Interpolation and Approximation Theory

Finding a polynomial of at most degree n to pass through n + 1 points in the interval
[a, b] is referred to as ”interpolation”.

Approximation theory deals with two types of problems.

e Given a data set, one seeks a function best fitted to this data set, for example,
given {(z1,11), (2,v2), -, (Tn,Yn)}, one seeks a line y = ma + b which best fits
this data set.

e Given an explicit function, one seeks a simpler function for representation, for
2 3
example, use 1+ + 57 + % to represent e”.
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Polynomial Approximation

Suppose that the function f(x) = e is to be approximated by a polynomial of degree
2 over the interval [-1, 1]. The approximations by Taylor polynomial 1 + z + 0.5z and

Chebyshev polynomial 1 + 1.17518z + 0.5430922 are given below.
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Figure 1: Polynomial Approximations for e* over [-1, 1]

X=-1:0.1:1;

YO=exp(X) ;
Y1=1.0000+1.0000%X+0.5000*X."2;
Y2=1.0000+1.17518%X+0.54309%*X."2;

% Taylor Expansion

15

% Chebyshev Polynomial by Chaurchin

%Y2=1.0000+1.129772%X+0.532042*X."2; 7 Chebyshev Polynomial from Textbook

v=[-1.5 1.5, 0 3];

subplot(2,1,1)

plot(X,Y0,’b--",X,Y1,’r-"); axis(V); grid;
title(’Taylor Approximation for e“x’)
subplot(2,1,2)

plot(X,Y0,’b--",X,Y2,’r-?); axis(V); grid;
title(’Chebyshev Approximation for e”x’)



Taylor Polynomial Approximation

Suppose that f € C""{a,b] and zy € [a,b] is a fixed value. If = € [a, b], then

f(x) = Pu(2) + En()

where P,(z) is a polynomial that can be used to approximate f(z) by

n ) (g
fa) & Byfa) = Y2 T
k=0 :

(x — xo)k

having some ¢ between x and xy such that

o |e— Pis(1)] = |e — 2.718282818459] < 15 < & < 1.433844 x 10713
o |sin(z) — Py(z)| <

& < 2.75574 x 1077 for |z] < 1, where

[ T LA
Py(z) =2 — —+

TR I)

o [cos(x) — Py(x)] < 5 < 2.75574 x 1076 for |z| < 1, where

1'2 ZE4 1'6 ZES
Bo=l-g+ta sty



Polynomial Interpolation

We attempt to find a polynomial of at most degree n to pass through n + 1 points in the
interval [a, b].
[xOu yO]tv [‘rlu yl]tv B [xm yn]t
where
a < xg < 11 < 0 <z <D

y=[5x*-82x3+427x%-806x+504]/24
7 T T T

Figure 2: Polynomial Passing Through Five Points

b

% Script File: func4.m

% A quadric function for interpolation: y=f(x)=[5x"4-82x"3+427x"2-806x+504]/24
h

X=0.6:0.1:5.2;

Y=(5%X."4-82%X. " 3+427*X . 2-806*xX+504) /24 .0;

v=[0 6, 0 71;

plot(X,Y,’b-",[1 2 3 45],[215 6 1],’ro’); axis(V); grid
title(’y=[5x"4-82x"3+427x"2-806x+504] /24°)



Polynomials for Interpolation

Theorem: Suppose that the function y = f(x) is known at the n + 1 distinct points

[x07y0]t7 [xlayl]t7 Ty [l‘TL?yn]t

where
a < xg < 11 < 0 <z <D

Then there is a unique polynomial P, (z) of degree at most n such that

If the error function E(x) = f(z) — P,(z) is required, then we need to know f"+(z)

whose bound of magnitude is
maz{|f"tV(z)]: a <z <b}

e A Lagrange polynomial of degree n

H?;ék(fl? — )

L, =
Jc(x) H;L;ﬁk(xk - xj)

QO Error Formula for Lagrange Polynomaial

n (n+1) n
F@) =3 Fe) (@) + 1) [T (0~ )

= (n+1)! 0

for some unknown number &, that lies in the smallest interval that contains zq, z1, - --

and x.
e Polynomials in Newton Form
n—1
pn(l') = pnfl(l') -+ Qp, H(.CIT — .CI?]')
§=0
e Polynomials in Chebyshev Form

Py(x) =g+ anTi(z) + aTa(x) + - - - + o, T, (2)

where

T, () = cos(ncos™'z), Ty(z) =1, Ti(x) =z, Tr(z) =22% — 1, Ty(v) = 42° — 3.

& Hermite Polynomials H, ()

’ xTL?



An Example for Polynomial Interpolation

We look for polynomials of degree at most 3 to interpolate the following four points.

z 5] 7] 6] 0
y [ 11-23]-54 | -954

Table 1: P3(z) = 42® + 3522 — 84z — 954

@ Solution in Lagrange form

o (z4+7)(z+6)(z—0)
Py(z) = 1- (5+7)(5+6)(5—0)

(z—5)(xz46)(z—0)
+ (_23) " (=7-5)(=7+6)(—7—0)

(z—5)(z4+7)(z—0)
+ (=54)- (—6—5)(—6+7)(—6-0)

(z—5)(z+7)(z—6)
+ (=954) - G ore

Q Solution in Newton form

Py(x)=1+2(x—=5)+3(x—=5)(z+7)+4(x —5)(z+7)(xz+6)

@ Solution in Chebyshev form
where

T, () = cos(ncos™'z), Ty(z) =1, Ti(x) =z, Tr(z) =22% — 1, Ty(v) = 42° — 3.



Divided Differences

Suppose that the function y = f(x) is known at the n + 1 points

[zo, f(zo)]", [z1, f(z1)]f, -~

» [T, f@n)]f, where a < 1y < 711 <

The n + 1 zeroth divided differences of f are defined as

flz:] = f(z;) 0<i<n

The first divided differences of f are defined as

flzi, wiga] =

fliva] = flwi]

Vo<i<n-1

Tip1 — T

The kth divided differences can be inductively defined by

f[l“i, Tit1, "

JlTicr, Tigo, -+, Tig]) — fl2i, Tigr, -+, Tigp—]

*y Titk—1, $i+k] =

The nth divided difference is

It can be shown that the nth Lagrange interpolation polynomial w.r.t. zp < z; < ---

f[.il?o,l'l,"‘,ilfn] =

LTitk — L4

f[951,$2,"'795n] - f[x07-r17"'7xn—1]

Tn — o

can be expressed as Newton (interpolatory) divided-difference formula

Pu.(z) =

< z, <b

VO<i<n-—k

flzo] + flzxo, z1](x — zo) + flzo, 1, -, 2p)(x — x0) (. — 21) -+ - (x — Tpp1)

flzo] + X521 flzo, o1, -+ m] (2 — wo)(x — 1) -+ - (T — 2p1)

(1)

Newton (interpolatory) divided-difference formula has simpler form when z; —z,_1 =
h ¥V1<j<n.Letz=uxy+ sh, then x — x; = (s — i)h, then the formula ?? becomes

P(z)

P.(xg+ sh) = flzo] + X8 s(s = 1) (s =k + 1)h¥fleg,x — 1, -+, 4]

S

flwo] + 252y < e ) KRR flzo, 2, - - -, @y

S

fla + i () 241

Flan) + S0

—S

k

)vwww
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Hermite Interpolation and Polynomial

If feCYa,b and a < 29 < 7y < -+ < 1, < b, the unique polynomial of least degree
which agrees with f and f" at xg,x1,-- -, x, is the polynomial of degree at most 2n + 1
given by

n

Honia () = 30 F (03} Hoy + 3 /(2 (0

where
Hyj(x) = [1 = 2(2 — a;) Ly, j(x)] L7, ;(2)
H,;(x) = (z — ;) L} ;(x))
L) = =) ) () ) e )

(x5 — wo)(zj —w1) -+ (5 — 1) (@) — Tjn) -+ (25 — )

e Show that Ha,pq(xx) = f(xr) and Hy, (xx) = f'(zx) VE=0,1,---,n.

e Error Formula
If f € C?""2[a,b], then

Fer2 (&)

(Qn + 2)| (33' — .CEO)Q(;[ — xl)Q . (33' _ xn)Q

f(x) = Hoppq () +

for some &, € (a,b).



Cubic Spline Interpolation

Given a function f defined on [a, b] and a set of n+1nodesa = xg < 1 < --- < x, =
b, a cubic spline interpolant, S, for f is a function that satisfies the following conditions:

(1) For each j =0,1,---,n — 1, S(z) is a cubic polynomial, denoted by S;(x), on the
subinterval [z, x;41).

(2) S(z;) = f(z;) for each j =0,1,---,n.

(3) Sjni(wjp) =

(4) Sy (zj41) = Sj(xj4) for each j =0,1,---,n — 2.

(5) Sjia(wjm) =

(6) One of the following sets of boundary conditions is satisfied:

(a) S"(zg) = S"(x,) = 0 (natural or free boundary);
(b) S"(xo) = f'(xo) and S'(z,,) = f'(x,) (clamped boundary).

Sj(xj41) for each j =0,1,---,n— 2.

zjy1) = Sj(xj41) for each j =0,1,---,n —2.

x (0913 19|21 26| 30|39 |44 |47 | 50| 6.0
flz) | 1.3 1.5 | 1.85| 2.1 | 26 | 2.7 | 2.4 | 2.15|2.05| 2.1 | 225
x |70] 80 | 92 |105|11.3|11.6 | 12.0|12.6 | 13.0 | 13.3
f(z) 12312250195 ] 1.4 |09 | 07| 06 | 05 | 04 |0.25

Table 2: A ruddy duck in flight



Finding A Cubic Spline Interpolant

Let Sj(z) = aj+bj(x—x;)+cj(x—x;)*+d;j(x—x;)3, hj =z —xj,for 0 <j<n—1,

From (2), a; = Sj(z;) = f(z;), 0<j<n—1,and denote a, = f(z,).
From (3), ajq1 = a; + b1 — x5) + cj(wj1 — 25) + dj(w40 — 25)°, 0<j<n—2.

(A)  ajy1 = aj + bjh; + ¢;hi +d;h3, 0<j <n—1, where a, = f(z,).

Similarly, Sj(x) = b; +2¢;(x — x;) + 3d;(x — x;)%, 0<j<n—1,
(B) bj+1 = bj + Qthj + 3d]h2

2, 0<j<n—1 by (4).

Define ¢, = $5"(z,), and by using (5), we have
(C) c¢jy1 =c¢j+3djh;, 0<j<n-—1, and ¢,_1+3dy—1h,—1 = ¢, = 0 by using (6)(a).

(C) d; = ﬁj(cﬁl —¢;), 0<j<n—1,substitute (C’) into (A) and (B), we have

2
h]'

(D) &j+1:aj—i-bjhj—'—?(ij"‘CjJrl), 0<j<n-1
(E bj+1:bj+hj(cj+cj+1)7 OS] §n—1, or
(E) bj =bj_1 + hj—l(cj—l + Cj), 1<7<n

From (D), we have

(F) bj:h%j(ajJrl_afj)_%(zc‘j_‘_CjJrl), OS] Sn—l, or
= hj_l

(F) b =5(0; —ajm1) — 201 +¢), 1<j<n

Substitute (F) and (F’) into (E), we have

(G) hj—lcj—l+2(hj—1+hj)cj+hjcj+l = h%(ajﬂ—aj)—%(aj—aj_l), for 1 S] S n—1.
Thus the problem is reduced to solving Ac = h with (n—1) equations and (n—1) unknown
variables ¢ = [¢1, ¢, -, ¢,_1]" by using the boundary conditions ¢y = %S” (x9) = 0 and
¢ = 35"(2,) = 0.

Once {c;, 0 < j <n—1} aresolved, {d;, 0 <j <n—1}and {b;, 0 <j <n—1} could
be easily solved by using (C’) and (F'), respectively.



[ 2ho+h1) Iy 0 0 - 0
b 2hthy) he O .- 0
0 ha hs
0 0
0 hpg . P—o
I 0 0 oo e By 2(hpg+ ) |

where ] , ,
h_l(a2 —ap) — h—o(al —ap)

e (az — az) — (a2 — a1)

L hn—1 (an = an-1) — %(an—l — Qn-2) |




Cubic Spline Interpolant for A Ruddy Duck

b

% Script File: cspline.m

% Cubic Spline Interpolation for a rubby duck of 21 points
b

n=21;

fin=fopen(’duck.txt’);

fgetL(fin);

X=fscanf (fin,’%f’,n);

Y=fscanf (fin,’%f’,n);

X0=0.9:0.4:13.3;

YO=spline(X,Y,X0);

plot(X,Y, b--0’,X0,Y0,’r-*); axis([0.5 13.5, -1, 51); grid
legend (’Sample Points of A Duck’,’Cubic Spline Interpolant’);
title(’Cubic spline interpolant for a ruddy duck’)

Cubic spline interpolant for a ruddy duck
5 T T T T

T T
—O- Sample Points of A Duck
—— Cubic Spline Interpolant

i i
2 4 6 8 10 12

Figure 3: Cubic Spline Interpolant for A Ruddy Duck
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Bezier Curves and B-splines

Bezier curves and B-splines are widely used in computer graphics and computer-aided
design. These curves have good geometric property in that in changing one of the points
we change only one portion of the fitted curve, a local effect. For cubic splines, changing

only one point might have a global effect.
Bezier curves are named after the French engineer, Pierre Bezier of the Renault

Automobile Company. He developed them in the early 1960’s to fill a need for curves
whose shape can be practically controlled by changing a few parameters.
The nth degree Bezier polynomial determined by n + 1 points is given by

Pu) = Y CM1—u)""u'P,
i=0
Bezier cubics are commonly used. For 0 < u < 1, denote

z(u) = (1 —u)?zo + 3(1 — u)?uz; + 3(1 — w)u’zs + ulnss

y(u) = (1 —u)’yo + 3(1 — u)uy; + 3(1 — w)u’ys + u’ys

Then p p
x
@:3(@—%), ﬁz?)(yl—yo) at u=0.
d — d —
ay Y1 — Yo at Py, ay Y2 — Y3 at Py

dr x1 — 29 dr  T9 — T3

An Algorithm for drawing a Bezier curve

fori=0,3n—-1,3
foru = 0, 1, Au
w(u) = (1 —u)’z; + 3(1 — uw)uwipr + 3(1 — w)uin + waiis
y(u) = (1 —u)’y; + 3(1 — u)uyipr + 3(1 — w)uPyio + u’yigs
plot(z(u),y(u))
endfor

endfor



B-splines

The B-splines (basis of splines) are like Bezier curves in that they do not ordinarily
pass through the given data points. They can be of any degree, but cubic B-splines are
commonly used.

Given the points P;(z;, vy;), @ = 0,1,--+,n, a portion of a cubic B-spline for the
interval (P;, Piy1),i=1,2,---,n— 1, is computed by

2
Bi(u) = Y bpPi

k=-1

where

(1—u)? ut o, 2 —ud  wr w1 u?
by1=——"— by=—— - bh=—4+—+ =4+, bb=—
! 6 T2 YTy Ty Tyt T
u-cubics act as weighting factors on the coordinates of the four successive points to
generate the curve, for example, at u = 0, the weights are [%, %, %,O]; at u = 1, the
weights are [0, %, %, %]
An Algorithm for drawing a cubic B-spline

fori=1,n—2

foru=0,1,Au
r = x;(u)
y = yi(u)
plot(x,y)
endfor
endfor
where
) = St et T D+ Y
6 2 3 2 2 2 6 6
(1—wu)? ur o, 2 —u® w1 u?
yi(u) = T Yt [3 —ut+ g]yz‘ + [T T Tyt é]yi—f—l + g Vir2

e Note that a B-spline does not necessarily pass through any point of F/s.



Approximation Theory

Approximation theory deals with two types of problems.

e Given a data set, one seeks a function best fitted to this data set, for example,
given {(x1,11), (2,92), -, (Tn,yn)}, one seeks a line y = max + b which best fits
this data set.

e Given an explicit function, one seeks a simpler function for representation, for
2 3
example, use 1+ z + 2 + % to represent e”.

e Orthogonal Functions
The set of functions {¢g, ¢1,- -, @, } is said to be orthogonal for the interval [a, b]
with respect to the weight function w if

ag >0 ifi=k

[ 6iw)ontau )i = )

0 if ik
{bo, P1,- -+, Pn} is said to be orthonormal if, in addition, oy, = 1 for 0 < k < n.
& {1,cosx,sinz,---,coskr,sinkz,---} with respect to w(z) = 1 is orthogonal for the

interval [0, 27].

& {\/LQ?, % CoS T, % sinx, -, % cos kx, ﬁ sin kz, - - -} with respect to w(z) = 1 is or-
thonormal for the interval [0, 27].

& The set of Chebyshev polynomials {cos(ncos™ x)}°° is orthogonal with respect to
w(z) = \/11_7 for the interval [—1, 1].

& The set of Chebyshev polynomials {ﬁ, %[cos(n cos~ ' x)]22,} is orthonormal with
respect to w(x) = \/1177 for the interval [—1,1].

O The set of Legendre polynomials {P,(z) = 5 - d"(aj%

to w(z) =1 for the interval [—1,1]. Note that

} is orthogonal with respect

1 %ﬂ form=n
/ P(x)P,(x)dx = (3)
! 0 form#n

Any high-order Legendre polynomial may be derived using the recursion formula

_2n—1 n—1

P, (z) xP,_1(z) +

P, () (4)

n
Note that

Po@) =1, Pi(2) = 2, Po(x) = %(33:2 _ 1), Pya) = %(53:3 .



