
chapter 58

heinlein's crystal ball,
spock's brain, and the
9-cycle dare

hole-Brain Approach to Accelerate

reading several of the works of Robert A. Heinlein,
a teenager-but in a different way. The first time
r romance of technology married to powerful sto-
l by The Master’s remarkable prescience. ‘‘Blowups
lear power, and their effects on human psychol-
on had ever happened on this planet. “Solution

out the unsolvable dilemma-ultimate offense, no defense-
941. And in Between Planets (1951), consider this

minor bit of action:
The doctor’s phone regretted politely that Dr. Jefferson was not at home and
requested him to leave a message. He was dictating it when a warm voice
interrupted: ‘I’m at home to you, Donald. Where are you, lad?’

Predicting the widespread use of answering machines is perhaps not so remarkable,
but foreseeing that they would be used for call screening is; technology is much
easier to extrapolate than are social patterns.
Even so, Heinlein was no prophet; his crystal ball was just a little less fuzzy than ours.
The aforementioned call in Between Planets was placed on a viewphone; while that
technology has indeed come to pass, its widespread use has not. The ultimate weapon

1079

in “Solution Unsatisfactory” was radioactive dust, not nuclear bombs, and we have
somehow survived nearly 50 years of nuclear weapons without either acquiring a
world dictator or destroying ourselves. Slide rules are all over the place in Heinlein’s
works, and in one story (the name now lost to memory), an astronaut straps himself
into a massive integral calculator; computers are nowhere to be found.
Most telling, I think, is that in “Blowups Happen,” the engineers running the nuclear
power plant-at considerable risk to both body and sanity-are the best of the best,
highly skilled in math and required to ride the nuclear reaction on a second-to-
second basis, with the risk of an explosion that might end life on Earth, and would
surely kill them, if they slip. Contrast that with our present-day reality of nuclear
plants run by generally competent technicians, with the occasional report of shoddy
maintenance and bored power-plant employees using drugs, playing games, and fall-
ing asleep while on duty. Heinlein’s universe makes for a better story, of course, but,
more than that, it shows the filters and biases through which he viewed the world. At
least in print, Heinlein was an unwavering believer in science, technology, and ratio-
nality, and in his stories it is usually the engineers and scientists who are the heroes
and push civilization forward, often kicking and screaming. In the real world, I have
rarely observed that to be the case.
But of course Heinlein was hardly the only person to have his or her perceptions of
the universe, past, present, or future, blurred by his built-in assumptions; you and I,
as programmers, are also on that list-and probably pretty near the top, at that.
Performance programming is basically a process of going from the general to the
specific, special-casing the code so that it does just what it has to, and no more. The
greatest impediment to this process is seeing the problem in terms of what the code
currently does, or what you already know, thereby ignoring many possible solutions.
Put another way, how you look at an optimization problem determines how you’ll
solve it; your assumptions may speed and simplify the process, but they are also your
limitations. Consider, for example, how a seemingly intractable problem becomes
eminently tractable the instant you learn that someone else has solved it.
As Exhibit #1, I present my experience with speeding up the texture mapper in
X-Sharp.

Texture Mapping Redux
We’ve spent the previous several chapters exploring the X Sharp graphics library,
something I built over time as a serious exercise in 3-D graphics. When X-Sharp
reached the point at which we left it at the end of the previous chapter, I was rather
pleased with it-with one exception.
My last addition to X-Sharp was a texture mapper, a routine that warped and rotated
any desired bitmap to map onto an arbitrary convex polygon. Texture mappers are criti-
cal to good 3-D games; just a few texture-mapped polygons, backed with well-drawn

1080 Chapter 58

bitmaps, can represent more detail and look more realistic than dozens or even
hundreds of solid-color polygons. My X-Sharp texture mapper was in reasonable
assembly-pretty good code, by most standards!-and I felt comfortable with my
implementation; but then I got a letter from John Miles, who was at the time getting
seriously into 3-D and is now the author of a 3-D game library. (Yes, you can license it
from his company, Non-Linear Arts, if you’d like; John can be reached at
70322.2457@compuserve.com.) John wrote me as follows: “Hmm, so that’s how tex-
ture-mapping works. But 3 jumps perpixel! Hmph!”
It was the “Hmph” that really got to me.

Left-Brain Optimization
That was the first shot ofjuice for my optimizer (or at least blow to my ego, which can
be just as productive). John went on to say he had gotten texture mapping down to
9 cycles per pixel and one jump per scanline on a 486 (all cycle times will be for the
486 unless otherwise noted); given that my code took, on average, about 44 cycles
and 2 taken jumps (plus 1 not taken) per pixel, I had a long way to go.
The inner loop of my original texture-mapping code is shown in Listing 58.1. All this
code does is draw a single texture-mapped scanline, as shown in Figure 58.1; an
outer loop runs through all the scanlines in whatever polygon is being drawn. I im-
mediately saw that I could eliminate nearly 10 percent of the cycles by unrolling the
loop; obviously, John had done that, else there’s no way he could branch only once
per scanline. (By the way, branching only once per scanline via a fully unrolled loop
is not generally recommended. A branch every few pixels costs relatively little, and
the cache effects of fully unrolled code are not good.) I quickly came up with several

Source Texture Bitmap

Destination Polygon on Screen

Texture mapping a single horizontal scanline.
Figure 58.1

HeinleinO Crystal Ball, Spock‘s Brain, and the 9-Cycle Dare 1 08 1

other ways to speed up the code, but soon realized that all the clever coding in the
world wasn't going to get me within 100 percent of John's performance so long as I
had to cycle from one plane to the next for every pixel.

LISTING 58.1 158- 1 .ASM
: I n n e r l o o p t o d r a w a s i n g l e t e x t u r e - m a p p e d h o r i z o n t a l s c a n l i n e i n
: Mode X . t h e VGA's p a g e - f l i p p e d 2 5 6 - c o l o r mode. Because adjacent
: p i x e l s l i e i n d i f f e r e n t p l a n e s i n Mode X . an OUT must be performed
: t o s e l e c t t h e p r o p e r p l a n e b e f o r e d r a w i n g e a c h p i x e l .

: A t t h i s p o i n t :
AL - i n i t i a l p i x e l ' s p l a n e mask
DS:BX - i n i t i a l s o u r c e t e x t u r e p o i n t e r
DX - p o i n t e r t o VGA's Sequencer Data reg is ter
S I - # o f p i x e l s t o fill
ES:DI - p o i n t e r t o i n i t i a l d e s t i n a t i o n p i x e l

TexScanLoop:

: S e t t h e Map Mask f o r t h i s p i x e l ' s p l a n e , t h e n d r a w t h e p i x e l .

o u t d x . a l
mov ah , Cbx l : ge t t ex tu re p i xe l
mov e s : [d i l . a h ; s e t s c r e e n p i x e l

; P o i n t t o t h e n e x t s o u r c e p i x e l .

add bx. Cbpl.1 XBaseAdvance :advance t h e minimum il o f p i x e l s i n X
mov cx.word p t r [bp l . lSourceStepX

j n c NoExtraXAdvance
add word p t r [b p l . l S o u r c e X . c x ; s t e p t h e s o u r c e X f r a c t i o n a l p a r t

; d i d n ' t t u r n o v e r : n o e x t r a a d v a n c e
add bx.Cbpl.1XAdvanceByOne : d i d t u r n o v e r ; a d v a n c e X one e x t r a

NoExtraXAdvance:

add bx.[bpl.lYBaseAdvance :advance the minimum # o f p i x e l s i n Y
mov cx,word p t r Cbp1.lSourceStepY
add word p t r [bp l . lSourceY.cx ; s tep t he sou rce Y f r a c t i o n a l p a r t
j n c NoExt raYAdvance :d idn ' t tu rn over : no ex t ra advance
add bx.[bpl.lYAdvanceByOne :did tu rn over : advance Y one e x t r a

NoExtraYAdvance:

: P o i n t t o t h e n e x t d e s t i n a t i o n p i x e l , b y c y c l i n g t o t h e n e x t p l a n e , and
: advancing t o t h e n e x t a d d r e s s i f the p lane wraps f rom 3 t o 0 .

r o l a1 .1
adc d i . 0

: Cont inue i f t h e r e a r e any more d e s t p i x e l s t o draw.

dec s i
j n z TexScanLoop

Figure 58.2 shows why this cycling is necessary. In Mode X, the page-flipped 2 5 6
color mode of the VGA, each successive pixel across a scanline is stored in a different
hardware plane, and an OUT to the VGA's hardware is needed to select the plane
being drawn to. (See Chapters 47, 48, and 49 for details.) An OUT instruction by

1082 Chapter 58

I

Pixels on Screen

Display Memory

Display memory organization in Mode X.
Figure 58.2

itself takes 16 cycles (and in the neighborhood of 30 cycles in virtual46 or non-
privileged protected mode), and an ROL takes 2 more, for a total of 18 cycles, double
John’s 9 cycles, just to handle plane management. Clearly, getting plane control out
of the inner loop was absolutely necessary.
I must confess, with some embarrassment, that at this point I threw myself into de-
signing a solution that involved executing the texture mapping code up to four times
per scanline, once For the pixels in each plane. It’s hard to overstate the complexity
of this approach, which involves quadrupling the normal pixel-to-pixel increments,
adjusting the start value for each of the passes, and dealing with some nasty bound-
ary cases. Make no mistake, the code was perfectly doable, and would in fact have
gotten plane control out of the inner loop, but would have been very difficult to get
exactly right, and would have suffered from substantial overhead.
Fortunately, in the last sentence I was able to say “would have,” not “was,” because my
friend Chris Hecker (checker@bix.com) came along to toss a figurative bucket of
cold water on my right brain, which was evidently asleep. (Or possibly stolen by scantily-
clad, attractive aliens; remember “Spock’s Brain”?) Chris is the author of the WinG
Windows game graphics package, available from Microsoft via FTP, CompuServe, or
MSDN Level 2; if, like me, you were at the Game Developers Conference in April
1994, you, along with everyone else, were stunned to see Id’s megahit DOOM run-
ning at full speed in a window, thanks to WinG. If you write games for a living, run,
don’t walk, to check WinG out!

Heinlein’s Crystal Ball, Spock‘s Brain, and the 9-Cycle Dare 1083

Chris listened to my proposed design for all of maybe 30 seconds, growing visibly
more horrified by the moment, before he said, “But why don’t you just draw vertical
rather than horizontal scanlines?”
W h y indeed?

A 90-Degree Shift in Perspective
As I said earlier, how you look at an optimization problem defines how you’ll be able
to solve it. In order to boost performance, sometimes it’s necessary to look at things
from a different angle-and for texture mapping this was literally as well as figura-
tively true. Chris suggested nothing more nor less than scanning out polygons at a
90-degree angle to normal, starting, say, at the left edge of the polygon, and texture-
mapping vertically along each column of pixels, as shown in Figure 58.3. That way,
all the pixels in each texture-mapped column would be in the same plane, and I
would need to change planes only between columns-outside the inner loop. A trivial
change, not fundamental in any sense-and yetjust that one change, plus unrolling
the loop, reduced the inner loop to the 22-cycles-per-pixel version shown in Listing
58.2. That’s exactly twice as fast as Listing 58.1-and given how incredibly slow most
VGAs are at completing OUTS, the real-world speedup should be considerably greater
still. (The fastest byte OUT I’ve ever measured for a VGA is 29 cycles, the slowest
more than 60 cycles; in the latter case, Listing 58.2 would be on the order of four
times faster than Listing 58.1 .)

LISTING 58.2 158-2.ASM
: I n n e r l o o p t o d r a w a s i n g l e t e x t u r e - m a p p e d v e r t i c a l c o l u m n , r a t h e r
: t h a n a h o r i z o n t a l s c a n l i n e . T h i s a l l o w s a l l p i x e l s h a n d l e d
: by t h i s code t o r e s i d e i n t h e same p l a n e , so t h e t i m e - c o n s u m i n g
: p l a n e s w i t c h i n g c a n b e moved o u t o f t h e i n n e r l o o p .

: A t t h i s p o i n t :
DS:BX - i n i t i a l s o u r c e t e x t u r e p o i n t e r
D X - o f f s e t t o a d v a n c e t o t h e n e x t p i x e l i n t h e d e s t c o l u m n

SI - # o f p i x e l s t o fill
E S : D I - p o i n t e r t o i n i t i a l d e s t i n a t i o n p i x e l
YGA s e t up t o draw t o t h e c o r r e c t p l a n e f o r t h i s c o l u m n

(e i t h e r p o s i t i v e o r n e g a t i v e s c a n l i n e w i d t h)

REPT LOOP-UNROLL

: S e t t h e Map Mask f o r t h i s p i x e l ’ s p l a n e , t h e n d r a w t h e p i x e l .

mov ah.Cbx1
mov e s : C d i l . a h

: g e t t e x t u r e p i x e l
: s e t s c r e e n p i x e l

: P o i n t t o t h e n e x t s o u r c e p i x e l .

