimes it is required to leave holes in the mapping of a device. This means that e.g. a
device only evaluates the last two data bytes of a PDO of 8 bytes length. The first six bytes
should be ignored (perhaps they are evaluated by another device). In this case the mapping
of this device must be created by using dummy entries for these first six bytes.

The indices from the data type area of the object dictionary are used for this purpose. The
user of a device has to know what data type can be used for creating dummy entries and
what not (indeed only the length of the dummy object is important).

The section DummyUsage is used for describing dummies. The entries follow this scheme:

Dummy<data type index (without 0x-prefix)>={0|1}

Example:

[DummyUsage]

Dummy0001=0

Dummy0002=1

Dummy0002=1

Dummy0003=1

Dummy0004=1

Dummy0005=1

Dummy0006=1

Dummy0007=1

This means that the device will tolerate the mapping of the data types Integer8/16/32 and
Unsigned8/16/32.

APPENDIX CANopen Communication Profile CiA
Members Only Edition

12-10

12.5.2.3.3 Object sections

The section MandatoryObjects describes the mandatory objects of the object dictionary.
There exists only the two entries DeviceType and ErrorRegister. In the section
MandatoryObjects the following entries are possible:

SupportedObjects - number of entries in the section (Unsigned16)
The entries are numbered beginning with number 1. This way the last entry gives the number
of available entries. In these sections the entries have the same values for all devices
because there are no optional entries.

1=0x1000

2=0x1001

The entries of the particular objects of the object dictionary are all constructed following the
same scheme. The section name is constructed according to the following:

[<Index>(sub<Sub-Index>)]

using the hexadecimal values for Index and Sub-index without the leading ã0xÒ.

In a section the following keywords may exist:
SubNumber - number of sub-indices available at this index (Unsigned8)

ParameterName - parameter name (255 characters)

ObjectType - This is the object code (DS301 table 11-2).

DataType - This is the index of the data type of the object in the object
dictionary (DS301 table 11.1-1).

LowLimit - Lowest limit of object value (only if applicable).

HighLimit - Upper limit of object value (only if applicable).

AccessType - Access type for this object (String ãroÒ - read only, ãwoÒ - write only,
ãrwÒ - read/write, ãrwrÒ - read/write on process input, ãrwwÒ - read/write
on process output, ãconstÒ - constant value,)

DefaultValue - default value for this object,

PDOMapping - default value for this object (Boolean, 0 = not mappable, 1 =
mappable).

It is not necessary to use all keywords in every section.

case 1: An object can be accessed directly by an index. There are no sub-indices for this
object

Used keywords:

[1000]

SubNumber=0

ParameterName=Device Type

ObjectType=0x7

DataType=0x0007

AccessType=ro

DefaultValue=

PDOMapping=0

Case 2: Parts of an object can be accessed via sub-indices. The entry in the EDS can be
realised like the following:

APPENDIX CANopen Communication Profile CiA
Members Only Edition

12-11

[1003]

SubNumber=2

ParameterName=Pre-defined Error Field

The sub-index entries are defined in this manner:

[1003sub0]

ParameterName=Number of Errors

ObjectType=0x7

DataType=0x0005

AccessType=ro

DefaultValue=0x1

PDOMapping=0

[1003sub1]

ParameterName=Standard Error Field

ObjectType=0x7

DataType=0x0007

AccessType=ro

DefaultValue=0x0

PDOMapping=0

Example - mandatory section:

;-----------------------------------

[MandatoryObjects]

SupportedObjects=0x02

1=0x1000

2=0x1001

[1000]

SubNumber=0

ParameterName=Device Type

ObjectType=0x7

DataType=0x0007

AccessType=ro

DefaultValue=

PDOMapping=0

[1001]

SubNumber=0

ParameterName=Error Register

ObjectType=0x7

DataType=0x0005

AccessType=ro

DefaultValue=0x0

PDOMapping=1

APPENDIX CANopen Communication Profile CiA
Members Only Edition

12-12

The section OptionalObjects describes the optional objects supported by the device.

