

Learning LibGDX Game
Development
Second Edition

Wield the power of the LibGDX framework to create
a cross-platform game

Suryakumar Balakrishnan Nair

Andreas Oehlke

BIRMINGHAM - MUMBAI

Learning LibGDX Game Development
Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2013

Second edition: January 2015

Production reference: 1220115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-477-5

www.packtpub.com

Credits

Authors
Suryakumar Balakrishnan Nair

Andreas Oehlke

Reviewers
Juwal Bose

Yunkun Huang

Stéphane Meylemans

Chris Moeller

Commissioning Editor
Kartikey Pandey

Acquisition Editors
Subho Gupta

Kartikey Pandey

Content Development Editor
Arun Nadar

Technical Editor
Shashank Desai

Copy Editors
Relin Hedly

Neha Karnani

Nithya P

Project Coordinator
Neha Bhatnagar

Proofreaders
Ting Baker

Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexer
Mariammal Chettiyar

Graphics
Abhinash Sahu

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

About the Authors

Suryakumar Balakrishnan Nair is an engineering graduate from Cochin
University of Science and Technology, Cochin, India with a specialization in
computer science. He just loves programming and likes to keep on experimenting.
He has designed a dozen games on the Android platform using LibGDX.

He loves traveling and visiting various places. He reads articles and books on a
range of issues from politics to environment. He is currently working as a full-time
Android game developer for an Indian game company, Csharks (http://csharks.
com/site/).

I would like to thank my colleagues in Csharks for providing me with
moral support, especially Vipin TP and Dheeraj S. I would also like to
thank my dear friend Rahul Satish who helped me with the Blender
models. Most importantly, I want to thank my mentor, Juwal Bose,
who guided me and motivated me for this project.

Andreas Oehlke is a professional software engineer and computer scientist
who feels very much at home on any Linux/UNIX machine. He holds a bachelor's
degree in Computer Science and loves to assemble and disassemble software and
hardware alike. The exorbitant affinity for electronics and computers has always
been his trademark. His hobbies include game and web development, programming
in general (software design and new languages), programming embedded systems
with microcontrollers, playing sports, and making music.

He currently works full time as a software engineer for a German financial
institution. Furthermore, he has worked as a consultant and game developer in San
Francisco, CA. In his spare time, he provides his expertise to a German start-up
called Gamerald (http://www.gamerald.com/).

I want to thank my parents, Michael and Sigrid, and my brother
Dennis for their constant and invaluable support, which definitely
kept me on the go while writing this book. I also want to thank my
close friends for giving me lots of helpful feedback, notably Sascha
Björn Bolz for providing the artwork for Canyon Bunny. Last but
not least, I want to thank Klaus "keith303" Spang for providing
the music track, the whole team of Packt Publishing, and all the
numerous reviewers for their great work who helped me produce
a high-quality book.

About the Reviewers

Juwal Bose is a game developer, game designer, and technology consultant from
the incredibly beautiful state of Kerala in India. He is an active figure in social
media and game development SIGs and never misses a chance to speak at technical
conferences and BarCamps. He conducts technical workshops for engineering
students at professional colleges as part of open source initiatives. Juwal is the
Director at Csharks Games and Solutions Pvt. Ltd., where he manages research and
development as well as training and pipeline integration in his area of expertise.

He has been developing games since 2004 using multiple technologies, including
ActionScript, Objective-C, Java, Unity, LibGDX, Cocos2D, OpenFL, Unity, and Starling.
His team has created more than 400 games to date, and many of the job management
games are listed at the top of leading portals worldwide. He has been part of the
development of more than 20 LibGDX games primarily for the Android platform.

Juwal writes game development tutorials for GameDevTuts+ and manages the blog
of Csharks' games. His isometric tutorial for GameDevTuts+ was well received and
is considered a thorough guide to developing tile-based isometric games. Juwal has
written LibGDX Game Development Essentials, Packt Publishing, and reviewed a couple
of books as well. The first book he had written, Starling Game Development Essentials,
Packt Publishing, is based on another exceptional cross-platform game development
framework called Starling.

Juwal is a voracious reader and likes to travel. His future plans also include
writing fiction.

Yunkun Huang is a senior software engineer with more than 7 years of experience
in Java development. His research interests include game development, swarm
intelligence, automated trading, and enterprise application development.

He works for ThoughtWorks as a Java developer now. For more information
about his background and research, you can visit his home page
http://www.huangyunkun.com/.

Stéphane Meylemans has a bachelor's degree in information technology.
He worked in web development for 8 years and then decided to move on to game
development (mobile and desktop). He has learned Unreal Engine and Unity Game
development and is currently working on a LibGDX-based point n click adventure
game for which he is writing the story.

I would like to thank the author for this great book. It's very useful
and well written. It helped me a lot to develop in LibGDX and I
recommend it to anyone with Java knowledge who wants to start
developing in LibGDX.

Chris Moeller is a founder of the game studio Ackmi Design and Engineering.
He has been building computers since the age of 9 and has been programming for
more than 10 years. He has had the opportunity to work for software companies as
a PHP developer, Java QA engineer, and a Flash developer, and he currently works
primarily in Java on LibGDX-based applications.

He has been an enthusiastic gamer for most of his life and loves many of John
Carmack's and early Blizzard games. From these inspirations, he has created
many games and game prototypes in several different programming languages.
He writes game programming tutorials on his blog at http://chris-moeller.
blogspot.in/, and most of his new games can be found on his company website
at http://ackmi.com/, which he runs with his wife, Megan.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit
www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on
Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface 1
Chapter 1: Introduction to LibGDX and Project Setup 9

Diving into LibGDX 10
Features of LibGDX 1.2.0 11

Graphics 11
Audio 12
Input handling 12
File I/O and storage 12
Math and physics 13
Utilities 13
Tools 13

Getting in touch with the community 14
Prerequisites to install and configure LibGDX 14

Java Development Kit 15
Eclipse – Integrated Development Environment 19
Downloading LibGDX 20
Installing Android SDK 21
Running Eclipse and installing plugins 30

Creating a new application 37
Using the old setup tool 37
Using the Gradle-based setup 46

gdx-setup versus gdx-setup-ui 52
Kicking your game to life 54
Key to success lies in planning 56
Game project – Canyon Bunny 57

Description of the game 58
Summary 59

Table of Contents

[ii]

Chapter 2: Cross-platform Development – Build Once,
Deploy Anywhere 61

The demo application – how the projects work together 62
LibGDX backends 65

Lightweight Java Game Library 66
Android 66
WebGL 66
RoboVM (iOS backend) 67

LibGDX core modules 67
The application module 68

Logging 68
Shutting down gracefully 68
Persisting data 69
Querying the Android API level 69
Querying the platform type 70
Querying the memory usage 70
Multithreading 70

The graphics module 71
Querying delta time 71
Querying display size 71
Querying the frames per second (FPS) counter 71

The audio module 71
Sound playback 71
Music streaming 72

The input module 72
Reading the keyboard/touch/mouse input 72
Reading the accelerometer 72
Starting and canceling vibrator 72
Catching Android's soft keys 73

The files module 73
Getting an internal file handle 73
Getting an external file handle 73

The network module 73
HTTP requests 73
Client/server sockets 74
Opening a URI in a web browser 74

LibGDX's application life cycle and interface 74
Starter classes 76

Running the demo application on a desktop 76
Running the demo application on Android 79
Running the demo application in a WebGL-capable web browser 83
Running the demo application on an iOS device 88

Table of Contents

[iii]

The demo application – time for code 94
Inspecting an example code of the demo application 94

The create() method 95
The render() method 97
The dispose() method 98

Having fun with the debugger and Code Hot Swapping 100
Summary 106

Chapter 3: Configuring the Game 107
Setting up the Canyon Bunny project 108
Using a class diagram for Canyon Bunny 110
Laying foundations 113

Implementing the Constants class 113
Implementing the CanyonBunnyMain class 114
Implementing the WorldController class 115
Implementing the WorldRenderer class 116

Putting it all together 117
Building the game loop 117
Adding the test sprites 121
Adding the game world's debug controls 126
Adding the CameraHelper class 130
Adding the camera debug controls using CameraHelper 132

Summary 136
Chapter 4: Gathering Resources 137

Setting up a custom Android application icon 138
Setting up a custom iOS application icon 140
Creating the texture atlases 141
Loading and tracking assets 148
Organizing the assets 149
Testing the assets 157
Handling level data 161
Summary 163

Chapter 5: Making a Scene 165
Creating game objects 166

The rock object 167
The mountains object 171
The water overlay object 173
The clouds object 174

Table of Contents

[iv]

Implementing the level loader 177
Assembling the game world 182
Implementing the game GUI 186

The GUI score 190
The GUI extra lives 191
The GUI FPS counter 192
Rendering the GUI 193

Summary 194
Chapter 6: Adding the Actors 195

Implementing the actor game objects 195
Creating the gold coin object 198
Creating the feather object 200
Creating the bunny head object 201
Updating the rock object 210

Completing the level loader 210
Adding the game logic 213

Adding collision detection 213
Losing lives, game over, and fixing the camera 220
Adding the game over text and the feather icon to the GUI 222

Summary 226
Chapter 7: Menus and Options 227

Managing multiple screens 227
Exploring Scene2D UI, TableLayout, and skins 235
Using LibGDX's scene graph for the menu UI 236
Building the scene for the menu screen 240

Adding the background layer 246
Adding the objects layer 246
Adding the logos layer 247
Adding the controls layer 247
Adding the Options window layer 249

Building the Options window 253
Using the game settings 260

Summary 262
Chapter 8: Special Effects 263

Creating complex effects with particle systems 264
Adding a dust particle effect to the player character 270
Moving the clouds 274
Smoothing with linear interpolation (Lerp) 275

Letting the rocks float on the water 276

Table of Contents

[v]

Adding parallax scrolling to the mountains in the background 278
Enhancing the game screen's GUI 280

Event – player lost a life 280
Event – score increased 283

Summary 285
Chapter 9: Screen Transitions 287

Adding the screen transition capability 287
Implementing the transition effects 296
Knowing about interpolation algorithms 296
Creating a fade transition effect 298
Creating a slide transition effect 301
Creating a slice transition effect 304

Summary 307
Chapter 10: Managing the Music and Sound Effects 309

Playing back the music and sound effects 309
Exploring the Sound interface 310
Exploring the Music interface 312

Accessing the audio device directly 312
Exploring the AudioDevice interface 313
Exploring the AudioRecorder interface 314

Using sound generators 314
The sfxr generator 315
The cfxr generator 316
The bfxr generator 317

Adding music and sounds to Canyon Bunny 318
Summary 327

Chapter 11: Advanced Programming Techniques 329
Simulating physics with Box2D 330

Exploring the concepts of Box2D 331
Understanding the rigid bodies 331
Choosing the body types 331
Using shapes 332
Using fixtures 332
Simulating physics in the world 332

Physics body editor 333
Adding Box2D 333

Adding Box2D dependency in Gradle 334
For non-Gradle users 337

Preparing Canyon Bunny for raining carrots 338
Adding the new assets 338
Adding the carrot game object 339

Table of Contents

[vi]

Adding the goal game object 340
Extending the level 342

Letting it rain carrots 345
Working with shaders in LibGDX 357

Creating a monochrome filter shader program 358
Using the monochrome filter shader program in Canyon Bunny 360

Adding alternative input controls 364
Summary 368

Chapter 12: Animations 369
Manipulating actors through actions 369

Actions for manipulating actors 371
Controlling the order and time of execution 372

Animating the menu screen 372
Animating the gold coins and bunny head actors 374
Animating the menu buttons and Options window 375

Using sequences of images for animations 378
Packing animations using TexturePacker 379
Choosing between animation play modes 380

Animating the game screen 381
Defining and preparing new animations 381
Animating the gold coin game object 384
Animating the bunny head game object 387

Summary 392
Chapter 13: Basic 3D Programming 393

Light sources 393
Environment and materials 394
Basic 3D using LibGDX 394

The project setup 394
The camera 398
Model and ModelInstances 399
The ModelBatch class 399
The environment 400

Loading a model 400
Model formats and the FBX converter 403

3D frustum culling 404
Ray picking 411
Summary 413

Chapter 14: Bullet Physics 415
About Bullet Physics 415
A few basic concepts 416

Table of Contents

[vii]

Understanding rigid bodies 417
Static, dynamic, and kinematic rigid bodies 417

Collision shapes 417
MotionStates 418
Simulating physics 418

Learning Bullet with LibGDX 419
Setting up a project 419
Creating a basic 3D scene 421
Initializing Bullet 426
Creating a dynamics world 426
A custom MotionState class 427
A simple ContactListener class 427

Adding some rigid bodies 428
Stepping the world 429

Ray casting in Bullet 430
A simple test game 430

Having fun with shadows 445
Summary 447

Index 449

Preface
As personal computers have conquered our private homes, video games have
become more and more popular and eventually a multimillion dollar business for
big video game companies. With the introduction of mobile devices such as
smartphones and tablets, the market for video games has experienced another
significant increase; in particular, it has now become open to independent game
developers with small budgets.

For game developers, it is essential to have tools at hand that provide fundamentals
that allow rapid prototyping and cost-effective implementation of their creative
ideas. This is where LibGDX comes into play. LibGDX, as a Java-based game
development framework, provides a unified access layer to handle all the supported
platforms. LibGDX also makes use of C/C++ to achieve cross-platform support as
well as to boost the application performance for mission critical tasks.

This book will show you how easy it is to develop cross-platform games by walking
you through a complete game development cycle using the free and open source
library—LibGDX. Besides this, you will also learn about common game structure
and the involved requirements.

You will be introduced to the key features of LibGDX. You will also learn how to
develop a game with ease and speed up your development cycles. In ten easy-to-
follow chapters, you will develop your first LibGDX cross-platform game and add
more and more game functionalities as you progress further through this book.

The special features will also make you acquainted with advanced programming
techniques such as animations, physics simulations, and shader programs that
enhance your games in both their gameplay and visual presentation.

By the end of this book, you will have a fully working 2D game that will run on
Windows, Linux, Mac OS X, WebGL-capable browsers, Android, and iOS. You will
also have all the skills required to extend the game further or to start developing
your own cross-platform games.

Preface

[2]

What this book covers
Chapter 1, Introduction to LibGDX and Project Setup, covers how to install and
configure the development environment and introduces you to the project setup tool
that comes with LibGDX. Then, we will take a first look at the basics of what a game
needs to come alive.

Chapter 2, Cross-platform Development – Build Once, Deploy Anywhere, explains the
supported target platforms and how to deploy and run our application on each
platform using a demo application. For the first overview of LibGDX's API, we will
take a glance at each module. Then, the application cycle will be introduced, and we
will take a look at how to debug and manipulate our code at runtime.

Chapter 3, Configuring the Game, takes us from our demo application to a real game
by setting up a new project called Canyon Bunny. We will work on this project
throughout the rest of the book and extend it from chapter to chapter with new
features. As LibGDX is a framework, we will first have to build our program
architecture using UML class diagrams to structure our game engine.

Chapter 4, Gathering Resources, describes how to gather all the resources (assets)
needed for Canyon Bunny, including graphics, audio files, level data, and so on. We
will also find out how to load, track, and organize assets efficiently. Finally, it is time
to think about how level data is going to be handled so that we are able to populate
our game world with objects.

Chapter 5, Making a Scene, will implement the game objects such as rocks, mountains,
and clouds. We will put the new code into action using a level loader. We will also
add a Graphical User Interface (GUI) to the game scene to show the player's score,
extra lives and frames per second to measure the games performance.

Chapter 6, Adding the Actors, explains how to add the remaining game objects for
Canyon Bunny, including the player character and collectible items to complete
our game. We will also add simple physics for player movement and basic collision
detection. Additionally, the game logic will be extended so that it is able to detect the
"life lost" and "game over" conditions.

Chapter 7, Menus and Options, describes how to create a menu system with widgets
such as buttons, labels, and checkboxes to enrich the overall game experience.
Furthermore, we will add an Options window where the player can adjust the
game settings.

Chapter 8, Special Effects, covers how to make use of particle systems and how to
apply interpolation algorithms to create impressive effects such as dust clouds, a
smooth, following camera, floating rocks, and parallax scrolling for mountains in the
background. Using special effects will spice up the appearance of your game.

Preface

[3]

Chapter 9, Screen Transitions, introduces screen transitions. We will dive into
enhanced visual effects using OpenGL's Framebuffer Objects for off-screen rendering
into video memory. This will allow us to create seamless transitions for an improved
user experience while switching from one screen to another. For Canyon Bunny, we
will create a variety of transition effects.

Chapter 10, Managing the Music and Sound Effects, will walk you through a list of
recommended sound generators and discuss their differences. Then, we will take
a look at the LibGDX's Audio API and demonstrate how to use it by creating an
audio manager. We do this so that handling our entire audio playback needs
become a breeze.

Chapter 11, Advanced Programming Techniques, introduces you to some advanced
programming techniques that will guide you to the next level of game programming.
We will build basic knowledge about the Box2D API that enables us to create
believable physics simulations in games. Additionally, we will discuss the topic of
shader programs with the example of a monochrome image filter effect. Lastly, we
will show you how to make use of the accelerometer hardware that is commonly
available in modern smartphones and tablets, which allows controlling the game by
tilting the device.

Chapter 12, Animations, explains how to polish the game by adding animations. In
this chapter, we will cover two different approaches to animate the game menu and
the game world. Finally, we will implement a state machine to allow event-based
animations for the player character.

Chapter 13, Basic 3D Programming, introduces the new LibGDX's 3D API. You will
learn how to use the 3D API to create basic models such as sphere, cube, cylinder,
and so on, and load models exported from modeling software such as Blender. You
will also learn about ray picking, an important concept used to develop first person
shooter games.

Chapter 14, Bullet Physics, will walk you through the basics of 3D physics using Bullet.
Finally, we will create a simple application to simulate physics using Bullet.

What you need for this book
LibGDX is a cross-platform game development framework. For development, you
will need a computer running either Windows (Vista/7/8), Linux (for example,
Ubuntu), or Mac OS X (10.9+).

Preface

[4]

Additionally, you will need to download the LibGDX framework for game
development. You can download LibGDX from http://libgdx.badlogicgames.
com/releases/. Download the version 0.1.2 of LibGDX as this is the version that is
used in this book.

The Integrated Development Environment (IDE) used in this book is Eclipse. You
can download the Eclipse IDE from http://www.eclipse.org/.

To develop games for the Android platform, you will need an Android device
running Android 2.2 (Froyo) or higher, supporting OpenGL ES 2.0, and the official
Android Software Development Kit (SDK) that can be downloaded from http://
developer.android.com/sdk/index.html.

To develop games for an iOS platform, you will need Mac OS X (10.9+) and an
iOS device.

Who this book is for
This book is written for software developers who are new to game development and
to LibGDX in particular. It is assumed that you have some experience in Java to be
able to follow the discussed code in this book.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The starter class for iOS application is RobovmLauncher.java."

A block of code is set as follows:

prefs.putInteger("sound_volume", 100); // volume @ 100%
prefs.flush();

Preface

[5]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

package com.packtpub.libgdx.demo;
import com.badlogic.gdx.backends.lwjgl.LwjglApplication;
import com.badlogic.gdx.backends.lwjgl.LwjglApplicationConfiguration;
public class Main {
public static void main(String[] args) {

LwjglApplicationConfiguration cfg = new
LwjglApplicationConfiguration();
cfg.title = "demo";
cfg.width = 480;
cfg.height = 320;
new LwjglApplication(new MyDemo(), cfg);
 }
}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "You can
quickly check this by going to the Project menu."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[6]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from: https://www.packtpub.com/sites/
default/files/downloads/4775OS_ColoredImages.pdf

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Preface

[7]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Introduction to LibGDX and
Project Setup

This book will take you on an exciting tour to show and teach you about game
development using the open source LibGDX framework. Actually, you have chosen
just the right time to read about game development as the game industry is in a
remarkable state of change. With the advent of increasingly powerful smartphones
and tablets as well as the ever-growing application stores for desktop computers
and mobile platforms serving millions of users a day, it has never been easier for
Independent Game Developers (also known as Indies) to enter the market with
virtually no risks and very low budgets.

In this chapter, you will learn about what LibGDX is and the advantages that it
provides when developing your own games. You will also get a brief overview of the
feature set that LibGDX provides.

Before you can start developing games with LibGDX, you have to install and set up
your development environment accordingly. You will be using the freely available and
open source software Eclipse as your Integrated Development Environment (IDE) to
set up a basic project that uses LibGDX. It will feature a runnable example application
for every currently supported target platform. These platforms are as follows:

• Windows
• Linux
• Mac OS X
• Android (2.2+)
• iOS
• HTML5 (using JavaScript and WebGL)

Introduction to LibGDX and Project Setup

[10]

The target platforms, namely, Windows, Linux, and Mac OS X will
from now on be referred to as desktop and also share a project in
our development environment.

You are going to explore what a game needs by looking at it from a technical
standpoint, and why it is so important to plan a game project before the
development starts.

At the end of this chapter, you will be introduced to the game project that is going to
be developed and enhanced throughout this book.

Diving into LibGDX
LibGDX is an open source, cross-platform development framework, which is
designed mainly, but not exclusively, to create games using the Java programming
language. Besides Java, LibGDX also makes heavy use of the C programming
language for performance-critical tasks to incorporate other C-based libraries and to
enable cross-platform capabilities. Moreover, the framework abstracts the complex
nature of all its supported target platforms by combining them into one common
Application Programming Interface (API). One of the highlights of LibGDX is
the ability to run and debug your code on the desktop as a native application. This
enables you to use very comfortable functions of the Java Virtual Machine (JVM),
such as Code Hot Swapping, which in turn lets you immediately see the effect of
your changed code at runtime. Therefore, it will significantly reduce your time to
iterate through different ideas or even to find and fix nasty bugs more quickly.

Another critical point is to understand that LibGDX is a framework and not a game
engine that usually comes with lots of tools, such as a full-blown level editor and a
completely predefined workflow. This might sound like a disadvantage at first, but
actually it turns out to be an advantage that enables you to freely define your own
workflow for each project. For example, LibGDX allows you to go low-level so you
could add your own OpenGL calls if that really became necessary at some point.
However, most of the time it should be sufficient enough to stay high-level and use
the already built-in functionalities of LibGDX to realize your ideas.

Chapter 1

[11]

Features of LibGDX 1.2.0
Since the release of LibGDX Version 0.1 back in March 2010, a lot of work has been
contributed in order to improve this library. The latest stable release of LibGDX is
Version 1.2.0 from June 2014, which we are going to use throughout this book.

Here is a list of features taken from the official website (http://libgdx.
badlogicgames.com/features.html).

Graphics
The graphic features are as follows:

• Render through OpenGL ES 2.0 on all platforms
• Custom OpenGL ES 2.0 bindings for Android 2.0 and higher versions
• Low-level OpenGL helpers:

 ° Vertex arrays and vertex buffer objects
 ° Meshes
 ° Textures
 ° Framebuffer objects (GLES 2.0 only)
 ° Shaders, integrating easily with meshes
 ° Immediate mode rendering emulation
 ° Simple shape rendering
 ° Automatic software or hardware mipmap generation
 ° ETC1 support (not available in JavaScript backend)
 ° Automatic handling of OpenGL ES context loss that restores all

textures, shaders, and other OpenGL resources

• High-level 2D APIs:
 ° Custom CPU side bitmap manipulation library
 ° Orthographic camera
 ° High-performance sprite batching and caching
 ° Texture atlases with whitespace stripping support, which are either

generated offline or online

http://libgdx.badlogicgames.com/features.html
http://libgdx.badlogicgames.com/features.html

Introduction to LibGDX and Project Setup

[12]

 ° Bitmap fonts (does not support complex scripts such as Arabic or
Chinese), which are either generated offline or loaded from
TTF files (unsupported in JavaScript backend)

 ° 2D particle system
 ° TMX tile map support
 ° 2D scene-graph API
 ° 2D UI library, based on the scene-graph API, fully skinable

• High-level 3D APIs:
 ° Perspective camera
 ° Decal batching for 3D billboards or particle systems
 ° Basic loaders for Wavefront OBJ and MD5
 ° 3D rendering API with materials and lighting system and support to

load FBX models via fbx-conv

Audio
The following are the audio features:

• Streaming music and sound effect playback for WAV, MP3, and OGG
• Direct access to audio device for PCM sample playback and recording

(unsupported in JavaScript backend)

Input handling
The various input features are as follows:

• Using abstractions for mouse and touchscreen, keyboard, accelerometer,
and compass

• The gesture detector that detects taps, panning, flinging, and pinch zooming

File I/O and storage
The following are the features for the file I/O and storage:

• Filesystem abstraction for all platforms
• Read-only filesystem emulation for JavaScript backend
• Binary file support for JavaScript backend
• Preferences for lightweight setting storage

Chapter 1

[13]

Math and physics
The math and physics features for LibGDX are as follows:

• Matrix, vector, and quaternion classes. Matrix and vector operations are
accelerated via native C code where possible.

• Bounding shapes and volumes.
• Frustum class to pick and cull.
• Catmull-Rom splines.
• Common interpolators.
• Concave polygon triangulator.
• Intersection and overlap testing.
• JNI wrapper for Box2D physics. It is so awesome that other engines use it

as well.
• JNI wrapper for bullet physics.

Utilities
The different utilities in LibGDX are as follows:

• Custom collections with primitive support
• JSON writer and reader with POJO (de-)serialization support
• XML writer and reader

Tools
The following are the different tools in LibGDX:

• Particle editor
• Texture packer
• Bitmap font generator

Introduction to LibGDX and Project Setup

[14]

Getting in touch with the community
The LibGDX project enjoys a steadily growing and active community. If you ever
find yourself stuck with a problem and you just cannot figure out how to solve it,
check out the official forum at http://badlogicgames.com/forum/. There is a great
chance someone else has already asked your question and has even found a solution
with the help of the community. Otherwise, do not hesitate to ask your question on
the forums.

There is also an official IRC channel (#libgdx) on Freenode (https://freenode.
net/) where you can find some of the users and developers to talk about LibGDX.

If you want to read about the latest news on development of LibGDX, visit the blog
of Mario Zechner who is the founder of the LibGDX project, or follow him on Twitter
using the following links:

• LibGDX website (http://libgdx.badlogicgames.com/)
• Mario Zechner's blog (http://www.badlogicgames.com/) and the Twitter

link (http://www.twitter.com/badlogicgames/)

Also, check out the following links for more in-depth information:

• Wiki (https://github.com/libgdx/libgdx/wiki)
• API overview (http://libgdx.badlogicgames.com/nightlies/docs/api/)

Prerequisites to install and configure
LibGDX
Before you can start writing any application or game with LibGDX, you need to
download and install the library and some additional software.

To target Windows, Linux, Mac OS X, Android, and HTML5, you will need to install
the following software:

• Java Development Kit 7+ (JDK) (v6 will not work!).
• Eclipse (the Eclipse IDE for Java developers is usually sufficient).
• Android SDK; you only need the SDK, not the ADT bundle, which includes

Eclipse. Install all platforms via the SDK Manager.

http://badlogicgames.com/forum/
https://freenode.net/
https://freenode.net/
http://libgdx.badlogicgames.com/
http://www.badlogicgames.com/
http://www.twitter.com/badlogicgames/
https://github.com/libgdx/libgdx/wiki
http://libgdx.badlogicgames.com/nightlies/docs/api/

Chapter 1

[15]

• Android Development Tools for Eclipse, also known as ADT Plugin. Use this
updated site (https://dl-ssl.google.com/android/eclipse/).

• Eclipse Integration Gradle, use this updated site (http://dist.
springsource.com/release/TOOLS/gradle).

To additionally target iOS, you will also need:

• Mac, as iOS Development does not work on Windows/Linux, thanks
to Apple

• The latest Xcode, which you can get from the Mac OS X App Store for free
• The RoboVM plugin

Java Development Kit
Due to the fact that LibGDX is a framework based on Java, it is necessary to
download Java Development Kit (JDK). To install it, follow these steps:

1. The software is freely available on Oracle's website: http://www.oracle.
com/technetwork/java/javase/downloads/index.html.
Enter this address and you will see the following page:

https://dl-ssl.google.com/android/eclipse/
http://dist.springsource.com/release/TOOLS/gradle
http://dist.springsource.com/release/TOOLS/gradle
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Introduction to LibGDX and Project Setup

[16]

2. Click on the DOWNLOAD button to start downloading the latest JDK.

It is important to choose the JDK instead of the JRE package.
The reason is that the JDK package contains the Java
Runtime Environment (JRE) to run Java applications and
everything else that is required to develop them.

You will have to accept the license agreement and choose the version that is
appropriate for your platform. For example, if you are using a 64-bit version
of Windows, choose the download labeled as Windows x64. Here, we are
using the 32-bit version that is labeled window-i586:

Chapter 1

[17]

3. To install the JDK, simply run the downloaded installer file (for example,
jdk-8u5-windows-i586.exe) and follow the instructions on the screen:

4. On the welcome screen of the installer, click on Next to continue:

Introduction to LibGDX and Project Setup

[18]

5. Then, keep all the features selected to be installed, and click on Next again to
continue, as shown in the following screenshot:

6. Once the installation is complete, click on the Close button to exit
the installer.

Chapter 1

[19]

Eclipse – Integrated Development
Environment
The next step is to download and install Eclipse, a freely available and open source
Integrated Development Environment (IDE) in order to develop applications in
Java. Go to http://www.eclipse.org/downloads/ and choose Eclipse IDE for Java
Developers, as shown in the following screenshot, to download for the platform you
are using:

Once the download is finished, extract the archive to C:\eclipse\.

http://www.eclipse.org/downloads/

Introduction to LibGDX and Project Setup

[20]

Downloading LibGDX
Go to http://libgdx.badlogicgames.com/releases/ and choose the libgdx-
1.2.0.zip file to download LibGDX.

At the time of writing this book, the latest stable version
of LibGDX is 1.2.0. It is recommended to use the same
version while working with this book.

The following screenshot shows a list of all the available files:

In the meantime, create a new folder inside the root folder of your C drive with the
name libgdx. Once the download is finished, move the archive to C:\libgdx\.

http://libgdx.badlogicgames.com/releases/

Chapter 1

[21]

Installing Android SDK
The Android mobile OS is one of LibGDX's supported target platforms. Before you
can create Android applications, you have to download and install the Android SDK.

1. Go to http://developer.android.com/sdk/index.html and click on the
Download the stand-alone Android SDK Tools for Windows button, as
shown in the following screenshot. In case you are using an OS other than
Windows, you will have to scroll down a bit further, click on Download for
other platforms and choose the appropriate platform.

http://developer.android.com/sdk/index.html

Introduction to LibGDX and Project Setup

[22]

2. Once the download is finished, run the installer (for example, installer_
r22.0.4-windows.exe) and follow the instructions on the screen.

3. You will see the following screen when you try to install the Android SDK.
This is because the installer cannot find the JDK although you have already
installed it.

Chapter 1

[23]

4. You need to set the value of the environment variable JAVA_HOME to the
installation path of the JDK. To find the correct path, go to C:\Program
Files\Java\. You will see a folder starting with jdk. Take the full name of
this folder (here, it is jdk1.8.0_05) and append it to its path, as shown in the
following screenshot:

5. The complete path will now look like C:\Program Files\Java\jdk1.8.0_05.
Now you have to set the environment variable. Click on the Windows Start
button and right-click on Computer. Then click on Properties to open the
control panel system window, as shown in the following screenshot:

Introduction to LibGDX and Project Setup

[24]

6. Click on Advanced system settings on the left-hand side of the window, as
shown here:

7. The System Properties window will appear. Click on the Environment
Variables button:

Chapter 1

[25]

8. The Environment Variables window will appear. Click on the New button
(at the top) that corresponds to User variables for <USERNAME> (the
username in this case is andreas), as shown here:

9. A window with the title New User Variable will appear. Now, fill in the
two text fields. Enter JAVA_HOME in the Variable name field and the JDK's
path you found earlier in the Variable value field, as shown in the
following screenshot:

Great! Now your system is prepared for the Android SDK installer. Make
sure to exit the Android SDK installer if it is still running to let the change
take effect. You will be presented with the next screen after the installer
has restarted.

Introduction to LibGDX and Project Setup

[26]

10. Now, back in the Android SDK setup, click on Next to continue the
installation, as shown here:

11. The following screenshot will ask you to choose the users for which the
Android SDK should be installed. Usually, the suggested Install for
anyone using this computer selection is perfectly fine, so just click on
Next to continue.

Chapter 1

[27]

12. Now, choose the installation location on your computer. You can safely keep
the suggested location and click on Next to continue:

13. After this, you will be asked to choose a start menu folder. Again, you can
safely keep the suggestion and click on Install to start the installation process:

Introduction to LibGDX and Project Setup

[28]

14. After the installation is complete, click on Next to continue:

15. Once the installation is finished, you can choose to start the Android SDK
Manager. Leave the Start SDK Manager (to download system images, etc.)
checkbox enabled and click on Finish to start the manager:

Chapter 1

[29]

The Android SDK Manager enables you to download system images for the
specific API levels you want to develop applications for. For up-to-date and
detailed information about Android API levels, check out the link http://
developer.android.com/guide/topics/manifest/uses-sdk-element.
html#ApiLevels.

16. Now, choose at least Android 2.2 (API 8) and/or any other higher API
levels that you might need and click on the Install 7 packages button to
automatically download and install all the relevant files, as shown in the
following screenshot. The reason why we want to use at least API level 8 is
that the earlier versions before Android 2.2 do not support OpenGL ES 2.0,
which we will need in later chapters. Using a certain API level also allows
you to control the range of devices that you will be able to see and install on
your application via the Google Play Store.

17. Once the download and installation process is finished, close the Android
SDK Manager window.

http://developer.android.com/guide/topics/manifest/uses-sdk-element.html#ApiLevels
http://developer.android.com/guide/topics/manifest/uses-sdk-element.html#ApiLevels
http://developer.android.com/guide/topics/manifest/uses-sdk-element.html#ApiLevels

Introduction to LibGDX and Project Setup

[30]

Running Eclipse and installing plugins
Great! You are almost done setting everything up. The remaining steps involve
running Eclipse for the first time and installing important plugins, which are
required to develop applications for Android, iOS, and HTML5/GWT with Eclipse.

Open Windows Explorer, and go to the location where you extracted Eclipse (here,
C:\eclipse\), and simply run the program by double-clicking on the executable
called eclipse.

Eclipse will ask you to select a so-called workspace. This is the folder where all your
projects will be saved. We want to use the C:\libgdx\ folder we created a bit earlier:

Select the Use this as the default and do not ask again checkbox if you don't want to
see this dialog box every time you start Eclipse. To proceed, confirm the dialog box
by clicking on the OK button.

The first time Eclipse is started with a new workspace, it will greet you with a
welcome screen. Simply click on the small cross (x) of the Welcome tab to close it:

You should now see the standard view of Eclipse, which is also called the Java
Perspective. On the left-hand side, you can see the Package Explorer section, as
shown in the following screenshot. This is where you will see and manage your
different projects. This is all you need to know about Eclipse for the moment.

Chapter 1

[31]

If you have never worked with Eclipse before, it might seem quite overwhelming
with all these windows, toolbars, huge context menus, and so on. However, be rest
assured that all the steps will be discussed in detail as required to make it easy for
you to follow.

To install new plugins, go to the menu bar, and click on Help, and then click on
Install New Software. This will open the Install window, where you can type the
special repository URLs to browse for new plugins. Google provides a list of such
URLs at https://developers.google.com/eclipse/docs/getting_started. You
have to choose the correct URL that corresponds with your Eclipse installation.

At the time of writing this book, Eclipse 4.3.2 (Kepler) was the most current version
available. According to Google's website, the suggested URL for our version is
http://dl.google.com/eclipse/plugin/4.3.

https://developers.google.com/eclipse/docs/getting_started
http://dl.google.com/eclipse/plugin/4.3

Introduction to LibGDX and Project Setup

[32]

Type the URL in the text field that is labeled Work with and press return to let
Eclipse request a list of available downloads. Select everything in the list that is
shown in Developer Tools to add support for Android applications. Then, select
everything in Google Plugin for Eclipse (required) to install the required Eclipse
plugin. Lastly, select Google Web Toolkit SDK 2.5.1 in SDKs to add support for
HTML5/GWT applications and click on Next to continue:

Chapter 1

[33]

Now, click on Next to start the installation:

You will now be prompted to accept the terms of the license agreements by selecting
the I accept the terms of the license agreements option. You have to do this before
you can click on Finish to continue, as shown in the following screenshot:

Introduction to LibGDX and Project Setup

[34]

The download process should only take a couple of minutes, depending on the speed
of your network connection. When downloading is finished, Eclipse will show a
security warning that you are about to install unsigned content and wants to know
whether it should continue or abort. There is always a potential risk of installing
malicious software. However, in this case, the download is provided by Google, a well-
known company, which is trustworthy enough. Click on the OK button to accept the
warning and continue the installation, as shown in the following screenshot:

After the installation is finished, a final restart of Eclipse is required. Click on the Yes
button to confirm the restart:

Now, let's install the Gradle plugin for Eclipse so that we can import the project into
Eclipse via Gradle. For this, let's perform the previous steps again. Go to the Install
New Software option in the Help menu.

Chapter 1

[35]

Enter the URL http://dist.springsource.com/release/TOOLS/gradle in the
Work with field:

Select Gradle IDE under Extensions / Gradle Integration and click on Next.
Continue as you did while installing Eclipse plugins to finish the process.

Additionally, in order to enable the iOS development, you need to install the
RoboVM plugin in Eclipse. RoboVM for Eclipse integrates the RoboVM AOT (ahead-
of-time) compiler with the Eclipse Java IDE. With this plugin, you will be able to
develop native iOS apps in Java and launch them on the iOS simulator and iOS
devices from within Eclipse.

Introduction to LibGDX and Project Setup

[36]

To execute an application using RoboVM as backend, you need a Mac
with Mac OS X 10.9 or higher version with Xcode 5.0 or higher version
installed. However, you can construct the project in Windows and later
copy it to Mac for execution.

To download and install the latest RoboVM plugin, we will perform the same steps
that we did to install Eclipse plugins earlier. Go to the Install New Software option
in the Help menu.

Enter the URL http://download.robovm.org/eclipse/ and continue, as shown in
the following screenshot:

The latest RoboVM release while writing the book was v0.0.13.

Congratulations! You have just finished the installation of everything that you will
need to develop and build your own games with LibGDX.

Chapter 1

[37]

Creating a new application
The next step is to create a new application. Usually, you would have to create
several projects in Eclipse: one project for the shared game code, another one for the
desktop launcher, and more for the Android, iOS, and HTML5/GWT launchers.
Furthermore, the projects would also have to be configured and linked together in
a certain way. This is quite a time-consuming task and more or less an error-prone
process for inexperienced users.

Luckily, LibGDX provides tools to generate preconfigured projects for a new
application that can be directly imported into Eclipse. There are two tools to create a
LibGDX project, the latest one is using Gradle, and the old project setup tool written
by Aurelien Ribon. First, we will learn about the old setup tool and then about the
Gradle setup tool.

Using the old setup tool
The old project setup tool is an executable JAR file called gdx-setup-ui.jar.

Step 1

You can download the old setup tool from https://github.com/libgdx/libgdx-
old-setup-ui, as shown here:

https://github.com/libgdx/libgdx-old-setup-ui
https://github.com/libgdx/libgdx-old-setup-ui

Introduction to LibGDX and Project Setup

[38]

Step 2

To run the tool, double-click on the gdx-setup-ui file. When the program starts,
click on the big Create button:

Step 3

In the next window, you will see a box labeled CONFIGURATION on the left-hand
side. Here, you can configure what the tool will generate.

Enter demo in the Name field, which defines a common project name for your
application. Each launcher project will add its own suffix to it, such as -desktop,
-android, or -html. A preview of the outcome is shown in the OVERVIEW box on
the right-hand side of the window.

The Package field defines the name of your Java package. This needs to be a unique
identifier written in lowercase, which is usually derived from a reversed domain
name. You do not have to own a domain name nor does it have to really exist, but it
helps in choosing nonconflicting namespaces for Java applications. This is especially
important on Android, as identical package names for two separate applications
would mean that the already installed application is going to be overwritten by the
second one while trying to install it. For this demo application, use com.packtpub.
libgdx.demo as the package name for now.

The Game class field defines the name of the main class in the shared game code
project. Enter MyDemo as the game class name.

Chapter 1

[39]

The Destination field defines the destination folder where all the projects will
be generated. Click on the blue folder button (just next to the field) and set the
destination folder to C:\libgdx\.

In another box called LIBRARY SELECTION, the status of required libraries is
shown. If there is any item listed in red, it needs to be fixed before any project can be
generated. You will see LibGDX being listed in red in the Required section. Click on
the blue folder icon next to it:

Step 4

Then, choose the downloaded archive file libgdx-1.2.0.zip from C:\libgdx\ and
click on Open, as shown in the following screenshot:

Introduction to LibGDX and Project Setup

[40]

Step 5

The text color of the LibGDX label should have changed from red to green by now.
Click on the Open the generation screen button to continue:

Step 6

Next, click on the Launch! button to generate all the projects, as shown here:

Chapter 1

[41]

Step 7

All done! You can now go to Eclipse and start importing the generated projects into
your workspace. To do this, simply navigate to the Import option in the File menu.

Step 8

In the Import dialog box, open the General category, select Existing Projects into
Workspace, and click on the Next button, as shown here:

Introduction to LibGDX and Project Setup

[42]

Step 9

Click on the radio button Select root directory and enter C:\libgdx in the text field.
This is the directory where all your generated projects were created. You need to
confirm your text input by pressing the return key once. Eclipse will start to scan the
directory for your projects and list them. Leave all checkboxes selected and click on
the Finish button, as shown in the following screenshot:

Chapter 1

[43]

Step 10

Eclipse will automatically try to build (compile) all the four newly imported projects
in your workspace and probably fail. There are two issues that need to be resolved
manually after the import. The first one is reported directly to the Console window
in Eclipse. It complains about being unable to resolve the target android-15, as
shown in the following screenshot:

You have to open the project properties of the demo-android project. First, select
it in the Package Explorer box on the left-hand side. Then, go to the menu bar and
navigate to Properties option in the Project menu:

Introduction to LibGDX and Project Setup

[44]

Step 11

The title of the window will say Properties for demo-android. If this is not the case,
close the window and make sure you have selected the correct project and try again.
Next, select Android from the list on the left-hand side. You will see a list of targets
that are available on your system. Select Android 2.2, which uses API level 8, and
click on the OK button, as shown here:

Step 12

Eclipse will recognize the change and successfully build the Android project
this time.

The second issue requires you to click on the Problems tab in Eclipse. Open the
Errors list and right-click on the reported problem, which will say The GWT SDK
JAR gwt-servlet.jar is missing in the WEB-INF/lib directory. Choose Quick Fix
from the context menu, as shown in the following screenshot:

Chapter 1

[45]

Step 13

In the Quick Fix dialog box, select Synchronize <WAR>/WEB-INF/lib with SDK
libraries as the desired fix and click on the Finish button, as shown here:

Introduction to LibGDX and Project Setup

[46]

The two issues will be solved by now, which means that all the projects are now
automatically built without failure and can be compiled.

Though the steps to create a project using gdx-setup-ui might
seem difficult, actually it's very easy. In our book, we will generate
the project setup for our first game using this setup tool, and later in
Chapter 14, Bullet Physics, we will use the Gradle-based tool to generate
the project, thereby mastering the two technologies.

Using the Gradle-based setup
For the first game, we will use the projects generated using the old setup tool;
however, read this section and understand how it works, so that we can use it later
in Chapter 14, Bullet Physics.

You can download the gdx-setup.jar file from http://libgdx.badlogicgames.
com/download.html and then click on Download Setup App, as shown in the
following screenshot:

http://libgdx.badlogicgames.com/download.html
http://libgdx.badlogicgames.com/download.html

Chapter 1

[47]

However, we have already downloaded the libgdx-1.2.0.zip file, which contains
gdx-setup.jar; hence, we will extract gdx-setup from the archive. To run the tool,
double-click on gdx-setup to get the following screenshot:

The Name, Package, Game Class, and Destination fields are the same that we
learned for the old project setup tool.

The Android SDK field defines the path to where you have installed your android
sdk. Click on the Browse button and set it to the android sdk folder. Here, it's C:\
Program Files\Android\android-sdk.

We will now select Release 1.2.0 from the drop-down list in the Libgdx Version
field. Next under the Sub Projects tab, you can select the hardware platforms that
you want to support. Here, we select all four, namely, Desktop, Android, Ios,
and Html.

Introduction to LibGDX and Project Setup

[48]

Finally, you can select the extensions (for example, box2d, physics bullet, and so
on) to be included in your app. Some might not work on all the platforms for which
you'll get a warning. For the demo, we don't need any extensions, hence ignore
this part.

Once chosen and created, you will have to add new hardware
platforms or extensions manually. For manually adding
dependencies, visit https://github.com/libgdx/libgdx/
wiki/Dependency-management-with-Gradle.

Now, click on the Advanced button, enable Eclipse, and then click on Save, as
shown in the following screenshot:

Now that we have set everything, click on Generate.

The gdx-setup option will prompt you to download and install the
latest SDK platform and build tools. Just ignore this. While writing the
book, the SDK platform was 19 and build tools were 19.0.3.

It will take a while to download and generate the projects. Make sure that you are
connected to the Internet. Finally, it will display BUILD SUCCESSFUL like this:

https://github.com/libgdx/libgdx/wiki/Dependency-management-with-Gradle
https://github.com/libgdx/libgdx/wiki/Dependency-management-with-Gradle

Chapter 1

[49]

This means you are now ready to import the project into your IDE, run, debug, and
package it! All done! You can now go to Eclipse and start importing the generated
projects into your workspace.

You can import projects to Eclipse as in the old project setup by following Step 7 to
Step 9. However, in order to access the features of the Gradle plugin, you need to
import it quite differently. Navigate to the Import option in the File menu. In the
Import dialog box, select the Gradle Project subfolder from the Gradle folder, as
shown in the following screenshot:

Introduction to LibGDX and Project Setup

[50]

Now in the Import Gradle Project window, click on Browse and select the folder
where you created the demo project. Here, it's C:\libgdx. Then, click on the
Build Model button:

Chapter 1

[51]

It will take a while to build the project. After this, select the different projects and
click on Finish, as shown in the following screenshot:

All done! After importing, change the API level of Android to 8 by following
Step 10 and Step 11 from the old project setup.

Introduction to LibGDX and Project Setup

[52]

gdx-setup versus gdx-setup-ui
Before entering into the game, let's make a quite distinction between the two project
setup tools. Why choose one over the other?

There is no doubt that the Gradle-based setup tool is the best. One of the biggest
advantages of using Gradle is the dependency management system. The dependency
management system is quick, simple, efficient, and easy. If you are developing a
simple project without any extensions such as Box2d, you might use the old setup
tool; however, if you are developing a multi-platform project, which might be
updated soon, then you can use the Gradle-based setup tool.

The projects generated using Gradle and the old setup tool have some minor naming
differences that are illustrated in the following figure:

Chapter 1

[53]

The Java classes shown in the preceding figure are starter classes; we will learn about
them in the next chapter. Although the names for projects, packages, and classes
generated by the two tools are slightly different, other aspects of the projects such as
the assets folder, manifest files, and project wiring are the same.

All the chapters in this book will be explained based on the projects
generated from the old setup tool. However, understanding projects
generated from Gradle is very easy because the names are easily
comparable.
The old setup tool (gdx-setup-ui) is now not encouraged by LibGDX
and it might be phased out later; however, it is included in this book
because it will be useful for smaller projects.

You can also see that the projects generated and organized under the C:\libgdx
path are different for both tools. The old setup tool (gdx-setup-ui) creates all the
five projects in the respective folders, as shown in the following screenshot:

Introduction to LibGDX and Project Setup

[54]

However, the Gradle-based tool (gdx-setup) creates a lot file, as shown here:

Observe that our projects are named core, android, desktop, html, and ios.
Additionally, take a note of the build.gradle file. This file is important because
this is the file you need to edit in order to add more dependencies (such as hardware
platform) or new extensions (such as Box2D or Bullet).

Kicking your game to life
Let's take a moment to discuss what a game basically consists of. From a very
high-level point of view, a game can be split up into two parts: game assets and
game logic.

Chapter 1

[55]

Game assets include everything that is going to be used as a kind of working
material in your game, such as images, sound effects, background music, and
level data.

Game logic is responsible for keeping track of the current game state and to only
allow a defined set of state transitions. These states will change a lot over time due
to the events triggered either by the player or by the game logic itself. For example,
when a player presses a button, picks up an item, or an enemy hits the player, the
game logic will decide the appropriate action to be taken. All this is better known
as gameplay. It constrains the ways of action in which a player can interact with the
game world, and also how the game world would react to the player's actions.

To give you a better idea of this, take a look at the following diagram:

Start

Initialization

Game Logic

loop until
game ends

Update Game World Model
(Time-based using delta times)

Render Game World

Termination

Handle
network

Handle
sensors:

Handle input:
keyboard,
mouse, touch

The very first step is to initialize the game, that is, loading assets into memory,
creating the initial state of the game world, and registering with a couple of
subsystems, such as input handlers for keyboard, mouse and touch input, audio for
playback and recording, sensors, and network communication.

Introduction to LibGDX and Project Setup

[56]

When everything is up and running, the game logic is ready to take over and will
loop for the rest of the time until the game ends and will then be terminated. This
kind of looping is also referred to as the game loop. Inside the game loop, the game
logic accumulates all (new) data it is interested in and updates the game-world
model accordingly.

It is very important to consider the speed at which updates will occur in the game
world. Currently, the game will just run at the maximum speed of the available
hardware. In most cases, this is not a desirable effect because it makes your game
dependent on the processing power and the complexity of the scene to be rendered,
which will vary from computer to computer. This implies that your game world
will also progress at different speeds on different computers with an almost always
negative impact on the gameplay.

The key to tackle this issue is to use delta times in order to calculate the fractional
progress of the game world. The delta time is the real time between the last rendered
frame and current frame. Now, every update to the game world will occur in relation
to real time that is passed since the last frame was rendered. You will see how this
actually works with LibGDX in the later examples.

What you have just read was an overview of the basic concept to create games. Yes,
it is that simple! Frankly speaking, there is a lot more to learn before your application
becomes a real game. There are lots of topics and concepts waiting to be discovered
in this book. For instance, you will need to understand how to use and manage
different images in an efficient manner. Efficiency becomes even more important if
you plan to target mobile devices such as Android or iOS smartphones, where the
available resources are constantly scarce.

Key to success lies in planning
Great! Now you have your development environment set up and a basic
understanding of what a game is and what it might need. It appears to be a good
idea to dedicate some additional time to think about your first game project and
create a plan for it. In general, planning your game projects is what you should
always do in the first place before any actual work is done. For novice game
developers, it might be very tempting to skip this planning phase, which admittedly
is a lot more fun in the beginning, but this approach is very likely to fall short in the
long run. You will need some sort of outline of what you want to achieve. It does not
have to be a very long and detailed description.

Chapter 1

[57]

A simple and brief feature list of your design goals will do just fine for this purpose.
The reason behind this is that you will make yourself aware of each single feature
that is a part of your game. In addition, this list will also serve you as a great tool to
measure and compare your progress in the game during the development phase.
Bear in mind that game development is a very dynamic and iterative process.
Although, you should try to adhere to your list of design goals for most of the time,
there should always be room to adapt to shifting requirements. Just keep in mind
that adhering to the list will make sure that you are going to push development in
the right direction. Conversely, it will let you focus on the important parts first, while
also protecting you from running out of time and taking too many detours, which
prevents you from reaching the finish line due to unclear goals.

Game project – Canyon Bunny
To make this guide both easy and fun to read, it makes perfect sense to show
you how to plan and develop a whole game project throughout this book. As we
now know, planning should be the first step to take on the journey of any new
game project.

So, let's begin with the outline:

• The name or working title for the game will be Canyon Bunny
• The genre will be 2D side-scrolling jump and run
• The list of actors are as follows:

 ° The player character (can jump and move forward and will be
controlled by the player)

 ° Rocks will be serving as platforms for the player character and items
 ° Canyons in the background (for level decoration)
 ° Clouds in the sky (for level decoration)
 ° Water at the bottom of the level (which will be deadly for the

player character)
 ° Collectible items (such as gold coins and feather power-up) for

the player

Next, it is always helpful to write down some supporting text to further describe the
overall behavior of the game, and how the features should be implemented.

Introduction to LibGDX and Project Setup

[58]

Description of the game
The game world is presented in a 2D-side view to the player. The view will scroll
horizontally to the right-hand side when the player character moves forward. The
background shows distant canyons and clouds in the sky. The bottom of the level is
filled with water and will instantly kill the player character if both get in touch with
each other.

The player character will move on and jump over to random rocks, sticking out of the
water. The width and height will be different to make the game more challenging. The
player is only in control of a jump button, which will keep the automatically forward-
moving player character from falling down into the deadly water.

The level will be randomly populated with collectible items consisting of gold coins
and feather power-ups. Collecting the gold coins will increase the player's high score.
The feather power-up grants the player character the ability to fly for a limited time
and can be used by repeatedly pressing the jump button. The player's goal is to beat
the last high score.

As a picture is worth a thousand words, creating a sketch based on our outline can
help us even more to get a better idea of the resulting game. Moreover, changing a
sketch is usually a lot easier than having to change (complex) game code. So, you really
want to keep it very simple; just grab your pen and paper and start to draw. If you feel
lucky or have some time to spend, you can do something more elaborate, of course.

Here is a mock-up for Canyon Bunny:

Chapter 1

[59]

The previous mock-up has been created entirely by using vector graphics. Using
vector graphics in favor of raster graphics for your sketches can be an advantage as
they are infinitely scalable to any size without losing the image quality. However,
the final graphics used in games are almost, always, rasterized graphics, simply
because vector graphics are costly to render in real time. So, the common approach is
to create vector graphics and later on export them choosing an appropriate rasterized
graphics file format, such as Portable Network Graphics (PNG) for lossless
compression with alpha channel support, or Joint Photographic Experts Group
(JPEG) for lossy but high compression without alpha channel support.

For more details, check out the following Wikipedia articles:

• For information on raster graphics, visit http://en.wikipedia.org/wiki/
Raster_graphics

• For information on vector graphics, visit http://en.wikipedia.org/wiki/
Vector_graphics

• For information on PNG file format, visit http://en.wikipedia.org/
wiki/.png

• For information on JPEG file format, visit http://en.wikipedia.org/
wiki/.jpg

There is a free and open source tool called Inkscape similar to Adobe Illustrator.
It allows you to easily create your own drawings as vector graphics and is available
for Windows, Linux, and Mac OS X. Check out the project's website http://
inkscape.org/.

Summary
We learned a lot about LibGDX in this chapter and all the other bits and bobs to
prepare your system for multi-platform game development, specifically on the
following points:

• We discussed every step in great detail to successfully download, install,
and configure all the required software components: JDK, Eclipse, LibGDX,
Android SDK, and additional Eclipse plugins for Android, HTML5/GWT,
and RoboVM.

• We learned how to use the project setup tool that comes with LibGDX to
easily generate all the required Eclipse projects for a new application and
how to import them. We also learned what a game needs to come alive.

http://en.wikipedia.org/wiki/Raster_graphics
http://en.wikipedia.org/wiki/Raster_graphics
http://en.wikipedia.org/wiki/Vector_graphics
http://en.wikipedia.org/wiki/Vector_graphics
http://en.wikipedia.org/wiki/.png
http://en.wikipedia.org/wiki/.png
http://en.wikipedia.org/wiki/.jpg
http://en.wikipedia.org/wiki/.jpg
http://inkscape.org/
http://inkscape.org/

Introduction to LibGDX and Project Setup

[60]

• We found out why planning game projects is so important.
• We also saw how to plan a game project by writing an outline.

In Chapter 2, Cross-platform Development – Build Once, Deploy Anywhere, we will learn
more about how to deploy and run a LibGDX application on all supported target
platforms. Building on this knowledge, we will finally jump to the first code examples
where the magic happens and take a closer look at it to find out how it works.

Cross-platform Development
– Build Once, Deploy

Anywhere
In this chapter, you will learn more about the generated Eclipse projects and
how they work together. Also, you will learn the following components of the
LibGDX framework:

• Backends
• Modules
• Application life cycle and interface
• Starter classes

At the end of this chapter, you will take a closer look at the demo application and
inspect the generated code of the Main class in great detail. You will learn how to
set breakpoints, run the application in the debug mode, and speed up your overall
productivity with the awesome JVM Code Hot Swapping feature. The discussion
on the demo application ends with some simple and fun modifications to the code
accompanied by a demonstration of the JVM Code Hot Swapping feature.

After completing this chapter, you will be able to deploy, run, and debug the demo
application from Chapter 1, Introduction to LibGDX and Project Setup, on a desktop
(including Windows, Linux, and Mac OS X), on Android, iOS, and in a WebGL-
capable web browser such as Google Chrome.

Cross-platform Development – Build Once, Deploy Anywhere

[62]

The demo application – how the projects
work together
In Chapter 1, Introduction to LibGDX and Project Setup, we successfully created our
demo application, but we did not look at how all the Eclipse projects work together.
Take a look at the following figure to understand and familiarize yourself with the
configuration pattern that all your LibGDX applications will have in common:

What you see here is a compact view of four projects. The demo project to the very
left contains the shared code that is referenced (added to the build path) by all other
platform-specific projects. The main class of the demo application is MyDemo.java.
However, there is a different main class where an application gets started by the
operating system, which will be referred to as starter classes from now on. Notice
that LibGDX uses the term starter class to distinguish between these two types of
main classes in order to avoid confusion. We will cover everything related to the
topic of starter classes later.

While taking a closer look at all these directories in the preceding figure, you might
have spotted that there are two assets folders: one in the demo-desktop project and
another in the demo-android project. This brings us to the question, where should
we put all the application's assets? The demo-android project plays a special role
in this case. In the preceding screenshot, you can see a subfolder called data, which
contains an image named libgdx.png. This image also appears in the demo-desktop
project in the same place.

Chapter 2

[63]

Just remember to always put all your assets into the assets folder under
the demo-android project. The reason behind this is that the Android
build process requires direct access to the application's assets folder.
During its build process, a Java source file, R.java, will be automatically
generated under the gen folder. It contains special information for
Android about the available assets. It will be the usual way to access
assets through the Java code if you were explicitly writing an Android
application. However, in LibGDX, you will want to stay independent of
the platform as much as possible and access any resource such as assets
only through the methods provided by LibGDX. You will learn more
about accessing resources in the last section of this chapter.

You might wonder how other platform-specific projects will be able to access the
very same assets without having to maintain several copies per project. Needless to
say this would require you to keep all copies manually synchronized each time the
assets change.

Luckily, this problem has already been taken care of by the generator. The demo-
desktop project uses a linked resource—a feature by Eclipse—to add existing files
or folders to other places in a workspace. You can check this out by right-clicking on
the demo-desktop project, navigating to Properties | Resource | Linked Resources,
and then clicking on the Linked Resources tab.

The demo-html project requires another approach as Google Web Toolkit (GWT)
has a different build process compared to other projects. There is a special file called
GwtDefinition.gwt.xml that allows you to set the asset path by setting the gdx.
assetpath configuration property to the assets folder of the Android project. Notice
that it is good practice to use relative paths such as ../ android/assets so that the
reference does not get broken if the workspace is moved from its original location.
Take this advice as a precaution to protect you and your fellow developers from
wasting precious time on something that can be easily avoided by using the right
setup, right from the beginning.

The following is the code listing for GwtDefinition.gwt.xml from demo-html:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE module PUBLIC "-//Google Inc.//DTD Google Web Toolkit
trunk//EN" "http://google-web-toolkit.googlecode.com/svn/trunk/
distro-source/core/src/gwt-module.dtd">
<module>

Cross-platform Development – Build Once, Deploy Anywhere

[64]

 <inherits name='com.badlogic.gdx.backends.gdx_backends_gwt' />
 <inherits name='MyDemo' />
 <entry-point
 class='com.packtpub.libgdx.demo.client.GwtLauncher'
 />
 <set-configuration-property name="gdx.assetpath"
 value="../ android/assets" />
</module>

Similar to the demo-html project, the demo-robovm project has a special file called
robovm.xml that saves the path to the assets folder in demo-android. Notice the
<directory> key under <resources>, where the relative path to the assets folder
is set. However, this is not the end of resource setting for demo-robovm. In iOS
projects, there will be some resources specific to iOS, such as icons and default splash
images. You don't want to put this in your Android assets folder. So, put this in the
folder named data in your demo-robovm project. The path of the folder is also linked
in the robovm.xml file under <resources>.

Unlike Android, iOS version needs specific names for icons to show
in respective devices. For example, Icon-72.png is the name for
the app icon on iPad. You can find specifics of the icon name and
size at https://developer.apple.com/library/iOs/qa/
qa1686/_index.html.

The following code snippet is taken from robovm.xml in our demo-robovm project:

<config>
 <executableName>${app.executable}</executableName>
 <mainClass>${app.mainclass}</mainClass>
 <os>ios</os>
 <arch>thumbv7</arch>
 <target>ios</target>
 <iosInfoPList>Info.plist.xml</iosInfoPList>
 <resources>
 <resource>
 <directory>../android/assets</directory>
 <includes>
 <include>**</include>
 </includes>
 <skipPngCrush>true</skipPngCrush>
 </resource>

https://developer.apple.com/library/iOs/qa/qa1686/_index.html
https://developer.apple.com/library/iOs/qa/qa1686/_index.html

Chapter 2

[65]

 <resource>
 <directory>data</directory>
 </resource>
 </resources>
 <forceLinkClasses>
 <pattern>com.badlogic.gdx.scenes.scene2d.ui.*</pattern>
 </forceLinkClasses>
 <libs>
 <lib>libs/ios/libgdx.a</lib>
 <lib>libs/ios/libObjectAL.a</lib>
 </libs>
 <frameworks>
 <framework>UIKit</framework>
 <framework>OpenGLES</framework>
 <framework>QuartzCore</framework>
 <framework>CoreGraphics</framework>
 <framework>OpenAL</framework>
 <framework>AudioToolbox</framework>
 <framework>AVFoundation</framework>
 </frameworks>
</config>

LibGDX backends
LibGDX makes use of several other libraries to interface the specifics of each platform
in order to provide cross-platform support for your applications. Generally, a backend
is what enables LibgGDX to access the corresponding platform functionalities when
one of the abstracted (platform-independent) LibGDX methods is called; for example,
drawing an image in the upper-left corner of the screen, playing a sound file at a
volume of 80 percent, or reading and writing from/to a file.

LibGDX currently provides the following four backends:

• Lightweight Java Game Library (LWJGL)
• Android
• JavaScript/WebGL
• iOS/RoboVM

Cross-platform Development – Build Once, Deploy Anywhere

[66]

Lightweight Java Game Library
Lightweight Java Game Library (LWJGL) is an open source Java library originally
started by Caspian Rychlik-Prince to ease game development in terms of accessing
the hardware resources on desktop systems. In LibGDX, LWJGL is used for the
desktop backend to support all the major desktop operating systems, such as
Windows, Linux, and Mac OS X.

For more details, check out the official LWJGL website http://www.lwjgl.org/.

Android
Google frequently releases and updates its official Android SDK. This represents the
foundation for LibGDX to support Android in the form of a backend.

There is an API guide available, which explains everything the Android SDK has to
offer to Android developers. You can find this at http://developer.android.com/
guide/components/index.html.

WebGL
The WebGL support is one of the latest additions to the LibGDX framework. This
backend uses the GWT to translate the Java code into JavaScript and SoundManager2
(SM2) among others in order to add a combined support for HTML5, WebGL, and
audio playback. Note that this backend requires a WebGL-capable web browser to
run the application.

The following are some useful links that will help you get a detailed description:

• Check out the official website of GWT at https://developers.google.
com/web-toolkit/

http://www.lwjgl.org/
http://developer.android.com/guide/components/index.html
http://developer.android.com/guide/components/index.html
https://developers.google.com/web-toolkit/
https://developers.google.com/web-toolkit/

Chapter 2

[67]

• Check out the official website of SM2 at http://www.schillmania.com/
projects/soundmanager2/

• Check out the official website of WebGL at http://www.khronos.org/webgl/
• There is also a list of unresolved issues at https://github.com/libgdx/

libgdx/blob/master/backends/gdx-backends-gwt/issues.txt that
you might want to check out

RoboVM (iOS backend)
The goal of the RoboVM open source project is to bring Java and other JVM
languages to iOS. RoboVM's ahead-of-time compiler translates the Java bytecode
into a native ARM or x86 machine code that runs directly on the target CPU without
being interpreted. The runtime is based on Android's runtime classes and includes a
Java to Objective-C bridge, which makes it easy to use the native Cocoa Touch APIs
from Java.

You can find more about RoboVM at http://www.robovm.com, and you can check
the currently working code at https://github.com/robovm/robovm.

LibGDX core modules
LibGDX provides six core modules that allow you to access various parts of the
system your application will run on. What makes these modules so great for you as a
developer is that they provide you with a single Application Programming Interface
(API) to achieve the same effect on more than just one platform. This is extremely
powerful because you can now focus on your own application and do not have to
bother with the specialties that each platform inevitably brings, including the nasty
little bugs that might require tricky workarounds. This is all going to be transparently
handled in a straightforward API, which is categorized into logic modules and is
globally available anywhere in your code as every module is accessible as a static
field in the Gdx class.

LibGDX allows you to create multiple code paths for per-platform
decisions. For example, you can increase the complexity of a desktop
game as desktops have a lot more computing power than mobile devices.

http://www.schillmania.com/projects/soundmanager2/
http://www.schillmania.com/projects/soundmanager2/
http://www.khronos.org/webgl/
https://github.com/libgdx/libgdx/blob/master/backends/gdx-backends-gwt/issues.txt
https://github.com/libgdx/libgdx/blob/master/backends/gdx-backends-gwt/issues.txt
http://www.robovm.com
https://github.com/robovm/robovm

Cross-platform Development – Build Once, Deploy Anywhere

[68]

The application module
The application module can be accessed through Gdx.app. It gives you access to the
logging facility, a method to shutdown gracefully, persist data, query the Android
API version, query the platform type, and query the memory usage.

Logging
LibGDX employs its own logging facility. You can choose a log level to filter what
should be printed to the platform's console. The default log level is LOG_INFO. You
can use a settings file and/or change the log level dynamically at runtime using the
following code:

Gdx.app.setLogLevel(Application.LOG_DEBUG);

The available log levels are as follows:

• LOG_NONE: This prints no logs and the logging is completely disabled
• LOG_ERROR: This prints error logs only
• LOG_INFO: This prints error and info logs
• LOG_DEBUG: This prints error, info, and debug logs

To write an info, debug, or error log to the console, use the following listings:

Gdx.app.log("MyDemoTag", "This is an info log.");
Gdx.app.debug("MyDemoTag", "This is a debug log.");
Gdx.app.error("MyDemoTag", "This is an error log.");

Shutting down gracefully
You can tell LibGDX to shut down the running application. The framework will then
stop the execution in the correct order as soon as possible and completely deallocate
any memory that is still in use, freeing both Java and the native heap. Use the
following listing to initiate a graceful shutdown of your application:

Gdx.app.exit();

You should always do a graceful shutdown when you want to terminate
your application. Otherwise, you will risk creating memory leaks, which
is a really bad thing. On mobile devices, memory leaks will probably
have the biggest negative impact due to their limited resources. Note
that in an Android device, it will call the pause() and dispose()
functions sometime later and won't immediately finish the application.

Chapter 2

[69]

Persisting data
If you want your data to persist after exit, you should use the Preferences class. It
is merely a dictionary or a hash map data type that stores multiple key-value pairs
in a file. LibGDX will create a new preferences file on the fly if it does not exist. You
can have several preference files using unique names in order to split up data into
categories. To get access to a preference file, you need to request a Preferences
instance by its filename as follows:

Preferences prefs = Gdx.app.getPreferences("settings.prefs");

To write a (new) value, you have to choose a key under which the value should be
stored. If this key already exists in a preferences file, it will be overwritten. Do not
forget to call flush() afterwards, as shown in the following code, to persist the
data, or else all the changes will be lost:

prefs.putInteger("sound_volume", 100); // volume @ 100%
prefs.flush();

Persisting data needs a lot more time than just modifying values in
memory (without flushing). Therefore, it is always better to modify as
many values as possible before a final flush() method is executed.

To read back a certain value from the preferences file, you need to know the
corresponding key. If this key does not exist, it will be set to the default value.
You can optionally pass your own default value as the second argument (for
example, in the following listing, 50 is the default sound volume):

int soundVolume = prefs.getInteger("sound_volume", 50);

Querying the Android API level
On Android, you can query the Android API level that allows you to handle things
differently for certain versions of the Android OS. Use the following listing to find
out the version:

Gdx.app.getVersion();

On platforms other than Android, the version returned is always 0.

Cross-platform Development – Build Once, Deploy Anywhere

[70]

Querying the platform type
You might want to write a platform-specific code where it is necessary to know
the current platform type. The following example shows how it can be done:

switch (Gdx.app.getType()) {
case Desktop:
 // Code for Desktop application
break;
case Android:
 // Code for Android application
break;
case WebGL:
 // Code for WebGL application
break;
case iOS:
 // Code for IOS application
break;
default:
 // Unhandled (new?) platform application
break;
}

Querying the memory usage
You can query the system to find out its current memory footprint of your
application. This might help you find excessive memory allocations that could
lead to application crashes. The following functions return the amount of memory
(in bytes) that is in use by the corresponding heap:

long memUsageJavaHeap = Gdx.app.getJavaHeap();
long memUsageNativeHeap = Gdx.app.getNativeHeap();

Multithreading
When our game is created, LibGDX creates a separate thread called the Main
loop thread and OpenGL context is attached to it. The entire event processing or
rendering happens within this thread and not in the UI thread. Hence to pass data
to the rendering thread from another thread, we use Application.postRunnable().
This will run the code in the Runnable function in the rendering thread in the next
frame, as shown in the following code:

 Gdx.app.postRunnable(new Runnable() {
 @Override
 public void run() {

Chapter 2

[71]

 //do something
 }
 });

The graphics module
The graphics module can be accessed either through Gdx.getGraphics() or using
the shortcut variable Gdx.graphics.

Querying delta time
Query LibGDX for the time span between the current and the last frame in seconds
by calling Gdx.graphics.getDeltaTime().

Querying display size
Query the device's display size returned in pixels by calling Gdx.graphics.
getWidth() and Gdx.graphics.getHeight().

Querying the frames per second (FPS) counter
Query a built-in frame counter provided by LibGDX to find the average number of
frames per second by calling Gdx.graphics.getFramesPerSecond().

The audio module
The audio module can be accessed either through Gdx.getAudio() or using the
shortcut variable Gdx.audio.

Sound playback
To load sounds for playback, call Gdx.audio.newSound().

The supported file formats are WAV, MP3, and OGC. However, for the iOS version,
OGG is not supported. There is an upper limit of 1 MB for the decoded audio data.
Consider the sounds to be short effects such as bullets or explosions so that the size
limitation is not really an issue.

Cross-platform Development – Build Once, Deploy Anywhere

[72]

Music streaming
To stream music for playback, call Gdx.audio.newMusic(). The supported file
formats are WAV, MP3, and OGG. However, the iOS version currently supports
the WAV and MP3 formats only.

The input module
The input module can be accessed either through Gdx.getInput() or using the
shortcut variable Gdx.input.

In order to receive and handle the input properly, you should always implement the
InputProcessor interface and set it as the global handler for the input in LibGDX
by calling Gdx.input.setInputProcessor().

Reading the keyboard/touch/mouse input
Query the system for the last x or y coordinate in the screen coordinates, where the
screen origin is at the top-left corner by calling either Gdx.input.getX() or Gdx.
input.getY(). The different conditions are as follows:

• To find out whether the screen is touched either by a finger or by mouse,
call Gdx.input.isTouched()

• To find out whether the mouse button is pressed, call Gdx.input.
isButtonPressed()

• To find out whether the keyboard key is pressed, call Gdx.input.
isKeyPressed()

Reading the accelerometer
Query the accelerometer for its value on the x axis by calling Gdx.input.
getAccelerometerX(). Replace X in the method's name with Y or Z to query the
other two axes. Be aware that there will be no accelerometer present on a desktop,
so LibGDX always returns 0.

Starting and canceling vibrator
On Android, you can let the device vibrate by calling Gdx.input.vibrate().
A running vibration can be canceled by calling Gdx.input.cancelVibrate().

Chapter 2

[73]

Catching Android's soft keys
You might want to catch Android's soft keys to add an extra handling code for them.
If you want to catch the back button, call Gdx.input.setCatchBackKey(true), and
if you want to catch the menu button, call Gdx.input.setCatchMenuKey(true).

On a desktop where you have a mouse pointer, you can tell LibGDX to catch it so that
you get a permanent mouse input without having the mouse ever leave the application
window. To catch the mouse cursor, call Gdx.input.setCursorCatched(true).

The files module
The files module can be accessed either through Gdx.getFiles() or using the
shortcut variable: Gdx.files.

Getting an internal file handle
You can get a file handle for an internal file by calling Gdx.files.internal().
An internal file is relative to the assets folder on the Android and WebGL
platforms. On a desktop, it is relative to the root folder of the application.

Getting an external file handle
You can get a file handle for an external file by calling Gdx.files.external().
An external file is relative to the SD card on the Android platform. On a
desktop, it is relative to the user's home folder. Note that this is not available
for WebGL applications.

The network module
The network module can be accessed either through Gdx.getNet() or using the
shortcut variable: Gdx.net.

HTTP requests
You can make HTTP requests by calling Gdx.net.sendHttpRequest() or cancel
them by calling Gdx.net.cancelHttpRequest().

Cross-platform Development – Build Once, Deploy Anywhere

[74]

Client/server sockets
You can create client/server sockets by calling either Gdx.net.newClientSocket()
or Gdx.net.newServerSocket().

Opening a URI in a web browser
To open a Uniform Resource Identifier (URI) in the default web browser, call Gdx.
net.openURI(URI).

LibGDX's application life cycle and
interface
The application life cycle in LibGDX is a well-defined set of distinct system states. The
list of these states is pretty short: create, resize, render, pause, resume, and dispose.

LibGDX defines an ApplicationListener interface that contains six methods, one
for each system state. The following code listing is a copy that is directly taken from
LibGDX's sources. For the sake of readability, all comments have been stripped:

public interface ApplicationListener {
public void create ();
public void resize (int width, int height);
public void render ();
public void pause ();
public void resume ();
public void dispose ();
}

All you need to do is implement these methods in your main class of the shared
game code project. LibGDX will then call each of these methods at the right time.

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 2

[75]

The following diagram visualizes the LibGDX's application life cycle:

Start

create()

resize()

check
platform

type

render()

resume()

resuming
resume event
Android only((

true

pause()

dispose()

end

terminating

running pausing
pause event
Android only

pause()
handle
system
events

Caused by:
Home Button was pressed
Incoming phone call

• Other app-interr ting eventsup

((

false

Note that a full and dotted line basically has the same meaning in the preceding
diagram. They both connect two consecutive states and have a direction of flow
indicated by a little arrowhead on one end of the line. A dotted line additionally
denotes a system event.

When an application starts, it will always begin with create(). This is where the
initialization of the application should happen, such as loading assets into memory
and creating an initial state of the game world. Subsequently, the next state that
follows is resize(). This is the first opportunity for an application to adjust itself to
the available display size (width and height) given in pixels.

Next, LibGDX will handle system events. If no event has occurred in the meanwhile,
it is assumed that the application is (still) running. The next state would be
render(). This is where a game application will mainly do the following two things:

• Update the game world model
• Draw the scene on the screen using the updated game world model

Afterwards, a decision is made on which the platform type is detected by LibGDX.
On a desktop or in a web browser, the displaying application window can be
virtually resized at any time. LibGDX compares the last and current sizes on every
cycle so that resize() is only called if the display size is changed. This makes sure
that the running application is able to accommodate a changed display size.

Cross-platform Development – Build Once, Deploy Anywhere

[76]

Now, the cycle starts over by handling (new) system events once again. Another
system event that can occur during runtime is the exit event. When it occurs, LibGDX
will first change to the pause() state, which is a very good place to save any data that
would be lost otherwise, after the application is terminated. Subsequently, LibGDX
changes to the dispose() state where an application should do its final cleanup to
free all the resources that it is still using.

This is also almost true for Android, except that pause() is an intermediate state
that is not directly followed by the dispose() state at first. Be aware that this event
might occur anytime during an application runtime when the user has pressed the
Home button or if there is an incoming phone call in the meanwhile. In fact, as long
as the Android operating system does not need the occupied memory of the paused
application, its state will not be changed to dispose(). Moreover, it is possible that
a paused application might receive a resume system event, which in this case would
change its state to resume(), and it would eventually arrive at the system event
handler again.

Starter classes
A starter class defines the entry point (starting point) of a LibGDX application.
It is specifically written for a certain platform. Usually, these kinds of classes are
very simple and mostly consist of not more than a few lines of code to set certain
parameters that apply to the corresponding platform. Think of them as a kind of
bootup sequence for each platform. Once booting is finished, the LibGDX framework
hands over control from the starter class (for example, the demo-desktop project) to
your shared application code (for example, the demo/demo-core project) by calling
different methods from the ApplicationListener interface that the MyDemo class
implements. Remember that the MyDemo class is where the shared application
code begins.

We will now take a look at each of the starter classes that were generated during
the project setup.

Running the demo application on a desktop
The starter class for the desktop application is called Main.java. The following
listing is Main.java from the demo-desktop project:

package com.packtpub.libgdx.demo;
import com.badlogic.gdx.backends.lwjgl.LwjglApplication;
import com.badlogic.gdx.backends.lwjgl.LwjglApplicationConfiguration;
public class Main {

Chapter 2

[77]

public static void main(String[] args) {

LwjglApplicationConfiguration cfg = new
LwjglApplicationConfiguration();
cfg.title = "demo";
cfg.width = 480;
cfg.height = 320;
new LwjglApplication(new MyDemo(), cfg);
 }
}

In the preceding code listing, you can see the Main class: a plain Java class without
the need to implement an interface or inherit from another class. Instead, a new
instance of the LwjglApplication class is created. This class provides a couple
of overloaded constructors to choose from. Here, we pass a new instance of the
MyDemo class as the first argument to the constructor. Optionally, an instance of
the LwjglApplicationConfiguration class can be passed as the second argument.
The configuration class allows you to set every parameter that is configurable for
a LibGDX desktop application. In this case, the window title is set to demo, and the
window's width and height is set to 480 by 320 pixels.

This is all you need to write and configure a starter class for a desktop project.
Let's try to run the application now. To do this, right-click on the demo-desktop
project in Project Explorer in Eclipse and then select the Java Application option
from the Run As menu. Eclipse might ask you to select the Main class when you
do this for the first time. Simply select the Main class, and also check whether the
correct package name (com.packtpub.libgdx.demo) is displayed next to it, as
shown in the following screenshot:

Cross-platform Development – Build Once, Deploy Anywhere

[78]

For those who use Gradle to set up the project, remember that the starter class of the
desktop project will be DesktopLauncher.java and the correct package name will
be com.packtpub.libgdx.demo.desktop.

The desktop application should now be up and running on your computer. If you
are working on Windows, you should see the following window:

For Gradle users, this image will be displayed:

Chapter 2

[79]

Running the demo application on Android
The starter class for the Android application is called MainActivity.java. For a
Gradle-based project, the starter class will be AndroidLauncher.java.

The following listing is MainActivity.java from demo-android:

package com.packtpub.libgdx.demo;
import android.os.Bundle;
import com.badlogic.gdx.backends.android.AndroidApplication;
import com.badlogic.gdx.backends.android.
AndroidApplicationConfiguration;
public class MainActivity extends AndroidApplication {
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
AndroidApplicationConfiguration cfg = new
AndroidApplicationConfiguration();
initialize(new MyDemo(), cfg);
 }
}

In the preceding code listing, you can see the MainActivity class that is inherited
from the AndroidApplication class. This is how LibGDX encapsulates tasks such as
creating a so-called activity that registers handlers to process touch input, read sensor
data, and much more. What is left to do for you is to create an instance of a class that
implements the ApplicationListener interface. In this case, it is an instance of the
MyDemo class. The instances of MyDemo and AndroidApplicationConfiguration are
passed as arguments to the initialize() method. If you are interested in the latest
development of Android hardware statistics, be sure to check out the Dashboards
section on the official Android developer website (http://developer.android.com/
about/dashboards/index.html#OpenGL).

http://developer.android.com/about/dashboards/index.html#OpenGL
http://developer.android.com/about/dashboards/index.html#OpenGL

Cross-platform Development – Build Once, Deploy Anywhere

[80]

The following screenshot of the OpenGL statistics was taken in May 2014 from the
preceding mentioned website:

Note that GLES 1.1 is nearly zero. So what's the big deal about GLES 2.0? A better
question to ask would be whether you plan to use shaders in your application. If
this is the case, opt for GLES 2.0.

LibGDX has now removed the support for GLES 1.0, so the default
OpenGL version is 2.0.

In any other case, there will be no real benefit except being able to use Non-Power-
Of-Two (NPOT) textures—arbitrarily sized textures that do not equal to widths or
heights representable by the formula 2^n, such as 32 x 32, 512 x 512, and 128 x 1024.

NPOT textures are not guaranteed to work on all devices. For example,
Nexus One ignores NPOT textures. Also, it might cause performance
penalties on some hardware, so it is best to avoid using this feature
at all. In Chapter 4, Gathering Resources, you will learn about a concept
called Texture Atlas. This will allow you to use arbitrarily sized
textures even when you are not using GLES2.

Chapter 2

[81]

Additionally, on Android, you will have to take care of a manifest file that defines a
huge list of parameters to configure the application. If you are not yet familiar with
Android's manifest file, read the official documentation at http://developer.
android.com/guide/topics/manifest/manifest-intro.html.

The following listing is AndroidManifest.xml from demo-android:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android=
 "http://schemas.android.com/apk/res/android"
 package="com.packtpub.libgdx.demo"
 android:versionCode="1"
 android:versionName="1.0" >
 <uses-sdk android:minSdkVersion="8"
 android:targetSdkVersion="19"/>
 <uses-feature android:glEsVersion="0x00020000"
 android:required="true"/>
 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >
 <activity
 android:name=".MainActivity"
 android:label="@string/app_name"
 android:screenOrientation="landscape"
 android:configChanges="keyboard|keyboardHidden|
 orientation">
 <intent-filter>
 <action android:name="android.intent.action.
 MAIN" />
 <category android:name="android.
 intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>

</manifest>

There will be an error displayed in android:configChanges after changing to
Android API level 8, as shown in the following screenshot:

http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html

Cross-platform Development – Build Once, Deploy Anywhere

[82]

This is because the value screenSize is not supported by the API Level 8. Just
remove this value for our project. To know more about this android:configChanges
element and other elements, visit http://developer.android.com/guide/topics/
manifest/activity-element.html.

The following short (and incomplete) list is meant to give you a quick idea of what
could be defined in the manifest file:

• minSdkVersion: This is the minimum API Level required for the application
to run. Devices running with lower API Levels will not be able to run this
application; if left undeclared, an API Level of 1 is assumed, which might
cause your app to crash at runtime when trying to access unavailable APIs.

• targetSdkVersion: This is the API Level the application targets. This is used
for forward compatibility, where later API Levels can change the behavior of
the API that might break old applications. This specification does not prevent
the application from running on devices with lower API Levels down to
minSdkVersion. If left undeclared, its value is set equal to minSdkVersion.

• icon: This is the application's icon.
• name: This is the main class of the application (or the main activity). Note

that in terms of LibGDX, this will be the starter class for Android.
• label: This is the application's name shown next to the application icon and

in the title bar.
• screenOrientation: This defines the display orientation of the application.

The usual values are portrait (tall) and landscape (wide). See the
documentation for more details.

Another crucial part of the manifest file is the correct definition of the permissions
that the application should request when a user wants to install it on a device.

Make sure that you will never request unnecessary permissions and
put as much information as required into the description text of your
application. Users are extremely suspicious and justifiably so when it
comes to the list of requested permissions. It is not 100 percent clear
for which reason an application needs a certain permission.

For an introduction and much more detail on the topic of permissions on Android,
refer to the official documentation at http://developer.android.com/guide/
topics/security/permissions.html.

http://developer.android.com/guide/topics/manifest/activity-element.html
http://developer.android.com/guide/topics/manifest/activity-element.html
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/guide/topics/security/permissions.html

Chapter 2

[83]

Now, let's try to run the application on a real, physical device. First, make sure that
your Android device is connected via a USB cable and is set up for development. To
set up your Android device, follow the instructions at http://developer.android.
com/tools/device.html.

Now, right-click on the demo-android project in Project Explorer in Eclipse and
select the Android Application option from the Run As menu.

The Android application should now be installed and be happily running on your
Android device. The following image is of the application running on an HTC
Desire HD:

With regards to the Android emulator that comes with the Android SDK, just a few
final words, do not use it!

Emulators cannot accurately reflect how a device responds, so instead of using
an emulator, it is highly recommended to try and test your applications on as
many real devices as you can get your hands on.

Running the demo application in a
WebGL-capable web browser
The starter class for the WebGL application is called GwtLauncher.java.
The following listing is GwtLauncher.java from demo-html:

package com.packtpub.libgdx.demo.client;
import com.packtpub.libgdx.demo.MyDemo;

http://developer.android.com/tools/device.html
http://developer.android.com/tools/device.html

Cross-platform Development – Build Once, Deploy Anywhere

[84]

import com.badlogic.gdx.ApplicationListener;
import com.badlogic.gdx.backends.gwt.GwtApplication;
import com.badlogic.gdx.backends.gwt.GwtApplicationConfiguration;

public class GwtLauncher extends GwtApplication {
 @Override
 public GwtApplicationConfiguration getConfig () {
 GwtApplicationConfiguration cfg = new
 GwtApplicationConfiguration(800, 480);
 return cfg;
 }
 @Override
 public ApplicationListener getApplicationListener () {
 return new MyDemo();
 }
}

In the preceding code listing, you can see the GwtLauncher class that is inherited
from the GwtApplication class. LibGDX encapsulates GWT and only requires you to
implement the two abstract methods, getConfig() and getApplicationListener().
The getConfig() method returns an instance of the GwtApplicationConfiguration
class. In this case, the window's width and height are directly passed on to its
constructor. The getApplicationListener() method returns an instance of a class
that implements the ApplicationListener interface, which is the MyDemo class in
the preceding code.

Additionally, GWT is organized in so-called modules that bundle together all the
configuration settings. In this case, we only have one module called MyDemo.gwt.
xml. It defines the source path where GWT should look for Java source files, in this
case, com/packtpub/libgdx/demo. These source files will then be cross-compiled by
GWT to optimize the JavaScript code that is runnable on all major web browsers.

The following listing is MyDemo.gwt.xml from demo project:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE module PUBLIC "-//Google Inc.//DTD Google Web Toolkit
 trunk//EN" "http://google-web-
 toolkit.googlecode.com/svn/trunk/distro-source/core/src/gwt-
 module.dtd">
<module>
 <source path="com/packtpub/libgdx/demo" />
</module>

Chapter 2

[85]

Let's try to run the application now. To do this, right-click on the demo-html project
in Project Explorer in Eclipse and then select the Web Application option in the Run
As menu. A new tab titled Development Mode will open at the bottom. Simply do
what the description preceding the URL says and double-click on it. Your default
browser should launch shortly after this. Then try to load the website that is hosted
on your local machine right now. Hence, the URL points to 127.0.0.1, the infamous
IPv4 loopback address that is just another fancy name for this device or computer:

Keep in mind that using the URL suggested by Eclipse will run your WebGL
application in debug mode, which is excruciatingly slow for most games. Just remove
everything after the question mark in the URL to run your application in normal mode.
The resulting URL should look like http://127.0.0.1:8888/index.html.

You might be asked to install the Google Web Toolkit Developer Plugin for your
web browser to use the Development Mode, as shown in the following screenshot.
You need to install it to develop your local machine.

Cross-platform Development – Build Once, Deploy Anywhere

[86]

After the plugin has been successfully installed, you will see the following window:

If you want to run this application on a real web server and share it with other
users on the Internet, you will have to cross-compile the project first. This is a pretty
straightforward process. Simply right-click on the demo-html project in Project
Explorer in Eclipse and then select the GWT Compile option from the Google
menu, as shown here:

A window with the title GWT Compile will open. Here, you can choose a log level
to narrow down on certain messages such as errors only. Keep the default settings
for now and click on Compile to begin the cross-compile process, as shown here:

Chapter 2

[87]

The compilation process is quite lengthy compared to all the other ones shown in
this book. It took over two minutes to finish on an Intel Core i7 (3.4GHz) processor.
A good moment to exercise your patience!

Cross-platform Development – Build Once, Deploy Anywhere

[88]

Once the compilation is finished, go to the war subfolder in the demo-html project,
as shown in the following screenshot:

You can now upload everything to your web server that is contained in this folder
except the WEB-INF folder, which is not needed. Now, you or anyone else can open
the URL to your web server and enjoy your LibGDX cross-platform application in a
WebGL-capable web browser without having to install any plugin for it to work.

Running the demo application on an iOS
device
The starter class for iOS application is RobovmLauncher.java. For Gradle, it is
IOSLauncher.java. The following listing is from RobovmLauncher.java in
demo-robovm:

package com.packtpub.libgdx.demo;

import org.robovm.apple.foundation.NSAutoreleasePool;
import org.robovm.apple.uikit.UIApplication;
import com.badlogic.gdx.backends.iosrobovm.IOSApplication;
import com.badlogic.gdx.backends.iosrobovm.
 IOSApplicationConfiguration;

public class RobovmLauncher extends IOSApplication.Delegate {
 @Override
 protected IOSApplication createApplication() {
 IOSApplicationConfiguration config = new
 IOSApplicationConfiguration();
 config.orientationLandscape = true;
 config.orientationPortrait = false;

Chapter 2

[89]

 return new IOSApplication(new MyDemo(), config);
 }

 public static void main(String[] argv) {
 NSAutoreleasePool pool = new NSAutoreleasePool();
 UIApplication.main(argv, null, RobovmLauncher.class);
 pool.close();
 }
}

In the preceding code, you can see the RobovmLauncher class that is inherited from
the IOSApplication.Delegate class. Here is where LibGDX encapsulates tasks and
registers handlers to process touch input, and other sensor data, and much more.
The instances of MyDemo and IOSApplicationConfiguration are passed as
arguments to the IOSApplication function.

In Android, we saw the AndroidManifest.xml file that specifies the characteristics,
permissions, and other features of our Demo-Android app. Similarly, our iOS app
has Info.plist.xml to hold such details. Before explaining Info.plist.xml, let's
see the robovm.properties and robovm.xml file.

The following code is taken from robovm.properties file in our demo-robovm project:

app.version=1.0
app.id=com.packtpub.libgdx.demo
app.mainclass=com.packtpub.libgdx.demo.RobovmLauncher
app.executable=MyDemo
app.build=1
app.name=MyDemo

This brief file contains, as the statements indicate, the app version, app ID, main
class, executable, build number, and name of app. These values will be used in the
Info.plist.xml file:

The following listing is taken from robovm.xml in our demo-robovm project:

<config>
 <executableName>${app.executable}</executableName>
 <mainClass>${app.mainclass}</mainClass>
 <os>ios</os>
 <arch>thumbv7</arch>
 <target>ios</target>
 <iosInfoPList>Info.plist.xml</iosInfoPList>
 <resources>
 <resource>
 <directory>../android/assets</directory>

Cross-platform Development – Build Once, Deploy Anywhere

[90]

 <includes>
 <include>**</include>
 </includes>
 <skipPngCrush>true</skipPngCrush>
 </resource>
 <resource>
 <directory>data</directory>
 </resource>
 </resources>
 <forceLinkClasses>
 <pattern>com.badlogic.gdx.scenes.scene2d.ui.*</pattern>
 </forceLinkClasses>
 <libs>
 <lib>build/libs/ios/libgdx.a</lib>
 <lib>build/libs/ios/libObjectAL.a</lib>
 </libs>
 <frameworks>
 <framework>UIKit</framework>
 <framework>OpenGLES</framework>
 <framework>QuartzCore</framework>
 <framework>CoreGraphics</framework>
 <framework>OpenAL</framework>
 <framework>AudioToolbox</framework>
 <framework>AVFoundation</framework>
 </frameworks>
</config>

This file holds the important link: the path to the assets folder in the demo-android
project. Under the <resource> key, the path to the Android assets folder is set.
However, we need iOS-specific icons and splash images, and we don't need to
put this in the Android assets folder (believe me, you don't want to increase
your Android APK size with unwanted data). Instead, we put it in the folder data
inside the demo-robovm project and include the path under the <resources> key
in robovm.xml.

Now comes the crucial part: the Info.plist file. Every iOS app contains the
Info.plist file and it holds crucial information about the characteristics,
permissions, and other features about the app. In our RoboVM version, it is
named Info.plist.xml. The following code is taken from the Info.plist.xml
file in our demo-robovm project:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.
apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">

Chapter 2

[91]

<dict>
 <key>CFBundleDevelopmentRegion</key>
 <string>en</string>
 <key>CFBundleDisplayName</key>
 <string>${app.name}</string>
 <key>CFBundleExecutable</key>
 <string>${app.executable}</string>
 <key>CFBundleIdentifier</key>
 <string>${app.id}</string>
 <key>CFBundleInfoDictionaryVersion</key>
 <string>6.0</string>
 <key>CFBundleName</key>
 <string>${app.name}</string>
 <key>CFBundlePackageType</key>
 <string>APPL</string>
 <key>CFBundleShortVersionString</key>
 <string>${app.version}</string>
 <key>CFBundleSignature</key>
 <string>????</string>
 <key>CFBundleVersion</key>
 <string>${app.build}</string>
 <key>LSRequiresIPhoneOS</key>
 <true/>
 <key>UIStatusBarHidden</key>
 <true/>
 <key>UIViewControllerBasedStatusBarAppearance</key>
 <false />
 <key>UIDeviceFamily</key>
 <array>
 <integer>1</integer>
 <integer>2</integer>
 </array>
 <key>UIRequiredDeviceCapabilities</key>
 <array>
 <string>armv7</string>
 </array>
 <key>UISupportedInterfaceOrientations</key>
 <array>
 <string>UIInterfaceOrientationLandscapeLeft</string>
 <string>UIInterfaceOrientationLandscapeRight</string>
 </array>
 <key>UISupportedInterfaceOrientations~ipad</key>
 <array>
 <string>UIInterfaceOrientationLandscapeLeft</string>

Cross-platform Development – Build Once, Deploy Anywhere

[92]

 <string>UIInterfaceOrientationLandscapeRight</string>
 </array>
 <key>CFBundleIcons</key>
 <dict>
 <key>CFBundlePrimaryIcon</key>
 <dict>
 <key>CFBundleIconFiles</key>
 <array>
 <string>Icon</string>
 <string>Icon-72</string>
 </array>
 </dict>
 </dict>
</dict>
</plist>

The following short (and incomplete) list will give you a quick idea of what the
Info.plist keys means:

• UISupportedInterfaceOrientations: This key is used to set the allowed
device orientations:

 ° For iPads, it is UISupportedInterfaceOrientations~ipad
 ° For iPhones and iPads, the values for these keys are:

 ° UIInterfaceOrientationPortrait

 ° UIInterfaceOrientationPortraitUpsideDown

 ° UIInterfaceOrientationLandscapeRight

 ° UIInterfaceOrientationLandscapeLeft

• UIRequiredDeviceCapabilities: This key lets you declare the hardware or
specific capabilities that your app needs in order to run. For example, Wi-Fi,
Bluetooth, accelerometer, open GLES 2.0, and so on.

• CFBundleName: This is the name of the application as specified in the
robovm.properties file.

• CFBundleIdentifier: This is the unique identifier of the application as
specified in the robovm.properties file. For our demo-robovm project,
it is CFBundleIdentifier com.packtbub.libgdx.demo.

• CFBundleIconFiles: These are the application icons.

Chapter 2

[93]

For more information on the topic of the Info.plist keys, check out the official
documentation at https://developer.apple.com/library/mac/documentation/
general/Reference/InfoPlistKeyReference/Articles/iPhoneOSKeys.html#//
apple_ref/doc/uid/TP40009252-SW1.

For more about the device capabilities, check out the official documentation at
https://developer.apple.com/library/mac/documentation/general/
Reference/InfoPlistKeyReference/Articles/iPhoneOSKeys.html#//apple_
ref/doc/uid/TP40009252-SW3.

Now, right-click on the demo-robovm project in Project Explorer in Eclipse and
select the iOS Device App option in the Run As menu.

Remember that to execute an iOS application, you need a Mac machine.

The iOS application should now be installed as an application icon and should
be happily running on your iOS device. The following image is of the application
running on an IPad 3:

https://developer.apple.com/library/mac/documentation/general/Reference/InfoPlistKeyReference/Articles/iPhoneOSKeys.html#//apple_ref/doc/uid/TP40009252-SW1
https://developer.apple.com/library/mac/documentation/general/Reference/InfoPlistKeyReference/Articles/iPhoneOSKeys.html#//apple_ref/doc/uid/TP40009252-SW1
https://developer.apple.com/library/mac/documentation/general/Reference/InfoPlistKeyReference/Articles/iPhoneOSKeys.html#//apple_ref/doc/uid/TP40009252-SW1
https://developer.apple.com/library/mac/documentation/general/Reference/InfoPlistKeyReference/Articles/iPhoneOSKeys.html#//apple_ref/doc/uid/TP40009252-SW1
https://developer.apple.com/library/mac/documentation/general/Reference/InfoPlistKeyReference/Articles/iPhoneOSKeys.html#//apple_ref/doc/uid/TP40009252-SW1
https://developer.apple.com/library/mac/documentation/general/Reference/InfoPlistKeyReference/Articles/iPhoneOSKeys.html#//apple_ref/doc/uid/TP40009252-SW1

Cross-platform Development – Build Once, Deploy Anywhere

[94]

The demo application – time for code
In this section, we will take a closer look at the actual code of the demo project.
Thereafter, we will do some simple modifications to the code and also use
the debugger.

Inspecting an example code of the demo
application
Let's take a first look at the generated code of MyDemo.java from the demo project.

The following code snippet shows the class definition:

public class MyDemo implements ApplicationListener {
 // ...
}

As you can see, the MyDemo class implements the ApplicationListener interface.
The MyDemo class from Gradle project (demo-core) produces a quite different code
as follows:

public class MyDemo extends ApplicationAdapter {
 //...
}

Here, the ApplicationAdapter is an abstract class that implements the
ApplicationListener interface. Before we move on to the implementation details
of the interface, we will spend some time on the remaining part of this class.

You will find a definition of the four member variables, each with a class provided
by LibGDX:

Private OrthographicCamera camera;
Private SpriteBatch batch;
private Texture texture;
private Sprite sprite;

Here is a brief explanation of the classes from the preceding code listing to give you
the basic background knowledge for the code inspection that will follow shortly.

The camera variable is of the class type OrthographicCamera. We will use the
orthographic camera to display our 2D scenes. The camera is the player's view
of the actual scene in the game, which is defined by a certain width and height
(also called viewport).

Chapter 2

[95]

For more information about projections, check out the great article orthographic
versus perspective by Jeff Lamarche at http://iphonedevelopment.blogspot.
de/2009/04/opengl-es-from-ground-up-part-3.html.

The batch variable is of the class type SpriteBatch. This is where you send all your
drawing commands to LibGDX. Beyond the ability of this class to draw images, it is
also capable of optimizing the drawing performance under certain circumstances.

The texture variable is of the class type Texture. It holds a reference to the actual
image; the texture data that is stored in memory at runtime.

The sprite variable is of the class type Sprite. It is a complex data type that contains
lots of attributes to represent a graphical object that has a position in 2D space, width,
and height. It can also be rotated and scaled. Internally, it holds a reference to a
TextureRegion class that in turn is a means to cut out a certain portion of a texture.

Now that we have a basic knowledge of the involved data types, we can advance
to the implementation details of the ApplicationListener interface.

In the MyDemo class, the only methods containing code are create(), render(),
and dispose(). The remaining three methods are left empty, which is just fine.

The create() method
The create() method contains the initialization code to prepare the application on
startup, as shown in the following code snippet:

@Override
public void create() {

 float w = Gdx.graphics.getWidth();
 float h = Gdx.graphics.getHeight();

 camera = new OrthographicCamera(1, h/w);
 batch = new SpriteBatch();

 texture = new Texture(Gdx.files.internal("data/libgdx.png"));
 texture.setFilter(TextureFilter.Linear, TextureFilter.Linear);

 TextureRegion region =
 newTextureRegion(texture, 0, 0, 512, 275);

 sprite = new Sprite(region);

http://iphonedevelopment.blogspot.de/2009/04/opengl-es-from-ground-up-part-3.html
http://iphonedevelopment.blogspot.de/2009/04/opengl-es-from-ground-up-part-3.html

Cross-platform Development – Build Once, Deploy Anywhere

[96]

 sprite.setSize(0.9f, 0.9f *
 sprite.getHeight() / sprite.getWidth());
 sprite.setOrigin(sprite.getWidth()/2,
 sprite.getHeight()/2);
 sprite.setPosition(-sprite.getWidth()/2,
 -sprite.getHeight()/2);
}

At first, the graphics module is queried to return the width and height of the display
(for example, a desktop window or the screen of an Android device) and calculate
an appropriate width and height for the field of view of the camera. Then, a new
instance of SpriteBatch is created so that images can be drawn and made visible
with the camera. The next step is to load a texture using the files module to get a file
handle to data/libgdx.png.

Gradle users will find only two lines of code in the create() method
and only four lines of code in the render() method. The assets
folder in the demo-android project will contain only an image labeled
badlogic.jpg. Read and understand this code; the complete code is
given at the end of this section.

The loaded texture looks like the following screenshot:

Chapter 2

[97]

As you can see, there is a lot of empty space in this screenshot. In order to be able to
use the filled part of this screenshot only, a new instance of TextureRegion is created.
It references the previously loaded texture that contains the full image and has the
additional information to cut all the pixels starting from (0, 0) to (512, 275). These
two points describe a rectangle starting at the top-left corner of the image with a width
and height of 512 by 275 pixels. Finally, a sprite is created using the information of the
previously created texture region. The sprite's size is set to 90 percent of its original
size. The sprite's origin is set to half of its width and height to move the origin to its
center. Eventually, the position is set to the negative half of the sprite's width and
height so that the sprite moves to the center of the scene.

LibGDX uses a coordinate system that has its origin (0, 0) at the
bottom-left corner. This means that the positive x axis points to
the right-hand side, while the positive y axis points upwards.

The render() method
The render() method contains the commands to render a scene on screen,
as shown here:

@Override
public void render() {
 Gdx.gl.glClearColor(1, 1, 1, 1);
 Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);

 batch.setProjectionMatrix(camera.combined);
 batch.begin();
 sprite.draw(batch);
 batch.end();
}

The first two lines call the low-level OpenGL methods to set the clear color to a solid
white, and then execute the clear screen command.

Next, the projection matrix of the sprite batch is set to the camera's combined
projection and view matrix. You do not have to understand what this means in detail
at the moment. It basically just means that every following drawing command will
behave according to the rules of an orthographic projection, or simply put, drawing
will be done in 2D space using the position and bounds of the given camera.

The begin() and end()methods will always have to appear in pairs and
should not be nested or there will be errors. The actual drawing of the sprite is
accomplished by calling the draw() method of the sprite to draw and pass the
instance of the sprite batch.

Cross-platform Development – Build Once, Deploy Anywhere

[98]

The dispose() method
The dispose() method is the place where you clean up and free all resources
that are still in use by an application, as shown here:

@Override
public void dispose() {
 batch.dispose();
 texture.dispose();
}

There is an interface called Disposable that is implemented by every LibGDX
class that allocates resources (that is, memory) and can be easily deallocated by
calling the corresponding dispose method. In the preceding code, this is done
for the sprite batch and the loaded texture.

The following is a complete listing of the MyDemo.java source file from the
demo project:

package com.packtpub.libgdx.demo;

import com.badlogic.gdx.ApplicationListener;
import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.Net.HttpRequest;
import com.badlogic.gdx.Net.HttpResponseListener;
import com.badlogic.gdx.graphics.GL20;
import com.badlogic.gdx.graphics.OrthographicCamera;
import com.badlogic.gdx.graphics.Texture;
import com.badlogic.gdx.graphics.Texture.TextureFilter;
import com.badlogic.gdx.graphics.g2d.Sprite;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;
import com.badlogic.gdx.graphics.g2d.TextureRegion;

public class MyDemo implements ApplicationListener {
 private OrthographicCamera camera;
 private SpriteBatch batch;
 private Texture texture;
 private Sprite sprite;

 @Override
 public void create() {

 float w = Gdx.graphics.getWidth();

Chapter 2

[99]

 float h = Gdx.graphics.getHeight();

 camera = new OrthographicCamera(1, h/w);
 batch = new SpriteBatch();

 texture = new
 Texture(Gdx.files.internal("data/libgdx.png"));
 texture.setFilter(TextureFilter.Linear,
 TextureFilter.Linear);

 TextureRegion region = new TextureRegion(texture, 0, 0,
 512, 275);

 sprite = new Sprite(region);
 sprite.setSize(0.9f, 0.9f * sprite.getHeight() /
 sprite.getWidth());
 sprite.setOrigin(sprite.getWidth()/2,
 sprite.getHeight()/2);
 sprite.setPosition(-sprite.getWidth()/2, -
 sprite.getHeight()/2);
 }

 @Override
 public void dispose() {
 batch.dispose();
 texture.dispose();
 }

 @Override
 public void render() {
 Gdx.gl.glClearColor(1, 1, 1, 1);
 Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);

 batch.setProjectionMatrix(camera.combined);
 batch.begin();
 sprite.draw(batch);
 batch.end();
 }

 @Override
 public void resize(int width, int height) {
 }

 @Override

Cross-platform Development – Build Once, Deploy Anywhere

[100]

 public void pause() {
 }

 @Override
 public void resume() {
 }
}

Gradle users should copy this code to the MyDemo class. We need this
code to do a simple experimentation with code hot swapping, which
is coming in the next section. Although you don't have the libgdx.
png file, you can use any standard paint tools to create a placeholder
image of size 512 x 512, or download the libgdx.png file from the
example project in the provided code bundle. Then, go to the assets
directory in the demo-android project, create a data folder, and
save the libgdx.png file in it.

Having fun with the debugger and Code Hot
Swapping
In this section, we are going to use the debugger to take a look inside the demo
project at runtime. To do this, we first set a breakpoint where the execution of the
application should be halted so that we can easily inspect the current state. Open
the MyDemo.java source file in Eclipse and set a breakpoint at the line where a new
instance of SpriteBatch is created, as shown here:

Double-click on the shaded, empty space at the very left-hand side
of the editor window in Eclipse to set or remove already existing
breakpoints, which will insert a blue dot to signify the breakpoint,
as shown in the preceding screenshot.

Chapter 2

[101]

Next, right-click on the demo-desktop project in Project Explorer in Eclipse, and
then select the Java Application option from the Debug As menu, or press the F11
key on your keyboard. The application should be halted almost directly after the
application window becomes visible. Eclipse should have automatically changed
to the debugging perspective, which shows lots of extra information about an
application running in the debug mode, as shown here:

In the Variables tab, you can now inspect every variable that is within the current
scope of execution, for example, the two floating-point variables, w and h, have
already been set. You can check this by looking for them in the Variables tab. The
correct values of the variables are displayed as 480.0 for w and 320.0 for h. To step
through, resume or stop the execution of the application; you can go to the Run menu
and choose the appropriate menu item. Choose to resume the application for now.

Let's try to do code hot swapping now. Make sure that the demo application is
currently running and is being executed right now. The following code listing
is a modified version of the render() method; the modification is highlighted:

@Override
public void render() {
 Gdx.gl.glClearColor(1, 1, 1, 1);
 Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);

 batch.setProjectionMatrix(camera.combined);

Cross-platform Development – Build Once, Deploy Anywhere

[102]

 batch.begin();
 sprite.setRotation(45);
 sprite.draw(batch);
 batch.end();
}

As a result, the following line to your code inside the MyDemo.java source file right
before sprite.draw() is called:

sprite.setRotation(45);

It will make the sprite rotate by 45 degrees in a counter-clockwise direction, as
shown in the following screenshot. The next step is to save your changes to the
source file. What you should see now is that the change you have just made to
the code is immediately reflected in the still running application!

Chapter 2

[103]

For code hot swapping to work, it is necessary that the automatic (re)build feature
is enabled. You can quickly check this by going to the Project menu and making
sure that the menu item Build Automatically is checked.

You might already sense the possibilities that this great feature enables a developer
to do. Just think of a somewhat more complex scene where you are trying to find
the best-looking positions for your objects, or you just want to see how it would
look with a couple of different settings. It's a piece of cake with a tool like code
hot swapping at your disposal.

Let's take the preceding example a bit further and make the image rotate continuously.

We will need a variable to store the current rotation value. This value is going to be
increased over a period of time. To avoid a possible overflow in rot, we calculate
the remainder of the new rotation value divided by 360 degrees. This can be done in
an easy way using the modulo operator (%) to wrap around a certain value.

The rotation is calculated in degrees per second. Afterwards, we set the new rotation
value of the sprite and draw it while the rotation value is advanced step by step.

The following listing is the modified code for the rotating image:

private float rot;

@Override
public void render() {
 Gdx.gl.glClearColor(1, 1, 1, 1);
 Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);

 batch.setProjectionMatrix(camera.combined);
 batch.begin();
 final float degreesPerSecond = 10.0f;
 rot = (rot + Gdx.graphics.getDeltaTime() *
 degreesPerSecond) % 360;
 sprite.setRotation(rot);
 sprite.draw(batch);
 batch.end();
}

Cross-platform Development – Build Once, Deploy Anywhere

[104]

Note that some changes cannot be hot swapped into a running
application, such as changing method names and introducing
new variables in class. In order to reflect these changes, you have
to rerun the program. However, in such situations, Eclipse will
issue a warning when the code cannot be hot swapped.

Now that we have a changing value for the rotation, let's have some more fun with it
and turn the continuous rotation effect into a shake effect.

As the sine (or cosine) function has an oscillating behavior, we can make perfect use
of it to make the image shake by a certain amount to the left and right. The amount
(amplitude) can be increased and decreased by multiplying it with the answer of
the sine function.

The following listing is the modified code for the shaking image:

@Override
public void render() {
 Gdx.gl.glClearColor(1, 1, 1, 1);
 Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);
 batch.setProjectionMatrix(camera.combined);
 batch.begin();
 float degreesPerSecond = 10.0f;
 rot = (rot + Gdx.graphics.getDeltaTime() *
 degreesPerSecond) % 360;
 final float shakeAmplitudeInDegrees = 5.0f;
 float shake = MathUtils.sin(rot) * shakeAmplitudeInDegrees;
 sprite.setRotation(shake);
 sprite.draw(batch);
 batch.end();
}

Chapter 2

[105]

The following diagram visualizes the effect of both the rotation and the shake:

Cross-platform Development – Build Once, Deploy Anywhere

[106]

Summary
In this chapter, you learned a lot about LibGDX and how all the projects of an
application work together. We covered LibGDX's backends, modules, and starter
classes. Additionally, we covered what the application life cycle and corresponding
interface are and how they are meant to work. The debugger has been used to
inspect the demo application at runtime, and furthermore we made use of the
JVM Code Hot Swapping feature.

We now know the basics of the LibGDX applications, so we are ready to start
developing a real game. We will start at the very beginning of the development
cycle step by step. As LibGDX is a framework and not a game engine, we first
have to build our own engine. So, we will learn how to create an appropriate
program architecture in the next chapter that is suitable to handle our game.

Configuring the Game
In this chapter, we will build the game Canyon Bunny, which was discussed earlier
in Chapter 1, Introduction to LibGDX and Project Setup.

In this chapter, we will:

• Create the Canyon Bunny project using the gdx-setup-ui tool
• Learn about the game's architecture
• Test your basic code

A Unified Modeling Language (UML) class diagram will give you the necessary
overview of all the new classes that need to be implemented. UML will be explained
later in this chapter. When looking from a software engineer's perspective, the
architecture and the implementation code shown in this book does not always follow
the best design decisions on purpose to keep the examples discussed simple and easy
to understand wherever possible. Keep in mind that the primary objective of this book
is to teach you how to work with and manage the vast complexity of creating games
using LibGDX. The following parts are going to be very code-oriented, so be sure to
make use of the class diagram as a point of orientation so that you don't get
lost in all these code listings and their corresponding explanations.

By the end, you will have created and tested the base code that serves as the
foundation for all the subsequent chapters in which more game features will be
added successively.

Configuring the Game

[108]

Setting up the Canyon Bunny project
Download and run the gdx-setup-ui tool as you learned in Chapter 1, Introduction to
LibGDX and Project Setup, and use the following settings:

• Name: CanyonBunny
• Package: com.packtpub.libgdx.canyonbunny
• Game class: CanyonBunnyMain
• Destination: C:\libgdx
• Generate the desktop project: Select the checkbox
• Generate the html project: Select the checkbox
• Generate the ios project: Select the checkbox

Gradle users can also use the preceding configuration to
generate the project.

The following is a screenshot of the configuration described:

Chapter 3

[109]

Next, click on Generate to generate all the projects. It will take some time to generate
the projects. Now that all the projects are generated, you can now import these
projects into your workspace.

Refer to the Creating a new application section in Chapter 1, Introduction
to LibGDX and Project Setup, for more details.

Next, go to the Project Explorer window in Eclipse and open the strings.xml file
under CanyonBunny-android/res/values/strings.xml. There is a name variable
that is used for the application name that users will see on their smartphones. The
Project Explorer window can be opened by navigating to Window | Show View |
Project Explorer.

Currently, the line of code should look like this:

<string name="app_name">My LibGDX Game</string>

Change the name to something more appropriate such as Canyon Bunny:

<string name="app_name">Canyon Bunny</string>

Save and close the strings.xml file. Also, in the Project Explorer window, remove
the following two files and a directory that comes with the generated projects:

• Remove the CanyonBunnyMain.java file from the com.packtpub.libgdx.
canyonbunny package of the CanyonBunny-core/CanyonBunny project

• Remove all the images and folders inside the assets folder of the
CanyonBunny-android project

Then, open the starter class for the CanyonBunny-desktop project and change the
resolution parameters for width and height to 800 x 480 pixels respectively,
as shown here:

 cfg.width = 800;
 cfg.height = 480;

Save and close the file to continue. All done! You have finished the project setup for
Canyon Bunny.

Configuring the Game

[110]

Using a class diagram for Canyon Bunny
We will now take a closer look at the architecture of Canyon Bunny. A so-called class
diagram is used to help us visualize and explain the architecture in a standardized
and structured form. The class diagram is illustrated as follows:

interface
ApplicationListener

Assets

abstract
AbstractGameObject

CanyonBunnyMain

Player
Character

BunnyHead

Level
Objects

Rock

Level
Items

FeatherGoldCoin

Level
Decorations

1
WaterOverlay Mountains Clouds

Cloud
*

CameraHelper
1

LevelWorldRenderer WorldController
1 1

11 1

1 1

1

11

1

1

1

1

*

>>>>

>>>>

In this class diagram, you will find a lot of classes that will be used in this game.
It also shows important information about the kind of classes and how they are
interconnected. Firstly, before we continue, don't be scared of all these boxes,
lines, and arrows pointing in every direction. If you are not familiar with reading
class diagrams or UML in general, take a look at the following section for a quick
explanation of what you should know to be able to read it. Otherwise, simply skip
to the next paragraph to continue.

Each class is represented in a rectangle. If it is a special kind of class (a stereotype
in UML), it is indicated in double angle quotation marks above its name, such as
"abstract" for an abstract class or "interface" for an interface. Lines are used to
show the relationship between two classes.

Chapter 3

[111]

A line without arrows designates a bidirectional relationship between two classes,
meaning that they depend on each other in order to work correctly. If there is a line
with a filled arrowhead at one end, it means that the class that points to the other
class needs it to work properly and not vice versa. On the other hand, if there is a line
with an unfilled arrowhead at one end, it always points from an implementing class
(specialization in UML) to its super class (generalization in UML), which can either
be an interface or an abstract class.

Lastly, there are numbers to describe the multiplicity or, in other words, how
many instances of an object will exist from one class in another. The syntax for
this is as follows:

• 0..1: This indicates zero or one instance; the notation n..m indicates n to m
instances

• 0..* or *: This indicates that there is no limit to the number of instances
(including none)

• 1: This indicates that there is exactly one instance
• 1..*: This indicates that there is at least one instance, but no limit to the

number above this

You should now be able to read the information in the class diagram.

At the top of the class diagram, you will see CanyonBunnyMain. It is the starter class
of the game and therefore necessarily needs to implement the ApplicationListener
interface provided by LibGDX. It holds a reference to an Assets class that will be
used to organize and simplify the way to access the game's assets. There are two
more references pointing to WorldController and WorldRenderer.

The WorldController class contains all the game logic to initialize and modify the
game world. It also needs access to CameraHelper—a helper class for the camera—
that, for example, enables it to target and follow any game object; Level that holds
the level data; and a list of AbstractGameObject instances representing any game
object that exists in the game world.

The rendering takes place in WorldRenderer that apparently also requires it to have
access to the list of the AbstractGameObject instances. As the game objects need to
be created before the process of modification and rendering, Level needs access to
the list of the AbstractGameObject instances as well when a level is loaded from a
level file at the beginning of the game.

Configuring the Game

[112]

What is still left is the bottom row of classes in the diagram, all of which point to the
abstract class: AbstractGameObject. They all implement a specialized type of this
class, and thus share a common functionality of being a general game object that can
be rendered in the game world. Furthermore, these classes have been grouped in
this diagram to indicate their purpose in this game. You might want to peek at the
end of Chapter 1, Introduction to LibGDX and Project Setup, again and take a quick look
at the sketch that shows all the relevant game objects in one picture. Here is a brief
description of the grouped classes:

• Player character:
 ° BunnyHead: This represents the character that is controlled by the

player

• Level objects:
 ° Rock: This represents a platform that has an edge at the left- and

right-hand side, and a middle part that can be set to an arbitrary
length. It is the ground in a level where the player will move on.

• Level items:
 ° GoldCoin: This represents an item that will increase the player's score

when picked up
 ° Feather: This represents a power-up that will grant the ability to fly

to the player's character when picked up

• Level decorations:
 ° WaterOverlay: This represents an image that is attached to the

camera's horizontal position; thus, it is always visible regardless of
wherever the camera moves on its x axis

 ° Mountains: This represents two mountain images moving at different
speeds to simulate a parallax optical illusion

 ° Cloud: This represents one cloud moving slowly to the left-hand side
in the sky

These classes will be covered in much more detail from Chapter 4, Gathering
Resources, to Chapter 6, Adding the Actors.

Chapter 3

[113]

Laying foundations
Let's now move on from theory to practice and get down to the actual
implementation details. We will begin with implementing the first basic version
of CanyonBunnyMain, WorldController, and WorldRenderer. Additionally, we
will use a utility class to store constant values in a new class called Constants. It
is true that this class does not appear in the class diagram, as it is just there for our
convenience to avoid scattering or, even worse, duplicating certain constants all over
the source code files. Also, as the stored values in Constants are meant to be used in
virtually any other class, it would only clutter up the class diagram by drawing one
additional line for each class to Constants.

For simplicity, we will use the Constants class to store our constant
values. Alternatively, game constants could be made data-driven via a
settings file. This would avoid the need to recompile your code when
a constant is changed.

Implementing the Constants class
Here is the listing of the code for Constants:

package com.packtpub.libgdx.canyonbunny.util;

public class Constants {
 // Visible game world is 5 meters wide
 public static final float VIEWPORT_WIDTH = 5.0f;

 // Visible game world is 5 meters tall
 public static final float VIEWPORT_HEIGHT = 5.0f;
}

First, we need to define the visible world size that can be seen at once when it is not
moving around in the game world. In this case, we have chosen a visible world size
of five meters in terms of its width and height.

Next, we will create the other three mentioned classes, but will only add the
so-called method stubs (empty methods). This way, we can focus on the layout
first and gradually implement the code and other new features later, when needed.
Hopefully, this approach will give you the best insight into the whole development
process from start to finish.

Configuring the Game

[114]

Implementing the CanyonBunnyMain class
The following listing shows the first implementation of CanyonBunnyMain:

package com.packtpub.libgdx.canyonbunny;

import com.badlogic.gdx.ApplicationListener;
import com.packtpub.libgdx.canyonbunny.game.WorldController;
import com.packtpub.libgdx.canyonbunny.game.WorldRenderer;

public class CanyonBunnyMain implements ApplicationListener {
 private static final String TAG =
 CanyonBunnyMain.class.getName();

 private WorldController worldController;
 private WorldRenderer worldRenderer;

 @Override public void create () { }
 @Override public void render () { }
 @Override public void resize (int width, int height) { }
 @Override public void pause () { }
 @Override public void resume () { }
 @Override public void dispose () { }
}

This class implements ApplicationListener to become one of LibGDX's
starter classes.

A reference each to WorldController and WorldRenderer enables this class to
update and control the game's flow and also to render the game's current state to
the screen.

There is a TAG variable that holds a unique label derived from the class's name. It will
be used for any logging purposes. LibGDX's built-in logging facility requires you to
pass in a so-called tag name for every message to be logged. So, to stay consistent in
our code, we will simply add a tag variable to each class.

Chapter 3

[115]

Implementing the WorldController class
The following listing shows the first implementation of WorldController:

package com.packtpub.libgdx.canyonbunny.game;

public class WorldController {
 private static final String TAG =
 WorldController.class.getName();
 public WorldController () { }

 private void init () { }

 public void update (float deltaTime) { }
}

This class has an internal init() method that initializes it. Naturally, all the
initialization code could also be put into the constructor. However, it appears to
be very helpful in many ways when an initialization code is available in a separate
method. Whenever we need to reset an object in the game, we do not always want
or have to completely rebuild it, thereby saving a lot of performance. Also, this
approach can greatly reduce the interruptions by the Garbage Collector (GC).
Instead, we try to actively reuse existing objects, which is always a recommended
design goal to maximize performance and minimize memory usage. This is
especially true for smartphones such as Android with limited resources.

The update() method will contain the game logic and will be called several hundred
times per second. It requires a delta time so that it can apply updates to the game
world according to the fraction of time that has passed since the last rendered frame.

The configurations of our starter classes use vertical synchronization
(vsync) that is enabled by default. Using vsync will cap your frame
rate and likewise the calls to update() at a maximum of 60 frames
per second.

Configuring the Game

[116]

Implementing the WorldRenderer class
The following listing shows the first implementation of WorldRenderer:

package com.packtpub.libgdx.canyonbunny.game;

import com.badlogic.gdx.graphics.OrthographicCamera;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;
import com.badlogic.gdx.utils.Disposable;
import com.packtpub.libgdx.canyonbunny.util.Constants;

public class WorldRenderer implements Disposable {
 private OrthographicCamera camera;
 private SpriteBatch batch;
 private WorldController worldController;

 public WorldRenderer (WorldController worldController) { }
 private void init () { }

 public void render () { }
 public void resize (int width, int height) { }

 @Override public void dispose () { }
}

This class also has an internal init() method for its initialization. Furthermore, it
contains a render() method that will contain the logic to define in which order the
game objects are drawn over others. Whenever the screen size is changed, including
the event at the start of the program, resize() will spring into action and initiate the
required steps to accommodate the new situation.

The rendering is accomplished using an orthographic camera that is suitable for
two-dimensional projections. Fortunately, LibGDX comes with a ready-to-use
OrthographicCamera class to simplify our 2D rendering tasks. The SpriteBatch
class is the actual workhorse that draws all our objects with respect to the
camera's current settings (for example, position, zoom, and so on) to the screen.
As SpriteBatch implements LibGDX's Disposable interface, it is advisable to
always call its dispose() method to free the allocated memory when it is no longer
needed. We will do this in WorldRenderer by also implementing the Disposable
interface. This allows us to easily cascade the disposal process when dispose()
in CanyonBunnyMain is called by LibGDX. In this case, we will simply call the
WorldRenderer class' dispose() method, which in turn will call the SpriteBatch
class' dispose() method.

Notice that this class requires a reference to an instance of WorldController in its
constructor so that it will be accessible later on to render all the game world objects
that are managed by the controller.

Chapter 3

[117]

Putting it all together
We will now begin to fill in the stub methods with some life. The game loop is a
good starting point; it is our driving engine that keeps the game world updated
and rendered in a continuous way. After this, we will add some sprites and verify
that the updating and rendering mechanism is working fine. In order to manipulate
the world and game objects, controls are added to receive and react on user input.
Finally, the CameraHelper class will be implemented to allow us to move around
freely in the game world and to select a game object of our choice that the camera is
supposed to follow.

The additions and modifications in code listings will be highlighted.

Building the game loop
The game loop will reside in the CanyonBunnyMain class' render() method. Before
we can add the new code, we have to import the following packages to gain access to
some classes that we are going to use:

import com.badlogic.gdx.Application;
import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.graphics.GL20;

After this, add the following code to create():

 @Override
 public void create () {
 // Set Libgdx log level to DEBUG
 Gdx.app.setLogLevel(Application.LOG_DEBUG);
 // Initialize controller and renderer
 worldController = new WorldController();
 worldRenderer = new WorldRenderer(worldController);
 }

First, we set the log level of LibGDX's built-in logger to debug the mode in order
to print out everything to the console that might be logged during runtime. Do not
forget to change the log level to something more appropriate such as LOG_NONE or
LOG_INFO before publishing your game.

After this, we simply create a new instance of WorldController and WorldRenderer
and save them in their respective member variables.

Configuring the Game

[118]

To continuously update and render the game world to the screen, add the following
code to render():

 @Override
 public void render() {
 // Update game world by the time that has passed
 // since last rendered frame.
 worldController.update(Gdx.graphics.getDeltaTime());
 // Sets the clear screen color to: Cornflower Blue
 Gdx.gl.glClearColor(0x64/255.0f, 0x95/255.0f, 0xed/255.0f,
 0xff/255.0f);
 // Clears the screen
 Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);

 // Render game world to screen
 worldRenderer.render();
 }

The game world is incrementally updated using delta times. Luckily, LibGDX already
does the math and housekeeping behind this for us, so all we need to do is to query the
value by calling getDeltaTime() from the Gdx.graphics module and passing it to
update() of WorldController. After this, LibGDX is instructed to execute two direct
OpenGL calls using the Gdx.gl module. The first call glClearColor() sets the color
white to a light blue color using red, green, blue, and alpha (RGBA) values written
in a hexadecimal notation. Each color component needs to be expressed as a floating-
point value ranging between 0 and 1 with a resolution of 8 bits. This is the reason why
we are also dividing each color component by the value of 255.0f (8 bit = 28 = 256 =
0..255 distinct levels per color component).

Some prefer a hexadecimal notation, while others prefer a decimal
notation. Here is an example of setting the same color in a decimal
notation if you prefer to do so:

Gdx.gl.glClearColor(

 100/255.0f, 149/255.0f, 237/255.0f, 255/255.0f);

The second call glClear() uses the color white we set before to fill in the screen, and
therefore erase all of the screen's previous contents. The last step renders the new
frame of the updated game world to the screen.

Chapter 3

[119]

You should never reverse the order of code execution, as shown in
the preceding listing. For example, you could first try to render and
then update the game world. Now, in this case, the displayed game
world will always lag one frame behind of its actual state. The change
is very subtle and might even go unnoticed. This, of course, depends
on many factors. If it is an action game that requires fast reactions, it
will probably be much more noticeable as compared to a slow-paced
cardboard game with enough pauses to bridge the time gap until the
screen eventually shows the true game world state.

Next, add the following code to resize():

 @Override
 public void resize (int width, int height) {
 worldRenderer.resize(width, height);
 }

Whenever a resize event occurs, the resize() method of the ApplicationListener
interface will be called. As this event is related to rendering, we want it to be handled
in WorldRenderer; therefore, simply hand over the incoming values to its own
resize() method.

The same is almost true for the code to be added in dispose():

 @Override
 public void dispose() {
 worldRenderer.dispose();
 }

Whenever a dispose event occurs, it is passed on to the renderer.

There is one more tiny addition to improve the code for execution on Android
devices. As you learned in Chapter 2, Cross-platform Development – Build Once, Deploy
Anywhere, there are system events on Android to pause and resume its applications.
In case of an incoming pause or resume event, we also want the game to either
stop or continue updating our game world accordingly. To make this work, we
need a new member variable called paused. Hence, add the following line of
code to the class:

 private boolean paused;

Configuring the Game

[120]

Then, modify the create() and render()methods, as shown in the following
code snippet:

 @Override
 public void create () {
 // Set Libgdx log level to DEBUG
 Gdx.app.setLogLevel(Application.LOG_DEBUG);
 // Initialize controller and renderer
 worldController = new WorldController();
 worldRenderer = new WorldRenderer(worldController);
 // Game world is active on start
 paused = false;
 }

 @Override
 public void render () {
 // Do not update game world when paused.
 if (!paused) {
 // Update game world by the time that has passed
 // since last rendered frame.
 worldController.update(Gdx.graphics.getDeltaTime());
 }
 // Sets the clear screen color to: Cornflower Blue
 Gdx.gl.glClearColor(0x64/255.0f, 0x95/255.0f, 0xed/255.0f,
 0xff/255.0f);
 // Clears the screen
 Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);

 // Render game world to screen
 worldRenderer.render();
 }

Lastly, add the following code to pause() and resume() in order to let the game
respond to these events by setting paused to the correct state:

 @Override
 public void pause () {
 paused = true;
 }

 @Override
 public void resume () {
 paused = false;
 }

Chapter 3

[121]

We have now reached a stage in our development process where it is worthwhile
to take a quick look at whether everything works as expected. Run the game on a
platform of your choice to test it. The following is the screenshot of the game running
on Windows:

You should see a window entirely filled with a blue color. Seriously, the result is not
very exciting yet, nor does it resemble anything like a game. However, all the work
we have done so far gives us a foundation on which we can continue to build our
next extensions for the game.

Adding the test sprites
Let's now add some test code to try out the mechanism we built for updating and
rendering. We will do this by adding some simple test sprites that are procedurally
generated at runtime.

First, add the following imports to WorldController:

import com.badlogic.gdx.graphics.Pixmap;
import com.badlogic.gdx.graphics.Pixmap.Format;
import com.badlogic.gdx.graphics.Texture;
import com.badlogic.gdx.graphics.g2d.Sprite;
import com.badlogic.gdx.math.MathUtils;

Configuring the Game

[122]

After this, add the following code:

 public Sprite[] testSprites;
 public int selectedSprite;

 public WorldController () {
 init();
 }

 private void init () {
 initTestObjects();
 }

 private void initTestObjects() {
 // Create new array for 5 sprites
 testSprites = new Sprite[5];
 // Create empty POT-sized Pixmap with 8 bit RGBA pixel data
 int width = 32;
 int height = 32;
 Pixmap pixmap = createProceduralPixmap(width, height);
 // Create a new texture from pixmap data
 Texture texture = new Texture(pixmap);
 // Create new sprites using the just created texture
 for (int i = 0; i < testSprites.length; i++) {
 Sprite spr = new Sprite(texture);
 // Define sprite size to be 1m x 1m in game world
 spr.setSize(1, 1);
 // Set origin to sprite's center
 spr.setOrigin(spr.getWidth() / 2.0f, spr.getHeight() / 2.0f);
 // Calculate random position for sprite
 float randomX = MathUtils.random(-2.0f, 2.0f);
 float randomY = MathUtils.random(-2.0f, 2.0f);
 spr.setPosition(randomX, randomY);
 // Put new sprite into array
 testSprites[i] = spr;
 }
 // Set first sprite as selected one
 selectedSprite = 0;
 }

 private Pixmap createProceduralPixmap (int width, int height) {
 Pixmap pixmap = new Pixmap(width, height, Format.RGBA8888);
 // Fill square with red color at 50% opacity

Chapter 3

[123]

 pixmap.setColor(1, 0, 0, 0.5f);
 pixmap.fill();
 // Draw a yellow-colored X shape on square
 pixmap.setColor(1, 1, 0, 1);
 pixmap.drawLine(0, 0, width, height);
 pixmap.drawLine(width, 0, 0, height);
 // Draw a cyan-colored border around square
 pixmap.setColor(0, 1, 1, 1);
 pixmap.drawRectangle(0, 0, width, height);
 return pixmap;
 }

 public void update (float deltaTime) {
 updateTestObjects(deltaTime);
 }

 private void updateTestObjects(float deltaTime) {
 // Get current rotation from selected sprite
 float rotation = testSprites[selectedSprite].getRotation();
 // Rotate sprite by 90 degrees per second
 rotation += 90 * deltaTime;
 // Wrap around at 360 degrees
 rotation %= 360;
 // Set new rotation value to selected sprite
 testSprites[selectedSprite].setRotation(rotation);
 }
}

The new code adds two new member variables, testSprites and selectedSprite.
The first one holds instances of the Sprite objects. We chose to add five sprites for
our test. The second variable holds the index of the currently selected sprite that is
stored in the array. The Sprite class can be used to display textures. As we do not
have any textures added to our project yet, we will generate one for our test on the
fly using the Pixmap class. Pixmap holds the actual pixel data (in a map of bytes) to
represent any image. Its class provides some basic drawing methods that we will
use in this code to draw a 32 x 32 pixel-sized transparent red box with a yellow "X"
crossing it diagonally and a cyan border. The final pixel data is then put in a new
Texture object. This object is eventually attached to each new Sprite we create so
that it will show our handcrafted image when rendered.

Configuring the Game

[124]

The following is an image of the procedurally-generated test sprite:

Each sprite's size is set to 1 x 1 meter. Remember that we defined our visible
world size to be 5 x 5 meters at the beginning of this chapter. So, these sprites will
be exactly one-fifth of the size in our game world. This fact is very important to
understand because it is not the dimension of pixels in your image that defines the
size of your game objects. Everything needs to be defined in virtual meters that relate
to the visible game world.

The origin of the sprite is set to its center point. This allows us to rotate the sprites
around itself without an added translation effect. The position is set randomly between
two meters in negative and positive directions. Additionally, we set the index to 0 (the
first element in the array) for the initially selected sprite. In updateTestObjects(), we
refer to the selected sprite to rotate it on each update cycle. This allows us to easily see
which of the shown sprites is currently the selected one.

All that we have achieved so far is to add the logic to create and modify the game
world with its objects, but none of them are rendered to the screen yet. This is what
we will change next.

First, add one new line to also import the Sprite class in WorldRenderer, as follows:

import com.badlogic.gdx.graphics.g2d.Sprite;

After this, add the following code to WorldRenderer:

 public WorldRenderer (WorldController worldController) {
 this.worldController = worldController;
 init();
 }

 private void init () {
 batch = new SpriteBatch();
 camera = new OrthographicCamera(Constants.VIEWPORT_WIDTH,
 Constants.VIEWPORT_HEIGHT);
 camera.position.set(0, 0, 0);
 camera.update();
 }

Chapter 3

[125]

 public void render () {
 renderTestObjects();
}

 private void renderTestObjects() {
 batch.setProjectionMatrix(camera.combined);
 batch.begin();
 for(Sprite sprite : worldController.testSprites) {
 sprite.draw(batch);
 }
 batch.end();
 }

 public void resize (int width, int height) {
 camera.viewportWidth = (Constants.VIEWPORT_HEIGHT / height) *
 width;
 camera.update();
 }

 @Override
 public void dispose () {
 batch.dispose();
 }

The first action in WorldRenderer is to store the reference to WorldController
when it is instantiated. This is necessary for the renderer to access the game objects
that are managed by the controller. In init(), a new SpriteBatch object is created,
which will be used for all our rendering tasks. Before we can start to render objects,
we need to create a camera and define its viewport properly. The camera's viewport
defines the size of the captured game world it is looking at. It works basically the
same as a real camera. Obviously, when looking through a camera, you cannot see
anything else except the area it is currently pointed at. For example, if you want
to see what is to the left of it, you will have to move your camera to the left, which
holds true for both real and virtual cameras. We are using the width and height
defined in Constants to set the viewport.

In the event of a resized displaying area, resize() will be called by LibGDX. This
is our chance to adapt to the new display dimensions and redefine how the game
world should be rendered in this case. The code we added in resize() calculates
the aspect ratio between our desired visible world height and the currently available
display height. The answer is then multiplied with the available display width to
find the new viewport width for the camera. The resulting effect of this calculation is
that the world's visible height will always be kept to its full extent, while the world's
width will scale according to the calculated aspect ratio. It is very important to not
forget to call camera.update() whenever changes are made to the camera to let
them take effect.

Configuring the Game

[126]

The rendering of the game world takes place in the render() method. The
SpriteBatch class offers two methods called begin() and end(). These
methods are used to start and end a new batch of drawing commands. Before
any drawing command can be executed, it is mandatory to call begin(). In
renderTestObjects(), we loop through all the sprites by accessing the previously
stored reference to WorldController and calling the Sprite class' draw() method
to draw it. After all drawing commands have been executed, we end the batch with
the corresponding call to end(), which is just as mandatory as begin().

All done! You can now run the game to try it out. One of the sprites should be
constantly rotating around its center point, which tells us that this must be the
currently selected sprite.

Here is a screenshot of the game with the rendered test sprites running on Windows:

Adding the game world's debug controls
During development, having debug controls built into an application to be able to
directly manipulate certain behaviors can be a very powerful feature. Debug controls
are what gamers usually call game cheats, although this is a very elastic term. What
is certain is that it will make your life as a developer a lot easier and more fun too.
Just be sure to remove or disable all debug controls before publishing your game as
long as you do not intend them to be available to the user.

Chapter 3

[127]

There are two ways to handle the input events. We will make use of both of them
shortly to demonstrate when and how to use them. The debug controls we are going
to implement will allow us to do the following operations:

• Move a selected sprite into any of the four directions (left, right, up, or down)
• Reset the game world to its initial state
• Cycle through the list of sprites to select the other ones

The first of the three requirements is quite different to the other two in respect of
continuity. For example, when holding down a key for a move action, you would
expect this action to be repeatedly executed while the key is still being pressed.
In contrast, the other two actions are characterized by being nonrecurring events.
This is because you usually don't want to reset the game or cycle through the list of
sprites a hundred times per second when the respective key is pressed and even held
for a longer period of time.

Let's begin with the movement of a selected sprite that uses the continuous execution
approach. Add the following line of code to WorldController to import a new class
that holds all the available key constants that are supported by LibGDX:

import com.badlogic.gdx.Input.Keys;

Then, add the following code:

 public void update (float deltaTime) {
 handleDebugInput(deltaTime);
 updateTestObjects(deltaTime);
 }

 private void handleDebugInput (float deltaTime) {
 if (Gdx.app.getType() != ApplicationType.Desktop) return;

 // Selected Sprite Controls
 float sprMoveSpeed = 5 * deltaTime;
 if (Gdx.input.isKeyPressed(Keys.A)) moveSelectedSprite(
 -sprMoveSpeed, 0);
 if (Gdx.input.isKeyPressed(Keys.D))
 moveSelectedSprite(sprMoveSpeed, 0);
 if (Gdx.input.isKeyPressed(Keys.W)) moveSelectedSprite(0,
 sprMoveSpeed);
 if (Gdx.input.isKeyPressed(Keys.S)) moveSelectedSprite(0,
 -sprMoveSpeed);

Configuring the Game

[128]

 }

 private void moveSelectedSprite (float x, float y) {
 testSprites[selectedSprite].translate(x, y);
 }

The new code adds two new methods, handleDebugInput() and
moveSelectedSprite() to the class. The handleDebugInput() method is added as
the topmost call to ensure that the available user inputs are handled first before other
update logic is executed. Otherwise, similar to the order of updating and rendering
in the game loop, it might introduce some sort of lagging behind the user input and
response to such an event. This method also takes the delta time as an argument.

It is used for the same purpose as it is used in updateTestObjects()—to apply
incremental updates in relation to the time that has passed since the last frame was
rendered. As a measure of precaution, the handling of our debug controls is skipped
if the game is not run on a system that is identified as desktop by LibGDX. In this
way, if we were to only target Android for our game, we could leave all the code for
the debug controls in the game without having to worry about it any time later.

The Gdx.input module provides an isKeyPressed() method that can be used
to find out whether a key is (still) pressed. You have to use LibGDX's Keys class
for valid constants to receive the correct results. So what we basically did here
is ask whether any possible combination of the keys A, D, W, and S is currently
pressed. If a condition returns true, meaning that the key is really pressed,
moveSelectedSprite() is called. The method requires two values that indicate the
direction and magnitude of the desired motion that is to be applied to the selected
sprite. The magnitude here is sprMoveSpeed with a constant value of 5 meters
multiplied by the delta time, which means that our sprite will effectively be able to
move at a speed of 5 meters per second.

You can now start the game at the desktop and try it out. Press any of the keys
(A, D, W, or S) to move around the selected sprite in the game world.

The next controls to implement are the keys to reset the game world and to select the
next sprite. Once again, add another line of code to WorldController to import a
new class, as follows:

import com.badlogic.gdx.InputAdapter;

Chapter 3

[129]

The InputAdapter class is a default implementation of the InputProcessor interface
that provides various methods to handle input events. We want to use the adapter
variant instead of the InputProcessor. This is because it is a convenient way of not
being forced to implement all the interface methods when you know that you are
not going to implement most of them anyway. It would be perfectly valid, of course,
to still use the InputProcessor interface since it is just a matter of taste. Derive
WorldController from InputAdapter by changing the existing class like this:

public class WorldController extends InputAdapter {
 // ...
}

Then, add the following code snippet to the existing class:

 private void init () {
 Gdx.input.setInputProcessor(this);
 initTestObjects();
 }

The WorldController class serves a second purpose from now on by also being an
instance of the InputProcessor interface that can receive input events. LibGDX needs
to be told about where it should send the received input events. This is done by calling
setInputProcessor() from the Gdx.Input module. As WorldController is also our
InputProcessor, we can simply pass it into this method.

Now that LibGDX will send all the input events to our listener, we need to actually
implement an event handler for each event we are interested in. In our case, this will
only be the event where a key was released. These events are handled in keyUp().
Override the adapter's default implementation of this method with the following code:

 @Override
 public boolean keyUp (int keycode) {
 // Reset game world
 if (keycode == Keys.R) {
 init();
 Gdx.app.debug(TAG, "Game world resetted");
 }
 // Select next sprite
 else if (keycode == Keys.SPACE) {
 selectedSprite = (selectedSprite + 1) % testSprites.length;
 Gdx.app.debug(TAG, "Sprite #" + selectedSprite + " selected");
 }
 return false;
 }

Configuring the Game

[130]

The code will check whether keycode contains the code for either R or the Space bar.
If it is R, the initialization method init() of WorldController is called. This results
in an internal restart of the game as if the whole game was restarted. If the Space
bar was pressed, the index stored in selectedSprite is incremented by one. The
modulo operator (%) that is followed by the size of the array is used to wrap around
the incremented value if it exceeds the maximum value allowed.

This handler method is called only when there is an event. This is the
huge difference as compared to the previous way we were handling
user input. Both ways are correct, as it only depends on your situation
and how you need the input in question to be handled.

You can now start the game and try it out on your desktop. You should be able to
reset the game world with the R key. The test sprites should be shuffling around
on every executed reset action. Selecting another sprite using the Space bar should
make the previously selected one stop rotating and in turn, let the newly selected
sprite start rotating. You can also use the keys A, D, W, and S that will only move the
currently selected sprite one at a time.

Adding the CameraHelper class
We now want to implement a helper class called CameraHelper that will assist us
to manage and manipulate certain parameters of the camera we use to render the
game world.

Here is the implementation of CameraHelper:

package com.packtpub.libgdx.canyonbunny.util;

import com.badlogic.gdx.graphics.OrthographicCamera;
import com.badlogic.gdx.graphics.g2d.Sprite;
import com.badlogic.gdx.math.MathUtils;
import com.badlogic.gdx.math.Vector2;

public class CameraHelper {
 private static final String TAG = CameraHelper.class.getName();

 private final float MAX_ZOOM_IN = 0.25f;
 private final float MAX_ZOOM_OUT = 10.0f;

 private Vector2 position;
 private float zoom;

Chapter 3

[131]

 private Sprite target;

 public CameraHelper () {
 position = new Vector2();
 zoom = 1.0f;
 }

 public void update (float deltaTime) {
 if (!hasTarget()) return;

 position.x = target.getX() + target.getOriginX();
 position.y = target.getY() + target.getOriginY();
 }
 public void setPosition (float x, float y) {
 this.position.set(x, y);
 }
 public Vector2 getPosition () { return position; }

 public void addZoom (float amount) { setZoom(zoom + amount); }
 public void setZoom (float zoom) {
 this.zoom = MathUtils.clamp(zoom, MAX_ZOOM_IN, MAX_ZOOM_OUT);
 }
 public float getZoom () { return zoom; }

 public void setTarget (Sprite target) { this.target = target; }
 public Sprite getTarget () { return target; }
 public boolean hasTarget () { return target != null; }
 public boolean hasTarget (Sprite target) {
 return hasTarget() && this.target.equals(target);
 }

 public void applyTo (OrthographicCamera camera) {
 camera.position.x = position.x;
 camera.position.y = position.y;
 camera.zoom = zoom;
 camera.update();
 }
}

Configuring the Game

[132]

The helper class stores the current position and zoom value for the camera.
Furthermore, it can follow one game object at a time when set as a target by calling
setTarget(). The target can also be set to null to make the camera stop following
at all. To find out what the last set target is, you can call getTarget(). Usually, you
will want to do this for null checks or to find out whether the set target is a certain
sprite. These checks are wrapped into the hasTarget() method and can be used
either with or without a sprite argument to find out whether a certain target has
been set if any. The update() method should be called on every update cycle to let
it update the camera position whenever needed. The applyTo() method should
always be called at the beginning of the rendering of a new frame as it takes care of
updating the camera's attributes.

Adding the camera debug controls using
CameraHelper
The last step in this chapter will be to add the camera debug controls using the
CameraHelper class. This will greatly improve your debugging abilities just because
you can freely move around the game world, zoom in and out to/from game objects,
and follow any game object.

Before we can use CameraHelper, we have to import it in WorldController as
follows:

import com.packtpub.libgdx.canyonbunny.util.CameraHelper;

After this, add the following code to WorldController:

 public CameraHelper cameraHelper;

 private void init () {
 Gdx.input.setInputProcessor(this);
 cameraHelper = new CameraHelper();
 initTestObjects();
 }

 public void update (float deltaTime) {
 handleDebugInput(deltaTime);
 updateTestObjects(deltaTime);
 cameraHelper.update(deltaTime);
 }

Chapter 3

[133]

 @Override
 public boolean keyUp (int keycode) {
 // Reset game world
 if (keycode == Keys.R) {
 init();
 Gdx.app.debug(TAG, "Game world resetted");
 }
 // Select next sprite
 else if (keycode == Keys.SPACE) {
 selectedSprite = (selectedSprite + 1) % testSprites.length;
 // Update camera's target to follow the currently
 // selected sprite
 if (cameraHelper.hasTarget()) {
 cameraHelper.setTarget(testSprites[selectedSprite]);
 }
 Gdx.app.debug(TAG, "Sprite #" + selectedSprite + "
 selected");
 }
 // Toggle camera follow
 else if (keycode == Keys.ENTER) {
 cameraHelper.setTarget(cameraHelper.hasTarget() ? null :
 testSprites[selectedSprite]);
 Gdx.app.debug(TAG, "Camera follow enabled: " +
 cameraHelper.hasTarget());
 }
 return false;
 }

The WorldController class now has an instance of CameraHelper that is initialized
in init() and appended at the end of update(). Remember to continuously
call update() of CameraHelper on every update cycle to ensure that its internal
calculations are also performed. In the keyUp() method, we add two new
functionalities. The first one is that the target of the camera helper is updated
according to a newly selected sprite. Secondly, when the Enter key is pressed, the
target is toggled on and off. Additionally, add the following code to WorldRenderer:

 public void renderTestObjects () {
 worldController.cameraHelper.applyTo(camera);
 batch.setProjectionMatrix(camera.combined);
 batch.begin();
 for(Sprite sprite : worldController.testSprites) {
 sprite.draw(batch);
 }
 batch.end();
 }

Configuring the Game

[134]

The applyTo() method should be called on each frame right at the beginning in
the renderTestObjects() method of WorldRenderer. It will take care of correctly
setting up the camera object that is passed.

You can now start the game on your desktop and try it out. To enable the camera
follow feature, simply press the Enter key to toggle the state. A message is also
logged to the console that informs you about the current state it is in. When the
camera follow feature is enabled, use the A, D, W, and S keys to move the selected
sprite. However, the difference now is that the camera is following you to every
location until the camera follow feature is disabled again.

The last change to the code deals with adding a lot of new keys to control the camera
in various ways.

Add the following code to WorldController:

 private void handleDebugInput (float deltaTime) {
 if (Gdx.app.getType() != ApplicationType.Desktop) return;

 // Selected Sprite Controls
 float sprMoveSpeed = 5 * deltaTime;
 if (Gdx.input.isKeyPressed(Keys.A)) moveSelectedSprite(
 -sprMoveSpeed, 0);
 if (Gdx.input.isKeyPressed(Keys.D))
 moveSelectedSprite(sprMoveSpeed, 0);
 if (Gdx.input.isKeyPressed(Keys.W)) moveSelectedSprite(0,
 sprMoveSpeed);
 if (Gdx.input.isKeyPressed(Keys.S)) moveSelectedSprite(0,
 -sprMoveSpeed);

 // Camera Controls (move)
 float camMoveSpeed = 5 * deltaTime;
 float camMoveSpeedAccelerationFactor = 5;
 if (Gdx.input.isKeyPressed(Keys.SHIFT_LEFT)) camMoveSpeed *=
 camMoveSpeedAccelerationFactor;
 if (Gdx.input.isKeyPressed(Keys.LEFT)) moveCamera(-camMoveSpeed,
 0);
 if (Gdx.input.isKeyPressed(Keys.RIGHT)) moveCamera(camMoveSpeed,
 0);
 if (Gdx.input.isKeyPressed(Keys.UP)) moveCamera(0, camMoveSpeed);
 if (Gdx.input.isKeyPressed(Keys.DOWN)) moveCamera(0,
 -camMoveSpeed);
 if (Gdx.input.isKeyPressed(Keys.BACKSPACE))
 cameraHelper.setPosition(0, 0);

Chapter 3

[135]

 // Camera Controls (zoom)
 float camZoomSpeed = 1 * deltaTime;
 float camZoomSpeedAccelerationFactor = 5;
 if (Gdx.input.isKeyPressed(Keys.SHIFT_LEFT)) camZoomSpeed *=
 camZoomSpeedAccelerationFactor;
 if (Gdx.input.isKeyPressed(Keys.COMMA))
 cameraHelper.addZoom(camZoomSpeed);
 if (Gdx.input.isKeyPressed(Keys.PERIOD)) cameraHelper.addZoom(
 -camZoomSpeed);
 if (Gdx.input.isKeyPressed(Keys.SLASH)) cameraHelper.setZoom(1);
 }

 private void moveCamera (float x, float y) {
 x += cameraHelper.getPosition().x;
 y += cameraHelper.getPosition().y;
 cameraHelper.setPosition(x, y);
 }

There are two new code blocks to control the moving and zooming features of the
camera in handleDebugInput(). They look and also work similar to the block above
them that deals with the controls for the selected sprite. The keys are checked for
their state and if pressed, the respective action is taken.

The camera controls to move are as follows:

• The arrow keys left, right, up, and down control the movement of the camera
• The magnitude of motion is set to 500 percent when the Shift key is pressed
• Pressing the Backspace key resets the camera position to the origin (0, 0) of the

game world

The camera controls to zoom are as follows:

• The comma (,) and period (.) keys control the zoom level of the camera
• The magnitude of motion is set to 500 percent when the Shift key is pressed
• The forward slash (/) key resets the zoom level to 100 percent (the original

position)

The moveCamera() method is used to execute relative movements of the camera
similar to what moveSelectedSprite() is doing by calling sprite's translate()
method.

Configuring the Game

[136]

Summary
In this chapter, you learned how to set up the Canyon Bunny project. We used an
UML class diagram to structure the game into manageable and logical pieces. The
first classes were implemented to lay the foundation for later extensions to the game.
The discussion about the implementation details took place at a gradual and steady
pace so that you could learn from the development process as a whole instead of
only talking about accomplished facts.

In the next chapter, we will gather all the resources (assets) needed for Canyon
Bunny, including graphics, audio files, and level data. You will also learn how to
prepare data for use in our game.

Gathering Resources
In this chapter, we are going to gather and prepare the resources for Canyon Bunny
to spice up the visual appearance of the game. We will do this using a collection
of image files that have been created beforehand. You will learn how to replace
the Android default launcher icon that comes with every new Android project.
Additionally, you will be introduced to the technique of texture atlases and also
learn how to create and use them in conjunction with LibGDX.

You will learn why it is important to keep track of your assets at runtime, and how
to make it an almost hassle-free task by delegating most of it to LibGDX. Hassle-
free means that you will not have to worry about keeping track when unloading or
reloading your assets becomes necessary. Instead, LibGDX only needs to know what
assets should be loaded to manage them transparently for you in the background.

Organizing the access to the loaded assets is another important topic. You will learn
how to create your own Assets class that allows convenient and structured access
from anywhere in the game code.

After this, you will put everything together. To verify that the images of the game
objects are loaded and work just fine, you will replace the test sprite texture from
Chapter 3, Configuring the Game, with a random selection of some of the loaded images.

Finally, you will learn how to handle the level data. This will enable you to create
your own game world and populate it with game objects to your liking.

To sum up, in this chapter, we will:

• Prepare the resources for Canyon Bunny
• Organize the access to our resources in our code
• Understand the level data
• Run the game to test our resources

Gathering Resources

[138]

Setting up a custom Android application
icon
First, we want to replace the default launcher icon that came with the generated
Canyon Bunny Android project. There is a special directory called res that resides
in the Android CanyonBunny-android project. It contains resource files that are
exclusively available to the Android application.

You will see the following four folders starting with drawable in their names:

• drawable-ldpi (low-density screen)
• drawable-mdpi (medium-density screen)
• drawable-hdpi (high-density screen)
• drawable-xdpi (extra high-density screen)

These folders are used by Android to support different screen sizes and
resolutions resulting in different screen densities. For the sake of simplicity, we
will ignore the whole topic of screen support and create a special common folder
called drawable. Android will use the contents from this folder regardless of the
screen density detected.

The following screenshot shows the default launcher icon called ic_launcher.png
that our application is currently using:

Now, delete all the four files of the default launcher icon from drawable-ldpi,
drawable-mdpi, drawable-hdpi, and drawable-xdpi.

The following image is what we want to use for the application icon of
Canyon Bunny:

Chapter 4

[139]

Copy the new ic_launcher.png icon to the common drawable folder. As we have
not changed the icon's name, it will work without any additional changes. Also, do
not forget to change the icon's reference in the AndroidManifest.xml file if you
want to rename it. The corresponding line should look like the following listing:

<application
 android:icon="@drawable/ic_launcher"
 ... />

The application icon is now replaced with our very own Canyon Bunny application
icon. The following screenshot shows the installed application on Google Nexus 4:

Gathering Resources

[140]

The support of different screens and resource sizes is a complex topic of its own,
which is beyond the scope of this book. For more information, check out the
official Android Developer websites at http://developer.android.com/guide/
practices/screens_support.html and http://developer.android.com/
design/style/iconography.html.

Setting up a custom iOS application icon
Unlike Android devices, the iOS application icons require specific names and
sizes to target specific devices. For example, to target an iPad device, the icon
should be named Icon-72.png and should be of size 72x72. If not given, the iOS
will scale the available icons to fill in the targeted device. The same concept goes
for launch images.

Now, open the data folder in our CanyonBunny-robovm project. The following is a
screenshot of the data folder:

Now, delete all the icon images and copy the Canyon Bunny icon to the data
folder. Also, remove the reference to Icon-72.png from the Info.plist.xml under
<key>CFBundleIconFiles</key>, as shown here:

<array>
 <string>Icon</string>
</array>

If you have more icons to add, then you can also update them in the Info.plist.
xml file. However, for the launch images, you don't need to add them in the Info.
plist.xml file as it will be automatically detected by the device based on the name.

http://developer.android.com/guide/practices/screens_support.html
http://developer.android.com/guide/practices/screens_support.html
http://developer.android.com/design/style/iconography.html
http://developer.android.com/design/style/iconography.html

Chapter 4

[141]

The support for different screens and launch image sizes is
a complex topic. For more information, check out the official
Apple Developer website at https://developer.apple.
com/library/ios/documentation/userexperience/
conceptual/mobilehig/IconMatrix.html#//apple_
ref/doc/uid/TP40006556-CH27-SW1.

Creating the texture atlases
Before we start creating a texture atlas, let's first find out what this technique is
actually good for. A texture atlas (also known as a sprite sheet) is just an ordinary
image file that can be rendered to the screen like any other image. So what makes
it so special? It is used as a container image that holds several smaller subimages
arranged in such a way that they do not overlap each other and it still fits into the
size of the texture atlas. This way, we can greatly reduce the amount of textures
that are sent to the graphics processor, which will significantly improve the overall
render performance. The texture atlases are especially useful for games where a lot of
small and different images are rendered at once. The reason for this is that switching
between different textures is a very costly process. Each time you change textures
while rendering, new data needs to be sent to the video memory. If you use the same
texture for everything, this can be avoided.

The texture atlases will not only increase the frame rate of the game significantly,
but will also allow us to use subimages as Non-Power-Of-Two (NPOT) textures.
The reason why our subimages can be of arbitrary size is that the power-of-two rule
only applies to textures that are loaded into the video memory. Therefore, when we
actually render a subimage, we are still using the texture atlas, which is a power-of-
two texture as our pixel source; however, we will only use a certain part of it as our
final texture to draw something.

Due to the default support of OpenGL ES 2.0, LibGDX will support
NPOT textures or images; however, it will take more time to render than
a POT texture, depending on the underlying hardware. Nevertheless,
it is more efficient to store the subimages in a texture atlas, which is
treated as a single unit by the graphics hardware. Also, it can be faster
to bind one large texture once than to bind many smaller images.

https://developer.apple.com/library/ios/documentation/userexperience/conceptual/mobilehig/IconMatrix.html#//apple_ref/doc/uid/TP40006556-CH27-SW1
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/mobilehig/IconMatrix.html#//apple_ref/doc/uid/TP40006556-CH27-SW1
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/mobilehig/IconMatrix.html#//apple_ref/doc/uid/TP40006556-CH27-SW1
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/mobilehig/IconMatrix.html#//apple_ref/doc/uid/TP40006556-CH27-SW1

Gathering Resources

[142]

Take a look at the following screenshot that shows all the images of our game objects
in separate image files:

You might wonder why the cloud and mountain images in the preceding screenshot
are filled with plain white color. This is because the images contain only white and
transparent pixels, so it is indeed hard or rather impossible to make out the actual
image information on a white background, as it usually appears in print media.
Therefore, all the images of our game objects that follow will be shown with an
added gray background to rectify this small display issue. However, the actual
image files still remain unchanged, as shown in the preceding screenshot.

LibGDX has a built-in TexturePacker that we will use to automate the process of
creating and refreshing the texture atlas for Canyon Bunny. We will put all the
game's object images shown in the preceding screenshot into the atlas to get the
following result:

Chapter 4

[143]

The images have been nicely arranged on the atlas without any overlap. The purple
border around each image is a debugging feature of LibGDX's TexturePacker that
can be toggled on and off. It can be used to visualize the true size of your subimages,
which otherwise can be difficult to see whether the subimages use transparency.
Good examples of these are the cloud and mountain images in our texture atlas.
Also, when padding is enabled, which is the default by using two pixels for each
direction, you would barely see the difference without the enabled debugging lines.

Gathering Resources

[144]

Padding your images inside a texture atlas helps you avoid an issue
called texture bleeding (also known as pixel bleeding) while texture
filtering and/or mipmapping are enabled.
The texture filter mode can be set to smooth pixels of a texture. This is
basically done by looking for the pixel information that is next to the
current pixel that is to be smoothened. The problem here is that if there
is a pixel of a neighboring subimage, its pixels can also be taken into
account, which results in an unwanted effect of pixels bleeding from
one subimage to another.

For the TexturePacker, the following preparations need to be done beforehand as it is
a so-called extension to LibGDX that is not a part of the core functionality:

1. Go to C:\libgdx\ and extract extensions/gdx-tools.jar from the
libgdx-1.2.0.zip file you downloaded earlier in Chapter 1, Introduction to
LibGDX and Project Setup.

2. Put the gdx-tools.jar file in the CanyonBunny-desktop/libs subfolder.
Next, the extension has to be added to Build Path in Eclipse.

3. In Eclipse, right-click on the CanyonBunny-desktop project and navigate to
Build Path | Configure Build Path | Libraries.

4. Then, click on the Add JARs button, which will open a new window titled
JAR selection that shows a list of projects.

5. In this list, search for the CanyonBunny-desktop project and expand it until
you reach the libs subfolder.

6. Finally, select the newly added gdx-tools.jar extension and confirm each
opened window by clicking on their OK buttons.

For Gradle users, adding gdx-tools is easy; we just need to add the
following highlighted line to the build.gradle file in C:/libgdx:

project(":desktop") {

…

compile "com.badlogic.gdx:gdx-tools:$gdxVersion"

Make sure that you are editing under the section
project(":desktop"). After editing, we need to refresh our
dependencies. To do this, right-click on the CanyonBunny-desktop
project and go to the Refresh All option in the Gradle menu. Make sure
that you are connected to the Internet because Eclipse will download the
relevant dependencies.

Chapter 4

[145]

We will now add the code to automate the generation process of the texture atlas.
Perform the following steps:

1. Create a new folder called assets-raw under CanyonBunny-desktop. Also,
add a subfolder named assets-raw/images. This is where we put our image
files to be included in the texture atlas.

2. Next, open the starter class for CanyonBunny-desktop and add the following
two lines of code to import the TexturePacker and its Settings class:
import com.badlogic.gdx.tools.texturepacker.TexturePacker;
import com.badlogic.gdx.tools.texturepacker.TexturePacker.
Settings;

3. Then, apply the following changes to Main.java in the CanyonBunny-
desktop project:
 public class Main {
 private static boolean rebuildAtlas = true;
 private static boolean drawDebugOutline = true;

 public static void main(String[] args) {
 if (rebuildAtlas) {
 Settings settings = new Settings();
 settings.maxWidth = 1024;
 settings.maxHeight = 1024;
 settings.duplicatePadding = false;
 settings.debug = drawDebugOutline;
 TexturePacker.process(settings, "assets-
raw/images", "../CanyonBunny-android/assets/images",
"canyonbunny.pack");
 }

 LwjglApplicationConfiguration cfg = new
LwjglApplicationConfiguration();
 cfg.title = "CanyonBunny";
 cfg.width = 800;
 cfg.height = 480;

 new LwjglApplication(new CanyonBunnyMain(), cfg);
 }
}

Gathering Resources

[146]

The added code provides a convenient way to rebuild the texture atlas every time the
game is run on the desktop. The rebuildAtlas variable controls whether the atlas
is rebuilt on startup or not by setting it to true or false. Using the TexturePacker
class to create the texture atlas is pretty straightforward. It contains a static method
called process() that takes an optional settings object to configure the way the
texture atlas will be generated as well as the three parameters that are mandatory.
The first mandatory parameter is the source folder that contains our image files.
The second one is the destination folder where the generated texture atlas should be
created. Finally, the third parameter is the name of the description file that is needed
to load and use the texture atlas.

The source folder (in our example, assets-raw/images) is specified relative to the
desktop project as the TexturePacker code is executed from here. The destination
folder (in our example, ../CanyonBunny-android/assets/images) is also specified
relative to the desktop project. However, the resulting texture atlas has to be put
into the assets folder of the Android project so that it becomes available to all
platform-specific projects. The description file (in our example, canyonbunny.pack)
will be created by TexturePacker and will contain all the information about all the
subimages, such as their location in the texture atlas, their size, and offsets.

However, for projects generated from Gradle, the project folders will have different
names, refer to the gdx-setup versus gdx-setup-ui section in Chapter 1, Introduction
to LibGDX and Project Setup. Hence, for targeting the assets folder inside the
Android project folder in a Gradle-based project, the destination path is ../
android/assets/images.

The maxWidth and maxHeight variables of the Settings instance define the
maximum dimensions (in pixels) for the texture atlas. Always make sure that a
single subimage does not exceed the maximum size of the atlas either in the width
or height or both dimensions. Padding the subimages in the atlas will reduce the
available size a little bit more, so make sure to take this factor into account too. The
debug variable controls whether the debug lines should be added to the atlas or not.
We use the drawDebugOutline variable to set the value to debug. The static variables
rebuildAtlas and drawDebugOutline are there just for our convenience to make
these two behavior controls stand out a bit more because we usually change these
variables every now and then while debugging our game.

Chapter 4

[147]

If the TexturePacker cannot fit all the subimages into a single texture, it
will automatically split them up into several texture atlases. However,
there is a chance that the subimages are distributed in an unfavorable
way between these atlases if it creates two textures that will be
switched between frequently, which in turn could have an impact on
render performance.
LibGDX's TexturePacker has a very smart feature to tackle this type
of problem. All you need to do is group the subimages in their own
subfolder in assets-raw. This way TexturePacker will create one
image file per subfolder that belongs to the texture atlas. You have to
use the full path to the subimage if you want to use this functionality;
for example, a subimage assets-raw/items/gold_coin.png
would be referenced as items/gold_coin.

Now you know how to create texture atlases in code. This approach mostly works
very well, but it is not very user friendly in terms of seeing the outcome directly
when a setting or an image is changed in the atlas. Fortunately, there is already a nice
tool called TexturePacker-GUI that has been developed by Aurélien Ribon. This
tool is directly designed for LibGDX to work with its TexturePacker.

Check out the official project website at https://code.google.com/p/libgdx-
texturepacker-gui/. You can also find more about the offline TexturePacker at
https://github.com/libgdx/libgdx/wiki/Texture-packer.

The following screenshot is taken from the project's website that shows the tool
in action:

https://code.google.com/p/libgdx-texturepacker-gui/
https://code.google.com/p/libgdx-texturepacker-gui/
https://github.com/libgdx/libgdx/wiki/Texture-packer

Gathering Resources

[148]

There is also a popular commercial tool called TexturePacker to create texture
atlases. This tool has been developed by Andreas Löw and is available for all
three major platforms. For more information, check out the official website at
http://www.codeandweb.com/texturepacker.

Loading and tracking assets
After making our assets, the next step is to allow our game to use them and load the
texture atlas. Loading an asset such as a texture can be as simple as the following
line of code:

 Texture texture = new
 Texture(Gdx.files.internal("texture.png"));

In the preceding example, we ask LibGDX to get an internal file handle to the
texture.png file. Invoking an internal file means that LibGDX has to resolve the
file's path by scanning the assets folder of the game. Then, the handle is passed
over as an argument to the constructor of the Texture class to instantiate a new
object of this type. This texture instance can now be directly rendered to the screen
with another line of code, as shown in the following listing:

 batch.draw(texture, x, y);

Obviously, working with assets is basically very easy. However, this matter becomes
a lot more complicated when we want to use several assets. It gets even worse if we
want to run the game on Android. As we have learned in earlier chapters, there are
pause and resume events that might involve a so-called context loss. When a context
loss occurs on Android, it means that the operating system has decided to forcefully
free the memory that was occupied with your loaded assets. Therefore, directly
accessing your assets after a context loss would immediately crash the resumed
game. To prevent these crashes, you need to reload your assets before accessing
them again. Furthermore, you should always free the memory when your game is
no longer using a certain asset by calling its dispose() method, as shown in the
following listing:

 texture.dispose();

http://www.codeandweb.com/texturepacker

Chapter 4

[149]

You probably already guessed that this is not going to be much fun as you have
to worry about all the housekeeping to load, reload, and unload while using lots
of assets, especially as these actions will add up very quickly with each new asset
that will be used. This is one of the reasons why LibGDX provides a manager class
for this task, which is called AssetManager. It allows you to delegate the work
of keeping a list of the loaded assets to the manager. The manager is also able to
asynchronously load new assets, which simply means that loading is done in the
background and therefore does not stop the updating and rendering to the screen.
This is a very useful functionality; for example, it allows you to render and update a
progress bar that shows the current loading status. Nonetheless, the actual loading of
our assets still has to be done on our own. For this reason, we are going to create our
own Assets class, which will also help us structure our loaded assets in logical units
and make them accessible from everywhere in the game code.

Organizing the assets
We will now create our own Assets class to organize and structure our assets. First,
add a new constant to the Constants class that points to the description file of the
texture atlas:

public class Constants {
 // Visible game world is 5 meters wide
 public static final float VIEWPORT_WIDTH = 5.0f;

 // Visible game world is 5 meters tall
 public static final float VIEWPORT_HEIGHT = 5.0f;
 // Location of description file for texture atlas
 public static final String TEXTURE_ATLAS_OBJECTS =
 "images/canyonbunny.pack";
}

Next, create a new file for the Assets class and add the following code:

package com.packtpub.libgdx.canyonbunny.game;

import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.assets.AssetDescriptor;
import com.badlogic.gdx.assets.AssetErrorListener;
import com.badlogic.gdx.assets.AssetManager;
import com.badlogic.gdx.graphics.g2d.TextureAtlas;
import com.badlogic.gdx.utils.Disposable;
import com.packtpub.libgdx.canyonbunny.util.Constants;

public class Assets implements Disposable, AssetErrorListener {

Gathering Resources

[150]

 public static final String TAG = Assets.class.getName();

 public static final Assets instance = new Assets();

 private AssetManager assetManager;

 // singleton: prevent instantiation from other classes
 private Assets () {}

 public void init (AssetManager assetManager) {
 this.assetManager = assetManager;
 // set asset manager error handler
 assetManager.setErrorListener(this);
 // load texture atlas
 assetManager.load(Constants.TEXTURE_ATLAS_OBJECTS,
 TextureAtlas.class);
 // start loading assets and wait until finished
 assetManager.finishLoading();
 Gdx.app.debug(TAG, "# of assets loaded: "
 + assetManager.getAssetNames().size);
 for (String a : assetManager.getAssetNames())
 Gdx.app.debug(TAG, "asset: " + a);
 }

 @Override
 public void dispose () {
 assetManager.dispose();
 }

 @Override
 public void error (String filename, Class type,
 Throwable throwable) {
 Gdx.app.error(TAG, "Couldn't load asset '"
 + filename + "'", (Exception)throwable);
 }

 @Override
 public void error(AssetDescriptor asset, Throwable throwable) {
 Gdx.app.error(TAG, "Couldn't load asset '" +
asset.fileName + "'", (Exception)throwable);

 }
}

Chapter 4

[151]

There is quite a lot going on in the preceding code, so let's break it down. First, notice
that this class is using a design pattern called singleton. Simply put, a singleton class
ensures that only a single instance of it will exist; hence the name singleton. This
makes sense here because there is no reason to have multiple instances that point to
the same resources. A singleton is implemented by defining a private constructor
that prevents other classes from instantiating it. The instance variable holds the
actual instance of the class. It uses the public static final modifiers that allows
read-only access and is the one and only way to access this class. The staticness of
this class allows us to access it from virtually anywhere in the game code without
having to pass over its reference to every method where we will use it.

A singleton can be implemented to do either lazy or eager initialization.
Using lazy initialization means that the instance is created only when it
is requested for the very first time. Any subsequent requests will always
yield the exact same instance. In contrast, eager initialization means that
the instance is directly created on startup.
For more information, refer to the book Design Patterns: Elements of
Reusable Object-Oriented Software, Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides, Addison Wesley.

The init() method will be called at the very beginning when the game starts. It
will initialize the asset manager, which in turn will load all the assets. Loading the
assets using the asset manager is simply done by calling its load() method. The
method takes the path and filename as the first argument and the corresponding
class to instantiate as the second argument. The loading process is started by calling
finishLoading(). This is a blocking method that waits until all the assets are fully
loaded. After that, we always print the number of loaded assets and their names to
the console to easily check whether it is working the way we expect it to work.

The Assets class implements the Disposable and AssetErrorListener interfaces.
As we know that assets should always be unloaded when they are no longer needed,
we have implemented the dispose() method to delegate these requests to the asset
manager. The error() method will be called whenever an error has occurred in
the asset manager. However, before the asset manager calls our implementation
of the interface, it needs to be told about the class that implements the
AssetErrorListener interface by calling the asset manager's setErrorListener()
method. We are using the error() method to print error logs only to the console.
You could add additional code here to handle errors and therefore avoid the game
from crashing in this case.

Gathering Resources

[152]

The next step is to retrieve our subimages from the loaded texture atlas. In general,
this is done by calling the atlas's findRegion() method, which takes the asset's name
as an argument. The method returns an object of the AtlasRegion class that contains
information about the subimage found and also some additional information about
how it is stored in the atlas.

Now, for example, if we wanted to find a subimage that is stored in assets/my_
image.png, we will write the following code:

 atlas.findRegion("my_image");

Note that the prefix assets/ is always omitted just like any file extension, such as
.png. However, the subfolder needs to be specified. The method will silently return
null if the lookup fails. Therefore, be sure to double-check your spelling of the
filename in this case. One very important fact to know about this method is that the
lookup of a subimage is an expensive function call.

Using atlas.findRegion() in render() will affect performance;
so, it is highly recommended to cache the results after the initial
lookup to avoid severe performance issues.

Add the following line of code to Assets to import the AtlasRegion class:

import com.badlogic.gdx.graphics.g2d.TextureAtlas.AtlasRegion;

The following is a step-by-step implementation of several smaller inner classes of the
Assets class. These classes allow us to structure (or group) the subimages in logical
units and also to permanently store (that is, cache) the looked up references.

We will begin with the player character and will call its class AssetBunny. It contains
a member variable called head that holds the reference to the texture atlas subimage
that originates from the bunny_head.png file. The lookup is done inside the
constructor of the inner class. The constructor takes a reference of the corresponding
atlas in which it will find the atlas region it wants. You can see the bunny head in the
following screenshot:

Chapter 4

[153]

Add the following inner class to the Assets class:

public class AssetBunny {
 public final AtlasRegion head;

 public AssetBunny (TextureAtlas atlas) {
 head = atlas.findRegion("bunny_head");
 }
}

Next is the rock game object that represents the platform in our game world. It
consists of two image files: rock_edge.png and rock_middle.png. Both these
following images get their own variable in the inner class called AssetRock:

Add the following inner class to the Assets class:

public class AssetRock {
 public final AtlasRegion edge;
 public final AtlasRegion middle;

 public AssetRock (TextureAtlas atlas) {

Gathering Resources

[154]

 edge = atlas.findRegion("rock_edge");
 middle = atlas.findRegion("rock_middle");
 }
}

Next is the gold coin. Its original filename is item_gold_coin.png and its inner class
is named AssetGoldCoin.

Add the following inner class to the Assets class:

public class AssetGoldCoin {
 public final AtlasRegion goldCoin;

 public AssetGoldCoin (TextureAtlas atlas) {
 goldCoin = atlas.findRegion("item_gold_coin");
 }
}

Next is the feather item. Its original filename is item_feather.png and its inner class
is named AssetFeather.

Add the following inner class to the Assets class:

public class AssetFeather {
 public final AtlasRegion feather;

 public AssetFeather (TextureAtlas atlas) {
 feather = atlas.findRegion("item_feather");
 }
}

Chapter 4

[155]

Next is the last inner class called AssetLevelDecoration. It contains all the
decorative images that only add to the look and feel of the level. This collection
of assets consists of three differently shaped clouds (cloud01.png, cloud02.png,
and cloud03.png), a very wide mountain that spans across two image halves
(mountain_left.png and mountain_right.png), and an overlay (water_overlay.
png) that will be stretched along the x axis to give the illusion of water existing
everywhere in the game world.

The overlay image for the water could have been shrunk down to
a total width of one pixel because the content repeats on the x axis
along which we plan to stretch it anyway. Furthermore, it makes no
difference to the render performance how far an image is stretched.
However, it is easier to show you an image in a printed book that is
wider than one pixel.

Add the following inner class to the Assets class:

public class AssetLevelDecoration {
 public final AtlasRegion cloud01;
 public final AtlasRegion cloud02;
 public final AtlasRegion cloud03;
 public final AtlasRegion mountainLeft;
 public final AtlasRegion mountainRight;
 public final AtlasRegion waterOverlay;

 public AssetLevelDecoration (TextureAtlas atlas) {
 cloud01 = atlas.findRegion("cloud01");
 cloud02 = atlas.findRegion("cloud02");
 cloud03 = atlas.findRegion("cloud03");
 mountainLeft = atlas.findRegion("mountain_left");
 mountainRight = atlas.findRegion("mountain_right");
 waterOverlay = atlas.findRegion("water_overlay");
 }
}

So far, we have established a way to group our assets in logic units, which also cache
their references after their initial lookup. What is still missing is the code that uses
our new inner classes.

Add the following two imports to the Assets class:

import com.badlogic.gdx.graphics.Texture;
import com.badlogic.gdx.graphics.Texture.TextureFilter;

Gathering Resources

[156]

Then, add the following new code to the same class:

public AssetBunny bunny;
public AssetRock rock;
public AssetGoldCoin goldCoin;
public AssetFeather feather;
public AssetLevelDecoration levelDecoration;

public void init (AssetManager assetManager) {
 this.assetManager = assetManager;
 // set asset manager error handler
 assetManager.setErrorListener(this);
 // load texture atlas
 assetManager.load(Constants.TEXTURE_ATLAS_OBJECTS,
 TextureAtlas.class);
 // start loading assets and wait until finished
 assetManager.finishLoading();

 Gdx.app.debug(TAG, "# of assets loaded: "
 + assetManager.getAssetNames().size);
 for (String a : assetManager.getAssetNames())
 Gdx.app.debug(TAG, "asset: " + a);
 }

 TextureAtlas atlas =
 assetManager.get(Constants.TEXTURE_ATLAS_OBJECTS);

 // enable texture filtering for pixel smoothing
 for (Texture t : atlas.getTextures()) {
 t.setFilter(TextureFilter.Linear, TextureFilter.Linear);
 }

 // create game resource objects
 bunny = new AssetBunny(atlas);
 rock = new AssetRock(atlas);
 goldCoin = new AssetGoldCoin(atlas);
 feather = new AssetFeather(atlas);
 levelDecoration = new AssetLevelDecoration(atlas);
}

Chapter 4

[157]

Now, the Assets class has one member variable for each instance of our inner
classes. In the init() method, we first retrieve the reference to the loaded texture
atlas by calling the get() method of the asset manager. Next, we iterate through all
textures of the atlas (which currently is just one) and set the texture filter mode to
TextureFilter.Linear. This will enable smoothing of the pixels when the texture
is rendered. The reason why we pass this constant value twice to the method is
because the mode has to be set for both cases, minification and magnification, where
a rendered texture is either scaled down or up from its original size. The default
texture filter mode is set to TextureFilter.Nearest for both cases.

The following screenshot is an example to compare the difference between both
the modes:

Finally, we create each instance of our inner classes and pass them the reference to
the texture atlas.

Testing the assets
We are now ready to test our Assets class with the rest of the already built
game code.

We need to add the following two imports to CanyonBunnyMain:

import com.badlogic.gdx.assets.AssetManager;
import com.packtpub.libgdx.canyonbunny.game.Assets;

After this, we add the calls to load, reload, and unload our assets with the following
changes to the code:

@Override
public void create () {
 // Set Libgdx log level to DEBUG
 Gdx.app.setLogLevel(Application.LOG_DEBUG);
 // Load assets
 Assets.instance.init(new AssetManager());

Gathering Resources

[158]

 // Initialize controller and renderer
 worldController = new WorldController();
 worldRenderer = new WorldRenderer(worldController);
}

@Override
public void resume () {
 Assets.instance.init(new AssetManager());
 paused = false;
}

@Override
public void dispose () {
 worldRenderer.dispose();
 Assets.instance.dispose();
}

In create(), we instantiate a new AssetManager object and pass it to the init()
method of our Assets class. Note that we initialized AssetManager before
WorldController is created so that our assets are loaded and ready to be accessed.
Remember, an instance of our class does already exist and can be directly accessed
through the instance variable. In resume(), we actually do the exact same that we
did in create(); as for Android, the context loss requires all assets to be reloaded
when resumed. Finally in dispose(), we call the dispose() method of our Assets
class, which in turn delegates this request to its internally stored instance of the
asset manager.

The final change will be to replace our test sprites with the ones from the texture
atlas. Add the following two imports to WorldController:

import com.badlogic.gdx.graphics.g2d.TextureRegion;
import com.badlogic.gdx.utils.Array;

After this, apply the modifications shown in the following code:

private void initTestObjects () {
 // Create new array for 5 sprites
 testSprites = new Sprite[5];
 // Create a list of texture regions
 Array<TextureRegion> regions = new Array<TextureRegion>();
 regions.add(Assets.instance.bunny.head);
 regions.add(Assets.instance.feather.feather);
 regions.add(Assets.instance.goldCoin.goldCoin);
 // Create new sprites using a random texture region

Chapter 4

[159]

 for (int i = 0; i < testSprites.length; i++) {
 Sprite spr = new Sprite(regions.random());
 // Define sprite size to be 1m x 1m in game world
 spr.setSize(1, 1);
 // Set origin to sprite's center
 spr.setOrigin(spr.getWidth() / 2.0f,
 spr.getHeight() / 2.0f);
 // Calculate random position for sprite
 float randomX = MathUtils.random(-2.0f, 2.0f);
 float randomY = MathUtils.random(-2.0f, 2.0f);
 spr.setPosition(randomX, randomY);
 // Put new sprite into array
 testSprites[i] = spr;
 }
 // Set first sprite as selected one
 selectedSprite = 0;
}

We are still creating five sprites in initTestObjects() as before. The difference is
that we are now using the bunny head, feather, and gold coin texture regions. To
make our test a little bit more interesting, we create a dynamic array called regions
that holds all the texture regions we want to use. Then, inside the setup loop, we
create a Sprite instance with a randomly picked texture region from the dynamic
array. This results in a random number of similar looking objects in the test scene.

You can now run the game to test it out. The following is a screenshot that shows a
possible outcome due to the randomness that we built in:

Gathering Resources

[160]

As you can see, we left the debug outlines enabled. You can easily disable them by
just flipping the drawDebugOutlines variable from true to false in the Main class
of the desktop project. Do not forget to set rebuildAtlas to true for at least one run
of the desktop project to refresh the texture atlas.

Sometimes, your changes to the texture atlas might appear to have
no effect at all. If this is the case, Eclipse might not have detected
a change to the texture atlas file and therefore did not rebuild the
project binaries. A second restart of the game does help from time to
time. Alternatively, you can always force Eclipse to rebuild the project
by navigating to the Clean option in the Project menu to clean the
project from all compiled files.

The resulting scene should now look similar to the following screenshot:

Great! We now have super cool graphics in our game. We can still do all the other
things we built earlier, such as moving the camera, selecting an object and moving it,
following an object, or zooming in and out.

Chapter 4

[161]

Handling level data
It's now time to think about how we can handle level data to lay out our levels,
put objects into them at certain positions, define a starting position, and so on. This
usually implies a lot of work before visible results will appear because creating
levels require some kind of a tool to create, modify, save, and load their level data.
Furthermore, before we can even load or save levels, we will have to define an
appropriate file format to describe the data of a level.

Luckily, there is an easy route as long as we keep our requirements simple enough.
We will not have to build our own level editor. Instead, we will use a drawing
program such as GNU Image Manipulation Program (GIMP) (http://www.gimp.
org/) or Paint.NET (http://www.getpaint.net/) to draw an image, where each
pixel's color represents an object that is still to be defined. The position of a pixel
in this image will also represent the position in our game world. Job done! We just
defined our level format in a somewhat creative way by reusing an already existing
format and overlaying it with our way of interpreting the content.

The following is a level diagram to give you a better idea of how this works:

As we are dealing here with an image that is not going to be rendered to the screen,
we will not add it to the texture atlas. Therefore, we are bound to the power-of-two
rule once again, so be sure to keep this in mind. In the preceding screenshot, the
dimension of the level is 128 pixels x 32 pixels in width and height. The diagram has
been overlaid with a Cartesian coordinate system for better visibility of the position
of a pixel (or object in terms of our future interpretation of this information) inside
the level.

http://www.gimp.org/
http://www.gimp.org/
http://www.getpaint.net/

Gathering Resources

[162]

The following is a list that defines the mapping between pixel colors and
game objects:

• W: This stands for white and is the starting position of the player
(spawn point)

• P: This stands for purple and represents the feather
• Y: This stands for yellow and represents the gold coin
• G: This stands for green and represents the rock

The black background represents empty spaces in the game world.

Create a subfolder in the assets folder named levels and copy the level-01.png
level file into it. After this, add a new constant to the Constants class:

public class Constants {
 // Visible game world is 5 meters wide
 public static final float VIEWPORT_WIDTH = 5.0f;

 // Visible game world is 5 meters tall
 public static final float VIEWPORT_HEIGHT = 5.0f;

 // Location of description file for texture atlas
 public static final String TEXTURE_ATLAS_OBJECTS =
 "images/canyonbunny.pack";

 // Location of image file for level 01
 public static final String LEVEL_01 = "levels/level-01.png";
}

This concludes our preparations for the game level. The loading of the level data will
be covered in the next chapter.

Chapter 4

[163]

Summary
In this chapter, you learned how to set a custom Android and iOS app icon for our
game. You also learned how to use the texture atlases and why these are useful, and
how to load, track, and organize the assets.

We combined our new Assets class with the existing game code and verified that
we can now use textured objects while the remaining functionalities still work. We
covered a brief introduction about handling level data. We also defined our editing
tool to be any drawing program and declared certain color values for pixels to
represent a specific game object in the game world.

In the next chapter, we will discuss how to create a scene in order to visualize the
actual game world. This includes writing a level loader that reads, interprets, and
acts on the image data according to the rules we have just defined.

Making a Scene
In this chapter, we will make a scene that shows the actual game world of Canyon
Bunny. The game world will be composed of several game objects that share
common attributes and functionalities. However, the way these objects are rendered
to the scene varies from simply drawing its assigned texture to compound rendering
using two or more textures.

All the game objects are represented in pixel colors in an image file, the format of
which was defined in the last chapter. The next step will be to implement a level loader
that is able to parse the level information stored in our level image file level-01.png.

After implementing the game objects and the mentioned level loader, we will put the
new code into action by adding it to our world controller and renderer, respectively.

The following screenshot illustrates an example scene of what the game will look like
at this point:

Making a Scene

[166]

As a last addition, we will add a Graphical User Interface (GUI) to the scene that
overlays the game world. Sometimes, this is also called a Head-Up Display (HUD),
but we will use the term GUI here. The GUI will show the player's score, the number
of extra lives left, and an FPS counter to measure the performance of the game.

To sum up, in this chapter, we will:

• Create game objects such as rocks, mountains, clouds, and so on
• Implement the level loader
• Implement the game GUI

Creating game objects
Before we start implementing each individual game object, we will create an abstract
class called AbstractGameObject. It will hold all the common attributes and
functionalities that each of our game objects will inherit from.

You might want to check the Canyon Bunny class diagram in
Chapter 3, Configuring the Game, again to get an overview of the
class hierarchy of the game objects.

Create a new file for the AbstractGameObject class and add the following code:

package com.packtpub.libgdx.canyonbunny.game.objects;

import com.badlogic.gdx.graphics.g2d.SpriteBatch;
import com.badlogic.gdx.math.Vector2;

public abstract class AbstractGameObject {

 public Vector2 position;
 public Vector2 dimension;
 public Vector2 origin;
 public Vector2 scale;
 public float rotation;

public AbstractGameObject () {
 position = new Vector2();
 dimension = new Vector2(1, 1);
 origin = new Vector2();
 scale = new Vector2(1, 1);
 rotation = 0;

Chapter 5

[167]

}

 public void update (float deltaTime) {
}

 public abstract void render (SpriteBatch batch);
}

This class is able to store the position, dimension, origin, scale factor, and angle
of rotation of a game object. Its methods, update() and render(), will be called
inside our world controller and renderer accordingly. The default implementation
to update a game object is currently empty. So, the game objects inheriting from
AbstractGameObject will do nothing when updated. For rendering, a specific
implementation has to be provided for each game object because we defined the
render() method to be abstract.

The rock object
The rock game object basically consists of three distinct parts: a left edge, a middle
part, and a right edge. There is one specialty about the middle part: it must be
repeatable to be able to create different rocks with arbitrary lengths. Furthermore,
the image for the right edge can be easily created by mirroring the image of the left
edge. This means that we will need only two textures from our texture atlas to draw
a complete rock of any size, as shown in the following screenshot:

Making a Scene

[168]

Create a new file for the Rock class and add the following code:

package com.packtpub.libgdx.canyonbunny.game.objects;

import com.badlogic.gdx.graphics.g2d.SpriteBatch;
import com.badlogic.gdx.graphics.g2d.TextureRegion;
import com.packtpub.libgdx.canyonbunny.game.Assets;

public class Rock extends AbstractGameObject {

 private TextureRegion regEdge;
 private TextureRegion regMiddle;

 private int length;

 public Rock () {
 init();
 }

 private void init () {
 dimension.set(1, 1.5f);

 regEdge = Assets.instance.rock.edge;
 regMiddle = Assets.instance.rock.middle;

 // Start length of this rock
 setLength(1);
 }

 public void setLength (int length) {
 this.length = length;
 }

 public void increaseLength (int amount) {
 setLength(length + amount);
 }
}

Chapter 5

[169]

The Rock class has two variables, regEdge and regMiddle, to store the
corresponding texture regions for the edge and the middle part of a rock.
Additionally, there is a length variable that describes the number of middle parts
to use for a rock, or in other words, the resulting length of the rock. In the init()
method, we set the dimension, the width, and the height of the rock. Remember
that these values are given in meters, which relate to our game world. So, in this
case, a rock is 1 meter wide and 1.5 meters tall. Next, the texture regions are stored
in local variables. Obviously, this is not a necessary step and is really just for our
convenience to allow quick and easy changes to the texture regions the code will
use to render a specific part. Finally, setLength() is called to set the starting length
of the rock. The increaseLength() method allows you to increase the length of
the rock by a given amount. It will come in handy later on when our yet-to-be-
implemented level loader eventually creates these rocks.

As Rock inherits from AbstractGameObject, it is mandatory to also implement its
render() method. Add the following code to the Rock class:

 @Override
 public void render (SpriteBatch batch) {
 TextureRegion reg = null;

 float relX = 0;
 float relY = 0;

 // Draw left edge
 reg = regEdge;
 relX -= dimension.x / 4;
 batch.draw(reg.getTexture(), position.x + relX, position.y +
relY, origin.x, origin.y, dimension.x / 4, dimension.y,
scale.x, scale.y, rotation, reg.getRegionX(), reg.getRegionY(),
reg.getRegionWidth(), reg.getRegionHeight(), false, false);

 // Draw middle
 relX = 0;
 reg = regMiddle;
 for (int i = 0; i < length; i++) {
 batch.draw(reg.getTexture(), position.x + relX, position.y
+ relY, origin.x, origin.y, dimension.x, dimension.y,
scale.x, scale.y, rotation, reg.getRegionX(), reg.getRegionY(),
reg.getRegionWidth(), reg.getRegionHeight(), false, false);
 relX += dimension.x;
 }

 // Draw right edge

Making a Scene

[170]

 reg = regEdge;
 batch.draw(reg.getTexture(),position.x + relX, position.y +
relY, origin.x + dimension.x / 8, origin.y, dimension.x / 4,
dimension.y, scale.x, scale.y, rotation, reg.getRegionX(),
reg.getRegionY(), reg.getRegionWidth(), reg.getRegionHeight(),
true, false);
 }

Before we continue, let's take a look at the signature of draw() from SpriteBatch to
clear up the more or less convoluted lines of source code that are used to draw the
texture regions:

public void draw (Texture texture, float x, float y,float originX,
float originY, float width, float height, float scaleX, float
scaleY, float rotation, int srcX, int srcY,
int srcWidth, int srcHeight, boolean flipX, boolean flipY);

This method cuts out a rectangle (defined by srcX, srcY, srcWidth, and srcHeight)
from the texture (here, our texture atlas) and draws it to a given position (x, y).
The origin (originX, originY) defines a relative position to where the rectangle is
shifted. The origin (at 0, 0) denotes the bottom-left corner. The width and height
define the dimension of the image to be displayed. The scaling factor (scaleX,
scaleY) defines the scale of the rectangle around the origin. The angle of rotation
defines the rotation of the rectangle around the origin. The flipping of one or both the
axes (flipX, flipY) means to mirror the corresponding axis of that image.

The rendering of the rock is split up into the following three drawing steps:

1. Draw the left edge at the current position of the rock. A relative x- and y-value,
relX and relY, are also added to the position. These are used to align the left
edge to the left-hand side of the object's local y axis. The result of doing this is
that the following middle parts will now start at 0 on the x axis. This makes it
much easier to handle the positioning of rocks as each middle part represents
one pixel in a level image, while the edges are just cosmetic details.

2. Draw all the middle parts according to the set length of the rock. The
drawing starts at 0, which is located directly next to where the left edge ends.
Each subsequent middle part is drawn next to the last middle part. This is
achieved by adding the middle part's width to the relative position relX for
each iteration inside the loop.

3. Finally, the mirrored left edge is drawn next to where the last middle part
ends. This mirroring is achieved by setting the flipX parameter to true.

The reg variable is used to store the currently selected texture region for each step.

Chapter 5

[171]

The mountains object
The mountains game object consists of three mountains that each have their own
layer. A tinting color and positional offset can be specified for each layer. A single
mountain consists of a left and a right image. The ends of both image parts have
been carefully crafted so that they can be seamlessly tiled. The following screenshot
illustrates this:

The white color for the mountain images has been chosen on purpose to allow tinting.

Create a new file for the Mountains class and add the following code:

package com.packtpub.libgdx.canyonbunny.game.objects;

import com.badlogic.gdx.graphics.g2d.SpriteBatch;
import com.badlogic.gdx.graphics.g2d.TextureRegion;
import com.badlogic.gdx.math.MathUtils;
import com.packtpub.libgdx.canyonbunny.game.Assets;

public class Mountains extends AbstractGameObject {

 private TextureRegion regMountainLeft;
 private TextureRegion regMountainRight;

 private int length;

 public Mountains (int length) {
 this.length = length;
 init();
 }

 private void init () {
 dimension.set(10, 2);

 regMountainLeft =
Assets.instance.levelDecoration.mountainLeft;
 regMountainRight =
Assets.instance.levelDecoration.mountainRight;

 // shift mountain and extend length

Making a Scene

[172]

 origin.x = -dimension.x * 2;
 length += dimension.x * 2;
 }

 private void drawMountain (SpriteBatch batch, float offsetX,
float offsetY, float tintColor) {
 TextureRegion reg = null;
 batch.setColor(tintColor, tintColor, tintColor, 1);
 float xRel = dimension.x * offsetX;
 float yRel = dimension.y * offsetY;

 // mountains span the whole level
 int mountainLength = 0;
 mountainLength += MathUtils.ceil(length / (2 * dimension.x));
 mountainLength += MathUtils.ceil(0.5f + offsetX);
 for (int i = 0; i < mountainLength; i++) {
 // mountain left
 reg = regMountainLeft;
 batch.draw(reg.getTexture(), origin.x + xRel, position.y +
origin.y + yRel, origin.x, origin.y, dimension.x, dimension.y,
scale.x, scale.y, rotation, reg.getRegionX(), reg.getRegionY(),
reg.getRegionWidth(), reg.getRegionHeight(), false, false);
 xRel += dimension.x;

 // mountain right
 reg = regMountainRight;
 batch.draw(reg.getTexture(),origin.x + xRel, position.y +
origin.y + yRel, origin.x, origin.y, dimension.x, dimension.y,
scale.x, scale.y, rotation, reg.getRegionX(), reg.getRegionY(),
reg.getRegionWidth(), reg.getRegionHeight(), false, false);
 xRel += dimension.x;
 }
 // reset color to white
 batch.setColor(1, 1, 1, 1);
 }
 @Override
 public void render (SpriteBatch batch) {
 // distant mountains (dark gray)
 drawMountain(batch, 0.5f, 0.5f, 0.5f);
 // distant mountains (gray)
 drawMountain(batch, 0.25f, 0.25f, 0.7f);
 // distant mountains (light gray)
 drawMountain(batch, 0.0f, 0.0f, 0.9f);
 }
}

Chapter 5

[173]

The construction of the Mountains class is quite similar to Rock. It inherits from
AbstractGameObject and uses a length variable to store the number of times the
image needs to be repeated.

The drawMountain() method is used to encapsulate the drawing code of a mountain
layer so that the task to draw the three layers is greatly simplified. The tinting is
achieved by setting the drawing color of SpriteBatch to the desired color value
using the setColor() method. All subsequent draw calls will now produce tinted
images. Afterwards, the drawing color is reset to a neutral white color, which simply
means that the texture colors will be no longer manipulated. This might cause future
calls to SpriteBatch to tint irrespective of whatever is drawn next.

The water overlay object
The water overlay game object is very simple compared to the previous game
objects. It consists of only one image. This image needs to overlay the ground of the
whole level. There are several ways to achieve this. One way would be to span the
image from side to side of the camera's viewport and move the overlay together with
the camera whenever the camera is moved. This is a good way to create an illusion
of water being everywhere in the level. Unfortunately, special care needs to be taken
if the camera is also moved in a vertical direction. Another way to implement the
image of water everywhere in the level is to just draw a single, horizontally stretched
water overlay image from start to end, as shown in the following screenshot. This is
exactly what the next code will do.

Create a new file for the WaterOverlay class and add the following code:

package com.packtpub.libgdx.canyonbunny.game.objects;

import com.badlogic.gdx.graphics.g2d.SpriteBatch;
import com.badlogic.gdx.graphics.g2d.TextureRegion;
import com.packtpub.libgdx.canyonbunny.game.Assets;

public class WaterOverlay extends AbstractGameObject {

Making a Scene

[174]

 private TextureRegion regWaterOverlay;
 private float length;

 public WaterOverlay (float length) {
 this.length = length;
 init();
 }

 private void init () {
 dimension.set(length * 10, 3);

 regWaterOverlay =
Assets.instance.levelDecoration.waterOverlay;

 origin.x = -dimension.x / 2;
 }

 @Override
 public void render (SpriteBatch batch) {
 TextureRegion reg = null;
 reg = regWaterOverlay;
 batch.draw(reg.getTexture(), position.x + origin.x, position.y
+ origin.y, origin.x, origin.y, dimension.x, dimension.y, scale.x,
scale.y, rotation, reg.getRegionX(), reg.getRegionY(),
reg.getRegionWidth(), reg.getRegionHeight(), false, false);
 }
}

The WaterOverlay class is constructed similar to the previous game objects.

The clouds object
The clouds game object consists of a number of clouds. A cloud will use one of the
three available cloud images from the texture atlas. The number of clouds depends
on the given length that is divided by a constant factor to determine the final
distribution of the clouds. The following screenshot illustrates this:

Chapter 5

[175]

Create a new file for the Clouds class and add the following code:

package com.packtpub.libgdx.canyonbunny.game.objects;

import com.badlogic.gdx.graphics.g2d.SpriteBatch;
import com.badlogic.gdx.graphics.g2d.TextureRegion;
import com.badlogic.gdx.math.MathUtils;
import com.badlogic.gdx.math.Vector2;
import com.badlogic.gdx.utils.Array;
import com.packtpub.libgdx.canyonbunny.game.Assets;

public class Clouds extends AbstractGameObject {

 private float length;

 private Array<TextureRegion> regClouds;
 private Array<Cloud> clouds;

 private class Cloud extends AbstractGameObject {
 private TextureRegion regCloud;

 public Cloud () {}

 public void setRegion (TextureRegion region) {
 regCloud = region;
 }

 @Override
 public void render (SpriteBatch batch) {
 TextureRegion reg = regCloud;
 batch.draw(reg.getTexture(), position.x + origin.x,
position.y + origin.y, origin.x, origin.y, dimension.x,
dimension.y, scale.x, scale.y, rotation, reg.getRegionX(),
reg.getRegionY(), reg.getRegionWidth(), reg.getRegionHeight(),
false, false);
 }
 }

 public Clouds (float length) {
 this.length = length;
 init();
 }

 private void init () {

Making a Scene

[176]

 dimension.set(3.0f, 1.5f);
 regClouds = new Array<TextureRegion>();
 regClouds.add(Assets.instance.levelDecoration.cloud01);
 regClouds.add(Assets.instance.levelDecoration.cloud02);
 regClouds.add(Assets.instance.levelDecoration.cloud03);

 int distFac = 5;
 int numClouds = (int)(length / distFac);
 clouds = new Array<Cloud>(2 * numClouds);
 for (int i = 0; i < numClouds; i++) {
 Cloud cloud = spawnCloud();
 cloud.position.x = i * distFac;
 clouds.add(cloud);
 }
 }

 private Cloud spawnCloud () {
 Cloud cloud = new Cloud();
 cloud.dimension.set(dimension);
 // select random cloud image
 cloud.setRegion(regClouds.random());
 // position
 Vector2 pos = new Vector2();
 pos.x = length + 10; // position after end of level
 pos.y += 1.75; // base position
 pos.y += MathUtils.random(0.0f, 0.2f)
 * (MathUtils.randomBoolean() ? 1 : -1); // random
additional position
 cloud.position.set(pos);
 return cloud;
 }

 @Override
 public void render (SpriteBatch batch) {
 for (Cloud cloud : clouds)
 cloud.render(batch);
 }
}

The Clouds class is also constructed like the previous game objects. The distribution
of the clouds over the level is determined by the given length value and the constant
factor distFact, which is 5 in this code, meaning that there will be a cloud every
five meters.

Chapter 5

[177]

A single cloud is defined by the Clouds inner class Cloud, which also inherits from
AbstractGameObject. So, a Cloud object is the actual cloud object, while Clouds is
the container that maintains a list of all the currently created clouds. A new cloud can
be created by simply calling the spawnCloud() method of Clouds. This will create a
new Cloud object, assign a random cloud image to it, move it to the end of the level,
and randomly shift it up or down a bit. The newly created cloud is also added to the
list and returned to the calling method.

Implementing the level loader
We will now implement the level loader that will be able to read and interpret the
image data.

You might want to refer to the handling of level data section
in Chapter 3, Configuring the Game, where we defined and
discussed the level format.

Create a new file for the Level class and add the following code:

package com.packtpub.libgdx.canyonbunny.game;

import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.graphics.Pixmap;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;
import com.badlogic.gdx.utils.Array;
import com.packtpub.libgdx.canyonbunny.game.objects.
AbstractGameObject;
import com.packtpub.libgdx.canyonbunny.game.objects.Clouds;
import com.packtpub.libgdx.canyonbunny.game.objects.Mountains;
import com.packtpub.libgdx.canyonbunny.game.objects.Rock;
import com.packtpub.libgdx.canyonbunny.game.objects.WaterOverlay;

public class Level {
 public static final String TAG = Level.class.getName();

 public enum BLOCK_TYPE {
 EMPTY(0, 0, 0), // black
 ROCK(0, 255, 0), // green
 PLAYER_SPAWNPOINT(255, 255, 255), // white
 ITEM_FEATHER(255, 0, 255), // purple
 ITEM_GOLD_COIN(255, 255, 0); // yellow

 private int color;

Making a Scene

[178]

 private BLOCK_TYPE (int r, int g, int b) {
 color = r << 24 | g << 16 | b << 8 | 0xff;
 }

 public boolean sameColor (int color) {
 return this.color == color;
 }

 public int getColor () {
 return color;
 }
 }

 // objects
 public Array<Rock> rocks;

 // decoration
 public Clouds clouds;
 public Mountains mountains;
 public WaterOverlay waterOverlay;

 public Level (String filename) {
 init(filename);
 }

 private void init (String filename) {}
 public void render (SpriteBatch batch) {}
}

The Level class contains an enum data type that we will use to represent our entire
game world objects. These objects have a unique RGBA color value that is used to
identify them. We will not use the alpha channel and always expect full opacity for
our game object color values. As each color component is represented as an 8-bit
value, the sum of an RGBA color is 32 bits or 4 bytes. The int data type of Java is
also defined as a 32-bit value, which makes it the appropriate place to store RGBA
color codes in a compact way.

The compact color value is stored in RGBA format. Also, in the
following code, we are going to use bit shift operations. For more
information, check out the blog article at http://www.zimnox.
com/resources/articles/tutorials/?ar=t002.

http://www.zimnox.com/resources/articles/tutorials/?ar=t002
http://www.zimnox.com/resources/articles/tutorials/?ar=t002

Chapter 5

[179]

The sameColor() method will allow us to easily find out whether two colors are
exactly the same by comparing only one value instead of four.

Level holds a list of Rock instances called rocks. There is also a variable to hold an
instance of Clouds, Mountains, and WaterOverlay. All these variables are filled in
during the level loading process that takes place in the init() method.

Add the following code to the still empty init() method:

 private void init (String filename) {
 // objects
 rocks = new Array<Rock>();

 // load image file that represents the level data
 Pixmap pixmap = new Pixmap(Gdx.files.internal(filename));
 // scan pixels from top-left to bottom-right
 int lastPixel = -1;
 for (int pixelY = 0; pixelY < pixmap.getHeight(); pixelY++) {
 for (int pixelX = 0; pixelX < pixmap.getWidth(); pixelX++) {
 AbstractGameObject obj = null;
 float offsetHeight = 0;
 // height grows from bottom to top
 float baseHeight = pixmap.getHeight() - pixelY;
 // get color of current pixel as 32-bit RGBA value
 int currentPixel = pixmap.getPixel(pixelX, pixelY);
 // find matching color value to identify block type at (x,y)
 // point and create the corresponding game object if there is
 // a match

 // empty space
 if (BLOCK_TYPE.EMPTY.sameColor(currentPixel)) {
 // do nothing
 }
 // rock
 else if (BLOCK_TYPE.ROCK.sameColor(currentPixel)) {
 if (lastPixel != currentPixel) {
 obj = new Rock();
 float heightIncreaseFactor = 0.25f;
 offsetHeight = -2.5f;
 obj.position.set(pixelX, baseHeight * obj.dimension.y
* heightIncreaseFactor + offsetHeight);
 rocks.add((Rock)obj);
 } else {
 rocks.get(rocks.size - 1).increaseLength(1);

Making a Scene

[180]

 }
 }
 // player spawn point
 else if
 (BLOCK_TYPE.PLAYER_SPAWNPOINT.sameColor(currentPixel)) {
 }
 // feather
 else if (BLOCK_TYPE.ITEM_FEATHER.sameColor(currentPixel)) {
 }
 // gold coin
 else if (BLOCK_TYPE.ITEM_GOLD_COIN.sameColor(currentPixel)) {
 }
 // unknown object/pixel color
 else {
 int r = 0xff & (currentPixel >>> 24); //red color channel
 int g = 0xff & (currentPixel >>> 16); //green color channel
 int b = 0xff & (currentPixel >>> 8); //blue color channel
 int a = 0xff & currentPixel; //alpha channel
 Gdx.app.error(TAG, "Unknown object at x<" + pixelX + "> y<"
+ pixelY + ">: r<" + r+ "> g<" + g + "> b<" + b + "> a<" + a + ">");
 }
 lastPixel = currentPixel;
 }
 }

 // decoration
 clouds = new Clouds(pixmap.getWidth());
 clouds.position.set(0, 2);
 mountains = new Mountains(pixmap.getWidth());
 mountains.position.set(-1, -1);
 waterOverlay = new WaterOverlay(pixmap.getWidth());
 waterOverlay.position.set(0, -3.75f);

 // free memory
 pixmap.dispose();
 Gdx.app.debug(TAG, "level '" + filename + "' loaded");
 }

This method starts by creating a new and empty list for the rocks. Then, it uses Gdx.
files.internal() to get a file handle, which in turn is used to create a new Pixmap
object. It contains the pixel data of the level image that is to be scanned
and interpreted.

Chapter 5

[181]

The scanning is done by looping through each pixel starting from the top-left
corner of the image to the bottom-right corner. The baseHeight variable is set to
the maximum level height minus the current height of the currently scanned pixel,
which results in a flipped vertical pixel position. What this basically means is that
the game objects will appear at their correct height in the game world, although
scanning is done from top to bottom and the game objects grow from the bottom up.
The offsetHeight variable is used to individually offset an object to correctly fit into
the game world. The currentPixel variable stores the color value of the currently
scanned pixel. Next, this value is compared to each defined color code of a game
object until a match has been found. If no color code matches, there will be an error
message logged to the console to indicate an implementation error in our game. The
error can either mean the use of an undefined color code or that the identification
method does not handle this color code. The error message will contain the decoded
RGBA values to make troubleshooting a bit less painful.

After the scanning process, there are still some game objects left that need to
be initialized. These are the decoration game objects Clouds, Mountains, and
WaterOverlay. These are passed over to the width of Pixmap, which is the actual
length of the level they need to know to work correctly.

Lastly, Pixmap is disposed to properly free the occupied memory.

The code part we left out up until now is to look at what happens if there is a
matching color code. The current implementation already handles the color code of
every game object we want to use, but except for the rock game objects, there is no
defined action for these yet. A new rock will be created and added to the list of rocks
if the corresponding color code matches. There is also a lastPixel variable that
stores the last value of currentPixel after each iteration inside the loop. This value
is used to detect adjacent rock pixels that will increase the length of the last created
rock by one, in this case, instead of creating a new one.

Add the following code to the still empty render() method:

 public void render (SpriteBatch batch) {
 // Draw Mountains
 mountains.render(batch);

 // Draw Rocks
 for (Rock rock : rocks)
 rock.render(batch);

 // Draw Water Overlay
 waterOverlay.render(batch);

Making a Scene

[182]

 // Draw Clouds
 clouds.render(batch);
 }

This will finally draw all the elements of a loaded level to create the scene for the
game world. The order of the draw calls is important because every subsequent draw
call is drawing on top of the scene. The drawing order can be imagined as layers,
although there is no real depth or z axis like in 3D space.

Nevertheless, if someone were to look at the example scene that is shown at the
beginning of this chapter from a 45 degree angled view, it might look like this:

All objects that are drawn first will appear further in the background. Thus, the
mountains are further away than the rocks or the stretched water overlay.

Assembling the game world
We will now remove some of the old code that was used to draw test sprites.
Additionally, we will add three new constants to define the amount of player lives
and the viewport dimension of the GUI camera.

Change the code of the Constants class as follows:

public class Constants {
 // Visible game world is 5 meters wide
 public static final float VIEWPORT_WIDTH = 5.0f;

Chapter 5

[183]

 // Visible game world is 5 meters tall
 public static final float VIEWPORT_HEIGHT = 5.0f;
 // GUI Width
 public static final float VIEWPORT_GUI_WIDTH = 800.0f;
 // GUI Height
 public static final float VIEWPORT_GUI_HEIGHT = 480.0f;
 // Location of description file for texture atlas
 public static final String TEXTURE_ATLAS_OBJECTS =
 "images/canyonbunny.pack";
 // Location of image file for level 01
 public static final String LEVEL_01 = "levels/level-01.png";
 // Amount of extra lives at level start
 public static final int LIVES_START = 3;
}

Now, remove these two lines of code in WorldController:

 public Sprite[] testSprites;
 public int selectedSprite;

Additionally, remove the following methods from WorldController:

• initTestObjects()

• updateTestObjects()

• moveSelectedSprite()

Remove the following code in the handleDebugInput() method of
WorldController:

 // Selected Sprite Controls
 float sprMoveSpeed = 5 * deltaTime;
 if (Gdx.input.isKeyPressed(Keys.A))
 moveSelectedSprite(-sprMoveSpeed, 0);
 if (Gdx.input.isKeyPressed(Keys.D))
 moveSelectedSprite(sprMoveSpeed, 0);
 if (Gdx.input.isKeyPressed(Keys.W))
 moveSelectedSprite(0, sprMoveSpeed);
 if (Gdx.input.isKeyPressed(Keys.S))
 moveSelectedSprite(0, -sprMoveSpeed);

Making a Scene

[184]

Next, remove the code below the two comments Select next sprite and Toggle
camera follow in the keyUp() method of WorldController so that the resulting
method looks like this:

 @Override
 public boolean keyUp (int keycode) {
 // Reset game world
 if (keycode == Keys.R) {
 init();
 Gdx.app.debug(TAG, "Game world resetted");
 }
 return false;
 }

Add the following two imports to WorldController:

import com.packtpub.libgdx.canyonbunny.game.objects.Rock;
import com.packtpub.libgdx.canyonbunny.util.Constants;

Next, add the following code to WorldController:

 public Level level;
 public int lives;
 public int score;

 private void initLevel () {
 score = 0;
 level = new Level(Constants.LEVEL_01);
 }

Change the code in the init() method of WorldController:

 private void init () {
 Gdx.input.setInputProcessor(this);
 cameraHelper = new CameraHelper();
 lives = Constants.LIVES_START;
 initLevel();
 }

Finally, remove the call to the deleted updateTestObjects() method in update().

We have now removed all of the old code and added level loading to the controller.
There are also two variables, score and lives, that count the player's score and the
player's extra lives.

Chapter 5

[185]

We have to make some minor changes to the CameraHelper class in order to make
the switch from using Sprite objects to AbstractGameObject.

Remove the following import line from CameraHelper:

import com.badlogic.gdx.graphics.g2d.Sprite;

Next, add this import line in CameraHelper:

import com.packtpub.libgdx.canyonbunny.game.objects.
 AbstractGameObject;

Now, change the code in CameraHelper:

 private AbstractGameObject target;

 public void update (float deltaTime) {
 if (!hasTarget()) return;

 position.x = target.position.x + target.origin.x;
 position.y = target.position.y + target.origin.y;
 }

 public void setTarget (AbstractGameObject target) {
 this.target = target;
 }

 public AbstractGameObject getTarget () {
 return target;
 }
 public boolean hasTarget (AbstractGameObject target) {
 return hasTarget() && this.target.equals(target);
 }

Next, add the following code in WorldRenderer:

 private void renderWorld (SpriteBatch batch) {
 worldController.cameraHelper.applyTo(camera);
 batch.setProjectionMatrix(camera.combined);
 batch.begin();
 worldController.level.render(batch);
 batch.end();
 }

Then, remove the renderTestObjects() method from WorldRenderer.

Making a Scene

[186]

Lastly, replace the call to the deleted renderTestObjects() method with the newly
added renderWorld() method in render():

 public void render () {
 renderWorld(batch);
 }

Now, the world renderer will call the renderWorld() method, which in turn calls
the render() method of Level to draw all the game objects of the loaded level.

Implementing the game GUI
In this last part of the chapter, we are going to implement the game's GUI and add it
to the scene. The GUI will display the achieved score, extra lives, and an FPS counter.

We will need to load a bitmap font before we are able to write any text output to the
screen. Fortunately, LibGDX provides a default font (Arial 15pt) that we can use.
Copy the two files arial-15.fnt and arial-15.png to CanyonBunny-android/
assets/images/.

This is how LibGDX's default bitmap font looks:

You can also create your own fonts using Hiero, a font generator tool provided
by LibGDX. Check out the official project website https://github.com/
libgdx/libgdx/wiki/Hiero. There is also a popular commercial tool called
Glyph Designer, which is designed specifically for Mac. The official link is
https://71squared.com/en/glyphdesigner.

Add the following import line to Assets:

import com.badlogic.gdx.graphics.g2d.BitmapFont;

https://github.com/libgdx/libgdx/wiki/Hiero
https://github.com/libgdx/libgdx/wiki/Hiero
https://71squared.com/en/glyphdesigner

Chapter 5

[187]

Then, add the following lines of code to Assets:

 public AssetFonts fonts;

 public class AssetFonts {
 public final BitmapFont defaultSmall;
 public final BitmapFont defaultNormal;
 public final BitmapFont defaultBig;

 public AssetFonts () {
 // create three fonts using Libgdx's 15px bitmap font
 defaultSmall = new BitmapFont(
 Gdx.files.internal("images/arial-15.fnt"), true);
 defaultNormal = new BitmapFont(
 Gdx.files.internal("images/arial-15.fnt"), true);
 defaultBig = new BitmapFont(
 Gdx.files.internal("images/arial-15.fnt"), true);
 // set font sizes
 defaultSmall.setScale(0.75f);
 defaultNormal.setScale(1.0f);
 defaultBig.setScale(2.0f);
 // enable linear texture filtering for smooth fonts
 defaultSmall.getRegion().getTexture().setFilter(
 TextureFilter.Linear, TextureFilter.Linear);
 defaultNormal.getRegion().getTexture().setFilter(
 TextureFilter.Linear, TextureFilter.Linear);
 defaultBig.getRegion().getTexture().setFilter(
 TextureFilter.Linear, TextureFilter.Linear);
 }
 }
 public void init (AssetManager assetManager) {
 this.assetManager = assetManager;
 // set asset manager error handler
 assetManager.setErrorListener(this);
 // load texture atlas
 assetManager.load(Constants.TEXTURE_ATLAS_OBJECTS,
 TextureAtlas.class);
 // start loading assets and wait until finished
 assetManager.finishLoading();

 Gdx.app.debug(TAG, "# of assets loaded: "
 + assetManager.getAssetNames().size);
 for (String a : assetManager.getAssetNames())

Making a Scene

[188]

 Gdx.app.debug(TAG, "asset: " + a);

 TextureAtlas atlas =
 assetManager.get(Constants.TEXTURE_ATLAS_OBJECTS);

 // enable texture filtering for pixel smoothing
 for (Texture t : atlas.getTextures())
 t.setFilter(TextureFilter.Linear, TextureFilter.Linear);

 // create game resource objects
 fonts = new AssetFonts();
 bunny = new AssetBunny(atlas);
 rock = new AssetRock(atlas);
 goldCoin = new AssetGoldCoin(atlas);
 feather = new AssetFeather(atlas);
 levelDecoration = new AssetLevelDecoration(atlas);
 }

 @Override
 public void dispose () {
 assetManager.dispose();
 fonts.defaultSmall.dispose();
 fonts.defaultNormal.dispose();
 fonts.defaultBig.dispose();
 }

The added code includes a new inner class called AssetFonts that holds the default
bitmap font in three differently configured sizes. The size is configured by scaling
the font either up or down. Bitmap fonts must be disposed manually so that the
corresponding calls are added to the dispose() method.

Chapter 5

[189]

We are now ready to begin with the implementation of the game's GUI. It is always
good to have an idea of what should be implemented so that we have a picture of
what we are aiming for, as shown here:

In the top-left corner, you see an image of the gold coin and the player's current score
as text. In the top-right corner, you see three bunny heads that represent the number
of extra lives the player has left. Lastly, in the bottom-right corner is a small FPS
counter that shows how good or bad the performance of the running game is. The
color of the FPS counter will depend on the achieved frames per second.

Add the following import line in WorldRenderer:

import com.badlogic.gdx.graphics.g2d.BitmapFont;

Next, add the following code in WorldRenderer:

 private OrthographicCamera cameraGUI;

 private void init () {
 batch = new SpriteBatch();
 camera = new OrthographicCamera(Constants.VIEWPORT_WIDTH,
 Constants.VIEWPORT_HEIGHT);

Making a Scene

[190]

 camera.position.set(0, 0, 0);
 camera.update();
 cameraGUI = new OrthographicCamera(Constants.VIEWPORT_GUI_WIDTH,
 Constants.VIEWPORT_GUI_HEIGHT);
 cameraGUI.position.set(0, 0, 0);
 cameraGUI.setToOrtho(true); // flip y-axis
 cameraGUI.update();
 }

 public void resize (int width, int height) {
 camera.viewportWidth = (Constants.VIEWPORT_HEIGHT
 / (float)height) * (float)width;
 camera.update();
 cameraGUI.viewportHeight = Constants.VIEWPORT_GUI_HEIGHT;
 cameraGUI.viewportWidth = (Constants.VIEWPORT_GUI_HEIGHT
 / (float)height) * (float)width;
 cameraGUI.position.set(cameraGUI.viewportWidth / 2,
 cameraGUI.viewportHeight / 2, 0);
 cameraGUI.update();
 }

The added code creates a second camera that is specifically set up just to render
the game's GUI. The viewport of the GUI camera is defined using a different set of
constants that uses much higher values. We have to do this to correctly render the
bitmap font that is 15 pixels high. If we were to use the 5 meters x 5 meters viewport,
only one-third of the font's glyph would be visible at any time. The rest of the added
code does the same as the game camera. Also, this allows us to move the world
camera (camera) independently from the GUI (cameraGUI).

The following section describes the implementation of the methods for each
GUI element.

The GUI score
The following is a screenshot of the GUI element that shows the player's current score:

Chapter 5

[191]

Add the following code in WorldRenderer:

 private void renderGuiScore (SpriteBatch batch) {
 float x = -15;
 float y = -15;
 batch.draw(Assets.instance.goldCoin.goldCoin,
 x, y, 50, 50, 100, 100, 0.35f, -0.35f, 0);
 Assets.instance.fonts.defaultBig.draw(batch,
 "" + worldController.score,
 x + 75, y + 37);
 }

The gold coin image is drawn in the top-left corner of the screen. Next to it, the
player's current score is displayed using the big default font.

The GUI extra lives
The following is a screenshot of the GUI element that shows the player's remaining
extra lives:

Add the following code in WorldRenderer:

 private void renderGuiExtraLive (SpriteBatch batch) {
 float x = cameraGUI.viewportWidth - 50 -
Constants.LIVES_START * 50;
 float y = -15;
 for (int i = 0; i < Constants.LIVES_START; i++) {
 if (worldController.lives <= i)
 batch.setColor(0.5f, 0.5f, 0.5f, 0.5f);
 batch.draw(Assets.instance.bunny.head,
 x + i * 50, y, 50, 50, 120, 100, 0.35f, -0.35f, 0);
 batch.setColor(1, 1, 1, 1);
 }
 }

Making a Scene

[192]

The three bunny head images that will represent the extra lives of the player are drawn
in the top-right corner of the screen. The method starts to draw from left to right.
Before a new bunny head is drawn, there is an additional check to find out whether
this extra life is used up already. If this is the case, the bunny head is darkened and
gets a slightly transparent look by setting the tint color of the sprite batch.

The GUI FPS counter
The following is a screenshot of the GUI element that shows the actual frames
per second:

Add the following code in WorldRenderer:

 private void renderGuiFpsCounter (SpriteBatch batch) {
 float x = cameraGUI.viewportWidth - 55;
 float y = cameraGUI.viewportHeight - 15;
 int fps = Gdx.graphics.getFramesPerSecond();
 BitmapFont fpsFont = Assets.instance.fonts.defaultNormal;
 if (fps >= 45) {
 // 45 or more FPS show up in green
 fpsFont.setColor(0, 1, 0, 1);
 } else if (fps >= 30) {
 // 30 or more FPS show up in yellow
 fpsFont.setColor(1, 1, 0, 1);
 } else {
 // less than 30 FPS show up in red
 fpsFont.setColor(1, 0, 0, 1);
 }
 fpsFont.draw(batch, "FPS: " + fps, x, y);
 fpsFont.setColor(1, 1, 1, 1); // white
 }

Chapter 5

[193]

An FPS counter that shows the text FPS followed by the current number of frames
per second is drawn in the bottom-right corner of the screen. The color of the text
depends on the achieved frame rate. If the FPS is 45 or higher, the text will show up
in green, indicating a good rendering performance. Otherwise, if there are 30 or more
FPS, then the text will show up in yellow, which indicates an average rendering
performance. Anything below 30 FPS will show up in red, indicating a really poor
rendering performance.

Rendering the GUI
Add the following code in WorldRenderer:

 private void renderGui (SpriteBatch batch) {
 batch.setProjectionMatrix(cameraGUI.combined);
 batch.begin();
 // draw collected gold coins icon + text
 // (anchored to top left edge)
 renderGuiScore(batch);
 // draw extra lives icon + text (anchored to top right edge)
 renderGuiExtraLive(batch);
 // draw FPS text (anchored to bottom right edge)
 renderGuiFpsCounter(batch);
 batch.end();
 }

Furthermore, change render() in WorldRenderer:

 public void render () {
 renderWorld(batch);
 renderGui(batch);
 }

The implementation of the game's GUI is now finished.

Making a Scene

[194]

Summary
In this chapter, you learned how to implement your game objects. You also learned
how to create compound game objects using several textures. Additionally, the
implementation of the level loader was discussed. Afterwards, we assembled the
game world using the level loader, which in turn will create all our game objects
from now on. You learned how to use bitmap fonts and used LibGDX's built-in font
for the game's GUI text. In addition, GUI elements were added to display the game's
status, such as the player's current score and extra lives. Remember, we are still using
our camera helper class that allows us to easily move around inside our scene. You
can also still zoom in and out.

The next chapter will continue to implement the rest of the basic game elements,
such as the player character, items, player movement, basic collision detection,
and so on.

Adding the Actors
In this chapter, we will implement the remaining game objects that represent our
actors in the game world. These are the player character bunny head and both the
collectible items: the gold coin and the feather power-up. We will complete the
level loader by adding support for the actor game objects so that these are handled
properly when a level is loaded.

The game will be extended to feature a simple physics simulation that allows any
game object to be moved using physical properties, such as velocity, acceleration,
and friction. In addition, the game logic will also need to detect collisions of the game
objects to trigger certain events. For example, we want the player character to be able
to jump, stand, and walk on a rock (platform), collect items by walking over them,
and lose a life when it falls into the water. The game logic will also include a check to
find out whether the game over condition is met so that the game immediately ends
and a GAME OVER text message is displayed.

In this chapter, we will:

• Implement our game actors
• Create logic for collision detection
• Finish the GUI

Implementing the actor game objects
The gold coin, feather, and bunny head are some of our game objects. Each of our
game objects inherits the AbstractGameObject class. The AbstractGameObject
holds the attributes and functionalities for physics and collision detection.

First, let's make some preparations in AbstractGameObject and add a few
functionalities for our upcoming physics and collision detection code.

Adding the Actors

[196]

Add the following import to AbstractGameObject:

import com.badlogic.gdx.math.Rectangle;

Then, add the following member variables and initialization code to the same class:

public Vector2 velocity;
public Vector2 terminalVelocity;
public Vector2 friction;

public Vector2 acceleration;
public Rectangle bounds;

public AbstractGameObject () {
 position = new Vector2();
 dimension = new Vector2(1, 1);
 origin = new Vector2();
 scale = new Vector2(1, 1);
 rotation = 0;
 velocity = new Vector2();
 terminalVelocity = new Vector2(1, 1);
 friction = new Vector2();
 acceleration = new Vector2();
 bounds = new Rectangle();
}

The following list contains a brief description of the purpose of each variable:

• velocity: This is the object's current speed in m/s.
• terminalVelocity: This is the object's positive and negative maximum

speed in m/s.
• friction: This is an opposing force that slows down the object until

its velocity equals zero. This value is given as a coefficient that is
dimensionless. A value of zero means no friction, and thus the object's
velocity will not decrease.

• acceleration: This is the object's constant acceleration in m/s².
• bounds: The object's bounding box describes the physical body that will be

used for collision detection with other objects. The bounding box can be set
to any size and is completely independent of the actual dimension of the
object in the game world.

Chapter 6

[197]

We will now add simple physics simulation code that makes use of the new physics
attributes, namely, velocity, terminalVelocity, friction, and acceleration:

1. Add the following import to AbstractGameObject:
import com.badlogic.gdx.math.MathUtils;

2. Furthermore, add the following code to the same class:
protected void updateMotionX (float deltaTime) {
 if (velocity.x != 0) {
 // Apply friction
 if (velocity.x > 0) {
 velocity.x =
 Math.max(velocity.x - friction.x * deltaTime, 0);
 } else {
 velocity.x =
 Math.min(velocity.x + friction.x * deltaTime, 0);
 }
 }
 // Apply acceleration
 velocity.x += acceleration.x * deltaTime;
 // Make sure the object's velocity does not exceed the
 // positive or negative terminal velocity
 velocity.x = MathUtils.clamp(velocity.x,
 -terminalVelocity.x, terminalVelocity.x);
}

protected void updateMotionY (float deltaTime) {
 if (velocity.y != 0) {
 // Apply friction
 if (velocity.y > 0) {
 velocity.y = Math.max(velocity.y - friction.y *
deltaTime, 0);
 } else {
 velocity.y = Math.min(velocity.y + friction.y *
deltaTime, 0);
 }
 }
 // Apply acceleration
 velocity.y += acceleration.y * deltaTime;
 // Make sure the object's velocity does not exceed the
 // positive or negative terminal velocity

Adding the Actors

[198]

 velocity.y = MathUtils.clamp(velocity.y, -
terminalVelocity.y, terminalVelocity.y);
}

3. Finally, make the following change to the already existing update() method:
public void update (float deltaTime) {
 updateMotionX(deltaTime);
 updateMotionY(deltaTime);
 // Move to new position
 position.x += velocity.x * deltaTime;
 position.y += velocity.y * deltaTime;
}

The two new methods updateMotionX() and updateMotionY() are called on every
update cycle to calculate the next x and y components of the object's velocity in terms
of the given delta time. The calculation is done in the following three steps:

1. If the object's velocity is not equal to zero, the object must be in motion.
Therefore, friction needs to be applied on the velocity to slow it down.
As the property of friction is meant to decrease velocity, the friction
coefficient needs to be either subtracted from positive or only added to
negative velocity values. The velocity is directly set to zero as soon as
the algebraic sign changes to fully stop the ongoing motion using the
Math.max and Math.min functions.

2. Next, acceleration is applied to the current velocity.
3. Finally, it is made sure that the new velocity value will always be inside the

range of the positive and negative terminal velocity.

After both the velocity components have been updated, the displacement that
simulates the actual motion of an object is done by simply adding the new velocity
vector to the position vector that holds the last position.

Creating the gold coin object
The gold coin game object consists of only one image. It is a collectible item, which
means that it can be collected by the player's character by simply walking over it. As
a result of the gold coin being collected, the object will turn invisible for the rest of
the game, as shown here:

Chapter 6

[199]

Create a new file for the GoldCoin class and add the following code to it:

package com.packtpub.libgdx.canyonbunny.game.objects;

import com.badlogic.gdx.graphics.g2d.SpriteBatch;
import com.badlogic.gdx.graphics.g2d.TextureRegion;
import com.packtpub.libgdx.canyonbunny.game.Assets;

public class GoldCoin extends AbstractGameObject {

 private TextureRegion regGoldCoin;

 public boolean collected;

 public GoldCoin () {
 init();
 }

 private void init () {
 dimension.set(0.5f, 0.5f);

 regGoldCoin = Assets.instance.goldCoin.goldCoin;

 // Set bounding box for collision detection
 bounds.set(0, 0, dimension.x, dimension.y);

 collected = false;
 }

 public void render (SpriteBatch batch) {
 if (collected) return;

 TextureRegion reg = null;
 reg = regGoldCoin;
 batch.draw(reg.getTexture(), position.x, position.y,
origin.x, origin.y, dimension.x, dimension.y, scale.x, scale.y,
rotation, reg.getRegionX(), reg.getRegionY(),
reg.getRegionWidth(), reg.getRegionHeight(), false, false);
 }

 public int getScore() {
 return 100;
 }
}

Adding the Actors

[200]

The gold coin uses the collected variable to store its current state of visibility. The
render() method will always check the collected state to decide whether the object
should be rendered or not. The getScore() method returns the item's score that the
player will receive to collect it. The bounding box bounds are set to the exact same
size as its dimension inside the game world.

Creating the feather object
The feather game object is very similar to the gold coin. It consists of only one
image and is a collectible item that will turn invisible when it is collected by
the player's character.

Create a new file for the Feather class and add the following code:

package com.packtpub.libgdx.canyonbunny.game.objects;

import com.badlogic.gdx.graphics.g2d.SpriteBatch;
import com.badlogic.gdx.graphics.g2d.TextureRegion;
import com.packtpub.libgdx.canyonbunny.game.Assets;

public class Feather extends AbstractGameObject {

 private TextureRegion regFeather;

 public boolean collected;

 public Feather () {
 init();
 }

 private void init () {
 dimension.set(0.5f, 0.5f);

 regFeather = Assets.instance.feather.feather;

 // Set bounding box for collision detection

Chapter 6

[201]

 bounds.set(0, 0, dimension.x, dimension.y);

 collected = false;
 }

 public void render (SpriteBatch batch) {
 if (collected) return;

 TextureRegion reg = null;
 reg = regFeather;
 batch.draw(reg.getTexture(), position.x, position.y,
origin.x, origin.y, dimension.x, dimension.y, scale.x, scale.y,
rotation, reg.getRegionX(), reg.getRegionY(),
reg.getRegionWidth(), reg.getRegionHeight(), false, false);
 }

 public int getScore() {
 return 250;
 }
}

Obviously, this code is almost similar to the code of the gold coin. The only
difference between them is the image used and that the getScore() method
returns a slightly higher score.

Creating the bunny head object
The bunny head or player's character is the most complex game object that we will
create in this project. It consists of only one image, but involves quite a lot of code to
enable jumping and falling as well as handling the feather power-up effect.

Create a new file for the BunnyHead class and add the following code:

package com.packtpub.libgdx.canyonbunny.game.objects;

import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;

Adding the Actors

[202]

import com.badlogic.gdx.graphics.g2d.TextureRegion;
import com.packtpub.libgdx.canyonbunny.game.Assets;
import com.packtpub.libgdx.canyonbunny.util.Constants;

public class BunnyHead extends AbstractGameObject {

 public static final String TAG = BunnyHead.class.getName();

 private final float JUMP_TIME_MAX = 0.3f;
 private final float JUMP_TIME_MIN = 0.1f;
 private final float JUMP_TIME_OFFSET_FLYING =
JUMP_TIME_MAX - 0.018f;

 public enum VIEW_DIRECTION { LEFT, RIGHT }

 public enum JUMP_STATE {
 GROUNDED, FALLING, JUMP_RISING, JUMP_FALLING
 }

 private TextureRegion regHead;

 public VIEW_DIRECTION viewDirection;
 public float timeJumping;
 public JUMP_STATE jumpState;
 public boolean hasFeatherPowerup;
 public float timeLeftFeatherPowerup;

 public BunnyHead () {
 init();
 }

 public void init () {};
 public void setJumping (boolean jumpKeyPressed) {};
 public void setFeatherPowerup (boolean pickedUp) {};
 public boolean hasFeatherPowerup () {};
}

Now that we have defined the viewing direction—a state for jumping and another
state for the feather power-up—we can go on and fill in the specific implementation
details of the still empty methods.

Chapter 6

[203]

Now, add the following code to the init() method:

public void init () {
 dimension.set(1, 1);
 regHead = Assets.instance.bunny.head;
 // Center image on game object
 origin.set(dimension.x / 2, dimension.y / 2);
 // Bounding box for collision detection
 bounds.set(0, 0, dimension.x, dimension.y);
 // Set physics values
 terminalVelocity.set(3.0f, 4.0f);
 friction.set(12.0f, 0.0f);
 acceleration.set(0.0f, -25.0f);
 // View direction
 viewDirection = VIEW_DIRECTION.RIGHT;
 // Jump state
 jumpState = JUMP_STATE.FALLING;
 timeJumping = 0;
 // Power-ups
 hasFeatherPowerup = false;
 timeLeftFeatherPowerup = 0;
}

The preceding code initializes the bunny head game object by setting its physics
values, a starting view direction, and jump state. It also deactivates the feather
power-up effect.

Next, add the following code to the setJumping() method:

public void setJumping (boolean jumpKeyPressed) {
 switch (jumpState) {
 case GROUNDED: // Character is standing on a platform
 if (jumpKeyPressed) {
 // Start counting jump time from the beginning
 timeJumping = 0;
 jumpState = JUMP_STATE.JUMP_RISING;
 }
 break;
 case JUMP_RISING: // Rising in the air
 if (!jumpKeyPressed)
 jumpState = JUMP_STATE.JUMP_FALLING;
 break;
 case FALLING:// Falling down
 case JUMP_FALLING: // Falling down after jump

Adding the Actors

[204]

 if (jumpKeyPressed && hasFeatherPowerup) {
 timeJumping = JUMP_TIME_OFFSET_FLYING;
 jumpState = JUMP_STATE.JUMP_RISING;
 }
 break;
 }
}

The preceding code allows us to make the bunny jump. The state handling in the
code will decide whether jumping is currently possible and whether it is a single or a
multi jump.

Next, add the following code to the setFeatherPowerup() method:

public void setFeatherPowerup (boolean pickedUp) {
 hasFeatherPowerup = pickedUp;
 if (pickedUp) {
 timeLeftFeatherPowerup =
Constants.ITEM_FEATHER_POWERUP_DURATION;
 }
}

public boolean hasFeatherPowerup () {
 return hasFeatherPowerup && timeLeftFeatherPowerup > 0;
}

The preceding code allows us to toggle the feather power-up effect via the
setFeatherPowerup() method. The hasFeatherPowerup() method can be used to
find out whether the power-up is still active.

Next, add the following code to override the update() method:

@Override
public void update (float deltaTime) {
 super.update(deltaTime);
 if (velocity.x != 0) {
 viewDirection = velocity.x < 0 ? VIEW_DIRECTION.LEFT :
VIEW_DIRECTION.RIGHT;
 }
 if (timeLeftFeatherPowerup > 0) {
 timeLeftFeatherPowerup -= deltaTime;
 if (timeLeftFeatherPowerup < 0) {
 // disable power-up

Chapter 6

[205]

 timeLeftFeatherPowerup = 0;
 setFeatherPowerup(false);
 }
 }
}

The preceding code handles the switching of the viewing direction according to the
current move direction. Also, the time remaining of the power-up effect is checked. If
the time is up, the feather power-up effect is disabled.

Next, add the following code to override the updateMotionY() method:

@Override
protected void updateMotionY (float deltaTime) {
 switch (jumpState) {
 case GROUNDED:
 jumpState = JUMP_STATE.FALLING;
 break;
 case JUMP_RISING:
 // Keep track of jump time
 timeJumping += deltaTime;
 // Jump time left?
 if (timeJumping <= JUMP_TIME_MAX) {
 // Still jumping
 velocity.y = terminalVelocity.y;
 }
 break;
 case FALLING:
 break;
 case JUMP_FALLING:
 // Add delta times to track jump time
 timeJumping += deltaTime;
 // Jump to minimal height if jump key was pressed too short
 if (timeJumping > 0 && timeJumping <= JUMP_TIME_MIN) {
 // Still jumping
 velocity.y = terminalVelocity.y;
 }
 }
 if (jumpState != JUMP_STATE.GROUNDED)
 super.updateMotionY(deltaTime);
}

The preceding code handles the calculations and switching of states that is needed to
enable jumping and falling.

Adding the Actors

[206]

Next, add the following code to override the render() method:

@Override
public void render (SpriteBatch batch) {
 TextureRegion reg = null;

 // Set special color when game object has a feather power-up
 if (hasFeatherPowerup) {
 batch.setColor(1.0f, 0.8f, 0.0f, 1.0f);
}
 // Draw image
 reg = regHead;
 batch.draw(reg.getTexture(), position.x, position.y, origin.x,
origin.y, dimension.x, dimension.y, scale.x, scale.y, rotation,
reg.getRegionX(), reg.getRegionY(), reg.getRegionWidth(),
reg.getRegionHeight(), viewDirection == VIEW_DIRECTION.LEFT,
false);

 // Reset color to white
 batch.setColor(1, 1, 1, 1);
}

The preceding code handles the drawing of the image for the bunny head game
object. The image will be tinted orange if the feather power-up effect is active.

Furthermore, add the following code to Constants:

// Duration of feather power-up in seconds
public static final float ITEM_FEATHER_POWERUP_DURATION = 9;

The viewing direction, viewDirection, will change according to the object's
velocity as long as it is unequal to zero. It will be set to VIEW_DIRECTION.LEFT
when the horizontal velocity is negative; otherwise, it will be set to VIEW_
DIRECTION.RIGHT. This simply means that the player's character will always
look in the direction it is moving.

Chapter 6

[207]

There are four different states to jump, as follows:

• GROUNDED: In this state, the player is standing on a platform.
• FALLING: In this state, the player is falling down.
• JUMP_RISING: In this state, the player has initiated a jump and is still rising.

The maximum jump height has not been reached.
• JUMP_FALLING: In this state, the player is falling down after a previously

initiated jump. This state is reached either by jumping as long as possible or
by releasing the jump key earlier than that.

The state to jump is stored in jumpState. There is a minimum and maximum jump
time defined by the constants JUMP_TIME_MIN and JUMP_TIME_MAX. These time
limits and the jump power affects the resulting possible minimum and maximum
jump heights. A minimum jump is enforced on the player whenever the jump key is
released before the time defined in JUMP_TIME_MIN.

The currently elapsed jump time is accumulated in timeJumping and is reset on
every new jump. There is a third constant JUMP_TIME_OFFSET_FLYING that is used to
let the elapsed jump time start at a certain time, which effectively shortens the overall
height of such jumps. This is used for the multijump power-up effect of the feather
item. It allows the bunny head to fly by rapidly jumping repeatedly. A multijump
can only be executed when the bunny head is in midair. A shorter jump time for
multijumps makes it more difficult for the player to handle them, which adds a neat
detail to the gameplay feeling.

This is all done inside the overridden updateMotionY() method. Notice that the
original method of updateMotionY() from AbstractGameObject is also called
whenever an actual motion needs to happen, which is always the case when the
player is not in the GROUNDED jump state.

Adding the Actors

[208]

The following diagram visualizes the flow of the preceding method:

As you can see, the jump state will always change to FALLING whenever it is set to
GROUNDED. The reason for this is that we want grounded objects like the player's
character to fall down from platforms where they end. There must be a trigger that
tests this event so that the jump state will be in fact permanently changed from
GROUNDED to FALLING as long as there is a collision detected that resets the jump state
back to GROUNDED. Otherwise, the player's character will start to fall down as intended.

Chapter 6

[209]

A new jump is triggered by calling the setJumping() method. A true value can be
passed as an argument to denote that the jump key has been pressed. So this method
checks the current jump state of the bunny and also tests whether the jump key is
currently pressed by the player to perform the appropriate actions. These actions can
be to start a new jump, cancel an ongoing jump, or allow multijumps with the help of
the feather power-up.

The following diagram visualizes the flow of this method:

Adding the Actors

[210]

The hasFeatherPowerup and timeLeftFeatherPowerup variables describe
whether the player has collected the feather power-up or not and how much time
the effect will last. The power-up effect can be enabled and disabled by calling
setFeatherPowerup(). The hasFeatherPowerup() method is used as a combined test
to find out whether the power-up has been collected and if the effect is still lasting.

The render() method will tint the image of the player character orange if the feather
power-up has been collected. The viewing direction viewDirection is used to
decide whether the image needs to be flipped on the x axis.

Updating the rock object
Last but not least, change the setLength() method of Rock to the
following listings:

public void setLength (int length) {
 this.length = length;
 // Update bounding box for collision detection
 bounds.set(0, 0, dimension.x * length, dimension.y);
}

This will make sure that the size of the bounding box is adjusted whenever the
length of a rock is changed.

Completing the level loader
Now that we have implemented all the game objects of Canyon Bunny, we can
complete the level loader.

First, add the following import lines to Level:

import com.packtpub.libgdx.canyonbunny.game.objects.BunnyHead;
import com.packtpub.libgdx.canyonbunny.game.objects.Feather;
import com.packtpub.libgdx.canyonbunny.game.objects.GoldCoin;

Additionally, add these three member variables to the same class:

public BunnyHead bunnyHead;
public Array<GoldCoin> goldcoins;
public Array<Feather> feathers;

Chapter 6

[211]

After this, modify the init() and render() methods:

private void init (String filename) {
 // player character
 bunnyHead = null;
 // objects
 rocks = new Array<Rock>();
 goldcoins = new Array<GoldCoin>();
 feathers = new Array<Feather>();
 // load image file that represents the level data
 Pixmap pixmap = new Pixmap(Gdx.files.internal(filename));
 // scan pixels from top-left to bottom-right
 int lastPixel = -1;
 for (int pixelY = 0; pixelY < pixmap.getHeight(); pixelY++) {
 for (int pixelX = 0; pixelX < pixmap.getWidth(); pixelX++) {
 ...
 // rock
 else if (BLOCK_TYPE.ROCK.sameColor(currentPixel)) {
 ...
 }
 // player spawn point
 else if
 (BLOCK_TYPE.PLAYER_SPAWNPOINT.sameColor(currentPixel)) {
 obj = new BunnyHead();
 offsetHeight = -3.0f;
 obj.position.set(pixelX,baseHeight * obj.dimension.y +
offsetHeight);
 bunnyHead = (BunnyHead)obj;
 }
 // feather
 else if(BLOCK_TYPE.ITEM_FEATHER.sameColor(currentPixel)) {
 obj = new Feather();
 offsetHeight = -1.5f;
 obj.position.set(pixelX,baseHeight * obj.dimension.y
+ offsetHeight);
 feathers.add((Feather)obj);
 }
 // gold coin
 else if
 (BLOCK_TYPE.ITEM_GOLD_COIN.sameColor(currentPixel)) {
 obj = new GoldCoin();
 offsetHeight = -1.5f;
 obj.position.set(pixelX,baseHeight * obj.dimension.y
+ offsetHeight);

Adding the Actors

[212]

 goldcoins.add((GoldCoin)obj);
 }
 // unknown object/pixel color
 else {
 ...
 }
 lastPixel = currentPixel;
 }
 }
 ...
}

This code adds the actors to the level loading process in the init() method. Next,
make the following changes to the render() method:

public void render (SpriteBatch batch) {
 // Draw Mountains
 mountains.render(batch);
 // Draw Rocks
 for (Rock rock : rocks)
 rock.render(batch);
 // Draw Gold Coins
 for (GoldCoin goldCoin : goldcoins)
 goldCoin.render(batch);
 // Draw Feathers
 for (Feather feather : feathers)
 feather.render(batch);
 // Draw Player Character
 bunnyHead.render(batch);
 // Draw Water Overlay
 waterOverlay.render(batch);
 // Draw Clouds
 clouds.render(batch);
}

Then, add the following lines to Level:

public void update (float deltaTime) {
 bunnyHead.update(deltaTime);
 for(Rock rock : rocks)
 rock.update(deltaTime);
 for(GoldCoin goldCoin : goldcoins)
 goldCoin.update(deltaTime);
 for(Feather feather : feathers)

Chapter 6

[213]

 feather.update(deltaTime);
 clouds.update(deltaTime);
}

We added the new actors to the render() method and created a new update()
method so that we can collectively update all the game world objects in a level in one
call.

Finally, modify the update() method of WorldController as the following listings:

public void update (float deltaTime) {
 handleDebugInput(deltaTime);
 level.update(deltaTime);
 cameraHelper.update(deltaTime);
}

These changes makes sure that all the game objects contained within the level will be
updated when the update() method of WorldController is called.

Adding the game logic
The next step will be to add the game logic that constitutes the rules of our game
world. However, the game logic will need to be able to detect the so-called collisions
between two game objects before it can handle all of our events, such as walking
over an item to collect it. So, we will implement a very basic collision detection
method that tests two overlapping rectangles. If an overlap is detected, it means that
there is also a collision between these two tested objects. So, we can bind a certain
action to this event in the game logic to handle collisions as required.

Adding collision detection
Here, we add the code to check the collision of the bunny head with each actor game
object, the gold coin, feather, and the rock.

First, add the following import lines to WorldController:

import com.badlogic.gdx.math.Rectangle;
import com.packtpub.libgdx.canyonbunny.game.objects.BunnyHead;
import com.packtpub.libgdx.canyonbunny.game.objects.BunnyHead
.JUMP_STATE;
import com.packtpub.libgdx.canyonbunny.game.objects.Feather;
import com.packtpub.libgdx.canyonbunny.game.objects.GoldCoin;
import com.packtpub.libgdx.canyonbunny.game.objects.Rock;

Adding the Actors

[214]

After that, add the following code to the same class:

// Rectangles for collision detection
private Rectangle r1 = new Rectangle();
private Rectangle r2 = new Rectangle();

private void onCollisionBunnyHeadWithRock(Rock rock) {};
private void onCollisionBunnyWithGoldCoin(GoldCoin goldcoin) {};
private void onCollisionBunnyWithFeather(Feather feather) {};

private void testCollisions () {
 r1.set(level.bunnyHead.position.x, level.bunnyHead.position.y,
level.bunnyHead.bounds.width, level.bunnyHead.bounds.height);

 // Test collision: Bunny Head <-> Rocks
 for (Rock rock : level.rocks) {
 r2.set(rock.position.x, rock.position.y, rock.bounds.width,
rock.bounds.height);
 if (!r1.overlaps(r2)) continue;
 onCollisionBunnyHeadWithRock(rock);
 // IMPORTANT: must do all collisions for valid
 // edge testing on rocks.
 }

 // Test collision: Bunny Head <-> Gold Coins
 for (GoldCoin goldcoin : level.goldcoins) {
 if (goldcoin.collected) continue;
 r2.set(goldcoin.position.x, goldcoin.position.y,
goldcoin.bounds.width, goldcoin.bounds.height);
 if (!r1.overlaps(r2)) continue;
 onCollisionBunnyWithGoldCoin(goldcoin);
 break;
 }

 // Test collision: Bunny Head <-> Feathers
 for (Feather feather : level.feathers) {
 if (feather.collected) continue;
 r2.set(feather.position.x, feather.position.y,
feather.bounds.width, feather.bounds.height);
 if (!r1.overlaps(r2)) continue;
 onCollisionBunnyWithFeather(feather);
 break;
 }
}

Chapter 6

[215]

This code adds a new method called testCollisions() that iterates through all
the game objects and tests whether there is a collision between the bunny head and
another game object. This particular test is subdivided into three separate methods
called onCollisionBunnyHeadWithRock(), onCollisionBunnyWithGoldCoin(),
and onCollisionBunnyWithFeather(), which are still empty.

Next, fill in the onCollisionBunnyHeadWithRock() method with the
following code:

private void onCollisionBunnyHeadWithRock (Rock rock) {
 BunnyHead bunnyHead = level.bunnyHead;
 float heightDifference = Math.abs(bunnyHead.position.y
 - (rock.position.y + rock.bounds.height));
 if (heightDifference > 0.25f) {
 boolean hitRightEdge = bunnyHead.position.x > (
rock.position.x + rock.bounds.width / 2.0f);
 if (hitRightEdge) {
 bunnyHead.position.x = rock.position.x + rock.bounds.width;
 } else {
 bunnyHead.position.x = rock.position.x -
bunnyHead.bounds.width;
 }
 return;
 }

 switch (bunnyHead.jumpState) {
 case GROUNDED:
 break;
 case FALLING:
 case JUMP_FALLING:
 bunnyHead.position.y = rock.position.y +
bunnyHead.bounds.height + bunnyHead.origin.y;
 bunnyHead.jumpState = JUMP_STATE.GROUNDED;
 break;
 case JUMP_RISING:
 bunnyHead.position.y = rock.position.y +
bunnyHead.bounds.height + bunnyHead.origin.y;
 break;
 }
}

This code handles collisions between the bunny head game object and a rock game
object and is called when a collision is detected. Then, the bunny head game object
is moved accordingly to prevent it from falling through our platforms—the rock
game objects.

Adding the Actors

[216]

Next, fill in the onCollisionBunnyWithGoldCoin() method with the
following code:

private void onCollisionBunnyWithGoldCoin (GoldCoin goldcoin) {
 goldcoin.collected = true;
 score += goldcoin.getScore();
 Gdx.app.log(TAG, "Gold coin collected");
}

This code handles collisions between the bunny head game object and a gold coin
game object. It simply flags the gold coin as being collected so that it will disappear.
Furthermore, the player's score increases by the value the gold coin game object
returns from its getScore() method.

Finally, fill in the onCollisionBunnyWithFeather() method with the
following code:

private void onCollisionBunnyWithFeather (Feather feather) {
 feather.collected = true;
 score += feather.getScore();
 level.bunnyHead.setFeatherPowerup(true);
 Gdx.app.log(TAG, "Feather collected");
}

This code handles collisions between the bunny head game object and
a feather game object. The handling of this collision is similar to the
onCollisionBunnyWithGoldCoin() method, but it also activates or refreshes the
power-up effect for the bunny head.

Now, let's make one more modification to the update() method of
WorldController:

public void update (float deltaTime) {
 handleDebugInput(deltaTime);
 level.update(deltaTime);
 testCollisions();
 cameraHelper.update(deltaTime);
}

You can now run the game to verify that the level loading and collision detection
works. Within a very short time span, you should see that the player's character
falls down a bit and then stops on top of the rock underneath it. The following is a
screenshot of this scene:

Chapter 6

[217]

You can still use all the keys (left/right/up/down arrows, comma, dot, and so on) to
control the camera, so, now is a good opportunity to just fly around a bit in the game
world to verify that all the game objects appear at their correct locations.

The following screenshot shows where the camera has been zoomed out a bit to view
all the new game objects at once:

Adding the Actors

[218]

We will now add a toggle key to choose whether the arrow keys should control the
player character or the camera. The camera should follow the player's character
while being in the player control mode. Otherwise, the camera can be freely moved
around. We will also add another key to let the player character jump.

Let's begin with the camera that is set to follow the player character at the start
of the level. Add the highlighted line of code to the initLevel() method of
WorldController:

private void initLevel () {
 score = 0;
 level = new Level(Constants.LEVEL_01);
 cameraHelper.setTarget(level.bunnyHead);
}

Next, change the handleDebugInput() and keyUp()methods of WorldController:

private void handleDebugInput (float deltaTime) {
 if (Gdx.app.getType() != ApplicationType.Desktop) return;

 if (!cameraHelper.hasTarget(level.bunnyHead)) {
 // Camera Controls (move)
 float camMoveSpeed = 5 * deltaTime;
 float camMoveSpeedAccelerationFactor = 5;
 if (Gdx.input.isKeyPressed(Keys.SHIFT_LEFT))
camMoveSpeed *= camMoveSpeedAccelerationFactor;
 if (Gdx.input.isKeyPressed(Keys.LEFT))
moveCamera(-camMoveSpeed, 0);
 if (Gdx.input.isKeyPressed(Keys.RIGHT))
moveCamera(camMoveSpeed, 0);
 if (Gdx.input.isKeyPressed(Keys.UP))
moveCamera(0, camMoveSpeed);
 if (Gdx.input.isKeyPressed(Keys.DOWN))
moveCamera(0, -camMoveSpeed);
 if (Gdx.input.isKeyPressed(Keys.BACKSPACE))
cameraHelper.setPosition(0, 0);
 }

 // Camera Controls (zoom)
 ...
}

@Override
public boolean keyUp (int keycode) {
 // Reset game world

Chapter 6

[219]

 if (keycode == Keys.R) {
 init();
 Gdx.app.debug(TAG, "Game world resetted");
 }
 // Toggle camera follow
 else if (keycode == Keys.ENTER) {
 cameraHelper.setTarget(cameraHelper.hasTarget()
? null: level.bunnyHead);
 Gdx.app.debug(TAG, "Camera follow enabled: "
+ cameraHelper.hasTarget());
 }
 return false;
}

Now, we can use the Enter key to toggle between the player and camera controls.
What is still missing is the code that handles the input for the player's character.

Add the following lines of code to WorldController:

private void handleInputGame (float deltaTime) {
 if (cameraHelper.hasTarget(level.bunnyHead)) {
 // Player Movement
 if (Gdx.input.isKeyPressed(Keys.LEFT)) {
 level.bunnyHead.velocity.x =
-level.bunnyHead.terminalVelocity.x;
 } else if (Gdx.input.isKeyPressed(Keys.RIGHT)) {
 level.bunnyHead.velocity.x =
level.bunnyHead.terminalVelocity.x;
 } else {
 // Execute auto-forward movement on non-desktop platform
 if (Gdx.app.getType() != ApplicationType.Desktop) {
 level.bunnyHead.velocity.x =
 level.bunnyHead.terminalVelocity.x;
 }
 }

 // Bunny Jump
 if (Gdx.input.isTouched() ||
Gdx.input.isKeyPressed(Keys.SPACE)) {
 level.bunnyHead.setJumping(true);
 } else {
 level.bunnyHead.setJumping(false);
 }
 }
}

Adding the Actors

[220]

After this, simply call the new method in the update() method of WorldController:

public void update (float deltaTime) {
 handleDebugInput(deltaTime);
 handleInputGame(deltaTime);
 level.update(deltaTime);
 testCollisions();
 cameraHelper.update(deltaTime);
}

The player is now controllable using the left and right arrow keys to move in the
corresponding direction. We also add an autoforward moving behavior if the game
is run on a non-desktop platform such as Android. Pressing either the Space bar key
or touching the display of your smartphone will trigger the player character to jump.
You can now run the game once again and try to pick up the first items as well as
try to carefully jump from rock to rock without falling from the edge. Moreover, you
might want to check what happens when you fall down. Obviously, nothing will
happen in this case as we have not added any game logic yet to handle it properly.
We also want to make the camera stop following the player's character too far down
the level to make it more clear to the player that the level ends at the height of the
water and to avoid a graphical glitch.

In a later chapter, we will take a closer look at a full-blown physics
engine called Box2D that implements all the necessary features to
detect a collision. However, we will not revise our implementation
by replacing it with Box2D's one because Canyon Bunny does not use
physically accurate movements to make the game feel right. Trying to
make real-world physics simulations do unrealistic physics can be a
very hard and tedious task.

Losing lives, game over, and fixing the
camera
Whenever the player falls into the water, it will cost one extra life. The game will be
over as soon as there are no extra lives left and the player falls into the water once
again. There will be a short delay of three seconds between the game over message
and a complete restart of the game.

Add the following lines to Constants:

// Delay after game over
public static final float TIME_DELAY_GAME_OVER = 3;

Chapter 6

[221]

Next, add the following lines to WorldController:

private float timeLeftGameOverDelay;

public boolean isGameOver () {
 return lives < 0;
}

public boolean isPlayerInWater () {
 return level.bunnyHead.position.y < -5;
}

In isPlayerInWater(), we test the bunny head's vertical position to find out
whether it fell down into the water. As the water is placed at the bottom edge of the
screen (y = 0), we simply need to look for a value smaller than this. In our example,
we use -5 instead of 0 to also add a little delay in time. This is because travelling all
the way down to the vertical position of -5 simply takes longer than it would do if
we were using 0. The resulting effect is that the game will enforce a little pause on
the player after each lost life.

After this, make the following modifications to init() and update() in
WorldController:

private void init () {
 Gdx.input.setInputProcessor(this);
 cameraHelper = new CameraHelper();
 lives = Constants.LIVES_START;
 timeLeftGameOverDelay = 0;
 initLevel();
}

public void update (float deltaTime) {
 handleDebugInput(deltaTime);
 if (isGameOver()) {
 timeLeftGameOverDelay -= deltaTime;
 if (timeLeftGameOverDelay < 0) init();
 } else {
 handleInputGame(deltaTime);
 }
 level.update(deltaTime);
 testCollisions();
 cameraHelper.update(deltaTime);
 if (!isGameOver() && isPlayerInWater()) {

Adding the Actors

[222]

 lives--;
 if (isGameOver())
 timeLeftGameOverDelay = Constants.TIME_DELAY_GAME_OVER;
 else
 initLevel();
 }
}

The player's character will now lose extra lives when falling down into the water.
You can verify this by checking the top-right corner of the game screen. Each missing
extra life will turn into a transparent bunny head icon. The game over delay and the
restart of the game after that are also working now.

There is still one small modification needed to fix the camera follow behavior.

Change the update() method of CameraHelper as follows:

public void update (float deltaTime) {
 if (!hasTarget()) return;

 position.x = target.position.x + target.origin.x;
 position.y = target.position.y + target.origin.y;

 // Prevent camera from moving down too far
 position.y = Math.max(-1f, position.y);
}

Adding the game over text and the feather
icon to the GUI
Here, we add the game over text and the feather icon to our game.

Add the following method to WorldRenderer:

private void renderGuiGameOverMessage (SpriteBatch batch) {
 float x = cameraGUI.viewportWidth / 2;
 float y = cameraGUI.viewportHeight / 2;
 if (worldController.isGameOver()) {
 BitmapFont fontGameOver = Assets.instance.fonts.defaultBig;
 fontGameOver.setColor(1, 0.75f, 0.25f, 1);
 fontGameOver.drawMultiLine(batch, "GAME OVER", x, y, 0,
BitmapFont.HAlignment.CENTER);
 fontGameOver.setColor(1, 1, 1, 1);
 }
}

Chapter 6

[223]

This method calculates the center of the GUI camera's viewport. The text is rendered
using the big font from our assets. Its color is changed using the setColor() method
of BitmapFont. The game over text is drawn using the drawMultiLine() method of
BitmapFont, which takes a reference to SpriteBatch, the actual text to be displayed,
a 2D position, a horizontal offset, and a constant for horizontal text alignment.

We could have used draw() instead of drawMultiLine(); however,
draw() does not provide the horizontal text alignment parameter
that we need to center the text around its 2D position. The text might
contain newlines (\n) to display multiline text, which we do not use in
the preceding code.

We are using the BitmapFont.HAlignment.CENTER constant to tell BitmapFont
that we want it to draw the given text horizontally centered to the given position.
The text message GAME OVER will only be visible if the isGameOver() method of
WorldController returns true.

The following is the screenshot of a case where all the extra lives were used up until
the game was over:

Adding the Actors

[224]

Now, add the following method to WorldRenderer:

private void renderGuiFeatherPowerup (SpriteBatch batch) {
 float x = -15;
 float y = 30;
 float timeLeftFeatherPowerup =
 worldController.level.bunnyHead.timeLeftFeatherPowerup;
 if (timeLeftFeatherPowerup > 0) {
 // Start icon fade in/out if the left power-up time
 // is less than 4 seconds. The fade interval is set
 // to 5 changes per second.
 if (timeLeftFeatherPowerup < 4) {
 if (((int)(timeLeftFeatherPowerup * 5) % 2) != 0) {
 batch.setColor(1, 1, 1, 0.5f);
 }
 }
 batch.draw(Assets.instance.feather.feather,
x, y, 50, 50, 100, 100, 0.35f, -0.35f, 0);
 batch.setColor(1, 1, 1, 1);
 Assets.instance.fonts.defaultSmall.draw(batch,
"" + (int)timeLeftFeatherPowerup, x + 60, y + 57);
 }
}

This method first checks whether there is still time left for the feather power-up effect
to end. Only if this is the case, a feather icon is drawn in the top-left corner under the
gold coin icon. A small number is drawn next to it that displays the rounded time
that is still left until the effect vanishes. There is also some extra code that makes
the feather icon fade back and forth when there are less than four seconds of the
power-up effect to last.

Chapter 6

[225]

The following screenshot shows an example of when the feather power-up has been
picked up and has 6 seconds left:

You can see this from the little number shown next to the feather icon in the top-left
corner of the game screen.

As the final step for this chapter, both the new GUI render methods need to be added
to the renderGui() method of WorldRenderer:

private void renderGui (SpriteBatch batch) {
 batch.setProjectionMatrix(cameraGUI.combined);
 batch.begin();

 // draw collected gold coins icon + text
 // (anchored to top left edge)
 renderGuiScore(batch);
 // draw collected feather icon (anchored to top left edge)
 renderGuiFeatherPowerup(batch);
 // draw extra lives icon + text (anchored to top right edge)
 renderGuiExtraLive(batch);
 // draw FPS text (anchored to bottom right edge)
 renderGuiFpsCounter(batch);

Adding the Actors

[226]

 // draw game over text
 renderGuiGameOverMessage(batch);

 batch.end();
}

Summary
In this chapter, you learned how to implement the player's character, platforms,
and collectible items in conjunction with a basic yet functional physics simulation
and collision detection code. Nonetheless, it should be mentioned that the physics
simulation as well as the collision detection code both have their limitations. However,
as long as our original requirements of the game do not change, we will be just fine.

Furthermore, we completed the level loader and discussed how jumps for our
player's character work. Two conditions to lose extra lives and reaching game over
were added. The camera's position has been constrained in a way that it will never
follow the player's character below the height of the water. Finally, we added a
GAME OVER text message so that the player receives a visual feedback that all lives
have been used up. The feather power-up also gives visual feedback when collected
and active by displaying a feather icon with a nice little countdown timer that shows
the remaining time for the effect to last.

This concludes the basic implementation of the Canyon Bunny game, which also
means that we have now implemented all the features that we had originally defined
in our outline back in Chapter 1, Introduction to LibGDX and Project Setup.

In the next chapter, we will create a menu system to enrich the overall
game experience.

Menus and Options
In this chapter, we will create a menu for Canyon Bunny. There will be two buttons
for the player to choose from. One of the buttons is Play, which will start a new
game. The other button will show an options menu that contains a few changeable
settings, such as sound and music volumes. All the settings will be stored to and
loaded from a Preferences file to make them permanent.

It is essential to have some sort of mechanism to manage multiple screens if we want
to allow the player to switch between them. LibGDX provides a Game class, which
already supports such basic screen management.

You will also learn how to use LibGDX's scene graph called Scene2D to create
and organize complex menu structures as well as how to handle events such as
pressed buttons.

In this chapter, we will cover the following topics:

• Create and organize complex menu structures using Scene2D UI
• Store and load the game preferences

Managing multiple screens
We will now make some minor changes to our current class diagram to reflect the
support for multiple screens that we want to add to our game.

You might want to take a peek at the previous class diagram of
Canyon Bunny for a quick refresher. See Chapter 3, Configuring the
Game, for the diagram.

Menus and Options

[228]

Take a look at the following updated class diagram:

Assets

abstract
AbstractGameObject

CanyonBunnyMain

Player
Character

BunnyHead

Level
Objects

Rock

Level
Items

FeatherGoldCoin

Level
Decorations

1
WaterOverlay Mountains Clouds

Cloud
*

CameraHelper
1

LevelWorldRenderer WorldController
1 1

11 1
11

1

*

GameScreenMenuScreenScreens 1 1

abstract
AbstractGameScreen

1

1

1 1
1

*

interface
Screen

1

abstract
Game

>>>>

>>>>

>>>>

>>>>

What has been changed here is that CanyonBunnyMain no longer implements the
ApplicationListener interface that is used by LibGDX to control the flow of the
application. Instead, CanyonBunnyMain now extends LibGDX's Game class, which
in turn implements the ApplicationListener interface. The Game class provides a
setScreen() method. Calling this method allows us to change the current screen
to another one.

Every screen that we want to have in our game is encapsulated in a separate class
and ends with *Screen. This is just a naming convention in this project and you
are free to do it differently, of course. There are also three new classes shown in the
preceding diagram, which are AbstractGameScreen, MenuScreen, and GameScreen.
The menu and the game screen classes extend AbstractGameScreen so that we can
easily define the common actions that we want to be executed for all our screens.
Additionally, AbstractGameScreen implements LibGDX's Screen interface, which
introduces the show() and hide() method for each screen. These methods will be
called by Game and will take the place of create() and dispose(), so we will have
to move our existing code accordingly.

Chapter 7

[229]

The preceding diagram also shows that WorldController and WorldRenderer
are no longer directly used by CanyonBunnyMain. Instead, GameScreen will be
using them from now on as we will move all the game world-specific code from
CanyonBunnyMain to GameScreen.

Create a new file for the AbstractGameScreen class and add the following code:

package com.packtpub.libgdx.canyonbunny.screens;

import com.badlogic.gdx.Game;
import com.badlogic.gdx.Screen;
import com.badlogic.gdx.assets.AssetManager;
import com.packtpub.libgdx.canyonbunny.game.Assets;

public abstract class AbstractGameScreen implements Screen {
 protected Game game;

 public AbstractGameScreen (Game game) {
 this.game = game;
 }

 public abstract void render (float deltaTime);
 public abstract void resize (int width, int height);
 public abstract void show ();
 public abstract void hide ();
 public abstract void pause ();

 public void resume () {
 Assets.instance.init(new AssetManager());
 }

 public void dispose () {
 Assets.instance.dispose();
 }
}

Each screen will take a reference to the instance of Game. This is necessary because
each screen needs to call the setScreen() method of the Game class. Apart from this,
we have added two lines of code that will make sure that the game's assets will be
correctly loaded and disposed as LibGDX sees fit.

Menus and Options

[230]

Next, we will implement two new screen classes. Create a new file for the
MenuScreen class and add the following code:

package com.packtpub.libgdx.canyonbunny.screens;

import com.badlogic.gdx.Game;
import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.graphics.GL20;

public class MenuScreen extends AbstractGameScreen {
 private static final String TAG = MenuScreen.class.getName();

 public MenuScreen (Game game) {
 super(game);
 }

 @Override
 public void render (float deltaTime) {
 Gdx.gl.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);
 if(Gdx.input.isTouched())
 game.setScreen(new GameScreen(game));
 }

 @Override public void resize (int width, int height) { }
 @Override public void show () { }
 @Override public void hide () { }
 @Override public void pause () { }
}

This is still a very rough implementation of the menu screen, but it will serve us well
for the moment. The render() method takes care of only two things. It constantly
clears the screen by filling it with a solid black color and checks whether the screen
has been touched, which also includes mouse clicks if the game is running on a
desktop. As soon as a touch has been detected, the screen will be switched from the
menu screen to the game screen that shows our actual game world.

Next, create a new file for the GameScreen class and add the following code:

package com.packtpub.libgdx.canyonbunny.screens;

import com.badlogic.gdx.Game;
import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.graphics.GL20;

Chapter 7

[231]

import com.packtpub.libgdx.canyonbunny.game.WorldController;
import com.packtpub.libgdx.canyonbunny.game.WorldRenderer;

public class GameScreen extends AbstractGameScreen {
 private static final String TAG = GameScreen.class.getName();

 private WorldController worldController;
 private WorldRenderer worldRenderer;

 private boolean paused;

 public GameScreen (Game game) {
 super(game);
 }

 @Override
 public void render (float deltaTime) {
 // Do not update game world when paused.
 if (!paused) {
 // Update game world by the time that has passed
 // since last rendered frame.
 worldController.update(deltaTime);
 }
 // Sets the clear screen color to: Cornflower Blue
 Gdx.gl.glClearColor(0x64 / 255.0f, 0x95 / 255.0f,0xed /
255.0f, 0xff / 255.0f);
 // Clears the screen
 Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);
 // Render game world to screen
 worldRenderer.render();
 }
 @Override
 public void resize (int width, int height) {
 worldRenderer.resize(width, height);
 }

 @Override
 public void show () {
 worldController = new WorldController(game);
 worldRenderer = new WorldRenderer(worldController);
 Gdx.input.setCatchBackKey(true);
 }

 @Override

Menus and Options

[232]

 public void hide () {
 worldRenderer.dispose();
 Gdx.input.setCatchBackKey(false);
 }

 @Override
 public void pause () {
 paused = true;
 }

 @Override
 public void resume () {
 super.resume();
 // Only called on Android!
 paused = false;
 }
}

You should recognize most of the preceding code as it is merely a duplicate of
the current CanyonBunnyMain class. However, some small changes have been
made. First of all, the code that was in the create() and dispose() methods of
CanyonBunnyMain have been moved over to the show() and hide() methods,
respectively, in order to accommodate the Screen interface. Furthermore, catching
Android's back key will be enabled when the game screen is shown and disabled
again when the screen is hidden. This allows us to handle this event and execute a
custom action (here, switch back to the menu screen) in place of the system's default
action, which is to terminate the running application.

Now, let's fix CanyonBunnyMain. For clarity and brevity, we will just replace the
whole class as most of its code has to be removed anyway.

Replace the current content of CanyonBunnyMain with the following code:

package com.packtpub.libgdx.canyonbunny;

import com.badlogic.gdx.Application;
import com.badlogic.gdx.Game;
import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.assets.AssetManager;
import com.packtpub.libgdx.canyonbunny.game.Assets;
import com.packtpub.libgdx.canyonbunny.screens.MenuScreen;

public class CanyonBunnyMain extends Game {

Chapter 7

[233]

 @Override
 public void create () {
 // Set Libgdx log level
 Gdx.app.setLogLevel(Application.LOG_DEBUG);
 // Load assets
 Assets.instance.init(new AssetManager());
 // Start game at menu screen
 setScreen(new MenuScreen(this));
 }
}

Our platform-independent entry point of the game has obviously become quite
simple. Basically, CanyonBunnyMain has been reduced to only contain the create()
method, which almost looks the same as before. What has changed inside this
method is that after setting the log level and loading our assets, LibGDX is instructed
through a call of the setScreen() method by the Game class to change the current
screen. As we want the game to start with the menu screen, we simply pass a new
instance of MenuScreen.

One last change is required to finish our preparations for multiple screen
management. The WorldController class holds our game logic and needs to initiate
a switch back to the menu whenever the player has lost the game or if either the Esc
key or the back button is pressed.

Add the following two import lines to WorldController:

import com.badlogic.gdx.Game;
import com.packtpub.libgdx.canyonbunny.screens.MenuScreen;

After that, add the following code:

 private Game game;

 private void backToMenu () {
 // switch to menu screen
 game.setScreen(new MenuScreen(game));
 }

This allows us to save a reference to the game instance, which will enable us to
switch to another screen. Additionally, a convenient method called backToMenu()
has also been added that will switch to the menu screen when called.

Menus and Options

[234]

After this, make the following changes to WorldController:

 public WorldController (Game game) {
 this.game = game;
 init();
 }
 public void update (float deltaTime) {
 handleDebugInput(deltaTime);
 if (isGameOver()) {
 timeLeftGameOverDelay -= deltaTime;
 if (timeLeftGameOverDelay < 0) backToMenu();
 } else {
 handleInputGame(deltaTime);
 }
 level.update(deltaTime);
 ...
 }
 @Override
 public boolean keyUp (int keycode) {
 ...
 // Toggle camera follow
 else if (keycode == Keys.ENTER) {
 ...
 }
 // Back to Menu
 else if (keycode == Keys.ESCAPE || keycode == Keys.BACK) {
 backToMenu();
 }
 return false;
 }

The constructor has been extended by taking a reference of the game instance as
an argument, which is then stored for later reference when we need to switch the
screen. In the update() method, a call to backToMenu() is initiated as soon as the
game-over-delay timer runs out of time instead of restarting the game in the game
world as was the case before. As mentioned earlier, we want to handle Android's
back key as well as the Esc key on the desktop ourselves, which is now done inside
the keyUp() method.

You can now run the game and verify that you can switch back and forth between
MenuScreen and GameScreen. Touch the black screen of the menu and try to get back
to it by hitting either the Esc key or the back button, respectively. Losing all lives
while still in the game screen should yield the same result and bring you back to the
menu screen too.

Chapter 7

[235]

Exploring Scene2D UI, TableLayout, and
skins
LibGDX comes with a great feature set to easily create scene graphs. A scene graph
is a hierarchically organized structure of objects similar to files and folders on a
hard disk. In LibGDX, such objects are called actors. Actors can be nested to create
logical groups. Grouping actors is a very useful feature, as modifications applied to a
parent actor will also affect its child actors. Furthermore, each actor has its own local
coordinate system, which makes it very easy to define relative offsets inside a group
of actors, including position, angle of rotation, and scale.

Scene2D supports hit detection of rotated and scaled actors. LibGDX's flexible
event system allows you to handle and route inputs as needed so that the parent
actors can intercept inputs before they reach the child actors. Finally, the built-in
action system can be used to easily manipulate actors over a period of time, creating
complex effects that can execute in sequence, parallel, or in a combination of both.
All this described functionality is encapsulated in the Stage class, which contains
the hierarchy and distributes user-generated events. Actors can be added to and
removed from it at any time. The Stage class and the Actor class both contain an
act() method, which takes a delta time as its argument to do a time-based action.
Calling act() on a Stage instance will cause a call of act() on every actor in the
scene graph. The act() methods of Stage and Actor are basically what we already
know as the update() methods, only using a different name. For more information
on Scene2D, check out the official documentation at https://github.com/libgdx/
libgdx/wiki/Scene2d/.

Until now, we have not used any of Scene2D's functionality in our game. Naturally,
we could have implemented the game world, including its game objects, with
Scene2D. However, always keep in mind that using a scene graph comes with a
certain amount of overhead. LibGDX tries its best to keep the overhead at a bare
minimum, such as skipping complex calculations of transformation matrices if
objects do not need to be rotated or scaled. So, it really depends on what your
requirements are.

As the user interface of the menu that we are going to create is rather complex, we
want to make use of LibGDX's scene graph for this task. More precisely, we will
use Scene2D UI. This is another implementation in LibGDX that builds on top of
Scene2D and extends its functionality by providing a rich set of common and ready-
to-use UI elements. In LibGDX, these UI elements are called widgets.

https://github.com/libgdx/libgdx/wiki/Scene2d/
https://github.com/libgdx/libgdx/wiki/Scene2d/

Menus and Options

[236]

All the widgets currently available in Scene2D UI are Button, ButtonGroup,
CheckBox, Dialog, Image, ImageButton, Label, List, ScrollPane, SelectBox,
Slider, SplitPane, Stack, Window, TextButton, TextField, TextArea, Touchpad,
and Tree.

Scene2D UI also supports the easy creation of new custom widgets. We will discuss
a selected number of widgets as we implement them in our menu. For a complete
list and description of each widget, check out the official documentation at https://
github.com/libgdx/libgdx/wiki/Scene2d.ui.

In addition to Scene2D UI, LibGDX also incorporates a separate project called
TableLayout. The TableLayout object makes it very easy to create and maintain
dynamic (read: resolution-independent) layouts using tables. It also provides an
intuitive API. A Table class provides access to the functionality of TableLayout,
which is also implemented as a widget, and therefore integrates seamlessly into
the concept of Scene2D UI. It is highly recommended to check out the official
documentation at https://github.com/EsotericSoftware/tablelayout/.

One more important feature of Scene2D UI is the support of skins. A skin is a
collection of resources used to style and display UI widgets, for example, resources
can be texture regions, fonts, and colors. Typically, a skin uses texture regions that
come from a texture atlas. The style definition of each widget is stored in a separate
file that uses the JSON file format. For more information, check out the official
documentation at https://github.com/libgdx/libgdx/wiki/Skin/.

Using LibGDX's scene graph for the
menu UI
We are now going to create the scene of the menu screen. The scene will feature a
background image that fills the whole screen. There will be logos in the top-left and
bottom-left corner of the screen and two clickable buttons anchored in the bottom-
right corner that will trigger either a play or an options action. A gold coin and a
huge image of the bunny head are also added to the scene.

https://github.com/libgdx/libgdx/wiki/Scene2d.ui
https://github.com/libgdx/libgdx/wiki/Scene2d.ui
https://github.com/EsotericSoftware/tablelayout/
https://github.com/libgdx/libgdx/wiki/Skin/

Chapter 7

[237]

The following is a screenshot of how the finished menu screen will look:

However, before we start to create this scene, we have to do some preparations in
advance. First of all, we need to add new images to our project and also make a
small change to the automatic texture packing process so that we have a texture
atlas for our UI.

Add a new subfolder in CanyonBunny-desktop/assets-raw/ called images-ui and
copy all the new images into this directory. After this, make the following change to
Main.java:

if (rebuildAtlas) {
 Settings settings = new Settings();
 settings.maxWidth = 1024;
 settings.maxHeight = 1024;
 settings.debug = drawDebugOutline;
 TexturePacker.process(settings, "assets-raw/images",
 "../CanyonBunny-android/assets/images",
"canyonbunny.pack");
 TexturePacker.process(settings, "assets-raw/images-ui",
 "../CanyonBunny-android/assets/images",
"canyonbunny-ui.pack");
}

Menus and Options

[238]

You will need to set rebuildAtlas to true at least once and
run the game on the desktop to let TexturePacker create the
required texture atlas.

Gradle users must remember that your project folder is named android inside
the project root C:/libgdx. Hence, here you should put the destination path
../android/assets/images in both the TexturePacker.process() functions.

The texture atlas for our UI will then be created in CanyonBunny-android/assets/
images/ called canyonbunny-ui.

The resulting texture atlas for our UI should look like the following screenshot:

Chapter 7

[239]

Next, we will create a suitable JSON file to define the skin of our menu widgets.

Create a new file in CanyonBunny-android/assets/images/ called canyonbunny-
ui.json and add the following lines:

{
com.badlogic.gdx.scenes.scene2d.ui.Button$ButtonStyle: {
 play: { down: play-dn, up: play-up },
 options: { down: options-dn, up: options-up }
},
com.badlogic.gdx.scenes.scene2d.ui.Image: {
 background: { drawable: background },
 logo: { drawable: logo },
 info: { drawable: info },
 coins: { drawable: coins },
 bunny: { drawable: bunny },
},
}

On running the CanyonBunny-html project, it will show a json
parsing error while parsing the CanyonBunny-ui.json file. This
is because of GWT reflection. GWT does not provide reflection in the
same way as Java. Hence, extra steps are required to make reflection
available in the GWT project.
Open the GwtDefinition.gwt.xml file in your CanyonBunny-html
project and update it with the following code:

<module>

...

<extend-configuration-property
name="gdx.reflect.include"

 value="com.badlogic.gdx.scenes.scene2d.ui"
/>

<extend-configuration-property
name="gdx.reflect.include"

 value="com.badlogic.gdx.utils" />

</module>

The preceding code will enable the gwt reflection for the packages
com.badlogic.gdx.scenes.scene2d.ui and com.badlogic.
gdx.utils, which is required to parse Scene2D UI elements. Make
sure that you add extend-configuration-property below
set-configuration-property. To find out more about LibGDX
reflection, visit https://github.com/libgdx/libgdx/wiki/
Reflection.

https://github.com/libgdx/libgdx/wiki/Reflection
https://github.com/libgdx/libgdx/wiki/Reflection

Menus and Options

[240]

This definition file describes the type of widget to be used by specifying its
completely qualified name. Inside the block of a widget definition, you can freely
choose a name. Here we use play, options, background, and so on for our names.
These names are then followed by a colon, which is in turn followed by a comma-
separated list of attributes enclosed in curly brackets that correspond exactly to the
field names of the widget's class. For example, the Image widget has a field called
drawable. Some widgets have an inner class, which is denoted in the JSON file by
appending a dollar sign followed by the name of the style class. These style classes
contain widget-specific fields. We are using such a definition type for the Play and
Options buttons. Both these buttons have a down and up image assigned in their
Button widget.

Lastly, add the following lines of code to Constants to finish our preparations:

 public static final String TEXTURE_ATLAS_UI =
 "images/canyonbunny-ui.pack";
 public static final String TEXTURE_ATLAS_LIBGDX_UI =
 "images/uiskin.atlas";
 // Location of description file for skins
 public static final String SKIN_LIBGDX_UI =
 "images/uiskin.json";
 public static final String SKIN_CANYONBUNNY_UI =
 "images/canyonbunny-ui.json";

The uiskin.atlas and uiskin.json will be downloaded later in this chapter.

Building the scene for the menu screen
We will now begin with the actual implementation of the scene for the menu screen.
First, take a look at the following diagram that shows the hierarchy of the UI scene
graph that we are going to build step-by-step:

Chapter 7

[241]

The first line denotes a class of Lib :GDX
(Stage, Table, Stack, Layer, Image, Window,
Button, TextButton, CheckBox, SelectBox)

The second line denotes what a node is
used for in this scenegraph.

Window
win options

Table
audio settings

CheckBox
music

Label
music

Slider
music vol

Slider
sound vol

Label
sound

CheckBox
sound

Label
audio

Button
options

Image
info

Image
bunny

Image
background

SelectBox
sel char skin

Label
char skin

Table
char skin

Image
img char skin

Scenegraph

Stage

Stack

Layer
background

Layer
objects

Layer
logos

Layer
controls

Layer
options menu

Table
debug settings

Label
debug

Label
show FPS

CheckBox
show FPS

Button
play

Image
logo

Image
coins

Table
window buttons

5 separate layers
added to stack
node to manage
which object will
overlay each other.

Menu Screen

Label
separator light

Label
separator dark

TextButton
save

TextButton
cancel

Menu Controls

Options menu
contained in a
Window Widget

Menus and Options

[242]

The scene graph starts with an empty Stage. Then, the first child actor added to the
stage is a Stack widget. The Stack widget allows you to add actors that can overlay
other actors. We will make use of this ability to create several layers. Each layer uses
a Table widget as its parent actor. Using stacked tables enables us to lay out actors in
an easy and logical way.

In the first step, we will add the basic structure of our stacked layers and some
skeleton methods, which we are going to fill in the subsequent steps.

Add the following import lines to MenuScreen:

import com.badlogic.gdx.graphics.Color;
import com.badlogic.gdx.graphics.g2d.TextureAtlas;
import com.badlogic.gdx.scenes.scene2d.Stage;
import com.badlogic.gdx.scenes.scene2d.Actor;
import com.badlogic.gdx.scenes.scene2d.ui.Button;
import com.badlogic.gdx.scenes.scene2d.ui.CheckBox;
import com.badlogic.gdx.scenes.scene2d.ui.Image;
import com.badlogic.gdx.scenes.scene2d.ui.Label;
import com.badlogic.gdx.scenes.scene2d.ui.Label.LabelStyle;
import com.badlogic.gdx.scenes.scene2d.ui.SelectBox;
import com.badlogic.gdx.scenes.scene2d.ui.Skin;
import com.badlogic.gdx.scenes.scene2d.ui.Slider;
import com.badlogic.gdx.scenes.scene2d.ui.Stack;
import com.badlogic.gdx.scenes.scene2d.ui.Table;
import com.badlogic.gdx.scenes.scene2d.ui.TextButton;
import com.badlogic.gdx.scenes.scene2d.ui.Window;
import com.badlogic.gdx.scenes.scene2d.utils.ChangeListener;
import com.packtpub.libgdx.canyonbunny.game.Assets;
import com.packtpub.libgdx.canyonbunny.util.Constants;

After this, add the following lines of code to the same class:

 private Stage stage;
 private Skin skinCanyonBunny;

 // menu
 private Image imgBackground;
 private Image imgLogo;
 private Image imgInfo;
 private Image imgCoins;
 private Image imgBunny;
 private Button btnMenuPlay;
 private Button btnMenuOptions;

 // options

Chapter 7

[243]

 private Window winOptions;
 private TextButton btnWinOptSave;
 private TextButton btnWinOptCancel;
 private CheckBox chkSound;
 private Slider sldSound;
 private CheckBox chkMusic;
 private Slider sldMusic;
 private SelectBox<CharacterSkin> selCharSkin;
 private Image imgCharSkin;
 private CheckBox chkShowFpsCounter;

 // debug
 private final float DEBUG_REBUILD_INTERVAL = 5.0f;
 private boolean debugEnabled = false;
 private float debugRebuildStage;

We added new variables to store an instance of Stage called stage, an instance of
Skin called skinCanyonBunny, and some more variables for the widgets of the menu
screen and the Options window.

Next, add the following code to the same class:

 private void rebuildStage () {
 skinCanyonBunny = new Skin(
 Gdx.files.internal(Constants.SKIN_CANYONBUNNY_UI),
 new TextureAtlas(Constants.TEXTURE_ATLAS_UI));

 // build all layers
 Table layerBackground = buildBackgroundLayer();
 Table layerObjects = buildObjectsLayer();
 Table layerLogos = buildLogosLayer();
 Table layerControls = buildControlsLayer();
 Table layerOptionsWindow = buildOptionsWindowLayer();

 // assemble stage for menu screen
 stage.clear();
 Stack stack = new Stack();
 stage.addActor(stack);
 stack.setSize(Constants.VIEWPORT_GUI_WIDTH,
Constants.VIEWPORT_GUI_HEIGHT);
 stack.add(layerBackground);
 stack.add(layerObjects);
 stack.add(layerLogos);

Menus and Options

[244]

 stack.add(layerControls);
 stage.addActor(layerOptionsWindow);
 }

In rebuildStage(), we build everything that will make up the final scene of our
menu screen. This method is implemented in a way so that it can be called in a
repeated manner, hence the name rebuildStage. While we are implementing each
of the layers, you might want to try and modify the code in each step to get a better
understanding of how TableLayout behaves in certain situations.

Next, add the following code to the same class:

 private Table buildBackgroundLayer () {
 Table layer = new Table();
 return layer;
 }
 private Table buildObjectsLayer () {
 Table layer = new Table();
 return layer;
 }
 private Table buildLogosLayer () {
 Table layer = new Table();
 return layer;
 }
 private Table buildControlsLayer () {
 Table layer = new Table();
 return layer;
 }
 private Table buildOptionsWindowLayer () {
 Table layer = new Table();
 return layer;
 }

We have added five new methods that contain dummy implementations for now.
These will be used to build each layer of the menu.

Next, make the following changes to the same class:

 @Override
 public void resize (int width, int height) {
 stage.getViewport().update(width, height, true);
 }

 @Override
 public void hide () {

Chapter 7

[245]

 stage.dispose();
 skinCanyonBunny.dispose();
 }

 @Override
 public void show () {
stage = new Stage(new StretchViewport(Constants.VIEWPORT_GUI_WIDTH,
Constants.VIEWPORT_GUI_HEIGHT));
 Gdx.input.setInputProcessor(stage);
 rebuildStage();
 }

The show() method is called when the screen is shown. It initializes the stage, sets
it as LibGDX's current input processor so that the stage will receive all the future
inputs, and finally, the stage is rebuilt by calling rebuildStage(). The hide()
method will free the allocated resources when the screen is hidden. The resize()
method sets the viewport size of the stage.

Lastly, make the following changes to the render() method in the same class:

 @Override
 public void render (float deltaTime) {
 Gdx.gl.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
 Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);

 if (debugEnabled) {
 debugRebuildStage -= deltaTime;
 if (debugRebuildStage <= 0) {
 debugRebuildStage = DEBUG_REBUILD_INTERVAL;
 rebuildStage();
 }
 }
 stage.act(deltaTime);
 stage.draw();
 Table.drawDebug(stage);
 }

The code in render() that would switch to the game screen when the screen is
touched was replaced by calls to update and render the stage. The statement Table.
drawDebug() is a debugging feature of TableLayout, which enables you to draw
debug visuals in a scene. Additionally, you need to specify which Table widgets
should draw debug lines by calling their debug() method.

Menus and Options

[246]

This hint might sound trivial, but this is such a big time saver that it is
definitely worth pointing it out.
The code you just added to MenuScreen contains some additional
debug code that will call rebuildStage() in periodic intervals defined
in seconds by DEBUG_REBUILD_INTERVAL. You can enable periodic
refreshing by simply setting debugEnabled to true. This will give
you live updates at runtime, assuming that you are running the game
in debug mode on the desktop, and will allow you to take advantage of
JVM's awesome Code Hot Swapping feature.

Adding the background layer
Make the following changes in MenuScreen to add the background layer:

 private Table buildBackgroundLayer () {
 Table layer = new Table();
 // + Background
 imgBackground = new Image(skinCanyonBunny, "background");
 layer.add(imgBackground);
 return layer;
 }

There will now be a background image drawn to the scene of the menu screen. The
image is referenced using the background name that we defined earlier in our skin
file (canyonbunny-ui.json). If you change the size of the screen, the stage will
adjust accordingly along with the background layer and its Image widget.

Adding the objects layer
Make the following changes in MenuScreen to add the objects layer:

 private Table buildObjectsLayer () {
 Table layer = new Table();
 // + Coins
 imgCoins = new Image(skinCanyonBunny, "coins");
 layer.addActor(imgCoins);
 imgCoins.setPosition(135, 80);
 // + Bunny
 imgBunny = new Image(skinCanyonBunny, "bunny");
 layer.addActor(imgBunny);
 imgBunny.setPosition(355, 40);
 return layer;
 }

Chapter 7

[247]

There will now be an image of some coins and another image of a huge bunny head,
which are both drawn on top of the background layer. The positions of each actor are
explicitly set to certain coordinates by calling setPosition() on each actor.

Adding the logos layer
Make the following changes in MenuScreen to add the logos layer:

private Table buildLogosLayer () {
 Table layer = new Table();
 layer.left().top();
 // + Game Logo
 imgLogo = new Image(skinCanyonBunny, "logo");
 layer.add(imgLogo);
 layer.row().expandY();
 // + Info Logos
 imgInfo = new Image(skinCanyonBunny, "info");
 layer.add(imgInfo).bottom();
 if (debugEnabled) layer.debug();
 return layer;
}

The logos layer is anchored in the top-left corner of the screen. After this, an image
logo is added to the table followed by a call of the row() and expandY() methods.
Every time you call add() on a Table widget, TableLayout will add a new column,
which means the widget grows in a horizontal direction. So, if you want to start a
new row, you can tell TableLayout about this by calling row(). The expandY()
method expands the empty space in a vertical direction. The expansion is done by
shifting the widgets to the bounds of the cell.

After this, more image information is added to the table, which is literally pushed
down to the bottom edge due to the call of expandY().

Lastly, there is a call to layer.debug(), which is the way to tell TableLayout the
object it should draw debug visuals for.

Adding the controls layer
Make the following changes in MenuScreen to add the controls layer:

private Table buildControlsLayer () {
 Table layer = new Table();
 layer.right().bottom();

Menus and Options

[248]

 // + Play Button
 btnMenuPlay = new Button(skinCanyonBunny, "play");
 layer.add(btnMenuPlay);
 btnMenuPlay.addListener(new ChangeListener() {
 @Override
 public void changed (ChangeEvent event, Actor actor) {
 onPlayClicked();
 }
 });
 layer.row();
 // + Options Button
 btnMenuOptions = new Button(skinCanyonBunny, "options");
 layer.add(btnMenuOptions);
 btnMenuOptions.addListener(new ChangeListener() {
 @Override
 public void changed (ChangeEvent event, Actor actor) {
 onOptionsClicked();
 }
 });
 if (debugEnabled) layer.debug();
 return layer;
}

After this, add the following lines of code to the same class:

private void onPlayClicked () {
 game.setScreen(new GameScreen(game));
}

private void onOptionsClicked () { }

The controls layer is anchored in the bottom-right corner of the screen. A new button
widget is added using the Play style. Next, a new ChangeListener is added to this
button to define the action to be executed when the button is clicked on.

We are using ChangeListener to register new handlers for our button
widgets. This is the recommended way of implementing handlers for
widgets as most of them will fire ChangeEvent when changes occur.
We could also use ClickListener to accomplish the detection of
clicks on button widgets, but doing so has a major drawback. The
ClickListener method reacts on the input events received by a
widget, but does not know anything about widgets and their properties.
Therefore, if a widget is set to be disabled, clicking on events will still be
detected and handled by the listener.

Chapter 7

[249]

After this, a new row is started in which the second button widget is added using the
Options style. Each event handler calls a separate method to make it easier for us to
maintain the code of the layer and the code to handle events. The onPlayClicked()
method will switch to the game screen, while the onOptionsClicked() method is
intentionally left empty for the moment.

Adding the Options window layer
The Options window layer is going to be a lot more complex in comparison to
all the other layers that we have implemented so far. There are also some further
preparations required before we can continue to implement this layer.

Here is a screenshot to give you a better idea of how the finished Options
window will look:

The Options window will be a small box that shows a title bar with text on it and
has some empty space to hold additional widgets. It can be dragged on the title bar
to move it around in the scene. There will be a checkbox to enable and disable the
Sound and Music effects as well as a slider to adjust the volume, respectively. A
character skin can be chosen from a drop-down list. The current selection is shown
next to it in a small preview image. The preview image is updated whenever a new
selection in the drop-down list has been made to reflect the change. Lastly, there is
another checkbox that toggles to check whether the FPS counter will be displayed on
the game screen.

Menus and Options

[250]

The menu controls, that is, the Play and Options buttons, will disappear when the
Options window is shown. To close the Options window, the player has to choose
between saving and canceling any changes that have been made in the window.
When the Options window is hidden, the menu controls will appear again.

Usually, we would have to draw all of these textures that you see in the preceding
screenshot to use all of the shown widgets. Luckily, we can take a shortcut here by
taking a texture atlas, a suitable skin file, and a font definition file for the text to be
displayed in these widgets from LibGDX's test repository. It contains much more
than we need, so you might also want to take a closer look at the skin file to find out
how certain widgets need to be defined that are not covered here.

You will need the following files from LibGDX's test repository to put them into
CanyonBunny-android/assets/images/:

• uiskin.png

• uiskin.atlas

• uiskin.json

• default.fnt

Alternatively, you can download these files from the code bundle of Chapter 7, Menus
and Options, and place them at CanyonBunny-android/assets/images/.

This is how the image of the file uiskin.png should look:

There are two more actions that we will do in advance before we go back to
implementing the actual layer for the Options menu.

The first action is to create a new class that abstracts the process of loading and
saving all of our game settings.

Chapter 7

[251]

Create a new file called GamePreferences and add the following lines of code:

package com.packtpub.libgdx.canyonbunny.util;

import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.Preferences;
import com.badlogic.gdx.math.MathUtils;

public class GamePreferences {
 public static final String TAG =
GamePreferences.class.getName();

 public static final GamePreferences instance =
new GamePreferences();

 public boolean sound;
 public boolean music;
 public float volSound;
 public float volMusic;
 public int charSkin;
 public boolean showFpsCounter;

 private Preferences prefs;

 // singleton: prevent instantiation from other classes
 private GamePreferences () {
 prefs = Gdx.app.getPreferences(Constants.PREFERENCES);
 }

 public void load () { }
 public void save () { }
}

This class is implemented as a singleton so we can call its load() and save()
methods from virtually anywhere inside our project. The settings will be loaded
from and saved to a preferences file defined in Constants.PREFERENCES.

Next, add the following code to the load() method of the same class:

public void load () {
 sound = prefs.getBoolean("sound", true);
 music = prefs.getBoolean("music", true);
 volSound = MathUtils.clamp(prefs.getFloat("volSound", 0.5f),
 0.0f, 1.0f);

Menus and Options

[252]

 volMusic = MathUtils.clamp(prefs.getFloat("volMusic", 0.5f),
 0.0f, 1.0f);
 charSkin = MathUtils.clamp(prefs.getInteger("charSkin", 0),
 0, 2);
 showFpsCounter = prefs.getBoolean("showFpsCounter", false);
}

The load() method will always try its best to find a suitable and, more importantly,
valid value. This is achieved by supplying default values to the getter methods of the
Preferences class. For example, the call getFloat("volSound", 0.5f) will return
a value of 0.5f if there is no value found for the key named volSound. Before the
value of the sound volume is finally stored, it is also passed to the clamp() utility
method to ensure that the value is within the allowed range of values, which is 0.0f
and 1.0f here.

Next, add the following code to the save() method of the same class:

public void save () {
 prefs.putBoolean("sound", sound);
 prefs.putBoolean("music", music);
 prefs.putFloat("volSound", volSound);
 prefs.putFloat("volMusic", volMusic);
 prefs.putInteger("charSkin", charSkin);
 prefs.putBoolean("showFpsCounter", showFpsCounter);
 prefs.flush();
}

The save() method is pretty straightforward as it just takes the current values of its
public variables and puts them into the map of the preferences file. Finally, flush()
is called on the preferences file to actually write the changed values into the file.

The second action is to create another class that abstracts all selectable character
skins. Create a new file called CharacterSkin and add the following lines of code:

package com.packtpub.libgdx.canyonbunny.util;

import com.badlogic.gdx.graphics.Color;

public enum CharacterSkin {
 WHITE("White", 1.0f, 1.0f, 1.0f),
 GRAY("Gray", 0.7f, 0.7f, 0.7f),
 BROWN("Brown", 0.7f, 0.5f, 0.3f);

 private String name;
 private Color color = new Color();

Chapter 7

[253]

 private CharacterSkin (String name, float r, float g, float b) {
 this.name = name;
 color.set(r, g, b, 1.0f);
 }

 @Override
 public String toString () {
 return name;
 }

 public Color getColor () {
 return color;
 }
}

This class contains three distinct character skins, namely, White, Gray, and Brown.
All character skins are defined using a name that is used for display and RGB color
values to describe a color that will be used to tint the image of the character player.

Building the Options window
Make the following changes in MenuScreen to add the Options window layer:

import com.packtpub.libgdx.canyonbunny.util.CharacterSkin;
import com.packtpub.libgdx.canyonbunny.util.GamePreferences;

private Skin skinLibgdx;

private void loadSettings() {
 GamePreferences prefs = GamePreferences.instance;
 prefs.load();
 chkSound.setChecked(prefs.sound);
 sldSound.setValue(prefs.volSound);
 chkMusic.setChecked(prefs.music);
 sldMusic.setValue(prefs.volMusic);
 selCharSkin.setSelectedIndex(prefs.charSkin);
 onCharSkinSelected(prefs.charSkin);
 chkShowFpsCounter.setChecked(prefs.showFpsCounter);
}

private void saveSettings() {
 GamePreferences prefs = GamePreferences.instance;

Menus and Options

[254]

 prefs.sound = chkSound.isChecked();
 prefs.volSound = sldSound.getValue();
 prefs.music = chkMusic.isChecked();
 prefs.volMusic = sldMusic.getValue();
 prefs.charSkin = selCharSkin.getSelectedIndex();
 prefs.showFpsCounter = chkShowFpsCounter.isChecked();
 prefs.save();
}

private void onCharSkinSelected(int index) {
 CharacterSkin skin = CharacterSkin.values()[index];
 imgCharSkin.setColor(skin.getColor());
}

private void onSaveClicked() {
 saveSettings();
 onCancelClicked();
}

private void onCancelClicked() {
 btnMenuPlay.setVisible(true);
 btnMenuOptions.setVisible(true);
 winOptions.setVisible(false);
}

The loadSettings() and saveSettings() methods are used to translate back
and forth between the values stored in the widgets and the instance of the
GamePreferences class. The methods starting with on in their name contain
code that we want to be executed at certain events. The onCharSkinSelected()
method will update the preview image. The onSaveClicked() method saves the
current settings of the Options window and swaps the Options window for the
menu controls. The onCancelClicked() method only swaps the widgets, which
also means that any changed settings will be discarded. The visibility of the menu
controls and the Options window is simply toggled by calling setVisible() on the
respective widgets.

Next, make the following changes to the same class:

private void rebuildStage() {
 skinCanyonBunny = new Skin(
 Gdx.files.internal(Constants.SKIN_CANYONBUNNY_UI),
new TextureAtlas(Constants.TEXTURE_ATLAS_UI));
 skinLibgdx = new Skin
(Gdx.files.internal(Constants.SKIN_LIBGDX_UI),
new TextureAtlas(Constants.TEXTURE_ATLAS_LIBGDX_UI));

Chapter 7

[255]

 // build all layers
 ...
}

@Override
public void hide() {
 stage.dispose();
 skinCanyonBunny.dispose();
 skinLibgdx.dispose();
}

These changes enable us to use and add widgets defined in the LibGDX skin. As the
creation of all the widgets for the Options menu involves quite a lot of code, we split
it up into four separate build methods.

Now, add the buildOptWinAudioSettings() method to the same class:

private Table buildOptWinAudioSettings () {
 Table tbl = new Table();
 // + Title: "Audio"
 tbl.pad(10, 10, 0, 10);
 tbl.add(new Label("Audio", skinLibgdx, "default-font",
Color.ORANGE)).colspan(3);
 tbl.row();
 tbl.columnDefaults(0).padRight(10);
 tbl.columnDefaults(1).padRight(10);
 // + Checkbox, "Sound" label, sound volume slider
 chkSound = new CheckBox("", skinLibgdx);
 tbl.add(chkSound);
 tbl.add(new Label("Sound", skinLibgdx));
 sldSound = new Slider(0.0f, 1.0f, 0.1f, false, skinLibgdx);
 tbl.add(sldSound);
 tbl.row();
 // + Checkbox, "Music" label, music volume slider
 chkMusic = new CheckBox("", skinLibgdx);
 tbl.add(chkMusic);
 tbl.add(new Label("Music", skinLibgdx));
 sldMusic = new Slider(0.0f, 1.0f, 0.1f, false, skinLibgdx);
 tbl.add(sldMusic);
 tbl.row();
 return tbl;
}

Menus and Options

[256]

This method builds a table containing the audio settings. First, a label showing the
text Audio in an orange color is added. Then, a checkbox (another label showing the
text Sound) and a slider are added in the next row for the sound settings. This is also
done for the music settings in the same way.

Next, add the buildOptWinSkinSelection() method to the same class:

private Table buildOptWinSkinSelection () {
 Table tbl = new Table();
 // + Title: "Character Skin"
 tbl.pad(10, 10, 0, 10);
 tbl.add(new Label("Character Skin", skinLibgdx,
 "default-font", Color.ORANGE)).colspan(2);
 tbl.row();
 // + Drop down box filled with skin items
 selCharSkin = new SelectBox<CharacterSkin>(skinLibgdx);

selCharSkin.setItems(CharacterSkin.values());

 selCharSkin.addListener(new ChangeListener() {
 @Override
 public void changed(ChangeEvent event, Actor actor) {
 onCharSkinSelected(((SelectBox<CharacterSkin>)
actor).getSelectedIndex());
 }
 });
 tbl.add(selCharSkin).width(120).padRight(20);
 // + Skin preview image
 imgCharSkin = new Image(Assets.instance.bunny.head);
 tbl.add(imgCharSkin).width(50).height(50);
 return tbl;
}

This method builds a table that contains the character skin selection via a drop-down
box and a preview image next to it. A ChangeListener method is added to the drop-
down widget selCharSkin so that the setting and preview image is updated by
calling onCharSkinSelected() whenever a new selection occurs.

Chapter 7

[257]

Observe the highlighted code. This code will work in Android,
iOS, and desktop, but might not work in an HTML project and
will show ArrayStoreException. This is due to the GWT
reflection. Alternately, we can substitute this part with the
following code:

Array<CharacterSkin> items = new
Array<CharacterSkin>();
CharacterSkin[] arr = CharacterSkin.values();
for (int i = 0; i < arr.length; i++) {
 items.add(arr[i]);
}
selCharSkin.setItems(items);

Next, add the buildOptWinDebug() method to the same class:

private Table buildOptWinDebug () {
 Table tbl = new Table();
 // + Title: "Debug"
 tbl.pad(10, 10, 0, 10);
 tbl.add(new Label("Debug", skinLibgdx, "default-font",
Color.RED)).colspan(3);
 tbl.row();
 tbl.columnDefaults(0).padRight(10);
 tbl.columnDefaults(1).padRight(10);
 // + Checkbox, "Show FPS Counter" label
 chkShowFpsCounter = new CheckBox("", skinLibgdx);
 tbl.add(new Label("Show FPS Counter", skinLibgdx));
 tbl.add(chkShowFpsCounter);
 tbl.row();
 return tbl;
}

This method builds a table that contains the debug settings. At the moment, we only
have one checkbox here that allows the player to toggle and checks whether the FPS
Counter is shown or not.

Next, add the buildOptWinButtons() method to the same class:

private Table buildOptWinButtons () {
 Table tbl = new Table();
 // + Separator
 Label lbl = null;
 lbl = new Label("", skinLibgdx);

Menus and Options

[258]

 lbl.setColor(0.75f, 0.75f, 0.75f, 1);
 lbl.setStyle(new LabelStyle(lbl.getStyle()));
 lbl.getStyle().background = skinLibgdx.newDrawable("white");
 tbl.add(lbl).colspan(2).height(1).width(220).pad(0, 0, 0, 1);
 tbl.row();
 lbl = new Label("", skinLibgdx);
 lbl.setColor(0.5f, 0.5f, 0.5f, 1);
 lbl.setStyle(new LabelStyle(lbl.getStyle()));
 lbl.getStyle().background = skinLibgdx.newDrawable("white");
 tbl.add(lbl).colspan(2).height(1).width(220).pad(0, 1, 5, 0);
 tbl.row();
 // + Save Button with event handler
 btnWinOptSave = new TextButton("Save", skinLibgdx);
 tbl.add(btnWinOptSave).padRight(30);
 btnWinOptSave.addListener(new ChangeListener() {
 @Override
 public void changed (ChangeEvent event, Actor actor) {
 onSaveClicked();
 }
 });
 // + Cancel Button with event handler
 btnWinOptCancel = new TextButton("Cancel", skinLibgdx);
 tbl.add(btnWinOptCancel);
 btnWinOptCancel.addListener(new ChangeListener() {
 @Override
 public void changed (ChangeEvent event, Actor actor) {
 onCancelClicked();
 }
 });
 return tbl;
}

This method builds a table that contains a separator, and the Save and Cancel
buttons at the bottom of the Options window. The Save and Cancel buttons use
ChangeListener, which will call the onSaveClicked() and onCancelClicked()
methods, respectively, whenever a click is detected.

Next, make the following changes to the buildOptionsWindowLayer() method:

private Table buildOptionsWindowLayer() {
 winOptions = new Window("Options", skinLibgdx);
 // + Audio Settings: Sound/Music CheckBox and Volume Slider
 winOptions.add(buildOptWinAudioSettings()).row();
 // + Character Skin: Selection Box (White, Gray, Brown)

Chapter 7

[259]

 winOptions.add(buildOptWinSkinSelection()).row();
 // + Debug: Show FPS Counter
 winOptions.add(buildOptWinDebug()).row();
 // + Separator and Buttons (Save, Cancel)
 winOptions.add(buildOptWinButtons()).pad(10, 0, 10, 0);

 // Make options window slightly transparent
 winOptions.setColor(1, 1, 1, 0.8f);
 // Hide options window by default
 winOptions.setVisible(false);
 if (debugEnabled) winOptions.debug();
 // Let TableLayout recalculate widget sizes and positions
 winOptions.pack();
 // Move options window to bottom right corner
 winOptions.setPosition
(Constants.VIEWPORT_GUI_WIDTH - winOptions.getWidth() - 50,
 50);
 return winOptions;
}

This method contains the code that initializes the Options window. It builds each
part of the menu using the build methods that we just implemented before this one.
The Options window is set to an opacity value of 80 percent. This makes the window
appear slightly transparent, which adds a nice visual detail to it. The call of the
pack() method of the Window widget makes sure that TableLayout recalculates the
widget sizes and positions them so that all added widgets will correctly fit into the
window. After this, the window is moved to the bottom-right corner of the screen.

Last but not least, make the following changes to the onOptionsClicked() method:

private void onOptionsClicked() {
 loadSettings();
 btnMenuPlay.setVisible(false);
 btnMenuOptions.setVisible(false);
 winOptions.setVisible(true);
}

Finally, the added code allows the Options window to be opened. The settings are
loaded before the Options window is shown so that the widgets will always be
correctly initialized.

Menus and Options

[260]

Here is a screenshot of the final Options window, menu screen, and the opened
Options window:

The thin pixel lines that are drawn all over the widgets are the enabled debug visuals
of TableLayout.

The Options window is now fully functional. It shows up when the Options button
is clicked and hides when the Save or Cancel button is clicked. The settings are only
applied and saved with a click on the Save button.

Using the game settings
A lot of work went into the creation of our menu screen and also into the Options
window in order to allow the change of certain game settings. What is still missing
is the actual usage of the set values in our game. Luckily, this can be achieved very
easily now with just a couple of additional lines of code.

Add the following import line to GameScreen:

import com.packtpub.libgdx.canyonbunny.util.GamePreferences;

Chapter 7

[261]

After this, make the following changes to the same class:

@Override
public void show () {
 GamePreferences.instance.load();
 worldController = new WorldController(game);
 worldRenderer = new WorldRenderer(worldController);
 Gdx.input.setCatchBackKey(true);
}

The added code ensures that the game screen will always work with the latest game
settings. Next, add the following import lines to BunnyHead:

import com.packtpub.libgdx.canyonbunny.util.CharacterSkin;
import com.packtpub.libgdx.canyonbunny.util.GamePreferences;

After this, make the following change to the same class:

@Override
public void render (SpriteBatch batch) {
 TextureRegion reg = null;

 // Apply Skin Color
 batch.setColor(
 CharacterSkin.values()[GamePreferences.instance.charSkin]
.getColor());

 // Set special color when game object has a feather power-up
 if (hasFeatherPowerup)
 batch.setColor(1.0f, 0.8f, 0.0f, 1.0f);

 // Draw image
 reg = regHead;
 batch.draw(reg.getTexture(),
 position.x, position.y,
 origin.x, origin.y,
 dimension.x, dimension.y,
 scale.x, scale.y,
 rotation,
 reg.getRegionX(), reg.getRegionY(),
 reg.getRegionWidth(), reg.getRegionHeight(),
 viewDirection == VIEW_DIRECTION.LEFT, false);

 // Reset color to white
 batch.setColor(1, 1, 1, 1);
}

Menus and Options

[262]

This will apply the correct skin color by tinting the image of the bunny head. Next,
add the following import line to WorldRenderer:

import com.packtpub.libgdx.canyonbunny.util.GamePreferences;

After this, make the following change to the same class:

private void renderGui (SpriteBatch batch) {
 batch.setProjectionMatrix(cameraGUI.combined);
 batch.begin();

 // draw collected gold coins icon + text
 // (anchored to top left edge)
 renderGuiScore(batch);
 // draw collected feather icon (anchored to top left edge)
 renderGuiFeatherPowerup(batch);
 // draw extra lives icon + text (anchored to top right edge)
 renderGuiExtraLive(batch);
 // draw FPS text (anchored to bottom right edge)
 if (GamePreferences.instance.showFpsCounter)
 renderGuiFpsCounter(batch);
 // draw game over text
 renderGuiGameOverMessage(batch);

 batch.end();
}

This change will make the FPS counter appear only if the checkbox has been ticked
in the Options window. Otherwise, the FPS counter will not be drawn to the scene.

Summary
In this chapter, you learned how to manage multiple screens and how to switch
between them. We discussed what a scene graph is and how it basically works in
LibGDX in conjunction with Scene2D UI, TableLayout, and skins to create complex
user interfaces like the one we have now implemented in Canyon Bunny. You also
learned how input events for widgets can be handled.

In the next chapter, you will learn how to enhance the visual appearance of the
game. Among others, we will use particle effects and interpolation algorithms to
achieve special effects.

Special Effects
In this chapter, you will learn to add special effects to Canyon Bunny using LibGDX's
particle system, and learn about linear interpolation, and several other ways to
enhance the visual appearance of the game. You will also design a custom particle
effect in a graphical editor, which will serve as dust. This dust effect will be shown
whenever the player character is running on rocks. You will be introduced to the
concept of linear interpolation, using examples of smoothing the camera's movement
while it is following a set target, as well as letting the rocks slowly bob up and down
on the water.

In addition to this, you will implement a parallax scrolling effect for the displayed
mountains in the background. The clouds will continuously move at random speeds
from the right to the left of the level. The game's GUI will also be enhanced by
adding some subtle effects for events where the player has lost a life or when the
game score has increased.

In this chapter, you will learn to:

• Create complex effects using LibGDX's particle editor
• Add a dust particle to our bunny
• Smooth the movement of clouds and rocks using the linear interpolation

(Lerp) operation
• Add some animations to show changes in the score and life of the player

Special Effects

[264]

Creating complex effects with particle
systems
A particle system is a great way to simulate complex effects such as fire, smoke,
explosions, and so on. Basically, a particle system consists of a number of images that
are rendered using either a normal (alpha masked) mode, or an additive blending
mode to create interesting results.

Take a look at the following screenshot to see the difference between normal and
additive blending modes:

LibGDX provides a sophisticated particle system through its ParticleEffect class.
It's merely a container that allows you to easily work with your final effects on a
high level, such as setting the position or triggering or cancelling the designed
particle effect.

The following is a brief description of the most important methods of
ParticleEffect:

• start(): This starts the animation of the particle effect
• reset(): This resets and restarts the animation of the particle effect
• update(): This must be called to let the particle effect act in accordance

to time
• draw(): This renders the particle effect at its current position
• allowCompletion(): This allows emitters to stop smoothly even if particle

effects are set to play continuously

Chapter 8

[265]

• setDuration(): This sets the overall duration the particle effect will run
• setPosition(): This sets the position to where it will be drawn
• setFlip(): This sets the horizontal and vertical flip modes
• save(): This saves a particle effect with all its settings to a file
• load(): This loads a particle effect with all its settings from a saved file
• dispose(): This frees all the resources allocated by the particle effect

Using an instance of ParticleEffect alone will not yield anything visible on the
screen yet. This is because particles are represented as images and this class does not
have such a reference to an image. Instead, an instance of the ParticleEmitter class
is required, which among other attributes can take a reference to an image for the
particles to be rendered. An emitter manages particles that use the same image. The
particles of an emitter also share the same specific behavior, which is usually given in
ranged values. These ranged values define the range to generate random values for
each spawned particle, which will make the resulting effect look much more natural.
If needed, several emitters can be added to a single effect in order to create more
complex particle effects that use multiple images and collective behavior.

The following code is an example of how to create a particle effect with one emitter:

ParticleEffect effect = new ParticleEffect();
ParticleEmitter emitter = new ParticleEmitter();
effect.getEmitters().add(emitter);
emitter.setAdditive(true);
emitter.getDelay().setActive(true);
emitter.getDelay().setLow(0.5f);
// ... more code for emitter initialization ...

While there is absolutely nothing wrong with this approach in general, it is not
recommended to initialize particle emitters in code. Emitters contain roughly
20 attributes that can be played with, so it is quite obvious at this point that this
approach will lead very quickly to a lot of code snippets that are hard to understand
and maintain. A much cleaner and fun solution is to use LibGDX's graphical particle
editor in order to create new particle effects or modify the existing ones. The editor
features a live preview of the current settings of the particle effect, which simplifies
the design phase a lot. The preview gives direct feedback on the final result of the
particle effect as well as how changed attributes alter the effect.

You can download and run the latest editor by entering http://wiki.libgdx.
googlecode.com/git/jws/particle-editor.jnlp in your browser.

http://wiki.libgdx.googlecode.com/git/jws/particle-editor.jnlp
http://wiki.libgdx.googlecode.com/git/jws/particle-editor.jnlp

Special Effects

[266]

To know more about running the editor, check out this wiki article at
https://github.com/libgdx/libgdx/wiki/2D-Particle-Editor.

The following screenshot shows the Particle Editor window right after it was started:

The live preview is located in the top-left corner and shows the current particle effect
as well as some runtime information as follows:

• FPS: This gives the frames per second achieved
• Count: This gives the current number of particles in use

https://github.com/libgdx/libgdx/wiki/2D-Particle-Editor

Chapter 8

[267]

• Max: This gives the maximum number of simultaneously existing
particles allowed

• Percentage: This gives the progress between the start (0 seconds) and the
end (Duration)

The particle effect in the live preview can be moved around by clicking-and-
dragging it with the mouse. This is a pretty neat feature not only because it allows
adjustments to the effect's starting position, but also because it can be used to quickly
check out how the effect behaves under non-stationary circumstances.

The bottom-left corner holds the already mentioned list of particle emitters. Emitters
can be given a name, but this is completely optional. The checkmark next to an
emitter's name toggles its visibility. However, take note that this is just an editor-only
setting to make the editing of complex effects with many emitters a bit easier. The
state of the visibility checkmark is also not going to be saved to the particle effect file.
The order of emitters can be changed using the Up and Down buttons to the right of
the emitters list. The rendering of the emitters list runs from the top to the bottom.
This means that the last emitter in the list is also going to be the last, and therefore
the most rendered emitter. New emitters can be added by clicking on the New
button. Similarly, a click on the Delete button will remove the currently selected
emitter from the emitters list.

The right-hand side of the particle editor is split into two framed parts that contain two
types of properties. The upper one is labeled Editor Properties, which controls how
the live preview is rendered. The Pixels per meter setting defines the dimensions just
like we did for our game screen camera. The Zoom level setting is used to scale things
either up or down depending on what can be seen in the live preview.

The last and biggest portion of the particle editor is contained in the frame labeled
Emitter Properties. It controls everything about how the particles of an emitter look
and how they will behave over a period of time.

Here is a list of all the available properties and their meanings:

• Image: This is the image file that graphically represents the particle.
• Count: This is the minimum number of particles that will always exist at

the start and the maximum number of particles that are allowed to exist
at once. Keep in mind that the maximum value also affects the amount of
preallocated memory.

• Delay: The emitter will pause for the given amount of time in milliseconds
before it starts to emit particles. This setting must be activated in order to
take effect.

Special Effects

[268]

• Duration: This is the amount of time in milliseconds during which particles
will be emitted.

• Emission: This is the number of emitted particles per second.
• Life: This is the amount of time in milliseconds until a particle is destroyed.
• Life Offset: This is the amount of time in milliseconds that is used up of

the particle's lifetime. This can be used, for example, to let a particle start at
the middle of its life. All interim changes that would have normally been
applied will be precalculated and set as the particle's starting state, such as
the current displacement, the angle of rotation, and any change of color. This
setting must be activated in order to take effect.

• X Offset: This is the horizontal displacement in world units of the particle
from its emitter's position. This setting must be activated in order to take
effect.

• Y Offset: This is the vertical displacement in world units of the particle from
its emitter's position. This setting must be activated in order to take effect.

• Spawn: This defines the shape used to spawn particles. The available shapes
are point, line, square, and ellipse. By default, it is point.

• Size: This is the particle's size in world units.
• Velocity: This is the particle's speed in world units per second. This setting

must be activated in order to take effect.
• Angle: This is the particle's emission angle in degrees. This setting must be

activated in order to take effect.
• Rotation: This is the particle's local rotation angle in degrees. This setting

must be activated in order to take effect.
• Wind: This is the horizontal force applied to the particle in world units per

second. This setting must be activated in order to take effect.
• Gravity: This is the vertical force applied to the particle in world units per

second. This setting must be activated in order to take effect.
• Tint: This multiplies the colors of the particle's image with the set color.

Therefore, using a monochrome-colored image is advisable for best
tint results.

• Transparency: This is the particle's alpha or transparency value. This allows
the particle to be anything between fully opaque and fully translucent.
Moreover, multiple changes during a particle's life allows the fade-in and
fade-out effects.

Chapter 8

[269]

• Options: This contains the following five additional checkmarks to configure
the emitter's behavior:

 ° Additive: This option, if checked, will enable the additive blending
mode.

 ° Attached: This option, if checked, will allow the existing particles to
follow the movement of its emitter.

 ° Continuous: This option, if checked, will restart the emitter after its
duration of time is over. Emitters that are not set to be continuous
will only show up once at the beginning.

 ° Aligned: This option, if checked, will add the particle's emission
angle to its local rotation. This will turn the particle's image face in
the same direction as it is moving.

 ° Behind: This option, if checked, will set the corresponding marker
flag to true. Otherwise, it is set to false. This is just a marker flag
that can be queried by calling isBehind() to decide whether the
emitter should be rendered behind or in front of something else.

Some of the emitter's properties contain charts. The x axis in a chart always represents
the lifetime of a particle, while the y axis represents the percentage of each emitter
property's actual value. A click on the chart adds a new node. Double-clicking on a
node removes it again. Clicking-and-dragging a node moves it inside the chart.

The following screenshot shows a portion of the emitter properties:

Special Effects

[270]

A chart can be expanded by clicking on the small + button next to it. The chart has a
High and Low value, which defines the absolute values of 100 percent and 0 percent
on the y axis in the chart. Most value fields have a > button next to them. Clicking on
this button shows a second value field, which changes the single value to a ranged
value. A ranged value has a minimum and a maximum value from which a random
value is picked for each particle.

Adding a dust particle effect to the player
character
We now want to create a dust particle effect that will appear whenever the player
character runs on rocks. This effect will stop as soon as the player stops moving or if
the player is no longer grounded on a platform.

First, we will need to design a custom particle effect that looks like dust. The
following screenshot is an example of what we are aiming for:

Open the particle editor to begin with the default fire particle effect and apply the
following modifications to the editor and emitter properties:

• In Pixels per meter, enter 200 for Value
• In Size, enter 0.75 for High, enter 0 for Low, and enter (0,0), (67,28), (100,0)

for Chart
• In Velocity, enter 1 to 5 for High, enter -1 to -5 for Low, and enter (0,50)

for Chart
• In Duration, enter 100 for Value
• In Emission, enter 200 for High, enter 0 for Low, and enter (0,100)

for Chart
• In Life, enter 250 to 500 for High, enter 0 for Low, and enter (0,100)

for Chart
• In Angle, enter 0 for High, enter 0 for Low, and enter (0,100) for Chart
• In Gravity, enter 5 for High, enter -1 for Low, and enter (0,0), (67,28),

(100,0) for Chart
• In Tint, enter 107 for R, enter 107 for G, and enter 107 for B

Chapter 8

[271]

• In Transparency, enter (0,100) (100,0) for Chart
• In Options, select off for Additive and select on for Continuous

Next, click on the Save button to save the file and then place it at CanyonBunny-
android/assets/particles.

There is no official file extension for particle effects in LibGDX.
Nonetheless, it does not do any harm to make things explicit
and name files after their intended purpose. As sfx is a
well-known abbreviation for sound effect, it makes sense to
follow this scheme and adapt it to the particle effect; hence,
the file extension used in this book is .pfx.

There is one more preparation required before we can start to implement the dust
particle effect in Canyon Bunny. As you already know, particle effects are made out
of images and so is our dust particle effect. You might have noticed that we skipped
over that part to select a proper (another) image file for the dust particle in the editor.
This is perfectly fine as we did not start from scratch, but instead used the already
existing particle image from the default fire particle effect. Its file is called particle.
png and can be found in the assets folder of the GDX tools. You can also download
it from LibGDX's repository at https://raw.githubusercontent.com/libgdx/
libgdx/master/tests/gdx-tests-android/assets/data/particle.png.

The particle.png image basically contains just a small, white circle that smoothly
fades out from the center. The image should look like this:

Place the particle.png file in CanyonBunny-android/assets/particles/folder.

Next, add the following two import lines to the BunnyHead class:

import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.graphics.g2d.ParticleEffect;

After this, add the following new line to the same class:

public ParticleEffect dustParticles = new ParticleEffect();

https://raw.githubusercontent.com/libgdx/libgdx/master/tests/gdx-tests-android/assets/data/particle.png
https://raw.githubusercontent.com/libgdx/libgdx/master/tests/gdx-tests-android/assets/data/particle.png

Special Effects

[272]

This is the variable where we are going to hold a reference to our loaded and ready-
to-fire dust particle effect. Next, make the following modifications to the same class:

public void init () {
 ...
 // Power-ups
hasFeatherPowerup = false;
timeLeftFeatherPowerup = 0;

 // Particles
dustParticles.load(Gdx.files.internal("particles/dust.pfx"),
Gdx.files.internal("particles"));
}
@Override
public void update (float deltaTime) {
super.update(deltaTime);
 ...
dustParticles.update(deltaTime);
}

@Override
public void render (SpriteBatch batch) {
TextureRegionreg = null;

 // Draw Particles
dustParticles.draw(batch);

 // Apply Skin Color
 ...
}

As you can see, only a few changes were required to implement the dust particle
effect in the game. The particle effect is loaded in init() and is continuously
updated and rendered in update() and render(), respectively. However, calling
draw() on a particle effect does not mean that it is always going to be rendered.

The particle effect needs to be triggered first to start playing. Furthermore, if it is
a continuous particle effect, it also needs to be stopped explicitly to become
invisible again.

Chapter 8

[273]

To take care of this, make the following changes to the code in updateMotionY():

@Override
protected void updateMotionY (float deltaTime) {
switch (jumpState) {
case GROUNDED:
jumpState = JUMP_STATE.FALLING;
if (velocity.x != 0) {
dustParticles.setPosition(position.x + dimension.x / 2,
position.y);
dustParticles.start();
 }
break;
 ...
 }
if (jumpState != JUMP_STATE.GROUNDED) {
dustParticles.allowCompletion();
super.updateMotionY(deltaTime);
 }
}

Here is a screenshot of the result in the game:

Special Effects

[274]

Moving the clouds
Our next enhancement will be to make clouds, which are just sitting in the air and
move to the left. The idea here is to simulate some kind of wind property in the game
world, while each cloud will also move at slightly different speeds to make their
movement look more natural. In addition to this, there needs to be a condition to let
more clouds appear at the right end of the level. Otherwise, the game will run out
of clouds at some point. We could just take the easy route here and spawn a huge
number, say 1000 clouds, but this is not very clever performance-wise, and this also
does not tackle our original problem, that is, the game will run out of clouds at some
point. So, a better approach to solve our problem is to keep the maximum number of
existing cloud objects to a minimum.

Make the following changes to the Clouds class:

private Cloud spawnCloud () {
 Cloud cloud = new Cloud();
cloud.dimension.set(dimension);
 // select random cloud image
cloud.setRegion(regClouds.random());
 // position
 Vector2 pos = new Vector2();
pos.x = length + 10; // position after end of level
pos.y += 1.75; // base position
 // random additional position
pos.y += MathUtils.random(0.0f, 0.2f)
* (MathUtils.randomBoolean() ? 1 : -1);
cloud.position.set(pos);
 // speed
 Vector2 speed = new Vector2();
speed.x += 0.5f; // base speed
 // random additional speed
speed.x += MathUtils.random(0.0f, 0.75f);
cloud.terminalVelocity.set(speed);
speed.x *= -1; // move left
cloud.velocity.set(speed);
return cloud;
}

Next, add the following lines of code to the same class:

@Override
public void update (float deltaTime) {
for (int i = clouds.size - 1; i>= 0; i--) {
 Cloud cloud = clouds.get(i);

Chapter 8

[275]

cloud.update(deltaTime);
if (cloud.position.x< -10) {
 // cloud moved outside of world.
 // destroy and spawn new cloud at end of level.
clouds.removeIndex(i);
clouds.add(spawnCloud());
 }
 }
}

The spawnCloud() method will now create a new cloud that also makes use of our
simple physics simulation code we implemented earlier. The update() method
iterates through all existing clouds, which in turn calls the update() method to
let the physics move them. Afterwards, the cloud's new position is checked to see
whether it has moved off screen. If a cloud fulfills this condition, it is removed from
the list of current clouds and a new one is added and positioned at the right end of
the level.

The list of clouds in update() is iterated in reverse on purpose to avoid
a so-called mutating list. Normally, you should never modify the list you
are currently iterating over. However, when iterating backwards from
the last to the first element, the removal of an object, like in our case, will
only happen to elements that have already been processed.

Smoothing with linear interpolation
(Lerp)
Lerp is a method to find unknown values between two known points. The unknown
values are approximated through Lerp by connecting these two known points with a
straight line.

Lerp operations can also be used to smoothen movements. We will show this using
an example in which we will smoothen the camera's target-following feature as well
as use it to make the rocks move up and down slightly to simulate them floating on
the water. First, add the following line to the CameraHelper class:

private final float FOLLOW_SPEED = 4.0f;

Special Effects

[276]

After this, make the following modifications to the same class:

public void update (float deltaTime) {
if (!hasTarget()) return;

position.lerp(target.position, FOLLOW_SPEED * deltaTime);
 // Prevent camera from moving down too far
position.y = Math.max(-1f, position.y);
}

Luckily, LibGDX already provides a lerp() method in its Vector2 class that makes
Lerp operations easy to execute. What happens here is that we call lerp() on the
camera's current position vector: a 2D coordinate, and pass it in a target position
as well as a so-called alpha value. This alpha value describes the ratio between the
current and the target positions. Remember that Lerp is virtually connecting the
current and the target positions with a straight line and the alpha value determines
the point on this very line. If the alpha value is equal to 0.5, it means that the new
position is exactly in the middle of both the current and the target positions.

As these Lerp operations are executed inside update(), we expect very small
increments in movement. The value of deltaTime is usually something around
0.016 seconds (16 milliseconds or 1.6 percent if interpreted in the context of a Lerp
operation). We actually just use the deltaTime variable to make the Lerp operation
time-dependent. It is a common misconception that the usage of deltaTime here
means that the interpolated movement will happen in one second. Instead, the
movement will start fast and slow down over time as the distance between the
current and the target positions becomes smaller and smaller. This is why we also
use a speed factor FOLLOW_SPEED that needs to be multiplied with deltaTime to
speed things up a bit.

Letting the rocks float on the water
We will almost follow the same procedure here using Lerp operations to smoothly
move all the rocks up and down to create the illusion of rocks floating on the water.

Add the following two import lines to the Rock class:

import com.badlogic.gdx.math.MathUtils;
import com.badlogic.gdx.math.Vector2;

After this, add the following lines of code to the same class:

private final float FLOAT_CYCLE_TIME = 2.0f;
private final float FLOAT_AMPLITUDE = 0.25f;

Chapter 8

[277]

private float floatCycleTimeLeft;
private boolean floatingDownwards;
private Vector2 floatTargetPosition;

Next, make the following modifications to the same class:

private void init () {
dimension.set(1, 1.5f);

regEdge = Assets.instance.rock.edge;
regMiddle = Assets.instance.rock.middle;

 // Start length of this rock
setLength(1);

floatingDownwards = false;
floatCycleTimeLeft = MathUtils.random(0,
FLOAT_CYCLE_TIME / 2);
floatTargetPosition = null;
}

These changes make sure that the floating mechanism is correctly initialized. The
starting value for the float direction is set to up; the cycle time is randomly picked
between 0 and half of the maximum float cycle time. Using a random cycle time
gives the floating effect a more natural look because every rock seems to move just
on its own. The floatTargetPosition variable is used to store the next target
position, as shown here:

@Override
public void update (float deltaTime) {
super.update(deltaTime);

floatCycleTimeLeft -= deltaTime;
if (floatTargetPosition == null)
floatTargetPosition = new Vector2(position);

if (floatCycleTimeLeft<= 0) {
 floatCycleTimeLeft = FLOAT_CYCLE_TIME;
 floatingDownwards = !floatingDownwards;
 floatTargetPosition.y += FLOAT_AMPLITUDE
* (floatingDownwards ? -1 : 1);
 }
position.lerp(floatTargetPosition, deltaTime);
}

Special Effects

[278]

Adding parallax scrolling to the
mountains in the background
Parallax scrolling is a special scrolling technique that creates the illusion of depth in
a 2D scene. Therefore, the objects in the background move slower than the objects in
the foreground when the camera moves by.

We will now implement a parallax scrolling effect for the mountains in the
background of the game screen.

Add the following import line to the Mountains class:

import com.badlogic.gdx.math.Vector2;

After this, add the following lines of code to the same class:

public void updateScrollPosition (Vector2 camPosition) {
position.set(camPosition.x, position.y);
}

Next, make the following changes to the same class:

private void drawMountain (SpriteBatch batch, float offsetX, float
offsetY, float tintColor, float parallaxSpeedX) {
TextureRegion reg = null;
batch.setColor(tintColor, tintColor, tintColor, 1);
floatxRel = dimension.x * offsetX;
floatyRel = dimension.y * offsetY;

 // mountains span the whole level
int mountainLength = 0;
mountainLength += MathUtils.ceil(
length / (2 * dimension.x) * (1 - parallaxSpeedX));
mountainLength += MathUtils.ceil(0.5f + offsetX);
for (int i = 0; i<mountainLength; i++) {
 // mountain left
reg = regMountainLeft;
batch.draw(reg.getTexture(),
origin.x + xRel + position.x * parallaxSpeedX,
origin.y + yRel + position.y,
origin.x, origin.y,
dimension.x, dimension.y,
scale.x, scale.y,
rotation,
reg.getRegionX(), reg.getRegionY(),
reg.getRegionWidth(), reg.getRegionHeight(),
false, false);

Chapter 8

[279]

xRel += dimension.x;
 // mountain right
reg = regMountainRight;
batch.draw(reg.getTexture(),
origin.x + xRel + position.x * parallaxSpeedX,
origin.y + yRel + position.y,
origin.x, origin.y,
dimension.x, dimension.y,
scale.x, scale.y,
rotation,
reg.getRegionX(), reg.getRegionY(),
reg.getRegionWidth(), reg.getRegionHeight(),
false, false);
xRel += dimension.x;
 }
 // reset color to white
batch.setColor(1, 1, 1, 1);
}
@Override
public void render (SpriteBatch batch) {
 // 80% distant mountains (dark gray)
drawMountain(batch, 0.5f, 0.5f, 0.5f, 0.8f);
 // 50% distant mountains (gray)
drawMountain(batch, 0.25f, 0.25f, 0.7f, 0.5f);
 // 30% distant mountains (light gray)
drawMountain(batch, 0.0f, 0.0f, 0.9f, 0.3f);
}

We have added a fifth parameter to drawMountain() that ranges between 0.0 and
1.0 and describes the distance and its scrolling speed. The scrolling depends on the
camera's current position, which is then multiplied with the distance factor. This is
the reason why we have also added a new method called updateScrollPosition(),
which needs to be called in every update cycle where the camera can move.

Make the following changes to the WorldController class:

public void update (float deltaTime) {
handleDebugInput(deltaTime);
if (isGameOver()) {
timeLeftGameOverDelay -= deltaTime;
if (timeLeftGameOverDelay< 0) backToMenu();
 } else {
handleInputGame(deltaTime);
 }
level.update(deltaTime);

Special Effects

[280]

testCollisions();
cameraHelper.update(deltaTime);
if (!isGameOver() &&isPlayerInWater()) {
lives--;
if (isGameOver())
timeLeftGameOverDelay = Constants.TIME_DELAY_GAME_OVER;
else
initLevel();
 }
level.mountains.updateScrollPosition
(cameraHelper.getPosition());
}

All three mountain layers will now scroll at different speeds: 30 percent, 50 percent,
and 80 percent.

Enhancing the game screen's GUI
The last part of this chapter is dedicated to two enhancements of the game screen's
GUI. Firstly, we will add a small animation that gives visual feedback to the
player when a life is lost. Secondly, a counting-up animation for the player's score
will be implemented.

Event – player lost a life
We want to play a small animation in the event when the player has just lost a life.
The extra lives are shown as bunny heads in the top-right corner of the game screen.
These icons become dark one after another as soon as another life has been lost.
The animation we are aiming for is a temporary bunny head icon on top of the just
lost extra life. The temporary icon is going to be scaled up, rotated, and will have a
slightly red tint.

Chapter 8

[281]

The following screenshot is an example of the animation:

Add the following line to the WorldController class:

public float livesVisual;

After this, make the following changes to the same class:

private void init () {
Gdx.input.setInputProcessor(this);
cameraHelper = new CameraHelper();
lives = Constants.LIVES_START;
livesVisual = lives;
timeLeftGameOverDelay = 0;
initLevel();
}

public void update (float deltaTime) {
handleDebugInput(deltaTime);
if (isGameOver()) {
timeLeftGameOverDelay -= deltaTime;
if (timeLeftGameOverDelay< 0) backToMenu();
 } else {
handleInputGame(deltaTime);
 }
level.update(deltaTime);
testCollisions();
cameraHelper.update(deltaTime);
if (!isGameOver() &&isPlayerInWater()) {
lives--;
if (isGameOver())
timeLeftGameOverDelay = Constants.TIME_DELAY_GAME_OVER;
else
initLevel();

Special Effects

[282]

 }
level.mountains.updateScrollPosition
(cameraHelper.getPosition());
if (livesVisual> lives)
livesVisual = Math.max(lives, livesVisual - 1 * deltaTime);
}

We have introduced a new variable livesVisual that will contain pretty much the
same information as lives. However, livesVisual will only decrease slowly over
time whenever the lives are decreased. This enables us to play an animation as long
as livesVisual has not yet reached the current value of lives.

Additionally, add the following import line to the WorldRenderer class:

import com.badlogic.gdx.math.MathUtils;

Next, make the following changes to the same class:

private void renderGuiExtraLive (SpriteBatch batch) {
float x = cameraGUI.viewportWidth – 50
Constants.LIVES_START * 50;
float y = -15;
for (int i = 0; i<Constants.LIVES_START; i++) {
if (worldController.lives<= i)
batch.setColor(0.5f, 0.5f, 0.5f, 0.5f);
batch.draw(Assets.instance.bunny.head,
x + i * 50, y, 50, 50, 120, 100, 0.35f, -0.35f, 0);
batch.setColor(1, 1, 1, 1);
}
if (worldController.lives>= 0
&&worldController.livesVisual>worldController.lives) {
int i = worldController.lives;
float alphaColor = Math.max(0, worldController.livesVisual
 - worldController.lives - 0.5f);
float alphaScale = 0.35f * (2 + worldController.lives
 - worldController.livesVisual) * 2;
float alphaRotate = -45 * alphaColor;
batch.setColor(1.0f, 0.7f, 0.7f, alphaColor);
batch.draw(Assets.instance.bunny.head,
 x + i * 50, y, 50, 50, 120, 100, alphaScale, -alphaScale,
alphaRotate);
batch.setColor(1, 1, 1, 1);
 }
}

Chapter 8

[283]

The added code will draw a temporary bunny head icon that is changed in its alpha
color, scale, and rotation over time to create the animation. The progress of the
animation is controlled by the current value in livesVisual.

Event – score increased
Every time the player collects an item, a reward is given that is added to the overall
game score. The current score and a gold coin icon are shown in the top-left corner
of the game screen. We want to add two subtle effects that begin to play when an
increased score is detected. Firstly, we want the score to slowly add up to the new
score. Secondly, the gold coin icon will shake a bit while the score is still adding up.

Here is a screenshot of the combined animation in five steps where some items have
been collected:

Special Effects

[284]

Add the following line to the WorldController class:

public float scoreVisual;

Next, make the following changes to the same class:

private void initLevel () {
score = 0;
scoreVisual = score;
level = new Level(Constants.LEVEL_01);
cameraHelper.setTarget(level.bunnyHead);
}
public void update (float deltaTime) {
 ...
level.mountains.updateScrollPosition
(cameraHelper.getPosition());
if (livesVisual> lives)
livesVisual = Math.max(lives, livesVisual - 1 * deltaTime);
if (scoreVisual< score)
scoreVisual = Math.min(score, scoreVisual
+ 250 * deltaTime);
}

We introduced the new variable scoreVisual, which serves the same purpose as
livesVisual does to control the progress of the score animation.

Additionally, make the following changes to the WorldRenderer class:

private void renderGuiScore (SpriteBatch batch) {
float x = -15;
float y = -15;
float offsetX = 50;
float offsetY = 50;
if (worldController.scoreVisual<worldController.score) {
long shakeAlpha = System.currentTimeMillis() % 360;
float shakeDist = 1.5f;
offsetX += MathUtils.sinDeg(shakeAlpha * 2.2f) * shakeDist;
offsetY += MathUtils.sinDeg(shakeAlpha * 2.9f) * shakeDist;
 }
batch.draw(Assets.instance.goldCoin.goldCoin, x, y, offsetX,
offsetY, 100, 100, 0.35f, -0.35f, 0);
Assets.instance.fonts.defaultBig.draw(batch,
 "" + (int)worldController.scoreVisual,
 x + 75, y + 37);
}

Chapter 8

[285]

The value in scoreVisual is cast to an integer value to cut off the fraction. The
resulting intermediate value will be the score that is shown in the GUI for the
counting-up animation. To let the coin icon shake, we use a sine function with
different factors as input angles to find the offset for the temporary displacement of
the icon.

Summary
In this chapter, we used a variety of approaches to add our special effects, which
let the game become more and more alive. You learned about particle systems and
how they work in LibGDX. Particle effects can be easily designed using the powerful
particle editor, and it is recommended to use this instead of working them out in
code. You learned how a finished particle effect can be incorporated and controlled
in our existing game. You also learned how to achieve a wind effect using our simple
physics simulation to animate the clouds in the game world with just a few changes.
An introduction to Lerp was provided and how it can be applied to create smooth
movements for the game's camera and rocks that now appear to float on the water.
Also, parallax scrolling was added to the mountains in the background to increase
the game immersion even further. As a final touch, the game screen's GUI was
enhanced with subtle effects.

In the next chapter, we will enhance the multiple screens management that was
introduced in Chapter 7, Menus and Options. Therefore, we will implement a flexible
system to easily create smoothly animated screen transitions that will upgrade the
screen switching.

Screen Transitions
In this chapter, you will learn about screen transitions, a technique to create a smooth
user experience, while switching from one screen to another over a certain period of
time. You will be introduced to a technique known as Render to Texture (RTT) that
allows easy composition of two individually rendered screens. Normally, transition
effects make use of linear and nonlinear interpolation to create interesting and
natural-looking results. LibGDX provides a class that implements a wide variety of
common interpolation algorithms, which are suitable not only for transition effects
but also for any values that should follow a certain behavior over time.

Moreover, in Chapter 7, Menus and Options, you learned how to create and manage
several screens that can be shown and hidden using LibGDX's Game class. We will
expand on this idea in this chapter by adding a feature to use transition effects for
switching our screens. With reference to our game, Canyon Bunny, we are going to
implement three distinct transition effects: fade, slide, and slice.

Adding the screen transition capability
We need to use an interface that all our screen transitions will implement. This will
allow us to easily add new transition effects later on a modular basis.

Create a new file for the ScreenTransition interface and add the following code:

package com.packtpub.libgdx.canyonbunny.screens.transitions;

import com.badlogic.gdx.graphics.Texture;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;

public interface ScreenTransition {
 public float getDuration ();

Screen Transitions

[288]

 public void render (SpriteBatch batch, Texture currScreen,
Texture nextScreen, float alpha);
}

The preceding interface allows us to query the duration of a transition effect and
enables us to let it render its effect using two supplied textures that contain the
images of the current and the next screens. In addition to this, the alpha value is used
to describe the current state of progress of the transition effect that is to be rendered.
Using an alpha value of 0.0, for example, will render the effect at the very beginning
while a value of say, 0.25, will render it when the effect has progressed to 25 percent.

You might wonder why the render() method takes two instances of Texture
instead of AbstractGameScreen. This is because, in general, a transition effect
should not depend on the contents of the screens that it is working with. Therefore,
both the screens, the current and the next one, need to be transformed into two
self-contained units. This can be achieved by rendering each screen to its own
in-memory texture. This technique is also known as RTT.

OpenGL has a feature called Framebuffer Objects (FBO) that allows this kind
of offscreen rendering to textures present in memory. FBOs can be used by
instantiating new objects of LibGDX's Framebuffer class.

The following is an example of how FBOs should be used in general:

// ...
Framebuffer fbo;
fbo = new Framebuffer(Format.RGB888, width, height, false);
fbo.begin(); // set render target to FBO's texture buffer
Gdx.gl.glClearColor(0.0f, 0.0f, 0.0f, 1.0f); // solid black
Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT); // clear FBO
batch.draw(someTextureRegion, 0, 0); // draw (to FBO)
fbo.end(); // revert render target back to normal
// retrieve result
Texture fboTexture = fbo.getColorBufferTexture();
// ...

A new FBO is initialized by passing in a format, a width and a height, and a flag
indicating whether an attached depth buffer is needed. The passed format and
dimensions are used to initialize the FBO's texture that will serve as its render
target. The flag for the depth buffer, also referred to as the Z-buffer, enables the
sorting of pixels in a three-dimensional space. Since we are creating a game in a two-
dimensional space and also have taken care of the rendering order by ourselves,
there is no need to enable this buffer, which would just waste precious memory.

Chapter 9

[289]

As you can see in the preceding code example, rendering to an FBO is just a matter
of calling its begin() method to temporarily redirect all subsequent draw calls to the
FBO's texture buffer. The rendering to an FBO must always be finished by calling its
end() method. Afterwards, the resulting texture can be retrieved by simply calling
the getColorBufferTexture() method.

In order to work with FBOs, your device needs GLES 2.0
hardware support. For simplicity, we assume full hardware
support for GLES 2.0 in this book.

We will now make some mandatory changes to our platform-specific projects
wherever needed to enable the OpenGL ES 2.0 mode so that we can use FBOs.

For the Android platform, make the following changes to the AndroidManifest.xml
file of the CanyonBunny-android project:

<?xml version="1.0" encoding="utf-8"?>
<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.packtpub.libgdx.canyonbunny"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="8"
android:targetSdkVersion="19" />
<uses-feature android:glEsVersion="0x00020000"
android:required="true" />
 ...
</manifest>

The android:glEsVersion value is used to specify the OpenGL ES version
required by the app. To specify OpenGL ES version 2.0, you would set the
value as 0x00020000.

For the iOS platform, make the following changes to the Info.plist.xml file of the
CanyonBunny-robovm/CanyonBunny-ios project:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.
apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 ...
 <key>UIRequiredDeviceCapabilities</key>
 <array>

Screen Transitions

[290]

 <string>armv7</string>
 <string>opengles-2</string>
 </array>
 ...
</dict>
</plist>

For the desktop and HTML5 project, no extra modifications need to be
made as both of them by default use OpenGL ES 2.0 mode.

In Chapter 7, Menus and Options, you learned about LibGDX's Game class and used it
to manage and switch back and forth between screens. We are now going to build a
new class that expands on the idea of the Game class to support screen switching as
well as an optional screen transition.

Create a new file for the DirectedGame class and add the following code:

package com.packtpub.libgdx.canyonbunny.screens;

import com.badlogic.gdx.ApplicationListener;
import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.graphics.Pixmap.Format;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;
import com.badlogic.gdx.graphics.glutils.FrameBuffer;
import com.packtpub.libgdx.canyonbunny.screens.transitions
 .ScreenTransition;

public abstract class DirectedGame implements ApplicationListener
{
 private boolean init;
 private AbstractGameScreen currScreen;
 private AbstractGameScreen nextScreen;
 private FrameBuffer currFbo;
 private FrameBuffer nextFbo;
 private SpriteBatch batch;
 private float t;
 private ScreenTransition screenTransition;

 public void setScreen (AbstractGameScreen screen) {
 setScreen(screen, null);
 }

Chapter 9

[291]

 public void setScreen (AbstractGameScreen screen,
 ScreenTransition screenTransition) {
 int w = Gdx.graphics.getWidth();
 int h = Gdx.graphics.getHeight();
 if (!init) {
 currFbo = new FrameBuffer(Format.RGB888, w, h, false);
 nextFbo = new FrameBuffer(Format.RGB888, w, h, false);
 batch = new SpriteBatch();
 init = true;
 }
 // start new transition
 nextScreen = screen;
 nextScreen.show(); // activate next screen
 nextScreen.resize(w, h);
 nextScreen.render(0); // let screen update() once
 if (currScreen != null) currScreen.pause();
 nextScreen.pause();
 Gdx.input.setInputProcessor(null); // disable input
 this.screenTransition = screenTransition;
 t = 0;
 }
}

This new class is meant to work in a similar way to LibGDX's Game class. Therefore,
DirectedGame implements the same interface (ApplicationListener) with its
corresponding methods as well as the setScreen() method, which we are already
using to switch our screens. Actually, there are two variants of this method in this
new class: one that allows changing to a new screen with a transition effect and one
without any effect similar to the original screen.

The setScreen() method, which takes an instance of ScreenTransition, initializes
two FBOs for the current and the next screens on its first call. Then, a new transition
is started by storing the next-to-be screen in nextScreen, which in turn is activated
and initialized so that it becomes renderable.

Next, add the following code to the same class to implement the render() method of
the ApplicationListener interface:

 @Override
 public void render () {
 // get delta time and ensure an upper limit of one 60th second
 float deltaTime = Math.min(Gdx.graphics.getDeltaTime(),
1.0f / 60.0f);
 if (nextScreen == null) {
 // no ongoing transition

Screen Transitions

[292]

 if (currScreen != null) currScreen.render(deltaTime);
 } else {
 // ongoing transition
 float duration = 0;
 if (screenTransition != null)
 duration = screenTransition.getDuration();
 // update progress of ongoing transition
 t = Math.min(t + deltaTime, duration);
 if (screenTransition == null || t >= duration) {
 //no transition effect set or transition has just finished
 if (currScreen != null) currScreen.hide();
 nextScreen.resume();
 // enable input for next screen
 Gdx.input.setInputProcessor(
 nextScreen.getInputProcessor());
 // switch screens
 currScreen = nextScreen;
 nextScreen = null;
 screenTransition = null;
 } else {
 // render screens to FBOs
 currFbo.begin();
 if (currScreen != null) currScreen.render(deltaTime);
 currFbo.end();
 nextFbo.begin();
 nextScreen.render(deltaTime);
 nextFbo.end();
 // render transition effect to screen
 float alpha = t / duration;
 screenTransition.render(batch,
currFbo.getColorBufferTexture(), nextFbo.getColorBufferTexture(),
alpha);
 }
 }
 }

Notice the call to the next screen's render() method to which the delta time of 0 is
passed. This allows the next screen to update its internal state once for initialization
purposes. After this, both screens are paused so that they do not make any progress
in time as long as the transition effect is not finished. Also, the input processor is
set to null to avoid any interference from a potential user input during a running
transition. The desired transition effect, if any, is stored in screenTransition for
future reference. Finally, the t variable is used to keep a track of the effect's elapsed
time and always needs to be reset to 0 to let new transitions start from the beginning.

Chapter 9

[293]

There are basically two ways in which the render() method works. In the first
case, it will simply call the render() method of the currently set screen. This
holds true as long as no next screen is set, which implicates no ongoing transition
effect. Otherwise, it is assumed that there is an ongoing transition. In this case, t is
increased by the current delta time to let the transition effect progress correctly in
time. After this, the current and the next screens are rendered to their designated
FBOs. Then, the resulting two textures are eventually passed on to the transition
effect's render() method to do something fancy with it. Finally, the screens are
switched and the input processor is reactivated as soon as the value of t has reached
the transition effect's duration. Also, nextScreen is set back to null so that the first
way of rendering is used again.

The delta time in the render() method of our new DirectedGame class
is constrained to a maximum value of one-sixth of a second to ensure
semifixed time steps in all our screens. We will use this from now on to
avoid potential time-related problems that may arise from using variable
time steps, which we used before.
For a thorough explanation about various time stepping strategies,
check out the following article on Glen Fiedler's blog http://
gafferongames.com/game-physics/fix-your-timestep/.

After this, add the following code to the same class to implement the remaining parts
of the ApplicationListener interface:

 @Override
 public void resize (int width, int height) {
 if (currScreen != null) currScreen.resize(width, height);
 if (nextScreen != null) nextScreen.resize(width, height);
 }

 @Override
 public void pause () {
 if (currScreen != null) currScreen.pause();
 }

 @Override
 public void resume () {
 if (currScreen != null) currScreen.resume();
 }

 @Override
 public void dispose () {

http://gafferongames.com/game-physics/fix-your-timestep/
http://gafferongames.com/game-physics/fix-your-timestep/

Screen Transitions

[294]

 if (currScreen != null) currScreen.hide();
 if (nextScreen != null) nextScreen.hide();
 if (init) {
 currFbo.dispose();
 currScreen = null;
 nextFbo.dispose();
 nextScreen = null;
 batch.dispose();
 init = false;
 }
 }

The preceding code ensures that the current and the next screens will be informed
about the occurring events and that the screens, the sprite batch, and the FBOs will
be correctly disposed off when they are no longer needed.

As a last step, we now want to rewire some parts of Canyon Bunny to use the added
screen transition capability, which we just implemented. Therefore, we are going to
make some minor modifications in those places where we are still using LibGDX's
Game class and replace it with our own class, DirectedGame.

Add the following import line to AbstractGameScreen:

import com.badlogic.gdx.InputProcessor;

After this, add the following line to the same class:

 public abstract InputProcessor getInputProcessor ();

Next, make the following changes to the same class:

 protected DirectedGame game;
 public AbstractGameScreen (DirectedGame game) {
 this.game = game;
 }

These changes introduce a new method called getInputProcessor(),which also
needs to be implemented in MenuScreen and GameScreen. This is necessary to
allow DirectedGame to route and control the flow of input processing as needed.
As mentioned earlier, this will avoid any interference with the user input during a
running transition.

Now, add the following import line to CanyonBunnyMain:

import com.packtpub.libgdx.canyonbunny.screens.DirectedGame;

Chapter 9

[295]

After this, make the following changes to the same class:

public class CanyonBunnyMain extends DirectedGame {
 ...
}

Next, we are going to move on to MenuScreen. Make the following changes to
this class:

 public MenuScreen (DirectedGame game) {
 super(game);
 }

After this, add the following code to the same class:

import com.badlogic.gdx.InputProcessor;

 @Override
 public InputProcessor getInputProcessor () {
 return stage;
 }

Finally, remove the line that sets the input processor in show() so that it now
looks as follows:

 @Override
 public void show () {
stage = new Stage(new
StretchViewport(Constants.VIEWPORT_GUI_WIDTH,
Constants.VIEWPORT_GUI_HEIGHT));
 rebuildStage();
 }

Next, we are going to move on to GameScreen. Make the following changes to
this class:

 public GameScreen (DirectedGame game) {
 super(game);
 }

After this, add the following code to the same class:

import com.badlogic.gdx.InputProcessor;

 @Override
 public InputProcessor getInputProcessor () {
 return worldController;
 }

Screen Transitions

[296]

Lastly, we are going to move on to WorldController. Add the following import line
to this class:

import com.packtpub.libgdx.canyonbunny.screens.DirectedGame;

After this, make the following changes to the same class:

 private DirectedGame game;

 public WorldController (DirectedGame game) {
 this.game = game;
 init();
 }

Finally, remove the line that sets the input processor in init() so that it now
looks like this:

 private void init () {
 cameraHelper = new CameraHelper();
 lives = Constants.LIVES_START;
 livesVisual = lives;
 timeLeftGameOverDelay = 0;
 initLevel();
 }

Admittedly, the game code has been subjected to a number of small but important
changes, which has led us to having a generic way of handling any kind of screen
transition. You might want to test run the game so as to verify that screen switching
is still working the same as before.

Implementing the transition effects
Now that we have established a generic way to describe and use screen transitions,
we can now start to implement the transition effects that we want. However, let's
take a quick look at interpolation first as this will greatly improve the overall look
and feel of our transition effects.

Knowing about interpolation algorithms
In Chapter 8, Special Effects, we have already seen an interpolation algorithm called
Lerp, which stands for Linear Interpolation. As the name implies, it calculates its
interpolated values in an equal stepping from start to end. This works very well for
any kind of constant movement. However, if we want to create more complex effects
such as acceleration, deceleration, or maybe even both in a combination, we will
need to use formulas that express these progressions as nonlinear curves.

Chapter 9

[297]

Luckily, LibGDX provides an Interpolation class that already implements many
useful linear and nonlinear interpolation algorithms so that we can happily skip the
math involved and just use it.

Take a look at the following diagram that shows individual graphs of each available
interpolation algorithm:

Screen Transitions

[298]

In Layman's terms, what can be seen in each graph is a kind of lookup table. The
function of one of these algorithms takes the alpha value (x axis) as its input
and outputs the corresponding interpolated value (y axis). The actual output
simply depends on the algorithm's curve and what alpha value is used. The label
below each graph also denotes the name of the method, which you will find in
Interpolation. Also, note that each algorithm reverses its effect at an alpha value
of 0.5. There are variants of each method for an algorithm in case you may want
to apply a certain effect on the first half (alpha from 0.0 to 0.5) or on the second
one (alpha from 0.5 to 1.0) only. This can be achieved using the In or Out suffix,
respectively, such as fadeIn, pow4In, and swingOut.

The basic usage of Interpolation looks as follows:

float alpha = 0.25f;
float interpolatedValue = Interpolation.elastic.apply(alpha);

This code example finds the interpolated value (y axis) for a given alpha value (x
axis) of 0.25 using the elastic algorithm. Remember, the alpha value can also be
interpreted as progress (here, 25 percent) of the overall effect.

With this in mind, we will now start to implement three distinct effects, namely fade,
slide, and slice.

Creating a fade transition effect
We will now create a fade transition effect that we will use to switch from the menu
screen to the game screen. In this effect, the next screen overlays the current screen
while gradually increasing the next screen's opacity. The opacity will start at 0
percent (fully translucent) and end at 100 percent (fully opaque).

The following sequence of screenshots shows this effect:

Chapter 9

[299]

Now, create a new file for the ScreenTransitionFade class and add the
following code:

package com.packtpub.libgdx.canyonbunny.screens.transitions;

import com.badlogic.gdx.Gdx;

import com.badlogic.gdx.graphics.GL20;
import com.badlogic.gdx.graphics.Texture;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;
import com.badlogic.gdx.math.Interpolation;

public class ScreenTransitionFade implements ScreenTransition {
 private static final ScreenTransitionFade instance =
 new ScreenTransitionFade();

 private float duration;

 public static ScreenTransitionFade init (float duration) {
 instance.duration = duration;
 return instance;
 }

 @Override
 public float getDuration () {
 return duration;
 }

 @Override
 public void render (SpriteBatch batch, Texture currScreen,
 Texture nextScreen, float alpha) {
 float w = currScreen.getWidth();
 float h = currScreen.getHeight();
 alpha = Interpolation.fade.apply(alpha);

 Gdx.gl.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
 Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);

 batch.begin();
 batch.setColor(1, 1, 1, 1);
 batch.draw(currScreen, 0, 0, 0, 0, w, h, 1, 1, 0, 0, 0,
 currScreen.getWidth(), currScreen.getHeight(),
 false, true);

Screen Transitions

[300]

 batch.setColor(1, 1, 1, alpha);
 batch.draw(nextScreen, 0, 0, 0, 0, w, h, 1, 1, 0, 0, 0,
 nextScreen.getWidth(), nextScreen.getHeight(),
 false, true);
 batch.end();
 }
}

First of all, notice how we were able to tuck away the render logic of our new
transition effect in such a nice and compact manner. The ScreenTransitionFade
class is built as a singleton so that it can be easily accessed from anywhere in the
code without having to create and keep multiple instances of it. The init() method
should be called before it is used. It takes one argument to define the duration of the
effect. The render() method uses both the supplied textures to create the desired
effect. It is achieved by first clearing the screen, followed by drawing the current
screen's texture, and lastly by drawing the next screen's texture on top of the other.
However, prior to the draw call of the next screen, we also change the drawing color.
It is set to full white, and the alpha channel, which controls the opacity for each of
the following draw calls, is set to alpha. The alpha variable contains the interpolated
value where we have chosen to use the fade algorithm.

Finally, let the menu screen use the fade transition effect when the player clicks on
the Play button. Add the following import lines to the MenuScreen class:

import com.packtpub.libgdx.canyonbunny.screens.transitions
 .ScreenTransition;
import com.packtpub.libgdx.canyonbunny.screens.transitions
 .ScreenTransitionFade;

After this, make the following changes to the same class:

 private void onPlayClicked () {
 ScreenTransition transition = ScreenTransitionFade.init(0.75f);
 game.setScreen(new GameScreen(game), transition);
 }

With these changes, the transition from the menu screen to the game screen will last
for 0.75 seconds or 750 milliseconds until finished. You can start the game now and
watch the transition live in action. Change the transition's duration to either slow
down or speed up the effect.

Chapter 9

[301]

Creating a slide transition effect
We will now create a slide transition effect that we will use to switch from the game
screen to the menu screen. In this effect, the next screen slides in from the top edge
and moves downwards until it is entirely visible.

The following sequence of screenshots illustrates this effect:

Now, create a new file for the ScreenTransitionSlide class and add the
following code:

package com.packtpub.libgdx.canyonbunny.screens.transitions;

import com.badlogic.gdx.Gdx;

import com.badlogic.gdx.graphics.GL20;
import com.badlogic.gdx.graphics.Texture;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;
import com.badlogic.gdx.math.Interpolation;

public class ScreenTransitionSlide implements ScreenTransition {
 public static final int LEFT = 1;
 public static final int RIGHT = 2;
 public static final int UP = 3;
 public static final int DOWN = 4;

 private static final ScreenTransitionSlide instance =
new ScreenTransitionSlide();

 private float duration;
 private int direction;
 private boolean slideOut;
 private Interpolation easing;

 public static ScreenTransitionSlide init (float duration,
int direction, boolean slideOut, Interpolation easing) {

Screen Transitions

[302]

 instance.duration = duration;
 instance.direction = direction;
 instance.slideOut = slideOut;
 instance.easing = easing;
 return instance;
 }
 @Override
 public float getDuration () {
 return duration;
 }
}

The second transition effect is implemented in the same way as we did for "fade" as
a singleton class. As you will see in a moment, this class is a little bit heavier because
it not only allows sliding in another screen from the top edge, but also allows you to
slide out the current screen to define the direction of movement. The init() method
allows you to specify all these settings and also takes an interpolation algorithm that
should be used.

Next, add the following code to the same class to implement the render() method of
the ScreenTransition interface:

 @Override
 public void render (SpriteBatch batch, Texture currScreen,
 Texture nextScreen, float alpha) {
 float w = currScreen.getWidth();
 float h = currScreen.getHeight();
 float x = 0;
 float y = 0;
 if (easing != null) alpha = easing.apply(alpha);

 // calculate position offset
 switch (direction) {
 case LEFT:
 x = -w * alpha;
 if (!slideOut) x += w;
 break;
 case RIGHT:
 x = w * alpha;
 if (!slideOut) x -= w;
 break;
 case UP:
 y = h * alpha;
 if (!slideOut) y -= h;

Chapter 9

[303]

 break;
 case DOWN:
 y = -h * alpha;
 if (!slideOut) y += h;
 break;
 }
 // drawing order depends on slide type ('in' or 'out')
 Texture texBottom = slideOut ? nextScreen : currScreen;
 Texture texTop = slideOut ? currScreen : nextScreen;

 // finally, draw both screens
 Gdx.gl.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

 Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);

 batch.begin();
 batch.draw(texBottom, 0, 0, 0, 0, w, h, 1, 1, 0, 0, 0,
 currScreen.getWidth(), currScreen.getHeight(),
false, true);
 batch.draw(texTop, x, y, 0, 0, w, h, 1, 1, 0, 0, 0,
nextScreen.getWidth(), nextScreen.getHeight(),
false, true);
 batch.end();
 }

The render() method of this transition effect calculates the drawing order and
position offsets for the current and the next screens using the direction, slideOut,
and alpha variables. The value in alpha might be altered before it is used for
calculations if an interpolation algorithm is set.

Finally, let the game screen use the slide transition effect when it wants to go back to
the menu screen. Add the following import lines to the WorldController class:

import com.badlogic.gdx.math.Interpolation;
import com.packtpub.libgdx.canyonbunny.screens.transitions
 .ScreenTransition;
import com.packtpub.libgdx.canyonbunny.screens.transitions
 .ScreenTransitionSlide;

After this, make the following changes to the same class:

 private void backToMenu () {
 // switch to menu screen
 ScreenTransition transition = ScreenTransitionSlide.init(0.75f,

Screen Transitions

[304]

 ScreenTransitionSlide.DOWN, false, Interpolation.bounceOut);
 game.setScreen(new MenuScreen(game), transition);
 }

It is highly recommended to take some time and play around with the constants for
UP, DOWN, LEFT, and RIGHT, as well as to try different combinations of interpolation
algorithms either doing a slide-in or slide-out movement.

Creating a slice transition effect
We will now create a slice transition effect that we will use at the start of the game.
As you will see in a moment, we can also start a transition without a current screen
to another (first) one, which is exactly what we are going to do when the game starts.
In this effect, the next screen is cut in a number of vertical slices. These slices are then
vertically moved off the screen to their respective starting positions. The starting
position alternates between the top and bottom edges. Finally, each slice is moved in
and over the current screen until it is entirely visible.

The following sequence of screenshots illustrates this effect:

Now, create a new file for the ScreenTransitionSlice class and add the
following code:

package com.packtpub.libgdx.canyonbunny.screens.transitions;

import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.graphics.GL20;
import com.badlogic.gdx.graphics.Texture;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;
import com.badlogic.gdx.math.Interpolation;
import com.badlogic.gdx.utils.Array;

public class ScreenTransitionSlice implements ScreenTransition {
 public static final int UP = 1;
 public static final int DOWN = 2;

Chapter 9

[305]

 public static final int UP_DOWN = 3;

 private static final ScreenTransitionSlice instance =
new ScreenTransitionSlice();

 private float duration;
 private int direction;
 private Interpolation easing;
 private Array<Integer> sliceIndex = new Array<Integer>();
 public static ScreenTransitionSlice init (float duration,
int direction, int numSlices, Interpolation easing) {
 instance.duration = duration;
 instance.direction = direction;
 instance.easing = easing;
 // create shuffled list of slice indices which determines
 // the order of slice animation
 instance.sliceIndex.clear();
 for (int i = 0; i < numSlices; i++)
 instance.sliceIndex.add(i);
 instance.sliceIndex.shuffle();
 return instance;
 }

 @Override
 public float getDuration () {
 return duration;
 }

 @Override
 public void render (SpriteBatch batch, Texture currScreen,
 Texture nextScreen, float alpha) {
 float w = currScreen.getWidth();
 float h = currScreen.getHeight();
 float x = 0;
 float y = 0;
 int sliceWidth = (int)(w / sliceIndex.size);

 Gdx.gl.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
 Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);
 batch.begin();
 batch.draw(currScreen, 0, 0, 0, 0, w, h, 1, 1, 0, 0, 0,
currScreen.getWidth(), currScreen.getHeight(),
false, true);
 if (easing != null) alpha = easing.apply(alpha);

Screen Transitions

[306]

 for (int i = 0; i < sliceIndex.size; i++) {
 // current slice/column
 x = i * sliceWidth;
 // vertical displacement using randomized
 // list of slice indices
 float offsetY = h * (1 + sliceIndex.get(i)
 / (float)sliceIndex.size);
 switch (direction) {
 case UP:
 y = -offsetY + offsetY * alpha;
 break;
 case DOWN:
 y = offsetY - offsetY * alpha;
 break;
 case UP_DOWN:
 if (i % 2 == 0) {
 y = -offsetY + offsetY * alpha;
 } else {
 y = offsetY - offsetY * alpha;
 }
 break;
 }
 batch.draw(nextScreen, x, y, 0, 0, sliceWidth, h, 1, 1, 0,
 i * sliceWidth, 0, sliceWidth, nextScreen.getHeight(),
 false, true);
 }
 batch.end();
 }
}

The effect builds a random list of indices for each slice. The randomization is used
to create a small vertical displacement for the slices so that they arrive at their target
location at different times.

Finally, let the main class of Canyon Bunny use the slice transition effect when the
game is started. Add the following import lines to the CanyonBunnyMain class:

import com.badlogic.gdx.math.Interpolation;
import com.packtpub.libgdx.canyonbunny.screens.transitions
 .ScreenTransition;
import com.packtpub.libgdx.canyonbunny.screens.transitions
 .ScreenTransitionSlice;

Chapter 9

[307]

After this, make the following changes to the same class:

 @Override
 public void create () {
 // Set Libgdx log level
 Gdx.app.setLogLevel(Application.LOG_DEBUG);

 // Load assets
 Assets.instance.init(new AssetManager());

 // Start game at menu screen
 ScreenTransition transition = ScreenTransitionSlice.init(2,
ScreenTransitionSlice.UP_DOWN, 10, Interpolation.pow5Out);
 setScreen(new MenuScreen(this), transition);
 }

Summary
In this chapter, you learned how to manage screen transitions in a generic way by
separating the implementation details of the transition effects from the actual screens
that should be rendered. You learned about OpenGL's FBOs, which allow you to
render multiple screens to in-memory textures (RTT). Then, with the knowledge
gained on how to use FBOs, we created a screen transition system that can apply any
kind of transition effect while being completely independent of the screen's contents.
We used LibGDX's Interpolation class, which comes with a pool of 13 ready-
to-use interpolation algorithms. Finally, we discussed and implemented the three
transition effects.

In the next chapter, you will learn how to create sound effects using several sound
generators. Furthermore, we will add background music and create an audio
manager using the LibGDX Audio API to easily manage music and sound effects
in the game.

Managing the Music and
Sound Effects

In this chapter, you will learn how to manage your music and sound effects. LibGDX
provides you with four interfaces to handle different types of audio data. The first
two interfaces that we will discuss are targeted at playing back prerecorded audio
files. The two remaining interfaces give us even more low-level access to the audio
device. They can be used to record and play back raw samples of audio data, which
is a so-called Pulse Code Modulation (PCM) encoded audio signal. Next, we will
take a look at the great world of sound generators. These tools are extremely handy
as they allow you to quickly create new sound effects in a short period of time.

Lastly, looping background music and some sound effects for certain in-game events
will be added to Canyon Bunny. The game's audio settings can be changed in the
options menu of the menu screen through two new checkboxes and sliders for music
and sound effects.

Playing back the music and sound
effects
LibGDX provides cross-platform audio playback for prerecorded audio files of the
following three supported file formats:

• .wav (RIFF WAVE)
• .mp3 (MPEG-2 Audio Layer III)
• .ogg (Ogg Vorbis)

Managing the Music and Sound Effects

[310]

However, Ogg support is not available for the robovm version
because iOS doesn't support it.

There are two interfaces, namely Music and Sound. They serve two different use
cases of playing back audio files. In terms of LibGDX, sounds are audio files that
usually play no longer than one second; think of laser or machine gun sounds. Audio
files used as Sound objects are loaded and decoded so that they can be directly sent
to the audio device. Obviously, the decoded audio data kept in memory can heavily
increase the overall memory usage. On the contrary, audio files are used as the Music
objects are streamed, which means that only the necessary portion of it is decoded
and held in memory. Therefore, the Music objects should be used for playing long
audio files, such as background music.

The Music objects may require more CPU cycles because the
streamed audio data needs to be decoded before it can be sent to the
audio device. This is not the case with the Sound objects because
they are already decoded upon loading. So, it is simply a trade-off
between performance and memory usage.

The next sections will give you an overview of LibGDX's Sound and Music interfaces.

Exploring the Sound interface
The Sound interface is suitable for playing back short audio files. New sound
instances can be requested from LibGDX's Gdx.audio module using the newSound()
method as follows:

Sound sound = Gdx.audio.newSound(
 Gdx.files.internal("sound.wav"));

This line of code will allocate new memory for the decoded audio data of the sound.
wav file. The Sound interface also makes use of the Disposable interface, which
implicates that the allocated resources need to be disposed manually using the
respective dispose() method when a sound instance is no longer needed, as shown
in the following code snippet:

sound.dispose(); // free allocated memory

Calling the play() method of a sound instance will start the playback of its audio
data and will return an ID that is associated with the sound that is being played. A
sound ID can be used to refer to a specific playing sound. This allows you to control
sounds at a later time, such as stopping the playback and changing the volume,
pitch, and pan.

Chapter 10

[311]

LibGDX will silently ignore any requests to a referred sound if
that sound is no longer playing.

There are several overloaded methods to start playing a sound for a single time or in
an endless loop. Optionally, values for the sound's volume, pitch, and pan can also
be passed as shown here:

long play();
long play(float volume);
long play(float volume, float pitch, float pan);
long loop();
long loop(float volume);
long loop(float volume, float pitch, float pan);

The value for volume ranges between 0.0 and 1.0, where higher values result in
louder audio signals. Sounds can be pitched up and down resulting in lower or
higher frequency audio signals, respectively. A pitch value of 1.0 will play the sound
at its normal speed. Pitch values above 1.0 will let the sound play faster, while
values below 1.0 will result in slower playback. A pan value of 0.0 will play the
sound equally loud on the left and right audio channels, which is also referred to as
the center. Negative pan values will play the sound only on the left audio channel
whereas positive pan values will achieve the opposite.

Consider a scenario where we have two sounds, one for a cat and the other for a dog.
Both sounds will be loaded in LibGDX as separate sound instances that can be used
to play back several copies of them in parallel. To stop all playing copies of a (cat
or dog) sound instance, the stop() method can be called. Alternatively, a sound ID
can be passed to the stop() method to stop a specific copy of the (cat or dog) sound
instance only, as shown here:

void stop();
void stop(long soundId);

Sounds that are currently playing can be modified using their sound ID and one of
the following methods:

void setVolume(long soundId, float volume);
void setPan(long soundId, float pan, float volume);
void setPitch(long soundId, float pitch);
void setLooping(long soundId, boolean looping);

Managing the Music and Sound Effects

[312]

Exploring the Music interface
The Music interface is suitable for playing back long audio files and is designed in
a very similar way when compared with the Sound interface. Therefore, new music
instances can also be requested from LibGDX's Gdx.audio module; however, the
method is called newMusic(), as shown here:

Music music = Gdx.audio.newMusic(Gdx.files.internal("music.mp3"));

The Music interface also makes use of the Disposable interface. The music instances
that are no longer needed should always be disposed to free the allocated memory
as follows:

music.dispose(); // free allocated memory

Apart from this, the interface provides the expected method to control music
playback as follows:

void play();
void pause();
void stop();

Additionally, there are some methods to modify the music being played, as shown
in the following listing:

void setPan(float pan, float volume);
void setVolume(float volume);
void setLooping(boolean isLooping);

At times, it might be useful to query the music for its state, such as its current
position (in milliseconds) and whether it is still playing or not, as follows:

boolean isPlaying();
float getPosition();

Accessing the audio device directly
In addition to the Music and Sound interfaces, LibGDX also provides you with two
more low-level audio interfaces, AudioDevice and AudioRecorder, that enable
direct access to the audio device. They can be used for recording and playback of raw
samples of audio data. These samples are stored as a PCM-encoded audio signal.

Chapter 10

[313]

These direct access features are currently unavailable in
HTML5/GWT applications.

Exploring the AudioDevice interface
The AudioDevice interface allows you to send PCM-encoded audio samples
directly to the audio device. For this to work, a new audio device can be requested
using LibGDX's Gdx.audio module and called by its newAudioDevice() method
as follows:

 AudioDevice audioDevice =
Gdx.audio.newAudioDevice(44100, false);

The preceding line of code allocates a new instance of an audio device with a sample
rate of 44.1 kHz in stereo mode. Requested instances of AudioDevice need to be
disposed using the dispose() method when they are no longer needed in order to
avoid memory leaks, as follows:

audioDevice.dispose(); // free allocated memory

New audio data can be sent to an audio device either using an array of floats or an
array of 16-bit signed shorts, as shown here:

void writeSamples(float[] samples, int offset, int numSamples);
void writeSamples(short[] samples, int offset, int numSamples);

The offset (start) and numSamples (length) parameters are used to define the range
of samples that will be sent to the audio device.

Using an audio device with stereo mode enabled implies that the
number of samples needs to be doubled as there are two separate audio
channels to be fed with the audio data. Stereo samples are interleaved,
starting with the left channel followed by the right channel; for
example, to create a sound that will last for exactly one second at a
sample rate of 44.1 kHz will require a total number of 44,100 samples in
mono mode and 88,200 samples in stereo mode.

Managing the Music and Sound Effects

[314]

Exploring the AudioRecorder interface
The AudioRecorder interface allows you to record samples in a 16-bit PCM format
using a connected microphone. New instances of AudioRecorder can be requested
using LibGDX's Gdx.audio module and by calling its newAudioRecorder() method
as follows:

AudioRecorder audioRecordedr =
Gdx.audio.newAudioRecorder(44100, false);

Basically, AudioRecorder works nearly the same as AudioDevice except that it
captures samples. As always, the unused instances need to be disposed in order to
avoid memory leaks, as shown here:

audioRecorder.dispose(); // free allocated memory

To record samples with the audio recorder, all that is needed is an array into which
the captured samples will be stored:

void read(short[] samples, int offset, int numSamples);

The offset (start) and numSamples (length) parameters are used to define which
samples in the samples target array will be overwritten with new data.

Using sound generators
Until now, you learned about direct access to the audio device in LibGDX, and you
now know how to write audio samples to it. Sure enough, you could now (try to)
write your own sound generator class from here and feed one of LibGDX's audio
device instances with the resulting audio samples. However, audio programming is
beyond the scope of this book, and it is also a very advanced topic even for seasoned
programmers.

A viable solution to get hold of some nice sound effects is to use one of the existing
sound generators, which are free and open source. One of these sound generators is
sfxr, which was originally developed by Tomas "DrPetter" Pettersson in 2007. Over
the time, several sfxr variants, such as bfxr, cfxr, and as3sfxr, have emerged.

Chapter 10

[315]

The sfxr generator
The sfxr sound generator quickly became widespread among independent game
developers everywhere because it simplified the creation of new sounds just by
clicking on the RANDOMIZE button. Naturally, all other parameters used to create
a sound are tweakable to allow fine-tuning. Also, simple means are provided to
get the basic sound effects into games through presets as buttons to the left of the
program GUI, such as PICKUP/COIN, LASER/SHOOT, EXPLOSION, POWERUP,
HIT/HURT, JUMP, and BLIP/SELECT, as shown in the following screenshot. If you
like a generated sound effect, you can export it to a .wav file to be used in your game.

The official source code repository of sfxr can be found at https://code.google.
com/p/sfxr/.

A web version is also available at http://www.superflashbros.net/as3sfxr/.

https://code.google.com/p/sfxr/
https://code.google.com/p/sfxr/
http://www.superflashbros.net/as3sfxr/

Managing the Music and Sound Effects

[316]

The cfxr generator
The cfxr sound generator was originally developed by Joachim Bengtsson in 2008. It
is based on sfxr and was ported to Mac OS as a native Cocoa application, and hence
the name cfxr (Cocoa sfxr). A history list was added with the possibility to rate each
generated sound effect by the user. This also allows you to easily flip through a couple
of sounds and jump back to previous ones if needed. The following screenshot shows
the interface of the cfxr generator:

The official source code repository of cfxr can be found at https://github.com/
nevyn/cfxr/.

https://github.com/nevyn/cfxr/
https://github.com/nevyn/cfxr/

Chapter 10

[317]

The bfxr generator
This sound generator was originally developed by Stephen "Increpare" Lavelle. It
appears to be the most advanced version of that time. Some additional waveforms as
well as a mixer have been added to create more complex sounds. The created sounds
can be saved to and loaded from files, which is a useful feature that is available in
neither sfxr nor cfxr. Additionally, the lock symbol next to each parameter can be
used to avoid any further changes to them while using the Randomize and Mutation
buttons, as shown in the following screenshot:

The official source code repository of bfxr can be found at https://github.com/
increpare/bfxr/.

https://github.com/increpare/bfxr/
https://github.com/increpare/bfxr/

Managing the Music and Sound Effects

[318]

Adding music and sounds to Canyon
Bunny
Let's now add some music and sound effects to our game. First, we need to know
what audio files are needed and then copy them to our assets folder.

All assets shown and discussed in this book, including any
other project files, are provided in the code bundle, which can
be downloaded from the Packt Publishing website.

The next two tables contain descriptions of each audio file and their function in
Canyon Bunny.

For sounds (generated with bfxr), refer to the following table:

Filename Event
jump.wav When the player jumps
jump_with_feather.wav When the player jumps in mid-air (requires an active

feather power-up)
pickup_coin.wav When the player picks up a gold coin
pickup_feather.wav When the player picks up a feather power-up
live_lost.wav When the player loses a life (for example, the player falls

down into the water)

For music (provided by Klaus "keith303" Spang), refer to the following table:

Filename Event
keith303_-_brand_new_
highscore.mp3

When the application starts (indefinitely
looping background music)

Chapter 10

[319]

Now, add all these files to CanyonBunny-android/assets/. Split up the audio files
by placing them either in the music or sound subfolder. The following screenshot
shows how the final structure of your assets folder should look:

After this, we need to update our Assets class in order to make the audio files
accessible in the same way as the rest of our assets. We will also use AssetManager to
let LibGDX handle the loading and unloading processes of the music and sound files.

Add the following two import lines to the Assets class:

import com.badlogic.gdx.audio.Music;
import com.badlogic.gdx.audio.Sound;

Then, add the following code to the same class:

public AssetSounds sounds;
public AssetMusic music;

public class AssetSounds {
 public final Sound jump;
 public final Sound jumpWithFeather;
 public final Sound pickupCoin;
 public final Sound pickupFeather;
 public final Sound liveLost;
 public AssetSounds (AssetManager am) {
 jump = am.get("sounds/jump.wav", Sound.class);

Managing the Music and Sound Effects

[320]

 jumpWithFeather = am.get("sounds/jump_with_feather.wav",
Sound.class);
 pickupCoin = am.get("sounds/pickup_coin.wav", Sound.class);
 pickupFeather = am.get("sounds/pickup_feather.wav",
Sound.class);
 liveLost = am.get("sounds/live_lost.wav", Sound.class);
 }
}

public class AssetMusic {
 public final Music song01;

 public AssetMusic (AssetManager am) {
 song01 = am.get("music/keith303_-_brand_new_highscore.mp3",
Music.class);
 }
}

This adds the two new inner classes, AssetSounds and AssetMusic, which will
hold the loaded instances of the music and sound effects. Next, make the following
changes to the same class:

public void init (AssetManager assetManager) {
 this.assetManager = assetManager;
 // set asset manager error handler
 assetManager.setErrorListener(this);
 // load texture atlas
 assetManager.load(Constants.TEXTURE_ATLAS_OBJECTS,
TextureAtlas.class);
 // load sounds
 assetManager.load("sounds/jump.wav", Sound.class);
 assetManager.load("sounds/jump_with_feather.wav", Sound.class);
 assetManager.load("sounds/pickup_coin.wav", Sound.class);
 assetManager.load("sounds/pickup_feather.wav", Sound.class);
 assetManager.load("sounds/live_lost.wav", Sound.class);
 // load music
 assetManager.load("music/keith303_-_brand_new_highscore.mp3",
Music.class);
 // start loading assets and wait until finished
 assetManager.finishLoading();
 Gdx.app.debug(TAG, "# of assets loaded: "
 + assetManager.getAssetNames().size);
 for (String a : assetManager.getAssetNames())
 Gdx.app.debug(TAG, "asset: " + a);

 TextureAtlas atlas =
assetManager.get(Constants.TEXTURE_ATLAS_OBJECTS);

Chapter 10

[321]

 // enable texture filtering for pixel smoothing
 for (Texture t : atlas.getTextures())
 t.setFilter(TextureFilter.Linear, TextureFilter.Linear);

 // create game resource objects
 fonts = new AssetFonts();
 bunny = new AssetBunny(atlas);
 rock = new AssetRock(atlas);
 goldCoin = new AssetGoldCoin(atlas);
 feather = new AssetFeather(atlas);
 levelDecoration = new AssetLevelDecoration(atlas);
 sounds = new AssetSounds(assetManager);
 music = new AssetMusic(assetManager);
}

These changes tell the asset manager to load and manage every audio file that we
want to use in the game. We are now all set to play back our audio files. However,
the game should also respect the current audio settings that are available in the
Options menu of the menu screen, as shown in the following screenshot:

Managing the Music and Sound Effects

[322]

At this point, it would seem logical to just call play() on the sound and music
instances in the game code where needed. However, this approach poses an issue
in terms of clean code with regard to the game settings as the current game settings
need to be checked every time an audio file is played. So, it would be ideal to have
an audio manager as a centralized point of control over the game's audio playback.
Since LibGDX does not provide an audio manager, we will build one of our own.

Create a new file for the AudioManager class and add the following code:

package com.packtpub.libgdx.canyonbunny.util;

import com.badlogic.gdx.audio.Music;
import com.badlogic.gdx.audio.Sound;

public class AudioManager {
 public static final AudioManager instance = new AudioManager();

 private Music playingMusic;

 // singleton: prevent instantiation from other classes
 private AudioManager () { }

 public void play (Sound sound) {
 play(sound, 1);
 }

 public void play (Sound sound, float volume) {
 play(sound, volume, 1);
 }

 public void play (Sound sound, float volume, float pitch) {
 play(sound, volume, pitch, 0);
 }

 public void play (Sound sound, float volume, float pitch,
float pan) {
 if (!GamePreferences.instance.sound) return;
 sound.play(GamePreferences.instance.volSound * volume,
 pitch, pan);
 }
}

Chapter 10

[323]

The AudioManager class is a singleton class so that we can access it from anywhere
in the code. It features a couple of overloaded play() methods just like the original
Sound and Music interfaces. The advantage of overloading these methods is that
you can make some parameters optional. The methods in this class check against
the values in GamePreferences, which holds the currently loaded audio settings
among others. If the checkbox for sounds is not selected in the Options menu,
GamePreferences.instance.sound will return false, and therefore any call of
AudioManager class's play() will be aborted before the actual play() call of a
sound is executed.

Next, add the following code to the same class:

public void play (Music music) {
 stopMusic();
 playingMusic = music;
 if (GamePreferences.instance.music) {
 music.setLooping(true);
 music.setVolume(GamePreferences.instance.volMusic);
 music.play();
 }
}

 public void stopMusic () {
 if (playingMusic != null) playingMusic.stop();
 }

public void onSettingsUpdated () {
 if (playingMusic == null) return;
 playingMusic.setVolume(GamePreferences.instance.volMusic);
 if (GamePreferences.instance.music) {
 if (!playingMusic.isPlaying()) playingMusic.play();
 } else {
 playingMusic.pause();
 }
}

This code adds another overloaded play() method, which takes an instance of
Music that will be played. If music is already playing, it is stopped first. Then, new
music is initialized for playback and started if Music is enabled in the game settings.
The onSettingsUpdated() method is used to allow the Options menu to inform
AudioManager when settings have changed to execute appropriate actions, such as
setting a new music volume.

Managing the Music and Sound Effects

[324]

Now, let's connect the audio manager with the Options menu in the menu screen
and the rest of the game.

Add the following import line to MenuScreen:

import com.packtpub.libgdx.canyonbunny.util.AudioManager;

Next, make the following changes to the same class:

private void onSaveClicked () {
 saveSettings();
 onCancelClicked();
 AudioManager.instance.onSettingsUpdated();
}

private void onCancelClicked () {
 btnMenuPlay.setVisible(true);
 btnMenuOptions.setVisible(true);
 winOptions.setVisible(false);
 AudioManager.instance.onSettingsUpdated();
}

These changes make sure that when the Options menu is closed, the audio manager
will start or stop the music depending on the current audio settings.

Next, add the following import lines to the CanyonBunnyMain class:

import com.packtpub.libgdx.canyonbunny.util.AudioManager;
import com.packtpub.libgdx.canyonbunny.util.GamePreferences;

After this, make the following changes to the same class:

@Override
public void create () {
 // Set Libgdx log level
 Gdx.app.setLogLevel(Application.LOG_DEBUG);

 // Load assets
 Assets.instance.init(new AssetManager());

 // Load preferences for audio settings and start playing music
 GamePreferences.instance.load();
 AudioManager.instance.play(Assets.instance.music.song01);

 // Start game at menu screen

Chapter 10

[325]

 ScreenTransition transition = ScreenTransitionSlice.init(2,
ScreenTransitionSlice.UP_DOWN, 10, Interpolation.pow5Out);
 setScreen(new MenuScreen(this), transition);
}

These changes will make sure that after the assets and game preferences have
been loaded, the music starts playing. This is done using the play() method of
AudioManager, which takes care of checking the current audio settings, setting the
correct music volume, and potentially starting the playback of the music file.

LibGDX automatically handles the task of pausing and resuming for
any instances of playing music. Therefore, no extra code is required to
handle these cases in the game code.

Next, add the following import line to the WorldController class:

import com.packtpub.libgdx.canyonbunny.util.AudioManager;

After this, make the following changes to the same class:

public void update (float deltaTime) {
 handleDebugInput(deltaTime);
 if (isGameOver()) {
 timeLeftGameOverDelay -= deltaTime;
 if (timeLeftGameOverDelay < 0) backToMenu();
 } else {
 handleInputGame(deltaTime);
 }
 level.update(deltaTime);
 testCollisions();
 cameraHelper.update(deltaTime);
 if (!isGameOver() && isPlayerInWater()) {
 AudioManager.instance.play(Assets.instance.sounds.liveLost);
 lives--;
 if (isGameOver())
 timeLeftGameOverDelay = Constants.TIME_DELAY_GAME_OVER;
 else
 initLevel();
 }
 level.mountains.updateScrollPosition(
 cameraHelper.getPosition());
 if (livesVisual > lives)
 livesVisual = Math.max(lives, livesVisual - 1 * deltaTime);
 if (scoreVisual < score)

Managing the Music and Sound Effects

[326]

 scoreVisual = Math.min(score, scoreVisual +250 * deltaTime);
}

private void onCollisionBunnyWithGoldCoin (GoldCoin goldcoin) {
 goldcoin.collected = true;
 AudioManager.instance.play(Assets.instance.sounds.pickupCoin);
 score += goldcoin.getScore();
 Gdx.app.log(TAG, "Gold coin collected");
}

private void onCollisionBunnyWithFeather (Feather feather) {
 feather.collected = true;
 AudioManager.instance.play(Assets.instance.sounds.pickupFeather);
 score += feather.getScore();
 level.bunnyHead.setFeatherPowerup(true);
 Gdx.app.log(TAG, "Feather collected");
}

These changes add the code to trigger the sound effects for the Life Lost, Picked
up Gold Coin, and Picked up Feather events at the right time.

Next, add the following two import lines to the BunnyHead class:

import com.badlogic.gdx.math.MathUtils;
import com.packtpub.libgdx.canyonbunny.util.AudioManager;

After this, make the following changes to the same class:

public void setJumping (boolean jumpKeyPressed) {
 switch (jumpState) {
 case GROUNDED: // Character is standing on a platform
 if (jumpKeyPressed) {
 AudioManager.instance.play(Assets.instance.sounds.jump);
 // Start counting jump time from the beginning
 timeJumping = 0;
 jumpState = JUMP_STATE.JUMP_RISING;
 }
 break;
 case JUMP_RISING: // Rising in the air
 if (!jumpKeyPressed) {
 jumpState = JUMP_STATE.JUMP_FALLING;
 }
 break;
 case FALLING:// Falling down

Chapter 10

[327]

 case JUMP_FALLING: // Falling down after jump
 if (jumpKeyPressed && hasFeatherPowerup) {
 AudioManager.instance.play(
 Assets.instance.sounds.jumpWithFeather, 1,
MathUtils.random(1.0f, 1.1f));
 timeJumping = JUMP_TIME_OFFSET_FLYING;
 jumpState = JUMP_STATE.JUMP_RISING;
 }
 break;
 }
}

The changes in the code for BunnyHead trigger the sound effects for the jumped and
jumped-in-mid-air events at the right time. The jumpWithFeather sound is played
using a different play() method of the AudioManager class. It is also provided with
a random pitch value in the range from 1.0 to 1.1, which adds a little change in the
frequency, rendering the rapidly repeated sound effect more interesting.

These were the last changes and thus we conclude this chapter about working with
audio in LibGDX and how to use it in Canyon Bunny.

Currently, sound pitching does not work in the GWT backend
that is used in LibGDX to support the WebGL target platform. The
sound will just play at its normal rate if pitching is used.

Summary
In this chapter, you learned how to use LibGDX's four audio interfaces, Sound,
Music, AudioDevice, and AudioRecorder, and about their specific use cases. We
took a look at the freely available and open source sound generators and used one
of them to create sound effects that can be used in Canyon Bunny. We also added
background music to the game and understood that LibGDX takes care of when a
music instance being played needs to be paused and resumed in terms of the life
cycle in a LibGDX application. A manager class called AudioManager was created
to gain centralized control over any audio-related actions. Finally, playing music
and sounds turned out to be a very straightforward process in conjunction with the
use of our audio manager. We had to add just a few new lines of code to trigger the
music and sound effects at the right time for each event.

In the next chapter, we will look at some advanced programming techniques. This
includes using a physics engine suitable for two-dimensional game objects, creating
a shader program to apply a simple monochrome filter effect, and querying the
accelerometer hardware to implement an alternative input method.

Advanced Programming
Techniques

In this chapter, we will take a look at Box2D—a physics engine to simulate realistic-
looking physics of the objects in 2D space. After we cover the basics of how to use
Box2D, we will move on and create a little physics simulation that is going to be
triggered at the end of the level. For this to work, we will also need to add a new
level object that represents the level's end.

Next, we will look at the topic of shader programs. Shaders, in general, are simple
programs that are executed on the Graphics Processing Unit (GPU). We will create
our own shader program consisting of a vertex and a fragment shader to achieve a
simple monochrome filter effect.

Physics engines, such as Box2D and programming shaders, are very complex topics.
Each deserves at least one book on their own to get hold of their gist. Nonetheless,
this chapter is meant to give you the first push in the right direction on how to
approach these broad topics.

Today's smartphones have an integrated accelerometer. This can be used to detect
the spatial position of the device, which is delivered by the accelerometer as one
value for each of the three axes. We will query the accelerometer hardware and use
the read values to translate them into the player movement in Canyon Bunny.

In this chapter, we will cover the following topics:

• 2D physics using Box2D
• Shader programs
• Use accelerometer as an alternate input method to move the bunny head

Advanced Programming Techniques

[330]

Simulating physics with Box2D
Box2D was created by Erin Catto and is an open source physics engine to simulate
rigid bodies in 2D space. It is written in a platform-independent C++ code that
has encouraged ports to several frameworks, game engines, and programming
languages in general.

You should check out at least one of these popular games if you have never seen
Box2D in action before: Angry Birds, Limbo, Tiny Wings, and Crayon Physics Deluxe.

LibGDX integrates Box2D, which is similar to other frameworks, through a thin
wrapper API that is congruent with Box2D's original API. This approach makes
it pleasantly easy to transfer existing knowledge about Box2D by following
tutorials and examples that are not based on LibGDX, and of course, using the
official Box2D manual.

For more information, you can check out the official website of Box2D at http://
www.box2d.org/.

Also check out the LibGDX's Box2D wiki at https://github.com/libgdx/libgdx/
wiki/Box2d/.

For Box2D tutorials, you can check out the following websites:

• C++ (http://www.iforce2d.net/b2dtut/)
• Objective-C (http://www.raywenderlich.com/28602/intro-to-box2d-

with-cocos2d-2-x-tutorial-bouncing-balls)
• Flash (http://www.emanueleferonato.com/category/box2d/)
• JavaScript (http://blog.sethladd.com/2011/09/box2d-collision-

damage-for-javascript.html)

http://www.box2d.org/
http://www.box2d.org/
https://github.com/libgdx/libgdx/wiki/Box2d/
https://github.com/libgdx/libgdx/wiki/Box2d/
http://www.iforce2d.net/b2dtut/
http://www.raywenderlich.com/28602/intro-to-box2d-with-cocos2d-2-x-tutorial-bouncing-balls
http://www.raywenderlich.com/28602/intro-to-box2d-with-cocos2d-2-x-tutorial-bouncing-balls
http://www.emanueleferonato.com/category/box2d/
http://blog.sethladd.com/2011/09/box2d-collision-damage-for-javascript.html
http://blog.sethladd.com/2011/09/box2d-collision-damage-for-javascript.html

Chapter 11

[331]

Exploring the concepts of Box2D
We will now shed some light on the basic ideas behind Box2D, and find out how it
allows us to define virtual worlds that can be used to simulate believable physics
with rigid bodies.

Understanding the rigid bodies
First of all, let's clarify what this seemingly mysterious term rigid body means.
A body, in the sense of physics, is just a collection of matter with some attributes
assigned to it, such as its position and orientation. It is what we usually call an object
in our real world. Now, a so-called rigid body describes an idealized body that is
assumed to be solid and thus incapable of being deformed by the exerting forces.
From now on, we will use the shorter term, body, for brevity since Box2D has only
the support for rigid bodies anyway.

LibGDX also integrates a second open source physics engine named
Bullet. In contrast to Box2D, which is limited to 2D space and rigid body
support only, Bullet features a full-fledged 3D physics simulation as well
as support for both rigid and soft bodies. However, we will solely focus
on Box2D in this chapter as 3D physics is an even more advanced topic.

In addition to the (2D) position and orientation attributes, a body also has the
following features:

• A mass given in kilograms
• A velocity (directed speed) given in meters per second (m/s)
• An angular velocity (rotational speed) given in radian per second (rad/s).

Choosing the body types
There are three different body types to choose from. They are as follows:

• Static: This is a stationary body. It does not collide with other static or
kinematic bodies. It is useful for floors, walls, non-moving platforms,
and so on.

• Kinematic: This is a movable body. The position can be manually updated
or changed according to its velocity, which is the preferred and more reliable
method. Kinematic bodies do not collide with other static or kinematic
bodies. They are useful for moving platforms (for example, elevators),
reflecting dynamic bodies, and so on.

Advanced Programming Techniques

[332]

• Dynamic: This is a movable body. The position can be manually updated
or changed according to forces, which is the preferred and more reliable
method. Dynamic bodies can collide with all body types. It is useful for
players, enemies, items, and so on.

In a real-world scenario, humans and other movable items are
always dynamic, and they collide with others. However, the
ones that do not move such as trees, house, floor, and so on are
classified as static; they won't go toward the dynamic objects but
the dynamic objects can come and collide with them. Kinematic
objects are those that don't respond to force; they would move in
a predefined path according to a set velocity. An elevator would
be a good example.

Using shapes
Shapes describe the 2D objects in a geometrical way using radiuses for circles, widths
and heights for rectangles, or a certain number of points (also vertices) for more
complex shapes using polygons. So, these shapes define areas that can be tested for
collisions with other shapes later on. For more information about creating polygon
shapes, see the Box2D manual, 4.4 Polygon Shapes.

Using fixtures
A fixture uses exactly one shape to which it adds material properties, such as
density, friction, and restitution. The shape defined in a fixture is then attached to a
body by adding the fixture to it. So, it plays an important role in how bodies interact
with each other. For more information about using fixtures, see the Box2D manual,
6.2 Fixture Creation.

Simulating physics in the world
The world is the virtual sandbox inside which the physics simulation takes place.
Each body, including its fixture and shape, needs to be inserted into the world to be
included in the simulation.

Box2D is a very feature-rich engine and thus contains a lot more features, such as
Constraints, Joints, Sensors, and Contact Listener just to name a few, but which are
not in the scope of this chapter.

For more in-depth information, consult the official manual of Box2D at http://www.
box2d.org/manual.pdf.

http://www.box2d.org/manual.pdf
http://www.box2d.org/manual.pdf

Chapter 11

[333]

Physics body editor
The creation of bodies for images with complex shapes can be a very time-consuming
task. The Physics Body Editor, created by Aurélien Ribon, lets you build bodies in
a graphical editor and comes with many useful features, such as decomposition
of concave shapes into convex polygons, tracing outlines of images, and a built-in
collision tester.

Check out the official project website at https://code.google.com/p/box2d-
editor/. A screenshot from the project's website that shows the editor in action
is as follows:

Adding Box2D
From LibGDX 1.0.0 onward, Box2D is separated from gdx.jar and moved to a new
extension. However, if you are using the Gradle-based setup tool, you can simply
check the Box2D box and generate your project.

https://code.google.com/p/box2d-editor/
https://code.google.com/p/box2d-editor/

Advanced Programming Techniques

[334]

Adding Box2D dependency in Gradle
Wait a minute, we have not yet added Box2D at project creation, and so now we
have to add it manually. Everything in a Gradle-based project is managed by build.
gradle in the project root. Go to the C:/libgdx folder and open the build.gradle
file with a text editor such as Notepad or WordPad.

Next, add the lines of code, given in the following section, to the build.gradle to
add Box2D dependency to our project:

• To add the desktop dependency, use this:
project(":desktop") {
apply plugin: "java"

dependencies {
compile project(":core")
compile "com.badlogicgames.gdx:gdx-backend-
lwjgl:$gdxVersion"

Chapter 11

[335]

compile "com.badlogicgames.gdx:gdx-
platform:$gdxVersion:natives-desktop"
compile "com.badlogicgames.gdx:gdx-box2d-
platform:$gdxVersion:natives-desktop"
compile "com.badlogicgames.gdx:gdx-tools:$gdxVersion"
 }
}

• To add the Android dependency, use this:
project(":android") {
apply plugin: "android"
configurations { natives }
dependencies {
compile project(":core")
compile "com.badlogicgames.gdx:gdx-backend-
android:$gdxVersion"
natives "com.badlogicgames.gdx:gdx-
platform:$gdxVersion:natives-armeabi"
natives "com.badlogicgames.gdx:gdx-
platform:$gdxVersion:natives-armeabi-v7a"
natives "com.badlogicgames.gdx:gdx-
platform:$gdxVersion:natives-x86"
compile "com.badlogicgames.gdx:gdx-box2d:$gdxVersion"
natives "com.badlogicgames.gdx:gdx-box2d-
platform:$gdxVersion:natives-armeabi"
natives "com.badlogicgames.gdx:gdx-box2d-
platform:$gdxVersion:natives-armeabi-v7a"
natives "com.badlogicgames.gdx:gdx-box2d-
platform:$gdxVersion:natives-x86"
 }
}

• To add the iOS dependency, use this:
project(":ios") {
apply plugin: "java"
apply plugin: "robovm"

configurations { natives }

dependencies {
compile project(":core")
compile "org.robovm:robovm-rt:${roboVMVersion}"
compile "org.robovm:robovm-cocoatouch:${roboVMVersion}"
compile "com.badlogicgames.gdx:gdx-backend-robovm:$gdxVersion"

Advanced Programming Techniques

[336]

natives "com.badlogicgames.gdx:gdx-
platform:$gdxVersion:natives-ios"
natives "com.badlogicgames.gdx:gdx-box2d-
platform:$gdxVersion:natives-ios"
 }
}

• To add the HTML dependency, use this:
project(":html") {
apply plugin: "gwt"
apply plugin: "war"
dependencies {
compile project(":core")
compile "com.badlogicgames.gdx:gdx-backend-gwt:$gdxVersion"
compile "com.badlogicgames.gdx:gdx:$gdxVersion:sources"
compile "com.badlogicgames.gdx:gdx-backend-
gwt:$gdxVersion:sources"
compile "com.badlogicgames.gdx:gdx-box2d:$gdxVersion:sources"
compile "com.badlogicgames.gdx:gdx-box2d-
gwt:$gdxVersion:sources"
 }
}

• To add the core dependency, use this:
project(":core") {
apply plugin: "java"
dependencies {
compile "com.badlogicgames.gdx:gdx:$gdxVersion"
compile "com.badlogicgames.gdx:gdx-box2d:$gdxVersion"
 }
}

Now, refresh all dependencies. To do this, select all the five projects in the
package explorer and then right-click on the Refresh Dependencies option in
the Gradle menu.

Chapter 11

[337]

For non-Gradle users
Now for the folks who used the old LibGDX project generation method (gdx-
setup-ui.jar), you have to copy the JAR files into the libs folder in the respective
projects and add them to build path. The JAR files can be found in libgdx-1.2.0,
downloaded earlier in Chapter 1, Introduction to LibGDX and Project Setup. To do this,
follow these steps:

1. Copy gdx-box2d.jar to the CanyonBunny project.
2. Copy gdx-box2d-native.jar to the CanyonBunny-desktop project.
3. Copy libgdx-box2d.so from armeabi, armeabi-v7a, and x86 to the

corresponding subfolders inside the libs folder in the CanyonBunny-
android project.

4. Copy gdx-box2d-gwt.jar and gdx-box2d-gwt-sources.jar to the lib
subfolder under the war folder in the CanyonBunny-html project folder.

5. You will also need to add <inherits name='com.badlogic.gdx.physics.
box2d.box2d-gwt' /> to your GwtDefinition.gwt.xml file.

6. Copy libgdx-box2d.a to the libs/ios folder in the CanyonBunny-robovm
project, and update the robovm.xml file as follows:
<libs>
<lib>libs/ios/libgdx.a</lib>
<lib>libs/ios/libObjectAL.a</lib>
<lib>libs/ios/libgdx-box2d.a</lib>
</libs>

7. Now to add the JAR files to build the path, simply right-click on the newly
added JAR files in each project and go to the Add to build path option in the
Build Path menu.

Now, it's all set. Let's check the weather for raining carrots.

Advanced Programming Techniques

[338]

Preparing Canyon Bunny for raining carrots
What, raining carrots? Absolutely! We are going to add two new game objects to
Canyon Bunny. One will act as the end point or goal of a level, while the other is a
regular carrot that we will use later in our physics simulation. To be able to place the
goal game object in our level, we will also have to make some minor changes to the
level image and level loader.

So, a screenshot to give you a better impression of what we are aiming for, while we
are working on it step by step, is as follows:

In the preceding screenshot, you can see the running physics simulation of raining
carrots, which is kicked off as soon as the player character passes the goal (golden
carrot statue). Lots of carrots will fall down from the sky, nicely bounce off the
ground, and eventually pile up on each other.

Adding the new assets
Firstly, copy the two new images carrot.png and goal.png to CanyonBunny-
desktop/assets-raw/images/. Also, do not forget to rebuild your texture atlas.
After this, let's add them to our global assets class for easier access.

Chapter 11

[339]

Add the following lines to the inner class AssetLevelDecoration of the
Assets class:

public final AtlasRegion carrot;
public final AtlasRegion goal;

Next, make the following changes to the same (inner) class so that the new images
will become available for later use:

public AssetLevelDecoration (TextureAtlas atlas) {
waterOverlay = atlas.findRegion("water_overlay");
carrot = atlas.findRegion("carrot");
goal = atlas.findRegion("goal");
}

Adding the carrot game object
The carrot is just a normal game object like any other, as shown here, that we have
created for Canyon Bunny so far:

Create a new file for the Carrot class and add the following code:

package com.packtpub.libgdx.canyonbunny.game.objects;

import com.badlogic.gdx.graphics.g2d.SpriteBatch;
import com.badlogic.gdx.graphics.g2d.TextureRegion;
import com.packtpub.libgdx.canyonbunny.game.Assets;

public class Carrot extends AbstractGameObject {
private TextureRegion regCarrot;

public Carrot () {
init();
 }

private void init () {

Advanced Programming Techniques

[340]

dimension.set(0.25f, 0.5f);

regCarrot = Assets.instance.levelDecoration.carrot;

 // Set bounding box for collision detection
bounds.set(0, 0, dimension.x, dimension.y);
origin.set(dimension.x / 2, dimension.y / 2);
 }
public void render (SpriteBatch batch) {
TextureRegion reg = null;

reg = regCarrot;
batch.draw(reg.getTexture(), position.x - origin.x,
position.y - origin.y, origin.x, origin.y, dimension.x,
dimension.y, scale.x, scale.y, rotation, reg.getRegionX(),
reg.getRegionY(), reg.getRegionWidth(),
reg.getRegionHeight(), false, false);
 }
}

Adding the goal game object
The following goal game object will be used to mark the end of a level:

Chapter 11

[341]

Create a new file for the Goal class and add the following code:

package com.packtpub.libgdx.canyonbunny.game.objects;

import com.badlogic.gdx.graphics.g2d.SpriteBatch;
import com.badlogic.gdx.graphics.g2d.TextureRegion;
import com.packtpub.libgdx.canyonbunny.game.Assets;

public class Goal extends AbstractGameObject {
private TextureRegion regGoal;

public Goal () {
init();
 }

private void init () {
dimension.set(3.0f, 3.0f);
regGoal = Assets.instance.levelDecoration.goal;

 // Set bounding box for collision detection
bounds.set(1, Float.MIN_VALUE, 10, Float.MAX_VALUE);
origin.set(dimension.x / 2.0f, 0.0f);
 }

public void render (SpriteBatch batch) {
TextureRegion reg = null;

reg = regGoal;
batch.draw(reg.getTexture(), position.x - origin.x,
position.y - origin.y, origin.x, origin.y, dimension.x,
dimension.y, scale.x, scale.y, rotation,
reg.getRegionX(), reg.getRegionY(),
reg.getRegionWidth(), reg.getRegionHeight(),
false, false);
 }
}

There is one specialty about this game object that is important enough to be mentioned.
We have set the bounds of the goal to values that make it almost infinitely tall in
relation to other objects in the game world. This ensures that the player character will
always collide with the goal and trigger the corresponding event.

Advanced Programming Techniques

[342]

Extending the level
The next step is to include the goal game object in the level image. Remember that
each pixel color represents a certain game object in the world of Canyon Bunny. For
the goal game object, we choose red as the pixel color (R=255, G=0, B=0).

Add the new red pixel marked as Goal to the level image. Use the following
screenshot for reference:

Obviously, the goal should be placed at the far right-hand side to make it harder to
reach for the player. In our example level, this is the elongated platform right after
the arrow that is made out of gold coins.

Now, we need to tell the level loader about the new pixel and game object to let it
handle correctly.

Add the following import lines to the Level class:

import com.packtpub.libgdx.canyonbunny.game.objects.Carrot;
import com.packtpub.libgdx.canyonbunny.game.objects.Goal;

After this, add the following code to the same class:

public Array<Carrot> carrots;
public Goal goal;

Furthermore, add the following constant to the BLOCK_TYPE enumeration that
defines the goal's red pixel color:

GOAL(255, 0, 0), // red

Chapter 11

[343]

Next, make the following changes to the init() method in which we want to
initialize a new array for the carrot game objects, and create a new goal game object
if the corresponding pixel color was found in the level image:

private void init (String filename) {

 // objects
rocks = new Array<Rock>();
goldcoins = new Array<GoldCoin>();
feathers = new Array<Feather>();
carrots = new Array<Carrot>();

 // load image file that represents the level data
Pixmap pixmap = new Pixmap(Gdx.files.internal(filename));
 // scan pixels from top-left to bottom-right
int lastPixel = -1;
for (int pixelY = 0; pixelY<pixmap.getHeight(); pixelY++) {
for (int pixelX = 0; pixelX<pixmap.getWidth(); pixelX++) {

 // gold coin
else if
 (BLOCK_TYPE.ITEM_GOLD_COIN.sameColor(currentPixel)) {
 ...
 }
 // goal
else if (BLOCK_TYPE.GOAL.sameColor(currentPixel)) {
obj = new Goal();
offsetHeight = -7.0f;
obj.position.set(pixelX, baseHeight + offsetHeight);
goal = (Goal)obj;
 }
 // unknown object/pixel color
else {

 }
lastPixel = currentPixel;
 }
 }
 }

Advanced Programming Techniques

[344]

Finally, make the following changes to the update() and render() methods in the
same class to let each carrot update correctly as well as render the goal and the
carrot game objects in the right order on the screen, as follows:

public void update (float deltaTime) {
 // Feathers
for (Feather feather : feathers)
feather.update(deltaTime);
for (Carrot carrot : carrots)
carrot. Update(deltaTime);
 // Clouds
clouds.update(deltaTime);
 }

public void render (SpriteBatch batch) {
 // Draw Mountains
mountains.render(batch);
 // Draw Goal
goal.render(batch);
 // Draw Rocks
for (Rock rock : rocks)
rock.render(batch);

for (Feather feather : feathers)
feather.render(batch);
 // Draw Carrots
for (Carrot carrot : carrots)
carrot.render(batch);
 // Draw Player Character
bunnyHead.render(batch);
 }

You may want to run the game now and verify that the goal game object is visible at
the end of the level. However, nothing will happen when the player character passes
it. We will address the implementation details for the event handling and physics
simulation next.

Chapter 11

[345]

Letting it rain carrots
We will now focus on the implementation details, where we actually make use
of Box2D in Canyon Bunny. Remember that we have created our own simple
physics simulation for the game objects before. We do not want to replace this
implementation but in fact allow the use of either one of them as it suits our needs.
In other words, we want to keep the existing implementation that is doing collision
detection and physics for the game objects, and just add a coexisting alternative that
uses Box2D.

Add the following import line to the AbstractGameObject class:

import com.badlogic.gdx.physics.box2d.Body;

After this, add the following line to the same class:

public Body body;

The (rigid) Body class directly relates to what we have discussed at the beginning
of this chapter. Next, make the following changes to the update() method in the
same class:

public void update (float deltaTime) {
if (body == null) {
updateMotionX(deltaTime);
updateMotionY(deltaTime);

 // Move to the new position
position.x += velocity.x * deltaTime;
position.y += velocity.y * deltaTime;
 } else {
position.set(body.getPosition());
rotation = body.getAngle() * MathUtils.radiansToDegrees;
 }
 }

The idea here is that each game object will be using our simple physics as long as
there is no Box2D body defined in the body variable. Otherwise, the current position
and angle of rotation is simply taken from the body and applied to the game object to
reflect the state of Box2D's calculations. In conclusion, this means that we have given
full control to Box2D over the movement parameters for these game objects.

Advanced Programming Techniques

[346]

Next, add the following import lines to the WorldController class:

import com.badlogic.gdx.math.MathUtils;
import com.badlogic.gdx.math.Vector2;
import com.badlogic.gdx.physics.box2d.Body;
import com.badlogic.gdx.physics.box2d.BodyDef;
import com.badlogic.gdx.physics.box2d.BodyDef.BodyType;
import com.badlogic.gdx.physics.box2d.FixtureDef;
import com.badlogic.gdx.physics.box2d.PolygonShape;
import com.badlogic.gdx.physics.box2d.World;
import com.packtpub.libgdx.canyonbunny.game.objects.Carrot;

Then, add the following lines of code to the same class:

private boolean goalReached;
public World b2world;

private void initPhysics () {
if (b2world != null) b2world.dispose();
 b2world = new World(new Vector2(0, -9.81f), true);
 // Rocks
 Vector2 origin = new Vector2();
for (Rock rock : level.rocks) {
BodyDef bodyDef = new BodyDef();
bodyDef.type = BodyType.KinematicBody;
bodyDef.position.set(rock.position);
 Body body = b2world.createBody(bodyDef);
rock.body = body;
PolygonShape polygonShape = new PolygonShape();
origin.x = rock.bounds.width / 2.0f;
origin.y = rock.bounds.height / 2.0f;
polygonShape.setAsBox(rock.bounds.width / 2.0f,
rock.bounds.height / 2.0f, origin, 0);
FixtureDef fixtureDef = new FixtureDef();
fixtureDef.shape = polygonShape;
body.createFixture(fixtureDef);
polygonShape.dispose();
 }
 }

Chapter 11

[347]

The goalReached variable is used to keep track of the game's state whether or not
the player has already managed to reach the goal. The World class directly relates
to the description at the beginning of this chapter. In the initPhysics() method,
we create a new instance of World, and store it in the b2world variable for later
reference. The constructor of World takes an instance of Vector2 for the world's
simulated gravity, and a second parameter that controls the weather bodies in Box2D
can become inactive. Usually, this flag should be enabled to reduce the CPU load
and in particular to preserve some battery power on mobile devices. In our case, we
create a world with gravity, pulling down objects at 9.81 meters per second squared,
which is the same acceleration that we experience on earth.

Remember to always call the dispose() method of World when it is
no longer needed. This is also true for all the Box2D shape classes, for
example, PolygonShape and CircleShape.

After the Box2D world is created, we loop through the level's list of rocks, and
create the corresponding Box2D bodies that are mapped to the same position and
size as defined in the loaded level. Thus, both worlds, the Box2D one and our level,
will start in a synchronized model state for each rock. Creating bodies for the rocks
is a necessary step because Box2D will have to take each rock into account in its
calculations. Otherwise, the carrot game objects will fall through everything in the
level because there simply is nothing to collide with from Box2D's point of view.

Box2D requires you to use separate definition classes to create new instances of
Body and Fixture, which are named BodyDef and FixtureDef, respectively. The
instance in the bodyDef variable is configured to describe a kinematic body type
whose initial position is set to the same position as the rock instance. After this,
we call the createBody() method of b2world and pass in the body definition
to create and add the new body at once. The method returns the reference of the
newly created body, which is then stored in the rock instance to activate the Box2D
physics handling, according to the changes we just made in our update() method of
AbstractGameObject.

The created body also needs a shape to allow interaction with other bodies. So, we
create a shape using the PolygonShape class and call its setAsBox() helper method
to define a rectangle. Shapes cannot be directly attached to bodies; thus, we create
a new instance of the Fixture class, bind our shape to it, and eventually attach the
fixture to the body of the rock by calling the createFixture() method of the body
instance. Now, the shape is no longer needed as its information has been processed
in the new fixture. This is why we can safely call the dispose() method on the shape
to free the memory that was allocated by this shape.

Advanced Programming Techniques

[348]

A screenshot of Box2D's view of the rock bodies is as follows:

The thin blue lines forming a rectangle visualizes how (the shape) and where (the
position) Box2D sees each rock. These lines have been rendered with the help of
Box2D's Box2DDebugRenderer class. Let's add this feature to the game code so that it
can be quickly enabled when needed.

Add the following import line to the WorldRenderer class:

import com.badlogic.gdx.physics.box2d.Box2DDebugRenderer;

After this, add the following lines of code to the same class:

private static final boolean DEBUG_DRAW_BOX2D_WORLD = false;
private Box2DDebugRenderer b2debugRenderer;

Then, make the following changes to the same class:

private void init () {
batch = new SpriteBatch();
camera = new OrthographicCamera(Constants.VIEWPORT_WIDTH,
Constants.VIEWPORT_HEIGHT);
camera.position.set(0, 0, 0);
camera.update();
cameraGUI = new OrthographicCamera(Constants.VIEWPORT_GUI_WIDTH,
Constants.VIEWPORT_GUI_HEIGHT);
cameraGUI.position.set(0, 0, 0);
cameraGUI.setToOrtho(true);
 // flip y-axis
cameraGUI.update();

Chapter 11

[349]

 b2debugRenderer = new Box2DDebugRenderer();
}

private void renderWorld (SpriteBatch batch) {
worldController.cameraHelper.applyTo(camera);
batch.setProjectionMatrix(camera.combined);
batch.begin();
worldController.level.render(batch);
batch.end();
if (DEBUG_DRAW_BOX2D_WORLD) {
b2debugRenderer.render(worldController.b2world,
camera.combined);
 }
}

Now, we can easily toggle the debug view for Box2D, by setting DEBUG_DRAW_
BOX2D_WORLD to true or false.

Next, add the following lines of code to the Constants class:

// Number of carrots to spawn
public static final int CARROTS_SPAWN_MAX = 100;

// Spawn radius for carrots
public static final float CARROTS_SPAWN_RADIUS = 3.5f;

// Delay after game finished
public static final float TIME_DELAY_GAME_FINISHED = 6;

We will use these new constants to control the number of carrots to spawn and the
delay time before the game switches back to the menu screen after the goal was
reached by the player. In this particular case, we use a value of 100 carrots and a
delay of 6 seconds.

Next, add the following lines of code to the WorldController class:

private void spawnCarrots (Vector2 pos, int numCarrots,
float radius) {
float carrotShapeScale = 0.5f;
 // create carrots with box2d body and fixture
for (int i = 0; i<numCarrots; i++) {
 Carrot carrot = new Carrot();
 // calculate random spawn position, rotation, and scale
float x = MathUtils.random(-radius, radius);

Advanced Programming Techniques

[350]

float y = MathUtils.random(5.0f, 15.0f);
float rotation = MathUtils.random(0.0f, 360.0f)
 * MathUtils.degreesToRadians;
float carrotScale = MathUtils.random(0.5f, 1.5f);
carrot.scale.set(carrotScale, carrotScale);
 // create box2d body for carrot with start position
 // and angle of rotation
BodyDef bodyDef = new BodyDef();
bodyDef.position.set(pos);
bodyDef.position.add(x, y);
bodyDef.angle = rotation;
 Body body = b2world.createBody(bodyDef);
body.setType(BodyType.DynamicBody);
carrot.body = body;
 // create rectangular shape for carrot to allow
 // interactions (collisions) with other objects
PolygonShape polygonShape = new PolygonShape();
float halfWidth = carrot.bounds.width / 2.0f * carrotScale;
float halfHeight = carrot.bounds.height /2.0f * carrotScale;
polygonShape.setAsBox(halfWidth * carrotShapeScale,
halfHeight * carrotShapeScale);
 // set physics attributes
FixtureDef fixtureDef = new FixtureDef();
fixtureDef.shape = polygonShape;
fixtureDef.density = 50;
fixtureDef.restitution = 0.5f;
fixtureDef.friction = 0.5f;
body.createFixture(fixtureDef);
polygonShape.dispose();
 // finally, add new carrot to list for updating/rendering
level.carrots.add(carrot);
 }
 }

The spawnCarrots() method contains the logic to create a variable number
(numCarrots) of the new carrot game objects at a specific location (pos) in the game
world. Inside the loop, a new carrot game object is created for which random values
are calculated for the starting position (x, y), angle of rotation (rotation), and scale
(carrotScale). The location that is passed in the pos variable is used as the center
spawn point. The third parameter, radius, is used to distribute the carrots around
the center spawn point of the horizontal starting position. The vertical starting
position is randomly chosen in the range between 5 and 15 to ensure that the carrots
will always spawn outside the game camera's view.

Chapter 11

[351]

Also, this range helps to create a more rain-like effect by distributing the carrots in a
column full of carrots, so that they will hit the ground at different points in time. The
random rotation values are chosen within a range of a full circle (0 to 360 degrees),
which simply means that any angle of rotation can occur. The random scale values
are chosen within the range of half below or above the carrot's original size, which
gives the overall effect a more natural touch as carrots are not of the same size in
real life either.

Similar to what we did for the rock game object, a Box2D body, fixture, and shape
must be created for each carrot game object. It should be noted once more that the
reference of a Box2D body is stored in the body variable of the carrot instance to
activate the Box2D update mechanism for the game object. Also, notice that the
fixture is set to have a density of 50, which affects the object's calculated mass data,
and thus controls whether it is a light or a heavy object. Furthermore, restitution
is set to 0.5, which means that the carrots will be half-elastic to allow some rebound
to happen until it comes to rest eventually. A friction value of 0.5 lets the carrots
skid down on each other. Using a value of 1 or higher for friction will make the
object look sticky when it gets in contact with other objects.

As a last tweak, each Box2D shape is shrunk to half the size (carrotShapeScale =
0.5f) of the carrot game object to eliminate small gaps between the adjacent carrots.
Finally, each new carrot with its corresponding Box2D body is added to the level's
list of carrots for updating and rendering.

Next, add the following lines of code to the WorldController class:

private void onCollisionBunnyWithGoal () {
goalReached = true;
timeLeftGameOverDelay = Constants.TIME_DELAY_GAME_FINISHED;
 Vector2 centerPosBunnyHead =
 new Vector2(level.bunnyHead.position);
centerPosBunnyHead.x + = level.bunnyHead.bounds.width;
spawnCarrots(centerPosBunnyHead, Constants.CARROTS_SPAWN_MAX,
Constants.CARROTS_SPAWN_RADIUS);
}

This new method will handle the event when the player passes the goal-level object.
The goalReached flag is set to true, which will be used to avoid unnecessary
collision tests and start the countdown that will switch back to the menu screen.
The countdown starts at the value that is taken from the new constant TIME_DELAY_
GAME_FINISHED. Then, the spawnCarrots() method is called with the player's
current position, the number of carrots, and the spawn radius.

Advanced Programming Techniques

[352]

In this project, we check collision with the nearest object using
the basic rectangle overlapping algorithm; however, LibGDX
also provides a callback interface for detecting collisions. The
callback approach will be helpful in a game with many rigid
bodies at motion.
An excellent article on contact listeners can be found at
http://sysmagazine.com/posts/162079/.

Now, make the following changes to the WorldController class:

private void initLevel () {
score = 0;
scoreVisual = score;
goalReached = false;
level = new Level(Constants.LEVEL_01);
cameraHelper.setTarget(level.bunnyHead);
initPhysics();
}

private void testCollisions (float deltaTIme) {
r1.set(level.bunnyHead.position.x, level.bunnyHead.position.y,
level.bunnyHead.bounds.width, level.bunnyHead.bounds.height);

 // Test collision: Bunny Head <-> Rocks
 ...

 // Test collision: Bunny Head <-> Gold Coins
 ...

 // Test collision: Bunny Head <-> Feathers
 ...
 // Test collision: Bunny Head <-> Goal
if (!goalReached) {
r2.set(level.goal.bounds);
 r2.x += level.goal.position.x;
 r2.y += level.goal.position.y;
if (r1.overlaps(r2)) onCollisionBunnyWithGoal();
 }
}

public void update (float deltaTime) {
handleDebugInput(deltaTime);

http://sysmagazine.com/posts/162079/

Chapter 11

[353]

if (isGameOver() || goalReached) {
timeLeftGameOverDelay-= deltaTime;
if (timeLeftGameOverDelay< 0) backToMenu();
 } else {
handleInputGame(deltaTime);
 }
level.update(deltaTime);
testCollisions();
b2world.step(deltaTime, 8, 3);
cameraHelper.update(deltaTime);
 }

At the end of the initLevel() method, right after the level is loaded, we will
call the initPhysics() method. It is important to do it in this particular order
because initPhysics() works with the list of rocks of the loaded level. The
testCollisions() method is extended by another check that will call the
onCollisionBunnyWithGoal() method as soon as it detects a collision between the
player and the goal game objects.

In the update() method, we added the goalReached flag as an alternative condition
to the isGameover() condition. So, from now on, a delayed switchback to the menu
screen will be executed, if either condition is met.

Lastly, the Box2D world instance stored in b2world needs to be updated just like the
rest of the game to make any progress. This is done by calling its step() method and
passing in the delta time. The last two parameters denote the number of iterations
that Box2D is allowed to execute for its velocity and position calculations. Using
higher values for these parameters may increase the precision of the simulation as
well as the computational workload. However, Box2D is not going to always use up
the maximum number of iterations if it decides that the errors in the simulation are
small enough to go unnoticed.

Box2D suggests an iteration count of 8 for velocities and
3 for positions. See 2.4 Simulating the World (of Box2D) in
the official manual.

There are only two more, but not less important, changes to fully complete our new
game feature.

Advanced Programming Techniques

[354]

Make the following changes to the Rock class:

@Override
public void update (float deltaTime) {
super.update(deltaTime);

floatCycleTimeLeft -= deltaTime;
if (floatCycleTimeLeft<= 0) {
floatCycleTimeLeft = FLOAT_CYCLE_TIME;
floatingDownwards = !floatingDownwards;
body.setLinearVelocity(0, FLOAT_AMPLITUDE
 * (floatingDownwards ? -1 : 1));
 } else {
body.setLinearVelocity(body.getLinearVelocity().scl(0.98f));

 }
}

These changes represent an almost direct translation from our own physics
simulation to Box2D's one for the rocks' floating-on-water effect. It is crucial to
understand why we have to change this part or else you will probably spend a lot of
time hunting down nasty problems in conjunction with Box2D.

In our previous implementation, the rocks' movement was achieved by directly
modifying its position vector. Since the rocks are now controlled by Box2D, we
would have to change the position of the rock's body using the setTransform()
method instead. Usually, this is a really bad idea as it can confuse Box2D when a
manual change of a body position results in two or more overlapping shapes. These
overlapping shapes, then, can cause quite unpredictable effects such as extreme
accelerations or a disruption of resting objects. So, additional care needs to be taken
if the position and/or angle of the rotation of a body are set directly.

As you can see in the preceding changed code, we are actually not using
setTransform() but setLinearVelocity(). So, the general rule to avoid the
mentioned problems is to tell Box2D about the physical cause to get the desired
effect. This means that we have to express changes in the world through forces,
which in turn are translated into velocities.

After all this, the last modification is to free the allocated memory when appropriate.

Add the following import line to the WorldController class:

import com.badlogic.gdx.utils.Disposable;

Chapter 11

[355]

Next, let the same class implement the Disposable interface as follows:

public class WorldController extends InputAdapter
implements Disposable {
...
 }

Then, add the following lines of code to the same class:

@Override
public void dispose () {
if (b2world != null) b2world.dispose();
}

Finally, make the following changes to the GameScreen class:

@Override
public void hide () {
worldController.dispose();
worldRenderer.dispose();
Gdx.input.setCatchBackKey(false);
}

Memory that is allocated by a Box2D's world instance is now going to be freed
correctly when it is no longer needed.

Now, run the game and finish the level by passing the goal to marvel at the awesome
rain of carrots. A screenshot of what you should see is as follows:

Advanced Programming Techniques

[356]

The preceding screenshot shows the spawned carrots that have already come to rest
as well as the debug overlay drawn by the Box2D debug renderer. If you take a closer
look at the shape location of each carrot, you will probably come to the conclusion that
it must be misaligned, though the simulation appears to be perfectly fine.

Fortunately, there is no real issue at all because it is just an illusion due to the
transparent area and the green leaves of the carrot. An isolated view that only shows
a couple of carrots and two debug boxes is shown in the following screenshot:

The inner box is still drawn using the Box2D debug render. The outer box, however,
is the real border of the image used for the carrot game object. You can try this
yourself by enabling the debug outline for TexturePacker and rebuilding the texture
atlas afterwards.

Chapter 11

[357]

Working with shaders in LibGDX
Let's now turn our attention to the topic of shaders. This is a feature that is available
in OpenGL (ES) 2.0 and above as it makes use of the so-called Programmable
Pipeline. Shaders are usually small programs, which allow us to take over control of
certain stages in the rendering process to define the way a scene should be rendered
by the graphics processor. In consequence, shaders are an important building block
in today's computer graphics and are also an extremely powerful tool to create all
sorts of (special) effects that would be very hard to realize otherwise. For the sake of
simplicity, we will only discuss vertex and fragment shaders here.

Fragment shaders are also called pixel shaders. Unfortunately,
this is a bit misleading as this type of shader actually operates
on fragments instead of pixels.

Consider the following list of reasons as to why shaders are generally useful and
highly recommended to be in the toolkit of every (graphics) programmer:

• Programmability of the GPU rendering pipeline via shaders to create
arbitrary complex effects. This means a high degree of flexibility for all sorts
of special effects expressible through mathematical formulas.

• Shaders are run on the GPU, which saves the CPU time that can be spent
on other tasks, such as doing physics and general game logic.

• Heavy mathematical computations are usually done faster on GPUs than
on CPUs.

• GPUs are able to parallelize the processing of vertices and fragments.

Vertex shaders operate on each vertex given to the GPU. A vertex is a point in 3D
space with attributes, such as a position, a color, and texture coordinates. These
values can then be manipulated through the shader to achieve effects, for example,
the deformation of an object. The output for each vertex computed by the vertex
shader is then passed along in the rendering pipeline as the input for the next
rendering stage.

Fragment shaders compute the color of a pixel for each fragment. For this, many
factors may be taken into account to simulate different kinds of materials. Some of
them are values for lighting, translucency, shadows, and so on.

Advanced Programming Techniques

[358]

The combination of a vertex and a fragment shader is called a shader program. Shaders
are usually written in an API-specific, high-level language, such as OpenGL Shading
Language (GLSL) for OpenGL, which uses C-like code syntax. Take a look at the
last two pages of the OpenGL ES 2.0 Reference Card at http://www.khronos.org/
opengles/sdk/docs/reference_cards/OpenGL-ES-2_0-Reference-card.pdf.

This should give a quick overview of the available feature set in GLSL. For
more details about the specifications of OpenGL (ES) 2.0, GLSL, as well as the
Programmable Pipeline, check out the official website of the Khronos Group at
http://www.khronos.org/opengles/2_X/.

Also, the following list contains some links to the GLSL tutorials and websites with
collections of shader examples ranging from beginners to experts:

• https://github.com/mattdesl/lwjgl-basics/wiki/Shaders

• http://www.lighthouse3d.com/tutorials/glsl-tutorial/

• http://glslsandbox.com/

• https://www.shadertoy.com/

Creating a monochrome filter shader program
We now want to create a new pair of vertex and fragment shaders to form a shader
program. Its purpose will be to act as a color filter that renders everything it has
applied to in a beautiful grayscale.

Let's start with the vertex shader. Create a new subdirectory in CanyonBunny-
android/assets named shaders. Then, create a new file monochrome.vs in the
shaders directory, and add the following code:

attribute vec4 a_position;
attribute vec4 a_color;
attribute vec2 a_texCoord0;
varying vec4 v_color;
varying vec2 v_texCoords;
uniform mat4 u_projTrans;

void main() {
v_color = a_color;
v_texCoords = a_texCoord0;
gl_Position = u_projTrans * a_position;
}

http://www.khronos.org/opengles/sdk/docs/reference_cards/OpenGL-ES-2_0-Reference-card.pdf
http://www.khronos.org/opengles/sdk/docs/reference_cards/OpenGL-ES-2_0-Reference-card.pdf
http://www.khronos.org/opengles/2_X/
https://github.com/mattdesl/lwjgl-basics/wiki/Shaders
http://www.lighthouse3d.com/tutorials/glsl-tutorial/
http://glslsandbox.com/
https://www.shadertoy.com/

Chapter 11

[359]

The first six lines in the vertex shader declare the variables of different data types
using the so-called storage qualifiers in terms of GLSL. The data typesvec2 and
vec4 stand for the float vectors with two and four components, respectively, while
mat4 stands for a square matrix of order four of floats. The attribute qualifier is
only available in the vertex shader and denotes the inputs that are passed from the
vertex arrays sent by the application. As mentioned before, these inputs are the
position, color, and texture coordinates of one vertex at a time. The varying qualifier
denotes the variables that are readable and writeable in the context of the vertex
shader but read only to the fragment shader. Thus, the variables using this qualifier
allow the transfer of additional information from the vertex shader to the fragment
shader. Last but not least, the uniform qualifier denotes the variables that are known
to be constant during multiple executions of the shader in the same draw call. The
variable u_projTrans is automatically set to the combined projection-model view
matrix by the LibGDX's Spritebatch class.

The next step is the declaration of the main() function. It is the entry point of the
shader where the execution begins. In this vertex shader, we pass the input values
of the color and texture coordinates via varying variables to the fragment shader for
later use. The variable gl_Position is a predefined GLSL output variable (refer to
GLES2 Reference Card) that holds the projected position vector and is computed by
the multiplication of the combined projection-model view matrix (u_projTrans) and
the position vector (a_position) of the current vertex.

Next, create another new file monochrome.fs in the shaders directory and add the
following code:

#ifdef GL_ES
precision mediump float;
#endif
varying vec4 v_color;
varying vec2 v_texCoords;
uniform sampler2D u_texture;
uniform float u_amount;

void main() {
vec4 color = v_color * texture2D(u_texture, v_texCoords);
float grayscale = dot(color.rgb, vec3(0.222, 0.707, 0.071));
color.rgb = mix(color.rgb, vec3(grayscale), u_amount);
gl_FragColor = color;
}

Advanced Programming Techniques

[360]

In the first three lines, we use a GLSL macro to set precision of the float values to
medium for devices that use OpenGL ES. In the next lines, you may have already
recognized our two varying variables that we pass from within our vertex shader to
this one.

Be sure to always match the name and data type of each
varying variable passed from a vertex shader to the
corresponding fragment shader.

The data type sampler2D stands for a two-dimensional texture. The u_amount variable
is meant to be set by the application code to control the amount of grayscale that
should be applied. The first line inside the main() function of the fragment shader
computes a combined color value between the original vertex color and the color value
of the texture referenced in u_texture using the coordinates passed in v_texCoords.
Now, to find an appropriate grayscale value, we compute the dot product of our
color vector and another vector containing varying color weights that match best with
the sensitivity of a typical human eyesight as suggested in Chapter 22.3.1, Grayscale
Conversion of the book GPU Gems, Randima (Randy) Fernando, Addison Wesley.

This book is publicly available on NVDIA's developer zone at http://http.
developer.nvidia.com/GPUGems/gpugems_ch22.html.

Then, we use the mix() function, which applies a linear interpolation between the
original color vector and the grayscale vector using the u_amount variable. The
gl_FragColor variable is another predefined output variable of GLSL that
determines the final pixel color of the fragment that is currently being processed.

Using the monochrome filter shader program
in Canyon Bunny
Now that we have created our monochrome filter shader program, it is time to put
it to use in Canyon Bunny. We want to use the shader's effect in the game screen,
and apply it to the game world. This means that the GUI will remain colored like
before. In addition to this, the shader program can be switched on and off with a new
checkbox added to the debug section of the menu screen's Options dialog.

http://http.developer.nvidia.com/GPUGems/gpugems_ch22.html
http://http.developer.nvidia.com/GPUGems/gpugems_ch22.html

Chapter 11

[361]

First, add these new constants to the Constants class that point to the files of our
new shader program:

// Shader
public static final String shaderMonochromeVertex =
"shaders/monochrome.vs";
public static final String shaderMonochromeFragment =
"shaders/monochrome.fs";

After this, add the following line to the GamePreferences class:

public boolean useMonochromeShader;

Next, make the following changes to the same class:

public void load () {
showFpsCounter = prefs.getBoolean("showFpsCounter", false);
useMonochromeShader = prefs.getBoolean("useMonochromeShader",
 false);
}

public void save () {
prefs.putBoolean("showFpsCounter", showFpsCounter);
prefs.putBoolean("useMonochromeShader", useMonochromeShader);
prefs.flush();
}

Then, add the following line to the MenuScreen class:

private CheckBox chkUseMonoChromeShader;

After this, make the following changes to the same class:

private Table buildOptWinDebug () {
 Table tbl = new Table();
 // + Title: "Debug"

 // + Checkbox, "Show FPS Counter" label
 // + Checkbox, "Use Monochrome Shader" label
chkUseMonochromeShader = new CheckBox("", skinLibgdx);
tbl.add(new Label("Use Monochrome Shader", skinLibgdx));
tbl.add(chkUseMonochromeShader);
tbl.row();
return tbl;
}

private void loadSettings () {

Advanced Programming Techniques

[362]

chkShowFpsCounter.setChecked(prefs.showFpsCounter);
chkUseMonochromeShader.setChecked(prefs.useMonochromeShader);
}

private void saveSettings () {
prefs.showFpsCounter = chkShowFpsCounter.isChecked();
prefs.useMonochromeShader = chkUseMonochromeShader.isChecked();
prefs.save();
}

The last modifications to GamePreferences and MenuScreen just extended the
settings handling by a new Boolean flag, which can now be toggled via the new
checkbox added to the debug section of the Options dialog in the menu screen.

Next, add the following import lines to the WorldRenderer class:

import com.badlogic.gdx.graphics.glutils.ShaderProgram;
import com.badlogic.gdx.utils.GdxRuntimeException;

After this, add the following line to the same class:

private ShaderProgram shaderMonochrome;

Also make the following changes to the same class:

private void init () {
batch = new SpriteBatch();
camera = new OrthographicCamera(Constants.VIEWPORT_WIDTH,
Constants.VIEWPORT_HEIGHT);
camera.position.set(0, 0, 0);
camera.update();
cameraGUI = new OrthographicCamera(Constants.VIEWPORT_GUI_WIDTH,
Constants.VIEWPORT_GUI_HEIGHT);
cameraGUI.position.set(0, 0, 0);
cameraGUI.setToOrtho(true); // flip y-axis
cameraGUI.update();
 b2debugRenderer = new Box2DDebugRenderer();
shaderMonochrome = new ShaderProgram(
Gdx.files.internal(Constants.shaderMonochromeVertex),
Gdx.files.internal(Constants.shaderMonochromeFragment));
if (!shaderMonochrome.isCompiled()) {
 String msg = "Could not compile shader program: "
 + shaderMonochrome.getLog();
throw new GdxRuntimeException(msg);
 }
 }

Chapter 11

[363]

private void renderWorld (SpriteBatch batch) {
worldController.cameraHelper.applyTo(camera);
batch.setProjectionMatrix(camera.combined);
batch.begin();
if (GamePreferences.instance.useMonochromeShader) {
batch.setShader(shaderMonochrome);
shaderMonochrome.setUniformf("u_amount", 1.0f);
 }
worldController.level.render(batch);
batch.setShader(null);
batch.end();
if (DEBUG_DRAW_BOX2D_WORLD) {
b2debugRenderer.render(worldController.b2world,
camera.combined);
 }
 }

@Override
public void dispose () {
batch.dispose();
shaderMonochrome.dispose();
}

To load and initialize our shader program in the init() method, we pass both the
shader files to the constructor of a new instance of ShaderProgram, which are then
stored in the shaderMonochrome variable for later reference. It is good practice to ask
whether a new shader program instance could be successfully compiled by calling its
isCompiled() method. If this is not the case, the corresponding log message of the
compile error can be retrieved by calling the getLog() method.

In the renderWorld() method, we wrapped the call that renders the actual game
world with two setShader() calls. The first call activates our monochrome
filter shader program while the next call passes null for the shader, which makes
SpriteBatch switch back to LibGDX's default shader. Calling the setUniformf()
method of an instance of a shader program allows us to set a float value for a
uniform variable by a name. There are many more of these setter methods for
different combinations of storage qualifiers and data types. We set the value of the
uniform float variable named u_amount to the value 1.0f. According to our code in
the fragment shader, the linear interpolation will apply the grayscale effect in full to
its target pixels.

Finally, we take care that the shader program's dispose() method is called to free
any allocated memory when it is no longer needed.

Advanced Programming Techniques

[364]

Now, run the game, go to the Options dialog, and tick the checkbox to activate the
monochrome filter shader program. The game screen should show up in a beautiful
grayscale tone as soon as the game is started. A screenshot of the game with the
enabled monochrome filter shader program is as follows:

The blue background color, which is actually created using OpenGL's
clear color, is not affected by our shader program. The reason behind
this is that the shader's effect is only applied during the rendering
of the game world where it is temporarily set in the sprite batch.
Moreover, the game world is rendered on top of the (blue) clear color,
which back then appeared to be a good idea just because it was an easy
and cheap way of making the clear color a part of the scene and get a
sky for free.

Adding alternative input controls
The last and rather short topic in this chapter will show you how to use the
peripheral devices using the example of accelerometers, which are very common
types of sensors in today's smartphones and tablets. Accelerometers are subsystems
that reliably and accurately detect and measure acceleration, tilt, shock, and
vibration. Basically, we just need to read the sensor data that is being measured by
the accelerometer hardware and later translate the data into values and/or ranges
suitable for our game.

Chapter 11

[365]

Accelerometers in Android and iOS devices are exposed by LibGDX using the three
axes x, y, and z, which can be queried via the Gdx.input module. For instance, the
current acceleration value for the x axis can be easily retrieved as follows:

float ax = Gdx.input.getAccelerometerX();

This is great, but what does the value that we just stored in ax actually mean?
Moreover, what will influence it? So, to better understand how sensors work, we
need to know what exactly is measured.

Let's start with the range of values. In the documentations of Android and LibGDX,
the values for accelerometers are said to range between -10.0f and 10.0f. This
roughly resembles a value of what we know as the constant for gravity on earth,
approximately 9.81 meters per square second. However, what we still do not know
about is the internal orientation of the sensor hardware inside a device. This poses
a problem to us because we cannot tell which axis is which. Luckily, LibGDX
comes to the aid and is able to make an educated guess that is also reliable. There
is a blog post by Mario Zechner that describes the issue about the different so-
called native orientations in more detail at http://www.badlogicgames.com/
wordpress/?p=2041.

All we have to remember is that LibGDX will make sure that the y axis always
coincides with the bigger side while the x axis coincides with the smaller one. The z
axis comes out of the screen.

An image taken from Android's SDK developer website that nicely illustrates the
sensor coordinate system is as follows:

y

x
z

http://www.badlogicgames.com/wordpress/?p=2041
http://www.badlogicgames.com/wordpress/?p=2041

Advanced Programming Techniques

[366]

We will now move on to Canyon Bunny and implement alternative input controls
using the accelerometer. The screen needs to be rotated by 90 degrees to the left in
order to be able to play Canyon Bunny on a smartphone, since it is using the so-
called landscape mode for display. It is important to understand that the orientation
of the sensors will always remain the same no matter how the smartphone is moved
and rotated around.

The new controls will allow you to tilt the screen to the left and right sides to
move into the very same direction. The tilt angle for the y axis will determine the
maximum velocity of the player character.

Add the following new constants to the Constants class:

// Angle of rotation for dead zone (no movement)
public static final float ACCEL_ANGLE_DEAD_ZONE = 5.0f;

// Max angle of rotation needed to gain max movement velocity
public static final float ACCEL_MAX_ANGLE_MAX_MOVEMENT = 20.0f;

Then, add the line of code to the WorldController class:

import com.badlogic.gdx.Input.Peripheral;

Next, add the following line to the WorldController class:

private boolean accelerometerAvailable;

After this, make the following changes to the same class:

private void init () {
accelerometerAvailable = Gdx.input.isPeripheralAvailable(
Peripheral.Accelerometer);
cameraHelper = new CameraHelper();
lives = Constants.LIVES_START;
livesVisual = lives;
timeLeftGameOverDelay = 0;
initLevel();
}

private void handleInputGame (float deltaTime) {
if (cameraHelper.hasTarget(level.bunnyHead)) {
 // Player Movement
if (Gdx.input.isKeyPressed(Keys.LEFT)) {
 ...
 } else {
 // Use accelerometer for movement if available

Chapter 11

[367]

if (accelerometerAvailable) {
 // normalize accelerometer values from [-10, 10] to [-1, 1]
 // which translate to rotations of [-90, 90] degrees
float amount = Gdx.input.getAccelerometerY() / 10.0f;
amount *= 90.0f;
 // is angle of rotation inside dead zone?
if (Math.abs(amount) <Constants.ACCEL_ANGLE_DEAD_ZONE) {
amount = 0;
 } else {
 // use the defined max angle of rotation instead of
 // the full 90 degrees for maximum velocity
amount /= Constants.ACCEL_MAX_ANGLE_MAX_MOVEMENT;
 }
level.bunnyHead.velocity.x =
level.bunnyHead.terminalVelocity.x * amount;
 }
 // Execute auto-forward movement on non-desktop platform
else if (Gdx.app.getType() != ApplicationType.Desktop) {
level.bunnyHead.velocity.x =
level.bunnyHead.terminalVelocity.x;
 }
 }
 }
 }

The new variable accelerometerAvailable is set once in the init() method, which
in turn is used to select the input mode in handleInputGame(). If an accelerometer
hardware is detected, the alternative input controls for player movement will be
used. In this case, however, we first normalize the accelerometer values to make
them stay in a range between -1.0f and 1.0f, which can now also be interpreted by
us as the percentage of desired movement in relation to the amount of tilt. The sign
of the percentage also nicely describes the direction of the horizontal movement. A
negative sign means movement to the left, whereas a positive sign means movement
to the opposite direction. The percentage currently maps a movement of 100 percent
in one direction to 90 degrees of tilting the screen in the same direction. It is very
inconvenient to have to turn the device over the full range of 180 degrees, which also
prevents fast player reactions.

Advanced Programming Techniques

[368]

This is why we introduced a new constant named ACCEL_MAX_ANGLE_MAX_MOVEMENT
that allows you to define the maximum tilt angle that is needed to reach maximum
velocity. The other new constant ACCEL_ANGLE_DEAD_ZONE is used to define a dead
zone (here 5.0 degrees) in the positive and negative directions where no movement
will occur. So, the dead zone makes it easier for the player to find a neutral position
to let the bunny head stand still. Finally, we end up with a percentage of the desired
movement stored in an amount that is simply multiplied with the terminal velocity
to calculate the correct velocity value.

Summary
In this chapter, we covered the basics of the Box2D rigid body physics engine, and
thereafter applied the newly gained knowledge, including all the individual parts
(rigid body, body type, shape, fixture, and world) by creating a believable physics
simulation of raining carrots. Also, two new game objects were added, which
represented the carrot for physics simulations and a huge golden carrot statue
symbolizing a level's goal or exit.

Then, we went down the graphics pipeline, more precisely the Programmable
Pipeline of OpenGL (ES) 2.0 to explore the use of shaders. We created our own
shader program to apply a monochrome filter effect of arbitrary intensity through
a uniform variable that can be passed to the shader program at runtime in the
application code. You learned about GLSL and created a simple pair of vertex and
fragment shaders that are used in Canyon Bunny.

Finally, you learned how to use and work with peripheral devices using the example
of an accelerometer. You also learned how to transform the data provided by a
sensor into more suitable values. These values were then used as input to create
an alternative way to control the player's movement just by tilting the screen to the
left or to the right.

In the subsequent chapters, we will add animations to the game.

Animations
In this chapter, you will learn how to create and manage different kinds of
animations using LibGDX's Actions and Animation classes. We will exemplify their
usage by animating certain parts of the menu and game screen.

With regards to the menu screen, we will create time-based and event-based
animations, including moving, scaling, and fading Actor objects via the so-called
actions of the Actions class. Additionally, interpolation algorithms provided by
LibGDX's Interpolation class will be used for added effects and for the smoothing
of these animations.

The game screen, in a sense, is already animated according to the game logic, which
takes care of coordinating the movement of every game object. However, each game
object is rendered using a still image. In terms of animations, this is equivalent to a
one-frame animation. With the help of the Animation class, we will define several
sequences of individual frames to form animations for our game objects.

Manipulating actors through actions
The Actions class offers a large collection of common actions to easily manipulate
the Actor objects. Besides action-specific parameters such as the position for a
move action, some actions also allow you to specify the duration as well as the
interpolation algorithm to be used. An action will always complete in an instant if
the duration is either omitted or set to 0. Interpolation algorithms are provided by
LibGDX's Interpolation class.

For a quick overview of the available interpolation algorithms in
LibGDX, check out Chapter 9, Screen Transitions.

Animations

[370]

The following example illustrates the typical method signatures of two actions:

moveTo (x, y);
moveTo (x, y, duration);
moveTo (x, y, duration, interpolation);

rotateTo (rotation);
rotateTo (rotation, duration);
rotateTo (rotation, duration, interpolation);

Both the moveTo() and rotateTo() actions have their action-specific parameters x,
y, and rotation, respectively, which is the absolute minimum requirement. In this
case, both actions can also take an optional duration and interpolation parameter
if needed.

The methods of the Actions class are intended for static import. There
are mainly two reasons for this: convenience and increased readability
when chaining together multiple actions. The preceding example code
and each following code using the Actions class will assume the use of
static imports.
In Java, a static import can be used to make static methods of one class
available in the namespace of another class, thus removing the need to
use the class qualification in order to call such methods.
For more information about static imports, check out http://docs.
oracle.com/javase/1.5.0/docs/guide/language/static-
import.html.

Now, to add one or more actions to an actor, we simply need to call its addAction()
method as follows:

Actor actor = new Actor();
float x = 100.0f, y = 100.0f, rotation = 0.0f, duration = 1.0f;
actor.addAction(sequence(
moveTo(x, y),
rotateTo(rotation),
delay(duration),
parallel(
moveBy(50.0f, 0.0f, 5.0f),
rotateBy(90.0f, 5.0f, Interpolation.swingOut))));

http://docs.oracle.com/javase/1.5.0/docs/guide/language/static-import.html
http://docs.oracle.com/javase/1.5.0/docs/guide/language/static-import.html
http://docs.oracle.com/javase/1.5.0/docs/guide/language/static-import.html

Chapter 12

[371]

This example code shows a fictional actor that is completely initialized and
manipulated via a chain of nested actions only. In this case, the added chain of
actions starts as a sequence of more actions. This being said, the sequence comprises
an absolute move action using moveTo() to a given point (100, 100), followed
by an absolute rotation using rotateTo() (0 degrees), followed by a short delay
of 1 second, and finally followed by a parallel action that contains a list of even
more actions. These parallel actions are a relative move using moveBy() (50, 0)
and a relative rotation using rotateBy() (90 degrees). Additionally, both actions
use a duration of 5 seconds. Moreover, the relative rotation uses the swingOut
interpolation algorithm.

So, the combined use of the Actor and Actions classes provides a very powerful
way for us to express quite complex actor behaviors with relatively little code.

The next sections contain two lists with descriptions of the actions that are
currently available.

Actions for manipulating actors
The following list describes actions that are useful to manipulate actors:

• add(): This adds an action to an actor
• alpha(): This sets the alpha value of an actor's color
• color(): This sets the color of an actor
• fadeIn() and fadeOut(): These are convenience actions to set the alpha

value of an actor's color to 1 or 0, respectively
• hide(): This sets the visibility of an actor to false
• layout(): This sets the actor's layout to enabled or disabled
• moveBy() and moveTo(): These move an actor by a relative amount or to a

specific location
• removeActor(): This removes the actor to which this action is attached;

alternatively, another actor that is to be removed can be specified
• rotateBy() and rotateTo(): These rotate an actor by a relative amount or

to a specific angle of rotation
• run(): This runs a Runnable (the code will be executed in a separate thread)
• scaleBy() and scaleTo(): These scale an actor by a relative amount or to a

specific scale

Animations

[372]

• show(): This sets the visibility of an actor to true
• sizeBy() and sizeTo(): These resize an actor by a relative amount or to

a specific size
• touchable(): This sets the touchability of an actor (refer to the

touchable enumerator)
• visible(): This sets the visibility of an actor

Controlling the order and time of execution
The following list describes actions that are useful for controlling the order and time
of execution of other actions:

• after(): This waits for other actions of an actor to finish before its action
is executed (note that this action will only wait for other actions that were
already added to an actor prior to this)

• delay(): This delays the execution of an action
• forever(): This repeats an action forever
• parallel(): This executes a list of actions at the same time
• repeat(): This repeats an action for a given number of times
• sequence(): This executes a list of actions one after another

Animating the menu screen
Let's now discuss what we are actually going to animate in the menu screen.
Basically, the first two bits of our animated menu involve the gold coins and the
large bunny head.

