
MATLAB for SMS 

Lesson 5: Correlations, Convolutions, and Fourier Transforms 

Concepts 

 

The foci of this lesson will be convolutions, Fourier transforms, correlations, and the relationships 

among them.  For the sake of simplicity, we will consider only functions of time, but our logic may be 

extended to functions of other independent variables as well.  The mathematics involved in these 

extensions are usually trivial, but interpretations of the Fourier ‘frequency’ become nontrivial in such 

cases.   

 

Convolution 

The convolution of two functions f(t) and g(t), where t is defined only on the interval (0,T), is defined as  
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Here, the symbol ‘*’ denotes the convolution.  Notice that, since t is defined only on (0,T), f(t) and g(t) 

are also defined only on (0,T).  In a form more familiar to SM spectroscopists, the discrete convolution is 

defined by replacing the integration with a summation over a discretized t, with t0 = 0 and tN = T, 
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Correlation 

The cross-correlation of two functions is similar to their convolution.  The difference arises in the 

reversal of the time variable.  Defining the cross-correlation, Rfg(τ),  
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we find that it is equivalent to the convolution of the functions f(t) and g(-t).  If, however, either function 

f(t) or g(t) is real-valued (and continuous, but we won’t be considering continuity much), we find that 

the cross-correlation and the convolution are equivalent operations under most practical circumstances.  

e.g., 
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The autocorrelation is a special case of the cross-correlation.  Specifically, the autocorrelation is the 

cross-correlation, or convolution, of the function f(t) with itself.  Under the stipulation that f(t) be real-

valued, we define the autocorrelation, Rff(τ).  
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Fourier Transforms 

The Fourier transform decomposes a time-domain signal into its constituent frequencies.  The definition 

provided below illustrates the basic premise that the transformation is the representation of the 

function f(t) by constituent sines and cosines (eiωt). 
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The Fourier transform can be extended to handle discrete input variables, and is known in this form as 

the discrete Fourier transform.  More specifically, when the input variable is discretized time, the 

transformation is known as the discrete-time Fourier transform.  There are several quirks that arise with 

discrete Fourier transforms, but time will not permit these quirks to be covered in much detail, if at all.   

 

The Convolution Theorem 

The convolution theorem relates the convolution of the two functions, f(t) and g(t), to the Fourier 

representations of each of the functions. Specifically, the convolution theorem states that the Fourier 

transform of the convolution of f(t) and g(t), (f*g)(τ), is equivalent to the pointwise product of the 

Fourier transforms of f(t) and g(t).       
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In other words, convolution in the time domain is equivalent to multiplication in the frequency domain.  

The inverse operation also holds, 

(   )( )     [ ̂( ) ̂( )]  

and carries the significance that the convolution (i.e., cross-correlation if our functions are real-valued) 

of the functions f(t) and g(t) can be computed with the equation above. 

 

Power Spectra  



A power spectrum is often referred to as the spectral density or the power spectral density.  It may be 

interpreted as the “power,” as the squared energy per unit frequency, contained within the function f(t) 

at a given frequency ω.  The Weiner-Khinchin theorem, a special case of the cross-correlation theorem, 

relates the power spectrum of the function f(t), Pff(ω), to the autocorrelation function of f(t), Rff(τ).  

Specifically,  
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Here, the term in the numerator is the squared amplitude of  ̂( ), and T is the time interval over which 

f(t) is defined.  Considering that  ̂( ) is a complex-valued function of omega, we obtain its amplitude 

via this relationship:  
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We can therefore directly relate the power spectrum of a function f(t) with its autocorrelation function.    


