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History

Jean Baptiste Joseph Fourier
1768-1830

French Mathematician and Physicist

http://de.wikipedia.org/wiki/Kreiszahl

Outlined technique in memoir, On the Propagation of Heat in Solid Bodies, which was 
read to Paris Institute on 21 Dec 1807.  Controversial then:  Laplace and Lagrange 
objected to what is now Fourier series:  “... his analysis ... leaves something to be desired on 
the score of generality and even rigour...” (from report awarding Fourier math prize in 1811)

In La Theorie Analytique de la Chaleur (Analytic Theory of Heat) (1822)  Fourier
• developed the theory of the series known by his name, and
• applied it to the solution of boundary-value problems in partial differential equations. 

Sources:  
www.me.utexas.edu/~me339/Bios/fourier.html   and   www-gap.dcs.st-and.ac.uk/~history/Biographies/Fourier.html
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Periodic Signals

A continuous-time signal x(t) is periodic if:

x(t + T) = x(t) 

Fundamental period, T0, of x(t) is smallest T satisfying 
above equation.

Fundamental frequency:  f0 = 1/T0

Fundamental angular frequency:  ω0 = 2π/T0 = 2πf0
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Periodic Signals
x(t + T) = x(t)

Harmonics:  Integer multiples of frequency of wave

-1
.0

0.
0

1.
0

t

si
n(

t)

0 π 2 π 3π 2 2π 3π 4π

-1
.0

0.
0

1.
0

t

si
n(

4t
)

0 π 2 π 3π 2 2π 3π 4π

T0

Fundamental
frequency:  
f0 = 1/T0



6

Periodic Signals

Biological time series can be quite complex, and will contain noise.

x(t + T) = x(t)
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Periodic Signals
Periodicity in  Biology and Medicine 

Photograph taken at Reptile Gardens, Rapid City, SD, June 2003,www.reptile-gardens.com

Somitogenesis:  A vertebrate’s body plan: a segmented 
pattern. Segmentation is established during somitogenesis, 
which is studied by Pourquie Lab.

Intraerythrocytic Developmental 
Cycle of Plasmodium falciparum
From Bozdech, et al, Fig. 1A, PLoS Biology, Vol 1, No 1, Oct 2003, p 3.  

Electrocardiogram (ECG): Measure of the dipole moment caused by 
depolarization and repolarization of heart muscle cells. 

From http://www.ecglibrary.com/norm.html

X-Ray Computerized Tomography. Tomogram (“slice”) produced 
by 2D FFT of digitally filtered x-ray data.
From www.csun.edu/~jwadams/Image_Processing.pdf#search=%22fft%20medical%20 
image%20processing%22
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Fourier Analysis
• Fourier Series

Expansion of continuous function into weighted sum of sines and 
cosines, or weighted sum of complex exponentials.

• Fourier Transform
Maps one function to another: continuous-to-continuous mapping. 
An integral transform. 

• Discrete Fourier Transform (DFT)
Approximation to Fourier integral.  Maps discrete vector to another 
discrete vector.  Can be viewed as a matrix operator. 

• Fast Fourier Transform (FFT)
Special computational algorithm for DFT.
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Fourier Series

www.science.org.au/nova/029/029img/wave1.gif

Trigonometric Fourier Series
Expansion of continuous function into weighted sum of sines and cosines.
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If x(t) is even, i.e., x(-t) = x(t) like cosine, then bk = 0.
If x(t) is odd, i.e., x(-t) = -x(t) like sine, then ak = 0.