;-----------------------------------

[OptionalObjects]

SupportedObjects=0x7

1=0x1003

2=0x1004

3=0x1005

4=0x1008

5=0x1009

6=0x100A

7=0x100B

[1003]

SubNumber=2

ParameterName=Pre-defined Error Field

[1003sub0]

ParameterName=Number of Errors

ObjectType=0x7

DataType=0x0005

AccessType=ro

DefaultValue=

PDOMapping=0

[1003sub1]

ParameterName=Standard Error Field

ObjectType=0x7

DataType=0x0007

AccessType=ro

DefaultValue=

PDOMapping=0

; value for object 1006 (communication cycle period)

; no sub-index available

[1006]

ParameterName=Communication Cycle Period

ObjectType=0x7

DataType=0x0007

LowLimit=1000

HighLimit=100000

AccessType=rw

DefaultValue=20000

PDOMapping=0

:

APPENDIX CANopen Communication Profile CiA
Members Only Edition

12-13

The section ManufacturerObjects describes the manufacturer specific entries in the
object dictionary.

;-----------------------------------

[ManufacturerObjects]

SupportedObjects=0

12.5.2.3.4 Object Links

In order to ease the implementation of a configuration tool it is possible to group related
objects together via the keyword ObjectLinks.

An object link has the following structure:

[<index>ObjectLinks]

ObjectLinks=<number of available links>

1=<index of 1st linked object>

2=<index of 2nd linked object>

3=<index of 3rd linked object>

4=<index of 4th linked object>

5=<index of 5th linked object>

:

Example:

; assuming we describe closed loop

; this is the object ãfactorÒ

[5800ObjectLinks]

ObjectLinks=0x3

; gain

1=0x5801

; zero

2=0x5802

; pole

3=0x5803

APPENDIX CANopen Communication Profile CiA
Members Only Edition

12-14

12.5.2.4 Comments

Comments can be added to the EDS by using the Comments section. This section has only
entries determining the line number and the line contents.

Lines - number of commentlines (Unsigned16)
Line<line number> - one line of comment (character 255)

Example:

[Comments]

Lines=3

Line1=|-------------|

Line2=| DonÕt panic |

Line3=|-------------|

12.5.3 Structure of a DCF (Device Configuration File)

The device configuration file comprises all objects for a configured device. The device
configuration file has the same structure as the EDS for this device. There are some
additional entries in order to describe e configured device.

12.5.3.1 Additional Entries

12.5.3.1.1 File Information Section

LastEDS - file name of the EDS file used as template for this DCF

12.5.3.1.2 Object Sections

ParameterValue - object value (as defined by ObjectType and DataType)

Example:

; value for object 1006 (communication cycle period)

[1006]

SubNumber=0

ParameterName=Communication Cycle Period

ObjectType=0x7

DataType=0x0007

LowLimit=1000

HighLimit=100000

DefaultValue=20000

AccessType=ro

ParameterValue=15000

PDOMapping=0

If the ObjectType is Domain (0x2) the value of the object can be stored in a file.

UploadFile: if a read access is performed for this object, the data are stored in this
file (character 255)

DownloadFile: if a write access is performed for this object, the data to be written can
be taken from this file (character 255)

APPENDIX CANopen Communication Profile CiA
Members Only Edition

12-15

Example:

; manufacturer specific object 5600 (downloadable program)

[5600]

SubNumber=0

ParameterName=Real Good Program (RGP)

ObjectType=0x2

DataType=0x000F

AccessType=wo

DownloadFile=C:\FAST\PROGRAMS\FIRST.HEX

; manufacturer specific object 5700 (core dump)

 [5700]

SubNumber=0

ParameterName=Core Dump (CD)

ObjectType=0x2

DataType=0x000F

AccessType=ro

UploadFile=C:\FAST\DEBUG\DUMPALL.HEX

12.5.3.1.3 Device Commissioning

There is an additional section in the DCF named DeviceComissioning:
NodeID - deviceÕs address (Unsigned8)

NodeName - node name part of NMT-address (7 characters)

Baudrate - deviceÕs baudrate (Unsigned16)

NetNumber - number of the network (Unsigned32)

NetworkName - name of the network (character 255)

LMT_SerialNumber - serial number part of LMT-address (14 characters [0-9])

Example:

[DeviceComissioning]

NodeID=2

NodeName=DEVICE2

Baudrate=1000

NetNumber=42

NetworkName=very important subnet in a big network

LMT_SerialNumber=33678909231354

Request for Comments CiA DS-301 V 3.0 CANopen Communication Profile
Members Only Edition

22.05.98 Page 1

Request for Comments
for CiA DS-301 V 3.0 CANopen Communication Profile

Introduction

Version 3.0 of the CANopen Communication Profile CiA DS-301 was frozen in October 1996
in order to provide a stable base for industrial implementations. It is not intended to change
or enhance the standard in the near future.
However, practical experience with CANopen products encouraged the Interest Group
CANopen within CiA to issue some recommendations for future implementations of the
CANopen standard. As these recommendations are not part of the standard, their
implementation is not verified in conformance testing. On the other hand, conformance
testing will not fail if the recommendations are implemented.
Depending on the comments received, the recommendations may be included in future
versions of the standard. Please address your comments to the

Interest Group CANopen,
c/o CiA Headquarters
Am Weichselgarten 26
D-91058 Erlangen
Fax +49-9131-69086-79
email headquarters@can-cia.de

There is a Fax Form for your feedback at the end of this document.

RfC 1: Mandatory Life Guarding

Question
The support of the guarding message in CANopen is not mandatory. This is no drawback if
there is a device which communicates in a cyclic way. A cyclic PDO could be taken as
some kind of heart beat for the device.
But how should a network deal with devices which ÓonlyÓ support acyclic PDOs? The PDO
may be sent very seldom - for instance only in the case of emergency (e.g. a limit switch).
To implement a network without consistency check is very insecure. Of course there is always
a workaround possible but CANopen devices should provide at least the simplest security
mechanisms.
Recommendation
Support of node guarding and life guarding is recommended for all devices, especially for
those supporting other PDO transmission types than 1-240.

RfC 2: Boot-Up Message

Question
Assuming a network with node guarding. A slave is guarded by the NMT Master. Now the
slave is resetted by a local power fail. A slave will continue the guarding with the toggle bit
set to 0 after the power is stable enough and initialization is finished. The NMT master
connected to the system will not recognize the failure under the following circumstances:
- the slave was in the state PRE-OPERATIONAL (default state after boot-up),
- the last toggle bit sent from the slave was set to 1,
- the boot-up time of the slave is shorter than the guard time.
Recommendation
Every slave should send a boot-up message after power-on. As the default emergency
identifier is available on most devices, the boot-up message uses this identifier and has no
data bytes. The boot up message is sent after initialization. This allows one to retrieve the
sending node directly from the used COB-ID.

Request for Comments CiA DS-301 V 3.0 CANopen Communication Profile
Members Only Edition

22.05.98 Page 2

RfC 3: Mandatory sections Electronic Data Sheet

Question
Which sections and keywords in the EDS description are optional?
Answer
There are no optional keywords and sections in the EDS description. This means that every
keyword must be listed in the right section. If a keyword is not used the value is NONE (CR/LF
after EQUAL sign).
Exception:
For objects with a data type > 0x0008 it is not necessary to support
· DefaultValue,
· HighLimit,
· LowLimit.
Reason
It is necessary to have one format with a basic set of entries in order to support the
development of standardized tools. Furthermore it is very important for a certification
procedure to rely on a fixed format.

RfC 4: Manufacturer and Profile Specific Keywords in the EDS

The EDS is often used for vendor specific entries. This means that a lot of vendors have
added their own sections with their own entries. It is not allowed to add manufacturer specific
entries in the sections specified in the DS-301. But it is allowed to create manufacturer or
device specific sections with specific entries in it. The manufacturer or the SIG must ensure
that his keywords donÕt collide with the keywords listed is the DS-301.

The section ManufacturerSections defines the keywords used for manufacturer specific
section entries.

[ManufacturerSections]
SectionNumber=4
1=FirstManufactSection
2=SecondManufactSection
3=ThirdManufactSection
4=FourthManufactSection

The section ManufacturerEntries defines the keywords used for manufacturer specific
entries in the manufacturerÕs sections.

[ManufacturerEntries]
EntriesNumber=3
1=ThisEntry
2=ThatEntry
3=OnlyEntry

In the same way it is possible to define device specific EDS entries. These entries have to be
defined by the Special Interest Groups (SIG).

The section DeviceSections defines the keywords used for device specific section entries.

[DeviceSections]
SectionNumber=4
1=FirstDevSection
2=SecondDevSection
3=ThirdDevSection
4=FourthDevSection

The section DeviceEntries defines the keywords used for device specific entries in the
deviceÕs sections.

