

Learning Probabilistic Graphical
Models in R

Familiarize yourself with probabilistic graphical models
through real-world problems and illustrative code
examples in R

David Bellot

BIRMINGHAM - MUMBAI

Learning Probabilistic Graphical Models in R

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2016

Production reference: 1270416

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-205-5

www.packtpub.com

www.packtpub.com

Credits

Author
David Bellot

Reviewers
Mzabalazo Z. Ngwenya

Prabhanjan Tattar

Acquisition Editor
Divya Poojari

Content Development Editor
Trusha Shriyan

Technical Editor
Vivek Arora

Copy Editor
Stephen Copestake

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Graphics
Abhinash Sahu

Production Coordinator
Nilesh Mohite

Cover Work
Nilesh Mohite

About the Author

David Bellot is a PhD graduate in computer science from INRIA, France, with a
focus on Bayesian machine learning. He was a postdoctoral fellow at the University
of California, Berkeley, and worked for companies such as Intel, Orange, and
Barclays Bank. He currently works in the financial industry, where he develops
financial market prediction algorithms using machine learning. He is also a
contributor to open source projects such as the Boost C++ library.

About the Reviewers

Mzabalazo Z. Ngwenya holds a postgraduate degree in mathematical statistics
from the University of Cape Town. He has worked extensively in the field of
statistical consulting and has considerable experience working with R. Areas of
interest to him are primarily centered around statistical computing. Previously,
he has been involved in reviewing the following Packt Publishing titles: Learning
RStudio for R Statistical Computing, Mark P.J. van der Loo and Edwin de Jonge;
R Statistical Application Development by Example Beginner's Guide, Prabhanjan
Narayanachar Tattar; Machine Learning with R, Brett Lantz; R Graph Essentials, David
Alexandra Lillis; R Object-oriented Programming, Kelly Black; Mastering Scientific
Computing with R, Paul Gerrard and Radia Johnson; and Mastering Data Analysis with
R, Gergely Darócz.

Prabhanjan Tattar is currently working as a senior data scientist at Fractal Analytics,
Inc. He has 8 years of experience as a statistical analyst. Survival analysis and statistical
inference are his main areas of research/interest. He has published several research
papers in peer-reviewed journals and authored two books on R: R Statistical Application
Development by Example, Packt Publishing; and A Course in Statistics with R, Wiley. The
R packages gpk, RSADBE, and ACSWR are also maintained by him.

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

[i]

Table of Contents
Preface v
Chapter 1: Probabilistic Reasoning 1

Machine learning 4
Representing uncertainty with probabilities 5

Beliefs and uncertainty as probabilities 6
Conditional probability 7
Probability calculus and random variables 7

Sample space, events, and probability 7
Random variables and probability calculus 8

Joint probability distributions 10
Bayes' rule 11

Interpreting the Bayes' formula 13
A first example of Bayes' rule 13
A first example of Bayes' rule in R 16

Probabilistic graphical models 20
Probabilistic models 20
Graphs and conditional independence 21
Factorizing a distribution 23
Directed models 24
Undirected models 25
Examples and applications 26

Summary 31
Chapter 2: Exact Inference 33

Building graphical models 35
Types of random variable 36
Building graphs 37

Probabilistic expert system 37
Basic structures in probabilistic graphical models 40

Variable elimination 44

Table of Contents

[ii]

Sum-product and belief updates 47
The junction tree algorithm 51
Examples of probabilistic graphical models 62

The sprinkler example 62
The medical expert system 63
Models with more than two layers 64
Tree structure 66

Summary 68
Chapter 3: Learning Parameters 69

Introduction 71
Learning by inference 75
Maximum likelihood 79

How are empirical and model distribution related? 79
The ML algorithm and its implementation in R 82
Application 86

Learning with hidden variables – the
EM algorithm 88

Latent variables 89
Principles of the EM algorithm 90

Derivation of the EM algorithm 91
Applying EM to graphical models 93

Summary 94
Chapter 4: Bayesian Modeling – Basic Models 97

The Naive Bayes model 98
Representation 100
Learning the Naive Bayes model 101
Bayesian Naive Bayes 104

Beta-Binomial 106
The prior distribution 111
The posterior distribution with the conjugacy property 112
Which values should we choose for the Beta parameters? 113

The Gaussian mixture model 115
Definition 116

Summary 122
Chapter 5: Approximate Inference 125

Sampling from a distribution 126
Basic sampling algorithms 129

Standard distributions 129
Rejection sampling 133

An implementation in R 135

Table of Contents

[iii]

Importance sampling 142
An implementation in R 144

Markov Chain Monte-Carlo 152
General idea of the method 153
The Metropolis-Hastings algorithm 154

MCMC for probabilistic graphical models in R 162
Installing Stan and RStan 163
A simple example in RStan 164

Summary 165
Chapter 6: Bayesian Modeling – Linear Models 167

Linear regression 169
Estimating the parameters 170

Bayesian linear models 176
Over-fitting a model 176
Graphical model of a linear model 179
Posterior distribution 181
Implementation in R 184
A stable implementation 188
More packages in R 194

Summary 195
Chapter 7: Probabilistic Mixture Models 197

Mixture models 198
EM for mixture models 200
Mixture of Bernoulli 207
Mixture of experts 210
Latent Dirichlet Allocation 215

The LDA model 216
Variational inference 220
Examples 221

Summary 224
Appendix 227

References 227
Books on the Bayesian theory 227
Books on machine learning 228
Papers 228

Index 229

[v]

Preface
Probabilistic graphical models is one of the most advanced techniques in machine
learning to represent data and models in the real world with probabilities. In many
instances, it uses the Bayesian paradigm to describe algorithms that can draw
conclusions from noisy and uncertain real-world data.

The book covers topics such as inference (automated reasoning and learning), which
is automatically building models from raw data. It explains how all the algorithms
work step by step and presents readily usable solutions in R with many examples.
After covering the basic principles of probabilities and the Bayes formula, it presents
Probabilistic Graphical Models(PGMs) and several types of inference and learning
algorithms. The reader will go from the design to the automatic fitting of the model.

Then, the books focuses on useful models that have proven track records in solving
many data science problems, such as Bayesian classifiers, Mixtures models, Bayesian
Linear Regression, and also simpler models that are used as basic components to
build more complex models.

What this book covers
Chapter 1, Probabilistic Reasoning, covers topics from the basic concepts of probabilities
to PGMs as a generic framework to do tractable, efficient, and easy modeling with
probabilistic models, through the presentation of the Bayes formula.

Chapter 2, Exact Inference, shows you how to build PGMs by combining simple
graphs and perform queries on the model using an exact inference algorithm called
the junction tree algorithm.

Chapter 3, Learning Parameters, includes fitting and learning the PGM models from
data sets with the Maximum Likelihood approach.

Preface

[vi]

Chapter 4, Bayesian Modeling – Basic Models, covers simple and powerful Bayesian
models that can be used as building blocks for more advanced models and shows
you how to fit and query them with adapted algorithms.

Chapter 5, Approximate Inference, covers the second way to perform an inference in
PGM using sampling algorithms and a presentation of the main sampling algorithms
such as MCMC.

Chapter 6, Bayesian Modeling – Linear Models, shows you a more Bayesian view of the
standard linear regression algorithm and a solution to the problem of over-fitting.

Chapter 7, Probabilistic Mixture Models, goes over more advanced probabilistic models
in which the data comes from a mixture of several simple models.

Appendix, References, includes all the books and articles which have been used to
write this book.

What you need for this book
All the examples in this book can be used with R version 3 or above on any platform
and operating system supporting R.

Who this book is for
This book is for anyone who has to deal with lots of data and draw conclusions from
it, especially when the data is noisy or uncertain. Data scientists, machine learning
enthusiasts, engineers, and those who are curious about the latest advances in
machine learning will find PGM interesting.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can also mention the arm package, which provides Bayesian versions of glm()
and polr() and implements hierarchical models."

Preface

[vii]

Any command-line input or output is written as follows:

pred_sigma <- sqrt(sigma^2 + apply((T%*%posterior_sigma)*T, MARGIN=1,
FUN=sum))

upper_bound <- T%*%posterior_beta + qnorm(0.95)*pred_sigma

lower_bound <- T%*%posterior_beta - qnorm(0.95)*pred_sigma

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[viii]

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be logged in
to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[ix]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Probabilistic Reasoning
Among all the predictions that were made about the 21st century, maybe the most
unexpected one was that we would collect such a formidable amount of data about
everything, everyday, and everywhere in the world. Recent years have seen an
incredible explosion of data collection about our world, our lives, and technology;
this is the main driver of what we can certainly call a revolution. We live in the Age
of Information. But collecting data is nothing if we don't exploit it and try to extract
knowledge out of it.

At the beginning of the 20th century, with the birth of statistics, the world was all about
collecting data and making statistics. In that time, the only reliable tools were pencils
and paper and of course, the eyes and ears of the observers. Scientific observation was
still in its infancy, despite the prodigious development of the 19th century.

More than a hundred years later, we have computers, we have electronic sensors,
we have massive data storage and we are able to store huge amounts of data
continuously about, not only our physical world, but also our lives, mainly through
the use of social networks, the Internet, and mobile phones. Moreover, the density of
our storage technology has increased so much that we can, nowadays, store months
if not years of data into a very small volume that can fit in the palm of our hand.

But storing data is not acquiring knowledge. Storing data is just keeping it
somewhere for future use. At the same time as our storage capacity dramatically
evolved, the capacity of modern computers increased too, at a pace that is sometimes
hard to believe. When I was a doctoral student, I remember how proud I was when
in the laboratory I received that brand-new, shiny, all-powerful PC for carrying my
research work. Today, my old smart phone, which fits in my pocket, is more than 20
times faster.

Probabilistic Reasoning

[2]

Therefore in this book, you will learn one of the most advanced techniques to
transform data into knowledge: machine learning. This technology is used in every
aspect of modern life now, from search engines, to stock market predictions, from
speech recognition to autonomous vehicles. Moreover it is used in many fields
where one would not suspect it at all, from quality assurance in product chains to
optimizing the placement of antennas for mobile phone networks.

Machine learning is the marriage between computer science and probabilities and
statistics. A central theme in machine learning is the problem of inference or how to
produce knowledge or predictions using an algorithm fed with data and examples.
And this brings us to the two fundamental aspects of machine learning: the design of
algorithms that can extract patterns and high-level knowledge from vast amounts of
data and also the design of algorithms that can use this knowledge—or, in scientific
terms: learning and inference.

Pierre-Simon Laplace (1749-1827) a French mathematician and one of the greatest
scientists of all time, was presumably among the first to understand an important
aspect of data collection: data is unreliable, uncertain and, as we say today, noisy.
He was also the first to develop the use of probabilities to deal with such aspects of
uncertainty and to represent one's degree of belief about an event or information.

In his Essai philosophique sur les probabilités (1814), Laplace formulated an original
mathematical system for reasoning about new and old data, in which one's belief
about something could be updated and improved as soon as new data where
available. Today we call that Bayesian reasoning. Indeed Thomas Bayes was
the first, toward the end of the 18th century, to discover this principle. Without
any knowledge about Bayes' work, Pierre-Simon Laplace rediscovered the same
principle and formulated the modern form of the Bayes theorem. It is interesting
to note that Laplace eventually learned about Bayes' posthumous publications
and acknowledged Bayes to be the first to describe the principle of this inductive
reasoning system. Today, we speak about Laplacian reasoning instead of Bayesian
reasoning and we call it the Bayes-Price-Laplace theorem.

More than a century later, this mathematical technique was reborn thanks to new
discoveries in computing probabilities and gave birth to one of the most important
and used techniques in machine learning: the probabilistic graphical model.

From now on, it is important to note that the term graphical refers to the theory of
graphs—that is, a mathematical object with nodes and edges (and not graphics or
drawings). You know that, when you want to explain to someone the relationships
between different objects or entities, you take a sheet of paper and draw boxes that
you connect with lines or arrows. It is an easy and neat way to show relationships,
whatever they are, between different elements.

Chapter 1

[3]

Probabilistic Graphical Models (PGM for short) are exactly that: you want to
describe relationships between variables. However, you don't have any certainty
about your variables, but rather beliefs or uncertain knowledge. And we know now
that probabilities are the way to represent and deal with such uncertainties, in a
mathematical and rigorous way.

A probabilistic graphical model is a tool to represent beliefs and uncertain knowledge
about facts and events using probabilities. It is also one of the most advanced machine
learning techniques nowadays and has many industrial success stories.

Probabilistic graphical models can deal with our imperfect knowledge about the
world because our knowledge is always limited. We can't observe everything, we
can't represent all the universe in a computer. We are intrinsically limited as human
beings, as are our computers. With probabilistic graphical models, we can build
simple learning algorithms or complex expert systems. With new data, we can
improve those models and refine them as much as we can and also we can infer new
information or make predictions about unseen situations and events.

In this first chapter you will learn about the fundamentals needed to understand
probabilistic graphical models; that is, probabilities and the simple rules of calculus on
which they are based. We will have an overview of what we can do with probabilistic
graphical models and the related R packages. These techniques are so successful that
we will have to restrict ourselves to just the most important R packages.

We will see how to develop simple models, piece by piece, like a brick game and
how to connect models together to develop even more advanced expert systems.
We will cover the following concepts and applications and each section will contain
numerical examples that you can directly use with R:

• Machine learning
• Representing uncertainty with probabilities
• Notions of probabilistic expert systems
• Representing knowledge with graphs
• Probabilistic graphical models
• Examples and applications

Probabilistic Reasoning

[4]

Machine learning
This book is about a field of science called machine learning, or more generally
artificial intelligence. To perform a task, to reach conclusions from data, a computer
as well as any living being needs to observe and process information of a diverse
nature. For a long time now, we have been designing and inventing algorithms and
systems that can solve a problem, very accurately and at incredible speed, but all
algorithms are limited to the very specific task they were designed for. On the other
hand, living beings in general and human beings (as well as many other animals)
exhibit this incredible capacity to adapt and improve using their experience, their
errors, and what they observe in the world.

Trying to understand how it is possible to learn from experience and adapt to
changing conditions has always been a great topic of science. Since the invention of
computers, one of the main goals has been to reproduce this type of skill in a machine.

Machine learning is the study of algorithms that can learn and adapt from data
and observation, reason, and perform tasks using learned models and algorithms.
As the world we live in is inherently uncertain, in the sense that even the simplest
observation such as the color of the sky is impossible to determine absolutely, we
needed a theory that can encompass this uncertainty. The most natural one is the
theory of probability, which will serve as the mathematical foundation of the
present book.

But when the amount of data grows to very large datasets, even the simplest
probabilistic tasks can become cumbersome and we need a framework that will
allow the easy development of models and algorithms that have the necessary
complexity to deal with real-world problems.

By real-world problems, we really think of tasks that a human being is able to do
such as understanding people's speech, driving a car, trading the stock exchange,
recognizing people's faces on a picture, or making a medical diagnosis.

At the beginning of artificial intelligence, building such models and algorithms was a
very complex task and, every time a new algorithm was invented, implemented, and
programmed with inherent sources of errors and bias. The framework we present
in this book, called probabilistic graphical models, aims at separating the tasks of
designing a model and implementing algorithm. Because it is based on probability
theory and graph theory, it has very strong mathematical foundations. But also, it is a
framework where the practitioner doesn't need to write and rewrite algorithms all the
time, for algorithms were designed to solve very generic problems and already exist.

Moreover, probabilistic graphical models are based on machine learning techniques
which will help the practitioner to create new models from data in the easiest way.

Chapter 1

[5]

Algorithms in probabilistic graphical models can learn new models from data and
answer all sorts of questions using those data and the models, and of course adapt
and improve the models when new data is available.

In this book, we will also see that probabilistic graphical models are a mathematical
generalization of many standard and classical models that we all know and that we
can reuse, mix, and modify within this framework.

The rest of this chapter will introduce required notions in probabilities and graph
theory to help you understand and use probabilistic graphical models in R.

One last note about the title of the book: Learning Probabilistic Graphical Models in R.
In fact this title has two meanings: you will learn how to make probabilistic graphical
models, and you will learn how the computer can learn probabilistic graphical
models. This is machine learning!

Representing uncertainty with
probabilities
Probabilistic graphical models, seen from the point of view of mathematics, are a
way to represent a probability distribution over several variables, which is called
a joint probability distribution. In other words, it is a tool to represent numerical
beliefs in the joint occurrence of several variables. Seen like this, it looks simple, but
what PGM addresses is the representation of these kinds of probability distribution
over many variables. In some cases, many could be really a lot, such as thousands
to millions. In this section, we will review the basic notions that are fundamental to
PGMs and see their basic implementation in R. If you're already familiar with these,
you can easily skip this section. We start by asking why probabilities are a good tool
to represent one's belief about facts and events, then we will explore the basics of
probability calculus. Next we will introduce the fundamental building blocks of any
Bayesian model and do a few simple yet interesting computations. Finally, we will
speak about the main topic of this book: Bayesian inference.

Did I say Bayesian inference was the main topic before? Indeed, probabilistic
graphical models are also a state-of-the-art approach to performing Bayesian
inference or in other words to computing new facts and conclusions from your
previous beliefs and supplying new data.

This principle of updating a probabilistic model was first discovered by Thomas
Bayes and publish by his friend Richard Price in 1763 in the now famous An Essay
toward solving a Problem in the Doctrine of Chances.

Probabilistic Reasoning

[6]

Beliefs and uncertainty as probabilities
Probability theory is nothing but common sense reduced to calculation

 Théorie analytique des probabilités,
 1821. Pierre-Simon, marquis de Laplace

As Pierre-Simon Laplace was saying, probabilities are a tool to quantify our
common-sense reasoning and our degree of belief. It is interesting to note that, in the
context of machine learning, this concept of belief has been somehow extended to the
machine, that is, to the computer. Through the use of algorithms, the computer will
represent its belief about certain facts and events with probabilities.

So let's take a simple example that everyone knows: the game of flipping a coin.
What's the probability or the chance that coin will land on a head, or on a tail?
Everyone should and will answer, with reason, a 50% chance or a probability of 0.5
(remember, probabilities are numbered between 0 and 1).

This simple notion has two interpretations. One we will call a frequentist
interpretation and the other one a Bayesian interpretation. The first one, the
frequentist, means that, if we flip the coin many times, in the long term it will land
heads-up half of the time and tails-up the other half of the time. Using numbers,
it will have a 50% chance of landing on one side, or a probability of 0.5. However,
this frequentist concept, as the name suggests, is valid only if one can repeat the
experiment a very large number of times. Indeed, it would not make any sense
to talk about frequency if you observe a fact only once or twice. The Bayesian
interpretation, on the other hand, quantifies our uncertainty about a fact or an event
by assigning a number (between 0 and 1, or 0% and 100%) to it. If you flip a coin,
even before playing, I'm sure you will assign a 50% chance to each face. If you watch
a horse race with 10 horses and you know nothing about the horses and their rides,
you will certainly assign a probability of 0.1 (or 10%) to each horse.

Flipping a coin is an experiment you can do many times, thousands of times or more
if you want. However, a horse race is not an experiment you can repeat numerous
times. And what is the probability your favorite team will win the next football
game? It is certainly not an experiment you can do many times: in fact you will do it
once, because there is only one match. But because you strongly believe your team
is the best this year, you will assign a probability of, say, 0.9 that your team will win
the next game.

The main advantage of the Bayesian interpretation is that it does not use the notion
of long-term frequency or repetition of the same experiment.

Chapter 1

[7]

In machine learning, probabilities are the basic components of most of the systems
and algorithms. You might want to know the probability that an e-mail you received
is a spam (junk) e-mail. You want to know the probability that the next customer on
your online site will buy the same item as the previous customer (and whether your
website should advertise it right away). You want to know the probability that, next
month, your shop will have as many customers as this month.

As you can see with these examples, the line between purely frequentist and purely
Bayesian is far from being clear. And the good news is that the rules of probability
calculus are rigorously the same, whatever interpretation you choose (or not).

Conditional probability
A central theme in machine learning and especially in probabilistic graphical
models is the notion of a conditional probability. In fact, let's be clear, probabilistic
graphical models are all about conditional probability. Let's get back to our horse
race example. We say that, if you know nothing about the riders and their horses,
you would assign, say, a probability of 0.1 to each (assuming there are 10 horses).
Now, you just learned that the best rider in the country is participating in this race.
Would you give him the same chance as the others? Certainly not! Therefore the
probability for this rider to win is, say, 19% and therefore, we will say that all other
riders have a probability to win of only 9%. This is a conditional probability: that is, a
probability of an event based on knowing the outcome of another event. This notion
of probability matches perfectly changing our minds intuitively or updating our beliefs
(in more technical terms) given a new piece of information. At the same time we also
saw a simple example of Bayesian update where we reconsidered and updated our
beliefs given a new fact. Probabilistic graphical models are all about that but just
with more complex situations.

Probability calculus and random variables
In the previous section we saw why probabilities are a good tool to represent
uncertainty or the beliefs and frequency of an event or a fact. We also mentioned the
fact that the same rules of calculus apply for both the Bayesian and the frequentist
interpretation. In this section, we will have a first look at the basic probability rules
of calculus, and introduce the notion of a random variable which is central to Bayesian
reasoning and the probabilistic graphical models.

Sample space, events, and probability
In this section we introduce the basic concepts and the language used in probability
theory that we will use throughout the book. If you already know those concepts,
you can skip this section.

Probabilistic Reasoning

[8]

A sample space Ω is the set of all possible outcomes of an experiment. In this set, we
call ω a point of Ω, a realization. And finally we call a subset of Ω an event.

For example, if we toss a coin once, we can have heads (H) or tails (T). We say that the
sample space is { },H TΩ = . An event could be I get a head (H). If we toss the coin twice,
the sample space is bigger and we can have all those possibilities { }, , ,HH HT TH TTΩ = .
An event could be I get a head first. Therefore my event is { },E HH HT= .

A more advanced example could be the measurement of someone's height in
centimeters. The sample space is all the positive numbers from 0.0 to 10.9. Chances
are that none of your friends will be 10.9 meters tall, but it does no harm to the
theory. An event could be all the basketball players, that is, measurements that are
2 meters or more. In mathematical notation we write in terms of intervals []0,10.9Ω =
and []2,10.9E = .

A probability is a real number Pr(E) that we assign to every event E. A probability
must satisfy the three following axioms. Before writing them, it is time to recall why
we're using these axioms. If you remember, we said that, whatever the interpretation
of the probabilities that we make (frequentist or Bayesian), the rules governing the
calculus of probability are the same:

• For every event E, () 0P E ≥ : we just say that probability is always positive
() 1P Ω = , which means that the probability of having any of all the possible

events is always 1. Therefore, from axiom 1 and 2, any probability is always
between 0 and 1.

• If you have independent events E1, E2, … then () ()1 1i i i iP U E P E∞ ∞
= == ∑ .

Random variables and probability calculus
In a computer program, a variable is a name or a label associated to a storage space
somewhere in the computer's memory. A program's variable is therefore defined by
its location (and in many languages its type) and holds one and only one value. The
value can be complex like an array or a data structure. The most important thing is
that, at any time, the value is well known and not subject to change unless someone
decides to change it. In other words, the value can only change if the algorithm using
it changes it.

A random variable is something different: it is a function from a sample space into real
numbers. For example, in some experiments, random variables are implicitly used:

• When throwing two dices, X is the sum of the numbers is a random variable
• When tossing a coin N times, X is the number of heads in N tosses is a

random variable

Chapter 1

[9]

For each possible event, we can associate a probability pi and the set of all those
probabilities is the probability distribution of the random variable.

Let's see an example: we consider an experiment in which we toss a coin three times.
A sample point (from the sample space) is the result of the three tosses. For example,
HHT, two heads and one tail, is a sample point.

Therefore, it is easy to enumerate all the possible outcomes and find that the
sample space is:

{ }, , , , , , ,S HHH HHT HTH THH TTH THT HTT TTT=

Let's Hi be the event that the ith toss is a head. So for example:

{ }1 , , ,H HHH HHT HTH HTT=

If we assign a probability of to each sample point, then using enumeration
we see that () () ()1 2 3

1
2

P H P H P H= = = .

Under this probability model, the events H1, H2, H3 are mutually independent.
To verify, we first write that:

() { }() () () ()1 2 3 1 2 3
1 1 1 1
8 2 2 2

P H H H P HHH P H P H P H= = = ⋅ ⋅ =∩ ∩

We must also check each pair. For example:

() { }() () ()1 2 1 2
2 1 1,
8 2 2

P H H P HHH HHT P H P H= = = ⋅ =∩

The same applies to the two other pairs. Therefore H1, H2, H3 are mutually
independent. In general, we write that the probability of two independent events is the
product of their probability: () () ().P A B P A P B=∩ . And we write that the probability of
two disjoint independent events is the sum of their probability: () () ()P A B P A P B∨ = + .

If we consider a different outcome, we can define another probability distribution.
For example, let's consider again the experiment in which a coin is tossed three
times. This time we consider the random variable X as the number of heads obtained
after three tosses.

Probabilistic Reasoning

[10]

A complete enumeration gives the same sample space as before:

{ }, , , , , , ,S HHH HHT HTH THH TTH THT HTT TTT=

But as we consider the number of heads, the random variable X will map the sample
space to the following numbers this time:

s HHH HHT HTH THH TTH THT HTT TTT
X(s) 3 2 2 2 1 1 1 0

So the range for the random variable X is now {0,1,2,3}. If we assume the same
probability for all points as before, that is , then we can deduce the probability
function on the range of X:

x 0 1 2 3
P(X=x) 3

8
3
8

Joint probability distributions
Let's come back to the first game: 2 heads and a 6 simultaneously, the hard game
with a low probability of winning. We can associate to the coin toss experiment a
random variable N, which is the number of heads after two tosses. This random
variable summarizes our experiment very well and N can take the values 0, 1, or
2. So instead of saying we're interested in the event of having two heads, we can
say equivalently that we are interested in the event N=2. This approach allows us
to look at other events, such as having only one head (HT or TH) and even having
zero heads (TT). We say that the function assigning a probability to each value of N
is called a probability distribution. Another random variable is D, the number we
obtain when we throw a dice.

When we consider the two experiments together (tossing a coin twice and throwing
a dice), we are interested in the probability of obtaining either 0, 1, or 2 heads and
at the same time obtaining either 1, 2, 3, 4, 5, or 6 with the dice. The probability
distribution of these two random variables considered at the same time is written
P(N, D) and it is called a joint probability distribution.

Chapter 1

[11]

If we keep adding more and more experiments and therefore more and more variables,
we can write a very big and complex joint probability distribution. For example, I
could be interested in the probability that it will rain tomorrow, that the stock market
will rise and that there will be a traffic jam on the highway that I take to go to work.
It's a complex one but not unrealistic. I'm almost sure that the stock market and the
weather are really not dependent. However, the traffic condition and the weather
are seriously connected. I would like to write the distribution P(W, M, T)—weather,
market, traffic—but it seems to be overly complex. In fact, it is not and this is what we
will see throughout this book.

A probabilistic graphical model is a joint probability distribution. And nothing else.

One last and very important notion regarding joint probability distributions is
marginalization. When you have a probability distribution over several random
variables, that is a joint probability distribution, you may want to eliminate some of
the variables from this distribution to have a distribution on fewer variables. This
operation is very important. The marginal distribution p(X) of a joint distribution
p(X, Y) is obtained by the following operation:

() (),yp X p X Y= ∑ where we sum the probabilities over all the possible values of y.
By doing so, you can eliminate Y from P(X, Y). As an exercise, I'll let you think about
the link between this and the probability of two disjoint events that we saw earlier.

For the math-orientated readers, when Y is a continuous variable, the
marginalization can be written as () (),yp X p X y dy= ∫ .

This operation is extremely important and hard to compute for probabilistic
graphical models and most if not all the algorithms for PGM try to propose an
efficient solution to this problem. Thanks to these algorithms, we can do complex yet
efficient models on many variables with real-world data.

Bayes' rule
Let's continue our exploration of the basic concepts we need to play with
probabilistic graphical models. We saw the notion of marginalization, which
is important because, when you have a complex model, you may want to
extract information about one or a few variables of interest. And this is when
marginalization is used.

But the two most important concepts are conditional probability and Bayes' rule.

Probabilistic Reasoning

[12]

A conditional probability is the probability of an event conditioned on the
knowledge of another event. Obviously, the two events must be somehow
dependent otherwise knowing one will not change anything for the other:

• What's the probability of rain tomorrow? And what's the probability of a
traffic jam in the streets?

• Knowing it's going to rain tomorrow, what is now the probability of a traffic
jam? Presumably higher than if you knew nothing.

This is a conditional probability. In more formal terms, we can write the following
formula:

() ()
()
,

|
p X Y

p X Y
p Y

= and () ()
()
,

|
P X Y

P Y X
P X

=

From these two equations we can easily deduce the Bayes formula:

() () ()
()

| .
|

P Y X P X
P X Y

P Y
=

This formula is the most important and it helps invert probabilistic relationships.
This is the chef d'oeuvre of Laplace's career and one of the most important formulas in
modern science. Yet it is very simple.

In this formula, we call P(X | Y) the posterior distribution of X given Y. Therefore,
we also call P(X) the prior distribution. We also call P(Y | X) the likelihood and
finally P(Y) is the normalization factor.

The normalization factor needs a bit of explanation and development here. Recall
that () () (), |P X Y P Y X P X= . And also, we saw that () (),xP Y P X Y= ∑ , an operation
we called marginalization, whose goal was to eliminate (or marginalize out) a
variable from a joint probability distribution.

So from there, we can write () () () (), |x xP Y P X Y P Y X P X= ∑ = ∑ .

Thanks to this magic bit of simple algebra, we can rewrite the Bayes' formula in its
general form and also the most convenient one:

() () ()
() ()
| .

|
|x

P Y X P X
P X Y

P Y X P X
=
∑

Chapter 1

[13]

The simple beauty of this form is that we only need to specify and use P(Y |X)
and P(X), that is, the prior and likelihood. Despite the simple form, the sum in the
denominator, as we will see in the rest of this book, can be a hard problem to solve
and advanced techniques will be required for advanced problems.

Interpreting the Bayes' formula
Now that we saw the famous formula with X and Y, two random variables, let me
rewrite it with two other variables. After all, the letters are not important but it can
shed some light on the intuition behind this formula:

() () ()
() ()
| .

|
|

i

p D P
P D

P D Pθ

θ θ
θ

θ θ
=
∑

The intuition behind these concepts is the following:

• The prior distribution P(θ) is what I believe about X before everything else is
known—my initial belief.

• The likelihood given a value for θ, what is the data D that I could generate, or
in other terms what is the probability of D for all values of θ?

• The posterior distribution P(θ | D) is finally the new belief I have about θ
given some data D I observed.

This formula also gives the basis of a forward process to update my beliefs about
the variable θ. Applying Bayes' rule will calculate the new distribution of θ. And if I
receive new information again, I can update my beliefs again, and again.

A first example of Bayes' rule
In this section we will look at our first Bayesian program in R. We will define
discrete random variables, that is, random variables that can only take a predefined
number of values. Let's say we have a machine that makes light bulbs. You want to
know if the machine works as planned or if it's broken. In order to do that you can
test each bulb but that would be too many bulbs to test. With only a few samples and
Bayes' rule you can estimate if the machine is correctly working or not.

When building a Bayesian model, we need to always set up the two main
components:

• The prior distribution
• The likelihood

Probabilistic Reasoning

[14]

In this example, we won't need a specific package; we just need to write a simple
function to implement a simple form of the Bayes' rule.

The prior distribution is our initial belief on how the machine is working or not.
We identified a first random variable M for the state of the machine. This random
variable can have two states {working, broken}. We believe our machine is working
well because it's a good machine, so let's say the prior distribution is as follows:

()
()

0.99

0.01

P M working

P M broken

= =

= =

It simply says that our belief that the machine is working is really high, with a
probability of 99% and only a 1% chance that it is broken. Here, clearly we're using
the Bayesian interpretation of probability because we don't have many machines but
just one. We could also ask the machine's vendor about the frequency of working
machines he or she is able to produce. And we could use his or her number and, in
that case, this probability would have a frequentist interpretation. Nevertheless, the
Bayes' rule works in all the cases.

The second random variable is L and it is the light bulb produced by the machine.
The light bulb can either be good or bad. So this random variable will have two states
again {good, bad}.

Again, we need to give a prior distribution for the light bulb variable L: in the
Bayes' formula, it is required that we specify a prior distribution and the likelihood
distribution. In this case, the likelihood is P(L | M) and not simply P(L).

Here we need in fact to define two probability distributions: one when the machine
works M = working and one when the machine is broken M = broken. And we ask the
question twice:

• How likely is it to have a good or a bad light bulb when the machine
is working?

• How likely is it to have a good or a bad light bulb when the machine is
not working?

Let's try to give our best guess, either Bayesian or frequentist, because we have
some statistics:

()
()
()
()

| 0.99

| 0.01

| 0.6

| 0.4

P L good M working

P L bad M working

P L good M broken

P L bad M broken

= = =

= = =

= = =

= = =

Chapter 1

[15]

Here we believe that, if the machine is working, it will only give one bad light bulb
out of 100, which is even higher than what we said before. But in this case, we know
that the machine is working so we expect a very high success rate. However, if the
machine is broken, we say we expect at least 40% of the light bulbs to be bad. From
now on, we have fully specified our model and we can start using it.

Using a Bayesian model is to compute posterior distributions when a new fact is
available. In our case, we want to know if the machine is working knowing that
we just observed that our latest light bulb was not working. So we want to compute
P(M | L). We just specified P(M) and P(L | M), so the last thing we have to do is to
use the Bayes' formula to invert the probability distribution.

For example, let's say the last produced light bulb is bad, that is, L = bad. Using the
Bayes formula we obtain:

()|P M working L bad= = =

() ()
() () () ()

| .
| |

P L bad M working P M working
P L bad M working P M working P L bad M broken P M working

= = =
= = = + = = =

=

0.01 0.99 0.71
0.01 0.99 0.4 0.01

×
=

× + ×

Or if you prefer, a 71% chance that the machine is working. It's lower but follows our
intuition that the machine might still work. After all even if we received a bad light
bulb, it's only one and maybe the next will still be good.

Let's try to redo the same problem, with equal priors on the state of the machine:
a 50% chance the machine is working and 50% the machine is broken. The result
is therefore:

0.01 0.5 0.024
0.01 0.5 0.4 0.5

×
=

× + ×

It is a 2.4% chance the machine is working! That's very low. Indeed, given the
apparent quality of this machine, as modeled in the likelihood, it appears very
surprising that the machine can produce a bad light bulb. In this case, we didn't
make the assumption that the machine was working as in the previous example, and
having a bad light bulb can be seen as an indication that something is wrong.

Probabilistic Reasoning

[16]

A first example of Bayes' rule in R
After seeing this previous example, the first legitimate question one can ask is what
we would do if we observed more than one light bulb. Indeed, it seems a bit strange
to conclude that the machine needs to be repaired only after seeing one bad light
bulb. The Bayesian way to do it is to use the posterior as the new prior and update
the posterior distribution in sequence. As it would be a bit onerous to do that by
hand, we will write our first Bayesian program in R.

The following code is a function that computes the posterior distribution of a random
variable given the prior distribution and the likelihood and a sequence of observed
data. This function takes three arguments: the prior distribution, the likelihood, and
a sequence of data. The prior and data are a vector and the likelihood a matrix:

prior <- c(working = 0.99, broken = 0.01)

likelihood <- rbind(

 working = c(good=0.99, bad=0.01), broken = c(good=0.6,
 bad=0.4))

data <- c("bad","bad","bad","bad")

So we defined three variables, the prior with two states working and broken, the
likelihood we specified for each condition of the machine (working or broken), and the
distribution over the variable L of the light bulb. So that's four values in total and the R
matrix is indeed like the conditional distribution we defined in the previous section:

likelihood

 good bad

working 0.99 0.01

broken 0.60 0.40

The data variable contains the sequence of observed light bulbs we will use to test
our machine and compute the posterior probabilities. So, now we can define our
Bayesian update function as follows:

bayes <- function(prior, likelihood, data)

{

 posterior <- matrix(0, nrow=length(data), ncol=length(prior))

 dimnames(posterior) <- list(data, names(prior))

 initial_prior <- prior

 for(i in 1:length(data))

 {

 posterior[i,] <-

 prior*likelihood[, data[i]]/

Chapter 1

[17]

 sum(prior * likelihood[, data[i]])

 prior <- posterior[i ,]

 }

 return(rbind(initial_prior,posterior))

}

This function does the following:

• It creates a matrix to store the results of the successive computation of the
posterior distributions

• Then for each data it computes the posterior distribution given the current
prior: you can see the Bayes formula in the R code, exactly as we saw it earlier

• Finally, the new prior is the current posterior and the same process can be
re-iterated

In the end, the function returns a matrix with the initial prior and all subsequent
posterior distributions.

Let's do a few runs to understand how it works. We will use the function matplot to
draw the evolution of the two distributions, one for the posterior probability that the
machine is working (in green) and the other in red, meaning that the machine is broken:
matplot(bayes(prior,likelihood,data), t='b', lty=1, pch=20,
col=c(3,2))

Probabilistic Reasoning

[18]

The result can be seen on the following graph: as the bad light bulbs arrive, the
probability that the machine will fail quickly falls (the plain or green line). We
expected something like 1 bad light bulb out of 100, and not that many. So this
machine needs maintenance now. The red or dashed line represents the probability
that the machine is broken.

If the prior was different, we would have seen a different evolution. For example,
let's say that we have no idea if the machine is broken or not, that is, we give an
equal chance to each situation:

prior <- c(working = 0.5, broken = 0.5)

Run the code again:

matplot(bayes(prior,likelihood,data), t='b', lty=1, pch=20,
col=c(3,2))

Again we obtain a quick convergence to very high probabilities that the machine is
broken, which is not surprising given the long sequence of bad light bulbs:

Chapter 1

[19]

If we keep playing with the data we might see different behaviors again. For
example, let's say we assume the machine is working well, with a 99% probability.
And we observe a sequence of 10 light bulbs, among which the first one is bad. In R
we have:

prior=c(working=0.99,broken=0.01)

data=c("bad","good","good","good","good","good","good","good","good","go
od")

matplot(bayes(prior,likelihood,data),t='b',pch=20,col=c(3,2))

And the result is given in the following graph:

The algorithm hesitates at first because, given such a good machine, it's unlikely
to see a bad light bulb, but then it will converge back to high probabilities again,
because the sequence of good light bulbs does not indicate any problem.

Probabilistic Reasoning

[20]

This concludes our first example of a Bayesian model with R. In the rest of this
chapter, we will see how to create real-world models, with more than just two very
simple random variables, and how to solve two important problems:

• The problem of inference, which is the problem of computing the posterior
distribution when we receive new data

• The problem of learning, which is the determination of prior probabilities
from a dataset

A careful reader should now ask: doesn't this little algorithm we just saw solve the
problem of inference? Indeed it does, but only when one has two discrete variables,
which is a bit too simple to capture the complexity of the world. We will introduce
now the core of this book and the main tool for performing Bayesian inference:
probabilistic graphical models.

Probabilistic graphical models
In the last section of this chapter, we introduce probabilistic graphical models as
a generic framework to build and use complex probabilistic models from simple
building blocks. Such complex models are often necessary to represent the complexity
of the task to solve. Complex doesn't mean complicated and often the simple things
are the best and most efficient. Complex means that, in order to represent and solve
tasks where we have a lot of inputs, components, or data, we need a model that is not
completely trivial but reaches the necessary degree of complexity.

Such complex problems can be decomposed into simpler problems that will interact
with each other. Ultimately, the most simple building block will be one variable. This
variable will have a random value, or a value subject to uncertainty as we saw in the
previous section.

Probabilistic models
If you remember, we saw that it is possible to represent really advanced concepts
using a probability distribution; when we have many random variables, we call this
distribution a joint distribution. Sometimes it is not impossible to have hundreds
if not thousands or more of those random variables. Representing such a big
distribution is extremely hard and in most cases impossible.

Chapter 1

[21]

For example, in medical diagnoses, each random variable could represent a
symptom. We can have dozens of them. Other random variables could represent the
age of the patient, the gender of the patient, his or her temperature, blood pressure,
and so on. We can use many different variables to represent the health state of a
patient. We can also add other information such as recent weather conditions, the
age of the patient, and his or her diet.

Then there are two tasks we want to solve with such a complex system:

• From a database of patients, we want to assess and discover all the probability
distributions and their associated parameters, automatically of course.

• We want to put questions to the model, such as, "If I observe a series of
symptoms, is my patient healthy or not?" Similarly, "If I change this or that in
my patient's diet and give this drug, will my patient recover?"

However, there is something important: in such a model we would like to use
another important piece of knowledge, maybe one of the most important: interactions
between the various components—in other words, dependencies between the random
variables. For example, there are obvious dependencies between symptoms and
disease. On the other end, diet and symptoms can have a more distant dependency or
can be dependent through another variable such as age or gender.

Finally, all the reasoning that is done with such a model is probabilistic in nature.
From the observation of a variable X, we want to infer the posterior distribution
of some other variables and have their probability rather than a simple yes or no
answer. Having a probability gives us a richer answer than a binary response.

Graphs and conditional independence
Let's make a simple computation. Imagine we have two binary random variables
such as the one we saw in the previous section of this chapter. Let's call them X and
Y. The joint probability distribution over these two variables is P(X,Y). They are
binary so they can take two values each, which we will call x1,x2 and y1,y2, for the
sake of clarity.

How many probability values do we need to specify? Four in total for P(X=x1,Y=y1),
P(X=x1,Y=y2), P(X=x2,Y=y1), and P(X=x2,Y=y2).

Let's say we have now not two binary random variables, but ten. It's still a very
simple model, isn't it? Let's call the variables X1,X2,X3,X4,X5,X6,X7,X8,X9,X10. In this case,
we need to provide 210 = 1024 values to determine our joint probability distribution.
And what if we add another 10 variables for a total of 20 variables? It's still a very
small model. But we need to specify 220 = 1048576 values. This is more than a million
values. So for such a simple model, the task becomes simply impossible!

Probabilistic Reasoning

[22]

Probabilistic graphical models is the right framework to describe such models in a
compact way and allow their construction and use in a most efficient manner. In fact,
it is not unheard of to use probabilistic graphical models with thousands of variables.
Of course, the computer model doesn't store billions of values, but in fact uses
conditional independence in order to make the model tractable and representable
in a computer's memory. Moreover, conditional independence adds structural
knowledge to the model, which can make a massive difference.

In a probabilistic graphical model, such knowledge between variables can be
represented with a graph. Here is an example from the medical world: how to
diagnose a cold. This is just an example and by no means medical advice. It is
over-simplified for the sake of simplicity. We have several random variables such as:

• Se: The season of the year
• N: The nose is blocked
• H: The patient has a headache
• S: The patient regularly sneezes
• C: The patient coughs
• Cold: The patient has a cold

Because each of the symptoms can exist in different degrees, it is natural to represent
the variables as random variables. For example, if the patient's nose is a bit blocked,
we will assign a probability of, say, 60% to this variable, that is P(N=blocked)=0.6 and
P(N=not blocked)=0.4.

In this example, the probability distribution P(Se,N,H,S,C,Cold) will require 4 * 25 =
128 values in total (4 seasons and 2 values for each other random variables). It's quite
a lot and honestly it's quite hard to determine things such as the probability that the
nose is not blocked and that the patient has a headache and sneezes and so on.

However, we can say that a headache is not directly related to a cough or a blocked
nose, except when the patient has a cold. Indeed, the patient could have a headache
for many other reasons.

Moreover, we can say that the Season has quite a direct effect on Sneezing, Blocked
Nose, or Cough but less or none on Headache. In a probabilistic graphical model, we
will represent these dependency relationships with a graph, as follows, where each
random variable is a node in the graph and each relationship is an arrow between
two nodes:

Chapter 1

[23]

As you can see in the preceding figure, there is a direct relationship between each
node and each variable of the probabilistic graphical model and also a direct
relationship between arrows and the way we can simplify the joint probability
distribution in order to make it tractable.

Using a graph as a model to simplify a complex (and sometimes complicated)
distribution presents numerous benefits:

• First of all, as we observed in the previous example, and in general when we
model a problem, random variables interact directly with only small subsets
of other random variables. Therefore, this promotes a more compact and
tractable model.

• Knowledge and dependencies represented in a graph are easy to understand
and communicate.

• The graph induces a compact representation of the joint probability
distribution and is easy to make computations with.

• Algorithms to perform inference and learning can use graph theory and the
associated algorithms to improve and facilitate all the inference and learning
algorithms: compared to the raw joint probability distribution, using a PGM
will speed up computations by several orders of magnitude.

Factorizing a distribution
In the previous example on the diagnosis of the common cold, we defined a simple
model with a few variables Se, N, H, S, C, and R. We saw that, for such a simple
expert system, we needed 128 parameters!

Probabilistic Reasoning

[24]

We also saw that we can make a few independence assumptions based only on
common sense or common knowledge. Later in this book, we will see how to
discover those assumptions from a data set (also called structural learning).

So we can rewrite our joint probability distribution taking into account these
assumptions as follows:

() () () () () () (), , , , , | , | , | |P Se N H S C Cold P Se P S Se Cold P N Se Cold P Cold P C Cold P H Cold=

In this distribution, we did a factorization; that is, we expressed the original joint
distribution as a product of factors. In this case, the factors are simpler probability
distributions such as P(C | Cold), the probability of coughing given that one has a
cold. And as we considered all the variables to be binary (except Season, which can
take of course four values), each small factor (distribution) will need only a few
parameters to be determined: 4 + 23 + 23 + 2 +22 + 22 =30. Only 30 easy parameters
instead of 128! It's a massive improvement.

I said the parameters are easy, because they're easy to determine, either by hand or
from data. For example, we don't know if the patient has a cold or not, so we can
assign equal probability to the variable Cold, that is P(Cold = true)=P(Cold = false)=0.5.

Similarly, it's easy to determine P(C | Cold) because, if the patient has a cold
(Cold=true), he or she will likely cough. If he or she has no cold, then chances will be
low for the patient to cough, but not zero because the cause could be something else.

Directed models
In general, a directed probabilistic graphical model factorizes a joint distribution
over the random variables X1, X2…Xn as follows:

pa(Xi) is the subset of parent variables of the variable Xi as defined in the graph.

The parents are easy to read on a graph: when an arrow goes from A to B, then A is
the parent of B. A node can have as many children as needed and a node can have as
many parents as needed too.

Directed models are good for representing problems in which causality has to be
modeled. It is also a good model for learning from parameters because each local
probability distribution is easy to learn.

Chapter 1

[25]

Several times in this chapter, we mentioned the fact that PGM can be built using
simple blocks and assembled to make a bigger model. In the case of directed models,
the blocks are the small probability distributions P(Xi | pa(Xi)).

Moreover, if one wants to extend the model by defining new variables and relations,
it is as simple as extending the graph. The algorithms designed for directed PGM
work for any graph, whatever its size.

Nevertheless, not all probability distributions can be represented by a directed PGM
and sometimes it is necessary to relax certain assumptions.

Also it is important to note the graph must be acyclic. It means that you can't have an
arrow from node A to node B and from node B to node A as in the following figure:

In fact, this graph does not represent a factorization at all as defined earlier and it
would mean something like A is a cause of B while at the same time B is a cause of A. It's
paradoxical and has no equivalent mathematical formula.

When the assumption or relationships are not directed, there exists a second form
of probabilistic graphical model in which all the edges are undirected. It is called an
undirected probabilistic graphical model or a Markov network.

Undirected models
An undirected probabilistic graphical model factorizes a joint distribution over the
random variables X1, X2…Xn as follows:

() ()1 2
1

1, , ,
C

n c c
c

P X X X
Z

ϕ χ
=

= ∏…

This formula needs a bit of explanation:

• The first term on the left-hand side is our now usual joint probability
distribution

• The constant Z is a normalization constant, ensuring that the right-hand term
will sum to 1, because it's a probability distribution

Probabilistic Reasoning

[26]

• φc is a factor over a subset of variables χc such that each member of this
subset is a maximal clique, that is a sub-graph in which all the nodes are
connected together:

In the preceding figure, we have four nodes and the φc functions will be defined on
the subsets that are maximal cliques—that is {ABC} and {A,D}. So the distribution is
not very complex after all. This type of model is used a lot in applications such as
computer vision, image processing, finance, and many more applications where the
relationships between the variables follow a regular pattern.

Examples and applications
It's about time to talk about the applications of probabilistic graphical models. There
are so many applications that I would need another hundred pages to describe
a subset of them. As we saw, it is a very powerful framework to model complex
probabilistic models by making them easy to interpret and tractable.

In this section, we will use our two previous models: the light bulb machine and the
cold diagnosis.

We recall that the cold diagnosis model has the following factorization:

() () () () () () (), , , , , | , | , | |P Se N H S C Cold P Se P S Se Cold P N Se Cold P Cold P C Cold P H Cold=

The light bulb machine, though, is defined by two variables only: L and M. And the
factorization is very simple:

() () (), . |P L M P M P L M=

Chapter 1

[27]

The graph corresponding to this distribution is simply:

In order to represent our probabilistic graphical model, we will use an R package
called gRain. To install it:

source("http://bioconductor.org/biocLite.R")

biocLite()

install.packages("gRain")

Note that the installation can take several minutes because this package depends
on many other packages (and especially one we will use often called gRbase) and
provides the base functions for manipulating graphs.

When the package is installed, you can load the base package with:

library("gRbase")

First of all, we want to define a simple undirected graph with five variables A, B, C, D
and E:

graph <- ug("A:B:E + C:E:D")

class(graph)

We define a graph with a clique between A, B, and E, and another clique between C, E,
and D. This will form a butterfly graph. The syntax is very simple: in the string each
clique is separated by a + and each clique is defined by the name of each variable
separated by a colon.

Next we need to install a graph visualization library. We will use the popular
Rgraphviz and to install it you can enter:

install.packages("Rgraphviz")

plot(graph)

Probabilistic Reasoning

[28]

You will obtain your first undirected graph as follows:

Next we want to define a directed graph. Let's say we have again the same
{A,B,C,D,E} variables:

dag <- dag("A + B:A + C:B + D:B + E:C:D")

dag

plot(dag)

The syntax is again very simple: a node without parent comes alone such as A;
otherwise parents are specified by the list of nodes separated by colons.

In this library, several syntaxes are available to define graphs, and you can also build
them node by node. Throughout the book we will use several notations as well as a
very important representation: the matrix notation. Indeed, a graph can be equivalently
represented by a squared matrix where each row and each column represents a node
and the coefficient in the matrix will be 1 is there is an edge; 0 otherwise. If the graph is
undirected, the matrix will be symmetric; otherwise, the matrix can be anything.

Finally, with this second test we obtain the following graph:

Chapter 1

[29]

Now we want to define a simple graph for the light bulb machine and provide
numerical probabilities. Then we will do our computations again and check that the
results are the same.

First we define the values for each node:

machine_val <- c("working","broken")

light_bulb_val <- c("good","bad")

Then we define the numerical values as percentages for the two random variables:

machine_prob <- c(99,1)

light_bulb_prob <- c(99,1,60,40)

The next step is to define the random variables with gRain:

M <- cptable(~machine, values=machine_prob, levels=machine_val)

L <- cptable(~light_bulb|machine, values=light_bulb_prob, levels=light_
bulb_val)

Here, cptable means conditional probability table: it's a term to designate the
memory representation of a probability distribution in the case of a discrete random
variable. We will come back to this notion in Chapter 2, Exact Inference.

Finally, we can compile the new graphical model before using it. Again, this notion
will make more sense in Chapter 2, Exact Inference. when we look at inference
algorithms such as the Junction Tree Algorithm:

plist <- compileCPT(list(M,L))

plist

When printing the network, the result should be as follows:

CPTspec with probabilities:

 P(machine)

 P(light_bulb | machine)

Here, you clearly recognize the probability distributions that we defined earlier in
this chapter.

If we print the variables' distribution we will find again what we had before:

plist$machine

plist$light_bulb

Probabilistic Reasoning

[30]

This will output the following result:

> plist$machine

machine

working broken

 0.99 0.01

> plist$light_bulb

 machine

light_bulb working broken

 good 0.99 0.6

 bad 0.01 0.4

And now we ask the model the posterior probability. The first step is to enter an
evidence into the model (that is to say that we observed a bad light bulb) by doing
as follows:

net <- grain(plist)

net2 <- setEvidence(net, evidence=list(light_bulb="bad"))

querygrain(net2, nodes=c("machine"))

The library will compute the result by applying its inference algorithm and will
output the following result:

$machine

machine

 working broken

0.7122302 0.2877698

And this result is rigorously the same as we obtained with the Bayes method we
defined earlier.

Therefore we are now ready to create more powerful models and explore the
different algorithms suitable for solving different problems. This is what we're going
to learn in the next chapter on exact inference in graphical models.

Chapter 1

[31]

Summary
In this first chapter we learned the base concepts of probabilities

We saw how and why they are used to represent uncertainty about data and
knowledge, while also introducing the Bayes formula. This is the most important
formula to compute posterior probabilities—that is, to update our beliefs and
knowledge about a fact when new data is available

We saw what a joint probability distribution is and learnt that they can quickly
become too complex and intractable to deal with. We learned the basics of
probabilistic graphical models as a generic framework to perform tractable, efficient,
and easy modeling with probabilistic models. Finally, we introduced the different
types of probabilistic graphical model and learned how to use R packages to write
our first models

In the next chapter, we will learn the first set of algorithms to do Bayesian inference
with probabilistic graphical models—that is, to put questions and queries to our
models. We will introduce new features of the R packages and, at the same time,
we'll learn how these algorithms work and can be used in an efficient manner.

[33]

Exact Inference
After building a graphical model, one of the main tasks one wants to perform is
putting questions and queries to the model. There are many ways to use graphical
models and the representation they give from a joint probability distribution. For
example, we can study interactions between random variables. We can also see if any
correlation or causality is captured by the model. Moreover, as probability models
governing the random variables are parameterized, it means that their probability
distribution is fully known through being familiar with some numerical parameters.
We might be interested in knowing the values of those parameters when other
variables are observed.

The main focus of this chapter is on introducing algorithms to query a distribution
that uses the model and observations on a subset of variables in order to discover
the posterior probability distribution on another subset. It is not necessary to observe
and query all the variables. In fact, all the algorithms we are going to see in this
chapter can be performed on any observed subset and any queried subset.

There are mainly two types of queries:

• Probabilistic queries, in which we observe a subset E of variables and
choose an instantiation e of these variables, which we call evidence, and then
we compute the posterior distribution of a subset Y of the set X of variables:
P(Y | E = e).

• MAP queries; These refer to finding a join assignment to a subset of variables
having the highest probability. Again, if we call E the set of observed variables
and Z the remaining variables of the model, then the MAP assignment is
defined by () ()| ,zMAP Z E e argmax P z e= = . In other words, we seek
for the values of the non-observed variables that would have the highest
probability if we observed the assignment E=e.

Exact Inference

[34]

The aim of this chapter is to introduce the main algorithms for solving the problem
of inference exactly; that is, the problem of answering such queries. In general, the
problem of inference boils down to finding a posterior distribution by applying
the Bayes rule. In mathematical terms, if we call X the set of all the variables of the
model, E the set of observed variables (evidence), and Z the set of hidden variables,
or non-observed variables, then computing an inference on a graphical model finds:

() ()
()

()
()

, | , |
| ,

| , |z Z

P Z E P Z E
P Z E

P E P Z z E
θ θ

θ
θ θ∈

= =
∑ =

For example, in a medical problem, we want to know all possible diseases given a set
of observed symptoms. In a speech recognition system, we want to know the most
likely sequence of words that generated the sound that has been recorded (that is, the
voice of the speaker). In a radar tracking system, we want to know the probability
distribution of the location of the tracked object given readings from radar. In
a recommendation system, we want to know the posterior distributions on the
products to sell, given the latest clicks of a user on a merchant website, and therefore
we rank and suggest the best five products to the customer.

All these problems, and many more, always require the computation of a posterior
distribution. In order to solve this complex problem, we are going to see a different
type of algorithm, which will use the structure of the underlying graph in the
probabilistic graphical model, to perform efficient computations. However, in the
first part of the chapter, in order to understand how it works, we will see how to
perform a naive computation, which is not very efficient but serves as a framework
from which to improve efficiency. It is called variable elimination and it simply
eliminates each variable, step by step, that is not required in the query.

Next we will see that it is possible to reuse previous computations and improve
the efficiency of the algorithm with a second algorithm called the Sum-Product
algorithm. We will apply this to different types of probabilistic graphical model,
and in particular to a graph with a hierarchy called trees. This will serve as an
introduction to the last and most important algorithm, the junction tree algorithm,
which takes any graph and transforms it into a tree to produce an efficient schedule
of computations. This algorithm is implemented in most of the R packages that we're
going to use throughout this chapter.

In this chapter you will learn how to perform simple inference, improve the efficiency
of the computations, and finally work with graphical models that are as complex as
you need to capture the essence of real-world problems. We will introduce algorithms
written in R and functions from R packages, such as gRain, gR, and rHugin.

Chapter 2

[35]

But before we start with all the mathematics and programming, the first section will
focus on the design of Probabilistic Graphical Models and will introduce examples of
expert systems; it will also show how to represent legacy models as graphical models
and benefit from this powerful tool.

The chapter will therefore be organized as follows:

• Building graphical models
• Variable elimination
• Sum-product and belief updates
• The junction tree algorithm

Building graphical models
The design of a graphical model usually takes into consideration two different
aspects. First of all, we need to identify the variables involved in the model. The
variables can refer to facts we can observe or measure, such as a temperature, a price,
a distance, a number of items, an interval of time, or any other value. A variable can
also represent a simple fact that can be true or false.

At the same time, and this is why we're building such models, the variables can
capture parts of the problem that we cannot directly measure or estimate but that are
related to the problem. For example, a physician is able to see and measure a set of
symptoms for a patient. However diseases are not facts that can be directly observed.
They can only be deduced from the observation of several symptoms. Let's take the
common cold. It is natural to say that someone has a cold, and in practice everybody
understands what it means. However, there is no such thing such as a cold, but
rather one has a viral infection located in the upper respiratory tract (the nose) where
the infection is a proliferation of a certain type of rhinovirus. It's rather complex, but
it is the common cold.

Directly inferring that someone has a cold is almost impossible unless one samples
mucus and estimates that the quantity of rhinoviruses present in the sample is enough
to say the patient has this specific disease. Another method is to infer from simple
symptoms such as a headache and running nose that the patient is affected. In this
case, the variable representing the fact the patient has a cold is not directly observable.

Exact Inference

[36]

The second aspect is the graph, which in fact represents the dependencies between
the variable, how they are related to each other, how they can interact, directly or
indirectly. If you learned about statistics before, you probably used the notion of
correlation. In the case of a graphical model, the dependency between two variables
is understood in a larger sense. Indeed, correlation only denotes a linear relationship
between variables.

For example, a variable representing a symptom and a variable representing a disease
can be connected because there is a direct relationship between these two variables.

Types of random variable
In most cases, the variables we will be using are discrete variables. The reason for that
is because we are interested in modeling facts that can be true or false, or that can take
a specific number of values. Another reason is because it is very common to make
models with discrete variables in many scientific fields and finally because the math
behind discrete variable graphical models is easier to understand and implement.

A discrete random variable X is defined over a finite sample space S = {v1, v2,…vn}.
Examples of discrete random variables are:

• A dice D has samples over the set of numbers {1, 2, 3, 4, 5, 6}
• A coin C is defined over the set {T, H}
• A symptom S is defined over the value {true, false}
• A letter in a word is defined over the bigger set {a, b, c, d, e, …, z}
• A word is defined over a very large set of English words {the, at, in, bread, …,

computer, …}: the set is however finite
• A size can be defined over a finite set of numbers, say {0, 1, 2, 3, …, 1000}

A continuous random variable is defined on a continuous sample space such as
ℝ, ℂ, or any other interval. It is of course possible to define random variables on a
multi-dimensional set such as ℝn but, depending on the meaning associated to each
dimension, it is sometimes interesting to split each dimension into n distinct random
variables, each defined on ℝ. Examples of continuous random variables are:

• A distance in kilometers
• A temperature
• A price
• The mean of another random variable
• The variance of another random variable

Chapter 2

[37]

The last two examples are very important when one considers a Bayesian treatment
of a problem and can lead to powerful representation of a machine learning problem.
Indeed, in a Bayesian approach, all quantities are considered as random variables.
Therefore, if we define a random variable following a Gaussian distribution N(µ, σ2),
we can go further and consider µ and σ2 to be random variables too.

And in fact, in a graphical model, it is often useful to consider many parameters
as random variables and connect these parameters together in the graph. The
connection can also be based on common-sense relationships, causal interactions,
or any dependency that is strong enough to exist between two variables.

Building graphs
There are many reasons to connect variables in a graph and, as we will see later in
this chapter, there are also many algorithms to automatically learn such connections
from a dataset. If you read the scientific literature, you will certainly find references
to causality, sparse models, or factorization. All of these reasons are good enough to
connect two variables in a graphical model. In this section we will build such models
and see what happen when two variables are connected, in terms of both the model
and flow of information, with an important notion called d-separation.

Another important aspect of making graphical models is modularization. This is one of
the most attractive aspects of graphical models, because you can build complex models
from simpler blocks and extend known models by simply extending their graph.

Then learning the parameters and querying the model boil down to the
application of the same learning and inference algorithms.

Let's see now a few practical and theoretical examples of graphs and the type of
problem they capture.

Probabilistic expert system
Let's say we want to perform the medical diagnosis of tuberculosis. Before diving
into this example, a word of caution for the reader: the author of this book has no
medical skills and knowledge. He specializes in the field and topic of this book
and machine learning. Therefore, the following example's only purpose is to show
how to build a simple graphical model and must not be used for medical purposes.
Moreover, the following example is based on: http://en.wikipedia.org/wiki/
Tuberculosis_diagnosis.

http://en.wikipedia.org/wiki/Tuberculosis_diagnosis
http://en.wikipedia.org/wiki/Tuberculosis_diagnosis

Exact Inference

[38]

Tuberculosis is caused by a bacteria called Mycobacterium tuberculosis. Only a
clinical examination with a biological analysis can detect the bacteria and confirm the
disease or not. However, a physical examination can reveal clues about tuberculosis
and lead the physician to decide that a thorough clinical examination is needed
to confirm or not the presence of the bacteria in the patient's body. Moreover, a
complete medical evaluation for tuberculosis must include the medical history, a
physical examination, a chest X-ray, and a microbiological examination. So, if we
look at the possible symptoms and examinations, we can also identify corresponding
random variables that will be part of our model:

• C: This is prolonged cough for more than three weeks. C can be true or false.
• P: This is chest pain. It can be true or false.
• H: This is hemoptysis. Again we have a binary variable with true or false

values and N for night sweats, which is a binary variable too.
• L: This is appetite loss. This is more subjective and we can grade it with three

values: {low, medium, strong} to denote the intensity of the appetite loss.
• Finally, as we said, only a microbiological study can confirm tuberculosis,

while other symptoms can only presume it. So we need two random
variables, one binary called M for the microbiological study that says
whether the bacteria has been found or not and one that decides if the patient
has confirmed, probable, presumed, or negative tuberculosis. It's a random
variable with four states.

In order to make our graphical model, we need now to perform two things: first of
all we need a graph to connect our random variables and then we need to estimate
prior probabilities associated with each variable—or, if you prefer, with each node
in the graph. For the second task, estimating probabilities requires an expert medical
knowledge that is clearly beyond the scope of this book (and beyond the skills of the
author as stated before). So we will simply give names to the probabilities, such as x1,
x2, x3, and so on.

A symptom is in general caused by the presence of a disease and not the other way
around. For example, night sweats are not the cause of tuberculosis; it's clearly the
other way around. Moreover night sweats could be caused by many other things,
such as a powerful heater in the bedroom. However, the presence of the bacteria
causes the disease. In fact, if a bacteria is present but in a very small quantity, it could
not cause the disease. This simple reasoning gives us a way to design our graph.

Let's start with the binary symptoms C, P, H, and N. They are caused by the disease
T. The variable L can be added following the same principle too and therefore the
graph should be as follows:

Chapter 2

[39]

We see there is a pattern in the way variables are connected together. This pattern is
very common when one deals with causes and consequences in a graphical model.
If we apply the same idea to the relationships between the microbiological study M
and the disease T, we will have the following interaction:

So the final graph when we join the two previous graphs together is the following:

Exact Inference

[40]

And what we just did is a very important aspect of graphical models: we joined
two sub-models together in order to form one that is more advanced and captures
what we need more effectively. In fact, we could add more symptoms and diseases
in the same graph so that we would be able to differentiate between, for example,
tuberculosis and pneumonia or any other disease that could have similar symptoms.
By computing the posterior probability of each disease given a few symptoms,
the physician could decide which treatment is the most appropriate for the most
likely disease. This form of probabilistic graphical model is sometimes called a
probabilistic expert system.

Basic structures in probabilistic graphical models
We continue our exploration of structures and patterns in graphical models by looking
at different types of structure we can have and their properties. We will conclude this
part by implementing and displaying some of them in R using various packages.

If we have many causes for the same fact, the causes will point to the fact in the
graph. This structure is very common and very inefficient! It should be avoided at
all times except in cases where the number of variables is not big. Indeed, let's say
we have causes C1 to Cn, which are binary variables, and a fact F, which is a binary
variable too. As we saw in the first chapter, the (local) probability distribution
associated to this will be: P(F | C1, C2,… Cn).

Knowing that all the variables are binary, we will need to represent a table with 2n+1
values. If n=10, which is not big in fact, we will need 2,048 values! That's a lot of
probabilities to find. But if we have 31 causes, 231+1 = 232 = 4,294,967,296!!!

Yes, you need more than 4 billion values, just for representing 31 causes and a fact.
With standard double floating point values, that totals 34,359,738,368 bytes in your
computer's memory, that is, 32 GB! For such a small model, it's a bit too much. If
your variables don't have two but, say, k values instead, you will need kn+1 values, to
represent the previous conditional probability. That's a lot!

Chapter 2

[41]

The following graph shows the causes:

We can reason further about the causes, as some of them might not be directly
related to the fact but instead might be causing other causes. In that case, we can
give a hierarchy of causes in the graph as follows:

In this example, we deal with eight causes, but each local probability distribution, such
as for example P(D1 | C1, C2, C3) only involves four variables at most. This is tractable.

When we look at sequences of variables, another structure comes to mind, in which
we don't capture causality but rather a sequence of variables in time. This is a very
common structure too. Let's say we have a random variable representing the state
of a system at time t, and let's say the state of the system predicts what the next state
will be. Therefore, we can ask about the probability distribution of the current state
of the system given the previous state P(Xt | Xt-1) where t and t-1 denote the time.

Exact Inference

[42]

Next, let's say that, at every time step, our hypothetical system can generate a value,
or in other words, we can make an indirect observation about the system. This
observation is not the state of the system but something directly depending on it.
So it is legitimate to ask for the probability P(Ot | Xt), where O is the observation,
depending on the state. Finally, putting things together in a bigger graph, we have
the following:

This graph has several names, depending on the types of the random variables X
and O. When the variables are discrete, as we saw many times before, this model is
also called a Hidden Markov Model—that is, a Markov Model in which the state is
not directly observable (hidden). A Markov model is a model whose current states
depend only on the previous state of the system. In this graph, it is clearly captured
by the fact that Xt only depends on Xt-1. When all the variables follow a Gaussian
distribution (and not a discrete one), this model is very famous: it is a Kalman filter!

So what's remarkable about probabilistic graphical models is that legacy models can
also be represented by a graphical model.

You must remember that such a graph, when the edges are directed (arrows), cannot
have a cycle. From a philosophical point of view, it means a consequence could be
the cause of its cause, which is paradoxical. It means also that you would have an
incomplete formula to represent the factorization of your probability distribution,
and this is mathematically false in fact. For example, you cannot write
P(ABC) = P(A|B)P(B|C)P(C|A).

In the next section, we will see how we can compute any posterior distribution given
any other variables in any type of graph. But before, let's have a look at a final graph,
which is a combination of what we learned before:

Chapter 2

[43]

This graph is very interesting in the sense that it combines two Hidden Markov
models together within the same model. But one of the models, Y, is also considered
as a cause of the state of the other model, X. This is a very powerful combination. We
can finally perform the reverse exercise and write the join probability distribution for
this graph:

() () ()
() ()
() ()

() ()
() ()
() ()

2 2 2

1 2 1 1

1

2 2 2 2

1 1 2 1 1

1 1 1

. |
| . |
| . |
| . |

| , . |
| , . |

t t t

t t t t

t t t t

t t t t

t t t t t

t t t t t

P P Y P W Y
P Y Y P W Y
P Y Y P W Y

P X Y P O X
P X Y X P O X
P X Y X P O X

χ − − −

− − − −

−

− − − −

− − − − −

− − −

=

Exact Inference

[44]

Variable elimination
The previous example is quite impressive and seems to be complex. In the following
sections we are going to see how to deal with such complex problems and how to
perform inference on them, whatever the model is. In practice, we will see that things
are not as idyllic as they seem to be and there are a few restrictions. Moreover, as we
saw in the first chapter, when one solves the problem of inference, one has to deal
with the NP-hard problem, which leads to algorithms that have an exponential
time complexity.

Nevertheless there are dynamic programming algorithms that can be used to achieve
a high degree of efficiency in many problems of inference.

We recall that inference means the computing of a posterior distribution of a subset
of variables, given observed values of another subset of the variables of the model.
Solving this problem in general means we can choose any disjoint subsets.

Let χ be the set of all the variables in the graphical model and let Y and E be two
disjoint subsets of variables ,Y E χ⊂ . We will use Y as the query subset, that is, the
variables we want to know the posterior distribution about, and E as the observation
subset, that is, the variables for which we have an observation, also called an
evidence (hence the E).

Therefore the general form of a query is () ()
()
,

|
Y e

P Y E e P
p e

= = according to the Bayes

theorem, as seen in Chapter 1, Probabilistic Reasoning. In fact, P(Y,e) can be considered
as a function on Y such that () () (), , ,P Y E e P y e P Y y E e= → = = = —that is, the
probability of having Y=y and E=e at the same time.
Finally, we can define W by W Y Eχ= − − —that is, the subset of variables in the
graphical model that are neither considered for the query, nor observed. Then we
can compute by () (), , ,w WP y e p y e w∈= ∑ . Indeed if we marginalize over the
variables in W, we are left with P(Y,E).

If we apply the same reasoning, we can also compute the probability of the evidence
P(E=e), such as for example () (),yP e P Y e= ∑ .

Therefore the general mechanism for Bayesian inference is to marginalize over the
unwanted and observed variables to be left with the query's variables.

Chapter 2

[45]

Let's take a simple example with the following graph:

This graphical model encodes the probability distribution:

P(ABCD) = P(A).P(B|A).P(C|B).P(D|C)

It is a very simple chain that will serve the purpose of our presentation of the
variable elimination algorithm. To each node of the graph, as we saw before, we
associate a potential function, which in the case of a directed graphical model
such as this one is simply the conditional probability of the variable given its
parents: P(A), P(B|A), P(C|B) and P (D|C). If P(A) can be directly read from the
graph's associated functions, P(B) has to be computed by marginalizing over A:
() () ()|aP B P B a P a= ∑ .

It looks simple but it can become a very computing-intensive operation to run (OK,
not that much but you get the point). If kA∈� and mB∈� (that is, A is a variable
with k possible values and B with m values), doing the previous sum requires
2m.k - m operations. To understand this we can write the sum:

() () ()
() ()
() ()

() ()

|

1 1| 1

2 1| 2

1|

a
P B i P a P B i a

P A P B A

P A P B A

P A k P B A k

= = =

= = = = +

= = = +

= = =

∑

…

And this has to be computed for each and every m value of B.

Exact Inference

[46]

After doing this operation, we marginalized out A and we could say that we
obtained an equivalent graphical model such as this one:

Here, the distribution of B has been updated with the information from A. If we want
to find the marginal distribution of C, we can apply the same algorithm again and
obtain P(C). And again if we want to obtain P(D). So in the end, what we've done, in
order to obtain P(D), is the following summations:

() () () () (). | . | . |
c b a

P D P A P B A P C B P D C=∑ ∑ ∑

However. because in each summation we only need to address the concerned
variables in the sum. we can rewrite the sum as:

() () () () ()| | . |
c b a

P D P D C P C B P A P B A=∑ ∑ ∑

This considerably simplifies the computations because they have to be done on local
distributions only. As an exercise, I will let the reader show that for a graphical model
representing a chain of n variables in ℝk then the complexity of the computations goes
from O(kn) to only. Remember that the big O notation means the upper bound of the
computation time is proportional to the formula in the parentheses of the O function
(also called the worst-case time complexity). Obviously, this scheme is efficient.

The main scheme that appears in this example is that we can sum variables out and
then reuse the result for the next step. Ideally, we want to apply the same idea to any
graph and eliminate variables step by step by caching intermediate results to use
them again. This can be achieved because, thanks to the structure of the graphical
model, each sub-expression in the summation only depends on a few variables and
because we can cache the results along the path in the graph.

Chapter 2

[47]

Sum-product and belief updates
When computing the distribution of one variable (or a subset of variables), the main
operation is the marginalization, which consists of summing over a variable (or a
subset of variables) to eliminate it from the main expression. If we call ϕ a factor in the
factorization of the joint distribution, we can use the following properties to generalize
and improve the variable elimination algorithm we saw in the previous section:

• Commutativity: 1 2 2 1ϕ ϕ ϕ ϕ=

• Associativity: () ()1 2 3 1 2 3. . .ϕ ϕ ϕ ϕ ϕ ϕ=

• And if ()1 1. 2 1 2:
X x

X ϕ ϕ ϕ ϕ ϕ∉ =∑ ∑
If again we apply it to the joint distribution P(ABCD) from the previous section, we
again obtain:

()
()
()()

A B C DC B A

C D A BC B A

D C A BC B A

P D ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

= ∑ ∑ ∑
∑ ∑ ∑
∑ ∑ ∑

In the end, the main expression that comes again and again is the sum-product over

a factor, which can be written as Z ϕ ϕ∈Φ∏∑ .

So in general, if we can find a good ordering of the factors or the variables in the
case of a directed graphical model as we saw until now, we can, by applying the
previous sum-product formula, eliminate step by step each variable until we obtain
the desired subset.

The ordering must marginalize out each factor containing the variable that has to be
eliminated, leading to a new reduced factor that will be used again.

One possible way to perform that is with the following algorithm (in Probabilistic
Graphical Models, D. Koller, and N. Friedman, 2009, MIT Press), called the sum-
product variable elimination algorithm:

• Ф: the set of factors
• Z: the set of variables to be eliminated
• ≺ : ordering on Z

Exact Inference

[48]

1. Let Z1, … ,Zk be an ordering on Z such that i jZ Z iff i j<≺ :
2. for i=1,…,k

3. (), iSumProductEliminateVar ZΦ = Φ

4.
ϕ

ϕ ϕ∗
∈Φ

=∏
5. return ϕ∗

This algorithm does the following: after receiving an order for eliminating variables or
factors step after step, for each variable (or factor) it applies the algorithm to eliminate
the variable and reduces the set of factors with the results from this function (defined
next). Then it multiplies the remaining factors and returns the result.

The sub-procedure is as follows and aims at eliminating one variable at a time:

SumProductEliminateVar Algorithm(

Ф: set of factors,

Z: variable to be eliminated)

1. (): Z Scopeϕ ϕ′Φ = ∈Φ ∈

2. ′′ ′Φ = Φ −Φ

3. ϕ
ϕ
′∈Φ

Ψ =∏
4. Z

τ ψ=∑
5. return { }τ′′Φ ∪

The second procedure does exactly what we have been doing step by step in the
previous examples. The idea is to first multiply the potential in which the variable
Z occurs and then marginalize out (line 4) to eliminate the variable Z. Finally, the
algorithm returns the set of factors in which all the factors containing Z have been
removed (line 2) and the new sum-product factor resulting from the marginalization
of Z has been added (line 5). Also note that the first line selects all the factors that
contain the variable Z to be eliminated.

So finally, when this procedure is applied sequentially to an ordering of the variables,
one can eliminate them one after another until the desired subset is obtained.

Chapter 2

[49]

Let's see how it works on an example where the graphical model is again as follows:

This is a factorization: P(ABCD) = P(A).P(B|A).P(C|B).P(D|B) and the conditional
distribution (factors) are defined by the following matrices:

A=matrix(c(.8,.2),2,1)

B=matrix(c(.6,.4,.3,.7),2,2)

C=matrix(c(.5,.5,.8,.8),2,2)

D=matrix(c(.3,.7,.4,.6),2,2)

The conditional distributions are represented as columns in the matrix. For example,
B is:

 [,1] [,2]

[1,] 0.6 0.3

[2,] 0.4 0.7

The set of variables to be eliminated is {A,B,C} so that in the end we obtain the
marginal probability distribution of D. So we are going to apply the algorithm step
by step:

1. We begin by eliminating A in order to obtain P(B,C,D) and so we need to
marginalize A out:

()
0.6 0.4 0.48 0.06 0.54

. 0.8 0.2
0.3 0.7 0.32 0.14 0.46

T TA B B∗+
= × = = = +

Exact Inference

[50]

7. We continue by eliminating B to obtain P(C,D) by performing the same
procedure, this time reusing the previous result. Indeed in line 3 of the first
algorithm, you can see that the result of calling SumProductEliminateVar
with parameter Ф is assigned to Ф again. That's what we are doing here by
using the previous result:

()
0.5 0.5 0.638

. 0.54 0.14
0.8 0.2 0.362

T TB C C∗ ∗
= × = =

8. At this point we are left with only two variables C and D, and we need to
eliminate C using again the same procedure as described in the second
algorithm:

() ()
0.3 0.7 0.3362

. 0.638 0.362
0.4 0.6 0.6638

T TC D P D∗
= × = =

In R you can quickly check the result by carrying out the following code:

Bs = t(A) %*% t(B)

Cs = Bs %*% t(C)

Ds = Cs %*% t(D)

Ds

 [,1] [,2]

[1,] 0.3362 0.6638

In the end, we are left with three questions:

• If I observe a variable, how can I compute the posterior probability of another
subset of variables?

• Is it possible to automatically find an optimal (or at least very efficient)
ordering of the variables?

• If such an ordering exists, can we apply it to any type of graph, especially
graphs with loops (loops but not cycles, as explained before)?

The answer to the first question is remarkably simple as the only operation to
perform is to replace each factor φ by the instantiation of φ[E = e]. But if we only
apply the previous algorithm such as this, we will obtain P(Z, e) if Z is the query
subset. So one needs to normalize again, according to the Bayes formula, to obtain
the conditional posterior probability as desired.

Chapter 2

[51]

The previous algorithm must be extended as follows:

• () ()z Val Z
yα ϕ∗

∈
=∑ where (),P Z eϕ∗ = is the marginal distribution

previously computed

• () ()
()
,

|
P Y e

P Y e
P e

ϕ
α

∗

= =

We will answer to the second and third section of this chapter with a new algorithm
called the junction tree algorithm, which is the most fundamental algorithm to
date in the field of probabilistic graphical models. Its purpose is to transform any
graph into a tree of clustered variables such that it is possible to apply the previous
algorithm with an optimal ordering, minimizing the computational costs.

The junction tree algorithm
In this section we will have an overview of the main algorithm in probabilistic
graphical models. It is called the junction tree algorithm. The name arises from the
fact that, before performing numerical computations, we will transform the graph
of the probabilistic graphical model into a tree with a set of properties that allow the
efficient computation of posterior probabilities.

One of the main aspects is that this algorithm will not only compute the posterior
distribution of the variables in the query, but also the posterior distribution of all
other variables that are not observed. Therefore, for the same computational price,
one can have any posterior distribution.

In order to achieve such a result, the junction tree algorithm will combine the
efficiency of belief propagation and the sum-product as we saw before and the
generality of the variable elimination procedure. Indeed, variable elimination works
on any type of tree (but not on graphs with loops) and the sum-product caches
intermediary results in order to make the computations more efficient. Because
variable elimination only works on trees, we need to transform a graph with loops
into a tree representing an equivalent factorization of the distribution.

The junction tree algorithm is based on the following consideration. Let's take our
favorite example again P(A, B, C, D) = P(A)P(B | A)P(C | B)P(D | C) and apply the
Bayes rule to each factor:

() () ()
()

()
()

()
()

() () ()
() ()

, , , , . , . ,
, , , . .

P A B P B C P C D P A B P B C P C D
P A B C D P A

P A P B P D P B P D
= =

Exact Inference

[52]

This formula is very interesting because we use as the denominator the variables
in the intersection of the sets {A,B},{B,C} and {B,C},{C,D}. This reparameterization
of the initial factorization is a prime indicator of how to transform a graph and
how to perform inference on this transformed graph. Indeed, P(B) and P(D) are the
probability distribution of the separator between the aforementioned sets—that is,
the intersection of some clusters of the variable.

Of course, this is not the general principle but a useful observation for building a tree
from a graph and performing inference.

The building of a junction tree will go through four phases in order to transform the
graph into a tree:

1. Moralization of the graph, which consists in joining each pair of parents of
each node with an undirected edge:

2. Then the graph is transformed into an undirected graph where each arrow is
replaced by a simple edge. The effect of the first two operations is that each
variable (a node in the graph) and its parent are now in the same clique—that
is, a subgraph where the nodes are all connected.

3. Then the graph is triangulated: when a graph has loops, the results from
variable elimination and re-representation in terms of the induced graph is
equivalent to adding an edge between two variables belonging to the same
undirected loop. We saw a simple example before: we eliminated variable
A and obtained a new graph. When a graph has a loop this elimination step
is equivalent to adding a cord between two nodes and we therefore need to
perform it in the graph before the next step. In the next graph, the dashed lines
are due to triangulation, while the plain lines are due to the two previous steps:

Chapter 2

[53]

4. Finally, the last step will transform the triangulated graph into a cluster
tree in which each node represents a factor on a subset of variables. The
subset is determined by each clique of the graph. In between each cluster
node, we will have another type of node called the separator. Recall the
first simple example we saw at the beginning of this section, in which we
reparameterized the model by putting a the denominator all the separators:
this is exactly what we're performing here, but on any type of graph. The
cluster tree is calculated by:

 ° Finding each clique of the triangulated graph and joining the nodes
from those cliques into a single node.

 ° Computing a maximum spanning tree on the graph. The junction tree
is this maximum spanning tree.

Exact Inference

[54]

So from the cluster tree we obtain at the end, which is also called a junction tree, we
have two types of nodes: cluster nodes and separator nodes. More generally, in the
same spirit as our initial example, the probability distribution of a junction tree is
equal to:

()
()
()

c C

s S

c
P

s
ϕ

χ
ϕ

∈

∈

= ∏
∏ where φ(c) is a factor on each cluster of the junction tree

and φ(s) is a factor on each separator of the junction tree. Let's look at the full
transformation from an example in Bayesian Reasoning and Machine Learning, D.
Barber, Cambridge University Press, 2012.

The initial graph is as follows:

Now, the triangulated and undirected graph based on this initial graph is as follows:

Chapter 2

[55]

Finally, the junction tree is as follows:

Inference on the junction is realized by passing messages from one cluster to the
next one in two passes: from the root to the bottom and then the bottom to the root.
After this full schedule of updates between clusters, each cluster will contain the
posterior probability distribution of the variables it contains (such as for example
P(ABC) in the top node in our example). Finally, finding the posterior distribution
of any variables boils down to applying the Bayes rule on one of these clusters and
marginalizing out the few variables we are not interested in.

Implementing a junction tree algorithm is a complex task, but fortunately several R
packages contain a full implementation. And you already used them. Indeed, in the
first chapter we saw small examples of Bayesian inference with the gRain package.
The inference algorithm is the junction tree algorithm.

So as an exercise, we will build on and experiment with one of our previous
examples in which we have variables A, B, C, D, E, and F. We will consider for the
sake of simplicity that each variable is binary so that we won't have too many values
to deal with. We will assume the following factorization:

P(ABCDEF) = P(F).P(C|F).P(E|F).P(A|C).P(D|E).P(B|A,D)

Exact Inference

[56]

This is represented by the following graph:

We first start by loading the gRain package into R:

library(gRain)

And then we create our set of random variables from A to F:

val=c("true","false")

F = cptable(~F, values=c(10,90),levels=val)

C = cptable(~C|F, values=c(10,90,20,80),levels=val)

E = cptable(~E|F, values=c(50,50,30,70),levels=val)

A = cptable(~A|C, values=c(50,50,70,30),levels=val)

D = cptable(~D|E, values=c(60,40,70,30),levels=val)

B = cptable(~B|A:D, values=c(60,40,70,30,20,80,10,90),levels=val)

As you may remember, the cptable function creates a conditional probability table,
which is a factor for discrete variables. The probabilities associated to each variable
are purely subjective and only serve the purpose of the example.

Because we have been giving the parents of each variable every time we created a
conditional probability table, we also have defined our graph completely. Therefore,
the next step is to compute the junction tree. In most packages, computing the
junction tree is done by calling one function because the algorithm just does
everything at once:

Chapter 2

[57]

Here we will perform the following:

plist = compileCPT(list(F,E,C,A,D,B))

plist

We check the list of variables has been correctly compiled into a probabilistic
graphical model and we obtain it from the previous code:

CPTspec with probabilities:

 P(F)

 P(E | F)

 P(C | F)

 P(A | C)

 P(D | E)

 P(B | A D)

This is indeed the factorization of our distribution as stated before. If we want to
check further we can look at the conditional probability table of a few variables:

print(plist$F)

print(plist$B)

The result is, as expected, the conditional probability table:

F

 true false

0.1 0.9

, , D = true

 A

B true false

 true 0.6 0.7

 false 0.4 0.3

, , D = false

 A

B true false

 true 0.2 0.1

 false 0.8 0.9

Exact Inference

[58]

The second output is a bit more complex but if you look carefully you will see that
you have two distributions: P(B|A,D=true) and P(B|A,D=false), which is a more
readable presentation of P(B|A,D).

We finally create the graph and run the junction tree algorithm by calling:

jtree = grain(plist)

Again, check the result we obtain:

jtree

Independence network: Compiled: FALSE Propagated: FALSE

 Nodes: chr [1:6] "F" "E" "C" "A" "D" "B"

At this point, you might think, "Is that all?" Well, yes it is. Now that you have the
junction tree representation of the graph you can perform any possible inference.
And moreover, you only need to compute the junction tree once. Then all queries can
be computed with the same junction tree. Of course, if you change the graph, then
you need to recompute the junction tree.

Let's perform a few queries:

querygrain(jtree, nodes=c("F"), type="marginal")

$F

F

 true false

0.1 0.9

Of course, if you ask for the marginal distribution of F, you will obtain the initial
conditional probability table, because F has no parents. At least we know it works!

 querygrain(jtree, nodes=c("C"), type="marginal")

$C

C

 true false

0.19 0.81

This is more interesting because it computes the marginal of C while we only
stated the conditional distribution of C given F. We didn't need to have a complex
algorithm such as the junction tree algorithm to compute such a small marginal. The
variable elimination algorithm we saw earlier would be enough, too.

Chapter 2

[59]

But if you ask for the marginal of B then variable elimination will not work because
of the loop in the graph. However the junction tree will give the following:

 querygrain(jtree, nodes=c("B"), type="marginal")

$B

B

 true false

0.478564 0.521436

And we can ask for a more complex distribution, such as the joint distribution of B
and A:

querygrain(jtree, nodes=c("A","B"), type="joint")

 B

A true false

 true 0.309272 0.352728

 false 0.169292 0.168708

In fact, any combination can be given such as A,B,C:

querygrain(jtree, nodes=c("A","B","C"), type="joint")

, , B = true

 A

C true false

 true 0.044420 0.047630

 false 0.264852 0.121662

, , B = false

 A

C true false

 true 0.050580 0.047370

 false 0.302148 0.121338

Now we want to observe a variable and compute the posterior distribution. Let's say
F=true and we want to propagate down this information to the rest of the network:

jtree2 = setEvidence(jtree, evidence=list(F="true"))

Exact Inference

[60]

And we query the network again:

querygrain(jtree, nodes=c("F"), type="marginal")

$F

F

 true false

0.1 0.9

querygrain(jtree2, nodes=c("F"), type="marginal")

$F

F

 true false

 1 0

This query is most interesting: in the first query in jtree we have the marginal of
F and in the second query in jtree2 we have … P(F=true) = 1!!! Indeed, we set an
evidence in the network saying that F=true. So the probability is now 1 for this value.

More interestingly, we can ask for any joint or marginal now:

querygrain(jtree, nodes=c("A"), type="marginal")

$A

A

 true false

0.662 0.338

querygrain(jtree2, nodes=c("A"), type="marginal")

$A

A

 true false

 0.68 0.32

Here we see that knowing that F=true changed the marginal distribution on A from its
previous marginal (the second query is again with jtree2, the tree with an evidence).

And we can query any other variable (and see that the results are different):

querygrain(jtree, nodes=c("B"), type="marginal")

$B

B

 true false

Chapter 2

[61]

0.478564 0.521436

querygrain(jtree2, nodes=c("B"), type="marginal")

$B

B

 true false

0.4696 0.5304

Finally, we can set more evidences and propagate back and forth in the network to
compute inverse probabilities as well:

jtree3 = setEvidence(jtree, evidence=list(F="true",A="false"))

Here we say that F=true and A=false and query the network again, looking at the
difference between the before and after setting evidences:

querygrain(jtree, nodes=c("C"), type="marginal")

$C

C

 true false

 0.19 0.81

querygrain(jtree2, nodes=c("C"), type="marginal")

$C

C

 true false

0.0989819 0.9010181

querygrain(jtree3, nodes=c("C"), type="marginal")

$C

C

 true false

0.15625 0.84375

As expected, knowing a value for A and F drastically changes the probability
distribution of C. As an exercise, I let the reader put an evidence of F (and then F
and B) to see what happens to the posterior distribution of A.

Exact Inference

[62]

Examples of probabilistic graphical
models
In this last section we will show several examples of PGM that are good candidates
for exact inference. The goal of this section is to show realistic yet simple examples
of what can be done and to provide the reader with ideas for developing his or her
own models.

The sprinkler example
This is an historical example which has been used in many textbooks. It is rather
simple and shows a simple reasoning.

Let's say we look at our garden and see the grass is wet. We want to know why the
grass is wet. There are two possibilities: either it was raining before or we forgot to
turn off the sprinkler. Moreover, we can observe the sky. If it's cloudy, chances are it
was raining before. However, if it was cloudy then presumably we didn't turn on
the sprinkler, so it is more likely, in this case, we would have not forgotten to turn
off the sprinkler.

This is a little example of causal reasoning that can be represented by a PGM. We
identify four random variables: cloudy, sprinkler, rain, and wetgrass. Each of them
is a binary variable.

We can give prior probabilities to each of them. For example, P(cloudy=true) =
P(cloudy=false)=0.5.

For the other variables, we can set up conditional probability tables. For example, the
rain variable could be defined as follows:

cloudy P(rain=T | cloudy) P(rain=F | cloudy)
True 0.8 0.2
False 0.2 0.8

We let the reader imagine what the other probability tables would be.

Chapter 2

[63]

The PGM for this model is:

The medical expert system
One way to represent medical knowledge is to link symptoms to causes. The
reasoning behind it is to say that causes will generate symptoms that can be
observable. The problem is that there are many symptoms and many of them can
have a common cause.

The idea of a PGM representing a medical knowledge base is to have two layers of
nodes: one for the causes, and one for the symptoms.

The conditional probability tables associated with each node will strengthen or
weaken the link between symptoms and causes so as to better represent the most
likely cause of an observed symptom.

Depending on the degree of complexity of the associations, this kind of model can be
a good candidate or not for exact inference.

Moreover, representing large probability tables can be a problem because there are
too many parameters to determine. However, using a database of facts, it is possible
to learn the parameters. In the next chapter we will see how to learn parameters.

Exact Inference

[64]

The PGM is represented as follows:

In this example, we see that symptom 2 and symptom 3 have three parents. In a
more realistic medical model, it could be way more. For example, the headache
symptom is caused by many different causes. In this case, it is not unusual
to represent the conditional probability table associated with this node by an
approximate version of it. One popular model is called the Noisy-OR model.

Models with more than two layers
Unlike the previous example, it makes sense in many applications to have a deeper
causal reasoning and have causes and consequences layered on top of each other. It
usually helps to understand the structure of the problem.

In these kinds of model, there is no theoretical limit to the complexity of the model,
but we generally advise keeping the relationships simple between nodes. For
example, it's a good practice for a node not to have more than three parents. If this is
the case, then it is good to study the relationships in slightly more detail to see if, by
any chance, the model could be decomposed a little further.

For example in J. Binder, D. Koller, S. Russell, and K. Kanazawa, Adaptive Probabilistic
Networks with Hidden Variables. Machine Learning, 29(2-3):213-244, 1997, a model is
developed for estimating the expected claim costs for a car insurance policyholder.

Chapter 2

[65]

In this model a more layered approach is adopted to represent knowledge about
car insurance. The following graph shows the model. Hidden nodes are shaded and
output nodes are shown with heavy lines:

Sometimes, the model can become very complex, but is nevertheless still usable.
For example in S. Andreassen, F. V. Jensen, S. K. Andersen, B. Falck, U. Kjærulff,
M. Woldbye, A. R. Sørensen, A. Rosenfalck, and F. Jensen, MUNIN - an Expert EMG
Assistant. In Computer-Aided Electromyography and Expert Systems, Chapter 21. Elsevier
(Noth-Holland), 1989., a complex network has been designed.

We show here a representation taken from the bnlearn R package (http://www.
bnlearn.com/) in which the PGM is particularly big.

The reader will note that the bnlearn R package is available on the CRAN repository
and can be installed just like any other package.

The following figure shows the model developed in the aforementioned paper. The
model has 1,041 nodes and 1,397 edges.

http://www.bnlearn.com/
http://www.bnlearn.com/

Exact Inference

[66]

Obviously setting all the parameters by hand is impossible and this kind of PGM
needs to be learned from data. But it is an interesting example of a complex model:

Tree structure
The tree-structured PGM is an interesting model because it usually leads to a very
efficient inference. The idea is simply to model the relationship between variables
such as a tree, where each node will have one parent but can have many children.

So for any variable in the model, we are always representing a simple relationship
that can be encoded with P(X | Y).

Chapter 2

[67]

The following graph shows one example of such a model:

In this model, the clusters of nodes generated by the junction tree algorithm will
always be made up of two nodes only: the child and its parent. So this model keeps
the complexity of the junction tree algorithm low and allows for fast inference.

Of course, all these models can also be joined together to form more complex models
if needed by the applications. These are just examples, and the reader is encouraged
to develop his or her own models. One way to start is to understand what the causal
relationships are between the variables of interest.

Also structural knowledge of the domain can be exploited to design new models. A
step-by-step approach is always a good idea. One starts with a very simple model
with just a few nodes and performs experiments with it to see if the model performs
well. Then the model can be extended.

The problem of setting the parameters of such models is large and in the next chapter
we will explore an algorithm to learn parameters from data, thus making it easier to
develop an efficient PGM.

Exact Inference

[68]

Summary
In the second chapter, we introduced the fundamentals of inference and we saw the
most important algorithms for computing posterior distribution: variable elimination
and the junction tree algorithm. We learned how to build a graphical model by
considering causality, temporal relationships, and by identifying patterns between
variables. We saw a fundamental feature of probabilistic graphical models, which is
the combination of graphs to build more complex models. And we learned how to
perform inference with a junction tree algorithm in R and saw that the same junction
tree can be used for any type of query, on both marginal and joint distribution. In
the last section we saw several real-life examples of PGM that can be used in many
applications and are usually good candidates for exact inference.

In this chapter, we faced a problem when defining a new graphical model: the
parameters are tedious to determine. In fact, even on small examples it's complicated.
In the next chapter we will learn how to find parameters automatically from a dataset.
We will introduce the EM (Expectation Maximization) algorithm and experiment with
a complex problem: learning the structure of the graph itself. We will see that inference
is the most important sub-routine of all learning algorithms, hence the necessity for
having efficient algorithms such as the junction tree algorithm.

[69]

Learning Parameters
Building a probabilistic graphical model requires in general three steps: defining the
random variables, which are the nodes of the graph as well; defining the structure of
the graph; and finally defining the numerical parameters of each local distribution.
So far, the last step has been done manually and we have given numerical values to
each local probability distribution by hand. In many cases, we have access to a wealth
of data and we can find the numerical values of those parameters with a method
called parameter learning. In other fields, it is also called parameter fitting or model
calibration.

Parameter learning is one important topic in machine learning. In this chapter we
will see how we can use a dataset and learn the parameters for a given graphical
model. We will go from the simple but common use case, in which the data is fully
observable, to a more complex case, in which the data is partially observed, and
therefore needs more advanced techniques.

Learning parameters can be done with several approaches and there is no ultimate
solution to the problem, because it depends on the goal the model's user wants to
reach. Nevertheless it is common to use the notion of maximum likelihood of a
model and also maximum a posteriori. As you are now used to the notions of prior
and posterior distribution, you can already guess what a maximum a posteriori
could do.

In this chapter we will use datasets. When we have many variables in a model,
at any time we can observe the value of those variables. Many observations of all
the variables at the same time represent a dataset. For example, we have a model
about a student's performance at University. In this model, we have several random
variables such as the student's age, course, grade, gender, and year. A single
observation could be {21, Statistics, B+, female, 2nd year}. And a dataset is a large
collection of such observations.

Learning Parameters

[70]

Throughout this chapter, we will make the assumption that the dataset is iid,
an acronym for independently and identically distributed. It means that each
observation has been made using the same probability distribution and each
observation is independent of all others in the dataset. As for the student's example
it makes a lot of sense. But if we consider a time series dataset, such as the GDP
of a country, then the dataset is not i.i.d anymore and different algorithms will be
necessary to learn the parameters. As a matter of fact, i.i.d datasets cover a wide
range of applications.

With all these notions in hand, we can now discuss the main topic in the chapter
in a little more depth. Let's call D the dataset and θ the parameter of the graphical
model. Then we call likelihood the function P(D | θ)—in other words, the probability
to observe (or generate) the dataset given the parameters. This is why probabilistic
graphical models are sometimes called generative models.

A maximum likelihood estimation aims at finding the value of parameter θ, which
maximizes the likelihood P(D | θ), and it is written as ()|argmax P Dθθ θ=� . It is
an optimization problem where one searches for the optimal value of θ, which
maximizes P(D | θ).

If we want to be more precise about θ, we can adopt a Bayesian approach and
also give a prior distribution over the parameters θ, P(θ). In this case, finding the
parameter value boils down to finding the maximum value for P(D | θ).P(θ). This is
called a maximum a posteriori.

In this chapter, we will start by looking at simple examples of parameter estimation
with a maximum likelihood and show how to implement them in R. Then we will
look at the maximum likelihood estimation of a probabilistic graphical model.
Finally, we will look at the harder estimation problem that occurs when data is
missing, either randomly or when one has hidden variables. This will give us the
opportunity to introduce one of the most important algorithms in machine learning:
the E.M. algorithm. E.M. means Expectation Maximization.

The chapter will be structured as follow:

• An introduction with a simple example
• Learning as inference
• Maximum likelihood
• The EM algorithm

Chapter 3

[71]

Introduction
In this chapter, we will learn how to make the computer learn about the parameters
of a model. Our examples will use various datasets we will build ourselves or other
datasets we will download from various websites. There are many datasets available
online and we will use data from the UCI machine learning repository. These are
made available by the Centre for Machine Learning and Intelligent Systems of the
University of California, Irvine (UCI).

Iris photography from https://en.wikipedia.org/wiki/File:Iris_germanica_%28Purple_
bearded_Iris%29,_Wakehurst_Place,_UK_-_Diliff.jpg

For example, one of the most famous datasets is the Iris dataset where each data
point in the dataset represents the characteristics of an iris plant. Different attributes
are used such as the sepal length/width and petal length/width.

It is possible to download this dataset and store it into a data.frame in R as we
will do most of the time. Each variable is in a column and we will use i.i.d data (or
assume they are in order) to simplify the calculus and computations.

Let's load the dataset first:
x=read.csv("http://archive.ics.uci.edu/ml/machine-learning-databases/
iris/iris.data",col.names=c("sepal_length","sepal_width","petal_
length","petal_width","class"))

head(x)

 sepal_length sepal_width petal_length petal_width class

1 4.9 3.0 1.4 0.2 Iris-setosa

2 4.7 3.2 1.3 0.2 Iris-setosa

3 4.6 3.1 1.5 0.2 Iris-setosa

https://en.wikipedia.org/wiki/File:Iris_germanica_%28Purple_bearded_Iris%29,_Wakehurst_Place,_UK_-_Diliff.jpg
https://en.wikipedia.org/wiki/File:Iris_germanica_%28Purple_bearded_Iris%29,_Wakehurst_Place,_UK_-_Diliff.jpg

Learning Parameters

[72]

4 5.0 3.6 1.4 0.2 Iris-setosa

5 5.4 3.9 1.7 0.4 Iris-setosa

6 4.6 3.4 1.4 0.3 Iris-setosa

As we see, each observation of the dataset is represented by one line in the
dataset. It will be very useful later to use data.frame to simplify the computations
of parameters.

We can do some simple estimation with this dataset. For example, if we consider
only the first variable sepal_length and assume this variable follows a Gaussian
distribution, then a maximum likelihood estimation of the two parameters of
a Gaussian distribution (mean and variance) would simply be to compute the
empirical mean and empirical variance. In R, it is as simple as that:

mean(x$sepal_length)

[1] 5.848322

var(x$sepal_length)

[1] 0.6865681

If we want to deal with discrete variables, as we will do in most of the chapter, we
can use the well-known plyr package to simplify our computations:

library(plyr)

Now, we compute a distribution over the class variable in the data.frame
by doing:

y = daply(x,.(class),nrow) / nrow(x)

y

 Iris-setosa Iris-versicolor Iris-virginica

 0.3288591 0.3355705 0.3355705

It is interesting to see the distribution of each class which is approximately 33% each.
What we have done here is simply count the number of occurrences of each value
in the column class of the data.frame and divide it by the total number of values.
This gives a distribution and could also be used as prior probabilities on each class.
In this case, our distribution would be roughly uniform.

Chapter 3

[73]

If we go a bit further, we can also look at the distribution of another variable given
a class. Let's assume that sepal_length is a Gaussian distribution with mean µ
and variance σ2. A simple joint distribution is given by the following factorization:
() () (), | .P SepalLength Class P SepalLength Class P Class= .

Computing the conditional distribution P(SepalLength | Class) is the equivalent of
computing all the mean and variance values for each value of the class variable.
It is done by running:

daply(x,.(class), function(n) mean(n$sepal_length))

 Iris-setosa Iris-versicolor Iris-virginica

 5.004082 5.936000 6.588000

And similarly, the variances of each distribution conditioned on the class variable
are given by:

daply(x,.(class), function(n) var(n$sepal_length))

 Iris-setosa Iris-versicolor Iris-virginica

 0.1266497 0.2664327 0.4043429

It is therefore very easy to compute conditional distributions using simple R
functions. If we want to compute the same thing for discrete distributions, we could
use the following code. First, let's transform the sepal_width variable into a discrete
variable by discretizing it. It represents a width, so let's say we have three different
values (for the sake of simplicity): {small, medium, large}. We can do that
automatically with the following code:

q <- quantile(x$sepal_width,seq(0,1,.33))

We find the 33% and 66% quantiles of the variable sepal_width. Every value under
33% is small, every value between 33% and 66% is medium, and the rest over 66%
are large.

 q

 0% 33% 66% 99%

2.000 2.900 3.200 4.152

Then we create a new variable in the data.frame, the discretized version of sepal_
width, by doing the following:

x$dsw[x$sepal_ width < q['33%']] = "small"

x$dsw[x$sepal_ width >= q['33%'] & x$sepal_width < q['66%']] = "medium"

x$dsw[x$sepal_ width >= q['66%']] = "large"

Learning Parameters

[74]

For each interval as defined by the quantiles, we associate a value small, medium, or
large to a new column in x called dsw (for discrete sepal width).

And finally, we can learn the conditional probability distribution P(dsw | class) by
doing the following as before:

p1 <- daply(x,.(dsw,class), function(n) nrow(n))

p1

 class

dsw Iris-setosa Iris-versicolor Iris-virginica

 large 36 5 13

 medium 12 18 18

 small 1 27 19

This gives us the count of each occurrence of each value of dsw when class has a
specific value. If we want to transform it into probabilities, we need to divide each
column by its sum. Indeed, each column represents a probability distribution by
itself. This can be achieved by doing:

 p1 <- p1 / colSums(p1)

And the result is finally:

 class

dsw Iris-setosa Iris-versicolor Iris-virginica

 large 0.7346939 0.1020408 0.2653061

 medium 0.2400000 0.3600000 0.3600000

 small 0.0200000 0.5400000 0.3800000

And by using the previous distribution over class we now have a fully parameterized
model for the joint distribution: () () (), | .P SepalWidth Class P SepalWidth Class P Class= .

If we analyze what has been done and try to extract a rule of thumb, we can say that
the parameters have been found by counting occurrences of values of sepal_width
given each value of class. We can also say that we found the parameters of each factor
of the distribution separately: once for P(SepalWidth | class) and once for P(class).

In the next sections, we will learn in a more formal way how we can generalize this
notion to learn probabilistic graphical models with discrete variables and why, from
a theoretical point of view, it works all the time.

Chapter 3

[75]

Learning by inference
In the introduction to this chapter, we saw that learning can be done in a frequentist
way by counting data. In most cases, it will be sufficient, but it is also a narrow
view of the notion of learning. More generally speaking, learning is the problem
of integrating data into the domain knowledge in order to create a new model or
improve an existing model. Therefore, learning can be seen as an inference problem,
where one updates an existing model toward a better model.

Let's consider a simple problem: modeling the results of tossing a coin. We want to
test if the coin is fair or not. Let's call θ the probability that the coin lands on its head.
A fair throw would have a probability of 0.5. By tossing the coin several times we
want to estimate this probability. Let's say the i-th toss outcome is vi = 1 if the coin
shows a head and 0 otherwise. We also assume there is no dependence between
each toss, which means observations are i.i.d. And finally, we consider each toss as a
random variable too. The joint distribution of a sequence is P(v1, v2, …vn, θ). Each toss
is dependent on the probability θ, so the model is:

() () ()1
1

, , |
N

n i
i

P v v P P vθ θ
=

= ∏…

As a graphical model, this can be represented as shown in the following figures:

And it's about time we introduced a new notation term for graphical models: the
plate notation. The left figure is our usual representation in which we only represent
the first and the last of the vi nodes, to make the figure simpler. This can sometimes
be a bit confusing and in many cases ambiguous or cumbersome when one has too
many nodes. The right side of the figure represents exactly the same graph where the
box means that the node(s) inside are repeated N times.

Learning Parameters

[76]

In the previous section, we saw that learning integrates the data into the model and
in the first chapter we saw that, using the Bayes formula, it was possible to update a
probability distribution given new information. Applying the same principle, in our
present problem we want to estimate the following probability:

() ()
()

() ()
()

1 1
1

1 1

, , , , , |
| , ,

, , , ,
n n

n
n n

P v v P v v P
P v v

P v v P v v
θ θ θ

θ = =
… …

…
… …

This is a simple application, again, of the Bayes formula.

The next step is to specify the various factors of this formula, beginning with the
prior P(θ). Intuitively, θ is a continuous variable because it should take any value
between 0 and 1. However, we will simplify the problem and stay in the world of
discrete variables only. Let's say θ can take three different values— unfair on both
sides and fair; this is θ ∈ {0.2,0.5,0.8}, and we give the prior probabilities:

() () ()0.2 0.2 0.5 0.75 0.8 0.05P P Pθ θ θ= = = = = =

It means we believe that, with 75%, the coin is fair; with 20% it is biased toward
the head; and with 5% it is biased towards the tail. The next step is to estimate the
posterior distribution of θ as given earlier. Note that we will omit the denominator
for the time being and use the symbol ∝ , which means "is proportional to" with
instead of a pure equality (=).

Therefore the posterior distribution can be estimated by:

() () () () [] () []01
1 1 1
| , , | 1 ii

N N I vI v
n ii i

P v v P P v Pθ θ θ θ θ θ ==

= =
∝ = −∏ ∏…

This formula is not as complex as it seems. First we replace P(v1, … ,vn, θ) by its
decomposition as given with the graph. Then we replace P(vi | θ) by its own
expression, which is θ if vi = 1 and (1 - θ) if vi = 0. The function I[] is equal to 1 if the
condition inside the brackets is true, and 0 otherwise; we use the fact that x0 = 1.

I will let the reader finish the calculus and we finally obtain:

() () [] () []11 01
1| , , 1

NN
i ii i I vI v

nP v v Pθ θ θ θ == ∑ =∑ =∝ −…

Chapter 3

[77]

The sums in this expression are simply the number of heads (resp. tails) in our
experiment to see if the coin is fair. If we call these two sums Nhead and Ntail, we can
simplify our posterior on θ by doing:

() () ()1| , , 1 tailhead
NN

nP v v Pθ θ θ θ∝ −…

So we can finally feed in this formula in R and look at the results of this Bayesian
learning as an inference:

posterior <- function(prob,nh,nt, Theta=c(0.2,0.5,0.8))

{

 x=numeric(3)

 for(i in 1:3)

 x[i] = prob[i] * (Theta[i]^nh) * ((1-Theta[i])^nt)

 norm = sum(x)

 return(x/norm)

}

In this little function, prob is the vector of probability for each value of θ, nh, and
nt are as defined just as before, and Theta is the vector of possible values for θ. We
use the previously mentioned values by default. This code could be optimized but
we preferred to keep it simple. The most important line is the one implementing our
posterior formula. Then a normalization factor is the computer and the posterior
probability distribution on θ is returned.

Let's play with this function to see what happens when different prior probabilities
are given:

posterior(c(0.2,0.75,0.05),2,8)

[1] 6.469319e-01 3.530287e-01 3.948559e-05

posterior(c(0.2,0.75,0.05),8,2)

[1] 0.0003067321 0.6855996202 0.3140936477

posterior(c(0.2,0.75,0.05),5,5)

[1] 0.027643708 0.965445364 0.006910927

posterior(c(0.2,0.75,0.05),10,10)

[1] 0.0030626872 0.9961716410 0.0007656718

posterior(c(0.2,0.75,0.05),50,50)

[1] 5.432096e-11 1.000000e+00 1.358024e-11

Learning Parameters

[78]

We do the following experiments: 2 heads and 8 tails, 8 heads and 2 tails, 5 of each, 10
of each, and 50 of each. Note that the last experiment has a distribution summing to 1
due to errors in the exponentiation. This is something the reader should always test to
debug his or her programs: a probability distribution, of course, always sums to 1. In
this case, it means we reached the machine precision limit and errors occurred.

Let's analyze the results and see how we can solve this precision problem:

• 2 heads and 8 tails: the coin is biased toward a small value for θ = 0.1 with
65% of the chances. It means it's possible the coin is biased towards tails. But
the fairness of the coin is still 35%, which is not small either.

• 8 heads and 2 tails: we obtain the opposite results, but because our prior on
the coin (being biased towards heads) was low (P(θ = 0.8) = 0.05), the result is
still in favor of a fair coin with 68%.

• If we obtain an equal number of heads and tails, then the results are
strongly in favor of a fair coin, increasing in probability when the number of
experiments increases too.

Finally, here is a trick you must know when dealing with such probability
computations. When you have to multiply a lot of small numbers like that, doing
so uses logarithms and additions instead of regular values and multiplications.
Therefore, the new algorithm will use the following equality: () () ()log ab log a log b= + .
The new algorithm would therefore have the following change to compute x[i]:

x[i] = exp (log(prob[i]) + nh*log(Theta[i]) + nt*log(1-Theta[i]))

The last test we do is when the prior distribution is uniform—that is we give equal
chances to each possible situation of the coin. Using our function we obtain:

posterior(c(1/3,1/3,1/3),2,8,c(0.2,0.5,0.8))

[1] 0.8727806225 0.1270062963 0.0002130812

posterior(c(1/3,1/3,1/3),8,2,c(0.2,0.5,0.8))

[1] 0.0002130812 0.1270062963 0.8727806225

posterior(c(1/3,1/3,1/3),5,5,c(0.2,0.5,0.8))

[1] 0.08839212 0.82321576 0.08839212

And we can see that the conclusion is moving to higher probabilities each time.

Chapter 3

[79]

Maximum likelihood
This section introduces a simple algorithm to learn all the parameters of a graphical
model as we saw until now. In the first section, we had our first experience of
learning such a model and we concluded by saying that the parameters can be
learned locally for each variable. It means that, for each variable x having parents
pa(x) in the graph, for each combination of the parents pa(x) we compute frequencies
for each value of x. If the dataset is complete enough, then this leads to the maximum
likelihood estimation of the graphical models.

For each variable x in the graphical modeling, and for each combination c of the
values of the parents of pa(x) of x:

• Extract all the data points corresponding to the values in c
• Compute a histogram Hc on the value of x
• Assign ()()| cP x pa x c H= =

Is that it? Yes it is, it's all you have to do. The difficult part is the extraction of the data
points, which is a problem you can solve in R using the ddply or aggregate functions.

But why is it so simple? Before looking at an algorithm in R, let's see why this
algorithm works.

How are empirical and model distribution
related?
A graphical model represents a joint probability distribution over a set of variables
X. But not every joint distribution can be represented as a graphical model. Here we
are interested in directed probabilistic graphical models as we defined them before.
The definition can also be seen as a constraint on the type of probability distribution
we want to represent and in this case the constraint is represented by:

() ()() 11
, ,K

i i Ni
P X P x pa x X x x

=
= ∨ =∏ …

So far, this is our well-known definition of a directed graphical model.

Definition: Empirical Distribution

Let { }1, , Nx xχ = … be a set of data points, which are states of a variable X, then the
empirical distribution has its mass evenly distributed over the data points and
zero elsewhere. Source: Bayesian Reasoning and Machine Learning, D. Barber 2012,
Cambridge University Press.

Learning Parameters

[80]

From χ, assuming the data points are identically and independently distributed, the

empirical cumulative distribution function is () []1
1ˆ N

i iF X I X x
N == ∑ = . In other words

it is the distribution where, for each possible state of X, one associates the computed
frequency from the dataset and as zero if no data is present in the dataset.

Let's consider the relationship between the empirical distribution q(x) and the model
distribution p(x).

The Kullback-Leibler divergence (also called relative entropy) is a non-symmetric
measure of the difference between two probability distributions, q and p, noted as
KL(q | p). It gives the expected number of bits required to transform a sample from
q into a sample from p. Intuitively, if two distributions are equal then the Kullback-
Leibler divergence is zero.

The KL divergence between the empirical distribution and a distribution p(x) is:

() () () () ()|KL q p log q x q x log p x q x= −∑ ∑

The log-likelihood of the model p(x) being ()1
logN

ii
p x

=∑ , we can see in the previous
formula that the right-most term is the expected log-likelihood of the model p(x)
under the empirical distribution q(x). We can therefore write that:

() () () ()1

1| N
ii

KL q p log q x q x log p x cst
N =

= − +∑ ∑

And because the term () ()log q x q x∑ is not dependent on p(x), the model distribution,
we can consider it constant and write:

() ()1

1| N
ii

KL q p log p x cst
N =

= − +∑

Therefore, as we know that maximizing the likelihood is equivalent to minimizing
the log likelihood, from the previous formula, given that the second term is a
constant, minimizing this log-likelihood will also minimize the KL divergence
between the empirical distribution q and the model distribution p. It simply means
that finding the maximum likelihood parameters for p(x) is equivalent to minimizing
the KL divergence between the empirical distribution and the model distribution.

If we have no constraint at all on p(x), then the solution is to take p(x)=q(x).

But recall that we have a few constraints: p(x) has to be a graphical model. So now,
let's put the real p(x) from the graphical model into this formula to see what happens.

Chapter 3

[81]

() ()()() ()1
| |K

i ii
KL q p log p x pa x q x cst

=
= − +∑ ∑

Don't be scared by this double sum and just remember that
()() ()()11

log | log |K K
i i i iii

p x pa x p x pa x
==

=∑∏ ; that is, we only took the logarithm of the
probability distribution of a graphical model. This huge term can be simplified
by noting that the outer sum only depends for each term of the inner sum on the
variable xi, so we can now write:

() ()() ()()1
| | ,K

i i i ii
KL q p log p x pa x q x pa x cst

=
= − ∑ +∑

The inner sum now computes the expected log-likelihood under the distribution q
restricted to the subset of variables xi, pa(xi).

Now let's add back the constant to this formula:

() ()() ()() ()() ()()1
| | , | ,K

i i i i i i i ii
KL q p log q x pa x q x pa x log p x pa x q x pa x

=
 = ∑ − ∑ ∑

Again, this formula looks big, but inside the brackets, if you look carefully, you
will recognize the formula of a KL divergence, this time between q(xi, pa(xi)) and
p(xi, pa(xi)). This beautiful result means we can simplify this formula again with:

() ()() ()()() ()()1
| | | |K

i i i i ii
KL q p KL q x pa x p x pa x q pa x

=
=∑ ∑

What we do in this final formula is a weighted sum of KL divergence. The
probability distribution q(pa(xi)) and the KL divergence both being positive, it
happens that minimizing this sum corresponds with the minimization of each of
its terms, because all of them are positive. And therefore, minimizing this sum also
corresponds with the maximum likelihood estimation of p(x) as we saw before. But
if you look carefully at what is inside this sum, you will see more KL divergence,
one for each little distribution associated with each node of the graph! And we have
to minimize all of them. So it simply means that, if we want to minimize the whole
KL divergence between q and p (and obtain the maximum likelihood estimation of
p, our graphical model), we have to do the same thing on each node, independently
of the other nodes, one by one. And minimizing all those KL divergences, as we saw
before, is equivalent to counting and doing frequencies. Therefore, the maximum
likelihood estimator for a directed graphical model is obtained by counting the data
points (that is computing frequencies) on each node of the graph, by selecting only
the data point associated with the parents of each node pa(xi).

Learning Parameters

[82]

The ML algorithm and its implementation in R
At this point, we are able to write a simple algorithm in R to learn the parameters of
the graph. In this section we will use the Nursery dataset, again from UCI (https://
archive.ics.uci.edu/ml/datasets/Nursery). The algorithm will not use any
specific graphical model library but only the graph package and common R libraries.

The dataset has nine variables, related to nursery-school applications. The dataset
was recorded in the 1980s in Ljubljana, Slovenia to rank applications to nurseries
when the demand was too high, in order to build an expert system to objectively
explain why an application was accepted or rejected. All the variables are categorical,
which means we will only focus on discrete variables.

Our aim in this section is to illustrate what we have learnt so far in this chapter by
application, so we will not try to make a perfect expert system. For this reason, we
will use a simple graph to illustrate this example:

The R code is as follows, including the learning function where we use two new
packages, graph and Rgraphviz. You will note that lines are numbered (but not part
of the code), for ease of reading:

 1 library(graph)

 2 library(Rgraphviz)

 3 library(plyr)

 4

 5 data0 <- data.frame(

 6 x=c("a","a","a","a","b","b","b","b"),

 7 y=c("t","t","u","u","t","t","u","u"),

 8 z=c("c","d","c","d","c","d","c","d"))

 9

 10 edges0 <- list(x=list(edges=2),y=list(edges=3),z=list())

https://archive.ics.uci.edu/ml/datasets/Nursery
https://archive.ics.uci.edu/ml/datasets/Nursery

Chapter 3

[83]

 11 g0 <- graphNEL(nodes=names(data0),edgeL=edges0,edgemod="directed")

 12 plot(g0)

 13

 14 data1 <- read.csv("http://archive.ics.uci.edu/ml/machine-learning-
databases/nursery/nursery.data", col.names=c("parents","has_nurs","form",
"children","housing","finance","so cial","health","class"))

 15 edges1 <- list(parents=list(), has_nurs=list(), form=list(),
children=list(),

 16 housing=list(), finance=list(), social=list(),
health=list(),

 17 class=list(edges=1:8))

 18 g1 <- graphNEL(nodes=names(data1), edgeL=edges1,edgemod="directed")

 19 plot(g1)

From lines 1 to 3, we load the necessary packages. Then in line 5 we create a simple
dataset to test the learning function. This dataset has three variables and will result
in 50% probabilities for each combination.

In lines 10 and 11, we create the edges and the corresponding graph. In line 12, we
plot the graph and obtain the following graphical model:

Learning Parameters

[84]

From lines 14 to 19, we instantiate a second graphical model, this time using the
Nursery dataset. The output of the plot function is:

Next we have one simple function to compute the condition probability table for
each variable with parents (or not):

 1 make_cpt<-function(df,pa)

 2 {

 3 prob <- nrow(df)

 4 parents <- data.frame(df[1,pa])

 5 names(parents) <- pa

 6

 7 data.frame(parents,prob)

 8 }

This function is in fact called later by the ddply function (the plyr package) and
computes the frequency of one combination of the variable of interest and its parents.
This is done is line 3 by a call to the nrow function.

The frequency here is only the number of times the same combination appears in the
dataset. Because the combination is unique when this function is called (thanks to
ddply), we extract the values of all the parents in line 4 from the first line only.

Chapter 3

[85]

Finally, the main learning function is as follows. The code is not optimized but, on
the contrary, is kept very explicit and simple so we can understand each piece:

 1 learn <- function(g,data)

 2 {

 3 rg <- reverseEdgeDirections(g)

 4 result <- list()

 5

 6 for(var in rg@nodes)

 7 {

 8 pa <- unlist(adj(rg,var))

 9 if(length(pa)>0)

 10 {

 11 X <- ddply(data, c(var,pa), make_cpt, pa)

 12 Y <- ddply(data, pa, make_cpt, pa)

 13 for(i in 1:nrow(Y))

 14 {

 15 c <- sapply(1:nrow(X), function(j) all(X[j,pa] ==
Y[i,pa]))

 16 c <- which(c)

 17 X$prob[c] <- X$prob[c]/Y$prob[i]

 18 }

 19 }

 20 else

 21 {

 22 X <- ddply(data,var, function(df) c(prob=nrow(df)))

 23 X$prob <- X$prob/sum(X$prob)

 24 }

 25

 26 result[[length(result)+1]] <- X

 27 }

 28

 29 return(result)

 30 }

This function takes two parameters: the graph g and the dataset data. Then, in line 3, it
reverses the direction of all edges, to be able to find the parents of each variable in line
8, using the function adj() from the graph package. There is nothing in the theory that
says you have to reverse the graph; it's just a convenient way to find the parents.

Learning Parameters

[86]

In line 6, it will start to learn each variable independently, as we saw in the previous
section. We deal with 2 problems, one when the variable has no parents (and
therefore we compute the marginal distribution of the variable) and one when the
variable has parents (and therefore we deal with conditional probability tables).
See line 9.

In line 11, for each possible value of the variable and its parents, we compute
P(var,pa(var)) frequencies (counts is more accurate). In line 12, we do the same thing
for P(pa(var)).

Finally, from lines 13 to 18, we apply the Bayes formula to obtain conditional
probability tables and transform the counts into probabilities (or frequencies in this
case, too). Lines 22 and 23 do the same thing for marginal probability tables.

The result for each variable is stored in a list called result!

So let's use this function with the two datasets to see the same results, and
analyze them.

Application
First we load and run the previous code in R and then perform the following code:

learn(g0,data0)

The result will be:

[[1]]

 x prob

1 a 0.5

2 b 0.5

[[2]]

 y x prob

1 t a 0.5

2 t b 0.5

3 u a 0.5

4 u b 0.5

[[3]]

 z y prob

1 c t 0.5

Chapter 3

[87]

2 c u 0.5

3 d t 0.5

4 d u 0.5

This tells us that P(x = a) = 0.5 and P(x = b) = 0.5. Looking at the dataset, we have an
equivalent number of a and b for the variable x. This is good.

The other tables are for P(y | x) and P(z | y). Remember that conditional probabilities
are not probabilities directly. These tables have to be read by values of the parents. For
example P(y = t | x = a) = 0.5 and P(y = u | x = a) = 0.5. And the sum is obviously 1.

Now let's apply the learn function to the Nursery dataset and look at the results:

learn(g1,data1)

To simplify the output, we only show a few variables and start with class:

 class prob

1 not_recom 3.333591e-01

2 priority 3.291921e-01

3 recommend 7.716645e-05

4 spec_prior 3.120611e-01

5 very_recom 2.531059e-02

This is a marginal probability table as expected from the graph we had before. The
sum is 1 and we see that some values have higher probabilities than others. This one
will be used in the expert system to make conclusions. Of course, our model is very
simple and a more realistic model could have a different graph with different values.
We encourage the reader to modify the graph g1 to test different options.

If we look at the finance variable, we have the following table:

 finance class prob

1 convenient not_recom 0.5000000

2 convenient priority 0.5260197

3 convenient recommend 1.0000000

4 convenient spec_prior 0.4589515

5 convenient very_recom 0.6646341

6 inconv not_recom 0.5000000

7 inconv priority 0.4739803

8 inconv spec_prior 0.5410485

9 inconv very_recom 0.3353659

Learning Parameters

[88]

This table is bigger than we saw before and behaves as expected. However, there
is a small problem. This maximum likelihood procedure is by no means a Bayesian
procedure but simply a frequentist. While it works in most cases, we can sometimes
have problematic difficulties. Here, in line 3, we see that P(finance = convenient | class
=recommend) =1.

While having a probability equal to one is not a problem, it is annoying. This is due to
the fact that we only had one example of this specific combination in the dataset and
this ended with this extreme result. This is not a desirable result as we want to be able
to reach all possible scenarios and not fall into a unique scenario with probability 1.

We will see later in the book that it is interesting, in many cases, to add a prior
distribution on all the parameters of the model, to prevent them from ever having a
probability of 0 or 1 and to able to explore as many scenarios as possible.

Learning with hidden variables – the
EM algorithm
The last part of this chapter is an important algorithm that we will use again in the
course of this book. It is a very general algorithm used to learn probabilistic models
in which variables are hidden; that is, some of the variables are not observed.
Models with hidden variables are sometimes called latent variable models. The EM
algorithm is a solution to this kind of problem and goes very well with probabilistic
graphical models.

Most of the time, when we want to learn the parameters of a model, we write
an objective function, such as the likelihood function, and we aim at finding the
parameters that maximize this function. Generally speaking, one could simply use
a black-box numerical optimizer and just compute the relevant parameters given
this function. However, in many cases, this would be intractable and too prone to
numerical errors (due to the inherent approximations done by CPUs). Therefore it is
generally not a good solution.

We therefore aim at using the specificity of our optimization problem (alongside the
assumptions made by a graphical model about the joint probability distribution) to
improve our computations and make them fast and reliable.

The EM algorithm is a rather elegant solution to the problem of finding optimal
parameters for a graphical model and it can be applied to many types of model.

Chapter 3

[89]

Latent variables
Latent variables can be used in all models to, for example, introduce a level of
simplification, to separate concepts, or to put some hierarchy into the models. For
instance, we can observe a certain relationship between a set of variables, but instead
of making all those variables dependent we would rather suppose that another
hidden variable is simply the source of them and the dependency is done through
this higher-level variable.

This top-down approach helps to make for simpler models, as in the following
figure. This model is rather complex, isn't it ?

But if we add hidden variables (those with a Greek letter in the following figures), then
the model becomes utterly simple and presumably tractable and easier to interpret.
The problem is that we don't have data to estimate the probability distributions of the
hidden variables and this is where we will need to use an EM algorithm.

Learning Parameters

[90]

We can add more levels too to the model and group the variables with different
parents, as illustrated in the following example:

Principles of the EM algorithm
Because the latent variables are not observed, the likelihood function of such a model
is a marginal distribution where we have to sum out (or integrate out) the hidden
variables. Marginalization will create dependencies between the variables and make
the problem complex to solve.

The EM algorithm deals with this problem essentially by filling-in missing data with
their expected values, given a distribution. When we iterate this process over and
over, it will converge to the maximum likelihood solution. This filling-in is achieved
by computing the posterior probability distribution of the hidden variables given
a current set of parameters and the observed variables. This is what is done in the
E-step, (E for Expectation). In the M-step, M for Maximization, the parameters
of the models are adjusted and we iterate again with a new E-step. We will go on
until we see a convergence in the parameters, or a convergence in the growth of the
likelihood. Moreover, the EM algorithm gives us the certainty that, after each EM step,
the likelihood of the model cannot go down. It means that, when the likelihood only
increases by a tiny amount, we can conclude that the algorithm converged to a (local)
maximum and we can stop the algorithm. The tiny amount depends on the application
but it's not unusual to stop when the likelihood hasn't moved by more than 10-2 to
10-4. It's just a rule of thumb and the reader is encouraged to plot the likelihood curve
to better understand the EM algorithm's behavior for his or her special case.

Chapter 3

[91]

Derivation of the EM algorithm
Let's assume we have a dataset D of N iid points and the parameters of the graphical
models are called θ. At this point, if you're wondering what this θ is, it is a big
variable containing all the parameters for every variable of the graphical model. As it
would be tedious to write a long collection, we simply resume them in a single high-
dimensional variable.

Let D = {x1, …, xN} and θ ε R. The likelihood of the graphical model is defined by:

() ()1
| |N

ii
p D p x Dθ

=
=∏

In the complete case where all the variables are observed, the likelihood function can
be decomposed as follow:

() ()
()

() ()()()
()

1

1 1

1

log |

log |

log | ,

N
ii

N K j j
i i ii j

K
i ij

L p D

p x

p x pa x

L

θ θ

θ

θ

θ

=

= =

=

=

=

=

=

∑
∑ ∑
∑

We find again the result we saw before where the log-likelihood, in the case of a
graphical model, can be rewritten as the sum of the local log-likelihood for each
variable—that is, each node in the graph.

However, when we have hidden variables, we can't have this nice result. Let's call
the observed variables x and the hidden variables y. The log-likelihood of the model
can be written as:

() () ()| , |
y

L logp X log p x yθ θ θ= = ∑

Here, X = {x,y} is the set of all the variables. And here is our main problem: the sum
inside the log function is not nice to compute. In fact, in order to obtain the likelihood
function we have to marginalize out the y hidden variable. And having this sum in
the log function can potentially make all the variables inside it dependent on each
other. Therefore, we would lose all the benefit of having a nice factorization thanks
to using a graphical model. In the end, computing would become intractable.

Learning Parameters

[92]

But if we take any distribution q(y) over the hidden variables, it can define a lower
bound on the log-likelihood function. Let's see why:

() ()

() ()
()

() ()
()

() () () ()
()

log , |

, |
log

, |
log

log , | log

,

y

y

y

y y

L p x y

p x y
q y

q y

p x y
q y

q y

q y p x y q y q y

F q

θ θ

θ

θ

θ

θ

=

=

≥

= −

=

∑

∑

∑

∑ ∑

This reasoning needs a bit of explanation now, line by line:

1. This is the standard definition of the log-likelihood over x where we
marginalized out the hidden variables y.

2. Here we introduce q(y) at the numerator and denominator so that they cancel
out each other.

3. Thanks to this, we can apply the Jensen inequality to obtain a lower bound.
The right-hand side formula is the lower bound on L(θ).

4. The lower bound is simplified again and we have two terms where the right-
most term is independent of θ and x.

So in the end, this new function F(q, θ) ≤ L(θ) is the lower bound on the log-likelihood.

The way the EM algorithm works is by alternating optimizations in two steps:

• E-step: ()1,k q kq argmax F q θ −←

• M-step: ()1,k k kargmax F qθθ θ −←

The algorithm is usually initialized with a random set of parameters: θ0.

What this algorithm does is first find a new marginal distribution over the hidden
variable q(y) given the current set of parameters θk-1 and then it finds the maximum
likelihood estimation of the parameters θk using the previous distribution q. So in
fact, in step 1, the E-step, the maximum of q is obtained by setting () ()1| ,k kq y p y x θ −= .
And, at this point, the lower bound becomes an equality:

() ()1 1,k k kF q Lθ θ− −=

Chapter 3

[93]

This result is very important because it guarantee that the likelihood can only go
up or stay the same, step after step. So this result means that, using the current
parameters θk-1, we infer the distribution p(y | x, θk-1) given the other observed
variables. Any inference algorithm can be used at this stage, like those we saw in the
previous chapter. Moreover, this creates an expected complete set of observations
given the current parameters.

The maximum in the M-step is obtained by maximizing the first term in line 4 of the
previous derivation; that is, the expected log-likelihood under the distribution q, the
one we just computed.

So, at the beginning of teach loop of the EM algorithm, we have F=L and the
E-step does not change θ. And so we know that the E-step will never decrease
the likelihood. The log-likelihood will therefore only increase or stay the same. In
practice, we will usually see a convergence of the log-likelihood. When the difference
is very small, we can stop the algorithm and consider that the current solution is the
good one.

Applying EM to graphical models
Practically we will consider a graphical model with discrete variables as we have
been using so far. For example, let's say that somewhere in the graph we have two
variables A and B, such that B is the parent of A. So locally we have the distribution
P(A|B) associated to node A.

We recall that the maximum likelihood estimate θA|B is computed by:

/
,

A B
count of eachcombinationof A B
count of eachcombinationof B

θ =

This is what we saw and implemented before in R. So far, nothing new. Remember,
we used the ddply function to efficiently compute this in R in one call. You could
also use the aggregate function to obtain the same result.

But this formula is only valid when A and B are fully observed! And here they are
not. Therefore, using the EM algorithm to overcome this problem is very simple.

The M-step is in this case:

()
()

1
|

1

, |ˆ
|

N
i i

A a B b N
i i

p A a B b X x
p A b X x

θ =
= =

=

∑ = = =
=

∑ = =

Learning Parameters

[94]

But how do we obtain these two probability distributions? We obtain them in the
E-step, using the observed X variables and our preferred inference algorithm. As for
the parameters used in A and B, they are the parameters from the previous step of
the EM algorithm.

In conclusion, in plain English, we recall the steps of the EM algorithm:

1. Initialize the graphical model with random parameters. Just be sure that the
distribution sums to 1, of course. Random parameters seem to give better
results than a uniform distribution, but I'm just giving you a practical tip here.

2. Until convergence of the log-likelihood, do the following:
 ° E-step: Compute the posterior distribution, using your preferred

inference algorithm, of all the hidden variables. This is the q
distribution.

 ° M-step: Compute the new set of parameters of the graphical model
using the inferred distribution we saw before.

 ° Update the log-likelihood and check whether it converged, usually
by checking whether the difference between the current likelihood
and the previous one is smaller than a predefined threshold.

And so the M-step acts as if the hidden variables were observed by using the
expected distribution on it.

Summary
In this chapter we saw how to compute the parameters of a graphical model by using
the maximum likelihood estimation.

The reader should note however that this approach is not Bayesian and could
be improved by setting prior distributions over the parameters of the graphical
models. This could be used to include more domain knowledge and help in
obtaining better estimations.

When the data is not fully observed and variables are hidden, we learned how to use
the very powerful EM algorithm. We also saw a full implementation of a learning
algorithm in R for a fully observed graph.

Chapter 3

[95]

We would like, at this point, to encourage the reader to use the ideas presented
in this chapter to extend and improve his or her own learning algorithms. The
most important requirement when doing machine learning is to focus on what
is not working. From a dataset, any algorithm will, at some point, extract some
information. However, when one focuses on the errors in an algorithm and where it
does not work, one will really find value in the data.

In the next chapter, we will look at several simple, yet powerful Bayesian models
that can be represented as graphical models. We will see that some of them can be
highly optimized for inference and learning. We will also explore an application of
the EM algorithm to find clusters in data, using Gaussian mixture models.

[97]

Bayesian Modeling – Basic
Models

After learning how to represent graphical models, how to compute posterior
distributions, how to use parameters with maximum likelihood estimation, and even
how to learn the same models when data is missing and variables are hidden, we are
going to delve into the problem of modeling using the Bayesian paradigm. In this
chapter, we will see that some simple problems are not easy to model and compute
and will necessitate specific solutions. First of all, inference is a difficult problem and
the junction tree algorithm only solves specific problems. Second, the representation
of the models has so far been based on discrete variables.

In this chapter we will introduce simple, yet powerful, Bayesian models, and show
how to represent them as probabilistic graphical models. We will see how their
parameters can be learned efficiently, by using different techniques, and also how to
perform inference on those models in the most efficient way. The algorithms we will
see are adapted to these models and take into account the specificity of each.

And, for the first time, we will start to use variables with continuous support—that
is, random variables that can take any value as a number—and not just a finite
number of discrete values.

We will look at simple models that can be used as a basic component for more
advanced solutions. These models are fundamental and we will go from very simple
things to more advanced problems, such as Gaussian mixture models. All these
models are heavily used and have a nice Bayesian representation that we will present
throughout this chapter.

Bayesian Modeling – Basic Models

[98]

More specifically, we will be interested in the following models:

• The Naive Bayes model and its extension, used mainly for classification
• The Beta-Binomial model, which is one of the most fundamental modelings
• Gaussian Mixture models, one of the most used clustering models

The Naive Bayes model
The Naive Bayes model is one of the most well-known classification models used in
machine learning. Despite its simple appearance, this model is very powerful and
gives good results with little effort. Of course, when considering the problem of
classification, one should not always stay with one model, such as Naive Bayes, but
should try out many examples to see which one is the best with a particular dataset.

Classification is an important problem in machine learning and it could be defined as
the task of associating observations to a particular class. Let's say we have a dataset
with n variables and we assign a class to each data point. The class could be {0,1}
or {a,b,c,d}, {red, blue, green, yellow}, or {warm, cold}, and so on. We will see that it is
sometimes easier to consider binary classification problems where one has only two
classes. But most classification models can be extended to more than two classes.

For example, given physiological characteristics, we can classify animals into
mammals or reptiles. Given the words used in an email, we can classify it as a junk
email or a legitimate email. Given a credit record and other financial data, we can
classify a client as trusted for a loan or not.

Just try the next little example to see a (not-so) obvious problem of classification.

Sigma <- matrix(c(10,3,3,2),2,2)

x1 <- mvrnorm(100,c(1,2),Sigma)

x2 <- mvrnorm(100,c(-1,-2),Sigma)

plot(x1,col=2,xlim=c(-5,5),ylim=c(-5,5))

points(x2,col=3)

Chapter 4

[99]

This example shows a two-variate classification problem with two classes, the red
and the green. The two variables are represented as the x axis and the y axis. The
problem seems obvious but it is not, because the interface between the red class and
the green class is not clearly defined. This is typical of real-world problems.

In this case, we can still draw a clear line in the middle to separate the two classes.
But sometimes it is not obvious and a line won't work. When a line can separate the
two classes we call it linear classification. When we need a curvier separation, we
call it non-linear separation.

The way we estimate the quality of a classifier is by looking at the error rate. We want
the lowest error rate; that is, every time the classifier predicts a class for a data point, it
has to be right. However, depending on the classification problem, the error can have
a different consequence. For example, in a medical classification problem, classifying
a patient as ill when he or she is not is presumably less dangerous than classifying the
patient as healthy and letting him or her go with an undetected illness.

Obviously we want the classifier to be as accurate as possible and the general rule
when building classifiers is to concentrate entirely on difficult cases.

Bayesian Modeling – Basic Models

[100]

Representation
The Naive Bayes model is a probabilistic classification model with N random
variables X as features and one random variable C as the class variable. The main
(and very strong) assumption made in this model is that, given the class, the
features are independent. This seems to be very strong and surprisingly it gives
good results in this situation.

The join probability distribution in the Naive Bayes model is:

() () ()1
, |N

ii
p X C p C p X C

=
= ∏

It is represented by the following graphical model:

This is a very simple graphical model in fact and you can see from the graph why
knowing the class will make all feature variables independent of each other.

Therefore, by using the Bayes rule, given a new data point X' we can compute the
most probable class by doing:

() () ()
()

() ()
() ()

| |
|

|
c

p X C p C p X C p C
p c X

p X p X C p C
′ ′

′ = =
′ ′∑

To make the problem simpler, we will interpret all the Xi variables, as well as the
class variable C, as binary variables. However the theory stays the same if the
variables have more than two possible values. In fact, the theory of this model is
similar even if you consider continuous features too. For example, for real-value
features, we can consider Gaussian distributions and have:

() ()21
| | ,N

i ic ici
p x C c N X µ σ

=
= =∏

Chapter 4

[101]

Here, N represents a Gaussian distribution.

When the features are binary the result is the same except that one uses the Bernoulli
distribution for the X features:

() () ()2 1
1 1

| | , 1N N x x
i ic ic ic ici i

p x C c N X µ σ θ θ −
= =

= = = −∏ ∏

Here, x can take values in {0,1} and θic is the probability for Xi to be one given class c.

Learning the Naive Bayes model
Learning a Naive Bayes model is extremely simple. Recalling what we saw in

Chapter 3, Learning Parameters, it's very easy to infer that, for each θic, in the case of

binary features with a binary class variable, ic
ic

c

N
N

θ = where Nic is the count of 1

variable Xi when the class is C =c and Nc is the count of class 1.

As for the class variable, it's even simpler: πc = Nc over N where N is the total number
of data points.

The reason for that is the same as in the previous chapter. In order to understand
why, we need to write the maximum likelihood of this model. For one data point, the
probability is:

() () ()1
| | |i i i ij jj

p x c p c N p xθ π θ
=

= ∏

Knowing a class can take values in {0,1} only in the case of a binary classifier, we
have therefore:

() ()| |
cc

i i c ij jcc j c
p x c p xθ π θ=∏ ∏ ∏

And therefore the log-likelihood is

() ()1 1 1 /
log | log log |

i

C
c c ij jcc j c i c c

p D N N C p xθ π θ
= = = =

= +∑ ∑ ∑ ∑

Bayesian Modeling – Basic Models

[102]

In order to maximize this function, we see that we can optimize each term
individually, leading to the simple form we obtained for each parameter. So,
naturally, it gives exactly the same results as general graphical models.

Instead of implementing the model manually, we will use an R package named e1071.
If you don't have it yet, you can install and load it by doing:

install.packages("e1071")

library(e1071)

This provides a full implementation of the Naive Bayes model. We can now load
data and look at some results:

data(iris)

model <- naiveBayes(Species~.,data=iris)

Naive Bayes Classifier for Discrete Predictors

Call:

naiveBayes.default(x = X, y = Y, laplace = laplace)

A-priori probabilities:

Y

 setosa versicolor virginica

 0.3333333 0.3333333 0.3333333

Conditional probabilities:

 Sepal.Length

Y [,1] [,2]

 setosa 5.006 0.3524897

 versicolor 5.936 0.5161711

 virginica 6.588 0.6358796

 Sepal.Width

Y [,1] [,2]

 setosa 3.428 0.3790644

 versicolor 2.770 0.3137983

Chapter 4

[103]

 virginica 2.974 0.3224966

 Petal.Length

Y [,1] [,2]

 setosa 1.462 0.1736640

 versicolor 4.260 0.4699110

 virginica 5.552 0.5518947

 Petal.Width

Y [,1] [,2]

 setosa 0.246 0.1053856

 versicolor 1.326 0.1977527

 virginica 2.026 0.2746501

This example needs a bit of explanation. The laplace parameter controls the Laplace
smoothing of the data, in order to help the model when data is not perfectly balanced
or the dataset exhibits problematic situations. We will come back to this problem later,
but it's one of the main problems one has to deal with in most classification problems.

By using this model and trying to predict (or infer) the class, we obtain the following:

p <- predict(model,iris)

hitrate <- sum(p == iris$Species) / nrow(iris)

And we obtain a hit rate of 0.96, as 96% of the data points were correctly classified.
It's great but bear in mind that we use the training dataset to compute this
percentage. You can't estimate the real power of a classification model using only
data points you used to train the model. Ideally, we should split the dataset in two;
let's say we will use 1/3 to test it and 2/3 to train the model. Ideally, the split has to
be done randomly:

ni <- sample(1:nrow(iris),2*nrow(iris)/3)
no <- setdiff(1:nrow(iris),ni)
model <- naiveBayes(Species~.,data=iris[ni,])
p <- predict(model,iris[no,])

Here, ni and no are a list of data point indices taken at random from the initial dataset.

Bayesian Modeling – Basic Models

[104]

Bayesian Naive Bayes
This model, despite its name, is not a Bayesian model. To be fully Bayesian we should
express prior on the parameters. In the Naive Bayes model, the parameters are those
of the class variable πc and those of the feature variables θi. These parameters have
been estimated using a maximum likelihood method but what happens if the dataset
is unbalanced? What will happen to the parameters if the dataset lacks enough points
for a certain number of cases? We will end up with very bad estimators and in the
worst case we will have zeros for the ill-represented parameters. This is obviously
something we don't want because the results will be completely false, giving too much
importance to the features' values or classes and none to the rest.

This problem is called over-fitting. And one simple solution to over-fitting is to
use a Bayesian approach and include extra information in the model to say, "If the
data is not represented, then let's assume it has a very small probability but not a
zero probability."

One elegant and simple solution to this problem is to use prior distributions on the
parameters of the model and develop the model in a Bayesian way. Let's make a few
assumptions in order to simplify the calculus. First of all, we will assume that all the
feature variables have the same finite number values. We will call this number S.
You can easily generalize this to any number of values for each feature, but in our
presentation it makes things simpler. Then we will assume we can use a factored
prior on the θ feature parameters, as follows:

() () ()1 1

N C
ici c

p p pθ π θ
= =

= ∏ ∏

Here, θ represents all the parameters. In order to make it clear, we use the
following notation:

• θ represents all the feature parameters and π the class parameters
• θi represents all the parameters of the variable i—that is, the parameters of

the conditional distribution p(Xi | C)
• θic represents all the parameters of the variable i—that is, the parameter

distribution p(Xi | C = c)

•
()s
icθ represents the parameter of the probability p(Xi = s| C = c)—that is,

because Xi is a discrete multinomial variable (in fact it's more accurate to say
categorical than multinomial here), () ()| s

i icp X s C c θ= = =

Chapter 4

[105]

And because we just mentioned multinomial distribution, it's important to note that
the Dirichlet distribution is also the conjugate distribution for the multinomial (and
the categorical) distribution. If we consider all the ()s

icθ to be random variables and
no longer just simple parameters, we need to give them a probability distribution a
priori. We will assume they are Dirichlet distributed for two reasons:

• The Dirichlet distribution is a distribution over a vector of values such
that their sum is 1, which corresponds to the well-known constraint that

()
1

1S s
ics
θ

=
=∑ . So far, nothing new.

• The Dirichlet distribution being the conjugate prior for the multinomial
distribution, this means that, if a data point has a categorical or multinomial
distribution and the prior distribution on the parameters is a Dirichlet (as in
our case), then the posterior distribution on the parameters is also a Dirichlet.
And this will simplify all of our computations.

In fact, contumacy is a very powerful tool in Bayesian data analysis.

In practice it works as follows:

• Let's say that α is the concentration parameter—that is, the parameter of the
Dirichlet distribution Dir(⍺).

• So we assume that the θ's are distributed Dirichlet—that is p(θic | ⍺) = Dir(⍺).
• And, of course, we know that our feature variables have a categorical or

multinomial distribution.
• Therefore the posterior probability of the parameters of the distribution of Xi

after counting data (as we did before), will be a Dirichlet ()iDir N α+ , where
Ni is the counts we did before! It's as simple as that, thanks to the conjugacy.

So finally, if we want to incorporate the Dirichlet prior into our computations, the
posteriors of the parameters for the class variable are:

0

c c
c
N
N

απ
α
+

=
+

 where 0 cc
α α=∑ .

And the prior distribution of π is a Dir(⍺) where ⍺ = (⍺1, …,⍺c).

For the parameters of the feature variables, the solution is exactly the same:

()

0

s ic s
ic

c

N
N

βθ
β

+
=

+ where 0 s sβ β= ∑

Bayesian Modeling – Basic Models

[106]

And the prior distribution of θic is a Dir(β), where β = (β1, …, βs).

Wait! Is it really as simple as this? Well, yes it is, thanks to the conjugacy in this
Bayesian model. If you look carefully at the formulas, you will see that none of the

πc and
()s
icθ can be equal to zero now because of the values of α and β. Indeed, in

the definition of the Dirichlet distribution, it is required that the parameters of the
Dirichlet should be strictly positive.

So the last problem we need to solve is choosing a value for α and β. One common
choice is to take 1 for all of them. In terms of Dirichlet distributions, it means we choose
a uniform prior for all the parameters of the class and feature variables. It means we
will allow our parameters to take any value with equal probability except of course
0. Choosing different values for α and β will lead to different form results. We can
try to promote certain values by pushing the Dirichlet distribution in one direction or
another; or, on the contrary, we can try to keep all parameters with similar values.

If you choose 1 for the Dirichlet parameter, you will obtain something called
Laplace smoothing, which we saw before in the naiveBayes function of the e1071
R package. Sometimes, it is also called a pseudo-count because it could be seen as
artificially adding one example of any case to your dataset.

But the Dirichlet prior is not the only possible prior we can use. In the case of binary
variables, another distribution of interest is the Beta distribution. In the next section
we will present more formally the Beta-Binomial model and see its relation to the
Dirichlet-Multinomial model we just saw. We will see that the results are similar and
also how to play with the parameters of the Beta distribution in order to describe
different types of prior for our class and feature variables.

Beta-Binomial
The Beta-Binomial prior is another example and a well-known model where we set a
prior distribution on the parameter of the distribution of interest. Here we are going
to use a binomial distribution with a θ parameter. The θ parameter can be seen as a
probability that an event will occur or not, or a proportion of the positive events in a
sequence of experiments. Therefore, the parameter θ takes values in [0,1].

Let's first review the Binomial distribution with a simple example: let's say we have
a coin and we want to know if the coin is impartial or not when we play the heads
or tails game. The game is to toss the coin N times and try to estimate what is the
probability θ of obtaining a head. This problem is very important because it is the
basis of many other models. You can replace the game of heads or tails with the
result of experimentation (positive or negative), the result of a poll (yes or no), or
any other binary answer.

Chapter 4

[107]

Historically, this model has been studied by Thomas Bayes and generalized by
Laplace, thus giving birth to the Bayes rule (or more formally the Bayes-Laplace, as
we saw in Chapter 1, Probabilistic Reasoning).

In this problem we will follow again a Bayesian approach: we need a prior
distribution on the parameter θ, a likelihood of the data given the parameter
p(x | θ), and we will compute the posterior distribution p(θ | x).

If we want to be complete, we can also compute the predictive posterior distribution
p(x | θ, x), which is the distribution of a new data point (a new toss) given
parameters and the previous experiments.

When we assume that all the observations (that is, the results of each toss) are
independently and identically distributed we can again write that:

() ()1
| |N

ii
p D p xθ θ

=
=∏

Here, D = {x1, …, xN} is the dataset.

Is this assumption true? From a theoretical point of view, it's true because: (1) every
time we toss a coin, the previous toss has no influence on the new one and (2) we
use the same coin for all the tosses, so the parameter θ doesn't change. Therefore the
distribution of heads and tails is the same. But is it true in real life? If we assume that
each toss can microscopically change the air in the room and that each toss will rip off
a few atoms of metal from the coin, then the distribution is certainly not independent
and certainly not identical. But in fact the acute reader will have understood that those
effects are so negligible that they have absolutely no influence on the results. Maybe
one should toss the coin a few billion times to start seeing a difference.

However, when designing such an experiment, one has to be careful about the
conditions of the experimentation and be sure that the data is indeed identically and
independently distributed. For example, if the experiment is a poll and one puts the
same question to people next to each other, one after the other, it is very likely that
the second person will be influenced by the answer of the first one. And therefore the
data will not be iid anymore.

Now we can star solving our Bayesian problem by assuming distributions for all the
required components.

Bayesian Modeling – Basic Models

[108]

The Bernoulli distribution is a probability distribution that gives the probability θ
to a random variable when it takes the value 1 and (1 –θ) if it takes the value 0. We
say that x ~ Ber(θ), that is p(x | θ) = θx(1 – θ)1-x with x ϵ {0,1}. If we repeat the same
Bernoulli experiment many times (that is, if we toss the coin many times), we obtain
the dataset D = {x1, …, xN} with this probability distribution:

() () () () ()1 21 2
1 1 1

1
| | 1 1 1 NN

N x x xxx x
ii

p D p xθ θ θ θ θ θ θ θ− − −

=
= = − − −∏ …

Because of the iid assumption and the fact that the product is commutative, and if
we call N1 the number of heads and N0 the number of tails, we can rewrite this
likelihood by:

() () 01| 1 NNp D θ θ θ= −

From now on, we can take the log of this expression:

() () ()01
1 0log 1 log log 1NNLL N Nθ θ θ θ θ= − = + −

Before going further, it's interesting to understand why we are always using
logarithms in our computations. The first reason is historical: probabilities are
numbers between 0 and 1. Multiplying two probabilities is essential when computing
the likelihood of iid data. In fact, in such a likelihood, it's not unusual to multiply
hundreds or thousands of those probabilities. On early computers, multiplication
was very slow compared to addition. Because () () ()log . log loga b a b= + , it was
useful to first transform all the data into logarithms and then add them. It was
generally faster. Nowadays, this is not true anymore and usually multiplication can
be (almost) as fast as addition. The cost of computing the logarithm can sometimes
overwhelm the small gain of just doing additions instead of multiplications.

The second reason is that, when we multiply numbers between 0 and 1, the result
tends to decrease and be smaller and smaller. This time, even modern computers
have a limited capacity to represent numbers and moreover, because real values are
discretized (usually following the IEEE-754 norm), the accuracy of computations
suffers enormously and errors are accumulated throughout the computations, leading
to very inaccurate if not false results. However, with logarithms, numbers between -∞
and 0 are added together, making the computations more accurate. Small values are
now contributing a lot to the results, making computations accurate.

Chapter 4

[109]

Usually we take the negative log-likelihood, and we only have to deal with positive
numbers. The other reason is that, when one wants to maximize the likelihood, one
can also minimize (towards zero) the negative log-likelihood. This is an equivalent
problem. And a lot of optimization algorithms try to find the zeros of functions.
Therefore implementation is simpler.

To illustrate this, just plot the following in R:

x <- seq(0,1,0.05)

plot(x, -log(x), t='b', col=1)

After this parenthesis, we are back to the problem of a sequence of tosses. So we
assumed that the random variable representing the result of a toss has a Bernoulli
distribution and we calculated the likelihood of a sequence of N tosses.

Now let's consider the problem from a different angle and let's assume we toss
the coin N times, N being known in advance. The question is now: what is the
probability of obtaining N1 heads out of N tosses.

Bayesian Modeling – Basic Models

[110]

On average, the answer will depend on how the coin is biased. And the bias of the

coin is known too; it is the parameter θ. If θ = 0.5, then N1 should rather be 2
N

. We
want to have a probability for each possible value that could take N1 in the function
of θ and N. In this case, it is important to remark the following: how many positive
cases do we have? By positive cases, we mean, How many sequences of N tosses
can provide N1 heads? On a small example with N=3 and N1 =2, we can have {HHT,
HTH, THH}. That is three possibilities. In general, we want to know the number
of combinations of r values out of n events with replacement. And this is equal to

()
!

! !
n n
r r n r

= −
. Now remember that each sequence is independent of the others

and that the probability of two independent events is the sum of probability

P(A ⋁ B) = P(A) + P(B). So finally, the probability of 1

n
N

r

=

 independent Bernoulli
events of parameter θ is:

() () 011 0
1 0

1

| , 1 NNN N
p N N

N
θ θ θ

+
= −

This probability distribution is very well-known and is called the Binomial
distribution. In fact, the Binomial distribution is usually defined with two
parameters: N, the total number of tosses, and θ. It is commonly written as:

() ()| , 1 N nnN
p n N

n
θ θ θ −

= −

In R, the binomial distribution is provided by default in the language and it can be
used with the following functions:

• dbinom: Density
• pbinom: Cumulative
• qbinom: Quantile
• rbinom: Random generation

We can illustrate the distribution of the binomial in R with the little program
that follows:

x<-seq(1,20)

plot(x,dbinom(x,20,0.5),t='b',col=1,ylim=c(0,0.3))

Chapter 4

[111]

lines(x,dbinom(x,20,0.3),t='b',col=2)

lines(x,dbinom(x,20,0.1),t='b',col=3)

We show three different distributions with the parameter θ varying from 0.1 to 0.5.
When θ is small, obviously the probability of having many positive outcomes quickly
decreases. When θ is 0.5, the black curve shows that the probability of 50% positive
outcomes is obviously the highest.

The prior distribution
The next question that arises is, What prior distribution should we use as a prior on
θ? The beta distribution is a very common choice and has the nice property of being
a conjugate to the Binomial and Bernoulli distributions.

In fact the beta distribution has a very nice form, similar to the Binomial and
Bernoulli distributions, as follows:

() () 11| , 1p βαθ α β θ θ −−∝ −

Bayesian Modeling – Basic Models

[112]

We will add the normalization constant later. The good thing about the Beta is
that its domain, that is, the value that θ can take, is [0,1]. And therefore θ from the
Beta distribution can also be interpreted as a proportion or a probability and used
as a parameter in the Binomial or Bernoulli distributions. This makes the Beta
distribution a perfect candidate for the prior distribution. To complete the formula
we have to realize that this distribution is a density and the integral over its domain
must be one. Therefore it is usual to write:

() ()
()

11

1 11

0

1
| ,

1
p

x x dx

βα

βα

θ θ
θ α β

−−

−−

−
=

−∫
And the integral at the denominator is known as the Beta function. In general we can
simply write the density as:

() () () ()
() () ()1 11 11| , 1 1

,
p

Beta
β βα αα β

θ α β θ θ θ θ
α β α β

− −− −Γ +
= − = −

Γ Γ

Here, the Gamma function is defined as:

() () 1

0
exp xx t t dt

∞ −Γ = −∫

When x is an integer () ()1 !x cΓ = −

The posterior distribution with the conjugacy
property
Now we need to combine the Binomial distribution with the Beta prior to obtain the
posterior distribution. The posterior distribution is obtained by applying the Bayes
rule as usual:

() () ()
() () ()| , | , ,

| , , , | , | , ,
| , ,

p n N p N
p N n p n N p N

p n N
θ θ α β

θ α β θ θ α β
α β

= ∝

Chapter 4

[113]

And finally, by replacing each distribution with its analytical form, we obtain:

() () () () () ()
() () 11!| , | , , 1 1

! !
N nnNp n N p N

n N n
βαα β

θ θ α β θ θ θ θ
α β

− −−Γ Γ
= − × −

− Γ +

And this is simply proportional to:

() () ()1 11 11 1 1N n N nn nβ βα αθ θ θ θ θ θ− − − + −− + −− × − = −

And in fact the last form is exactly the same as the initial form of the Beta
distribution. It means that our posterior distribution on θ is also Beta-distributed.

Therefore, we have found our posterior and we can resume this calculus as follows:

If n follows a Binomial distribution Binomial(θ, N) and the prior distribution over θ
is Beta(α, β), then the posterior distribution on θ will also be a Beta distribution
Beta(⍺ + n, β+ N – n).

In this case, thanks to the conjugacy property, we've made a very efficient posterior
computation, which boils down to a few additions only. The notion of conjugacy is
extremely important in Bayesian reasoning mainly for this property.

Which values should we choose for the Beta
parameters?
This will depend on what type of information we want to include in the model. For
example, we might decide that every value of θ is a priori acceptable and we want
to give the same importance to all of them. This is what we did with the Dirichlet
distribution in the previous section when adding pseudo-counts of 1.

With the Beta distribution, we can have a uniform distribution with the parameters
Beta(1,1). But we can also try to give more importance to extreme values close to 0
or 1, with for example a Beta(0.5,0.5) distribution. On the other hand, to force θ to
stay more centered around 0.5, we can use Beta(2,2), Beta(3,3). The higher the values,
the more probability mass is given to the center. The next code in R shows different
distributions with different values:

x <- seq(0,1,length=100)

par(mfrow=c(2,2))

Bayesian Modeling – Basic Models

[114]

param <- list(

 list(c(2,1),c(4,2),c(6,3),c(8,4)),

 list(c(2,2),c(3,2),c(4,2),c(5,2)),

 list(c(1,1),c(2,2),c(3,3),c(4,4)),

 list(c(0.5,0.5),c(0.5,1),c(0.8,0.8)))

for(p in param)

{

 c <- 1

 leg <- character(0)

 fill <- integer(0)

 plot(0,0,type='n', xlim=c(0,1),ylim=c(0,4))

 for(v in p)

 {

 lines(x,dbeta(x,v[1],v[2]),col=c)

 leg <- c(leg, paste0("Beta(",v[1],",",v[2],")"))

 fill <- c(fill,c)

 c <- c+1

 }

 legend(0.65,4,leg,fill,bty="n") }

Chapter 4

[115]

The Gaussian mixture model
The Gaussian mixture model is the first example of a latent variable model. Latent
variables are also called hidden variables and are variables that are present in the
model but are never observed.

The notion of using unobserved variables can be surprising at first because we might
wonder how to estimate the parameters of the distribution of such a variable. In fact,
we might wonder what the real meaning of such a latent variable is.

For example, let's say we observe data represented by a group of random variables.
This data tends to group into clusters, aggregating together depending on their
underlying meaning. For example, we could observe physiological traits from
animals and group those data points by species such as dogs, cats, cows, and so on.
If we think in terms of generating models, then we can say that, by choosing a group
such as for example pony, we will observe features that are specific to this group and
not to another group such as cats. However, none of the physiological variables carry
an explicit reference to the fact that they come from the pony group or the cat group.

This distinction only exists because we want to group things together but they're not
part of the real world. However, it helps a lot to group data like this, by pony or cat
features, to understand animals in general. This is the grouping we want to do with a
latent variable.

Using latent variables in a model can be problematic at first because there is no data
to estimate their distribution. However, we saw before that algorithms such as EM
can be very helpful when it comes to solving this task.

Moreover, we can simplify the model by introducing some conditional independence
between features or a hierarchy between variables, thus making the model easier to
interpret or easier to compute.

The Gaussian mixture model is a latent variable mainly used for density estimation
problems, where, roughly speaking, the main assumption is that a random process
will, according to a multinomial distribution, choose a Gaussian at random and then
(according to this selected Gaussian distribution) choose a data point at random. It
is a very simple 2-step process. And it also simplifies the problem of estimating a
complex dataset distribution. Instead of searching for a very complex distribution,
the model estimates it with a set of simple Gaussian distributions, joined by the
latent variable. It is similar to a divide-and-conquer approach.

Bayesian Modeling – Basic Models

[116]

Definition
In this model we will call X the variable we can observe and we will call Z a
multinomial random variable that is hidden. The model is defined by the following
probability distribution:

() () ()
()

| 1| | 1,

| 1,
i i i ii

i i ii

p X p Z p X Z

p X Z

π θ

π θ

Θ = = =

= =

∑
∑

Here, πi are the mixing proportions and p(X | Zi = 1, θi) are the mixture components.
In this formula, because Z is a multinomial distribution, we have p(Zi | πi) = πi and
Zi is the ith component of Z.

Finally Θ is the set of all parameters of the model and θi are the parameters of the X
variables.

When X has a Gaussian distribution, we can write the preceding distribution as:

() ()()| | ,i i i ii
p X N Xπ θ µΘ = = ∑∑

Here, Σi are the covariance matrices of the variable X. If we expand the formula
we obtain:

()
()

() ()1
1/2/2

1 1| exp
22

T
i i imi i

i

p X x xπ µ µ
π

− Θ = − − −
 ∑

∑ ∑

This result looks dense but it's time to draw the corresponding probabilistic
graphical model and see the equivalence in it:

This represents the probability distribution P(X,Z) where, this time, the Z node is
white to indicate that it is hidden or latent. If we marginalize out the variable Z
from this model to obtain the distribution on X we will obtain exactly the previous
formula. Also note that, in this model, X has a multivariate Gaussian distribution.

Chapter 4

[117]

From this distribution it is also simple to compute the posterior of Z given X. This is
a value of interest: we want to know what the probability is of Z being in state i after
observing Z; in other words, it gives us information about which distribution the
observed variable comes from. Indeed, let's first draw a mixture of three Gaussians
in R with the following code. This time we will use the package called mixtools:

N <- 400

X <- list(

 mvrnorm(N, c(1,1), matrix(c(1,-0.5,-0.5,1),2,2)/4),

 mvrnorm(N, c(3,3), matrix(c(2,0.5,0.5,1),2,2)/4),

 mvrnorm(N, c(5,5), matrix(c(1,-0.5,-0.5,4),2,2)/4))

plot(0,0,xlim=c(-1,7),ylim=c(-1,7),type='n')

for(i in 1:3)

 points(X[[i]],pch=18+i, col=1+i)

This little program simply generates three sets of data from a multivariate Gaussian
distribution with two dimensions. It plots the three datasets on the same graph and
as expected the points create three clusters of data, as shown in the next figure. If
we regroup the three little datasets into a big one, one interesting problem would
be to find out the parameters of the three clusters. In this example, we have an ideal
situation because we generated an equal number of points for each cluster. But in
real applications, this will rarely be the case.

Bayesian Modeling – Basic Models

[118]

The posterior probability of the hidden variable Z can be written as

() () ()
()

()
()

| 1, 1|
1| ,

|

, |
, |

i i i i
i

i i i

j j jj

p X Z p Z
p Z X

p X

N X
N X

θ π

π µ
π µ

= =
= Θ =

Θ

∑
=

∑∑

This is a simple application of the Bayes rule again.

The next step is to estimate the parameters θ of the model, assuming again that the
data is iid. If we call D = {xn} the dataset, we can, as before, write the log-likelihood of
the model:

() ()
(){ }

| log |

log | ,

nn

i n i in i

LL D p x

N xπ µ

Θ = Θ

= ∑

∑
∑ ∑

This log-likelihood is a bit hard to optimize and we will use an adequate
optimization algorithm. As mentioned before, the fact that a variable is hidden will
lead us to use the EM algorithm.

From the previous example, we will assume that the variable Z has three states
{z1,z2,z3} for each of the three Gaussian components. The only constraint in the
Gaussian mixture model is that one has to assume the number of Gaussians
beforehand. Other models exist where the number of Gaussian components is also
a random variable and the learning algorithm will try to discover the most probable
number of components while at the same time finding the mean and covariance
matrix of each component.

Here we use the same code as previously:

library(mixtools)

N <- 400

X <- list(
 mvrnorm(N, c(1,1), matrix(c(1,-0.5,-0.5,1),2,2)/4),
 mvrnorm(N, c(3,3), matrix(c(2,0.5,0.5,1),2,2)/4),
 mvrnorm(N, c(5,5), matrix(c(1,-0.5,-0.5,4),2,2)/4))
x <- do.call(rbind,X) # transform X into a matrix
model2 <- mvnormalmixEM(x, verb=TRUE)
model3 <- mvnormalmixEM(x, k=3,verb=TRUE)

Chapter 4

[119]

It will take some time to compute the results. The parameter verb=TRUE displays
the result of each iteration of the EM algorithm. What is interesting to see is the log-
likelihood. In the first case (model2), the log-likelihood will go from approximately
3711 to -3684 in 27 steps. Your results might be different because remember that we
generate the dataset at random using mvrnorm.

The problem with model2 is that the number of components is taken by default to
be 2: you can perform help(mvnormalmixEM) in R to see the parameter k. And we
know we have three components in this mixture. However, model3 has a number of
components k=3, closer to the real dataset, and obviously the log-likelihood will be
closer to 3. It goes from 3,996 to only 3,305 in 41 iterations (again it might be slightly
different on your computer). So it seems the convergence has been far better in the
second case when we assume the correct number of components.

We can now plot the log-likelihood evolution of the EM algorithm to understand the
difference between the two models:

plot(model2,xlim=c(0,50),ylim=c(-4000,-3000))

par(new=T)

plot(model,lt=3,xlim=c(0,50),ylim=c(-4000,-3000))

Note that, by fixing the size of the graph, we can easily superimpose
the two graphs. The dashed line is the graph corresponding to the
model with three components. It is clear that the log-likelihood gets
closer to zero during this algorithm. However, it takes more iterations
to reach this result.

Bayesian Modeling – Basic Models

[120]

By looking at the results in model3, we can have a better understanding of the model
that has been found by the EM algorithm:

model3$lambda

[1] 0.3358283 0.3342840 0.3298877

The proportions of each component are, as expected, very close to our initial
proportions. You can change the number of points for each component and
check again:

X <- list(

 mvrnorm(100, c(1,1), matrix(c(1,-0.5,-0.5,1),2,2)/4),

 mvrnorm(200, c(3,3), matrix(c(2,0.5,0.5,1),2,2)/4),

 mvrnorm(300, c(5,5), matrix(c(1,-0.5,-0.5,4),2,2)/4))

x <- do.call(rbind,X)

And then let's rerun it with mixtools:

model3.2 <- mvnormalmixEM(x, k=3,verb=TRUE)

We can see the log-likelihood going from approximately -1925 to -1691 in 84
iterations. But now the proportions are 0.3378457, 0.1651263, and 0.4970280 which
indeed correspond to the proportions we initially set in our toy dataset.

Again we can check the other parameters, and see they are similar to those we set
up in our dataset. In a real-world application, we don't have any idea of the location
and covariance of each component, of course. But this example shows that the EM
algorithm usually converges to the desired values:

model3$mu

[[1]]

[1] 3.025684 3.031763

[[2]]

[1] 0.9854002 1.0289426

[[3]]

[1] 4.989129 5.076438

Now it's time to look at the result more graphically to really understand which
components have been found by the EM algorithm.

First of all, we plot model3 with the following command and display its three
components with plot(model3, which=2):

Chapter 4

[121]

Then we display, for comparison purposes, model2 and model3.2:

Bayesian Modeling – Basic Models

[122]

The following figure shows model3.2:

And now we conclude from our observations:

• model3 and model3.2 are extremely similar, as expected.
• model2, for which we chose to have only two components, seems to have

made an acceptable choice with the components. Indeed the two bottom
components have an almost similar orientation. So the algorithm converged
toward a solution in which one Gaussian will embed the two bottom
components, and another Gaussian will embed the top one, which has a
different orientation. It is a good result.

Summary
In this chapter we used the simple yet powerful Bayesian model, which has a
representation as a probabilistic graphical model. We saw a Bayesian treatment of
the over-fitting problem with the use of priors, such as the Dirichlet-multinomial
and the famous Beta-Binomial model.

Chapter 4

[123]

The last section introduced another graphical model, which was around before the
invention of probabilistic graphical models and is called the Gaussian mixture. It is a
very important model to capture data coming from different subsets within the same
model. And finally, we saw another application of the EM algorithm: learning such
models and finding out the parameters of each Gaussian component.

Of course, the Gaussian mixture is not the only latent variable model; in fact it
represents a lot of Bayesian models and the probabilistic graphical model framework.

In the next chapter, we will continue our study of inference algorithms for Bayesian
models and probabilistic graphical models with the introduction of a new and very
important family of algorithms: the sampling algorithm, also known as the Monte-
Carlo algorithm. It is arguably one of the most important algorithms in the field
of machine learning because it allows the use of many types of model that were
previously too complicated to use.

[125]

Approximate Inference
This chapter introduces a second class of inference algorithms, maybe the most
important of all because of their versatility. The approach is completely different
from what we have seen until now. Indeed, we saw two classes of algorithms, one
based on a pure analytic resolution of the problem by calculating manually the
posterior distribution and the other one by using message propagation in a graph.
In both cases, the result was computed exactly. In the case of an analytic solution,
computing the solution usually boils down to computing a function of the posterior
distribution. In the case of a message-passing algorithm, computing the posterior
distribution is done step-by-step by propagating messages on a graph. If the graph
is not appropriate for this type of algorithm, the computations can be extremely long
and often intractable.

However, in many cases, we can trade a bit of accuracy for more speed. This is the
main idea of approximate inference. Does it really matter if we are less accurate?
Well, it appears that, in many applications, approximate inference is still very
accurate. On the other hand, it allows us to deal with more complex models and
with many types of distributions, something that is not completely possible with the
other approaches.

In this chapter, we will see one important class of algorithms, called sampling
algorithms, also known as Monte-Carlo sampling. The main idea of this class of
algorithms is to draw at random from the posterior distribution in order to replace
complex computations with simple statistics. For example, if we want to compute the
posterior mean of a random variable, we can draw many samples at random from its
posterior distribution and simply compute the mean of the values we obtained.

Monte-Carlo sampling is what really made the Bayesian revolution possible in
science. Before, Bayesian models were hard to compute, if not impossible.

Approximate Inference

[126]

More specifically, we will look at the following algorithms:

• Rejection and importance sampling, as a basis for many other methods
• Markov Chain Monte-Carlo and the Metropolis-Hastings algorithm

These two classes of algorithms will cover most of what we need to know about the
Monte-Carlo method. However, many new algorithms are regularly being discovered.

Sampling from a distribution
We have a big problem with probabilistic graphical models in general: they are
intractable. They quickly become so complex that it is impossible to run anything
in a reasonable amount of time. Not to mention learning them. Remember, for
a simple algorithm such as EM, we need to compute a posterior distribution at
each iteration. If the dataset is big, which is common now, if the model has a lot of
dimensions, which is also common, it becomes totally prohibitive. Moreover, we
limited ourselves to a small class of distributions, such as multinomial or Gaussian
distributions. Even if they can cover a wide range of applications, it's not the case
all the time.

In this chapter, we consider a new class of algorithms based on the idea of sampling
from a distribution. Sampling here means to draw values of the parameters at
random, following a particular distribution. For example, if one throws a dice, one
draws a sample from a multinomial distribution, such that six values are possible,
with equal probability. The result is a number between 1 and 6. If the die is not fair
(say 6 has a higher probability), then it is possible we will obtain more 6s than the
other numbers. If we throw the die many times and then calculate the mean value
of all the results, we will presumably see a number closer to 6 than 3.

In many situations, we are more interested in some properties of the distribution
rather than the distribution itself—for example, its mean or variance. It means
that, in many cases, we want to compute an expectation of a function f(x) with
respect to a probability distribution p(x). Here, x can be any random variable of any
dimension we want. For example, p(x) can be a multivariate Gaussian distribution or
a probabilistic graphical model.

In the case of continuous variables, we want to solve the generic problem of
evaluating the expectation:

Chapter 5

[127]

() () ()E f f x p x dx= ∫

When x is discrete, the integral is replaced by a summation.

In the example in the screenshot, the distribution is in red and the function in
green. We immediately see there will be many problems sampling from such a
complex distribution.

The algorithms presented in this chapter will try to solve many of those problems.

The main idea in sampling is to replace the evaluation of an integral with a simpler
sum over a set of samples drawn independently from the distribution p(x). The
previous expectation can then be approximated by a finite sum:

()()1

1ˆ L l
l

f f x
L =

= ∑

Approximate Inference

[128]

If the samples are drawn from the distribution p(x) then () ()ˆE f E f= and, similarly,
the variance of the estimator is:

() ()()21ˆvar f E f E f
L

= −

In this method, the problem is to obtain independent samples. It is not always the
case and the number of effective samples might be fewer than the number of points
drawn from the distribution. However, as seen in the previous formula, the variance
of f̂ , the estimator does not depend on the dimension of x. It means that, even in
high-dimensional problem such as a graphical model, high accuracy can be obtained
with a relatively small number of samples.

But as we stated before, the main problem is in particular sampling from the
distribution p(x). And it can be hard or even impossible to do it sometimes. When the
distribution p(x) is a graphical model in a directed form (such as most of the models
we have in this book), the technique to draw a sample is quite simple and called
ancestral sampling.

Given an ordering of the variables xi in the graph, from the top of the graph to the
bottom, one can draw a sample from the graphical model by sampling successively
each variable and then assigning the sampled values at the corresponding variables
to sample from its descendant. For example, let's say we have the following graph:

Chapter 5

[129]

We start by sampling from p(A) and p(B) independently, then assign the sampled
values to A=a and B=b so that we sample from p(C | A=a, B=b). Finally, the last
sample is drawn from p(D | C=c). If none of the variables are observed, the
procedure is very simple. If, however, one variable is observed, one technique is to
keep only the samples that agree with the value of the observed variables. If we have
A=a1, for example, then we will keep only the samples in which we have been lucky
enough to have A=a1. In this case, not all the samples are usable and the difference
between the number of drawn samples and the number of useful samples can be
big, because each time a set of samples disagrees with the observed values, it has to
be discarded. The probability of a set of samples being accepted decreases with the
number of observed nodes.

Basic sampling algorithms
We start our study of sampling algorithms by looking at some basic algorithms that
can be used as subroutines in more advanced schemes. In all the algorithms from
this book, we assume that we can generate random numbers uniformly from the
interval [0,1]. The problem of generating random numbers on a computer is complex
and vast. In most cases, random numbers will be generated by a deterministic
algorithm, and they are called pseudo-random numbers. They are not random, but
their distribution and properties are close enough to a real random generator that
they can be used as real random numbers. Pseudo-random number generators are
usually based on the estimation of chaotic functions that are extremely sensitive to
their initial conditions, which are called the seed. Changing the value can generate
a completely different sequence of numbers, even if the seed value is just a little bit
different from the previous one. Nowadays, we also have electronic devices that
can generate random numbers from physical phenomena such as thermal noise,
photoelectric effects, or quantum phenomena.

Standard distributions
In R, it is possible to generate random numbers from standard distributions.
However, for the sake of understanding, we will review simple techniques for how
to generate random numbers from a uniform distribution only.

In R, random numbers can be generated from a family of functions beginning with
the letter r, such as runif, rnorm, rbeta, rbinom, rcauchy, rgamma, rgeom, rhyper,
rlogis, and so on. In fact, density can be estimated using the functions beginning
with d, and the cumulative distribution function with functions beginning with the
letter p.

Approximate Inference

[130]

For example:

runif(1)

[1] 0.593396

Here, the parameter of the function is the number of numbers one wants:

runif(10)

 [1] 0.7334754 0.2519494 0.7332522 0.9194623 0.5867712 0.3880692 0.2869559

 [8] 0.7379801 0.4886681 0.5329107

Of course, these are (pseudo) random numbers, so your results will be different from
the examples shown earlier.

rnorm(1,10,1)

[1] 9.319718

This generates a normally distributed number, with mean 10 and variance 1. If we
generate many of these numbers and plot the running mean, we'll see the mean
converging little by little to its true value. This is the main property we will use
throughout this chapter and in sampling algorithms in general.

x<-rnorm(1000,10,1)

y<-cumsum(x)/(1:1000)

plot(y,t='l')

abline(h=10)

Chapter 5

[131]

Generating a random number from a simple distribution is the basis of all sampling
algorithms. Here, we consider we know how to generate a random number from a
uniform distribution. In R, we perform runif(1,0,1). By default, the min and max
parameters are already 0 and 1. Therefore runif(1) will do.

Suppose we transform the uniformly random values with a function ().f such that
y=f(x). The distribution of y will be:

() () dxp y p x
dy

=

We need functions f(x) such that the distributions of y are distributed according to
the desired distribution p(y). Integrating p(y), we have:

() ()ˆ ˆ
y

x h y p y dy
−∞

= ≡ ∫

Therefore, ()1y h x−= , which is the inverse function on the indefinite integral of the
desired distribution. Let's take a simple example with the exponential distribution.
This distribution is continuous with a density function () ()expp x xλ λ= − and
a support on [0, +∞[. Integrating h(y) gives () ()1 exph y yλ= − − , which is the
cumulative distribution function of the exponential distribution.

As a side note, the exponential distribution is useful to describe the lengths of inter-
arrival times in a Poisson process. It can be viewed as the continuous version of the
geometric distribution.

Therefore, if we transform our uniformly distributed variable x with the function
()1 1 ln 1h xλ− −= − − , then y will be exponentially distributed.

We can check it experimentally by plotting the distribution of our function and
comparing it with the distribution of an exponential distribution. We take lambda=2
in this example:

x<-runif(20000)

inv_h<-function(x,lambda) -(1/lambda)*log(1-x)

hist(inv_h(x,2),breaks=100,freq=F)

t<-seq(0,4,0.01)

lines(t,dexp(t,2),lw=2)

Approximate Inference

[132]

We first generate 20,000 points from a uniform U(0,1) distribution. Then, inv_h is
the function defined earlier and we plot a histogram. Note the parameter freq=F
to draw with the densities instead of the frequency. Finally, we draw the density
function of an exponential distribution with the same parameter (the thick black line
in the following graph) and see that the two distributions, the empirical one and the
analytic one, are a very good match.

The following screenshot shows the result:

The problem with this technique is the evaluation of the indefinite integral. In simple
cases, this integral is readily available but this is not always so. In such a case, we
need another strategy and the key is to use a simpler distribution to approximate the
more complex distribution we can sample from. There are two basic techniques to
do that. One is called rejection sampling, and it uses a simple distribution to draw a
sample from and accept the sample at the same time as it falls into the more complex
distribution. Otherwise it is rejected. The other technique is called importance
sampling and, in this case, samples from the approximate distribution are corrected
to take into account their difference with respect to the original distribution one
wants to sample from.

Both techniques are important and used as a basis for more advanced techniques,
such as Markov Chain Monte-Carlo (MCMC), that we will see in the second part of
this chapter.

Chapter 5

[133]

In all cases, one of the main ideas is to use a proposal distribution, whose goal is to
approximate, even roughly, the distribution we want to sample from. We will call q(x)
the proposal distribution and p(x) the initial distribution in the following sections.

Rejection sampling
Suppose we want to sample from a distribution that is not a simple one. Let's call this
distribution p(x) and let's assume we can evaluate p(x) for any given value x, up to a
normalizing constant Z, that is:

() ()1

p

p x p x
Z

= �

In this context, p(x) is too complex to sample from but we have another simpler
distribution q(x) from which we can draw samples. Next, we assume there exists
a constant k such that () ()kq x p x≥ � for all values of x. The function kq(x) is the
comparison function as shown in the following figure:

The distribution p(x) has been generated with a simple plot:

0.6*dnorm(x,1)+0.4*dnorm(x,5)

Approximate Inference

[134]

The rejection sampling algorithm is based on the following idea:

• Draw a sample z0 from q(z), the proposal distribution
• Draw a second u0 sample from a uniform distribution on [0, kq(z0)]
• If ()0 0u p z> � then the sample is rejected otherwise u0 is accepted

In the following figure, the pair (z0, u0) is rejected if it lies in the gray area. The
accepted pairs are a uniform distribution under the curve of p(z) and therefore
the z values are distributed according to p(z):

The probability of such a pair being accepted is:

() ()1p accepted p z dz
k

= ∫ �

Because it depends on k, it is necessary for the proposal distribution to be as close as
possible to the real distribution, otherwise the algorithm will converge very slowly
and would be practically useless.

Chapter 5

[135]

This algorithm is very simple and can be easily implemented. However, it suffers
from a drastic problem related to the dimension of the problem. In the case of a
probabilistic graphical model, the dimension quickly becomes very large. Rejection
sampling is usually a good idea in one or two dimensions, but the rejection rate
grows exponentially with the number of dimensions. However, it can be used as a
subroutine in more advanced algorithms to generate samples for simple probabilistic
forms (for example, at the level of one node if needed).

An implementation in R
We consider the problem of estimating a mixture of Gaussian distribution with a
normal distribution. The mixture of Gaussian and the proposal distributions are
shown in the following figure, where the proposal distribution in red has been scaled
with k=3.1.

The mixture of Gaussian distribution is in black and has two modes:

In R, we define the proposal and target distributions as follows:

q <- function(x) dnorm(x, 0, 0.5)

rq<- function(x) rnorm(1, 0,0.5)

p <- function(x) 0.6*dnorm(x,0,0.1)+0.4*dnorm(x,0.6,0.2)

Approximate Inference

[136]

The parameters are arbitrary. We have a proposal distribution q centered on 0 with
a standard deviation of 0.5. The target distribution is a mixture of Gaussian with
two components.

The rejection algorithm is as follows:

rejection <- function(N,k,p,q,rq)

{

 accept <- logical(N)

 x <- numeric(N)

 for(i in 1:N)

 {

 z0 <- rq() # draw one point from the proposal distribution

 u0 <- runif(1,0,1) # drawn one point from the uniform

 if(u0 < p(z0)/(k*q(z0))) # rejection test

 accept[i] <- TRUE

 else accept[i] <- FALSE

 x[i] <- z0

 }

 data.frame(x=x,accept=accept)

}

The parameters are as follows:

• N: This is the number of samples.
• k: This is the coefficient for the proposal distribution.
• p: This is the distribution to estimate. You must pass a function that takes

one parameter.
• q: This is the proposal distribution (with the same remark as earlier).
• rq: This is a sampler for the proposal distribution.

Chapter 5

[137]

This algorithm samples N times and accepts or rejects in each sample in a for loop.
The result is stored in a data.frame. We keep all the samples to compare the results
between rejection or not. The first column is the samples, and the second column is a
binary value indicating whether the sample has been accepted or not.

The algorithm works as described in the theoretical part:

1. We first create two vectors, accept and x, for storing the results.
2. We start a loop in which:

1. We sample z0 from the proposal distribution.
2. We sample u0 from a uniform on [0,1].
3. We accept or reject the value and store the result.

Let's do a few experiments to understand the behavior of this important algorithm.
In the experiments, in order for the reader to be able to reproduce exactly the same
results, we will use a fixed random seed by doing:

set.seed(600)

Moreover, we will use a scaling factor k of 3.1 as:

k <- 3.1

So, the first experiment is to run the algorithm with 100 samples:

x <- rejection(100,k,p,q,rq)

The results are stored in the data.frame x and the head of this data.frame is
as follows:

head(x)

 x accept

1 -0.56007075 FALSE

2 -0.18000011 FALSE

3 -0.07572593 TRUE

4 -0.72502107 FALSE

5 -0.60916359 FALSE

6 0.97963839 FALSE

Approximate Inference

[138]

We can see that not all the points have been accepted. In our example, only 47 points
out of 100 have been accepted. Looking at the histogram of the accepted values,
we are far from the target distribution. It means that we need to run the algorithm
longer than we did:

t <- seq(-2,2,0.01)

hist(x$x[x$accept],freq=F,breaks=200,col='grey')

lines(t,p(t),col=2,lwd=2)

On this graph, we can see that the accepted samples regroup in the region of the
high-probability mass. But running with such a small number of samples is not
enough. The red curve is our target distribution.

We now run the algorithm with 5,000 samples:

x <- rejection(5000,k,p,q,rq)

hist(x$x[x$accept],freq=F,breaks=200,col='grey')

lines(t,p(t),col=2,lwd=2)

Chapter 5

[139]

And what we expect in this second run is to see a better concentration of the accepted
samples into the regions of high probability of the target distribution.

The following graph shows the result:

And indeed the graph looks better now. The histogram follows the true distribution
but it is still not perfect. In fact, the number of accepted samples is not that high
when we consider it:

sum(x$accept)

1581

If we run the algorithm for longer, we will obtain a better sample set and approach
the target distribution very closely.

Approximate Inference

[140]

So, now we run the algorithm with 50,000 samples. After running it, we find that
16,158 of them have been accepted. And the result is far better of course:

The two modes of the distribution have been correctly captured and the empirical
distribution follows precisely the target distribution. This is at the expense of
running the algorithm for longer.

If we draw the histogram of all the points sampled from the proposal distribution
(accepted or not), they follow precisely the proposal distribution as expected:

hist(x$x,freq=F,breaks=200,col='grey')

lines(t,q(t),col=2,lwd=2)

Chapter 5

[141]

Finally, it is also interesting to look at the behavior of this algorithm from the point of
view of the number of accepted samples. We run a simple function, as follows:

N <- sapply(seq(1000,50000,1000),

 function (n)

{

 x <- rejection(n,k,p,q,rq)

 sum(x$accept)

})

Approximate Inference

[142]

And we plot the result with:

plot(N,t='o')

The result is not surprising. The more samples are drawn, the more are accepted, so
it gives us an interesting clue: running the algorithm for longer will indeed improve
the results with respect to the number of accepted samples.

But the problem with rejection sampling is that we need to sample many points in
order to have good results. Rejection sampling is still a good algorithm and can be
used in many situations. In the next section we will explore an improvement on
rejection sampling, called importance sampling, in which all the sample points
are accepted.

Importance sampling
Importance sampling is an improvement on rejection sampling. Again the
assumptions are the same and we will use a proposal distribution q(x). We also
assume that we can compute the value of the density of probability p(x). But we
are unable to draw a sample from it because it is, again, too complex.

Chapter 5

[143]

Importance sampling is based on the following reasoning, where we need to evaluate
the expectation of a function f(x) with respect to the distribution p(x):

() () ()E f f x p x dx= ∫

At this stage, we simply introduce the distribution q(x) in the previous expression:

() () ()
() ()p x

E f f x q x dx
q x

= ∫

And, as before, we approximate it with a finite sum:

()
()()
()()

()()1

1
l

L l
l l

p x
E f f x

L q x=∑� �

The ratio

()()
()()
l

l l

p x
r

q x
= is called importance weight and it is the bias introduced by

sampling q(x) when in fact we wanted to sample from p(x). In this case, the algorithm
is very simple because all the samples are used. Again, importance sampling is
efficient if the proposal distribution is close enough to the original distribution. If
the function f(x) varies a lot, we might end up in a situation where f has high values
in areas where the distribution p is small and the sum might be dominated by these
areas of low probability. Therefore it becomes necessary to increase the number of
samples in order to have better results. So the effective number of samples might in
fact be lower than the real number of samples, even if there is no rejection.

For a graphical model with discrete variables, it is possible to use importance
sampling with the following approach:

• For each variable x in the graph:
 ° If the variable is in the evidence set (x is observed), then set it to its

own observed value.
 ° Otherwise, it is sampled from p(x | pa(x)), in which the variables

in pa(x) are set to their sampled (or observed) values. Therefore,
sampling from p(x | pa(x)) becomes a simple problem.

Approximate Inference

[144]

The weighting associated with the sample produced by this algorithm is:

() ()()
()()

()() ()()| |
|

1|x E x E x E

p x pa x p x pa x
r x p x pa x

p x pa x∉ ∉ ∉
= =∏ ∏ ∏

The two algorithms we introduced are interesting in small dimensions and can be
easily implemented. However, we saw that they suffer from severe limitations in
high dimensions. Even importance sampling might need a long convergence time,
despite the fact that all samples are accepted. The rest of this chapter is therefore
dedicated to a very powerful and very framework based on Markov Chain and it is
called Markov Chain Monte Carlo (MCMC).

An implementation in R
The difference between rejection sampling and importance sampling is that the
latter is not so much an algorithm to sample from a distribution as a technique to
approximate averages with respect to an intractable distribution.

It is usual to use the following algorithm:

() ()
() ()

() ()
()
()

()

1

1

N
i ii

i
NX

ii

i

f x p x
f x p x q x

q x dx
q x p x

q x

=

=

∑

∫ ∑
�

Here, xi ~ q, that is, x is drawn from the distribution q.

This gives us a simple algorithm because all we have to sample from q and then
apply the earlier formula. We can then estimate all sorts of f(x) function from this
simple algorithm.

In this case, the distribution function q doesn't have to be scaled as in the rejection
algorithm. Moreover, all the samples are accepted because there is no such notion as
rejection. However, the algorithm is restricted to the evaluation of integrals and can't
generate samples from the target distribution.

So we see that importance sampling has a different type of use case.

Chapter 5

[145]

The algorithm can be simply implemented in R and we will use the following code:

importance <- function(N,f,p,q,rq)

{

 x <- sapply(1:N, rq) # sample from the proposal distribution

 A <- sum((f(x)*p(x))/q(x)) # numerator

 B <- sum(p(x)/q(x)) # denominator

 return(A/B)

}

The parameters are as follows:

• N: This is the number of samples
• f: This is the function we want to know the expectation of
• p: This is the target distribution function
• q: This is the proposal distribution function
• rq: This is a sampler from the proposal distributions

In the following examples, we will estimate the mean of several distributions and
therefore the function f will be the identity function in R.

The algorithm is very simple and follows the formula we saw before:

1. It draws N points from the proposal distribution.
2. It computes the numerator and denominator of the formula.
3. It returns the result.

In the next examples, we will compute the mean from the following examples:

• We will use the same mixture of Gaussian we used for rejection sampling
and will approximate it with a Gaussian distribution

• We will approximate a Student's t distribution with a Gaussian
• We will approximate a Gamma distribution with an exponential distribution

And, as before, in order to be able to reproduce the results, we will set the seed
beforehand by doing the following in R:

set.seed(600)

Approximate Inference

[146]

The first example has two distributions, where the black curve is the target
distribution and the red curve is the proposal distribution. We see the same mixture
of Gaussian and Gaussian as in rejection sampling:

Then the next example uses a Student's t distribution and a Gaussian distribution as
the proposal distribution. In this example, the Student's t distribution has 2 degrees
of freedom and the Gaussian has a mean of 0 and a variance of 1.5.

Chapter 5

[147]

The following figure shows the two distributions:

Finally, the last example uses a Gamma distribution as the target and an exponential
distribution as the proposal distribution.

The shape parameter of the Gamma distribution is 2. As for the exponential
distribution, the rate parameter is 0.5.

These two distributions have a support from zero to infinity. Indeed, importance
sampling requires that, if the proposal distribution gives a zero probability, then the
target distribution must give a zero probability too for the same value.

Approximate Inference

[148]

The following figure shows the Gamma and the exponential distribution:

In R we define the function of our three examples as follows.

For the mixture of Gaussian approximated by a Gaussian, we have:

p <- function(x) 0.6*dnorm(x,0,0.1)+0.4*dnorm(x,0.6,0.2)

q <- function(x) dnorm(x,0,0.5)

rq<- function(x) rnorm(1,0,0.5)

For the Student's t distribution approximated by a Gaussian, we write:

p <- function(x) dt(x,2)

q <- function(x) dnorm(x,0,1.5)

rq<- function(x) rnorm(1,0,1.5)

Chapter 5

[149]

And, for the Gamma distribution approximated by an exponential function, we define:

p <- function(x) dgamma(x,2)

q <- function(x) dexp(x,.5)

rq<- function(x) rexp(1,.5)

Then we run the first experiments:

print(importance(1000,identity,p,q,rq))

print(importance(10000,identity,p,q,rq))

print(importance(50000,identity,p,q,rq))

The theoretical mean of the mixture of Gaussian is 0.24. Our code gives the
following results:

[1] 0.2256604

[1] 0.2364267

[1] 0.2409898

We see that the more samples we have, the more accurate the estimation is.
However, we also see that, with 10,000 samples, the result is already accurate
enough. This is one of the advantages of importance sampling: we need fewer
samples than rejection sampling to perform this kind of task.

The second experiment with a Student's t and a Gaussian gives the following result:

[1] -0.00285064

[1] 0.07353888

[1] 0.06475101

The theoretical result is 0 because the Student's t is 0-centered.

And the third experiment with a Gamma and an exponential distribution gives:

[1] 1.971177

[1] 2.002985

[1] 1.994183

Again, we see an improvement when we go from 1,000 samples to 10,000. After
10,000 samples, it seems the results are not improving a lot so we can stop the
algorithm earlier.

Also note that the previous examples can be run with exactly the same lines of code
as shown earlier. The reader will have to take care to the redefine the functions p, q,
and rq each time.

Approximate Inference

[150]

The next experiment we are going to do is to run the algorithm with different sample
sizes and look at how the estimated mean converges to the true value.

We will rerun the following code three times, changing the functions p, q, and rq
each time:

t <- seq(1000,50000,500)

x <- sapply(t, function(i) importance(i, identity,p,q,rq))

This code iterates from 1,000 to 50,000 samples in steps of 500 on the importance
sampling algorithm. The more samples we draw, the more accurate the estimated
mean.

The first experiment with a mixture of Gaussian and a Gaussian gives the following
result:

Chapter 5

[151]

The second example with a Student's t distribution and a Gaussian distribution gives
the following result:

We see in this example that, despite a good convergence, we can sometimes
have surprising results. It seems indeed that our proposal distribution is not
the best approximation. Indeed, importance sampling can be sensitive, as with
rejection sampling, to the proposal distribution and gives results that are not
completely stabilized.

Approximate Inference

[152]

The last experiment uses the Gamma distribution and an exponential distribution as
the proposal distribution. The following screenshot shows the result:

Here we see a clear convergence of the results. At the beginning, the number of
samples is too low to give an accurate mean; then, when the number of samples
increases, the results are more and more accurate.

In the next section, we will see a more advanced technique (to sample from arbitrary
distributions) called Markov Chain Monte-Carlo sampling. It is a very powerful
method and has many applications nowadays.

Markov Chain Monte-Carlo
MCMC methods have their origin in physics with the work of Metropolis, Ulam,
and Rosenbluth. It was in the 1980s that they began to have a significant impact on
statistics. Many MCMC algorithms and methods have been proposed and they are
among the most successful approaches to computing posterior distributions.

Chapter 5

[153]

If we use the word framework and not algorithm, it is because there is no single MCMC
algorithm; instead, there are many. Multiple strategies are possible to implement it
based on the problem we need to solve.

Monte-Carlo has been used for more than half a century to solve many complicated
estimation problems. However, its main weakness was, as in rejection and
importance sampling, its convergence in high-dimensional problems.

So Markov Chains were used from the start to estimate the convergence and stability
of those methods. But it wasn't until recently (the1980s and 1990s) that they started to
be massively used in statistical estimation.

General idea of the method
Markov Chain Monte-Carlo methods are based on the same idea as previously, where
we have a complex distribution p(x) and a proposal distribution q(x). However, in this
case, the state of the variable x is kept along the way and the proposal distribution
depends on this current state, that is we sample from q(x | xt-1). This sequence of x
forms a Markov Chain.

The main idea is that at each step of the algorithm we draw a sample from
q(x | xt-1) and accept the sample upon certain criteria. If the sample is accepted then
the parameters of q are updated according to the new sampled value and we start
again, otherwise a new sample is drawn without changing q. So we want to choose a
simple q distribution to make it efficient.

As before, the problem we want to solve is the expectation of a function with respect
to a complex distribution:

() () ()E e f x p x dx= ∫

We assume that we can evaluate p(x) or at least we can evaluate it up to a
normalizing constant () ()p x p x∝ % . In order to solve the problem of sampling, the
Metropolis-Hastings algorithm (proposed by Metropolis in 1953 and Hastings in
1970) gives a generic way to construct a Markov Chain that is ergodic and stationary
with respect to the distribution p(x).

In other words, it means that if xt ~ p(x) then xt+1 ~ p(x) and therefore the Markov
Chain will converge to the distribution p(x).

Approximate Inference

[154]

The principle of MCMC algorithms is somehow contrary to the principle of rejection
and importance sampling in the sense that, instead of aiming directly at the big
picture with the proposal distribution, it tries to explore the space of p(x), with a
simpler distribution.

Let me give you an analogy, once explained by Professor Christian Robert from the
University of Paris-Dauphine, France, and the University of Warwick, UK.

Imagine you are a visitor in a museum and suddenly there is a blackout. The gallery
is completely dark. Your only way to look at the paintings is to use a small torch. The
beam of the torch is very narrow so at any time you will only see a small part of the
painting. But you can move your torch along the painting until you discover all of it.
Then you will have the big picture. Of course, you can argue that a painting is more
than the sum of its parts, but that's another story.

The Metropolis-Hastings algorithm
This algorithm will build a sequence of sampled values xt, such that this sequence
will converge to p(x). So the chain of values is a sample of p(x) and these values
are approximately distributed according to p(x). However, at the beginning, and
because each value is dependent on its previous value, the first samples are also very
dependent on the initial value x0. It is therefore recommended not to use the initial
values and to give a period of warm-up to the algorithm.

We recall a similar result in the previous algorithm. Based on the Markov Chain, it
is possible to show that, even if it's hard to determine when the algorithm will reach
stationarity, the average of the sampled values will converge almost surely to E(f),
the empirical average defined by:

() ()()1

1 L l
l

E f f x
L =

= ∑�

This will converge almost surely to E(f). We recall that almost sure convergence is
defined as a sequence X1, X2, …, Xn of random variables converging to a random
variable X if:

() (){ }(): lim 1nn
p s S X s X s

→∞
∈ = =

Chapter 5

[155]

Of course, we can't feasibly sample an infinite sequence of variables, but we have
a guarantee it will converge. So in theory we know it will converge and therefore
sampling from the Markov chain is equivalent to iid sampling from the distribution.
In practice, we need to sample a lot to get good results.

The Metropolis-Hastings algorithm works as follows:

1. Draw a value xt ~ q(xt | xt-1) where q(x) is our simple proposal distribution.
2. Compute the probability of acceptance with:

() ()
()

()
()

1
1

1 1

|
, min 1,

|
t t t

t t
t t t

p x q x x
x x

p x q x x
ρ −

−
− −

 =

�
�

3. Take xt with probability ρ(xt, xt-1) and xt-1 with probability 1– ρ(xt, xt-1).

Given the choice of q(x), this algorithm will preserve the stationarity of the
distribution p(x) in the Markov chain. In theory, again, this algorithm is guaranteed
to converge for an arbitrary distribution q(x). This is an impressive result, hence the
popularity of this algorithm. However, in practice, things are a bit more complicated
because the convergence might happen very late in the process, if for example the
proposal distribution q(x) is too narrow. On the other hand, a too large distribution
might end up with a very unstable algorithm. It will still converge but with a huge
step and can miss the most important part of the original distribution p(x) by leaving
the area with high probability mass too early.

The sequence of samples xt represents a random walk and we can illustrate the
previous problem of practical convergence by looking at what happens to such a
trajectory in a simple example.

We want to sample from a two-dimensional Gaussian distribution and we use a
smaller two-dimensional Gaussian as the proposal distribution. In order to deal with
multi-dimensional Gaussian, we need the MASS package:

library(MASS)
bigauss <- mvrnorm(50000, mu = c(0, 0), Sigma = matrix(c(1, .1, .1, 1),
2))

bigauss.estimate <- kde2d(bigauss[,1], bigauss[,2], n = 50)

contour(bigauss.estimate,nlevels=6,lty=2)

Approximate Inference

[156]

This code snippet plots a simple two-dimensional Gaussian distribution as shown
next. From there, we will use a smaller Gaussian distribution whose next mean
value will be drawn from the current small Gaussian distribution. This is not yet an
application of the Metropolis-Hastings algorithm, but just an example to visualize
what happens with different covariance to the random walk and where it can go in
just a few iterations.

The starting point of the random walk is arbitrarily in the center of the big Gaussian
distribution, that is, at coordinates (0,0) in this case:

The following figure shows the small proposal distribution in red contour lines:

Chapter 5

[157]

The following code draws random samples from the small distribution in the center
and updates its center with the previous value:

L <- 10

smallcov <- matrix(c(.1,.01,.01,.1),2)

x <- c(0,0)

for(i in 1:L)

{

 x2 <- mvrnorm(1, mu=x, Sigma=smallcov)

 lines(c(x[1],x2[1]), c(x[2],x2[2]), t='p',pch=20)

 x <- x2

}

Approximate Inference

[158]

We show three examples, with 10, 100, and 1,000 points. Obviously, a pure random
walk is completely off the initial big distribution after a few iterations. As for 1,000
iterations, they are totally off:

Now, let's complete the picture and implement the last bit of the Metropolis-Hastings
algorithm in R. As we assumed that we can estimate p(x) on our target distribution,
we will use here the dmvnorm function from the mvtnorm package.

To illustrate the behavior of this algorithm, we will take a simple Gaussian
distribution as p(x) and an even simpler uniform distribution as q(x).

So the proposal distribution is simply:

() ()()1 1 1
1| ,
2t t t tq x x I x x xα α
α− − −= − +

Chapter 5

[159]

And p(x) = N(0,1), a simple Gaussian distribution:

p = function(x)

{

 dnorm(x,0,1)

}

mh = function(x,alpha)

{

 xt <- runif(1,x-alpha,x+alpha)

 if(runif(1) > p(xt) / p(x))

 xt <- x

 return(xt)

}

sampler = function(L,alpha)

{

 x <- numeric(L)

 for(i in 2:L)

 x[i] <- mh(x[i-1],alpha)

 return(x)

}

par(mfrow=c(2,2))

for(l in c(10,100,1000,10000))

{

 hist(sampler(l,1),main=paste(l,"iterations"),breaks=50,freq=F,xlim=c(-
4,4),ylim=c(0,1))

 lines(x0,p(x0))

}

The first function is the evaluation of p(x). Then it is followed by the
Metropolis-Hastings step using the proposal uniform distribution defined before.

Approximate Inference

[160]

Then we implement the sampler, which takes two parameters: L is the number of
iterations and alpha the width of the uniform distribution. The bigger alpha is, the
larger the area this proposal distribution will cover. Too large a value will result in
too many jumps and poor results. Too small a value will have a serious impact on
the numerical convergence of the algorithm, even if we know that theoretically it
will converge.

Then the last part of the code draws some results for 10, 100, 1,000, and 10,000
iterations. Running this code, we obtain the following graph. Your results will be
different because we draw numbers at random, of course, but the overall plot
is similar:

It is clear that, with only 10 iterations, the results are poor. After a warm-up period
of 100 iterations, it seems we are close to the mean value, but the variance of such a
dataset will be completely off with respect to p(x). After 1,000 iterations, our dataset
begins to be quite close to the target distribution. Finally, after 10,000 iterations, we
have a superb histogram.

Chapter 5

[161]

Next, we vary alpha, with 1,000 iterations. We use the following code:

par(mfrow=c(2,2))

for(a in c(0.1,0.5,1,10))

{

 hist(sampler(1000,a),main=paste("alpha=",a),breaks=50,freq=F,xlim
=c(-4,4),ylim=c(0,1))

 lines(x0,p(x0))

}

Again, we see interesting results: the theory says it will converge. The practice
needs a bit of tuning first. It seems that alpha=0.5 or alpha=1 are large enough to
cover the distribution. However, alpha=0.1 is too narrow and can't explore the space
fast enough in only 1,000 iterations. On the other hand, alpha=10 gives a bi-modal
distribution; the jumps are too big.

Approximate Inference

[162]

If we run the same experiment with many more iterations, such as 50,000, we see a
stabilization of the algorithm and most of the proposal distribution seem to converge
to the ideal solution. Again, alpha=0.1 and alpha=10 seem a bit weak, but the overall
result is more than acceptable this time:

MCMC for probabilistic graphical models
in R
In fact, this section could be the title of book. As a matter of fact, there are several
books entirely devoted to this specific topic. Research in this field is extremely active,
with many new algorithms coming every year.

Chapter 5

[163]

There are numerous packages implementing MCMC algorithms for different types
of algorithms. There are also more generic frameworks such as the famous BUGS
(and its open source implementation OpenBUGS) and a new, even more powerful
framework called Stan. Historically, BUGS was the first framework to popularize
MCMC inference in Bayesian statistics and literally led to a revolution in this field,
as everyone could benefit from Bayesian statistics right out of the box.

Making an introduction to each of them and showing all the possibilities of MCMC
for a few specific graphical models would require another book as big as this one.
In this section, we will therefore focus on a programming environment available
in R. In fact, it works also with C++, Python, Matlab, Julia, Stata, and even on the
command line! It allows the implementation of all sorts of Bayesian models, as we
have seen so far. Stan mainly uses MCMC algorithms to perform inferences.

Installing Stan and RStan
This procedure is detailed on the following web page: https://github.com/stan-
dev/rstan/wiki/Rstan-Getting-Started.

Thus we will just recall the basic steps in order to install Stan and RStan:

Sys.setenv(MAKEFLAGS = "-j4")

install.packages("rstan", dependencies = TRUE)

Prepare yourself for a long installation, as Stan will need numerous packages.
Finally, depending on your R installation, you might have to restart R, but in
general it is not necessary.

Finally, load RStan like any other package:

library(rstan)

You should see an introductory message such as this, telling you Stan is ready:

Loading required package: ggplot2

rstan (Version 2.9.0, packaged: 2016-01-05 16:17:47 UTC, GitRev:
05c3d0058b6a)

For execution on a local, multicore CPU with excess RAM we recommend
calling

rstan_options(auto_write = TRUE)

options(mc.cores = parallel::detectCores())

https://github.com/stan-dev/rstan/wiki/Rstan-Getting-Started
https://github.com/stan-dev/rstan/wiki/Rstan-Getting-Started

Approximate Inference

[164]

A simple example in RStan
We show here some basic possibilities in RStan. The reader is encouraged to read
more about it and try more examples.

RStan is based on a probabilistic programming language used to describe the
Bayesian models. For example, we can make a simple univariate Gaussian model:

parameters

{

 real y;

}

model

{

 y ~ normal(0,1);

}

This code is Stan code, not R code. Then, in R, we can simulate this model, by doing:

fit = stan(file='example.stan')

The model will be simulated using an MCMC algorithm and the results are
displayed using:

print(fit)

Inference for Stan model: example.

4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.

 mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

y 0.00 0.03 0.98 -1.93 -0.63 -0.01 0.64 1.98 1191 1

lp__ -0.48 0.02 0.69 -2.35 -0.63 -0.20 -0.05 0.00 1718 1

Samples were drawn using NUTS(diag_e)

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).

It's interesting to see that this package has indeed a warm-up procedure as we saw
before and it tries to compute an estimate of the effective sample size for a simple
Gaussian. The value of 1191 (the n_eff column) is not too far from the examples
we saw in the previous section.

Chapter 5

[165]

Summary
In this chapter, we saw the second (and presumably most successful) approach to
performing Bayesian inference, with algorithms such as rejection and importance
sampling, which are based on the use of a proposal distribution simpler than the
one we want to estimate.

These two algorithms are usually efficient with low-dimensional cases but suffer
from long convergence problems, when they converge at all, in high dimensions.

We then introduced the most important algorithm in Bayesian inference: the MCMC
method using the Metropolis-Hastings algorithm. This algorithm is extremely
versatile and has a nice property: it converges toward the distribution one wants to
simulate. However, it needs careful tuning in order to converge, but its convergence
is guaranteed in theory.

In the next chapter, we will explore the most standard statistical model ever: linear
regression. While it seems beyond the scope of this book, this model is so important
that it needs to be introduced. However, we will not stop at the simple form of it but
will explore its Bayesian interpretation, how it can be represented as a probabilistic
graphical model, and what benefit we get from doing so.

[167]

Bayesian Modeling – Linear
Models

A linear regression model aims at explaining the behavior of one variable with another
one, or several others, and by so doing, the assumption is that the relationship between
the variables is linear. In general, the expectation of the target variable, the one you
need to explain, is an affine transform of several other variables.

Linear models are presumably the most used statistical models, mainly because
of their simplicity and the fact they have been studied for decades, leading to all
possible extensions and analysis one can imagine. Basically all statistical packages,
languages, or software implement linear regression models.

The idea of the model is really simple: a variable y is to be explained by several other
variables xi by assuming a linear combination of x's—that is, a weighted sum of x's.

This model appeared in the 18th century in the work of Roger Joseph Boscovich.
Then again, his method has been used by Pierre-Simon de Laplace, Adrien-Marie
Legendre, and Carl Friedrich Gauss. It seems that Francis Galton, a mathematical
genius of the 19th century, coined the term "linear regression".

The model is generally written as a linear combination of variables as follows:

y = β0 + β1x1 + β2x2 + … + βnxn + ϵ.

Here, y is the variable to explain, the x's are the explaining variables, and ϵ is a
random noise that can be explained by the x's. It is generally a Gaussian-distributed
random variable of mean 0 and variance σ2.

What does it mean in practice? The intuition behind this model is that each x after
being rescaled will contribute a little bit to y. In other words, y is made of a sum of
little pieces, each being an x.

Bayesian Modeling – Linear Models

[168]

There are many ways to estimate the value of the parameters from a dataset, and
obviously in many situations the value of each parameter is of the utmost importance
and needs to be carefully studied. The most used method is the least square
method in which one tries to minimize the difference between the real y and its
approximation by a sum of x's. Indeed, representing y as a sum of other variables is,
as with many models, just an approximation of the reality. Many mathematical tools
and algorithms have been developed for linear regression to answer the question of
the quality of the model and its parameters.

The word difference is just an analogy. In this case, the correct term
is mean squared error, of course.

In this chapter, we will quickly cover the basics of linear regression. A full-scale
study would be beyond the scope of this book and we assume the reader has been
exposed to such models before.

The aim of this chapter is to go further and give a Bayesian flavor to the linear
regression. In fact, in the standard model, one only focuses on the expectation of
y and the parameters. But as soon as each of these components is considered as a
random variable, it is possible to explain the linear regression in a Bayesian way and
open oneself to many new techniques and benefits of dealing with full-probability
distribution instead of just their expectations.

We will review the following elements in this chapter:

• What is a linear regression and how to use it in R?
• What are the main hypotheses in a linear regression and what to do when

they break?
• How to compute the parameters by hand and in R
• How to interpret a linear regression as a probabilistic graphical model
• How to estimate the parameters in the Bayesian way and what's the benefit

of doing so?
• A review of R packages for Bayesian linear regression
• What is over-fitting, why is it so important to avoid it, and what is the

Bayesian solution to it?

Chapter 6

[169]

Linear regression
We start by looking at the most simple and most used model in statistics, which
consists of fitting a straight line to a dataset. We assume we have a data set of pairs
(xi, yi) that are i.i.d and we want to fit a model such that:

y = βx +β0 + ϵ

Here, ϵ is a Gaussian noise. If we assume that xi ϵ ℝn then the expected value can also
be written as:

0 1
ˆ n

i ii
y xβ β

=
= +∑

Or, in matrix notation, we can also include the intercept β0 into the vector of
parameters and add a column on 1 in X, such that X = (1, x1, …, xn) to finally obtain:

ŷ = XTβ

The following figure shows an example (in one dimension) of a data set with its
corresponding regression line:

In R, fitting a linear model is an easy task, as we will see now. Here, we produce a
small data set with an artificial number, in order to reproduce the previous figure. In
R, the function to fit a linear model is lm() and it is the workhorse of this language in
many situations. Of course, later in this chapter we will see more advanced algorithms:

N=30

x=runif(N,0,20)

Bayesian Modeling – Linear Models

[170]

y= 1.2*x + 4 + rnorm(N,0,4)

plot(x,y)

m=lm(y~x)

xx=seq(0,20,1)

lines(xx,xx*m$coefficients[2]+m$coefficients[1],col=2,lw=2)

In this example, we generate 30 random points between 0 and 20. Then we compute
y, on a straight line of slope 1.2 and intercept 4, adding a random noise, with zero
mean at a variance of 4.

We compute the model in m with the function lm(). Finally we plot the result.

Printing the variable m gives the following result:

Call:

lm(formula = y ~ x)

Coefficients:

(Intercept) x

 3.919 1.238

Here we see that the intercept is 3.919, close to the value of 4, and the slope is 1.238,
also close to 1.2. As we added an important noise (of variance 4), it is not surprising
to see a difference between the theoretical model and the fitted model.

Estimating the parameters
In order to estimate the parameters, we need a discrepancy measure, or in other
words, a function that measures some sort of difference between the model and the
data set. Of course, the goal is to minimize this difference. Here the word difference
has a very broad meaning and many functions could work. However, it has been
found that one of the most useful and practical is the mean squared error defined by:

()22

1 12

1 N nT
i j ji j

MSE Y X y x
N

β β
= =

= − = −∑ ∑�

Chapter 6

[171]

To estimate the parameters of the model, we resort to a method we saw earlier, called
the maximum likelihood. The likelihood is the probability of observing a data set
given some parameters, in this case. We assume as usual the data are identically and
independently distributed. This allows us to write the maximum likelihood as follows:

()ˆ |argmax p Dθθ θ=

Here, θ is the set of all parameters θ = {β1, …βp}.

Basically we want to find the parameters that maximize this probability. As we
assume i.i.d data, we can write:

()1
ˆ |N

i ii
argmax p y xθθ θ

=
= ∏

Then, to simplify the computations we take the log-likelihood and have a sum
instead of a big product:

()1
ˆ |N

i ii
argmax p y xθθ θ

=
= ∑

Next, we need an analytical form for the probability and in the linear regression, we
saw the target data is Gaussian distributed as follows:

p(y | xθ) = N(y | XTθ, σ2)

If in the log-likelihood we replace the probability with the density function of a
Gaussian, we will obtain:

() ()

()

()

()

1 2
2

2 21

1 2
2

2 21

1 2
2

2 21 1

2

2 2 1

1log log exp
2 2

1log log exp
2 2

1log
2 2
1 1log

2 2 2

T
N i i

i

T
N i i

i

T
N N i i

i i

N T
i ii

y X
L

y X

y X

N y X

β
θ

πσ σ

β

πσ σ

β

πσ σ

β
πσ σ

=

=

= =

=

 − − =

 − − = +

− = −

= − −

∑

∑

∑ ∑

∑

Bayesian Modeling – Linear Models

[172]

This long development leads to two terms in the last equation; one is the constant
and the other one depends on the parameters. As our goal is to maximize this
expression, we can get rid of the constant term without loss of generality. And
because it easier (in most numerical packages) to minimize a function than to
maximize it, we will take the negative of this:

() ()21

1
2

N T
i ii

NLL y Xθ β
=

= −∑

And we find the famous results again: the maximum likelihood estimator for a linear
regression model is nothing but minimizing the square error!

In order to find the solution, we need to do a bit more linear algebra again. First we
write this expression in matrix form to make things simpler:

() () ()1
2

TNLL y X y Xθ β β= − −

Here, X is the design matrix—that is, the matrix of all the data set. Each row i of the

matrix is a vector
() ()()1 , ,i i

px x… . This form is very convenient so that we deal with
the sum from within the scalar product.

After expanding this expression we obtain:

() ()1 1
2 2

T T T T T TNLL X X y y y X X yθ β β β β= + − −

This again can be simplified. Indeed, we are only interested in the term dependent
on the parameters. So the rest can be discarded. Moreover, we know that y ϵ ℝN and
the same for βTXT so we can write yTXβ = βTXTy, which helps us to simplify the main
expression again to finally obtain:

() 1
2

T T T TNLL X X X yθ β β β= −

Chapter 6

[173]

The minimum of this convex function is reached when its first derivative (in fact the
Jacobian matrix) is equal to 0. So we derive it and obtain:

() ()T TNLL
X X X y

θ
β

β
∂

= −
∂

Solving this equation to zero, the solution is finally:

() 1ˆ T TX X X yβ
−

=

This is what the function lm() computes in R and most numerical languages or
packages. However, we advise you not to implement it directly, especially when the
data set is big. Indeed, inverting such a matrix like that could lead to a numerical
instability that is hard to control.

The main problem when doing linear regression arises when the parameters are
not stable and a little change can have massive effects on parameters. This could be
due to collinearity between parameters, parameters canceling each other, or many
other reasons.

One technique to solve this problem is known as shrinkage and its goal is to
constrain the parameters to that they don't grow too far away. This usually gives
better models with better predictive power. One simple approach to shrinkage is to
put a Gaussian prior on the parameters. This technique is called ridge regression or
L2 penalization.

Practically speaking, we assume the following priors on the parameters:

() ()2| 0,jj
p Nβ β τ=∏

Here, τ controls the amount of shrinkage one wants to apply to the model and
the Gaussian distributions are zero-centered. The last point means we want the
parameters not to go too far away from 0.

So, the optimization problem to solve becomes the following:

() ()2 2
01 1

log | , log | 0,N DT
i i ji j

argmax N y x Nβ β β σ β τ
= =

+ +∑ ∑

Bayesian Modeling – Linear Models

[174]

To be brief, we give the solution directly, because the calculus is similar to the
previous development. The negative log-likelihood is therefore:

() () () 2

2

1 TT TNLL y X y X
N

θ β β λ β= − − +

The only difference, really, is that the last term:
2

2

σλ
τ

= controls the amount of
penalization. The higher this term, the more the parameters will be penalized
when they grow too much. A good amount of penalization can lead some of the
parameters to become close to zero. In that case, it can be a good idea to try to fit
the model again without those parameters. In a sense, it is a method for variable
selection. A large τ will reduce λ, which follows the intuition that, if the prior on
the parameters has a large variance, then, a broad range of values can be reached.
If the variance is, on the contrary small then only a smaller range will have a high
probability to be reached.

The solution to this optimization problem is:

() 1T T
ridge DI X X X yβ λ

−
= +

Again, we advise you not to compute this directly in R but rather to rely on packages
that have been specifically implemented to be numerically stable. We recommend
two packages:

• MASS with the function lm.ridge(), which is similar to lm()
• glmnet with its function, glmnet()

The second package implements several algorithms. You can use it for ridge
regression, and for L1-penalization (Lasso). In L1-penalization, instead of using a
Gaussian prior on the parameters, we have a Laplace prior. The Laplace distribution
is very peaky in the center and this has a particular effect: collinear parameters can
reach the value 0 exactly. In that case, they are simply eliminated from the model. It's
a very powerful variable selection method.

However, the problem doesn't have an analytical solution and needs a specific
optimization algorithm to find the solution.

Chapter 6

[175]

In R, we can fit a model with lm() and glmnet() as follows, where we use the
mtcars data set included in R directly, where we want to regress the variable mpg
against the other variables:

m1 <- lm(mpg ~ . , mtcars)

m1

Call:

lm(formula = mpg ~ ., data = mtcars)

Coefficients:

(Intercept) cyl disp hp drat
wt

 12.30337 -0.11144 0.01334 -0.02148 0.78711
-3.71530

 qsec vs am gear carb

 0.82104 0.31776 2.52023 0.65541 -0.19942

We can plot the model and see the theoretical line with the real data set:

yhat <- (as.matrix(mtcars[2:10]) %*% m1$coefficients[2:10]) +
m1$coefficients[1]

Also note that we use the scalar product %*%:

plot(sort(mtcars$mpg)); lines(sort(yhat),col=2)

Bayesian Modeling – Linear Models

[176]

Bayesian linear models
In this section, we are going to extend the standard linear regression model using the
Bayesian paradigm. One of the goals is to put prior knowledge on the parameters of
the models to help to solve the over-fitting problem.

Over-fitting a model
One immense benefit of going Bayesian when doing a linear model is to have better
control of the parameters. Let's do an initial experiment to see what happens when
the parameters are completely out of control.

We are going to generate a simple model in R and look at the parameters when they
are fitted with the standard approach for linear models.

Let's first generate some data points at random to obtain 10 variables and plot them:

N <- 30
x <- runif(N, -2, 2)
X <- cbind(rep(1, N), x, x^2, x^3, x^4, x^5, x^6, x^7, x^8)
matplot(X, t='l')

Next we generate the dependent variable following the model:

y = Xβ + ϵ

Chapter 6

[177]

Here, ϵ is a Gaussian noise of variance σ2. We use the following code in R and plot
the variable y. As we use randomly generated numbers, your plot might be different
from the one in this book:

sigma <- 10

eps <- rnorm(N, mean = 0, sd = sigma)

y <- X %*% true_beta + eps

plot(y, t='l')

Then we estimate the coefficients of the model with the lm() function:

model <- lm(y~., data=data.frame(X[,2:ncol(X)]))

beta_hat <- model$coefficients

Bayesian Modeling – Linear Models

[178]

We plot the true coefficients and the estimated coefficients to see, visually, how close
they are. And the result is … not good!

If we have a closer look at the values, we can clearly see that the model tried to use
all the variables when we gave them a zero coefficient in the true model. Moreover, it
tried to compensate between all the variables, hence the positive and negative values
all along the vector of parameters. Your results might be different from the values
shown here, because we use random data, but the behavior will be similar:

> true_beta

[1] 10 -3 0 8 0 0 0 0 0

> beta_hat

(Intercept) x V2 V3 V4 V5
V6 V7 V8

 10.012121 -30.091272 8.904295 62.005179 -12.913125 -28.102293

 6.844616 4.410177 -1.154756

In fact, most of the values are terribly wrong. This is a perfect example of over-fitting.
The model tried to fit the data perfectly, ending in something completely off:

> true_beta

[1] 10 -3 0 8 0 0 0 0 0

> beta_hat

Chapter 6

[179]

(Intercept) x V2 V3 V4 V5 V6 V7 V8

10.012121 -30.091272 8.904295 62.005179 -12.913125 -28.102293

6.844616 4.410177 -1.154756

In this case, we knew the true values beforehand but, in practice, we try to fit a
model on a dataset to find out good values for the parameters. As we saw in the
previous section, one good technique is called regularization and it is equivalent to
placing prior distribution on the parameters. By doing so, we somehow constrain the
parameters to stay within an acceptable range of values, with a higher probability.

Graphical model of a linear model
Before going further, we need to visualize the structure of a linear mode and better
understand the relationships between variables. We can, of course, represent it as a
probabilistic graphical model.

The linear model captures the relationships between observable variables x and a
target variable y. This relation is modeled by a set of parameters θ. But remember the
distribution of y for each data point indexed by i:

yi ~ N(Xiβ, σ2)

Here, Xi is a row vector for which the first element is always 1 to capture the
intercept of the linear model. If you look at earlier pages in this chapter, you will
realize that the linear model has been written with many different forms that are all
equivalent. We leave it to the reader as an exercise to show they are all equivalent.
For example, Xi could be a column vector, and so on.

So our first graphical model could be as follows:

The parameter θ is itself composed of the intercept, the coefficients β for each
component of X, and the variance σ2 in the distribution of yi.

Bayesian Modeling – Linear Models

[180]

So, this decomposition leads us to a second version of the graphical model in which
we explicitly separate the components of θ:

We introduce again plate notation in probabilistic graphical models. When a rectangle
is drawn around a set of nodes with a number or a variable in a corner (N for
example), it means the same graph is repeated many times.

The likelihood function of a linear model is:

() ()1
| , ,N
i ii

L p y Xθ β σ
=

=∏

This form is representable as a graphical model and, based on the previous graph,
we finally have:

In this graph, it is clearly stated that each yi is dependent on one xi. It is also clear
that the parameters θ = {β,σ} are all shared as they are outside the plate.

Chapter 6

[181]

For the sake of simplicity, we will keep β as a vector, but you could also decompose
it into its univariate components and use the plate notation for those:

In the last two iterations of the graphical model, we see that the parameter β could
have a prior probability on it instead of being fixed. In fact, the parameter σ can also
be considered as a random variable. For the time being, we will keep it fixed.

Posterior distribution
Many prior distributions could be used for β but they need to be tractable or simply
have an appropriate meaning in the context of a linear regression. Here we need
a distribution that has a zero mean, is symmetric, and has an infinite support. The
reasons are:

• Zero-mean because we want our parameters to be driven toward zero
if possible; this is the shrinkage effect. So we give the highest mass of
probability to the center at zero.

• Symmetric because we want to give equal chances for positive and negative
values. A priori, we don't know which direction the parameters will take.

• Infinite support because we don't want to block the parameters to have
certain values. Obviously, with most of the probability mass in the center,
the tail of the distribution, despite having an infinite support, will have a low
probability. So we are trying to force the model not to have huge values like
we saw in the previous example.

• The distribution needs to be simple enough that we can compute the
posterior of the parameters and the predictive posterior of y.

Bayesian Modeling – Linear Models

[182]

Given all these reasons, the Gaussian distribution seems to be a good candidate for
our purpose.

The conditional distribution for y is as usual:

() ()2 2| | ,i i ip y X N y Xβσ β σ=

We remember we saw that the Maximum Likelihood Estimator (MLE) is:

() 1ˆ T TX X X yβ
−

=

And the estimator for the variance can also be estimated (left as an exercise) and is:

()21

1 ˆˆ N T
i ii
y X

N
σ β

=
= −∑

The good thing about having a Gaussian prior on the parameters is that it is
conjugate to the likelihood function. It means that the posterior of the parameters
is also a Gaussian distribution such that:

() () () ()| | | | ,p yX p y X p N m Sβ στ β στ β τ β∝ =

Here:

2 Tm SX yσ −=

() 12 TS I X Xτ σ
−−= +

Here we find again the τ parameter, which controls how large the prior is on the
parameters. It is the same parameter τ we used in the previous section on ridge
regression. In fact, it can be shown that having Gaussian priors on the parameter
β and the ridge regression are equivalent. The reader is encouraged to take the
previous two formulas and calculate again the ridge regression to see the relation
between the two.

Chapter 6

[183]

Finally, the last thing we need to do is to compute the posterior predictive
distribution. The posterior predictive distribution is the distribution of an unknown
y when some Xs have been observed after computing the parameters. It is basically
making a prediction with a model that has been learned with the previous method.

The reason it is important is because we do a complete Bayesian treatment of the
problem, instead of a pure statistical one. In the standard linear model, the scalar
product of X and β is sufficient to compute the expected value of y when we wish
to make a prediction.

In other words, after finding the β parameters we simply do:

1
.N

j i ii
y x β

=
=∑

But because here we have a full Bayesian model, instead of just having the expectation
of y, we have the full probability distribution. As we will see, the posterior distribution
is also a Gaussian, and a Gaussian is defined by its mean and variance. Therefore,
by using a full Bayesian model, we also compute the posterior variance and have an
estimation of the uncertainty of the prediction:

() () ()
()()

2 2 2

2

| | |

| ,T

p y y X p y p y d

N y m X X

τσ βσ β τσ β

σ

′ ′=

′ ′ ′=

∫

Here:

()2 2 TX X SXσ σ′ ′ ′= +

X' and y' are respectively the new observed data upon which we want to do the
prediction y'.

Bayesian Modeling – Linear Models

[184]

Finally, we can draw the graphical model for the full Bayesian interpretation of the
linear model:

In fact, we only presented the case when the prior on β is Gaussian, but other priors
such as a Laplace distribution can be used. This leads to an L1-penalization that
doesn't have an analytical form. However, a very efficient algorithm called the Lasso
can be used to find the parameters. A very efficient implementation of it can be
found in the glmnet package.

Implementation in R
Let's take an example from the beginning of this chapter again. When we tried to
compute the parameters, we found strange values that were seriously off from their
true value, meaning there was a problem in the estimation procedure. We saw that
this problem is called over-fitting.

Then we looked at a solution by interpreting the linear model in the Bayesian
framework and calculated the solutions of the problem.

Implementing it is really easy when the priors on the parameters are Gaussian:

dimension <- length(true_beta)

lambda <- diag(0.1, dimension, dimension)

posterior_sigma <- sigma^2 * solve(t(X) %*% X + sigma^2 * lambda)

posterior_beta <- sigma^(-2) * as.vector(posterior_sigma %*% (t(X) %*%
y))

Chapter 6

[185]

The posterior parameters are now:

 posterior_beta

[1] 7.76069781 -0.06509725 1.18834799 2.72321814 0.16637478
2.65759764

[7] -0.10993147 -0.31961733 0.02273269

This is far better than what we had before. But it is still not perfect. Indeed, the true β
parameters are:

true_beta <- c(10, -3, 0, 8, 0, 0, 0, 0, 0)

And we can see that the second parameter is too small and many parameters are too
high, with values going from 1 to 2 when they should be zero.

Indeed, the penalization in the form of the lambda variable is too weak. It means the
variance is too large. We can therefore give more penalization by doing:

lambda <- 0.5 * diag(0.1, dimension, dimension)

We then recompute the results:

 posterior_beta

[1] 9.6677088 -0.7393309 1.1248994 3.5526708 -0.1869873 2.8805658
-0.3506464

[8] -0.4582813 0.1190531

It is not perfect but the intercept is now closer to 10 (9.66) and the second parameter
now has a better value. The other parameters are still off but they are going in the
right direction.

We can penalize even more and run the same code again:

lambda <- 0.1*diag(0.1, dimension, dimension)

posterior_sigma <- sigma^2 * solve(t(X) %*% X + sigma^2 * lambda)

posterior_beta <- sigma^(-2) * as.vector(posterior_sigma %*% (t(X) %*%
y))

posterior_beta

[1] 12.0750175 -3.8736938 0.6105363 8.0942494 -1.0959572 1.3938047
-0.1099443

[8] -0.3496412 0.1280143

Bayesian Modeling – Linear Models

[186]

Despite it not being perfect, we see that we are closer to the true solution. Needless to
say, the example we used has been specifically made to be hard to solve. Despite this,
the Bayesian solution is able to converge to the true solution, where the simple linear
regression was completely wrong.

After running the previous model, we can plot the results with the following code:

t <- seq(-2,2,0.01)

T <- cbind(rep(1, N), t, t^2, t^3, t^4, t^5, t^6, t^7, t^8)

plot(x,y, xlim=c(-2,2), ylim=range(y, T%*%true_beta))

lines(t,T%*%true_beta, col='black', lwd=3)

lines(t,T%*%beta_hat, col='blue', lwd=3)

lines(t,T%*%posterior_beta, col='red', lwd=3)

legend('topleft', c('True function', 'OLS estimate', 'Bayesian
estimate'), col=c('black','blue','red'), lwd=3)

The first two lines generate evenly spaced data points to draw the results. Then the
first plot draws the dataset (little black circles). Then we draw three curves on it:

• In black: This is the true model as defined in the R program
• In blue: This is the OLS estimate (the standard linear regression)
• In red: This is the Bayesian estimate with the penalization we found earlier

The blue curve (OLS estimate) tries to follow the data points as much as possible,
fitting more noise and being far away from the true function. This is a good example
of over-fitting.

On the contrary, the red curve (Bayesian estimate) did a good job finding the true
function that generated the data in the beginning:

Chapter 6

[187]

Now we want to add to this graph the 95% posterior predictive interval. Thanks to
the Bayesian approach, we can easily compute it from the posterior distribution.
Therefore the code in R will be as follows:

pred_sigma <- sqrt(sigma^2 + apply((T%*%posterior_sigma)*T, MARGIN=1,
FUN=sum))

upper_bound <- T%*%posterior_beta + qnorm(0.95)*pred_sigma

lower_bound <- T%*%posterior_beta - qnorm(0.95)*pred_sigma

The previous code computes the upper and lower bound along the dataset we used.
And finally the following code draws the plot:

plot(c(0,0),xlim=c(-2,2), ylim=range(y,lower_bound,upper_
bound),col='white')

polygon(c(t,rev(t)), c(upper_bound,rev(lower_bound)), col='grey',
border=NA)

points(x,y)

lines(t,T%*%true_beta, col='black', lwd=3)

lines(t,T%*%beta_hat, col='blue', lwd=3)

Bayesian Modeling – Linear Models

[188]

lines(t,T%*%posterior_beta, col='red', lwd=3)

legend('topleft', c('True function', 'OLS estimate', 'Bayesian
estimate'), col=c('black','blue','red'), lwd=3)

In this code we use the polygon function to draw the gray area representing the 95%
predictive interval. We use the qnorm function to compute the values and you can
play with theses values to change the interval.

A stable implementation
In the previous implementation, we used the solve() function from R, but it is not
always a good idea to inverse a matrix directly as it can quickly lead to numerical
instability. As a quick example, here is a little piece of code that generates random
invertible matrices and computes the Froebenius distance between an identity matrix
and the result of the random matrix multiplied by its inverse. If M is a matrix and M-1 its
inverse, then M.M-1=I. We see in this little example that it is not numerically the case:

N <- 200

result <- data.frame(i=numeric(N),fr=numeric(N))

for(i in 2:N)

Chapter 6

[189]

{

 x <- matrix(runif(i*i,1,100),i,i)

 y <- t(x)%*%x

 I <- y%*%solve(y)

 I0 <- diag(i)

 fr <- sqrt(sum(diag((I-I0)%*%t(I-I0))))

 result$i[i] <- i

 result$fr[i]<- fr

}

The code generates square matrices of size going from 2 x 2 to 200 x 200 and
computes the Froebenius distance between a perfect identity matrix and the identity
matrix obtained by multiplying the random matrix with its inverse. Plotting the
result shows that the distance is not zero all the time:

Bayesian Modeling – Linear Models

[190]

In fact, it increases with the size of the matrix, when more errors accumulate. If we
plot the log of the distance, we clearly see the error getting bigger:

With a perfect inverse matrix, the distance would be zero all the time and therefore
the log would be—infinite. So this simple example tells us that in Bayesian linear
regression we can have problems when inverting the matrix X. We therefore need a
better algorithm.

Here we present a simple algorithm to solve the ridge regression problem with a
numerically stable solution. The idea is to transform the problem of matrix inversion
into a simpler problem to solve, where the matrix to inverse is triangular.

If X is the matrix containing the data points, and y the vector containing the target,
the idea is to first extend the matrix and the vector y as follows:

ˆ X
X

=

Λ
 and ˆ

0D

y
y

σ
=

 where
1 I
τ

Λ = and 2

1 I
τ

Λ =

Chapter 6

[191]

The next step is to do a QR decomposition of X̂ and the last step is to compute the
inverse of R, which is easier because it's an upper triangular matrix. Finally, the
coefficients of the linear regression are given by:

1ˆ ˆTR Q yβ −=

The algorithm in R can be implemented as follows:

the numerically stable function

ridge <- function(X,y,lambda)

{

 tau <- sqrt(lambda)

 Xhat <- rbind(X,(1/tau)*diag(ncol(X)))

 yhat <- c(y,rep(0,ncol(X)))

 aqr <- qr(Xhat)

 q <- qr.Q(aqr)

 r <- qr.R(aqr)

 beta <- solve(r)%*% t(q) %*% yhat

 return(beta)

}

This algorithm returns a vector of coefficients, where the first value is the intercept.
We assume here that the matrix X has a column of one on the left-hand side. We use
the qr() function from R to do the QR decomposition.

The following code runs an example:

set.seed(300)

N <- 100

generate some data

x <-runif(N,-2,2)

beta <- c(10,-3,2,-3,0,2,0,0,0)

X <- cbind(rep(1,length(x)), x, x^2, x^3,x^4,x^5,x^6,x^7,x^8)

y <- X %*% beta + rnorm(N,0,4)

Bayesian Modeling – Linear Models

[192]

First of all, we generate random data. The reader will note that for the first time
we set the random seed manually so that the following results can be exactly
reproduced. The reason for that is that we want to illustrate a nice behavior of the
ridge regression.

The code generates random values on the x axis, then we give the true beta
coefficients, and finally we generate the data.

We also add a random Gaussian noise to the target data y so as to test the capacity of
the ridge regression with respect to the standard linear regression solved by an OLS.

The X matrix has many columns but only four of them (plus the intercept) are used
to generate y so we expect the linear regression to give very small coefficients to the
unused columns (or even zero coefficients).

Then we run the following code to generate results and plot them:

plot the results

t <- seq(-2,2,0.01)

Xt <- cbind(rep(1,length(t)), t, t^2, t^3,t^4,t^5,t^6,t^7,t^8)

yt <- Xt %*% beta

yridge <- Xt %*% ridge(X,y,0.9)

plot(x,y)

lines(t,yt,t='l',lwd=2,lty=2)

lines(t,yridge,col=2,lwd=2)

olsbeta <- lm(y~X-1)

olsy <- Xt %*% olsbeta$coefficients

lines(t, olsy,col=3,lwd=2)

First of all, we generate a sequence of points on the x axis, then we compute
the X matrix and then the real function called yt. This is our theoretical model
without noise.

Chapter 6

[193]

The next step is to compute the ridge regression coefficients with our new ridge
function as defined previously. Finally, we compute a standard OLS solution to the
same problem. And we plot the results:

The figure shows the real data set as little circles. The dashed black line is the true
function, the one we called our theoretical model before. It is the function without
the noise. The red line is very close to the true function. This is the ridge regression.
Because of the shrinkage effect of the ridge regression, it is less sensitive to the noise
and gives a better solution.

However, the green line is the standard OLS function. It has a wiggly behavior
because it is more sensitive to the noise. This is an illustration of the over-fitting
problem. In this example, the OLS tries too hard to be close to the data and ends
up with a solution that is more unstable than the ridge regression.

Bayesian Modeling – Linear Models

[194]

In order to illustrate the last point a bit more, we run a final example in which we
exaggerate the noise. Instead of having a standard deviation of 4, we use the value
16, making the data very noisy:

Obviously, this is an extreme example, but we see again that the ridge regression
stays closer to the true function. The OLS solution, on the other hand, became
completely unstable and is totally over-fitting.

More packages in R
Bayesian linear regression is a well-covered topic in R and many packages
implement such models. Of course we mentioned glmnet before, which implements
ridge regression and Lasso. It also implements a mixture of both, called the elastic
net, in which two penalty functions are used at the same time.

Another package is bayesm, which covers linear and multivariate linear regression,
multinomial logit and probit, mixtures of Gaussians, and even Dirichlet process prior
density estimation.

Chapter 6

[195]

We can also mention the arm package, which provides Bayesian versions of glm() and
polr() and implements hierarchical models. It is another very powerful package.

Of course, we shouldn't stop here and ought to extend our study of Bayesian
models to all sorts of algorithms and prior distributions. At some point, it becomes
impossible to find an analytical solution and one should use Monte-Carlo inference,
as we saw in the previous chapter.

Summary
In this chapter, we saw the standard linear model. This model is one of the most
important models in statistics and provides a simple, additive way to represent
relationships between observed variables and a target.

Estimating good parameters for a linear model can be hard sometimes and one
should be very careful not to trust the results immediately. However, a Bayesian
approach to the problem helps to include prior knowledge into the model and
drive it toward a more stable and usable solution.

We saw ridge regression and Bayesian linear regression. We saw that, when the
parameters have a Gaussian prior, then these two approaches are equivalent and
very easy to compute.

Using a simple example, we saw that a standard regression can lead to completely
over-fitted results and that the Bayesian approach solved the problem.

In the next chapter, we will look at more advanced models for dealing with clusters
of data, called mixture models. These models make the assumption that the data is
generated by a different group and the goal will be to automatically discover the
group and reveal the hidden process behind it.

[197]

Probabilistic Mixture Models
We have seen an initial example of mixture models, namely the Gaussian mixture
model, in which we had a finite number of Gaussians to represent a dataset. In this
chapter, we will focus on more advanced examples of mixture models, going again
from the Gaussian mixture model to the Latent Dirichlet Allocation. The reason for
so many models is that we want to capture various aspects of the data that are not
easily captured by a mixture of Gaussian.

In many cases, we will use the EM algorithm to find the parameters of the model
from the data. Also, it appears that most of the mixture models can have intractable
solutions and need solutions on approximate inferences.

The first type of model we will see is a mixture of simple distributions. The simple
distribution can be a Gaussian, a Bernoulli, a Poisson, and so on. The principle is
always the same but the applications are different. If Gaussian distributions are nice
for capturing clouds of points, Bernoulli distributions can be efficient to analyze
black and white images, for example, in handwritten recognition.

We will then relax one assumption of the mixture model and see a second type of
model called mixture of experts, in which the chosen cluster is dependent on the
data point. It can be seen as a first approach to probabilistic decision trees.

Finally, we will see a very powerful model called the Latent Dirichlet Allocation
(LDA), in which we relax another assumption of the mixture models. In mixture
models, a point is supposed to have been generated by one cluster. In the LDA, it
can belong to several clusters at the same time. This model has been successfully
used in text analysis, among other things. It belongs to a family of mixed
memberships models.

Probabilistic Mixture Models

[198]

We will review the following elements in this chapter:

• Mixture models in general, with examples of several distributions
• Mixture of experts, when we assume clusters are dependent on the data points
• LDA when we assume a point belongs to several clusters

Mixture models
The mixture model is a model of a larger distribution family called latent variable
models, in which some of the variables are not observed at all. The reason is usually
to simplify the model by grouping all the variables into subgroups with a different
meaning. Another reason is also to introduce a hidden process into the model, the
real reason for the data generation process. In other words, we assume that we have
a set of models and something hidden will select one of these models, and then
generate a data point from the selected model.

When the data naturally exhibits clusters, it seems reasonable to say that each cluster
is a small model.

The whole problem is then to find to what extent a submodel will participate in the
data generation process and what the parameters for each sub model are. This is
usually solved using the EM algorithm.

There are many ways to combine small models in order to make a bigger or more
generic model. The approach generally used in mixture modeling is to give a
proportion to each sub model, such that the sum of proportions is one. In other
words, we build an additive model as follows:

() ()1
| |K
i k k ii

p x p xθ π θ
=

=∑

In this, πk is the proportion of each sub model. And each sub model is captured by
the probability distribution pk.

Of course, in this form, the sum of πk is 1. Also, the proportions can be considered
as random variables and the model can be extended in a Bayesian way. The model
is therefore called a mixture model and the probability distribution pk is called the
base distribution.

Chapter 7

[199]

There are, theoretically, no constraints on the form of the base distribution and,
depending of the function, several types of model arise. In Machine Learning: A
Probabilistic Perspective, the following taxonomy helps us to understand many
popular models:

Name Base
distribution

Latent var.
distribution

Notes

Mixture of Gaussian Gaussian Discrete A Gaussian is chosen among K
Probabilistic PCA Gaussian Gaussian
Probabilistic ICA Gaussian Laplace Used for sparse coding
Latent Dirichlet Allocation Discrete Dirichlet Used for text analysis

These are just a few examples to show that many models are possible based on the
same principle. However, it does not mean they are all easy to solve and, in many
cases, advanced algorithms will be necessary.

For example, the mixture of Gaussian model is defined as follows: we consider that
each sub model is a Gaussian distribution (base distribution) and the latent variable
distribution is discrete. For each distribution, we have a mean and a variance.

Sampling from such a model could give the following data set, for example:

Probabilistic Mixture Models

[200]

The base density is:

() ()2| , | ,i i i k kp x z k N xθ µ σ= =

And the latent variable distribution is a categorical distribution ()1, , Kπ πΠ = … .

The model is therefore:

() ()21
| | ,K
i i k ki

p x N xθ µ σ
=

=∑

In the case of a multidimensional Gaussian, the variance σ2
k will be replaced by the

covariance matrix Σk.

EM for mixture models
The standard way for fitting mixture models is the EM algorithm or Expectation
Maximization. This algorithm was the focus of Chapter 3, Learning Parameters. So
here, we just recall the basic principles of this algorithm again, to later show a
Bernoulli mixture model.

A good package to use in R is mixtools to learn mixture models. A thorough
presentation of this package is given in the Journal of Statistical Software, Oct 2009,
Vol 32, Issue 6, mixtools: An R Package for Analyzing Finite Mixture Models.

The EM algorithm is a good choice for learning a mixture model. Indeed, in Chapter
3, Learning Parameters, we saw that when data is missing or even when variables are
hidden (that is, all their respective data is missing), the EM algorithm will proceeds
in two steps: first compute the expected value of the missing variables, so that to do
as if the data is fully observed, and then maximize an objective function, usually the
likelihood. Then, given the new set of parameters, the process is iterated again until
some convergence criterion is reached.

Chapter 7

[201]

Zi

x1 xK......

In the mixture model represented by the preceding graphical model, it is clear that
the variable z is the latent variable and the xi is observed. We usually adopt plate
notation to give a comprehensive view of the data generation process as a graphical
model and use the following graph:

Probabilistic Mixture Models

[202]

As in many probabilistic models, fitting the parameters can be solved by finding the
set of parameters that maximizes the probability to generate the data. In other words,
we aim at maximizing the log-likelihood of the model:

() () ()()11
| log , |

i

N N K
i i ii zi

L p x p x zθ θ θ
==

= =∑ ∑∏

And that's where the problem is because the sum inside the log is hard to reduce
and in many cases it is intractable. You will also note that this likelihood is written
in terms of the observed data. So, if we follow the previous graphical model, we can
write the complete log-likelihood by introducing the latent variables as follows:

() ()1
log , |N

c i ii
L p x zθ θ

=
=∑

The EM algorithm will solve the problem of computing this likelihood, in which z is
completely hidden, by performing the following two steps.

First of all, we define the expected complete data log likelihood by:

() ()()1 1, |t t c tQ E L Dataθ θ θ θ− −=

This expectation is the expected complete data log likelihood computed from the
parameters found in the previous step. Of course, at the beginning of the algorithm,
the parameters are initialized to some arbitrary value. We saw in Chapter 3, Learning
Parameters that this value can be anything, but choosing values at random can lead
to a very long convergence time. Nevertheless, it has been proved that the EM
algorithm converges for any value.

The E-step in the EM algorithm will compute this expected value—that is, the
expected parameters given the data and the previous parameters.

Then the M-step will maximize this expectation given the newly found set of
parameters θ that will solve the problem:

()1,t t targmax Qθθ θ θ −=

Chapter 7

[203]

In the mixtools package, it is possible to fit a mixture of Gaussian using the function
normalmixEM. Here is how to do so.

First, we generate a simple data set of two univariate Gaussian:

x1 ← rnorm(1000,-3,2)

x2 ← rnorm(850,3,1)

Then, we plot the result to see how they are empirically distributed using the
hist function:

hist(c(x1,x2), breaks=100, col='red')

And we obtain the following figure, where we can easily identify the two clusters
of data and see they are approximately distributed. Given that we use random
generators, your result might be slightly different from what is shown in this book:

model ← normalmixEM(c(x1,x2) , lambda=.5, k=2)

Probabilistic Mixture Models

[204]

This model should take between 30 to 40 iterations to run. We give an initial
proportion of 50% to each class and set the number of clusters to 2.

In our results, we obtain the following parameters:

• The mixing proportions are 54.9% and 45.1%. This precisely corresponds to
the proportion we gave to our data sets x1 and x2.

• The µ parameters are -2.85 and 3.01, which are extremely close to the initial
values we gave too.

We can plot this histogram again with the Gaussian distributions superimposed
on it:

hist(c(x1,x2),breaks=100,col='red',freq=F,ylim=c(0,0.4))

lines(x,dnorm(x,model$mu[1],model$sigma[1]), col='blue')

lines(x,dnorm(x,model$mu[2],model$sigma[2]), col='green')

Chapter 7

[205]

The result is obviously far off what we expected in terms of proportion. If we redraw
it by adding the proportions now, we obtain the expected mixture distribution:

hist(c(x1,x2),breaks=100,col='red',freq=F)

lines(x,

 model$lambda[1]*dnorm(x,model$mu[1],model$sigma[1]) + model$lambda[2]*d
norm(x,model$mu[2],model$sigma[2]) ,

 lwd=3)

The number of clusters is very important and can change the results dramatically
when not chosen properly. For example, if we try the following values, we end up
with different results:

model <- normalmixEM(c(x1,x2), lambda=.5, k=3)

number of iterations= 774

model <- normalmixEM(c(x1,x2), lambda=.5, k=4)

WARNING! NOT CONVERGENT!

number of iterations= 1000

Probabilistic Mixture Models

[206]

With three clusters, the EM algorithm still converges. With four clusters, we need
to increase the number of iterations for the algorithm to converge. In fact, even with
three clusters, the result is interesting if not surprising. Plotting the density function,
we obtain:

In this plot, we see that the second cluster is somehow attached to the first one. If you
carefully look at the thick black line in the middle, you will see that the left-hand side
distribution is not totally Gaussian. Inspecting the model parameters, we see that the
means of the Gaussian are -3.74, -1.08, and 2.9. The middle one is indeed closer to
the first cluster. The proportion is interesting: 38%, 15.4%, and 46.5%. So it seems the
EM algorithm split the biggest cluster (1,000 points against 850) into 2 Gaussian to
respect our choice of three clusters.

A slow convergence can sometimes be an indication that our hyperparameters are
not totally adequate and more values should be explored.

Chapter 7

[207]

Mixture of Bernoulli
The mixture of Bernoulli is another interesting problem. As we saw earlier, the
graphical model to represent such a model is always the same. Only the probability
distribution functions associated to each node change compared to the previous
example. The mixture of Bernoulli finds applications in particular in analyzing black
and white images, where an image is made of one Bernoulli variable for each pixel.
Then the goal is to classify an image, that is, to say which value of the latent variable
produced it, given some observed pixels.

For example, the following (very stylized) figure represents the letter A:

In a real application, we would use more pixels. But the idea of the application
is to associate the value of pixels to each value of the latent variable, each one
representing a different letter. This is a simple model for character recognition.

The distribution of a Bernoulli variable is:

() ()1| 1 xxp x θ θ θ −= −

Now, let's say we have D Bernoulli variables. Each Bernoulli variable is parameterized
by one parameter θi. So the likelihood of such a model can be written as:

() ()()1

1
| 1 ii

D xx
i ii

p X θ θ θ −

=
= −∏

Here, X =(x1, …, xD) and θ = (θ1, …, θD).

Probabilistic Mixture Models

[208]

If we introduce the mixture of all the variables then the joint distribution can be
written as:

() ()1
| |K

K ki
p X p xθπ π θ

=
=∑

Here, π = (π1, …πD) are the mixing parameters and the distribution p is inside as:

() ()1, ,1
| 1 ii

xD x
k k i k ii

p x θ θ θ
−

=
= −∏

This is in fact the same distribution as before but for a case k only.

In order to fit this model, we need now to find the log-likelihood and, as expected, its
expression will not be suitable for a direct optimization. The reason is, as usual, that
we introduce latent variables for which we have no observations and we therefore
need to use an EM algorithm.

The log-likelihood is taken from the main joint distribution:

() ()()1 1
log | log |N K

k i in i
p x p xθπ π θ

= =
=∑ ∑

This is a pretty standard way of computing the log-likelihood. And, as is usually the
case for mixture models, the sum inside the log cannot be pushed out. So we end up
with a quite complex expression to minimize.

Now we introduce the latent variable z into the model. It has a categorical
distribution with K parameters, such that:

() 1
| k

K z
kk

p z π π
=

=∏

And the joint distribution with x is as follows:

() ()1
| | kK z

kk
p x z p xθ θ

=
=∏

Chapter 7

[209]

As before with the Gaussian mixture, we will write the complete data log-likelihood.
This likelihood is what we would optimize if the data set were complete—that is,
without latent variables:

() (

() ())
,1 1

, , , ,1

log , | log

log 1 log 1

N K
n k kn k

D
n i k i n i k ii

p X Z z

x x

θπ π

θ θ

= =

=

=

 + + − −

∑ ∑
∑

In this (very long) expression, we consider X and Z to be matrices, so in fact we
use the design matrix notation, where each row vector of X (resp. Z) is one set of
observations of each variable xi (resp. z).

Using the Bayes formula, we can calculate the expectation of the complete-data
log-likelihood with respect to the distribution of the latent variable. This step is
necessary for the E-step of the EM algorithm, where we want to complete the
data set:

()() ()(
() ())

,1 1

, , , ,1

log , | log

log 1 log 1

N K
z n k kn k

D
n i k i n i k ii

E p X Z E z

x x

θπ π

θ θ

= =

=

=

 + + − −

∑ ∑
∑

And the expected value of the latent variable is:

() ()
(),

1

|

|
k i k

n k K
j n jj

p x
E z

p x
π θ

π θ
=

=
∑

In a sense, this is not surprising because in the end we need to compute the ratio of zi
for each subset of the dataset in which it appears after the posterior computations.

Finally, in the M-step, we can derive the complete-data log-likelihood with respect to
the parameters θk and π and set it equal to zero. We obtain the following estimators:

(),1

1 N
k n k nn

k

E z x
N

θ
=

= ∑

k
k
N
N

π =

Probabilistic Mixture Models

[210]

Here, (),1

N
k n kn
N E z

=
=∑ .

The EM algorithm will alternate between computing the expectation of z and the
new values for the parameters θ and π until convergence.

More details about the derivation can be found in Pattern Recognition
and Machine Learning, Christopher M. Bishop, Springer, 2007

This model can be extended and the same principles applied to other types of
distribution—for example, a mixture of Poisson or Gamma. On the other hand,
the mixture of Bernoulli can be extended to the multinomial case with the same
type of derivation.

In all those models, however, we consider that we have one model for all the data
point space. In other words, we somehow use the same model for the whole support
of the distribution.

One extension is to consider that each subspace has its own model and therefore
the choice of the sub model made by the latent variable is dependent on the data
points. In Adaptive mixtures of local experts, Jacobs, R.A., Jordan, M.I, Nowlan, S.J.,
and Hinton, G.E. (1991) in Neural Computation, 3, 79-87, such a model is presented.
We give a brief review of this interesting model in its simple form.

Mixture of experts
The idea behind mixture of experts is to use a set of linear regressions for each sub
space of the original data space and combine them with weighting functions that
will successively give weight to each linear regression.

Consider the following example dataset, which we generate with the following
toy code:

x1=runif(40,0,10)

x2=runif(40,10,20)

e1 = rnorm(20,0,2)

Chapter 7

[211]

e2 = rnorm(20,0,3)

y1 = 1+2.5*x1 + e1

y2 = 35+-1.5*x2 + e2

xx=c(x1,x2)

yy=c(y1,y2)

Plotting the result, and doing a simple linear regression on it, gives the following:

Obviously, the linear regression does not capture the behavior of the data at all. It
barely captures a general trend in the data that more or less averages the data set.

Probabilistic Mixture Models

[212]

The idea of mixture of experts is to have several sub models within a bigger model—
for example, having several regression lines, as the following graph:

In this graph, the red and green lines seems to better represent the data set. However,
the model needs to choose when to choose each one. Again, a mixture model could
be a solution, except that, in this case, we want the mixture to be dependent on the
data points. So the graphical model will be a bit different:

() ()2| , , | ,T
i i i i k i kp y x z N y w xθ σ=

This is the linear model as we know it. Next we introduce the dependence of the
latent variable to the data points with:

() ()()| | T
i i i ip z x Mult z S V xθ =

Chapter 7

[213]

Here, S(.) is, for example, a sigmoid function. The function p(zi | xiθ) is usually called
the gating function.

The graphical model associated with such a model is quite different now because it
introduces a dependency between the latent variable and the observations:

In general, mixture of experts models uses a softmax gating function such that:

() ()
()1

exp

exp

T

k T
n

x
f x

x

β

β
=

=
∑

Probabilistic Mixture Models

[214]

The EM algorithm is usually a good algorithm to fit such a model. For example, the
mixtools package includes a function hmeME to fit mixture of experts models. At the
time of writing, this function is limited to two clusters.

The combination of all the gating functions requires us to sum to one at each point;
for example, in our example we could use two sigmoids with the following effect:

And such a combination could give a final model that better interprets the initial data
set, such as this graph:

Chapter 7

[215]

We recommend the reader develop his or her own EM algorithm to fit such models
and try different types of gating functions.

Techniques such as shrinkage or using a Bayesian approach on the parameters could
be useful to avoid over-fitting too, which can be problematic when the number of
sub models grows quickly.

Latent Dirichlet Allocation
The last model we want to present in this book is called the Latent Dirichlet
Allocation. It is a generative model that can be represented as a graphical model.
It's based on the same idea as the mixture model, with one notable exception. In
this model, we assume that the data points might be generated by a combination of
clusters and not just one cluster at a time, as was the case before.

Probabilistic Mixture Models

[216]

The LDA model is primarily used in text analysis and classification. Let's consider
that a text document is composed of words making sentences and paragraphs.
To simplify the problem, we can say that each sentence or paragraph is about one
specific topic, such as science, animals, sports, and so on. Topics can also be more
specific, such as cats or European soccer. Therefore, there are words that are more
likely to come from specific topics. For example, the word cat is likely to come from
the topic cats. The word stadium is likely to come from the topic European soccer.
However, the word ball should come with a higher probability from the topic
European soccer, but it is not unlikely to come from the topic cats, because cats like to
play with balls too. So it seems the word ball might belong to two topics at the same
time with a different degree of certainty.

Other words such as table will certainly belong equally to both topics and
presumably to others. They are very generic. Unless, of course, we introduce another
topic such as furniture.

A document is a collection of words, so a document can have complex relationships
to a set of topics. But, in the end, it is more likely we will see words coming from the
same topic or the same topics within a paragraph, and to some extent in the document.

In general, we model a document with a bag-of-words model that is, we consider a
document to be a randomly generated set of words, using a specific distribution over
the words. If this distribution is uniform over all the words, then the document will be
purely random without a specific meaning. However, if this distribution has a specific
form, with more probability mass to related words, then the collection of words
generated by this model will have a meaning. Of course, generating documents is not
really the application we have in mind for such a model. What we are interested in is
the analysis of documents, their classification, and automatic understanding.

The LDA model
Let's say zi is a categorical variable (in other words, a histogram) representing the
probability of appearance of all words from a dictionary.

Usually, in this kind of model, we restrict ourselves to long words and remove the
small words such as and, to, but, the, a, and so on. These words are usually called
stop words.

Let wj be the j-th word in a document. A document generating model could be
represented with the following graphical model:

Chapter 7

[217]

Let θ be a distribution over topics, then we can extend this model by choosing which
kind of topic will be selected at any time and then generate a word out of it.

Therefore, the variable zi now becomes the variable zij, which is the topic i selected
for the word j. The graphical model is extended as follows:

Probabilistic Mixture Models

[218]

We can go even further and decide we want to model a collection of documents,
which seems natural if we consider we have a big dataset.

Assuming that documents are i.i.d, we can draw the following graphical model
again, in which we capture M documents (on the right in the earlier figure).

And because the distribution on θ is categorical, we want to be Bayesian about it,
mainly because it will help to model (not to over-fit) and because we consider the
selection of topics for a document to be a random process in itself.

Moreover, we want to apply the same treatment to the word variable by having
a Dirichlet prior. This prior is used to avoid non-observed words having a zero
probability. It smooths the distribution of words per topic. A uniform Dirichlet prior
will induce a uniform prior distribution on all the words.

The final graphical model is given by the following figure:

Chapter 7

[219]

This is quite a complex graphical model but techniques have been developed to fit
the parameters and use this model.

So, if we follow this graphical model carefully, we have a process that generates
documents based on a certain set of topics:

• α chooses the set of topics for a document
• From θ we generate a topic zij

• From this topic, we generate a word wj

In this model, only the words are observable. All the other variables will have to
be determined without observation, exactly like in the other mixture models. So
documents are represented as random mixtures over latent topics, in which each
topic is represented as a distribution over words.

The distribution of a topic mixture based on this graphical model can be written as:

() () () ()1
, , | | | | ,N

i i ii
p z w p p z p w zθ αβ θ α θ β

=
= ∏

You see in this formula that for each word we select a topic, hence the product from
1 to N.

Integrating over θ, and summing over z, the marginal distribution of a document is
as follows:

() () () ()()1
| | | |

i

N
i i izi

p w p p z p w z dαβ θ α θ β θ
=

= ∑∏∫

The final distribution can be obtained by taking the product of marginal distributions
of single documents, so as to get the distribution over a collection of documents
(assuming documents are independently and identically distributed). Here, D is the
collection of documents:

() () () ()()
,

, , ,1 1
| | | |d

d i

M N
d d i d d i d i dzd i

p D p p z p w z dαβ θ α θ β θ
= =

= ∑∏ ∏∫

The main problem to solve now is how to compute the posterior distribution over θ
and z given a document. By applying the Bayes formula we know that:

() ()
()
, , | ,

, |
|

p z w
p z w

p w
θ α β

θ αβ
αβ

=

Probabilistic Mixture Models

[220]

Unfortunately, this is intractable because of the normalization factor at the
denominator. The original paper on LDA therefore refers to a technique called
variational inference, which aims at transforming a complex Bayesian inference
problem into a simpler approximation which can be solved as a (convex)
optimization problem. This technique is the third approach to Bayesian inference
and has been used on many other problems. In the next section, we briefly review
the principles of variational inference and, finally, we will show an example in R to
conclude this section.

Variational inference
The main idea in variational inference is to consider a family of lower bounds
indexed by variational parameters and optimize on those parameters to find the
tightest lower bound. Practically speaking, the idea is to approximate a complicated
distribution we wish to evaluate by a simpler distribution such that the distance
(or any suitable metric between the distributions) can be minimized with a convex
optimization procedure. The reason we want things to be convex is essentially
because convex problems have a global minimum.

In general, a good approximation for a graphical model consists in simplifying the
graph of the model by decoupling variables. In practice, we remove edges.

In the LDA model, the proposed variational problem is done by decoupling the
variables θ and β.

The resulting graphical model after decoupling no longer shows the connection
between θ and zi but includes new free variational parameters. The final distribution
is given by:

() () ()1
| | |N

i ii
q z q q zθ γφ θ γ ϕ

=
= ∏

Here, γ is a Dirichlet variable and Φ a multinomial.

The optimization problem requires a way to calculate some distance or discrepancy
between the simplified distribution and the real distribution.

This is usually done by using the Kullback-Leibler divergence between the two
distributions. The optimization problem is now to find (γ, ϕ) such that:

() () () ()(),, , | , , | , ,argmin D q z p z wγ ϕγ ϕ θ γ ϕ θ α β∗ ∗ = �

Chapter 7

[221]

Many optimization algorithms are able to solve this problem.

The fitting of the parameters of the model can be done again using the EM algorithm.
However, as in inference, the E-step is intractable but can be solved with the
variational approximation of this problem.

The E-step consists in finding the values for the variational parameters for each
document. Then the M-step consists in maximizing the lower bound of the
log-likelihood with respect to the parameters α and β. The steps are repeated
until convergence of the lower bound on the log-likelihood.

Examples
We will use the RtextTools and topicmodels packages. The second one contains an
implementation of the LDA model as described before.

First we load some data:

data(NYTimes)

data ← NYTimes[samples(1:3100, size=1000,replace=F)]

The resulting data.frame contains titles and subject and an associated
topic.code. This dataset contains headlines from the New York Times.

Then we create a matrix suitable for the LDA() function in the topicmodels package:

matrix ← create_matrix(cbind(as.vector(data$Title),as.
vector(data$Subject)), language="english," removeNumbers=TRUE,
stemWords=TRUE)

Next, we set up the number of topics. This is computed by looking at the number of
unique topic.code in the original data set. This data set has been specially compiled
for this task:

k <- length(unique(data$Topic.Code))

Finally, we run the learning algorithm using the variational EM algorithm. This
function also provide a Gibbs sampling method to solve the same problem:

lda <- LDA(matrix, k)

The result is a topic model with 27 topics, as expected. Let's see this in detail. The
returned object is an S4 object (so you will notice we use the @ notation in R).

Probabilistic Mixture Models

[222]

Let's take the first document and look at its posterior distribution over the topics:

print(lda@gamma[1,])

 [1] 0.649978052 0.004191364 0.004191364 0.004191364 0.004191364
0.004191364 0.004191364 0.004191364 0.004191364 0.004191364 0.004191364
0.004191364 0.004191364 0.004191364 0.004191364 0.004191364

[17] 0.004191364 0.004191364 0.115045483 0.004191364 0.004191364
0.004191364 0.134383733 0.004191364 0.004191364 0.004191364 0.004191364

We see that the first topic has a higher probability. We can plot this to view it better:

Chapter 7

[223]

And we will also look at an average graph over all the documents by doing:

plot(colSums(lda@gamma)/nrow(lda@gamma),t='h')

From there, we can see the distribution over the topics is clearly not uniform, which
would have been really surprising.

So we have a simple way to extract the most probable topic from each document.
Note that, in the case of the first document, one topic was highly probable and two
others appeared too. The rest were insignificant.

We can, for example, search for the number of documents that have two or more
topics with a probability higher than 10%:

sum(sapply(1:nrow(lda@gamma), function(i) sum(lda@gamma[i,]>0.1) > 1))

Probabilistic Mixture Models

[224]

We find 649 over 1,000 documents. However, if we look at intervals of 10% from 0%
to 100%, we see that this number drops quickly. So it seems that our data set has a
lot of documents that identify themselves to only one topic at a time. The following
graph shows this progression:

For example, at 30% only a couple of hundred documents still share their topics
among at least two topics. Then the number drops. All sorts of analysis can be done
on such a collection, such as finding the words belonging to a topic.

Summary
In this last chapter, we saw more advanced probabilistic graphical models, whose
solution is not easy to compute with standard tools such as the junction tree
algorithm. This chapter set out to show that the graphical model framework can still
be used even if one has to develop a special algorithm for each model. Indeed, in
the LDA model, the solution to the variational problem appeared by looking at the
graph of the original LDA and by transforming this graph, thus leading to a better
approximation of the initial problem. So, even if the final algorithm does not use the
graph directly like a junction tree algorithm would do, the solution came from the
graph anyway.

Chapter 7

[225]

This chapter proved how powerful probabilistic graphical models can be, and all the
possibilities and new models that can be created from simpler models.

Indeed, each of these models can again be extended either by combining them—for
example, in the mixture of experts model. In this model, each expert function could
be replaced by another mixture of experts model, creating a hierarchical mixture of
experts. This is a probabilistic version of the decision tree but with smooth transitions
and an increased ability to deal with uncertainty.

We have finally reached the end of our journey into the world of probabilistic
graphical models. But, as with all journeys, it is just a start and we encourage the
reader to look for all the R packages dedicated to graphical models and to write
his or her own algorithms. Following the graphs and the generic recipes found in
this book, it is possible to go way beyond the standard models and solutions we
presented here; the only limit is your imagination.

[227]

Appendix

References
The following references were used while writing this book. We encourage those
of you who want to go further into the field of probabilistic graphical models and
Bayesian modeling to read at least some of them.

Many of our examples and presentations of algorithms took inspiration from these
books and papers.

Books on the Bayesian theory
• Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B, Vehtari, A., and Rubin,

D.B.. Bayesian Data Analysis, 3rd Edition. CRC Press. 2013. This is a reference
book on Bayesian modeling covering topics from the most fundamental
aspects to the most advanced, with the focus on modeling and also on
computations.

• Robert, C.P.. The Bayesian Choice: From Decision-Theoretic Foundations to
Computational Implementation. Springer. 2007. This is a beautiful presentation
of the Bayesian paradigm with many examples. The book is more theoretical
but has a rigorous presentation of many aspects of the Bayesian paradigm.

• McGrayne, Sharon Bertsch. The Theory That Would Not Die. Yale University
Press. 2011. This talks about how Bayes' rule cracked the Enigma code, hunted
down Russian submarines, and emerged triumphant from two centuries of
controversy. It is a brilliantly written history of Bayes' rule going from the
seminal paper of Thomas Bayes to the latest advances in the 21st century.

Appendix

[228]

Books on machine learning
• Murphy, K.P.. Machine Learning: A Probabilistic Perspective. The MIT Press.

2012. This is a book on machine learning in general with a lot of algorithms.
It covers more than just graphical models and Bayesian models. It is one of
the best references.

• Bishop, C.M. Pattern Recognition and Machine Learning. Springer. 2007. This is
one of the best books on machine learning, covering many aspects and going
through many details of the implementation of each algorithm.

• Barber, D.. Bayesian Reasoning and Machine Learning. Cambridge University
Press. 2012. This is another excellent reference book covering many aspects of
machine learning with a specific focus on Bayesian models.

• Robert, C.P.. Monte Carlo Methods in Statistics. 2009. (http://arxiv.org/
pdf/0909.0389.pdf) This is an excellent paper on the Monte Carlo methods,
and it is very pedagogical.

• Koller, D. and Friedman, N.. Probabilistic Graphical Models: Principles and
Techniques. The MIT Press. 2009. This is the most complete and advanced
book on probabilistic graphical models. It covers all aspects of the domain.
This book is very dense, with thorough details on many algorithms related to
PGM and useful demonstrations. Probably the best book on PGM.

• Casella, G. and Berger, R.L.. Statistical Inference, 2nd Edition. Duxbury.
2002: This is a reference book on standard statistics with many detailed
demonstrations. It's a book that anyone doing statistics should read.

• Hastie, T., Tibshirani, R., and Friedman, J.. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer. 2013: This is a book best-seller
and covers the most important aspects of machine learning from a statistical
point of view.

Papers
• Jacobs, R.A., Jordan, M.I, Nowlan, S.J., and Hinton, G.E. Adaptive mixtures of

local experts. 1991 in Neural Computation, 3, 79-87: This is the reference paper
on mixture of experts as seen in Chapter 7, Probabilistic Mixture Models.

• Blei, David M., Ng, Andrew, Y, Jordan, Michael, I. Latent Dirichlet Allocation.
January 2003, Journal of Machine Learning Research 3 (4–5), p993–1022:
This is a reference paper on the LDA model as seen in Chapter 7, Probabilistic
Mixture Models.

http://arxiv.org/pdf/0909.0389.pdf
http://arxiv.org/pdf/0909.0389.pdf

[229]

Index
A
ancestral sampling 128
arm package 195

B
basic sampling algorithms

about 129
standard distributions 129-133

Bayesian Linear models
about 176
graphical model 179-181
implementation, in R 184-188
over-fitting 176-179
packages 194
packages, in R 195
posterior distribution 181-184
stable implementation 188-194

Bayesian Naive Bayes 104-106
Bayesian theory

references 227
bayesm package 194
Bayes' rule

about 11
conditional probability 12
example 13-19
formula, interpreting 13

Bernoulli distribution 108
Beta-Binomial

about 106-111
posterior distribution, with conjugacy

property 112, 113
prior distribution 111, 112
values, selecting for Beta parameters 113

Binomial distribution 110

bnlearn R package
about 65
URL 65

C
cluster nodes 54
conjugacy property 112, 113
continuous random variable 36

D
Dirichlet distribution 105
discrete random variable 36
discrete sepal width (dsw) 74
d-separation 37

E
empirical distribution

relating, to model distribution 79-81
Expectation Maximization (EM) algorithm

about 70
applying, to graphical models 93, 94
derivation 91, 92
for mixture models 200-206
principles 90
with hidden variables 88

G
gating function 213
Gaussian mixture model

about 115
defining 116-122
example 115

generative models 70

[230]

glmnet package 184, 194
graphical models

building 35
Expectation Maximization (EM) algorithm,

applying to 93, 94
graphs, building 37
of Bayesian Linear models 179-181
random variable, types 36

graphs
building 37
probabilistic expert system 37-40
probabilistic graphical models, basic

structures 40-43

H
Hidden Markov Model 42
hidden variables

about 88
Expectation Maximization (EM) algorithm,

using 88
latent variables 89, 90

I
importance sampling

about 132-144
implementation, in R 144-152

importance weight 143
independently and identically

distributed (iid) 70

J
joint probability distribution, uncertainty

about 10
marginalization 11

junction tree
about 54
building 52-55

junction tree algorithm
about 51, 52
implementing 55-61

K
Kullback-Leibler divergence 80

L
L1-penalization (Lasso) 174, 184
L2 penalization 173
Latent Dirichlet Allocation (LDA)

about 197, 215, 216
examples 221-224
graphical model 216-220
variational inference 220, 221

latent variable models 88
latent variables

about 89, 90
using 115

learning by inference
about 75
probability, estimating 75-78

likelihood 13
linear regression

about 169
example 170
parameters, estimating 170-174

M
machine learning

about 2, 4
references 228

MAP queries 33
Markov Chain Monte-Carlo (MCMC)

about 144, 152
for probabilistic graphical models 163
methods 153, 154
Metropolis-Hastings algorithm 154-162
RStan, installing 163
Stan, installing 163

Markov Model 42
maximum a posteriori 70
maximum likelihood

application 86-88
empirical distribution, relating to model

distribution 79-81
estimation 79
ML algorithm, implementing 82-86

Maximum Likelihood Estimator (MLE) 182
medical expert system 63
Metropolis-Hastings algorithm 154-162
mixing proportions 116
mixture components 116

[231]

mixture models
about 198
example 199, 200
Expectation Maximization (EM) algorithm,

using 200-206
mixture of Bernoulli 207-210
mixture of experts 210-215
ML algorithm

implementing 82-86
model calibration 69
model distribution

relating, to empirical distribution 79-81
Monte-Carlo sampling 125

N
Naive Bayes model

about 98
Bayesian Naive Bayes 104-06
example 98, 99
implementing 101-103
representation 100, 101

Noisy-OR model 64

O
over-fitting

about 104
solving, with Bayesian Linear

models 176-179

P
packages, R

arm package 195
bayesm package 194
glmnet package 194

parameter fitting 69
parameter learning

about 69
Iris dataset, estimating 72-74
Iris dataset, loading 71

plate notation 75
posterior distribution

about 13
used, with Bayesian Linear models 181-184
with conjugacy property 112, 113

prior distribution 13, 107-112

probabilistic expert system
about 40
example 37-40
reference link 37

probabilistic graphical models (PGM),
examples

medical expert system 63
models, with more than two layers 64, 65
sprinkler example 62
tree structure 66, 67

probabilistic graphical models (PGM)
about 3, 20
applications 26-29
basic structures 40-43
directed models 24
distribution, factorizing 23
example 26-29
graphs and conditional independence 21-23
Markov Chain Monte-Carlo (MCMC) 163
probabilistic models 20, 21
undirected models 25

probabilistic queries 33
probability calculus, uncertainty

and random variables 8, 9
event 8
probability 8
realization 8
sample space 8

pseudo-random numbers 129

Q
queries

MAP queries 33
probabilistic queries 33

R
R

Bayesian Linear models,
implementing 184-188

importance sampling,
implementation 144-152

Markov Chain Monte-Carlo (MCMC) 163
rejection sampling, implementation 135-142

random variable
about 36
continuous random variable 36

[232]

discrete random variable 36
random variables, uncertainty

about 8
probability distribution 9

rejection sampling
about 132-135
implementation, in R 135-142

ridge regression 173
RStan

example 164
installing 163
URL 163

S
sampling

from distribution 126-129
sampling algorithms 125
seed 129
separator nodes 54
sprinkler example 62
Stan

installing 163
standard distributions 129-133
stop words 216
structural learning 24
sum-product variable elimination algorithm

about 47, 48
implementing 49, 50

T
trees

about 34
tree structure 66, 67

U
uncertainty

as probabilities 6
Bayesian interpretation 6
Bayes' rule 11, 12
conditional probability 7
frequentist interpretation 6
joint probability distributions 10, 11
probability calculus 7
random variables 8
representing, with probabilities 5

V
variable elimination 44, 46
variational inference 220, 221

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Probabilistic Reasoning
	Machine learning
	Representing uncertainty with probabilities
	Beliefs and uncertainty as probabilities
	Conditional probability
	Probability calculus and random variables
	Sample space, events, and probability
	Random variables and probability calculus

	Joint probability distributions
	Bayes' rule
	Interpreting the Bayes' formula
	A first example of Bayes' rule
	A first example of Bayes' rule in R

	Probabilistic graphical models
	Probabilistic models
	Graphs and conditional independence
	Factorizing a distribution
	Directed models
	Undirected models
	Examples and applications

	Summary

	Chapter 2: Exact Inference
	Building graphical models
	Types of random variable
	Building graphs
	Probabilistic expert system
	Basic structures in probabilistic graphical models

	Variable elimination
	Sum-product and belief updates
	The junction tree algorithm
	Examples of probabilistic graphical models
	The sprinkler example
	The medical expert system
	Models with more than two layers
	Tree structure

	Summary

	Chapter 3: Learning Parameters
	Introduction
	Learning by inference
	Maximum likelihood
	How are empirical and model distribution related?
	The ML algorithm and its implementation in R
	Application

	Learning with hidden variables – the
EM algorithm
	Latent variables

	Principles of the EM algorithm
	Derivation of the EM algorithm
	Applying EM to graphical models

	Summary

	Chapter 4: Bayesian Modeling – Basic Models
	The Naive Bayes model
	Representation
	Learning the Naive Bayes model
	Bayesian Naive Bayes

	Beta-Binomial
	The prior distribution
	The posterior distribution with the conjugacy property
	Which values should we choose for the Beta parameters?

	The Gaussian mixture model
	Definition

	Summary

	Chapter 5: Approximate Inference
	Sampling from a distribution
	Basic sampling algorithms
	Standard distributions

	Rejection sampling
	An implementation in R

	Importance sampling
	An implementation in R

	Markov Chain Monte-Carlo
	General idea of the method
	The Metropolis-Hastings algorithm

	MCMC for probabilistic graphical models in R
	Installing Stan and RStan
	A simple example in RStan

	Summary

	Chapter 6: Bayesian Modeling – Linear Models
	Linear regression
	Estimating the parameters

	Bayesian linear models
	Over-fitting a model
	Graphical model of a linear model
	Posterior distribution
	Implementation in R
	A stable implementation
	More packages in R

	Summary

	Chapter 7: Probabilistic Mixture Models
	Mixture models
	EM for mixture models
	Mixture of Bernoulli
	Mixture of experts
	Latent Dirichlet Allocation
	The LDA model
	Variational inference
	Examples

	Summary

	Appendix
	References
	Books on the Bayesian theory
	Books on machine learning
	Papers

	Index