Source:  Schaum’s Theory and Problems:  Signals and Systems, Hwei P. Hsu, 1995, pp. 211-213



10

Complex Math Review
Solutions to x2 = -1:  
Complex Plane  

Euler’s Formula:   

Operators:  +, -, *, /  
u + v = (a + ib) + (c + id) = (a + c) + i(b + d)

u × v = (a + ib) (c + id) = (ac – bd) + i(ad + bc)

DeMoivre’s Theorem:   

u* = a - ib
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Fourier Series
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Source Schaum’s Theory and Problems:  Signals and Systems, Hwei P. Hsu, 1995, pp. 211-213
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• If x(t) is real, c-k = ck

*.
• For k = 0, ck = average value of x(t) over one period.
• a0/2 = c0;  ak = ck + c-k;  bk = i · (ck - c-k) 

Complex Exponential Fourier Series
Expansion of continuous function into weighted sum of complex exponentials.
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Fourier Series
Complex Exponential Fourier Series

Coefficients can be written as product:
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• ck are known as the spectral coefficients of x(t)
• Plot of |ck| versus angular frequency ω is the amplitude spectrum.
• Plot of φkversus angular frequency is the phase spectrum.
• With discrete Fourier frequencies, k·ω0, both are discrete spectra.
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Fourier Series

selected

Approximate any function as truncated Fourier series

Given:  x(t) = t

Fourier Series:  
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Fourier Series

selected

Approximate any function as truncated Fourier series

Given:  x(t) = t Fourier Series:  
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Fourier Series

selected

Approximate any function as truncated Fourier series

Given:  x(t) = t Fourier Series:  
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Fourier Series
Periodogram

Decomposition

Time Series

Reconstruction

Filtered Series

Remove 
High Frequency

Component

0

selected

“Remove” high frequency noise by zeroing a term in series expansion

Noise Removal
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Fourier Transform
Maps one function to another: continuous-to-continuous mapping. 

Fourier transform of x(t) is X(ω): 
(converts from time space to frequency space)
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The Fourier Transform is a special case of the Laplace Transform, s = i ·ω

x(t) and X(ω) form a Fourier transform pair:    x(t) ↔ X(ω)

Source:  Schaum’s Theory and Problems:  Signals and Systems, Hwei P. Hsu, 1995, pp. 214-218
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Fourier Transform
Properties of the Fourier Transform

From http://en.wikipedia.org/wiki/Continuous_Fourier_transform
Also see Schaum’s Theory and Problems:  Signals and Systems, Hwei P. Hsu, 1995, pp. 219-223
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Discrete Time Signal
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A discrete-time signal x[n] is periodic if:
x[n + N] = x[n] 

Fundamental period, N0, of x[n] is smallest integer N 
satisfying above equation.

Fundamental angular frequency:  Ω0 = 2π/N0

N0
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Discrete Fourier Transform (DFT)

The Eight Eighth Roots of Unity
http://math.fullerton.edu/mathews/ 
c2003/ComplexAlgebraRevisitedMod.html 
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Sources:  Schaum’s Theory and Problems:  Signals and Systems, Hwei P. Hsu, 1995, pp. 305
and http://en.wikipedia.org/wiki/Fast_Fourier_transform

Given discrete time sequence, x[n], n = 0, 1, …, N-1

Discrete Fourier Transform (DFT)

k = 0, 1, …, N-1
Nth root of unity

Inverse Discrete Fourier Transform (IDFT)
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• One-to-one correspondence between x[n] and X[k]
• DFT closely related to discrete Fourier series and the Fourier Transform
• DFT is ideal for computer manipulation
• Share many of the same properties as Fourier Transform
• Multiplier (1/N) can be used in DFT or IDFT.  Sometimes 1/SQRT(N) used in both.
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For N = 4, the DFT becomes:

Discrete Fourier Transform (DFT)
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For N = 4, the DFT is:

Discrete Fourier Transform (DFT)
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x = [1, 0, 1, 0]     X = [2, 0,  2, 0]
x = [0, 3, 0, 3]     X = [6, 0, -6, 0]
x = [1, 1, 1, 1]     X = [4, 0, 0, 0]
x = [0, 0, 0, 0]     X = [0, 0, 0, 0]
x = [0, 0, 1, 1]     X = [2, -1+i, 0, -1-i]
x = [1, 1, 0, 0]     X = [2,  1- i, 0,  1+i]

X[0]/N = mean



23

Discrete Fourier Transform (DFT)
x = [1, 0, 1, 0]     DFT(x) = [2, 0,  2, 0]
x = [0, 1, 0, 1]     DFT(x) = [2, 0, -2, 0]