[DeviceEntries]

Request for Comments CiA DS-301 V 3.0 CANopen Communication Profile
Members Only Edition

22.05.98 Page 3

EntriesNumber=3
1=ThisEntry
2=ThatEntry
3=OnlyEntry

The numbers in the sections are decimal coded.

RfC 5: Restore Defaults

Question
Does a device have to support the Órestore default parametersÓ-feature (Object 1011h)?
Recommendation
The support of this object is optional. However, if a device supports storing of parameters in
non-volatile memory (object 1010h) it is strongly recommended that it supports Órestore
default parametersÓ as well. For test purposes it is necessary to set a device in a Ódefault
setting stateÓ. Otherwise it is not possible to perform a static test for a device.

RfC 6: Gaps in arrays

Question: Is it allowed to leave gaps in arrays?
Functional related objects of devices often are gathered in arrays. Is it allowed to implement
only the required objects? Consider for example the object 1010H ,,Store Parameters". If a
device shall implement Sub-Index 3H ÓSave Application ParametersÓ, but is not able to store
all parameters of Sub-Index 1H and 2H, what has to be done ?

Answer:
It is allowed to leave the Sub-Indexes IH and 2H of that example empty. This reduces effort
and module resources. Another example is the establishment of dynamic variables in
programmable devices (refer to WD-302 framework for Programmable Device) The
mechanisms used there would waste many Kbytes of memory and some 100 Kbytes (!) of DCF
file size, if gaps were not allowed.

The length element on Sub-index OH has to store the highest index implemented. In the
example 1010H above this would be 3H. In the EDS/DCF the entry SubNumber has to store
the number or sub-object - in the example this is 2 (Sub-Index 0H and Sub-Index 3H).

Request for Comments CiA DS-301 V 3.0 CANopen Communication Profile
Members Only Edition

22.05.98 Page 4

RfC 7: Error codes in the abort domain protocol (SDO)

As described in the DS-301 the application error code returned by the abort domain service
is a 32bit value. Unfortunately there are not enough error reasons supported. Furthermore the
description of the error codes is very confusing. The codes are derived from the Profibus
document. But some of the Profibus ÓfeaturesÓ are not present at CANopen devices. Generally
the error codes deal only with object dictionary specific errors. The following table shows all
the known error codes as a 32bit integer value (hexadecimal coded). This 32bit value is
transmitted according to the encoding rules. Differences with respect to the DS-301 are
marked with *.

application error codes description

0x05030000 Toggle bit not alternated.

0x05040000 Time out value reached.

0x05040001 Client/server command specifier not valid or unknown.*

0x06010000 Attempt to read a write only object.

0x06010001 Attempt to write a read only object.

0x06020000 Object does not exist in the object dictionary.

0x06040000 The index is reserved for further use (index values from

00A0h-0FFFh and A000h-FFFFh).

0x06040041 Object cannot be mapped to the PDO. *

0x06040042 The number and length of the objects to be mapped would

exceed PDO length. *

0x06040043 General parameter incompatibility reason.

0x06040047 General internal incompatibility in the device.

0x06060000 Access failed because of an hardware error.

0x06070010 Data type does not match, length of service parameter does

not match

0x06070012 Data type does not match, length of service parameter too

high

0x06070013 Data type does not match, length of service parameter too

low

0x06090011 Sub-index does not exist.

0x06090030 Value range of parameter exceeded (only for write access).

0x06090031 Value of parameter written too high.

0x06090032 Value of parameter written too low.

0x06090036 Maximum value is less than minimum value.

0x08000020 Data cannot be transferred or stored to the application.

0x08000021 Data cannot be transferred or stored to the application

because of local control.

Request for Comments CiA DS-301 V 3.0 CANopen Communication Profile
Members Only Edition

22.05.98 Page 5

0x08000022 Data cannot be transferred or stored to the application

because of the present device state.

0x08000023 Object dictionary dynamic generation fails or no object

dictionary is present (e.g. object dictionary is generated from

file and generation fails because of an file error). *

Request for Comments CiA DS-301 V 3.0 CANopen Communication Profile
Members Only Edition

22.05.98 Page 6

Fax
to CiA Interest Group CANopen

c/o CAN in Automation, International Headquarters, D-91058 Erlangen
Fax +49-9131-69086-79

Feedback regarding Requests for Comments for CiA DS 301 V 3.0

from:

Name

Company

Address

Phone

Fax

Comment regarding RfC No.__:

