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Preamble
Frequently we need to measure a precise time difference between two

signals. This is especially true of sonar and radar systems but has ap-
plications in general signal processing, communications and biomedical
engineering. Almost always we are using narrow bandwidth modulated
waveforms that have been sampled so first we need to look at sampling
theory.

1. Sampling Theory
The following arguments are developed for signals parameterized by

time, t, and angular or radian frequency, ω. These arguments are equally
applicable to signals parameterized in terms of spatial quantities such
as distance, x, and wavenumber kx. Both temporal and spatial signals
are analysed extensively.

To represent a continuous time domain signal g(t) digitally, it is neces-
sary to sample the signal. This (impulse) sampling operation is described
by

gt(t) = g(t) ·
∞∑

m=−∞
δ(t − m∆t)

=
∞∑

m=−∞
g(m∆t) · δ(t − m∆t),

(0.1)

where ∆t is the sampling interval and gt(t) has a subscript ‘t’ to indicate
temporal sampling. It is important to note that (0.1) is still a continuous
representation of the sampled signal. However, the sampled signal is fully
characterised by the m samples given by g(m∆t).
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The continuous Fourier transform of (0.1) is

Gt(ω) = G(ω) �ω
2π
∆t

·
∞∑

m=−∞
δ

(
ω − m

2π
∆t

)

=
2π
∆t

·
∞∑

m=−∞
G

(
ω − m

2π
∆t

)
,

(0.2)

where �ω represents convolution in ω and the Fourier transform oper-
ation is defined in (??). The effect of sampling the function g(t) is to
generate repeated copies of its scaled continuous spectrum 2π/∆t ·G(ω)
every m2π/∆t. The repeated nature of this continuous spectrum is im-
portant when dealing with the array theory presented in Chapter ??.

Equation (0.2) represents a continuous function and as such also needs
to be sampled for use in digital applications. This spectrally sampled
signal is given by

Gs(ω) = Gt(ω) ·
∞∑

n=−∞
δ(ω − n∆ω)

=
∞∑

n=−∞
Gt(n∆ω) · δ(ω − n∆ω),

(0.3)

which has the inverse Fourier transform,

gs(t) = gt(t) �t
2π
∆ω

·
∞∑

n=−∞
δ

(
t − n

2π
∆ω

)

=
2π
∆ω

·
∞∑

n=−∞
gt

(
t − n

2π
∆ω

)
.

(0.4)

The effect of frequency sampling is to repeat copies of the scaled tempo-
rally sampled signal 2π/∆ω · gt(t) every n2π/∆ω. The repeated nature
of this temporally and spectrally sampled signal seems to imply that the
data is corrupted by the repetition. This observation is true if m or n
are allowed to take on arbitrarily high values. A digital processor can
not deal with an infinite number of samples, so that the values of m and
n must be finite and as such there exists a value for m and n such that
the sampled data suffers minimal corruption. If the temporal signal is
repeated every 2π/∆ω and is sampled every ∆t then m can take on the
values m ∈ [1,M ], where

M =
2π

∆t∆ω
. (0.5)
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Similarly, if the spectrum is repeated every 2π/∆t and sampled every
∆ω then n ∈ [1, N ], where N takes on the same value as M . The discrete
representation of the time-limited temporal and frequency-limited spec-
trally sampled signals are the essence of the discrete Fourier transform
(DFT) and its efficient implementation via the fast Fourier transform
(FFT). The FFT of a temporal signal containing M samples gives a sin-
gle copy of the repeated spectrum, and conversely the inverse FFT of a
spectral signal containing N samples gives a single copy of the repeated
temporal signal.

1.1. Real signals and Nyquist rate sampling
The signals used in synthetic aperture systems can be described in

terms of band-limited functions. A band-limited real function, gr(t),
having an amplitude function g0(t) and phase function φ(t) at a carrier
radian frequency ω0 is mathematically described by (p89 [3])

gr(t) = g0(t) cos [ω0t + φ(t)] . (0.6)

The amplitude function g0(t) is a slowly varying function also referred
to as the envelope of the signal. In the range dimension of the synthetic
aperture model, this amplitude function reflects the weighting of the
transmitted pulse and in the along-track dimension, it reflects the effect
of the overall radiation pattern of the transmit and receive real apertures.

In the case of purely amplitude modulated (AM) pulses, the signal
bandwidth is approximately given by the inverse of the temporal dura-
tion at the 3dB point of g0(t). For the more usual case of some form of
phase modulation (PM), the system bandwidth is determined by the the
modulating phase. In either case, if the spectrum of the real signal is
zero for radian frequencies |ω| ≥ ωmax, then temporal samples taken at
spacings ∆t ≤ π/ωmax are sufficient to reconstruct the continuous signal
(see Appendix A in Curlander and McDonough [2]). Sampling at the
minimum allowable temporal spacing ∆t = π/ωmax is termed Nyquist
rate sampling. The sampling frequency fs = 1/∆t or ωs = 2π/∆t rep-
resents the extent of the Fourier domain that is sampled by the system,
and also represents the distance over which this sampled information
repeats in the Fourier domain.

For the real valued temporal signals encountered in synthetic aperture
imaging applications, the sampled bandwidth is typically much larger
than the transmitted signal bandwidth. Radar systems typically trans-
mit a wide bandwidth signal (many MHz) about a high carrier frequency
(many GHz), so Nyquist rate sampling is suboptimal. There are two
more efficient sampling methods that can be employed. The first tech-
nique involves multiplying (demodulating) the received signal gr(t) with
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an intermediate frequency (IF) that acts to shift the signal bandwidth
to a much lower carrier. This intermediate signal is then Nyquist rate
sampled at a significantly lower rate. The second technique involves the
sampling of the complex-valued baseband signal that is described next.

1.2. Complex-valued baseband signals
The real band-limited signal given by gr(t) in (0.6) can also be repre-

sented by the real part of its complex pre-envelope or complex modulated
representation, gr(t) = Real {gm(t)}, where the complex modulated sig-
nal implied by the bold face notation is given by (pp60-64 and p137 [1],
pp83-91 [3],pp10-24 [5])

gm(t) = g0(t) exp [jω0t + jφ(t)] . (0.7)

Because only positive frequencies exist in the complex modulated form of
the signal, it is also known as the one- sided form of gr(t). To generate
the complex baseband form of the signal from the complex modulated
signal requires the removal of the carrier:

gb(t) = gm(t) exp(−jω0t) = g0(t) exp [jφ(t)] . (0.8)

The use of complex mathematics simplifies the modeling of the synthetic
aperture system considerably. Also, as most practical systems perform
operations on the complex basebanded samples, this is also the most
appropriate format in which to develop the processing mathematics.

The conversion of a real Nyquist rate sampled signal into a complex
signal is most easily performed by removing the negative frequencies in
the signal. To achieved this, the signal is Fourier transformed and the
negative frequency components are set to zero. This operation halves
the signal power, so the one-sided spectrum is then multiplied by 2. This
new spectrum is then inverse Fourier transformed to give the complex
modulated form of the signal. The complex modulated signal is then
demodulated to give the complex baseband signal (see p86 [3]). If this
complex baseband, Nyquist-rate sampled signal is down-sampled (deci-
mated) to the same sampling rate as quadrature sampling of the same
signal, essentially identical samples are produced.

1.3. In-phase and quadrature (I-Q) sampling
In-phase and quadrature (I-Q) sampling splits the input signal into

two paths. In the first path the signal is multiplied (mixed) with an
in-phase version of the carrier, the result is low-pass filtered, and then
sampled; this sample is assigned to the real part of a complex number.
The other path is multiplied (mixed) with a quadrature (90 ◦ out-of-
phase) version of the carrier, low-pass filtered and sampled; this sample



v

is assigned to the imaginary part of a complex number (see fig 2.32 on p88
of [3]). If the spectrum of the baseband complex signal has a bandwidth
Bc (Hz), then complex samples taken at any rate ωs ≥ 2πBc are sufficient
to reconstruct the continuous signal.

As stated above, it is not practical to Nyquist rate sample radar sig-
nals so either an intermediate frequency is employed, or the signal is
I-Q sampled. Sonar systems operate at significantly lower frequencies
than radar so they have a choice of either Nyquist rate or quadrature
sampling. However, the I-Q method allows the use of a lower sampling
frequency in most practical situations.

1.4. A comment on spectral notation
A baseband signal spectrum is a “window” of the signal’s continuous

spectrum. This window has a width ωs and is centered about a carrier
ω0. Convention denotes the baseband frequencies ω ∈ [−ωs/2, ωs/2],
however the spectral coverage actually correspond to frequencies from
ω0 ± ωs/2. When dealing with Nyquist- rate sampled signals, the fre-
quencies are also denoted ω ∈ [−ωs/2, ωs/2] (where ωs is generally much
higher than the baseband case), however, this time the frequencies corre-
spond to the correct spectral components. To avoid notational confusion,
this text denotes the baseband frequencies as ωb ∈ [−ωs/2, ωs/2] and the
actual frequencies as ω, where ω = ωb + ω0 when dealing with baseband
signals.

2. Convolution and correlation
Many time or range resolving techniques rely on complex cross-correlation

and this is a good place to summarise the various correlation operations
and their convolutional equivalents. To start, assume we have two arbi-
trary complex time functions g(t) and h(t) where the Fourier transform
relationship is summarised as

g(t) ⇔ G(ω) =
∫

t
g(t) exp(−jωt) dt

h(t) ⇔ H(ω) =
∫

t
h(t) exp(−jωt) dt

then a few equivalences

h(−t) ⇔ H(−ω)
h∗(t) ⇔ H∗(−ω)
h∗(−t) ⇔ H∗(ω)
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So if we now start with convolution

y(t) = g(t) � h(t) =
∫

g(τ) · h(t − τ) dτ, (0.9)

Fourier theory gives us its frequency domain equivalent

Y (ω) = G(ω) · H(ω)

Now for correlation. If

y(t) = g(t) � h(t) =
∫

g(τ) · h∗(τ − t) dτ

= g(t) � h∗(−t),
then Y (ω) = G(ω) · H∗(ω). (0.10)

However if

y(t) = g(t) � h∗(−t) =
∫

g(τ) · h(t − τ) dτ,

= g(t) � h(t)
then Y (ω) = G(ω) · H(ω) (0.11)

which is exactly the same as straightforward convolution, but if

y(t) = g(t) � h(−t) =
∫

g(τ) · h∗(t − τ) dτ,

= g(t) � h∗(t),
then Y (ω) = G(ω) · H∗(−ω). (0.12)

So finally if

y(t) = g(t) � h∗(t) =
∫

g(τ) · h(τ − t) dτ,

= g(t) � h(−t)
then Y (ω) = G(ω) · H(−ω) (0.13)

and that completes the matched set for the complex correlation oper-
ations that form the basis of many algorithms especially those used to
estimate fine time delays.

3. Correlation techniques and limits of accuracy
Many time delay estimation techniques use cross-correlation of two se-

quential echoes to get fine time delay differences. Consequently it is ap-
propriate to review the techniques of cross-correlation — and the limits
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of accuracy. We can assume the transmitted signals and the two noise-
corrupted, real echo signals have a double-sided, narrow-band, spectrum
Gr(ω) with the positive and negative frequency response pefectly symet-
rical about the carrier frequency ω0. In that case,

gr0(t) = F−1{Gr(ω)}
gr1(t) = F−1{Gr(ω) exp(−jωt1)} + n1(t) (0.14)
gr2(t) = F−1{Gr(ω) exp(−jωt2)} + n2(t) (0.15)

≈ gr1(t − ∆t)

where we assume the three real signals gr0, gr1(t) and gr2(t) are pulse-
compressed, CW waveforms. Signals 1 and 2 are the received echos,
delayed in time by t1 and t2 and corrupted by AWGN n1(t) and n2(t).
We can treat transmitted signal gr0(t) and the two echoes gr1(t) and
gr2(t) as having a slowly varying envelope g0(t) superimposed on a carrier
as described here:

gr0(t) = g0(t) cos(ω0t)
gr1(t) = g0(t − t1) cos(ω0(t − t1)) + n1(t) (0.16)
gr2(t) = g0(t − t2) cos(ω0(t − t2)) + n2(t) (0.17)

and where g0(t) is symetrical about t = 0. Now the time difference that
we want to estimate is ∆t = t2 − t1. The cross-correlation between the
two real echoes is also purely real and given by

rr21(t) = gr2(t) � gr1(t)

=
∫

gr2(τ) gr1(τ − t) dτ√(∫
gr0(τ) gr0(τ) dτ · ∫ gr1(τ) gr1(τ) dτ

) (0.18)

To save having to trail around scaling constants to ensure that the auto-
corrrelation functions are always less than one, let us normalise the equa-
tions so that√(∫

gr0(τ) gr0(τ) dτ ·
∫

gr1(τ) gr1(τ) dτ

)
= 1

With this requirement, the autocorrelation function is now defined as

rr11(t) = gr1(t) � gr1(t)

=
∫

gr1(τ) gr1(τ − t) dτ (0.19)
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and the cross-correlation function as

rr21(t) = gr2(t) � gr1(t)

=
∫

gr2(τ) gr1(τ − t) dτ (0.20)

The direct application of (0.19) and (0.20) are the basis of time do-
main auto- and cross-correlation.

The crosscorrelation function is related to the spectrum by

rr21(t) = F−1{Gr(ω) exp(−jω∆t) · G∗
r(ω)} + n1(t) � n2(t)

= F−1{|Gr(ω)|2 exp(−jω∆t)} + n1(t) � n2(t) (0.21)
≈ rr11(t − ∆t)

Thus the cross-correlation of gr2(t) and gr1(t) is almost the same as the
autocorrelation of gr1(t) delayed by ∆t. The“almost” is needed to allow
for the noise cross-correlation between the two signals n1(t) � n2(t) that
is slightly different from the noise autocorrelation n1(t) � n1(t). The
uncorrelated AWGN can be clearly seen in the two traces of fig ??(a).
This figure shows the results of a simulation of the echoes received from
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Figure 0.1. (a) Two sequential pulses with a differential delay between them plus
AWGN, (b) The cross-correlation of the two sequential pulses where “A” denotes the
peak of the cross- correlation, “B” the amplitude at zero lag and “C” the next highest
positive peak value.

a small target at a range of 158m with a SNR of about 25. In the plots,
the squares indicate the echo returned from ping 1 and the circles that
from ping 2 and where the hydrophone has been displaced 7.5mm away
from the targets between the two pings. Thus the second ping has a lag
(i.e., is differentially delayed by) of 10 µs as is clearly shown in fig. 0.1(a).
Clearly in the plot, “A” is accurate and unambiguous and the point “C”
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indicates the next highest positive peak. With the SNR and bandwidths
used, “C” is clearly smaller than “A” but with decreasing bandwidth,
the envelope stretches and/or with increasing noise, the possibility of
selecting “C” rather than “A” increases. The peak value of rr21(t) (call
it µ and it is the amplitude of the point represented by A in fig. 0.1(b))
must be less than one to account for uncorrelated noise as well as baseline
decorrrelation due to any spatial separation and this peak occurs at a
time lag of ∆t.

But a full correlation calculation is not always required. A simple
approximation, but only useful for very small delays, high SNR and
high-Q systems, requires the computation of only

rr21(0) =
∫

gr2(τ) · gr1(τ) dτ (0.22)

since for a pulsed CW with envelope g0(t), the cross- correlation of the
two reflected signals is

rr21(t) ≈ rr11(t − ∆t)
= µ[g0(t − ∆t) � g0(t − ∆t)] cos(ω0(t − ∆t)). (0.23)

When t = 0 and assuming a symetrical envelope (i.e., g0(t) = g0(−t))

rr21(0) ≈ rr11(−∆t) = µ[g0(∆t) � g0(∆t)] cos(ω0∆t)

and this is shown as point B in fig. 0.1. So a quick and dirty estimate of
∆t can be found without having to compute a full cross-correlation and
is

∆̂t = (1/ω0) cos−1{rr21(0)/[g0(∆̂t) � g0(∆̂t)]/µ}, (0.24)

however as ∆̂t appears on both sides of (0.24), this needs a recursive
solution. The only provisos are that there should be sufficient pulse
overlap at zero lag to have some meaning and that µ is known. Hence the
need for small delays, high SNR and high-Q (i.e., long pulse) operation.

3.1. Complex-baseband Cross-correlation
Few sonars record the raw data sampled at the Nyquist rate. To

save on data storage and the subsequent computing effort, the incoming
signals are almost always demodulated to complex baseband on the fly
and decimated to just twice the baseband. Staying with our convention,
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we can write the transmitted signal and the two echo waveforms as

gb0(t) = F−1{G(ωb)}
gb1(t) = F−1{G(ωb) exp(−j(ω0 + ωb)t1)} + n1(t) (0.25)
gb2(t) = F−1{G(ωb) exp(−j(ω0 + ωb)t2)} + n2(t) (0.26)

≈ gb1(t − ∆t)

where the spectrum G(ωb) is now the complex baseband equivalent of
G(ω) and the noise values n1,2(t) are complex baseband equivalents of
the real noise values n1,2(t) used in the real-only cross correlation. Thus
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Figure 0.2. (a) The unfiltered, complex-baseband envelopes of two sequential pulses
with a differential delay between them as well as AWGN, (b) The cross-correlation
where the upper trace is the amplitude and the lower trace the phase as a proportion
of π. The peak value of the ampliude occurs at 10µs with a phase of 0.2π .

the baseband cross-correlation function is now complex and given by

cc21(t) = F−1{G(ωb) exp(−j(ω0 + ωb)∆t) · G∗(ωb)} + n1(t) � n2(t)
= F−1{|G(ωb)|2 exp(−jωb∆t) exp(−jω0∆t)} + n1(t) � n2(t)
≈ cc11(t − ∆t) · exp(−jω0∆t). (0.27)

Again the cross-correlation of the two echoes is “almost” the same as
the auto-correlation of gb1(t) delayed by ∆t but this time with an extra
carrier shift of exp(−jω0∆t) to account for the complex demodulation
process. By finding the peak amplitude of the complex cross- correla-
tion of |cc21(t)|, shown in fig. 0.2(b), the coarse time delay ∆̂t can be
estimated without any ambiguity. Since the peak is broad, the accuracy
of the estimate of the coarse time delay ∆̂t from the amplitude is not as
good as that estimated from the real-only signal in fig. 0.1(b) since we
have ignored the carrier or phase effects.
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A more accurate, but ambiguous, measurement of the time delay re-
quires the phase of cc21(t = ∆t) ( i.e., when cc11(t−∆t) and cc21(t) are
a maximum). At this time, the phase is no more than (ω0∆t). Thus it is
possible to estimate a fine time delay δt with the following computation

δ̂t = 1/ω0 arg[cc21(∆t)] (0.28)

and this is commonly known as carrier-only correlation. Even better, if
(but only if) we can ensure a symmetrical baseband so that |G(ωb)| =
|G(−ωb)|, the phase is the same where ever |cc21(t)| has a significant
value. However, we still have to account for any 2π ambiguity. The
favoured technique is to get the coarse time delay estimate from the
peak of the amplitude in fig. 0.2(b), then unwrap the fine delay time
estimate obtained from (0.28) until their difference is mimimised. this
can be summarised as ̂̂∆t = δ̂t + mT (0.29)

where T is the period and m an integer selected to minimise |̂̂∆t − ∆̂t|.
This is known as the full or complete cross-correlation estimate of the
time delay between the two complex baseband signals.

Unfortunately we almost never have a perfectly symmetrical baseband
in a practical sonar system. This perfect symetry would only be true if
the reflecting target was exactly on boresight and the transducers are
incredibly well-calibrated so that the |G(ω0 − ωb)| = |G(ω0 + ωb)| which
in any reasonable situation would be highly unlikely and especially so
for broadband systems. The consequence of the non-symmetrical base-
band, where the negative frequencies would usually be slightly larger
than the positive frequencies, is a linear phase shift on top of the phase
offset we wish to measure. Consequently it is always necessary to mea-
sure the phase of cc21(t = ∆t) where the amplitude |cc21(t)| has its
maximum value. This linear phase shift through the complex cross- cor-
relation measurement can also be clearly seen in real data e.g., Pinto,et
al,2003 [4]

However before we discuss the accuracy of the time delay measure-
ment, we need to include some form of noise supression. The signal
either at modulated or at complex baseband is a band- limited function
where the noise is white noise so it makes sense to filter the signals before
cross-correlation. The filter that gives the most increase in SNR is the
“matched filter”; in this case G(ωb); the equivalent baseband spectrum
of the transmitted signal gr0(t). In (0.16), (0.17), (0.25) and (0.26), there
is the assumption that the power spectrum of the received echoes is the
same as the transmitted signal which for real physical transducers is not
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the case. Thus it is best to describe the transmitted signal and the two
delayed echoes as

gb0(t) = F−1{G(ωb)}
gb1(t) = F−1{Ĝ(ωb) exp(−j(ω0 + ωb)t1)} + n1(t) (0.30)

gb2(t) = F−1{Ĝ(ωb) exp(−j(ω0 + ωb)t2)} + n2(t) (0.31)
≈ gb1(t − ∆t)

where |Ĝ(ωb)| ≈ |G(ωb)| but without the requirement that it must be
symetrical about DC, i.e., |Ĝ(ωb)| �= |Ĝ(−ωb)| . With that proviso, the
matched filter response

gb3(t) = gb1(t) � gb0(t)

= F−1{Ĝ(ωb)G∗(ωb) exp(−j(ω0 + ωb)t1)} + n1(t) � gb0(t)
gb4(t) = gb2(t) � gb0(t)

= F−1{Ĝ(ωb)G∗(ωb) exp(−j(ω0 + ωb)t1)} + n2(t) � gb0(t)

and given that the cross-correlation of signals 3 and 4 is

cc34(t) = gb3(t) � gb4(t), (0.32)

we can estimate the coarse time delay ∆̂t from |cc34(t)|, the fine time
delay δ̂t from the phase of cc34(t = ∆t) and then using (0.29) to deter-
mine if any unwrapping is required. Now we have our estimate of the

time delay ̂̂∆t to the highest possible accuracy since the SNR has been
maximised.

It is interesting to compare cc12(t), fig.0.2(b), and cc34(t), fig. 0.3(b).
The effect of the matched filtering is to broaden the amplitude response,
increase the degree of correlation and reduce the noise. It also decreases
the amount of linear slope across the phase plot. This latter effect is the
result of the centroids of Gb3(ωb) and Gb4(ωb) being closer to DC than
Gb1(ωb) and Gb2(ωb).

But just how accurately can we measure the time delay (i.e., the
lag) between to similar echoes? Fortunately here we can resort to the
Cramer Rao Lower Bound (CRLB) calculations by Pinto et al, 2003 [4]
who derive the following bound for the complex cross-correlation of the
baseband echoes

CRLBcc =
1√

BNτp

1√
1 + B2

N
12ω0

1
ω0

√
1

SNR
+

1
2SNR2

(0.33)
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Figure 0.3. (a) The matched-filtered, complex-baseband envelopes of two sequen-
tial pulses with a differential delay between them as well as AWGN, (b) The cross-
correlation where the upper trace is the ampitude and the lower trace the phase as
a proportion of π. The peak value of the amplitude occurs at 10µs with a phase of
0.2π .

Envelope correlation

Complex correlation

Figure 0.4. The Cramer Rao Lower Bound for full and envelope- only cross-
correlation

where BN is the noise bandwidth, τp the pulse (ping) repetition period
and ω0 the carrier frequency. This should be compared to the CRLB for
the envelope-only cross correlation given by

CRLBenv =
1√

BNτp

2
√

3
BN

√
1

SNR
+

1
2SNR2

(0.34)
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To see how these two bounds compare, fig 0.4 shows how the bounds
decrease with increasing SNR when we have a noise bandwith of 20kHz,
a ping repetition period of 0.3s and a carrier frequency of 30kHz.

4. Summary
Measuring relative time delays accurately is a common requirement

in many signal processing and filtering operations. This is mostly done
using correlation techniques. With sampled signals this can be done
at the Nyquist sample rate in which case the signals are all positive
real or more commonly at complex baseband in order to minimise the
computational requirements.

The actual mathematical oeration can be carried out in the time do-
main or more efficiently in the frequency domain using the convolu-
tion/multiplication equivalents of the Fourier transform.
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