Periodogram = |DFT(x)|2 / N
(excluding first term, which is the mean)
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Discrete Fourier Transform (DFT)
x = [0, 0, 1, 1]     X = [2, -1+i, 0, -1-i]
x = [1, 1, 0, 0]     X = [2,  1- i, 0,  1+i]

Why so much spectral “power” in 2nd Harmonic?
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Discrete Fourier Transform (DFT)
x = [0, 0, 1, 1]     X = [2, -1+i, 0, -1-i]
x = [1, 1, 0, 0]     X = [2,  1- i, 0,  1+i]

Nyquist frequency is a consequence of Shannon Sampling Theorem
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Also see:  http://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem
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Sampling and Aliasing

The top signal is sampled at the Nyquist limit and is not aliased.
The bottom signal is sampled beyond the Nyquist limit and is aliased.
Aliasing occurs when higher frequencies are folded into lower frequencies.

From:  http://www.siggraph.org/education/materials/HyperGraph/aliasing/alias3.htm
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Fast Fourier Transform (FFT)
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Source:  http://en.wikipedia.org/wiki/Fast_Fourier_transform

Discrete Fourier Transform (DFT)

k = 0, 1, …, N-1

• The FFT is a computationally efficient algorithm to compute the
Discrete Fourier Transform and its inverse.

• Evaluating the sum above directly would take O(N2) arithmetic
operations.

• The FFT algorithm reduces the computational burden to
O(N log N) arithmetic operations. 

• FFT requires the number of data points to be a power of 2
(usually 0 padding is used to make this true)

• FFT requires evenly-spaced time series
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Fast Fourier Transform (FFT)
What’s the “Trick” to the Speedup?
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Discrete Fourier Transform (DFT)

k = 0, 1, …, N-1

The Eight Eighth Roots of Unity
http://math.fullerton.edu/mathews/ 
c2003/ComplexAlgebraRevisitedMod.html 

Use “Divide & Conquer” by splitting 
polynomial evaluation into “even”
and “odd” parts, recursively:

p(x) = p0x0 + p1x1

Split:  p(x) = peven + podd

p(x) = p0x0 + x · p1x0
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Fast Fourier Transform (FFT)
Software

www.fftw.org
FFTW is a C subroutine library for computing the discrete Fourier transform 
(DFT) in one or more dimensions, of arbitrary input size

IDL  (see Signal Processing Demo for Fourier Filtering)

R

MatLab:  Signal Processing/Image Processing Toolboxes

Mathematica:  Perform symbolic or numerical Fourier analysis



30

Fast Fourier Transform (FFT)
1D FFT in IDL Software

IDL Run Demo, Data Analysis, Signal Processing, Filtering Demo
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Fast Fourier Transform (FFT)
1D FFT in ImageJ:  Fourier Shape Analysis

Source:  http://imagejdocu.tudor.lu/Members/tboudier/plonearticle.2006-07-12.6904098144/2006-07-14.2969642786/image

This is an application of Fourier analysis NOT involving a time series …
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2D FFT and Image Processing

• Spatial Frequency in Images
• 2D Discrete Fourier Transform
• 2D FFT Examples
• Applications of FFT

– Noise Removal
– Pattern / Texture Recognition
– Filtering:  Convolution and Deconvolution
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1 Cycle

Frequency = 1 Frequency = 2

2 Cycles

Spatial Frequency in Images
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2D Discrete Fourier Transform

Source:  Seul et al, Practical Algorithms for Image Analysis, 2000, p. 249, 262.

2D FFT can be computed as two discrete Fourier transforms in 1 dimension
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2D Discrete Fourier Transform

I[m,n] F[u,v]

Fourier
Transform

Spatial Domain Frequency Domain
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Edge represents highest frequency,
smallest resolvable length (2 pixels)

Center represents lowest frequency,
which represents average pixel value
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2D FFT Example
FFTs Using ImageJ

Spatial Domain Frequency Domain

ImageJ Steps:  (1) File | Open, (2) Process | FFT | FFT

(0,0) Origin (0,0) Origin
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2D FFT Example
FFTs Using ImageJ

Spatial Domain Frequency Domain

ImageJ Steps:  Process | FFT | Swap Quadrants

(0,0) Origin

(0,0) Origin

Regularity in image manifests itself in the degree of order or randomness in FFT pattern.

Default display is to swap quadrants
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2D FFT Example
FFTs Using ImageJ

Overland Park Arboretum and Botanical Gardens, June 2006

Spatial Domain Frequency Domain

ImageJ Steps:  (1) File | Open, (2) Process | FFT | FFT

Regularity in image manifests itself in the degree of order or randomness in FFT pattern.
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Application of FFT in Image Processing
Noise Removal

Source:  www.mediacy.com/apps/fft.htm, Image Pro Plus FFT Example.  Last seen online in 2004.

FFT Inverse
FFT

Edit FFT

Four Noise
Spikes Removed

Noise Pattern
Stands Out as 
Four Spikes
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Application of FFT
Pattern/Texture Recognition

Source:  Lee and Chen, A New Method for Coarse Classification of Textures and Class Weight Estimation 
for Texture Retrieval,  Pattern Recognition and Image Analysis, Vol. 12, No. 4, 2002, pp. 400–410.
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Application of FFT

Source:  http://www.rpgroup.caltech.edu/courses/PBL/size.htm

Could FFT of Drosophila eye be used to identify/quantify subtle phenotypes?

The Drosophila eye is a great example a cellular crystal with
its hexagonally closed-packed structure. The absolute 
value of the Fourier transform (right) shows its hexagonal 
structure.

Pattern/Texture Recognition
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Application of FFT
Filtering in the Frequency Domain: Convolution

Source:  Gonzalez and Woods, Digital Image Processing (2nd ed), 2002, p. 159

I[m,n]
Raw Image

I’[m,n]
Enhanced Image

Fourier Transform
F[u,v]

Filter Function 
H[u,v]

Inverse
Fourier Transform

Pre-
processing

Post-
processing

F[u,v] H[u,v] · F[u,v]

FFT{ I[u,v] } FFT-1{ H[u,v] · F[u,v] }
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Application of FFT
Filtering:  IDL Fourier Filter Demo

IDL Run Demo, Data Analysis, Image Processing, Image Processing Demo
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Application of FFT
Filtering:  IDL Fourier Filtering Demo

IDL Run Demo, Data Visualization, Images, Fourier Filtering
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The Point Spread Function (PSF) is the Fourier transform of a filter.
(the PSP says how much blurring there will be in trying to image a point).

Source:  http://www.reindeergraphics.com/index.php?option=com_content&task=view&id=179&Itemid=127

Hubble image and measured PSF
Dividing the Fourier transform of the PSF into 
the transform of the blurred image, and 
performing an inverse FFT, recovers the 
unblurred image. 

Application of FFT
Deblurring:  Deconvolution

FFT(Unblurred Image) * FFT(Point Spread Function) = FFT(Blurred Image)

Unblurred Image  = FFT-1[ FFT(Blurred Image) / FFT(Point Spread Function) ]
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The Point Spread Function (PSF) is the Fourier transform of a filter.
(the PSP says how much blurring there will be in trying to image a point).

Source:  http://www.reindeergraphics.com/index.php?option=com_content&task=view&id=179&Itemid=127

Hubble image and measured PSF

Deblurred image

Dividing the Fourier transform of the PSF into 
the transform of the blurred image, and 
performing an inverse FFT, recovers the 
unblurred image. 

Application of FFT
Deblurring:  Deconvolution
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Summary
• Fourier Analysis is a powerful tool even when periodicity is not 
directly a part of the problem being solved.
• Discrete Fourier Transforms (DFT) are well-suited for computation 
by computer, especially when using Fast Fourier Transform (FFT) 
algorithms. 
• Fourier Analysis can be used to remove noise from a signal or 
image.
• Interpretation of the complex Fourier Transform is not always 
straightforward. 
• Convolution and Deconvolution are “simple” in Fourier transform 
space to restore or enhance images.
• There are many other image processing uses of Fourier Analysis,
such as image compression [JPGs use the Discrete Cosine 
Transform (DCT), which is a special kind of DFT]