add bx. [bpl . lXBaseAdvance :advance the minimum I/ o f p i x e l s i n X
mov cx.word p t r Cbp l .1SourceStepX
add word p t r [b p] . l S o u r c e X . c x : s t e p t h e s o u r c e X f r a c t i o n a l p a r t
j n c N o E x t r a X A d v a n c e : d i d n ’ t t u r n o v e r : n o e x t r a a d v a n c e
add bx . [bp l . lXAdvanceByOne :d id tu rn over : advance X one e x t r a

1084 Chapter 58

NoExtraXAdvance:

add bx,[bp].lYBaseAdvance :advance the minimum # o f p i x e l s i n Y
mov cx.word p t r [bp l . lSourceStepY
add word p t r [b p l . l S o u r c e Y . c x : s t e p t h e s o u r c e Y f r a c t i o n a l p a r t
j n c NoExtraYAdvance : d i d n ' t t u r n o v e r : no e x t r a advance
add bx.[bpl.lYAdvanceByOne : d i d t u r n o v e r : a d v a n c e Y one e x t r a

NoExtraYAdvance:

: P o i n t t o t h e n e x t d e s t i n a t i o n p i x e l , w h i c h i s on t h e n e x t s c a n l i n e .

adc d i ,dx

ENDM

I'd like to emphasize that algorithmically and conceptually, there is no difference
between scanning out a polygon top to bottom and scanning it out left to right; it is
only in conjunction with the hardware organization of Mode X that the scanning
direction matters in the least.

That k what Zen programming is all about, though; tying together two pieces of p seemingly unrelated information to good effect-and that's what I had failed to do.
Like Robert Heinlein-like all of us-I had viewed the world through afilter com-
posed of my ingrained assumptions, and one of those assumptions, based on all
my past experience, was that pixel processingproceeds left to right. Eventually, I
might have come up with Chris k approach; but I would only have come up with it
when and if1 relaxed and stepped back a little, and allowed myself"a1most dared
myself-to think of it. When you 're optimizing, be sure to leave quiet, nondirected
time in which to conjure up those less obvious solutions, and periodically try to
figure out what assumptions you 're making-and then question them!

All pixels in this column are in the same plane.
I

~~~1 ' p $  
Source  Texture  Bitmap 

Destination  Polygon  on  Screen 

Texture mapping a single  vertical  column. 
Figure 58.3 

Heinlein's  Crystal  Ball,  Spock's  Brain, and the 9-Cycle  Dare 1085 



There  are a few complications with  Chris’s approach,  not  least  that X-Sharp’s  poly- 
gon-filling convention (top  and left edges included,  bottom  and  right edges excluded) 
is hard  to  reproduce  for  column-oriented  texture  mapping. I solved this in X-Sharp 
version 22 by tweaking the  edge-scanning  code  to allow column-oriented  texture 
mapping  to  match  the current convention. (You’ll find X-Sharp 22 on  the listings 
diskette in the  directory  for this chapter.) 
Chris also illustrated another  important  principle of optimization: A second  pair of 
eyes  is invaluable. Even the best of  us  have blind  spots and get  caught up in  particu- 
lar  implementations; if you bounce  your  ideas off someone, you  may  well find  them 
coming back  with an unexpected-and welcome-spin. 

That’s Nice-But it Sure as Heck Ain‘t 9 Cycles 
Excellent as  Chris’s suggestion was, I still had work to  do: Listing  58.2 is still more 
than twice  as  slow  as John Miles’s code. Traditionally, I start  the  optimization process 
with algorithmic  optimization,  then try to tie the  algorithm and the  hardware to- 
gether  for maximum efficiency, and finish up with instruction-by-instruction, 
take-no-prisoners optimization. We’ve already done  the first two steps, so it’s time to 
get down to  the  bare  metal. 
Listing  58.2 contains  three  functional parts: Drawing the pixel, advancing the desti- 
nation  pointer, and advancing the  source  texture  pointer. Each of the  three  parts is 
amenable  to further acceleration. 
Drawing the pixel is difficult to  speed  up, given that  it consists of only two instruc- 
tions-diffkult,  but  not impossible. True,  the  instructions themselves are  indeed 
irreducible, but if we can  get  rid of the ES: prefix (and, as  we shall see, we can), we 
can  rearrange  the  code  to make it run faster on  the Pentium.  Without  a prefix, the 
instructions  execute as  follows on  the  Pentium: 

MOV AH.CBX1 : c y c l e  1 U - p i p e  

MOV [ D I I . A H  ; c y c l e  2 U - p i p e  

The second MOV, being dependent  on  the value loaded into AH by the first MOV, 
can’t execute until the first MOV is finished, so the Pentium’s second pipe, the V-pipe, 
lies idle  for  a cycle. We can reclaim that cycle  simply by shuffling another instruction 
between the two MOVs. 
Advancing the  destination  pointer is  easy to  speed  up:  Just  build  the offset from one 
scanline  to  the  next  into  each  pixeldrawing  instruction as a  constant, as in 

; c y c l e  1 V - p i p e   i d l e ;  reg c o n t e n t i o n  

MOV [EDI+SCANOFFSETI .AH 

and advance ED1 only once  per  unrolled  loop  iteration. 
Advancing the  source  texture  pointer is more  complex, but correspondingly  more 
rewarding.  Listing 58.2  uses avariant form of  32-bit fixed-point arithmetic to advance the 

1086 Chapter 58 



source pointer, with the  source  texture  coordinates and increments  stored in 16.16 
(16 bits of integer, 16 bits of fraction)  format. The source coordinates  are  stored in a 
slightly unusual format, whereby the fractional X and Y coordinates  are  stored  and 
advanced separately, but  a single integer value, the source pointer, is used to reflect 
both  the X and Y coordinates. In Listing 58.2, the  integer and fractional parts are 
added  into  the  current  coordinates with four  separate 16-bit operations, and carries 
from fractional to integer  parts  are  detected via conditional  jumps, as  shown in Fig- 
ure 58.4. There's  quite a lot we can do to improve this. 

J- 
Add integer X increment 

to  source  Dointer I 
Add fractional X increment 
to fractional X coordinate 

J- 
Carry from 

fractional addition? 
I 

Yes 1 No 
Advance source pointer 

one  more pixel in X 

J 
Add integer Y increment 

to  source  pointer 
-I 

.1 
Add fractional Y increment 
to fractional Y coordinate 

J- 
Carry from 

fractional addition? 
A 

I 

Yes 1 No 
Advance  source  pointer 

one  more pixel in Y 

Original method for advancing the source texture pointer: 
Figure 58.4 

Heinlein's  Crystal  Ball,  Spock's  Brain, and the 9-Cycle  Dare 1087 



First, we can sum the  X  and Y integer advance amounts outside the  loop,  then  add 
them  both to the source pointer with a single instruction. Second, we can recognize 
that X advances exactly one extra byte when its fractional part carries, and use ADC 
to account  for X carries, as  shown in Figure 58.5. That single ADC can add  in  not 
only  any X carry, but  both  the  X  and Y integer advance amounts as  well, thereby 
eliminating a  good  chunk of the source-advance code  in Listing 58.2. Furthermore, 
we should somehow be able to use 32-bit registers and instructions to help with the 
32-bit fixed-point arithmetic;  true,  the size override prefix (because we’re in  a 16-bit 
segment) will cost a cycle per 32-bit instruction, but that’s better  than  the  3 cycles it 
takes to do 32-bit arithmetic with  16-bit instructions. It isn’t obvious, but there’s a 
nifty  trick we can use here, again courtesy of Chris Hecker (who, as  you can tell, has 
done a fair amount of thinking  about  the complexities of texture mapping). 
We can store  the  current fractional parts of both the X and Y source coordinates  in 
a single 32-bit register, EDX,  as  shown in Figure 58.6. It’s important to note  that  the 
Y fraction is actually  only 15 bits,  with bit 15 of  EDX  always kept at zero; this  allows bit 
15 to store  the carry status from  each Y advance. We can similarly store the fractional 
X and Y advance amounts in ECX, and can store  the sum of the  integer  parts of the 
X and Y advance amounts  in BP. With this arrangement,  the single instruction ADD 
EDX,ECX advances the fractional  parts of both X and y and the following instruction 

J 
Add  fractional X increment 
to  fractional X coordinate I 

4 
increment, and carry from  last 

J- 
Add fractional Y increment 
to  fractional Y coordinate I 

J- 
[ Carry from  fractional  addition? I 

Eficient method for advancing source  texture pointer 
Figure 58.5 

1088 Chapter 58 



Fractional Y Carry 
1 

Fractional X 

Bit 15 
Bit 31 Bit 16 Bit 14 Bit 0 

Coordinate (1  5 bits) Coordinate (1 6 bits) 
Fractional Y 

Storing both Xand Y fractional coordinates in one register. 
Figure 58.6 

ADC S1,BP finishes advancing the source pointer in X. That’s a  mere 3 cycles, and all 
that remains is  to finish advancing the source pointer in Y 
Actually,  we also advanced the source pointer by the Yinteger amount back when we 
added BP to  SI;  all that’s left is to detect  whether our addition to the Y fractional 
current coordinate  produced  a carry. That’s easily done by testing bit 15 of  EDX; if 
it’s zero,  there was no carry and we’re done; otherwise, Y carried, so we have to reset 
bit 15  and advance the source pointer by one scanline. The resulting program flow  is 
shown in Figure 58.7. Note that unlike the X fractional addition, we can’t get away 
with just  adding in the carry from  the Y fractional addition, because when the Y 
fraction carries, it indicates a move not from one pixel to the  next  on  a scanline (a 
single byte),  but  rather  from  one scanline to the  next (a full scanline width). 
All  of the above optimizations together  get us to 10 cycles--very close to John Miles, 
but  not  there yet. We have one more trick up our sleeve, though: Suppose we point 
SS to the  segment  containing our textures, and point DS to the  screen?  (This re- 
quires  either setting up a stack in the texture  segment or ensuring  that  interrupts 
and  other stack  activity can’t happen while SS points to that segment.) Then, we 
could swap the  functions of SI and BP; that would let us  use BP, which  accesses SS by 
default, to get at  the textures, and DI to  access the screen-all  with no segment 
prefixes at all. By gosh, that would get us exactly one  more cycle, and would bring us 
down to the same 9 cycles John Miles attained; Listing 58.3 shows that  code. At long 
last, the Holy  Grail attained and  our  honor  defended, we can rest. 
Or can we? 

LISTING 58.3  158-3.ASM 
: I n n e r   l o o p   t o   d r a w  a s i n g l e   t e x t u r e - m a p p e d   v e r t i c a l   c o l u m n ,  
: r a t h e r   t h a n  a h o r i z o n t a l   s c a n l i n e .   M a x e d - o u t   1 6 - b i t   v e r s i o n .  

: A t  t h i s   p o i n t :  
A X  = s o u r c e   p o i n t e r   i n c r e m e n t   t o   a d v a n c e   o n e   i n  Y 
E C X  = f r a c t i o n a l  Y advance i n   l o w e r  1 5  b i t s  o f  C X .  

f r a c t i o n a l  X advance i n   h i g h   w o r d  o f  E C X .  b i t  
1 5  s e t   t o  0 

Heinlein‘s Crystal Ball,  Spock‘s  Brain, and the 9-Cycle  Dare 1089 



Increments  to fractional coordinates 
with a  single X -b i t  ADD 

4 
Add integer X increment,  integer Y 

increment, and carry from  last 
operation to source pointer with ADC 

J- 
Carry from fractional Y addition? 
(Bit 15 of result of X -b i t  ADD) 

1 Advance source pointer 
one  more  Dixel in Y I 

1 
Reset bit 15 of  32-bit fractional 

coordinate accumulator I 
J 

Final method for advancing source texture pointer: 
Figure 58.7 

E O X  = f r a c t i o n a l   s o u r c e   t e x t u r e  Y c o o r d i n a t e   i n   l o w e r  
1 5  b i t s   o f  C X .  f r a c t i o n a l   s o u r c e   t e x t u r e  X c o o r d  
i n   h i g h   w o r d   o f  E C X .  b i t  15  s e t   t o  0 

S I  - sum o f   i n t e g r a l  X & Y s o u r c e   p o i n t e r   a d v a n c e s  
D S : O I  - i n i t i a l   d e s t i n a t i o n   p o i n t e r  
SS:BP = i n i t i a l   s o u r c e   t e x t u r e   p o i n t e r  

SCANOFFSET-0 

REPT LOOP~UNROLL 

mov b l  , [ b p l  
mov [di+SCANOFFSETl,bl 

add  edx.ecx 

a d c   b p , s i  

t e s t  dh,80h 
j z  @F 
add  bp,ax 
and  dh.not  80h 

: g e t   t e x t u r e   p i x e l  
; s e t   s c r e e n   p i x e l  

; a d v a n c e   f r a c  Y i n  D X ,  
; f r a c  X i n   h i g h   w o r d   o f  EDX 
; a d v a n c e   s o u r c e   p o i n t e r   b y   i n t e g r a l  
; X & Y amount, a l s o   a c c o u n t i n g   f o r  
; c a r r y   f r o m  X f r a c t i o n a l   a d d i t i o n  
; c a r r y   f r o m  Y f r a c t i o n a l   a d d i t i o n ?  
:no 
;yes.  advance Y by  one 
; r e s e t   t h e  Y f r a c t i o n a l   c a r r y   b i t  

1090 Chapter 58 



@@: 

SCANOFFSET = SCANOFFSET + SCANWIDTH 

ENDM 

Don‘t  Stop  Thinking  about  Those Cycles 
Remember what I said at  the  outset,  that knowing something has been done makes it 
much easier to do? A corollary  is that  pushing past that  point,  once  attained, is very 
difficult.  It’s  only natural to  want  to  relax in the satisfaction  of a job well done;  then, 
too, the very nature of the work changes. Getting from 44  cycles  down  to John’s 9 
cycles  was a huge leap, but we knew it could be  done-therefore the  nature of the 
problem was to figure out how it was done; in cases  like  this, if we’re sharp  enough 
(and of course we are!), we’re guaranteed eventual gratification. Now that we’ve 
reached  John’s level  of performance,  the  problem becomes whether the  code can be 
made faster yet, and that’s a different kettle of  fish altogether, for it may  well be  that 
after thinking  about  it  for a while,  we’ll conclude  that  it can’t. Not only will we have 
wasted  time, but we’ll  also never be sure we were right; we’ll  know  only that wecouldn’t 
find a solution. That way lies  madness. 
And yet-someone has to  blaze the trail  to higher  performance, and that  someone 
might as  well be us.  Let’s look for weaknesses in Listing  58.3. None  are readily appar- 
ent;  the only  cycle that looks  even  slightly  wasted  is the size prefix on ADD EDX,ECX. 
As it  turns out, that cycle  really is wasted, for there’s a way to make the size prefix 
vanish without losing the benefits of  32-bit instructions: Move the  code  into a 32-bit 
segment and make all the instructions 32-bit. That’s what  Listing  58.4 does; this code 
is similar to Listing  58.3, but  runs in 8 cycles per pixel, a 12.5 percent  speedup over 
Listing  58.3. Whether Listing 58.4 actually  draws more pixels per second  than List- 
ing  58.3  depends on whether display  memory  is  fast enough  to  handle pixels  as 
rapidly  as  Listing  58.4 can deliver them.  That  speed, one pixel  every  122 nanosec- 
onds  on a 486/66, is one that ISA adapters can’t hope  to  match,  but fast VLB and 
PC1 adapters can handle with  ease. Be aware, too,  that cache misses when reading 
the source texture will generally reduce  performance below the calculated 8-cycles- 
per-pixel  level,  especially  because textures, which can be  scanned across at any angle, 
are rarely  accessed at consecutive addresses, which is the  arrangement  that would 
make for  the fewest cache misses. 

LISTING  58.4  158-4.ASM 
: I n n e r   l o o p   t o   d r a w  a s i n g l e   t e x t u r e - m a p p e d   v e r t i c a l   c o l u m n ,  
: r a t h e r   t h a n  a h o r i z o n t a l   s c a n l i n e .   M a x e d - o u t   3 2 - b i t   v e r s i o n .  

: A t  t h i s   p o i n t :  
EAX = sum o f  i n t e g r a l  X & Y s o u r c e   p o i n t e r   a d v a n c e s  
E C X  - s o u r c e   p o i n t e r   i n c r e m e n t   t o   a d v a n c e   o n e   i n  Y 
EDX - f r a c t i o n a l   s o u r c e   t e x t u r e  Y c o o r d i n a t e   i n   l o w e r  

15  b i t s   o f  D X ,  f r a c t i o n a l   s o u r c e   t e x t u r e  X c o o r d  
i n   h i g h   w o r d  o f  E D X .  b i t  15 s e t   t o  0 

Heinlein‘s  Crystal  Ball, Spock‘s Brain,  and  the  9-Cycle  Dare 1091 



E S I  - i n i t i a l   s o u r c e   t e x t u r e   p o i n t e r  
ED1 - i n i t i a l   d e s t i n a t i o n   p o i n t e r  
EBP - f r a c t i o n a l  Y advance i n   l o w e r  15 b i t s   o f  B P .  

f r a c t i o n a l  X advance i n   h i g h   w o r d   o f  EBP.  b i t  
15 s e t   t o  0 

SCANOFFSET-0 

REPT LOOP-UNROLL 

mov b l  , Cesi 3 
add  edx,  ebp 

adc e s i   . e a x  

mov C e d i + S C A N O F F S E T l  , b l  

t e s t  dh.8Oh 
jz s h o r t  @ F  
add e s i   . e c x  

and  dh.not  80h 
@e: 

SCANOFFSET - SCANOFFSET + SCANWIDTH 

; g e t   i m a g e   p i x e l  
:advance f r a c  Y i n  D X ,  
; f r a c  X i n  h i g h   w o r d   o f  EDX 
; a d v a n c e   s o u r c e   p o i n t e r   b y   i n t e g r a l  
; X & Y a m o u n t ,   a l s o   a c c o u n t i n g   f o r  
; c a r r y   f r o m  X f r a c t i o n a l   a d d i t i o n  
; s e t   s c r e e n   p i x e l  
; ( l o c a t e d   h e r e   t o   a v o i d   4 8 6  
; A G I  f r o m   p r e v i o u s   b y t e   o p )  
; c a r r y   f r o m  Y f r a c t i o n a l   a d d i t i o n ?  
;no 
;yes.   advance Y by  one 
; (produces   Pent ium A G I  f o r  MOV B L . [ E S I ] )  
; r e s e t   t h e  Y f r a c t i o n a l   c a r r y   b i t  

ENDM 

And there you  have it: A five  to  10-times speedup of a  decent assembly language 
texture mapper. All it took was some help  from my friends,  a  good,  stiffjolt of right- 
brain  thinking, and some solid left-brain polishing-plus the knowledge that such a 
speedup was possible. Treat every optimization task  as if John Miles has just written 
to inform you that he’s made it faster than your wildest dreams, and you’ll be amazed 
at what you can do! 

Texture Mapping Notes 
Listing 58.3 contains no 486 pipeline stalls; it has Pentium stalls, but  not much can 
be done for  them because of the size prefix on ADD EDX,ECX, which  takes 1 cycle to 
go through  the U-pipe, and shuts down the V-pipe for  that cycle.  Listing 58.4, on  the 
other  hand, has been  rearranged to eliminate all Pentium stalls  save one. When the 
Y coordinate  fractional  part carries and ESI advances, the  code executes as  follows: 

ADD E S I . E C X  ; c y c l e  1 U - p i p e  
AND  DH,NOT 80H ; c y c l e  1 V - p i p e  

MOV B L . C E S I 1  ; c y c l e  3 U - p i p e  
ADD E D X , E B P  ; c y c l e  3 V - p i p e  

However, I don’t see any way to eliminate this last AGI, which happens  about half the 
time; even  with it,  the  Pentium  execution time for Listing 58.4 is 5.5 cycles. That’s 61 

; c y c l e  2 i d l e  A G I  on E S I  

1092 Chapter 58 



nanoseconds-a  highly respectable 16 million texture-mapped pixels per second- 
on  a 90 MHz Pentium. 
The type of texture  mapping discussed in  both this and earlier chapters doesn’t do 
perspective correction when mapping textures. Why that is and how to handle per- 
spective correction is a topic for a whole separate book, but be aware that  the textures 
on some large polygons (not  the polygon edges themselves)  drawn  with the code in 
this chapter will appear to be unnaturally bowed, although small  polygons should 
look fine. 
Finally, we never did  get rid of the last jump in the  texture mapper, yet John Miles 
claimed no  jumps  at all. How did he  do it? I’m not sure,  but I’d  guess that he used a 
two-entry look-up table, based on  the Y carry, to decide how much to advance the 
source pointer  in Y. However, I couldn’t come up with  any implementation of  this 
approach  that  didn’t take 0.5 to 1 cycle more  than  the test-and-jump approach, so 
either I didn’t come up with an adequately efficient implementation of the table, 
John saved a cycle somewhere else, or perhaps John implemented his code in a 32- 
bit  segment, but used the less-efficient table in his fervor to get rid of the final jump. 
The knowledge that  I apparently came up with a  different solution than  John high- 
lights that  the technical aspects of John’s implementation were, in truth, totally 
irrelevant to  my optimization efforts; the only actual effect John’s code  had on me 
was to make me belime a  texture  mapper could run that fast. 
Believe it! And while you’re at it, give both halves of your brain equal time-and 
watch out for aliens in short skirts, 60’s bouffant hairdos,  and  an undue interest in 
either half. 

Heinlein‘s  Crystal  Ball,  Spockf  Brain, and the 9-Cycle  Dare 1093 


	previous: 
	home: 
	next: 


