
chapter 62

one story, two rules,
and a bsp renderer

ga
@>
,2@&

Ai”

d(.;.~ .a*:
a ”

n _ n

mpiled BSP Tree from Logical to

As I’ve noted before,B&‘m working on Quake, id Software’s follow-up to DOOM. A
flipping to Quake, and made the startling discov-
twice as fast with page flipping as it did with the
whole frame to system memory, then copying it to
his, but baffled. I did a few tests and came up with
ding slow writes through the external cache, poor
che misses when copying the frame from system

each of these can indeed affect performance,
none seemed to accaunt for the magnitude of the speedup, so I assumed there was
some hidden hardware interaction at work. Anyway, “why” was secondary; what really
mattered was that we had a way to double performance, which meant I had a lot of
work to do to support page flipping as widely as possible.
A few days ago, I was using the Pentium’s built-in performance counters to seek out
areas for improvement in Quake and, for no particular reason, checked the number
of writes performed while copying the frame to the screen in non-page-flipped mode.
The answer was 64,000. That seemed odd, since there were 64,000 byte-sized pixels
to copy, and I was calling memcpyo, which of course performs copies a dword at a
time whenever possible. I thought maybe the Pentium counters report the number
of bytes written rather than the number of writes performed, but fortunately, this

1147

time I tested my assumptions by writing an ASM routine to copy the frame a dword at
a time, without the help of memcpy(). This time the Pentium counters reported
16,000 writes.
whoops.
As it turns out, the memcpy() routine in the DOS version of our compiler (gcc)
inexplicably copies memory a byte at a time. With my new routine, the non-page-
flipped approach suddenly became slightly faster than page flipping.
The first relevant rule is pretty obvious: Assume nothing. Measure early and often.
Know what’s really going on when your program runs, if you catch my drift. To do
otherwise is to risk looking mighty foolish.
The second rule: when you do look foolish (and trust me, it will happen if you do
challenging work) have a good laugh at yourself, and use it as a reminder of Rule #l.
I hadn’t done any extra page-flipping work yet, so I didn’t waste any time due to my
faulty assumption that memcpy() performed a maximum-speed copy, but that was
just luck. I should have done experiments until I was sure I knew what was going on
before drawing any conclusions and acting on them.

P In general, make it apoint not to fall into a tightly focused rut; stay loose and think
of alternative possibilities and new approaches, and always, always, always keep
asking questions. It ’llpay off big in the long run. IfI hadn ’t indulged my curiosity
by running the Pentium counter test on the copy to the screen, even though there
was no specific reason to do so, I would never have discovered the memcpyo
problem-and by so doing I doubled the performance of the entire program in five
minutes, a rare accomplishment indeed.

By the way, I have found the Pentium’s performance counters to be very useful in
figuring out what my code really does and where the cycles are going. One useful source
of information on the performance counters and other aspects of the Pentium is
Mike Schmit’s book, Pentium Processor Optimization Tools, AP Professional,
ISBN 0-1 2-627230-1.
Onward to rendering from a BSP tree.

BSP-based Rendering
For the last several chapters I’ve been discussing the nature of BSP (Binary Space
Partitioning) trees, and in Chapter 60 I presented a compiler for 2-D BSP trees. Now
we’re ready to use those compiled BSP trees to do realtime rendering.
As you’ll recall, the BSP compiler took a list of vertical walls and built a 2-D BSP tree
from the walls, as viewed from above. The result is shown in Figure 62.1. The world is
split into two pieces by the line of the root wall, and each half of the world is then
split again by the root’s children, and so on, until the world is carved into subspaces
along the lines of all the walls.

1 148 Chapter 62

I BSP tree I

front c%ck back child

front child child

Vertical walls and a BSP tree to represent them.
Figure 62.1

Our objective is to draw the world so that whenever walls overlap we see the nearer
wall at each overlapped pixel. The simplest way to do that is with the painter’s algo-
rithm; that is, drawing the walls in back-to-front order, assuming no polygons
interpenetrate or form cycles. BSP trees guarantee that no polygons interpenetrate
(such polygons are automatically split), and make it easy to walk the polygons in
back-to-front (or front-to-back) order.
Given a BSP tree, in order to render a view of that tree, all we have to do is descend
the tree, deciding at each node whether we’re seeing the front or back of the wall at
that node from the current viewpoint. We use that knowledge to first recursively
descend and draw the farther subtree of that node, then draw that node, and finally
draw the nearer subtree of that node. Applied recursively from the root of our BSP
trees, this approach guarantees that overlapping polygons will always be drawn in
back-to-front order. Listing 62.1 draws a BSP-based world in this fashion. (Because of
the constraints of the printed page, Listing 62.1 is only the core of the BSP renderer,
without the program framework, some math routines, and the polygon rasterizer;
but, the entire program is on the CD-ROM as DDJBSP2.ZIP. Listing 62.1 is in a com-
pressed format, with relatively little whitespace; the full version on the CD-ROM is
formatted normally.)

LISTING 62.1 162- 1 .C
/ * C o r e r e n d e r e r f o r W i n 3 2 p r o g r a m t o d e m o n s t r a t e d r a w i n g f r o m a 2-D

BSP t r e e : i l l u s t r a t e t h e u s e o f BSP t r e e s f o r s u r f a c e v i s i b i l i t y .
Upda teWor ldO i s t h e t o p - l e v e l f u n c t i o n i n t h i s m o d u l e .
F u l l s o u r c e c o d e f o r t h e B S P - b a s e d r e n d e r e r , a n d f o r t h e
accompanying BSP c o m p i l e r , may be d o w n l o a d e d f r o m
ftp.idsoftware.com/mikeab. i n t h e f i l e d d j b s p 2 . z i p .
T e s t e d w i t h VC++ 2 .0 running on Windows NT 3 .5 . * /

#def ine FIXEDPOINT(x) ((FIXEDPOINT)(((long)x)*((long)OxlOOOO))~
d e f i n e F I X T O I N T (x) ((i n t) (x >> 1 6))

One Story, Two Rules, and a BSP Renderer 1 149

l d e f i ne
d e f i n e
d e f i ne
i d e f i ne
d e f i n e
d e f i n e
d e f i n e
P d e f i ne
d e f i n e
d e f i n e
d e f i ne
l d e f i ne

t y p e d e f
t y p e d e f

ANGLE(x) ((1 o n g) x)
STANDARD-SPEED (FIXEDPDINT(20))
STANDARD-ROTATION (ANGLE(4))
MAX-NUM-NODES 2000
MAX-NUM-EXTRA-VERTICES 2000
WORLD-MIN-X (FIXEDPOINT(-16000))
WORLD-MAX-X (FIXEDPOINT(16000))
WORLD-MIN-Y (F IXEDPOINT(-16000))
WORLD-MAX-Y (FIXEDPOINT(16000))
WORLD-MIN-Z (FIXEDPOINT(-16000))
WORLD-MAX-Z (FIXEDPDINT(16000))
PROJECTION-RATIO (2 .011.0) 11 c o n t r o l s f i e l d o f v i e w : t h e

I1 b i g g e r t h i s i s , t h e n a r r o w e r t h e f i e l d o f v i e w
l o n g FIXEDPOINT;
s t r u c t -VERTEX (. .

FIXEDPOINT x . z . v i e w x , v i e w z :
1 VERTEX, *PVERTEX;
t y p e d e f s t r u c t -POINT2 { FIXEDPOINT x , z : 1 POINTE. *PPOINT2;
t y p e d e f s t r u c t -POINTZINT (i n t x : i n t y : 1 POINTLINT. *PPOINTZINT;
t y p e d e f l o n g ANGLE: 11 a n g l e s a r e s t o r e d i n degrees
t y p e d e f s t r u c t -NODE (

VERTEX * p s t a r t v e r t e x . * p e n d v e r t e x :
FIXEDPOINT w a l l t o p . w a l l b o t t o m . t s t a r t . t e n d :
FIXEDPOINT c l i p p e d t s t a r t . c l i p p e d t e n d :
s t r u c t -NODE * f r o n t t r e e . * b a c k t r e e ;
i n t c o l o r , i s v i s i b l e :
FIXEDPOINT s c r e e n x s t a r t . s c r e e n x e n d ;
FIXEDPOINT s c r e e n y t o p s t a r t , s c r e e n y b o t t o m s t a r t ;
FIXEDPOINT sc reeny topend . sc reenybo t tomend :

1 NODE. *PNDDE;
c h a r * pDIB: / I p o i n t e r t o D I B s e c t i o n w e ' l l d r a w i n t o
HBITMAP hDIBSec t ion : / I h a n d l e o f DIB s e c t i o n
HPALETTE hpa lD IB ;
i n t i t e r a t i o n - 0. Wor ld I sRunn ing - 1;
HWND hwndou tpu t ;
i n t D IBWid th . D IBHe igh t . D IBP i t ch . numver t i ces , numnodes :
FIXEDPOINT f x H a l f D I B W i d t h . f x H a l f O I B H e i g h t ;
VERTEX * p v e r t e x l i s t , * p e x t r a v e r t e x l i s t :
NODE * p n o d e l i s t :
POINT2 c u r r e n t l o c a t i o n . c u r r e n t d i r e c t i o n . c u r r e n t o r i e n t a t i o n :
ANGLE c u r r e n t a n g l e :
FIXEDPOINT c u r r e n t s p e e d . f x V i e w e r Y . c u r r e n t Y S p e e d :
FIXEDPOINT F r o n t C l i p P l a n e - FIXEDPOINT(10);
FIXEDPOINT FixedMul (FIXEDPOINT x. FIXEDPOINT y) :
FIXEDPOINT FixedDiv(FIXEDPD1NT x. FIXEDPOINT y) :
FIXEDPOINT FixedSin(ANGLE angle). FixedCos(ANGLE angle):
e x t e r n i n t FillConvexPolygon(POINT2INT * V e r t e x P t r . i n t C o l o r) :
11 R e t u r n s n o n z e r o i f a w a l l i s f a c i n g t h e v i e w e r , 0 e l s e .
i n t Wal lFac ingViewer (N0DE * p w a l l)
(

FIXEDPOINT v i e w x s t a r t - pwall->pstartvertex->viewx:
FIXEDPOINT v i e w z s t a r t - pwall->pstartvertex->viewz:
FIXEDPOINT v iewxend - pwall->pendvertex->viewx:
FIXEDPOINT v iewzend - pwall->pendvertex->viewz:
i n t Temp;

i f ((((pwall->pstartvertex->viewx >> 1 6) *
I* I / e q u i v a l e n t C code

((pwall->pendvertex->view2 -

((pwall->pstartvertex->viewz >> 1 6) *
pwall->pstartvertex->viewz) >> 1 6)) +

1 150 Chapter 62

((pwall->pstartvertex->viewx -
pwall->pendvertex->viewx) >> 1 6)) 1

< 0)
r e t u r n (1) :

r e t u r n (0) :
e l s e

* I
I

rnov eax .v iewzend
s u b e a x . v i e w z s t a r t
i m u l v i e w x s t a r t
rnov ecx, edx
mov ebx .eax
rnov e a x . v i e w x s t a r t
sub eax .v iewxend
i m u l v i e w z s t a r t
add eax.ebx
adc edx.ecx
mov eax.O
jns s h o r t WFVDone
i n c e a x

mov Temp, eax
WFVDone:

I
r e t u r n (T e m p) :

1
/ / U p d a t e t h e v i e w p o i n t p o s i t i o n as needed.
v o i d U p d a t e v i e w P o s o
I

i f (c u r r e n t s p e e d != 0) {
c u r r e n t 1 o c a t i o n . x += FixedMul(currentdirection.x.

i f (c u r r e n t 1 o c a t i o n . x <= WORLDLMINKX)
c u r r e n t l o c a t i o n . ~ = WORLDLMIN-X:

i f (c u r r e n t l o c a t i o n . ~ >- WORLD-MAXLX)
c u r r e n t 1 o c a t i o n . x = WORLDLMAXLX - 1:

c u r r e n t 1 o c a t i o n . z += FixedMul(currentdirection.z.

i f (c u r r e n t 1 o c a t i o n . z <= WORLDLMINLZ)
c u r r e n t 1 o c a t i o n . z = WORLD-MIN-2:

i f (c u r r e n t 1 o c a t i o n . z >= WORLDLMAXLZ)
c u r r e n t l o c a t i o n . ~ = WORLDLMAXKZ - 1;

c u r r e n t s p e e d) :

c u r r e n t s p e e d) :

}
i f (cu r ren tYSpeed != 0) {

f xV iewerY += cu r ren tYSpeed :
i f (f x V i e w e r Y <= WORLDLMINKY)

f xV iewerY = WORLO_MIN_Y:
i f (f x V i e w e r Y >= WORLD-MAX-Y)

f xV iewerY = WORLDLMAXKY - 1;
I

I
/ / T r a n s f o r m a l l v e r t i c e s i n t o v i e w s p a c e .
v o i d T r a n s f o r m v e r t i c e s 0
(

VERTEX * p v e r t e x :
FIXEDPOINT tempx. tempz:
i n t v e r t e x :
p v e r t e x = p v e r t e x l i s t :
f o r (v e r t e x = 0 : v e r t e x < n u m v e r t i c e s ; v e r t e x + +) 1

I / T r a n s l a t e t h e v e r t e x a c c o r d i n g t o t h e v i e w p o i n t

One Story, Two Rules, and a BSP Renderer 1 151

tempx - p v e r t e x - > x - c u r r e n t 1 o c a t i o n . x :
tempz - p v e r t e x - > z - c u r r e n t 1 o c a t i o n . z ;
11 R o t a t e t h e v e r t e x s o v i e w p o i n t i s l o o k i n g down z a x i s
p v e r t e x - > v i e w x - FixedMul(F ixedMul(tempx.

current orientation.^) +
F i x e d M u l (t e m p z . - c u r r e n t o r i e n t a t i o n . x) .
F IXEDPOINT(PROJECTION_RATIO)) :

p v e r t e x - > v i e w 2 = F ixedMu l (tempx . current orientation.^) +
F i x e d M u l (t e m p z . c u r r e n t o r i e n t a t i o n . z) :

pvertex++:
I

1
/ I 3 - 0 c l i p a l l w a l l s . If a n y p a r t o f e a c h w a l l i s s t i l l v i s i b l e ,
/ I t r a n s f o r m t o p e r s p e c t i v e v i e w s p a c e .
v o i d C l i p w a l l s o
I

NODE * p w a l l :
i n t w a l l :
FIXEDPOINT t e m p s t a r t x . t e m p e n d x . t e m p s t a r t z . t e m p e n d z :
FIXEDPOINT t e m p s t a r t w a l l t o p . t e m p s t a r t w a l l b o t t o m :
FIXEDPOINT tempendwa l l t op . t empendwa l lbo t tom;
VERTEX * p s t a r t v e r t e x . * p e n d v e r t e x :
VERTEX * p e x t r a v e r t e x - p e x t r a v e r t e x l i s t :
p w a l l - p n o d e l i s t :
f o r (w a l l - 0: w a l l < numnodes; wall++) I

I / Assume t h e w a l l w o n ' t b e v i s i b l e
p w a l l - > i s v i s i b l e - 0:
11 G e n e r a t e t h e w a l l e n d p o i n t s , a c c o u n t i n g f o r t va lues and
I / c l i p p i n g
/ I C a l c u l a t e t h e v i e w s p a c e c o o r d i n a t e s f o r t h i s w a l l
p s t a r t v e r t e x - p w a l l - > p s t a r t v e r t e x :
p e n d v e r t e x - p w a l l - > p e n d v e r t e x ;
I / L o o k f o r z c l i p p i n g f i r s t
/ I C a l c u l a t e s t a r t a n d e n d z c o o r d i n a t e s f o r t h i s w a l l
i f (p w a l l - > t s t a r t -- FIXEDPOINT(0))

e l s e
t e m p s t a r t z - p s t a r t v e r t e x - > v i e w z :

t e m p s t a r t z - p s t a r t v e r t e x - > v i e w 2 +
FixedMul((pendvertex->viewz-pstartvertex->viewz),
p w a l l - > t s t a r t) ;

i f (p w a l l - > t e n d -- FIXEDPOINT(1))

e l s e
tempendz - p e n d v e r t e x - > v i e w z :

tempendz - p s t a r t v e r t e x - > v i e w 2 +
FixedMul((pendvertex->viewz-pstartvertex->viewz),
p w a l l - > t e n d) :

I / C l i p t o t h e f r o n t p l a n e
i f (tempendz < F r o n t C l i p P l a n e) I

i f (t e m p s t a r t z < F r o n t C l i p P l a n e) [
/ I F u l l y f r o n t - c l i p p e d
g o t o N e x t w a l l :

p w a l l - > c l i p p e d t s t a r t = p w a l l - > t s t a r t :
/ I C l i p t h e e n d p o i n t t o t h e f r o n t c l i p p l a n e
p w a l l - k l i p p e d t e n d -

1 e l s e {

F i x e d D i v (p s t a r t v e r t e x - > v i e w 2 - F r o n t C l i p P l a n e ,
pstartvertex->viewz-pendvertex->viewz):

tempendz - p s t a r t v e r t e x - > v i e w z +
FixedMul((pendvertex->viewz-pstartvertex->viewz),
p w a l l - > c l i p p e d t e n d) :

1

1 152 Chapter 62

1 else {
pwall->clippedtend - pwall->tend;
if (tempstartz < FrontClipPlane) t

/ / Clip the start point to the front clip plane
pwall->clippedtstart -

FixedDiv(FrontClipP1ane - pstartvertex->viewz,
pendvertex->viewz-pstartvertex->viewz):

tempstartz - pstartvertex->view2 +
FixedMul((pendvertex->viewz-pstartvertex->viewz),
pwall->clippedtstart):

1 else t

}
pwall->clippedtstart - pwall->tstart;

1
/ / Calculate x coordinates
if (pwall-hlippedtstart - FIXEDPOINT(0))
else

tempstartx - pstartvertex->viewx;
tempstartx - pstartvertex->viewx +

FixedMul((pendvertex->viewx-pstartvertex->viewx),
pwall->clippedtstart);

if (pwall->clippedtend - FIXEDPOINT(1))
else

tempendx - pendvertex->viewx;
tempendx - pstartvertex->viewx +

FixedMul((pendvertex->viewx-pstartvertex->viewx).
pwall ->cl ippedtend) ;

/ / Clip in x as needed
if ((tempstartx > tempstartz) 1 1 (tempstartx < -tempstartz)) I

/ / The start point is outside the view triangle in x:
/ / perform a quick test for trivial rejection by seeing if
/ / the end point is outside the view triangle on the same
/ / side as the start point
if (((tempstartx>tempstartz) && (tempendx>tempendz)) I I

((tempstartx<-tempstartz) && (tempendx<-tempendz)))
/ / Fully clipped-trivially reject
goto NextWall ;

/ / Clip the start point
if (tempstartx > tempstartz) {

/ / Clip the start point on the right side
pwall-klippedtstart -

FixedDiv(pstartvertex->viewx-pstartvertex->viewz,
pendver tex ->v iewz-pstar tver tex ->v iewz -
pendvertex->viewx+pstartvertex->viewx):

tempstartx - pstartvertex->viewx +
FixedMul((pendvertex->viewx-pstartvertex->viewx),

pwall->clippedtstart):
tempstartz - tempstartx:
/ / Clip the start point on the left side
pwall ->clippedtstart -

} else {

FixedDiv(-pstartvertex->viewx-pstartvertex->viewz,
pendvertex->viewx+pendvertex->view2 -
pstartvertex->viewz-pstartvertex->viewx);

tempstartx - pstartvertex->viewx +
FixedMul((pendvertex->viewx-pstartvertex->viewx),

pwall->clippedtstart);

>
tempstartz - -tempstartx:

}

One Story, Two Rules, and a BSP Renderer 1 153

I1 See if the end point needs clipping
if ((tempendx > tempendz) I I (tempendx < -tempendz)) {

I1 Clip the end point
if (tempendx > tempendz) {

I1 Clip the end point on the right side
pwall ->cl ippedtend -

FixedDiv(pstartvertex->viewx-pstartvertex->viewz,
pendver tex ->v iewz-pstar tver tex ->v iew2 -

pendvertex->viewx+pstartvertex->viewx);
tempendx - pstartvertex->viewx +

FixedMul((pendvertex->viewx-pstartvertex->viewx),
pwall-klippedtend):

tempendz - tempendx:
I / Clip the end point on the left side
pwall ->cl ippedtend -

1 else {

FixedDiv(-pstartvertex->viewx-pstartvertex->viewz,
pendvertex->viewx+pendvertex->view2 -
pstartvertex->viewz-pstartvertex->viewx):

tempendx - pstartvertex->viewx +
FixedMul((pendvertex->viewx-pstartvertex->viewx),

pwall-klippedtend):

1
tempendz - -tempendx:

1
tempstartwall top - FixedMul ((pwall ->wall top - fxViewerY 1,

tempendwalltop - tempstartwalltop:
tempstartwall bottom - FixedMul ((pwall ->wall bottom-fxViewerY) ,

tempendwallbottom - tempstartwallbottom:
I1 Partially clip in y (the rest is done later in 2D)
I / Check for trivial accept
if ((tempstartwalltop > tempstartz) I I

F IXEDPOINT(PROJECTION_RATIO)) :

F IXEDPOINT(PROJECTION_RATIO)) :

(tempstartwallbottom < -tempstartz) 1 I
(tempendwalltop > tempendz) I I
(tempendwallbottom < -tempendz)) {
I1 Not trivially unclipped: check for fully clipped
if ((tempstartwallbottom > tempstartz) &&

(tempstartwalltop < -tempstartz) &&
(tempendwallbottom > tempendz) &&
(tempendwalltop < -tempendz)) {
I / Outside view triangle. trivially clipped
goto NextWall :

1
I 1 Partially clipped in Y: we'll do Y clipping at
/ I drawing time

1
I1 The wall is visible: mark it as such and project it.
I1 +1 on scaling because of bottomlright exclusive polygon
I1 filling
pwall->isvisible - 1:
pwall->screenxstart -

(F i x e d M u l D i v (t e m p s t a r t x . fxHalfDIBWidth+FIXEDPOINT(O.5).
tempstartz) + fxHalfDIBWidth + FIXEDPOINT(0.5)):

(FixedMulDiv(tempstartwal1top.
fxHalfDIBHeight + FIXEDPDINT(0.5). tempstartz) +
fxHalfDIBHeight + FIXEDPOINT(0.5));

(FixedMulDiv(tempstartwal1bottom.

pwall->screenytopstart -

pwall->screenybottomstart -

1 154 Chapter 62

/ I
/ I
/ I
/ I
/ I
/ I
/ I
if

fxHalfDIBHeight + FIXEOPOINT(0.5). tempstartz) +
fxHalfDIBHeight + FIXEDPOINT(O.5));

(FixedMulDiv(tempendx. fxHalfDIBWidth+FIXEDPOINT(O.5).
tempendz) + fxHalfDIBWidth + FIXEDPOINT(0.5)):

(FixedMulDiv(tempendwal1top.
fxHalfDIBHeight + FIXEDPOINT(0.5). tempendz) +
fxHalfDIBHeight + FIXEDPOINT(0.5)):

(FixedMulDiv(tempendwallbottom,
fxHalfOIBHeight + FIXEDPOINT(0.5). tempendz) +
fxHalfOIBHeight + FIXEDPOINT(0.5)):

pwall->screenxend -
pwall-hcreenytopend -

pwall->screenybottomend -

NextWall :
pwa11++;

I
I
I / Walk the tree back to front: backface cull whenever possible,
11 and draw front-facing walls in back-to-front order.
void DrawWallsBackToFrontO
(

NODE *pFarChildren. *pNearChildren. *pwall:
NODE *pendingnodes[MAX-NUM-NODES]:
NODE **pendingstackptr:
POINTLINT apointC41;
pwall - pnodelist:
pendingnodesCO1 - (NODE *)NULL:
pendingstackptr - pendingnodes + 1;
for (: :) {

for (: :) {
Descend as far as Dossible toward the back,
remembering the nodes we pass through on the way.
Figure whether this wall is facing frontward or
backward: do in viewspace because non-visible walls
aren't projected into screenspace. and we need to
traverse all walls in the BSP tree, visible or not,
i n order to find all the visible walls
(WallFacingViewer(pwal1)) {
I / We're on the forward side of this wall, do the back
/ / children first
DFarChildren - pwall->backtree:

j e i s e I
/ / We're on the back side of this wall, do the front
/ / children first
pFarChildren - pwall->fronttree:

1
if (pFarChildren - NULL)
*pendingstackptr - pwall:
pendingstackptr++:
pwall - pFarChildren:

break:

1
for (: : I (

/ / See if the wall is even visible
if (pwall->isvisible1 {

I / See if we can backface cull this wall
if (pwall->screenxstart < pwall->screenxend) {

/ / Draw the wall
apointC0l.x - FIXTOINT(pwal1->screenxstart):
apointC1l.x - FIXTOINT(pwal1->screenxstart):

One Story, Two Rules, and a BSP Renderer 1 155

1
/ /
/ /
/ /
/ /
/ /
/ /
/ /

i f

a p o i n t C 2 l . x - FIXTOINT(pwal1->screenxend):
a p o i n t C 3 l . x - FIXTOINT(pwal1->screenxend);
a p o i n t C 0 l . y - F IXTOINT(pwa l1 ->sc ree f l y tops ta r t) :
a p o i n t C l 1 . y - FIXTOINT(pwal1->screenybottomstart):
a p o i n t C 2 l . y - FIXTOINT(pwal1->screenybottomend):
a p o i n t C 3 l . y - FIXTOINT(pwal1->screenytopend):
FillConvexPolygon(apoint. p w a l l - > c o l o r) ;

1

I f t h e r e ' s a n e a r t r e e f r o m t h i s n o d e . d r a w i t :
o t h e r w i s e , w o r k b a c k u p t o t h e l a s t - p u s h e d p a r e n t
node o f t h e b r a n c h we j u s t f i n i s h e d : w e ' r e d o n e i f
t h e r e a r e no p e n d i n g p a r e n t n o d e s .
F i g u r e w h e t h e r t h i s w a l l i s f a c i n g f r o n t w a r d o r
backward: do i n v i e w s p a c e b e c a u s e n o n - v i s i b l e w a l l s
a r e n ' t p r o j e c t e d i n t o s c r e e n s p a c e , a n d we need t o
/ / t r a v e r s e all w a l l s i n t h e BSP t r e e , v i s i b l e o r n o t ,
/ / i n o r d e r t o f i n d all t h e v i s i b l e w a l l s
(WallFacingViewer(pwal1)) {
/ / We're on t h e f o r w a r d s i d e o f t h i s w a l l , d o t h e
/ / f r o n t c h i l d r e n now
p N e a r C h i l d r e n - p w a l l - > f r o n t t r e e :

3 e l s e {
/ / We're on t h e b a c k s i d e o f t h i s w a l l , do t h e b a c k
/ / c h i l d r e n now

1
p N e a r C h i l d r e n - p w a l l - > b a c k t r e e ;

/ / Walk t h e n e a r s u b t r e e o f t h i s w a l l
i f (p N e a r C h i l d r e n !- NULL)

/ / Pop t h e l a s t - p u s h e d w a l l
p e n d i n g s t a c k p t r - ;
p w a l l - * p e n d i n g s t a c k p t r :
i f (p w a l l - NULL)

g o t o NodesDone:

g o t o Wal kNearTree;

1
Wal kNearTree:

p w a l l - p N e a r C h i l d r e n :
1

NodesDone:

1
/ / R e n d e r t h e c u r r e n t s t a t e o f t h e w o r l d t o t h e s c r e e n .
v o i d U p d a t e w o r l d 0
{

HPALETTE h o l d p a l :
HDC hdcScreen. hdcDIBSect ion :
HBITMAP h o l d b i t m a p ;
/ / D r a w t h e f r a m e
Upda teV iewPosO;
memset(pD1B. 0 . D I B P i t c h * D I B H e i g h t) : / / c l e a r f r a m e
T r a n s f o r m V e r t i c e s O ;
C l i p W a l l s O :
D r a w W a l l s B a c k T o F r o n t O ;
/ / We've drawn the f rame: copy i t t o t h e s c r e e n
hdcScreen - GetDC(hwnd0u tpu t) :
h o l d p a l - S e l e c t P a l e t t e (h d c S c r e e n . h p a l O IB . FALSE) :
RealizePalette(hdcScreen):
hdcDIBSec t ion - CreateCompatibleDC(hdcScreen);
h o l d b i t m a p - SelectObject(hdcD1BSection. h D I B S e c t i o n) :

1 156 Chapter 62

B i t B l t (h d c S c r e e n . 0 . 0. D I B W i d t h . D I B H e i g h t . h d c D I B S e c t i o n .

SelectPalette(hdcScreen. h o l d p a l . FALSE):
Re leaseDC(hwnd0utpu t . hdcScreen) :
S e l e c t O b j e c t (h d c D 1 B S e c t i o n . h o l d b i t m a p) :
Re leaseDC(hwnd0utpu t . hdcDIBSect ion) :
i t e r a t i o n + + :

0 . 0. SRCCOPY);

I

The Rendering Pipeline
Conceptually rendering from a BSP tree really is that simple, but the implementa-
tion is a bit more complicated. The full rendering pipeline, as coordinated by
Updateworld(), is this:

Update the current location.
Transform all wall endpoints into viewspace (the world as seen from the current

Clip all walls to the view pyramid.
Project wall vertices to screen coordinates.
Walk the walls back to front, and for each wall that lies at least partially in the
view pyramid, perform backface culling (skip walls facing away from the viewer),
and draw the wall if it’s not culled.

Next, we’ll look at each part of the pipeline more closely. The pipeline is too com-
plex for me to be able to discuss each part in complete detail. Some sources for
further reading are Computer Graphics, by Foley and van Dam (ISBN 0-201-121 10-’7),
and the DDJEssential Books on Graphics Programming CD.

location with the current viewing angle).

Moving the Viewer
The sample BSP program performs first-person rendering; that is, it renders the
world as seen from your eyes as you move about. The rate of movement is controlled
by key-handling code that’s not shown in Listing 62.1; however, the variables set by
the key-handling code are used in UpdateViewPosO to bring the current location
up to date.
Note that the view position can change not only in x and z (movement around the
plane upon which the walls are set), but also in y (vertically). However, the view direction
is always horizontal; that is, the code in Listing 62.1 supports moving to any 3-D point,
but only viewing horizontally. Although the BSP tree is only 2-D, it is quite possible to
support looking up and down to at least some extent, particularly if the world dataset
is restricted so that, for example, there are never two rooms stacked on top of each
other, or any tilted walls. For simplicity’s sake, I have chosen not to implement this in
Listing 62.1, but you may find it educational to add it to the program yourself.

One Story, Two Rules, and a BSP Renderer 1 157

Transformation into Viewspace
The viewing angle (which controls direction of movement as well as view direction)
can sweep through the full 360 degrees around the viewpoint, so long as it remains
horizontal. The viewing angle is controlled by the key handler, and is used to define
a unit vector stored in currentorientation that explicitly defines the view direction
(the z axis of viewspace), and implicitly defines the x axis of viewspace, because that
axis is at right angles to the z axis, where x increases to the right of the viewer.
As I discussed in the prekious chapter, rotation to a new coordinate system can be
performed by using the dot product to project points onto the axes of the new coor-
dinate system, and that’s what TransformVertices() does, after first translating
(moving) the coordinate system to have its origin at the viewpoint. (It’s necessary to
perform the translation first so that the viewing rotation is around the viewpoint.)
Note that this operation can equivalently be viewed as a matrix math operation, and
that this is in fact the more common way to handle transformations.
At the same time, the points are scaled in x according to PROJECTION-RATIO to
provide the desired field of view. Larger scale values result in narrower fields of view.
When this is done the walls are in viewspace, ready to be clipped.

Clipping
In viewspace, the walls may be anywhere relative to the viewpoint: in front, behind,
off to the side. We only want to draw those parts of walls that properly belong on the
screen; that is, those parts that lie in the view pyramid (view frustum), as shown in
Figure 62.2. Unclipped walls-walls that lie entirely in the frustum-should be drawn
in their entirety, fully clipped walls should not be drawn, and partially clipped walls
must be trimmed before being drawn.
In Listing 62.1, Clipwalk() does this in three steps for each wall in turn. First, the z
coordinates of the two ends of the wall are calculated. (Remember, walls are vertical
and their ends go straight up and down, so the top and bottom of each end have the
same x and z coordinates.) If both ends are on the near side of the front clip plane,
then the polygon is fully clipped, and we’re done with it. If both ends are on the far
side, then the polygon isn’t z-clipped, and we leave it unchanged. If the polygon
straddles the near clip plane, then the wall is trimmed to stop at the near clip plane
by adjusting the t value of the nearest endpoint appropriately; this calculation is a
simple matter of scaling by z, because the near clip plane is at a constant z distance.
(The use of t values for parametric lines was discussed in Chapter 60.) The process is
further simplified because the walls can be treated as lines viewed from above, so we
can perform 2-D clipping in z; this would not be the case if walls sloped or had
sloping edges.
After clipping in z, we clip by viewspace x coordinate, to ensure that we draw only
wall portions that lie between the left and right edges of the screen. Like z-clipping,
x-clipping can be done as a 2-D clip, because the walls and the left and right sides of

1 158 Chapter 62

x == z clip plane

-x == z clip plane z near clip plane

Note: Solid lines are visible (unclipped) parts of walls, viewed from above.

Clipping to the view pyramid.
Figure 62.2

the frustum are all vertical. We compare both the start and endpoint of each wall to
the left and right sides of the frustum, and reject, accept, or clip each wall’s t values
accordingly. The test for x clipping is very simple, because the edges of the frustum
are defined as the planes where x==z and -x==z.
The final clip stage is clipping by y coordinate, and this is the most complicated,
because vertical walls can be clipped at an angle in y, as shown in Figure 62.3, so true
3-D clipping of all four wall vertices is involved. We handle this in ClipWalls() by
detecting trivial rejection in y, using y==z and -y==z as the y boundaries of the frus-
tum. However, we leave partial clipping to be handled as a 2-D clipping problem; we
are able to do this only because our earlier z-clip to the near clip plane guarantees
that no remaining polygon point can have z<=O, ensuring that when we project we’ll
always pass valid, y-clippable screenspace vertices to the polygon filler.

Projection to Screenspace
At this point, we have viewspace vertices for each wall that’s at least partially visible.
All we have to do is project these vertices according to z distance-that is, perform
perspective projection-and scale the results to the width of the screen, then we’ll
be ready to draw. Although this step is logically separate from clipping, it is per-
formed as the last step for visible walls in Clipwalk().

One Story, Two Rules, and a BSP Renderer 1 159

Z clip plane I

-y == z clip plane I
Why y clipping is more complex than x or z clipping.
Figure 62.3

Walking the Tree, Backface Culling and Drawing
Now that we have all the walls clipped to the frustum, with vertices projected into
screen coordinates, all we have to do is draw them back to front; that's the job of
DrawWallsBackToFront(). Basically, this routine walks the BSP tree, descending re-
cursively from each node to draw the farther children of each node first, then the
wall at the node, then the nearer children. In the interests of efficiency, this particu-
lar implementation performs a data-recursive walk of the tree, rather than the more
familiar code recursion. Interestingly, the performance speedup from data recur-
sion turned out to be more modest than I had expected, based on past experience;
see Chapter 59 for further details.
As it comes to each wall, DrawWallsBackToFront() first descends to draw the farther
subtree. Next, if the wall is both visible and pointing toward the viewer, it is drawn as
a solid polygon. The polygon filler (not shown in Listing 62.1) is a modification of
the polygon filler I presented in Chapters 38 and 39.
It's worth noting how backface culling and front/back wall orientation testing are
performed. (Note that walls are always one-sided, visible only from the front.) I dis-
cussed backface culling in general in the previous chapter, and mentioned two possible
approaches: generating a screenspace normal (perpendicular vector) to the poly-
gon and seeing which way that points, or taking the world or screenspace dot product

1 160 Chapter 62

between the vector from the viewpoint to any polygon point and the polygon’s nor-
mal and checking the sign. Listing 62.1 does both, but because our BSP tree is 2-D
and the viewer is always upright, we can save some work.
Consider this: Walls are stored so that the left end, as viewed from the front side of
the wall, is the start vertex, and the right end is the end vertex. There are only two
possible ways that a wall can be positioned in screenspace, then: viewed from the
front, in which case the start vertex is to the left of the end vertex, or viewed from the
back, in which case the start vertex is to the right of the end vertex, as shown in
Figure 62.4. So we can tell which side of a wall we’re seeing, and thus backface cull,
simply by comparing the screenspace x coordinates of the start and end vertices, a
simple 2-D version of checking the direction of the screenspace normal.
The wall orientation test used for walking the BSP tree, performed in WaUFacingViewer(),
takes the other approach, and checks the viewspace sign of the dot product of the
wall’s normal with a vector from the viewpoint to the wall. Again, this code takes
advantage of the 2-D nature of the tree to generate the wall normal by swapping x
and z and altering signs. We can’t use the quicker screenspace x test here that we
used for backface culling, because not all walls can be projected into screenspace;
for example, trying to project a wall at z==O would result in division by zero.
All the visible, front-facing walls are drawn into a buffer by DrawWallsBackToFront(),
then Updateworld() calls Win32 to copy the new frame to the screen. The frame of
animation is complete.

start vertex end vertex

end vertex start vertex

Fast backspace culling test in screenspace.
Figure 62.4

One Story, Two Rules, and a BSP Renderer 1 1 61

Notes on the BSP Renderer
Listing 62.1 is far from complete or optimal. There is no such thing as a tiny BSP
rendering demo, because 3D rendering, even when based on a 2-D BSP tree, re-
quires a substantial amount of code and complexity. Listing 62.1 is reasonably close
to a minimum rendering engine, and is specifically intended to illuminate basic BSP
principles, given the space limitations of one chapter in a book that’s already larger
than it should be. Think of Listing 62.1 as a learning tool and a starting point.
The most obvious lack in Listing 62.1 is that there is no support for floors and ceil-
ings; the walls float in space, unsupported. Is it necessary to go to 3-D BSP trees to get
a normal-looking world?
No. Although 3-D BSP trees offer many advantages in that they allow arbitrary datasets
with viewing in any arbitrary direction and, in truth, aren’t much more complicated
than 2-D BSP trees for back-to-front drawing, they do tend to be larger and more
difficult to debug, and they aren’t necessary for floors and ceilings. One way to get
floors and ceilings out of a 2-D BSP tree is to change the nature of the BSP tree so
that polygons are no longer stored in the splitting nodes. Instead, each leaf of the
tree-that is, each subspace carved out by the tree-would store the polygons for the
walls, floors, and ceilings that lie on the boundaries of that space and face into that
space. The subspace would be convex, because all BSP subspaces are automatically
convex, so the polygons in that subspace can be drawn in any order. Thus, the s u b
spaces in the BSP tree would each be drawn in turn as convex sets, back to front, just
as Listing 62.1 draws polygons back to front.
This sort of BSP tree, organized around volumes rather than polygons, has some
additional interesting advantages in simulating physics, detecting collisions, doing
line-of-sight determination, and performing volume-based operations such as dy-
namic illumination and event triggering. However, that discussion will have to wait
until another day.

1 162 Chapter 62

	previous:
	home:
	next:

