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Goals
» Learn about Polynomial Interpolation.
» Uniqueness of the Interpolating Polynomial.
» Computation of the Interpolating Polynomials.
>

Different Polynomial Basis.
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Polynomial Interpolation.

» Given data
v | @ | | @

ALl 1f

(think of f; = f(x;)) we want to compute a polynomial p,,_; of
degree at most n — 1 such that

Pn1(zi)=fi, i=1,...,n.

» A polynomial that satisfies these conditions is called interpolating
polynomial. The points x; are called interpolation points or
interpolation nodes.
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Polynomial Interpolation.

» Given data
v | @ | | @

ALl 1f

(think of f; = f(x;)) we want to compute a polynomial p,,_; of
degree at most n — 1 such that

Pn1(zi)=fi, i=1,...,n.

» A polynomial that satisfies these conditions is called interpolating
polynomial. The points x; are called interpolation points or
interpolation nodes.

» We will show that there exists a unique interpolation polynomial.
Depending on how we represent the interpolation polynomial it can
be computed more or less efficiently.

» Notation: We denote the interpolating polynomial by

P(flz1,...,zn)(x)
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Uniqueness of the Interpolating Polynomial.

Theorem (Fundamental Theorem of Algebra)

Every polynomial of degree n that is not identically zero, has exactly n
roots (including multiplicities). These roots may be real of complex.
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Uniqueness of the Interpolating Polynomial.

Theorem (Fundamental Theorem of Algebra)

Every polynomial of degree n that is not identically zero, has exactly n
roots (including multiplicities). These roots may be real of complex.

Theorem (Uniqueness of the Interpolating Polynomial)

Given n unequal points x1,x2, ...,xy, and arbitrary values f1, fo,..., fn
there is at most one polynomial p of degree less or equal ton — 1 such
that

plx;))=fi, i=1,...,n.

Proof.

Suppose there exist two polynomials py, ps of degree less or equal to

n — 1 with py(z;) = p2(x;) = fi for i = 1,...,n. Then the difference
polynomial ¢ = p; — p2 is a polynomial of degree less or equal to n — 1

that satisfies g(z;) = 0 for i = 1,...,n. Since the number of roots of a
nonzero polynomial is equal to its degree, it follows that
q=p1—p2=0. O
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Construction of the Interpolating Polynomial.

» Given a basis p1,p2, ..., pn of the space of polynomials of degree
less or equal to n — 1, we write

p(x) = arp1(x) + agp2(x) + - -+ + anpn(x).
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Construction of the Interpolating Polynomial.

» Given a basis p1,p2, ..., pn of the space of polynomials of degree
less or equal to n — 1, we write

p(x) = arp1(x) + agp2(x) + - -+ + anpn(x).

» We want to find coefficients aq, as,...,a, such that
p(z1) = aipi(@1) +agpa(w1) + -+ anpn(r1) = fi
p(xe) = aipi(x2) + aspa(z2) + -+ anpu(z2) = fo
p(mn) = aipi (mn) + G2P2(xn) +- 4+ anpn(mn) = fn
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Construction of the Interpolating Polynomial.

» Given a basis p1,p2, ..., pn of the space of polynomials of degree
less or equal to n — 1, we write

p(x) = arp1(x) + agp2(x) + - -+ + anpn(x).

» We want to find coefficients aq, as,...,a, such that
p(z1) = aipi(@1) +agpa(w1) + -+ anpn(r1) = fi
p(xe) = aipi(x2) + aspa(z2) + -+ anpu(z2) = fo
p(mn) = aipi (mn) + G2P2(xn) +- 4+ anpn(mn) = fn

» This leads to the linear system

pi(z1) p2(z1) ... pal(71) ay f1
pi(z2) p2(x2) ... Dpul(x2) a2 _ fo
b1 (xn) D2 (zn) -o+ Pn (xn) a.n fn
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Construction of the Interpolating Polynomial.

» In the linear system

p1(331) p2(1‘1) pn(ﬂm) ay fi
pi(z2) p2(x2) Pn(z2) a | _ fo
pien) pa(en) o palza) )\ an fn

if x; = x; for i # j, then the ith and the jth row of the systems
matrix above are identical. If f; # f; , there is no solution. If
fi = f; . there are infinitely many solutions.

> We assume that z; # x; for i # j.
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Construction of the Interpolating Polynomial.
» The choice of the basis polynomials p1, ..., p, determines how easily

pi(z1) p2(z1) ... pa(z1) a fi
pl(l”z) pz(lfz) pn(f@) a2 _ fo

can be solved.
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Construction of the Interpolating Polynomial.

» The choice of the basis polynomials p1, ..., p, determines how easily
pi(x1) p2(z1) ... paler) ay f1
pi(z2) p2(z2) ... pa(22) as f2
pi(zn) p2(xn) .. pPolwn) an fn

can be solved.
» We consider
Monomial Basis:

Lagrange Basis:

- - n .T—J,‘j o

pl(a:)—Ll(x)—Hxl_wj, i=1,...,n
Jj=1
JFi

Newton Basis:

i—1

pi(z) = Ni(z) = [[(x—=;), i=1,...,n
j=1
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Monomial Basis.

> If we select
pi(z) = Mi(z) =21, i=1,...,n

we can write the interpolating polynomial in the form

P(flz1,...,zn)(x) = a1 + agx + asz?® + agx® -+ apz” !

» The linear system associated with the polynomial interpolation
problem is then given by

2 3 n—1

1z zy =z ... 2} ay f1
2 n—1

1 xy w3 1:% U as fo
2 -1

1z, 22 23 gy an, fn
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Monomial Basis.

The matrix
2 3 n—1
1z 2y =y ... z{
1 oz 23 a3 ... ab!
Vi = .
1z, 22 23 an—l

is called the Vandermonde matrix.
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Monomial Basis.

Example

| 0] 1] 1] 2]-2
fil -5]-3]-15]39] -9

For these data the linear system associated with the polynomial
interpolation problem is given by

1 00 0 0 a -5
1 11 1 1 as -3
1 -1 1 -1 1 as | =] -15
1 2 4 8 16 as 39
1 -2 4 -8 16 as -9
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Monomial Basis.

Interpolation Polynomial
The solution of this system is given
by

(al, as,as,aq, a5) = (75, 4, *7, 2, 3)

which gives the interpolating poly-
nomial

P(flz1,...,zn)(2)
=—5+4x — 72% + 223 + 322,
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Horners Scheme.

From

p(z) =a +asx + ... + anpz”

=aqa + a2+[a3+[a4—|—-~-—|—[an,1—i—anx]...]x]x T

we see that the polynomial represented in the in monomial basis can be
evaluated using Horners Scheme:

Input: The interpolation points 1, ..., ;.

The coefficients a1, ..., a, of the polynomial in monomial basis.

The point = at which the polynomial is to be evaluated.

Output: p the value of the polynomial at x.

1. p=a,

2. Fori=n—1,n—-2,...,1do
3. p=pxx+a;

4. End
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Monomial Basis.

» Computing the interpolation polynomial using the monomial basis,
leads to a dense n x n linear system.

» This linear system has to be solved using the LUdecomposition (or
another matrix decomposition), which is rather expensive.

» The system matrix is the Vandermonde matrix, which we have seen
in our discussion of the condition number of matrices. The
Vandermonde matrix tends to have a large condition number.

> The ill-conditioning of the Vandermonde matrix is also reflected in
the plot below, where we observe that the graphs of the monomials

x,22,... are nearly indistinguishable near 2 = 0.
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Monomial Basis.

Monomial Basis

20 : : : :
_M1
R M2
15¢ LI R ¥
i I 3
\‘ : _M4
10} N i
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Lagrange Basis.

» Given unequal points z1,...,z,, the ith Lagrange polynomial is

given by

n

T —x,;
Li(x) = 1
z(x) H i — 7
Jj=1
J#i
» The Lagrange polynomials L; are polynomials of degree n — 1 and

satisfy

10 k=i
““W_{Q it ki
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Lagrange Interpolating Polynomial.

» With the basis functions p;(x) = L;(x), the linear system associated
with the polynomial interpolation problem is

1 00 0 a f
010 0 as fo
00 0 - 1 an In

» The interpolating polynomial is given by

P(flxy, ... zn)(x) = Zszz(I)
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Lagrange Interpolating Polynomial.

Example

zi | 0] 1\*1\2\*
fill -5

Interpolation polynomial

P(flz1,...,z5)(x)
= 5+ 4z — T2® + 22° + 3z*  Monomial basis

_ 75(95 —D(xz+1)(xz—2)(z+2)
4
z(x+1)(x —2)(x+2)
—6

z(x —1)(x—2)(x+2)

—6
z(x—1D)(xz+1)(x+2)
+39 o

1 1)(z—2
_ gx(x )(m2z )(z ) Lagrange basis.
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Lagrange Basis.

Lagrange Basis

12 — : . ‘ —

W ‘s _M1
1 """'M2
08 e
. — M,
0.6 -—=N

-2 -15 -1 -05 0 0.5 1 1.5 2

-0.6
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Newton Basis.
» The Newton polynomials are given by

Ni(z)=1, No(z)=z— a1,

N3(z) = (x — z1)(z — z2), ..., 1:[ (x — x;).

> N; is a polynomial of degree ¢ — 1. They satisfy N;(z;) = 0 for all
Jj<i.

» With the basis functions p;(x) = N;(x), the corresponding matrix
associated with the polynomial interpolation problem is

1 0 0 0
1 X9 — I 0 0 0
1 ozpy -2 o [ (w0 — ) 0
n—2 n—1
1 x,—x ... H] L (zy, — ) szl(:cnij)
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Newton Basis.

The system matrix is lower triangular. If all interpolation nodes

T1,...,T, are unequal, then the diagonal entries of the system matrix in
are nonzero and we can compute the coefficients by forward substitution,
a; = fi
fo—a1
ag = ——
T2 — 1

—1 i—1
fo = 20000 @i [12 (e — )

H;:; (mn - mj)
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Newtone Interpolating Polynomial.

Example

zi| 0] 1] -1] 2]-2
fi \\—5\—3\—15\39\—9
Interpolation polynomial
P(f|$1, ce 7],‘5)(%)
= —5+4x — 72> 4+ 22° + 32  Monomial basis
_5(90 —DE+)@E-2)=+2) 333(30 + 1) (x —2)(z+2)
4 —6
(z-D(x-2)(z+2) zz—1)(z+1)(z+2)
+ 39
—6 24
z(x—1)(xz+1)(x—2)
24
=—-54+2r—4dax(z—1)+8z(x—1)(z+1)+3z(x — 1)(z+ 1)(z — 2)
Newton basis.

— 152

-9

Lagrange basis
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Newton Basis.

Newton Basis
25 : : : ; :
_N1
I
ot | .......N2
1 ._._.N3
i
— N
4
150 1
\ _-_N5
1
\
10t \ g

-10 . . \ . \ \
-2 -15 -1 -05 0 05 1 1.5
X
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Construction of the Interpolating Polynomial. Summary.

> If x; # x; for i # j, there exists a unique polynomial of degree
n — 1, denoted by P(f|z1,...,z,)(x) such that

P(flx1,...,zn)(z) = fi, i=1,...,n.
» The interpolating polynomial can be written in different bases:

P(flx1,...,zn)(x)

=aM + oo+ 4 aMgm!
tr—x ~or—x Lor—x
=nll —2+rll —2++Hll —=
j:lxl_xj j:1$2—$j j:lxn_mj
j#1 2 j#n

=aV +al(@—a)+ - +ad(x—x1).. . (x—z,1).

» The representation of the interpolating polynomial depends on the
chosen basis.
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