Chapter 12

[373]

Take a look at the following screenshot:

In this screenshot, you can see a rough sketch of the final animation divided into four
essential steps. The following actions need to be taken for the shown steps:

1. The gold coins and bunny head are invisible at the beginning.
2. The gold coins fade in and scale up from 0 percent to 100 percent from the

center screen as if they were jumping out of the water.
3. After a short pause, the bunny head appears in the top-right corner, which

moves slightly until it reaches the edge of the rock that is visible in the
background.

4. The bunny head moves as if it was jumping over to the other rock in front
of it.

Animations

[374]

Animating the gold coins and bunny head
actors
Add the following (static) import lines to the MenuScreen class:

import static com.badlogic.gdx.scenes.scene2d.actions.Actions.*;

import com.badlogic.gdx.math.Interpolation;

After this, make the following changes to the same class:

private Table buildObjectsLayer () {
 Table layer = new Table();
 // + Coins
 imgCoins = new Image(skinCanyonBunny, "coins");
 layer.addActor(imgCoins);
 imgCoins.setOrigin(imgCoins.getWidth() / 2,
 imgCoins.getHeight() / 2);
 imgCoins.addAction(sequence(
 moveTo(135, -20),
 scaleTo(0, 0),
 fadeOut(0),
 delay(2.5f),
 parallel(moveBy(0, 100, 0.5f, Interpolation.swingOut),
scaleTo(1.0f, 1.0f, 0.25f, Interpolation.linear),
alpha(1.0f, 0.5f))));
 // + Bunny
 imgBunny = new Image(skinCanyonBunny, "bunny");
 layer.addActor(imgBunny);
 imgBunny.addAction(sequence(
moveTo(655, 510),
delay(4.0f),
moveBy(-70, -100, 0.5f, Interpolation.fade),
moveBy(-100, -50, 0.5f, Interpolation.fade),
moveBy(-150, -300, 1.0f, Interpolation.elasticIn)));
 return layer;
}

Chapter 12

[375]

All of the four steps are now expressed as actions in the code of the
buildObjectLayer() method. This code replaces the setPosition() for the
corresponding images. The origin of the gold coins' image that is stored in imgCoins
needs to be adjusted so that it now points to its center. In this way, the image does
not only grow or shrink when scaled but it will never move away from its original
position. The first action of imgCoins is sequence() that merely groups all other
actions. Then, the animation is initialized through the first three actions: moveTo(),
scaleTo(), and fadeOut(). Next, a delay() action follows that creates a short delay
of 2.5 seconds before the parallel action is executed.

The parallel action contains three more actions, moveBy(), scaleTo(), and alpha(),
which are all executed at the same time. These three actions, when played together,
create the impression that the gold coins appear to jump out of the water by moving
them a bit downwards as well as fading them in and scaling them up from 0 percent
to 100 percent. Interpolations are also used to support this effect. Choosing the right
interpolation algorithm is usually a little trial-and-error at first, but after a while you
will have a better understanding and feel for which one could work best for certain
kinds of effects.

The animation for the bunny head is not that much different to the gold coins. It
starts with a grouping sequence() that comprises an initializing moveTo() action
followed by a delay() of 4 seconds. Then, three subsequent moveBy() actions are
executed that describe the complete movement we discussed earlier.

Animating the menu buttons and options
window
Now, for a final touch to the menu screen, let's animate the menu buttons in the
bottom-right corner of the scene as well as the Options window that appears when
the Options button is clicked. We want to let both buttons move out of the scene
when the Options button is clicked on and let them move back into the scene after
the Options window is closed again.

Add the following import lines to the MenuScreen class:

import com.badlogic.gdx.scenes.scene2d.actions.SequenceAction;
import com.badlogic.gdx.scenes.scene2d.Touchable;

Animations

[376]

Next, add the following lines of code to the same class:

private void showMenuButtons (boolean visible) {
 float moveDuration = 1.0f;
 Interpolation moveEasing = Interpolation.swing;
 float delayOptionsButton = 0.25f;

 float moveX = 300 * (visible ? -1 : 1);
 float moveY = 0 * (visible ? -1 : 1);
 final Touchable touchEnabled = visible ? Touchable.enabled
 : Touchable.disabled;
 btnMenuPlay.addAction(
moveBy(moveX, moveY, moveDuration, moveEasing));

 btnMenuOptions.addAction(sequence(
delay(delayOptionsButton),
moveBy(moveX, moveY, moveDuration, moveEasing)));

 SequenceAction seq = sequence();
 if (visible)
 seq.addAction(delay(delayOptionsButton + moveDuration));
 seq.addAction(run(new Runnable() {
 public void run () {
 btnMenuPlay.setTouchable(touchEnabled);
 btnMenuOptions.setTouchable(touchEnabled);
 }
 }));
 stage.addAction(seq);
}

private void showOptionsWindow (boolean visible,
boolean animated) {
 float alphaTo = visible ? 0.8f : 0.0f;
 float duration = animated ? 1.0f : 0.0f;
 Touchable touchEnabled = visible ? Touchable.enabled
 : Touchable.disabled;
 winOptions.addAction(sequence(
touchable(touchEnabled),
alpha(alphaTo, duration)));
}

The two new methods, showMenuButtons() and showOptionsWindow(), will allow
us to easily show or hide the menu buttons and the Options window in an animated
fashion. Any logic involved in the showing and hiding animation is encapsulated in
these methods, which make it much more convenient to use.

Chapter 12

[377]

The showMenuButtons() method has one parameter (visible) to control whether
to show or hide the menu buttons. At the beginning of this method, we not only set
many variables that are used to control the overall behavior of the animation, such
as duration and easing, but also set some other variables whose values obviously
depend on the visible flag. After the position, duration, and easing have been
computed, we head over and add a couple of actions to both the menu buttons. The
Play button is going to be directly moved to a relative position while the Options
button does exactly the same but with an added delay prior to its move action. We
will now discuss a pretty exciting example of how flexible actions are. We create a
new and empty sequence and store it in seq. What follows is a conditional delay()
action, so to say, which is only going to be added to the new sequence if the visible
flag is set to true.

This means you can create and script actor behaviors in code while also being able
to dynamically adjust and put them together as needed at a later time as we just
did! Albeit, as a result of the prior condition, we always add a run() action to the
sequence. The run() action takes a Runnable that is used in Java to put the code that
is going to be executed in a separate thread. We use this and the conditional delay()
action to call setTouchable() on the Play and Options buttons, which control
whether the buttons receive and respond to touches and mouse clicks. Finally, the
sequence() action stored in seq is added as a new action to the stage.

In this case, we can safely do this to enqueue the sequence() action
for execution because the sequence does not modify the stage with the
delay() and run() actions.

The showOptionsWindow() method animates the options menu in the same way as
described for the menu buttons in showMenuButtons(). The only difference here is
that it takes a second flag that can be used to skip the animation.

Now, make the following changes to the MenuScreen class:

private Table buildOptionsWindowLayer () {
 ...
 // Make options window slightly transparent
 winOptions.setColor(1, 1, 1, 0.8f);
 // Hide options window by default
 showOptionsWindow(false, false);
 if (debugEnabled) winOptions.debug();
 // Let TableLayout recalculate widget sizes and positions
 winOptions.pack();
 // Move options window to bottom right corner

Animations

[378]

 winOptions.setPosition(Constants.VIEWPORT_GUI_WIDTH
- winOptions.getWidth() - 50, 50);
 return winOptions;
}

private void onOptionsClicked () {
 loadSettings();
 showMenuButtons(false);
 showOptionsWindow(true, true);
}

private void onCancelClicked () {
 showMenuButtons(true);
 showOptionsWindow(false, true);
 AudioManager.instance.onSettingsUpdated();
}

These changes simply put our animation methods in place where needed. The
buildOptionsWindowLayer() method calls showOptionsWindow() with both
parameters for visible and animated set to false. The reason for this is that we want
the Options window to be hidden at the start like before and we also want this to
happen in an instant. The onOptionsClicked() and onCancelClicked() methods
call both show methods to either show or hide the menu buttons or the Options
window, respectively.

Using sequences of images for
animations
Up until now, all the animations we have created are based on changing attributes,
such as the position, color value, and size, of still images. Therefore, our next
enhancement is targeted toward the game objects that inhabit the game world of
Canyon Bunny. We want to breathe life into the gold coin and bunny head game
objects by creating several animations that are built from sequences of individual
images. The resulting effect is very similar in comparison to an ordinary flip book
where multiple images are perceived as a continuous animation when shown in
rapid succession.

Chapter 12

[379]

LibGDX provides a class called Animation that helps us define image sequences
and also helps us to pick the right (key) frame from a sequence at a specific time
which, for example, depends on the desired frame rate for playback. There is some
clever mathematics and state-keeping involved for finding the right frame in an
efficient way. Luckily, the Animation class saves us from having to go down that
mathematical road and lets us just do animations the easy way with a variety of
extra playback options.

Packing animations using TexturePacker
Before we look any further into the Animation class, let's first cover a great feature
of LibGDX's TexturePacker that should be used when working with animations.
Whenever TexturePacker builds a new texture atlas, it always scans the end of each
image filename for an underscore followed by a number like waterfall_03.png. In
this case, the number 03 is considered as the frame index of this animation, while the
animation itself will be named and referred to as waterfall in the texture atlas.

Let's imagine that we have a five-frame animation called waterfall. So, according
to the mentioned pattern for allowing animation frames to be recognized by
TexturePacker, we would name our image files as follows:

• waterfall_01.png

• waterfall_02.png

• waterfall_03.png

• waterfall_04.png

• waterfall_05.png

The following short code example further illustrates the line of action to
build animations:

TextureAtlas atlas = assetManager.get("atlas.pack");
AtlasRegion firstFrame = atlas.findRegion("waterfall");
AtlasRegion thirdFrame = atlas.findRegion("waterfall", 3);
Array<AtlasRegion> allFrames = atlas.findRegions("waterfall");

Animations

[380]

Let's assume that the waterfall animation is now available in the texture atlas
(atlas.pack). To retrieve any given image from a texture atlas, we already know
that we can simply call the findRegion() method and pass in the original filename
without its extension to reference it. The preceding code example shows that you
can also do this with an animation to get the first frame, or you can pass a second
argument to specify a concrete frame index like index number 3 to get the third frame.
The next line uses the findRegions() method instead of findRegion(). Notice the
plural s in the method's name. This method returns a whole array of frames associated
with the supplied name which is stored in the allFrames variable for now.

The following lines of code show how new animations are built using the
Animation class:

float fps = 1.0f / 15.0f; // Time between frames in seconds
Animation aniFirst, aniFirstThird, aniAll, aniAllPingpong;
aniFirst = new Animation(fps, firstFrame);
aniFirstThird = new Animation(fps, firstFrame, thirdFrame);
aniAll = new Animation(fps, allFrames);
aniAllPingPong = new Animation(fps, allFrames,
Animation.PlayMode.LOOP_PINGPONG);

The constructor of the class takes the time given in seconds that describes the time
stepping or delay between the current and the next frame that is to be displayed. In
this example, we use a frame rate of 15 frames per second. As the example code shows
us further, we can pass in either an arbitrary number of AtlasRegion objects (our
individual frames) or an array of those objects to define what frames should be used
and in what particular order. Another feature of the Animation class is its play mode.

Choosing between animation play modes
There are six distinct play modes we can choose from. They are as follows:

• NORMAL: This plays the animation once (first frame to last)
• REVERSED: This plays the animation once (last frame to first)
• LOOP: This plays the animation in a loop (first frame to last)
• LOOP_REVERSED: This plays the animation in a loop (last frame to first)
• LOOP_PINGPONG: This plays the animation in a loop (first frame, to last,

to first)
• LOOP_RANDOM: This plays the animation in a loop (random frames)

The NORMAL play mode is used as default if it is not explicitly set in the code.

Chapter 12

[381]

Finally, the animations are now ready to be used and queried for their frames that
should be currently displayed according to calculations. These calculations require
one input value, which is the so-called state time, as shown in the following code.
The state time is the elapsed time of an animation given in seconds. Usually, game
objects keep track of their animation time, as we will see shortly:

TextureRegion region = aniAll.getKeyFrame(stateTime);

Assuming that the stateTime in the preceding code line yields a value of 0 seconds,
the region variable will contain the first frame defined in the aniAll animation.

Animating the game screen
We are now going to animate the gold coin and bunny head game objects. However,
before we can start building new animations, some preparations need to take place
first, such as adding the actual image files to the project and rebuilding the texture
atlas afterwards.

Copy the following files to CanyonBunny-desktop/assets-raw/images/:

• anim_bunny_normal_XX.png (where XX is 01, 02, and 03)
• anim_bunny_copter_XX.png (where XX is 01, 02, 03, 04, and 05)
• anim_gold_coin_XX.png (where XX is 01, 02, 03, 04, 05, and 06)

Now, set the rebuildAtlas variable to true and run the Canyon Bunny desktop
application once to let the texture atlas be rebuilt with the newly added images for
our animations.

Defining and preparing new animations
The following screenshot depicts all the frames, including their indices of the
gold coin animation:

Animations

[382]

The shown frames are meant to be played back in a ping-pong loop (play mode:
LOOP_PINGPONG) for the final animation. We will later refer to it as animGoldCoin in
the code. The frame progression is as follows: 01, 02, 03, 04, 05, 06, 06, 05, 04, 03, 02,
01 [restart at the first frame].

The following screenshot depicts all the frames, including their indices of the bunny
normal animation:

The shown frames are meant to be played back in a ping-pong loop (play mode: LOOP_
PINGPONG) for the final animation and replace the current still image of the bunny head
game object. We will later refer to this animation as animNormal in the code. The frame
progression is as follows: 01, 02, 03, 03, 02, 01 [restart at the first frame].

The following screenshot depicts all the frames, including their indices of the bunny
copter animation:

The shown frames are meant to be played back as three different animations:

• The first animation, animCopterTransform, plays all frames once (play
mode: NORMAL and frame progression: 01, 02, 03, 04, 05)

• The second animation, animCopterRotate, plays the last two frames in a
ping-pong loop (play mode: LOOP_PINGPONG and frame progression: 04, 05,
05, 04 [restart at the first frame])

• Lastly, the third animation, animCopterTransformBack, is simply the
reverse of the first animation (play mode: REVERSED and frame progression:
05, 04, 03, 02, 01)

Chapter 12

[383]

Now, let's put all these animations in our Assets class for later use. Add the
following import lines to the Assets class:

import com.badlogic.gdx.graphics.g2d.Animation;
import com.badlogic.gdx.utils.Array;

Then, make the following changes to the same class:

public class AssetGoldCoin {
 public final AtlasRegion goldCoin;
 public final Animation animGoldCoin;

 public AssetGoldCoin (TextureAtlas atlas) {
 goldCoin = atlas.findRegion("item_gold_coin");

 // Animation: Gold Coin
 Array<AtlasRegion> regions =
 atlas.findRegions("anim_gold_coin");
 AtlasRegion region = regions.first();
 for (int i = 0; i < 10; i++)
 regions.insert(0, region);
 animGoldCoin = new Animation(1.0f / 20.0f, regions,
Animation.PlayMode.LOOP_PINGPONG);
 }
}

public class AssetBunny {
 public final AtlasRegion head;
 public final Animation animNormal;
 public final Animation animCopterTransform;
 public final Animation animCopterTransformBack;
 public final Animation animCopterRotate;

 public AssetBunny (TextureAtlas atlas) {
 head = atlas.findRegion("bunny_head");

 Array<AtlasRegion> regions = null;
 AtlasRegion region = null;

 // Animation: Bunny Normal
 regions = atlas.findRegions("anim_bunny_normal");
 animNormal = new Animation(1.0f / 10.0f, regions,
Animation.PlayMode.LOOP_PINGPONG);

 // Animation: Bunny Copter - knot ears

Animations

[384]

 regions = atlas.findRegions("anim_bunny_copter");
 animCopterTransform = new Animation(1.0f / 10.0f, regions);

 // Animation: Bunny Copter - unknot ears
 regions = atlas.findRegions("anim_bunny_copter");
 animCopterTransformBack = new Animation(1.0f / 10.0f, regions,
Animation.PlayMode.REVERSED);

 // Animation: Bunny Copter - rotate ears
 regions = new Array<AtlasRegion>();
 regions.add(atlas.findRegion("anim_bunny_copter", 4));
 regions.add(atlas.findRegion("anim_bunny_copter", 5));
 animCopterRotate = new Animation(1.0f / 15.0f, regions);
 }
}

With regards to the code for the gold coin animation, you may have stumbled
upon why we are inserting 10 additional copies of the animation's first frame at
the beginning. Well, actually we are cheating here a little bit to achieve an artificial
pause of the continuously looped animation that will now display the first frame for
a much longer period of time in comparison to the other ones. Unfortunately, there
is currently no way to define a per-frame duration and so we need to use a trick to
create a short pause after a full animation cycle that basically avoids too flashy gold
coins in our special case.

Animating the gold coin game object
Now, add the following import line to the AbstractGameObject class:

import com.badlogic.gdx.graphics.g2d.Animation;

Then, add the following lines of code to the same class:

public float stateTime;
public Animation animation;

public void setAnimation (Animation animation) {
 this.animation = animation;
 stateTime = 0;
}

Chapter 12

[385]

After this, make the following changes to the same class:

public void update (float deltaTime) {
 stateTime += deltaTime;
 if (body == null) {
 updateMotionX(deltaTime);
 updateMotionY(deltaTime);

 // Move to new position
 position.x += velocity.x * deltaTime;
 position.y += velocity.y * deltaTime;
 } else {
 position.set(body.getPosition());
 rotation = body.getAngle() * MathUtils.radiansToDegrees;
 }
}

With these additions, we introduce two new common attributes that are shared with
every game object in Canyon Bunny, the state time (stateTime) and the currently set
animation (animation), which are going to be used for rendering the game object.
We also added a convenience method called setAnimation() that allows you to
change the current animation as well as reset the state time to 0. This is desirable
because in almost every case, we do not want to start somewhere in the middle of
a new animation but instead we want to start right from the beginning at the first
frame. The change in the update() method simply makes sure that the state time is
increased, which allows the animation to run.

Now, add the following import line to the GoldCoin class:

import com.badlogic.gdx.math.MathUtils;

After this, make the following changes to the same class:

private void init () {
 dimension.set(0.5f, 0.5f);

 setAnimation(Assets.instance.goldCoin.animGoldCoin);
 stateTime = MathUtils.random(0.0f, 1.0f);

 // Set bounding box for collision detection
 bounds.set(0, 0, dimension.x, dimension.y);

 collected = false;

Animations

[386]

}

public void render (SpriteBatch batch) {
 if (collected) return;

 TextureRegion reg = null;
 reg = animation.getKeyFrame(stateTime, true);
 batch.draw(reg.getTexture(),
position.x, position.y,
origin.x, origin.y,
dimension.x, dimension.y,
scale.x, scale.y,
rotation,
reg.getRegionX(), reg.getRegionY(),
reg.getRegionWidth(), reg.getRegionHeight(),
false, false);
}

In the init() method, we use the inherited setAnimation() method of
AbstractGameObject to set the animGoldCoin animation. Also, the state time is
initialized with a random value in the range from 0.0f to 1.0f. This is really a
special use case here where we want each gold coin to use a different starting frame
so that they look much more natural instead of being perfectly synchronized.

The following screenshot is of some gold coins that were initialized using the
random state time:

Chapter 12

[387]

You can recognize the different state times by looking closely at the top-left
corner of each gold coin where the little highlight either appears or disappears
during the animation.

Animating the bunny head game object
Animating the bunny head is going to take a little more effort as we want to trigger
all three of the available animations at certain events. The basic idea of having three
animations is to have one standard animation (animNormal) that appears when
nothing special is going on. Currently, when a feather power-up is picked up, the
bunny head is tinted in an orange color to signalize that it is in the state of being able
to fly at that very moment. Now, this is where the other three animations come into
play. The first animation (animCopterTransform) shows a transformation from a
normal bunny to a helicopter bunny by knotting its ears into something rotor-like.
The second animation (animCopterRotate) will replace the original color-tinting
effect by constantly rotating the knotted rotor ears of the bunny. Finally, there will be
a reversed transformation animation (animCopterTransformBack) that unknots the
bunny's ears again.

Animations

[388]

Take a look at the following diagram:

false

false

false

false

false

false false

false

true

true

true

true

true true

true

true

has feather power-up?

is current animation
“copter rotate?

START

change animation to
“copter transform”

is current animation
“normal”?

change animation to
“copter transform”

change animation to
“copter transform”

animation finished?

change animation to
“copter transform”

change animation to
“copter transform”

END

change animation to
“copter transform”

change animation to
“copter transform”

change animation to
“copter transform”

This diagram shows a state machine that we will need to implement to correctly
change the states and animations of the bunny head game object. It begins with an
overall check whether the feather power-up has been picked up (and is still active).
Then, subsequent checks will try to find out what the current animation state is to
take the correct actions accordingly.

To find out more about (finite) state machines like the one we used
in the preceding diagram, check out the wiki article at http://
en.wikipedia.org/wiki/Finite_state_machine.

http://en.wikipedia.org/wiki/Finite_state_machine
http://en.wikipedia.org/wiki/Finite_state_machine

Chapter 12

[389]

Now, add the following import line to the BunnyHead class:

import com.badlogic.gdx.graphics.g2d.Animation;

Then, add the following lines of code to the same class:

private Animation animNormal;
private Animation animCopterTransform;
private Animation animCopterTransformBack;
private Animation animCopterRotate;

After this, make the following changes to the same class:

public void init () {
 dimension.set(1, 1);

 animNormal = Assets.instance.bunny.animNormal;
 animCopterTransform = Assets.instance.bunny.animCopterTransform;
 animCopterTransformBack =
Assets.instance.bunny.animCopterTransformBack;
 animCopterRotate = Assets.instance.bunny.animCopterRotate;
 setAnimation(animNormal);

 // Center image on game object
 origin.set(dimension.x / 2, dimension.y / 2);

 ...
}

In the init() method, we store the references of every animation we are going to
use in the corresponding local variables for much shorter names. Moreover, the
starting animation is set to animNormal.

Now, make the following changes to the same class:

@Override
public void update (float deltaTime) {
 super.update(deltaTime);
 if (velocity.x != 0) {
 viewDirection = velocity.x < 0 ? VIEW_DIRECTION.LEFT
: VIEW_DIRECTION.RIGHT;
 }
 if (timeLeftFeatherPowerup > 0) {
 if (animation == animCopterTransformBack) {
 // Restart "Transform" animation if another feather power-up

Animations

[390]

 // was picked up during "TransformBack" animation. Otherwise,
 // the "TransformBack" animation would be stuck while the
 // power-up is still active.
 setAnimation(animCopterTransform);
 }
 timeLeftFeatherPowerup -= deltaTime;
 if (timeLeftFeatherPowerup < 0) {
 // disable power-up
 timeLeftFeatherPowerup = 0;
 setFeatherPowerup(false);
 setAnimation(animCopterTransformBack);
 }
 }
 dustParticles.update(deltaTime);

 // Change animation state according to feather power-up
 if (hasFeatherPowerup) {
 if (animation == animNormal) {
 setAnimation(animCopterTransform);
 } else if (animation == animCopterTransform) {
 if (animation.isAnimationFinished(stateTime))
 setAnimation(animCopterRotate);
 }
 } else {
 if (animation == animCopterRotate) {
 if (animation.isAnimationFinished(stateTime))
 setAnimation(animCopterTransformBack);
 } else if (animation == animCopterTransformBack) {
 if (animation.isAnimationFinished(stateTime))
 setAnimation(animNormal);
 }
 }
}

The update() method now contains the logic that is shown in the preceding
diagram. One detail that has not been covered yet is how we can find out if an
animation is finished. The Animation class provides the isAnimationFinished()
method for this purpose. However, this method is only possible if the animation is
played without looping, given the state time.

Chapter 12

[391]

Now, make the following final changes to the same class:

@Override
public void render (SpriteBatch batch) {
 TextureRegion reg = null;

 // Draw Particles
 dustParticles.draw(batch);

 // Apply Skin Color
 batch.setColor(
 CharacterSkin.values()[GamePreferences.instance.charSkin]
 .getColor());

 float dimCorrectionX = 0;
 float dimCorrectionY = 0;
 if (animation != animNormal) {
 dimCorrectionX = 0.05f;
 dimCorrectionY = 0.2f;
 }

 // Draw image
 reg = animation.getKeyFrame(stateTime, true);

 batch.draw(reg.getTexture(),
position.x, position.y,
origin.x, origin.y,
dimension.x + dimCorrectionX,
dimension.y + dimCorrectionY,
scale.x, scale.y,
rotation,
reg.getRegionX(), reg.getRegionY(),
reg.getRegionWidth(), reg.getRegionHeight(),
viewDirection == VIEW_DIRECTION.LEFT, false);

 // Reset color to white
 batch.setColor(1, 1, 1, 1);
}

In the render() method, we have removed the color-tinting effect in favor of our
new animations. If an animation other than the standard one (animNormal) is
detected, we will apply correcting values to the width and height for rendering.
Since the standard animation is of a different dimension than the other animations,
the other ones will look off-centered without the correcting values.

You can now run the game to check out all the animations we added throughout
this chapter.

Animations

[392]

Summary
In this chapter, you learned how to manipulate the Actor objects using the Actions
class. We discussed and used several complex chains of actions in Canyon Bunny's
menu screen, which greatly demonstrate the power and flexibility of actions.
Furthermore, we now know that the Interpolation class can also be used with
these actions for added effects.

Apart from this, we have covered the Animation class and used the support of
TexturePacker for packing animation frames which makes it easier to handle in the
code. In addition to this, we have learned about the different play modes provided
by the Animation class. Finally, we have implemented a state machine that is able to
handle all events to trigger the right bunny head animations at the right time.

In the next chapter, you will learn about the latest LibGDX 3D API, where you will
create basic models as well as import models exported from 3D animation software.

Basic 3D Programming
3D programming is an extremely complex topic, which cannot be explained
completely in a single chapter. However, here I will provide very basic knowledge
about the LibGDX 3D API. In this chapter, you will learn how to generate basic
models (such as sphere, box, and cylinder) as well as loading models exported from
3D modeling software (such as Blender). Furthermore, we will see how to improve
performance using frustum culling.

Selecting items in a 3D world is quite different, yet simpler, than in a 2D game. We
will see how a user can interact with objects inside a 3D world using ray picking.

In this chapter, you will learn about the following topics:

• Create a basic model using the LibGDX 3D API
• Load a 3D model exported from Blender
• 3D frustum culling
• Ray picking

Light sources
Light clusters from the sun fall on an object, which reflect and reach our eye. This is
how we see things. OpenGL ES allows us to create four types of light sources:

• Ambient light: This is not exactly a light source, but light reflected from
other objects, thereby limiting the light intensity when compared with
directional lights.

• Directional light: This comes from a faraway source. Light from sun is a
perfect example of directional light.

Basic 3D Programming

[394]

• Point light: This is the light from a point source such as a bulb.
• Spotlight: This is similar to point light; however, it has a direction in which it

shines. A flashlight/torch is a perfect example of a spotlight.

Environment and materials
OpenGL uses materials to refer to the properties of an object that determine how it
interacts with light. In practice, when rendering you specify what (shape) to render
and how to render. The shape is specified using the Mesh (or more commonly
MeshPart), which defines the vertex attributes for the shader. The material is most
commonly used to specify the uniform values for the shader.

Uniforms can be grouped into modelspecific (for example, the texture applied or
whether or not to use blending) and environmental uniforms (for example, the lights
being applied or an environment cubemap). Likewise, the 3D API allows you to
specify a material and environment.

To find out more about materials, environments, and
attributes visit https://github.com/libgdx/libgdx/
wiki/Material-and-environment.

Basic 3D using LibGDX
Here, we will explore the basis of the LibGDX 3D API and will create a basic scene
with a sphere model at the center.

You can also check the LibGDX wiki on the 3D API at https://
github.com/libgdx/libgdx/wiki/Quick-start.

The project setup
First of all, let's create a new LibGDX project using gdx-setup-ui.jar as learned in
Chapter 1, Introduction to LibGDX and Project Setup. Enter the values as shown here:

• Name: ModelTest
• Package: com.packtpub.libgdx.modeltest
• Game Class: MyModelTest
• Destination: C:\libgdx

https://github.com/libgdx/libgdx/wiki/Material-and-environment
https://github.com/libgdx/libgdx/wiki/Material-and-environment
https://github.com/libgdx/libgdx/wiki/Quick-start
https://github.com/libgdx/libgdx/wiki/Quick-start

Chapter 13

[395]

You can see the following page after all the details are filled:

Here, you won't need the HTML or iOS project for testing models; however, if you
want to simply check those devices, you can go ahead and enable those projects.
Also, set the width and height to 800 x 480 in the project.

Open the MyModelTest.java file and remove all the auto-generated code and add
the following code:

package com.packtpub.libgdx.modeltest;

import com.badlogic.gdx.ApplicationAdapter;
import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.graphics.Color;
import com.badlogic.gdx.graphics.GL20;
import com.badlogic.gdx.graphics.PerspectiveCamera;
import com.badlogic.gdx.graphics.VertexAttributes.Usage;
import com.badlogic.gdx.graphics.g3d.Environment;
import com.badlogic.gdx.graphics.g3d.Material;
import com.badlogic.gdx.graphics.g3d.Model;
import com.badlogic.gdx.graphics.g3d.ModelBatch;
import com.badlogic.gdx.graphics.g3d.ModelInstance;
import com.badlogic.gdx.graphics.g3d.attributes.ColorAttribute;

Basic 3D Programming

[396]

import com.badlogic.gdx.graphics.g3d.environment.DirectionalLight;
import com.badlogic.gdx.graphics.g3d.utils.CameraInputController;
import com.badlogic.gdx.graphics.g3d.utils.ModelBuilder;

public class MyModelTest extends ApplicationAdapter {
 public Environment environment;
 public PerspectiveCamera cam;
 public CameraInputController camController;
 public ModelBatch modelBatch;
 public Model model;
 public ModelInstance instance;

 @Override
 public void create() {
 environment = new Environment();
 environment.set(new
ColorAttribute(ColorAttribute.AmbientLight, 0.4f, 0.4f,
0.4f, 1f));
 environment.add(new DirectionalLight().set(0.8f, 0.8f,
0.8f, -1f, -0.8f, -0.2f));

 modelBatch = new ModelBatch();

 cam = new PerspectiveCamera(67, Gdx.graphics.getWidth(),
Gdx.graphics.getHeight());
 cam.position.set(2, 2, 2);
 cam.lookAt(0, 0, 0);
 cam.near = 1f;
 cam.far = 300f;
 cam.update();

 ModelBuilder modelBuilder = new ModelBuilder();
 model = modelBuilder.createSphere(2, 2, 2, 20, 20, new
Material(ColorAttribute.createDiffuse(Color.YELLOW)),
Usage.Position | Usage.Normal);
 instance = new ModelInstance(model);

 camController = new CameraInputController(cam);
 Gdx.input.setInputProcessor(camController);
 }

 @Override
 public void render() {

Chapter 13

[397]

 camController.update();

 Gdx.gl.glViewport(0, 0, Gdx.graphics.getWidth(),
Gdx.graphics.getHeight());
 Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT |
GL20.GL_DEPTH_BUFFER_BIT);

 modelBatch.begin(cam);
 modelBatch.render(instance, environment);
 modelBatch.end();
 }

 @Override
 public void dispose() {
 modelBatch.dispose();
 model.dispose();
 }

}

Here, we made a basic scene and created a sphere model, as shown in the
following screenshot:

Basic 3D Programming

[398]

The camera
There are two types of cameras, namely orthographic and perspective. Here, we use
the perspective camera to view the scene from a certain perspective, as shown here:

public PerspectiveCamera cam;

cam = new PerspectiveCamera(67, Gdx.graphics.getWidth(),
Gdx.graphics.getHeight());
cam.position.set(2, 2, 2);
cam.lookAt(0, 0, 0);
cam.near = 1f;
cam.far = 300f;
cam.update();

Using the preceding code, we create a perspective camera of field view 67 degrees
keeping the current aspect ratio. The position of the camera is set at (x, y, z)
coordinates (2, 2, 2) and is set by calling cam.position.set(2, 2, 2).
The coordinate system in LibGDX has the z axis aligned towards the viewer as
visualized in the following figure:

The camera is made to look at the origin (0, 0, 0) using the call cam.lookAt(0, 0,
0). We set the near and far values to make sure we can always see our object. Finally,
we update the camera so all the changes we made are reflected by the camera.

Chapter 13

[399]

Model and ModelInstances
A model represents a 3D asset. It stores a hierarchy of nodes. A node has a transform
and optionally a graphical part in the form of a MeshPart and Material. A model
can be rendered by creating ModelInstance from it. This instance has an additional
transform to position the model in the world, and allows the modification of
materials and nodes without destroying the original model. The original model is the
owner of any meshes and textures; all instances created from the model share these
resources. Disposing of the model will automatically make all instances invalid.

We create a sphere model using LibGDX's ModelBuilder. It can create basic shapes
such as box, sphere, cone, capsule, cylinder, and so on, as follows:

public Model model;
public ModelInstance instance;

ModelBuilder modelBuilder = new ModelBuilder();
model = modelBuilder.createSphere(2, 2, 2, 20, 20,
new Material(ColorAttribute.createDiffuse(Color.YELLOW)),
Usage.Position | Usage.Normal);

instance = new ModelInstance(model);

In the preceding code, a sphere is created with the width, height, and depth set to
2 units and the horizontal and vertical divisions are set to 20. You have to provide
materials and attributes to create any model. Finally, ModelInstance is created from
that model. After using the model, we dispose of it by calling model.dispose().

The ModelBatch class
The ModelBatch class is used to render the model instance as follows:

 modelBatch.begin(cam);
 modelBatch.render(instance, environment);
 modelBatch.end();

In the render method, we clear the screen, call modelBatch.begin(), render our
ModelInstance, and then call modelBatch.end() to finish rendering. While
rendering the model using modelBatch.render(), we provide the environment
along with the rendering ModelInstance. The model batch is disposed of by calling
modelBatch.dispose().

Basic 3D Programming

[400]

The environment
The environment contains the uniform values specific for a location. For example,
the lights are part of the environment. Simple applications might use only one
environment, while more complex applications might use multiple environments
depending on the location of ModelInstance. A ModelInstance class can only
contain one environment though, as shown here:

public Environment environment;
...
environment = new Environment();
environment.set(new ColorAttribute(ColorAttribute.AmbientLight,
0.4f, 0.4f, 0.4f, 1f));
environment.add(new DirectionalLight().set(0.8f, 0.8f, 0.8f, -1f,
-0.8f, -0.2f));
...
modelBatch.render(instance, environment);

In the preceding code, a new environment is set and a directional light source is
added. This environment is then rendered by calling modelBatch.render().

Loading a model
In a game, we need an actual model exported from Blender or any other
3D animation software.

The assets for our example are provided with the code
bundle of this chapter.

Copy these three files to the assets folder of the android project:

• car.g3dj: This is the model file to be used in our example
• tiretext.jpg and yellowtaxi.jpg: These are the materials for the model

Replacing the ModelBuilder class in our ModelTest.java file, we add the
following code:

 assets = new AssetManager();
 assets.load("car.g3dj", Model.class);
 assets.finishLoading();
 model = assets.get("car.g3dj", Model.class);
 instance = new ModelInstance(model);

Chapter 13

[401]

Additionally, a camera input controller is also added to inspect the model from
various angles as follows:

 camController = new CameraInputController(cam);
 Gdx.input.setInputProcessor(camController);

 camController.update();

This camera input controller will be updated on each render() by calling
camController.update().

The completed MyModelTest.java is as follows:

public class MyModelTest extends ApplicationAdapter {
 public Environment environment;
 public PerspectiveCamera cam;
 public CameraInputController camController;
 public ModelBatch modelBatch;
 public Model model;
 public ModelInstance instance;
 public AssetManager assets ;

 @Override
 public void create() {
 environment = new Environment();
 environment.set(new
ColorAttribute(ColorAttribute.AmbientLight, 0.4f, 0.4f, 0.4f,
1f));
 environment.add(new DirectionalLight().set(0.8f, 0.8f,
0.8f, -1f, -0.8f, -0.2f));

 modelBatch = new ModelBatch();

 cam = new PerspectiveCamera(67, Gdx.graphics.getWidth(),
Gdx.graphics.getHeight());
 cam.position.set(1,1,1);
 cam.lookAt(0, 0, 0);
 cam.near = 1f;
 cam.far = 300f;
 cam.update();

 assets = new AssetManager();
 assets.load("car.g3dj", Model.class);
 assets.finishLoading();
 model = assets.get("car.g3dj", Model.class);

Basic 3D Programming

[402]

 instance = new ModelInstance(model);

 camController = new CameraInputController(cam);
 Gdx.input.setInputProcessor(camController);

 }

 @Override
 public void render() {
 camController.update();
 Gdx.gl.glViewport(0, 0, Gdx.graphics.getWidth(),
Gdx.graphics.getHeight());
 Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT |
GL20.GL_DEPTH_BUFFER_BIT);

 modelBatch.begin(cam);
 modelBatch.render(instance, environment);
 modelBatch.end();
 }

 @Override
 public void dispose() {
 modelBatch.dispose();
assets.dispose() ;
 }

}

The new additions are highlighted. The following is a screenshot of the render scene.
Use the W, S, A, D keys and mouse to navigate through the scene.

Chapter 13

[403]

Model formats and the FBX converter
LibGDX supports three model formats, namely Wavefront OBJ, G3DJ, and G3DB.
Wavefront OBJ models are intended for testing purposes only because this format
does not include enough information for complex models. You can export your 3D
model as .obj from any 3D animation or modeling software, however LibGDX does
not fully support .obj, hence, if you use your own .obj model, then it might not
render correctly. The G3DJ is a JSON textual format supported by LibGDX and can
be used for debugging, whereas the G3DB is a binary format and is faster to load.

One of the most popular model formats supported by any modeling software is FBX.
LibGDX provides a tool called FBX converter to convert formats such as .obj and
.fbx into the LibGDX supported formats .g3dj and .g3db.

Basic 3D Programming

[404]

To convert car.fbx to a .g3db format, open the command line and call
fbx-conv-win32, as shown in the following screenshot:

Make sure that the fbx-conv-win32.exe file is in the same folder as car.fbx.
Otherwise, you will have to use the full path of the source file to convert.

To find out more about FBX converter visit https://github.com/
libgdx/fbx-conv and https://github.com/libgdx/libgdx/
wiki/3D-animations-and-skinning. Also, you can download FBX
converter from http://libgdx.badlogicgames.com/fbx-conv.

3D frustum culling
In a 3D world, we have a lot of objects everywhere. However, only a small number
of objects will be visible in the scene. Rendering all objects, including those that are
not visible, can be a waste of our processing time and resources and will affect the
speed of the game. Hence, we should only render those objects that are actually
visible to the camera and ignore all other objects that are outside the field of view
of the camera. This is known as frustum culling and there are several ways to
accomplish this.

https://github.com/libgdx/fbx-conv
https://github.com/libgdx/fbx-conv
https://github.com/libgdx/libgdx/wiki/3D-animations-and-skinning
https://github.com/libgdx/libgdx/wiki/3D-animations-and-skinning
http://libgdx.badlogicgames.com/fbx-conv

Chapter 13

[405]

First, let's add an array of cars. The updated scene will look like this:

The MyModelTest.java file is as follows:

public class MyModelTest extends ApplicationAdapter {
...
 public Array<ModelInstance> instances = new
Array<ModelInstance>();

 @Override
 public void create() {
 environment = new Environment();
 environment.set(new
ColorAttribute(ColorAttribute.AmbientLight, 0.4f, 0.4f,
0.4f, 1f));
 environment.add(new DirectionalLight().set(0.8f, 0.8f,
0.8f, -1f, -0.8f, -0.2f));

 modelBatch = new ModelBatch();

Basic 3D Programming

[406]

 cam = new PerspectiveCamera(67, Gdx.graphics.getWidth(),
Gdx.graphics.getHeight());
 cam.position.set(5, 20, 20);
 cam.lookAt(0, 0, 0);
 cam.near = 1f;
 cam.far = 100f;
 cam.update();

 assets = new AssetManager();
 assets.load("car.g3dj", Model.class);
 assets.finishLoading();
 model = assets.get("car.g3dj", Model.class);

 for (float x = -30; x <= 10f; x += 20) {
 for (float z = -30f; z <= 0f; z += 10f) {
 ModelInstance instance = new ModelInstance(model);
 instance.transform.setToTranslation(x, 0, z);
 instances.add(instance);
 }
 }

 camController = new CameraInputController(cam);
 Gdx.input.setInputProcessor(camController);

 }

 @Override
 public void render() {
 camController.update();

 Gdx.gl.glViewport(0, 0, Gdx.graphics.getWidth(),
Gdx.graphics.getHeight());
 Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT |
GL20.GL_DEPTH_BUFFER_BIT);

 modelBatch.begin(cam);
 for (ModelInstance instance : instances) {
 modelBatch.render(instance, environment);
 }
 modelBatch.end();

 }

Chapter 13

[407]

 @Override
 public void dispose() {
 modelBatch.dispose();
 assets.dispose();
 }
...
}

The difference from our previous MyModelTest.java file is that we added an array
of model instances instead of one. Note that there is only one model and 12 model
instances. The position of the camera is also changed to (5, 20, 20). The updated code is
highlighted. You can use the mouse or W, S, A, D keys to navigate. However, with the
current code, every model instance is drawn, whether they are in the scene or not.

In order to check this, let's update the code and add some strings to the scene
as follows:

 ...
 public OrthographicCamera orthoCam;
 public SpriteBatch spriteBatch;
 public BitmapFont font;
 public StringBuilder stringBuilder = new StringBuilder();

 @Override
 public void create() {
 ...
 orthoCam = new OrthographicCamera(Gdx.graphics.getWidth(),
Gdx.graphics.getHeight());
 orthoCam.position.set(Gdx.graphics.getWidth() / 2f,
Gdx.graphics.getHeight() / 2f, 0);
 spriteBatch = new SpriteBatch();
 font = new BitmapFont();

 }

 @Override
 public void render() {
 ...
 modelBatch.begin(cam);
 int count = 0;
 for (ModelInstance instance : instances) {
 modelBatch.render(instance, environment);
 count++;
 }
 modelBatch.end();

Basic 3D Programming

[408]

 orthoCam.update();
 spriteBatch.setProjectionMatrix(orthoCam.combined);
 spriteBatch.begin();
 stringBuilder.setLength(0);
 stringBuilder.append("FPS: " +
Gdx.graphics.getFramesPerSecond()).append("\n") ;
 stringBuilder.append("Cars: " + count).append("\n");
 stringBuilder.append("Total: " + instances.size).append("\n");
 font.drawMultiLine(spriteBatch, stringBuilder, 0,
Gdx.graphics.getHeight());
 spriteBatch.end();

}

Here, we add an orthographic camera to view 2D items in a 3D scene. Then, we print
the FPS and total number of instances on the top-left corner of the game scene, as
shown in the following screenshot:

Want some 2D in 3D?
In your 3D game, you might want to add some 2D images such as a score
icon or play/pause or mute button or maybe a permanent background
image in the scene. We can use the orthographic camera and sprite batch
to render 2D objects in the scene, just like we rendered the text here.

Now, we can see that there are a number of cars rendering and the total cars
available are 12, even after navigating the scene using the mouse or keys. Hence,
regardless of where the camera is at the moment, the number of instances rendered
in the scene stays 12. Now, it is time to implement frustum culling.

Chapter 13

[409]

A frustum can be seen as a shape like a pyramid in 3D space with the
converging end at the camera and the body containing everything the
camera can see.
Check this Wikipedia article on viewing frustum at http://
en.wikipedia.org/wiki/Viewing_frustum.
Also, read this wonderful article to get a good understanding about
frustum and camera at http://www.badlogicgames.com/
wordpress/?p=1550.

LibGDX provides some very easy methods to check if an object is inside the frustum.
Add the following code to MyModelTest.java:

private Vector3 position = new Vector3();
private boolean isVisible(final Camera cam, final ModelInstance
instance) {
 instance.transform.getTranslation(position);
 return cam.frustum.pointInFrustum(position);
}

Here, we added Vector3 to hold the position. In the isVisible() method, we
fetch the position of ModelInstance and next we check if that position is inside the
frustum using the function pointInFrustum().

Add isVisible() to the render() function:

 @Override
 public void render() {
 ...
 modelBatch.begin(cam);
 int count = 0;
 for (ModelInstance instance : instances) {
 if (isVisible(cam, instance)) {
 modelBatch.render(instance, environment);
 count++;
 }
 }
 modelBatch.end();
 ...
 }

http://en.wikipedia.org/wiki/Viewing_frustum
http://en.wikipedia.org/wiki/Viewing_frustum
http://www.badlogicgames.com/wordpress/?p=1550
http://www.badlogicgames.com/wordpress/?p=1550

Basic 3D Programming

[410]

Now, you can run the scene and navigate. You will find that the number of cars will
change according to the position of the camera.

In the preceding isVisible() function, we check whether the position of the car
is inside. What if only a part of the car is within the frustum? In order to check this,
LibGDX provides a function, boundsInFrustum, to check whether the bounding box
is completely within the frustum. A bounding box is a box that contains the entire
model/instance. The following screenshot will give you a clear picture of this:

So, we can update our isVisible() function to check the bounding box in the
following way:

private boolean isVisible(PerspectiveCamera cam, ModelInstance
instance) {
instance.transform.getTranslation(position);
BoundingBox box = instance.calculateBoundingBox(new BoundingBox());
return cam.frustum.boundsInFrustum(position, box.getDimensions());
}

The calculateBoundingBox method will return the bounding box of that particular
instance. Note, this function is a slow operation; hence, it would be better if you
cache the result.

Chapter 13

[411]

Similarly, we can calculate the bounding sphere. Checking against a radius is a bit
faster, but it might cause more false positives, as shown here:

float radius = box.getDimensions().len()/2f ;
cam.frustum.sphereInFrustum(position, radius);

Here, radius is the radius of the bounding sphere.

Ray picking
It would be great if we could interact with the game objects. In a 2D scene, it is easy
as we can map the 2D coordinates of the game object with the input coordinates.
However, in a 3D game, it is different as the game object is positioned in 3D world
coordinates and the input is available as 2D screen coordinates. A familiar scenario
is a first person shooter game, wherein on shooting the bullet it is traced through the
scene until a collision is detected. Ray picking is the process of shooting a line or ray
from the camera through the 2D view port into the 3D game world until it hits an
object, as shown here:

Basic 3D Programming

[412]

The following code will explain the process of ray picking in LibGDX. We will
extend and update CameraInputController in the create() function as follows:

@Override
public void create() {
...
final BoundingBox box= model.calculateBoundingBox(new
BoundingBox());
camController = new CameraInputController(cam) {
private final Vector3 position = new Vector3();

@Override
public boolean touchUp(int screenX, int screenY, int pointer, int
button) {
Ray ray = cam.getPickRay(screenX, screenY);
for (int i = 0; i < instances.size; i++) {

ModelInstance instance = instances.get(i);
instance.transform.getTranslation(position);

if (Intersector.intersectRayBoundsFast(ray, position,
box.getDimensions())) {
 instances.removeIndex(i);
 i--;
 }
}
return super.touchUp(screenX, screenY, pointer, button);
}
};
Gdx.input.setInputProcessor(camController);
}

Here, in touchUp(), the getPickRay() function creates a ray from the input
coordinates. Now, we iterate through all the instances to check whether that ray
hits an object. LibGDX provides a class Intersector that offers various static
methods for intersection checking between different geometric objects. In order
to check whether the ray collides with any game objects, we use the function
intersectRayBoundsFast(). On collision, we remove that model instance from the
instances array so when you touch any car in the game scene, it simply vanishes.

Chapter 13

[413]

Here, for simplicity, we extended the CameraInputController class.
However, in your game, you need to implement your own event handler,
InputListerner or InputAdapter class as learned in Chapter 3,
Configuring the Game. To understand more about event handling, visit
https://github.com/libgdx/libgdx/wiki/Event-handling.

Summary
In this chapter, you learned how to create a basic model and load 3D model of a car,
frustum culling, rendering 2D text in a 3D scene, and ray picking.

You also learned about a standalone tool, FBX converter, to generate LibGDX
supported 3D formats from .obj or .fbx models.

In the next chapter, you will learn how to include 3D physics in a game using
Bullet Physics. This includes creating rigid bodies and applying physics properties
just like you learned in Box2D.

https://github.com/libgdx/libgdx/wiki/Event-handling

Bullet Physics
In Chapter 11, Advanced Programming Techniques, you learned about 2D physics using
Box2D. Now, we will enter the next dimension: 3D physics using the Bullet Physics
engine. Bullet Physics itself is a huge topic, so, this chapter will focus on providing
you with a basic idea about the 3D physics engine. Later, we will create a physics
simulation using basic shapes.

In this chapter, we will cover the following topics:

• Create a project using gdx-setup.jar
• Focus on the basic concepts of bullet
• Create a simple application to simulate physics using Bullet

About Bullet Physics
Bullet is a 3D collision detection and rigid body dynamics library. It has been used
in many Hollywood movies such as Megamind, Shrek 4, and How To Train Your
Dragon, and popular games such as the Grand Theft Auto series. The Bullet Physics
library was originally created by Erwin Coumans. Since 2005, the Bullet project
has been open source with many other contributors as well. The Bullet library is
published under the zlib license. It is written in C++ and has been ported to several
frameworks and programming languages.

Bullet Physics

[416]

LibGDX integrates Bullet through a thin wrapper API. The wrapper tends to follow the
original Bullet class names, which means that most classes are prefixed with bt as in
the original library. This approach makes it easier to understand and transfer existing
knowledge about Bullet by following tutorials and manuals that are not based on
LibGDX. You can also use the official Bullet user manual and API documentation.

For more documentation related to the Bullet Physics engine, visit:

• www.bulletphysics.org

• http://bulletphysics.org/mediawiki-1.5.8/index.php/Bullet_User_
Manual_and_API_documentation

For Bullet Physics tutorials, visit:

• http://bulletphysics.org/mediawiki-1.5.8/index.php/Tutorial_
Articles

• https://github.com/libgdx/libgdx/wiki/Bullet-physics

• http://blog.xoppa.com/using-the-libgdx-3d-physics-bullet-
wrapper-part1

• http://blog.xoppa.com/using-the-libgdx-3d-physics-bullet-
wrapper-part2

A few basic concepts
Now, we will explore some basic ideas behind the vast Bullet library in the
next sections.

www.bulletphysics.org
http://bulletphysics.org/mediawiki-1.5.8/index.php/Bullet_User_Manual_and_API_documentation
http://bulletphysics.org/mediawiki-1.5.8/index.php/Bullet_User_Manual_and_API_documentation
http://bulletphysics.org/mediawiki-1.5.8/index.php/Tutorial_Articles
http://bulletphysics.org/mediawiki-1.5.8/index.php/Tutorial_Articles
https://github.com/libgdx/libgdx/wiki/Bullet-physics
http://blog.xoppa.com/using-the-libgdx-3d-physics-bullet-wrapper-part1
http://blog.xoppa.com/using-the-libgdx-3d-physics-bullet-wrapper-part1
http://blog.xoppa.com/using-the-libgdx-3d-physics-bullet-wrapper-part2
http://blog.xoppa.com/using-the-libgdx-3d-physics-bullet-wrapper-part2

Chapter 14

[417]

Understanding rigid bodies
Rigid bodies are the basic building block of all physics simulations. Like in the real
world, a rigid body has some properties such as mass, position, velocity, inertia as
well as motion states, and so on. The rigid body is assumed to be solid and thus
incapable of being deformed by the exerting forces.

Static, dynamic, and kinematic rigid bodies
There are three different types of objects in Bullet. They are as follows:

• Dynamic (moving) rigid bodies:
 ° Positive mass
 ° On every simulation frame, the dynamic world will update its world

transform

• Static rigid bodies:
 ° Zero mass
 ° Cannot move or collide

• Kinematic rigid bodies:
 ° Zero mass
 ° They can be animated by the user, but there will be only one-way

interaction and dynamic objects will be pushed away, however there
is no influence from dynamics objects

Collision shapes
Like graphical meshes, collision shapes allow collision of a rich variety of different
objects that one might encounter in the real world. Collision shapes don't have a
world position; they are attached to collision objects or rigid bodies. The collision
shape is for collisions only, and thus has no concept of mass, inertia, restitution,
and so on. If you have many bodies that use the same collision shape, it is good
practice to have only one Bullet collision shape, and share it among all those bodies.
This helps save memory. Unlike graphical meshes, collision shapes are not always
composed of triangles, but they can be represented as a primitive shape such as a box
and a cylinder.

For more about collision shapes, visit the official manual at http://bulletphysics.
org/mediawiki-1.5.8/index.php/Collision_Shapes.

http://bulletphysics.org/mediawiki-1.5.8/index.php/Collision_Shapes
http://bulletphysics.org/mediawiki-1.5.8/index.php/Collision_Shapes

Bullet Physics

[418]

MotionStates
MotionStates are a way for Bullet to do all the hard work for you by getting the
objects being simulated into the rendering part of your program.

In most situations, your game loop would iterate through all the objects you're
simulating before each frame render. For each object, you would update the
position of the render object from the physics body. Bullet uses something called
MotionStates to save you this effort.

MotionStates for objects communicate movement caused by forces in the physics
simulation to your program. Static objects don't move, so there is no need to
communicate movement. They don't need a motion state.

Kinematic objects are controlled by your program and the motion state works in
reverse. It communicates movement of your object to Bullet so it can detect
collisions with it.

You can visit the official documentation at http://bulletphysics.
org/mediawiki-1.5.8/index.php/MotionStates.

Simulating physics
In this physics engine, you can add and remove rigid bodies, set and apply
properties to the bodies as well as the Bullet world itself, thereby creating a
wonderful world similar to our living world inside our computer.

Being a feature-rich engine, there are more features to be explored, but that's not in
the scope of this book. However, for in-depth information, you can download the
manual at https://github.com/erwincoumans/bullet2/blob/master/Bullet_
User_Manual.pdf?raw=true.

http://bulletphysics.org/mediawiki-1.5.8/index.php/MotionStates
http://bulletphysics.org/mediawiki-1.5.8/index.php/MotionStates
https://github.com/erwincoumans/bullet2/blob/master/Bullet_User_Manual.pdf?raw=true
https://github.com/erwincoumans/bullet2/blob/master/Bullet_User_Manual.pdf?raw=true

Chapter 14

[419]

Learning Bullet with LibGDX
In the next sections, you will learn how to use Bullet libraries in LibGDX.

Setting up a project
If you are using the old LibGDX project generation (gdx-setup-ui.jar) method,
then you'll need to add gdx-bullet.jar to your main project. Alternatively, you can
add the gdx-bullet project to the projects of the build path of your main project.
For your desktop project, you'll need to add the gdx-bullet-natives.jar file to
the libraries. For your android project, you'll need to copy the armeabi/libgdx-
bullet.so file and armeabi-v7a/libgdx-bullet.so file to the libs folder in your
android project.

Bullet isn't supported for GWT at the moment. Alternatively, we can use the LibGDX
Gradle Project Setup (gdx-setup.jar) tool where Bullet will be linked altogether
and you don't have to worry about it.

Open the gdx-setup.jar file and enter the following details:

• Name: CollisionTest
• Package: com.packtpub.libgdx.collisiontest
• Game class: MyCollisionTest
• Destination: C:\libgdx
• Android SDK: <Path to your android-sdk>

Bullet Physics

[420]

Select the latest LibGDX version and check Android, Desktop, iOS as Sub Projects.
We will avoid Html as Bullet does not support GWT at the moment. Now, select
Bullet under the Extensions menu and click on Generate, as shown in the following
screenshot. Now, you can follow the steps in Chapter 1, Introduction to LibGDX and
Project Setup, under the Creating a new application section, to generate and import the
LibGDX project.

Chapter 14

[421]

Creating a basic 3D scene
In Chapter 13, Basic 3D Programming, you learned how to create a basic model.
Let's do it again. Create a simple scene with a ball and ground, as shown in the
following screenshot:

Add the following code to MyCollisionTest.java:

package com.packtpub.libgdx.collisiontest;

import com.badlogic.gdx.ApplicationAdapter;
import com.badlogic.gdx.Gdx;
...
import com.badlogic.gdx.utils.Array;

public class MyCollisionTest extends ApplicationAdapter {
PerspectiveCamera cam;
ModelBatch modelBatch;

Bullet Physics

[422]

Array<Model> models;
ModelInstance groundInstance;
ModelInstance sphereInstance;
Environment environment;
ModelBuilder modelbuilder;

@Override
public void create() {
 modelBatch = new ModelBatch();

 environment = new Environment();
 environment.set(new ColorAttribute(ColorAttribute.AmbientLight,
0.4f, 0.4f, 0.4f, 1f));
 environment.add(new DirectionalLight().set(0.8f, 0.8f, 0.8f, -
1f, -0.8f, -0.2f));

 cam = new PerspectiveCamera(67, Gdx.graphics.getWidth(),
Gdx.graphics.getHeight());
 cam.position.set(0, 10, -20);
 cam.lookAt(0, 0, 0);
 cam.update();

 models = new Array<Model>();

 modelbuilder = new ModelBuilder();
 // creating a ground model using box shape
 float groundWidth = 40;
 modelbuilder.begin();
 MeshPartBuilder mpb = modelbuilder.part("parts", GL20.GL_TRIANGLES,
Usage.Position | Usage.Normal | Usage.Color,
new Material(ColorAttribute.createDiffuse(Color.WHITE)));
 mpb.setColor(1f, 1f, 1f, 1f);
 mpb.box(0, 0, 0, groundWidth, 1, groundWidth);
 Model model = modelbuilder.end();
 models.add(model);
 groundInstance = new ModelInstance(model);

 // creating a sphere model
 float radius = 2f;
 final Model sphereModel = modelbuilder.createSphere(radius,
radius, radius, 20, 20, new Material(ColorAttribute.
createDiffuse(Color.RED),
ColorAttribute.createSpecular(Color.GRAY),
FloatAttribute.createShininess(64f)), Usage.Position
| Usage.Normal);

Chapter 14

[423]

 models.add(sphereModel);
 sphereInstance = new ModelInstance(sphereModel);
 sphereinstance.transform.trn(0, 10, 0);
}

public void render() {
 Gdx.gl.glViewport(0, 0, Gdx.graphics.getWidth(), Gdx.graphics.
getHeight());
 Gdx.gl.glClearColor(0, 0, 0, 1);
 Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT |
GL20.GL_DEPTH_BUFFER_BIT);

 modelBatch.begin(cam);
 modelBatch.render(groundInstance, environment);
 modelBatch.render(sphereInstance, environment);
 modelBatch.end();
}

@Override
public void dispose() {
 modelBatch.dispose();
 for (Model model : models)
 model.dispose();

}
}

The ground is actually a thin box created using ModelBuilder just like the sphere.
Now that we have created a simple 3D scene, let's add some physics using the
following code:

public class MyCollisionTest extends ApplicationAdapter {
...

private btDefaultCollisionConfiguration collisionConfiguration;
private btCollisionDispatcher dispatcher;
private btDbvtBroadphase broadphase;
private btSequentialImpulseConstraintSolver solver;
private btDiscreteDynamicsWorld world;

private Array<btCollisionShape> shapes = new
Array<btCollisionShape>();
private Array<btRigidBodyConstructionInfo> bodyInfos = new
Array<btRigidBody.btRigidBodyConstructionInfo>();

Bullet Physics

[424]

private Array<btRigidBody> bodies = new Array<btRigidBody>();
private btDefaultMotionState sphereMotionState;

@Override
public void create() {
...
 // Initiating Bullet Physics
 Bullet.init();

 //setting up the world
 collisionConfiguration = new btDefaultCollisionConfiguration();
 dispatcher = new btCollisionDispatcher(collisionConfiguration);
 broadphase = new btDbvtBroadphase();
 solver = new btSequentialImpulseConstraintSolver();
 world = new btDiscreteDynamicsWorld(dispatcher, broadphase,
solver, collisionConfiguration);
 world.setGravity(new Vector3(0, -9.81f, 1f));

 // creating ground body
 btCollisionShape groundshape = new btBoxShape(new Vector3(20, 1 /
2f, 20));
 shapes.add(groundshape);
 btRigidBodyConstructionInfo bodyInfo = new
btRigidBodyConstructionInfo(0, null, groundshape, Vector3.Zero);
 this.bodyInfos.add(bodyInfo);
 btRigidBody body = new btRigidBody(bodyInfo);
 bodies.add(body);

 world.addRigidBody(body);

 // creating sphere body
 sphereMotionState = new
btDefaultMotionState(sphereInstance.transform);
 sphereMotionState.setWorldTransform(sphereInstance.transform);
 final btCollisionShape sphereShape = new btSphereShape(1f);
 shapes.add(sphereShape);

 bodyInfo = new btRigidBodyConstructionInfo(1, sphereMotionState,
sphereShape, new Vector3(1, 1, 1));
 this.bodyInfos.add(bodyInfo);

 body = new btRigidBody(bodyInfo);
 bodies.add(body);

Chapter 14

[425]

 world.addRigidBody(body);
}

public void render() {
 Gdx.gl.glViewport(0, 0, Gdx.graphics.getWidth(),
Gdx.graphics.getHeight());
 Gdx.gl.glClearColor(0, 0, 0, 1);
 Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT | GL20.GL_DEPTH_BUFFER_
BIT);

 world.stepSimulation(Gdx.graphics.getDeltaTime(), 5);
 sphereMotionState.getWorldTransform(sphereInstance.transform);

 modelBatch.begin(cam);
 modelBatch.render(groundInstance, environment);
 modelBatch.render(sphereInstance, environment);
 modelBatch.end();
}

@Override
public void dispose() {
 modelBatch.dispose();
 for (Model model : models)
 model.dispose();
 for (btRigidBody body : bodies) {
 body.dispose();
 }
 sphereMotionState.dispose();
 for (btCollisionShape shape : shapes)
 shape.dispose();
 for (btRigidBodyConstructionInfo info : bodyInfos)
 info.dispose();
 world.dispose();
 collisionConfiguration.dispose();
 dispatcher.dispose();
 broadphase.dispose();
 solver.dispose();
 Gdx.app.log(this.getClass().getName(), "Disposed");
}
}

The highlighted parts are the addition to our previous code. After execution, we see
the ball falling and colliding with the ground.

Bullet Physics

[426]

Initializing Bullet
We know that LibGDX uses a wrapper to call the C++ Bullet library. So, before
calling any of the Bullet functions, we have to load the Bullet library to memory. To
do this, we call Bullet.init() in the create() method. Calling any of the Bullet
functions, for example, btDefaultCollisionConfiguration() before Bullet.
init() will result in an error.

Creating a dynamics world
After initializing Bullet, we create the virtual physics world where everything
happens. To do this, we add the following code:

 collisionConfiguration = new btDefaultCollisionConfiguration();
 dispatcher = new btCollisionDispatcher(collisionConfiguration);
 broadphase = new btDbvtBroadphase();
 solver = new btSequentialImpulseConstraintSolver();
 world = new btDiscreteDynamicsWorld(dispatcher, broadphase,
 solver, collisionConfiguration);
 world.setGravity(new Vector3(0, -9.81f, 1f));

Collision detection in a 3D world is complex. We can use specialized collision
detection algorithms, however, they are very expensive if we use them to check all
bodies at a time. Ideally, we'd first check whether the two objects are near each other,
for example, using a bounding box or bounding sphere, and only if they are near
each other, we'd use the more accurate and specialized collision algorithm. This two
phase method has benefits. The first phase, where we find collision objects that are
near each other, is called the broad phase. Then, the second phase, where a more
accurate specialized collision algorithm is used, is called the near phase. In practice,
the collision dispatcher is the class we've used for the near phase.

To construct the dynamics world, we'll need a constraint solver and a collision
configuration. The constraint solver is used to attach objects to each other. Also,
btCollisionConfiguration allows the Bullet collision detection stack allocator
and pool memory allocators to be configured. This collision configuration is also fed
to the collision dispatcher through its constructor and then we create our dynamic
world by calling btDiscreteDynamicsWorld. The btDiscreteDynamicsWorld class
is a subclass of btDynamicsWorld, which is a subclass of btCollisionWorld. When
the world is created, we define its gravity using the setGravity() function.

Chapter 14

[427]

A custom MotionState class
In a 3D world with many physics objects, all might not be at motion at the same time.
For each frame render, if we iterate and update positions of all render objects we're
simulating, it would require a lot of time especially if the game has a lot of physics
bodies. Luckily, the Bullet wrapper offers callback methods that will be called when
a certain event occurs. We create a custom interface extending the btMotionState
class where we include what to do when something happens. For example, create
a new MyMotionState.java file in the com.packtpub.libgdx.collisiontest
package and add the following code:

public class MyMotionState extends btMotionState {
final ModelInstance instance;
public MyMotionState (ModelInstance instance) {
 this.instance = instance;
}
@Override
public void getWorldTransform(Matrix4 worldTrans) {
 worldTrans.set(instance.transform);
}
@Override
public void setWorldTransform(Matrix4 worldTrans) {
 instance.transform.set(worldTrans);
}

}

The setWorldTransform() function will set the transformation of the render object,
whereas the getWorldTransform() function returns the transformation of the
current render object. This custom class will update the render instance when Bullet
updates the position of respective physics object.

A simple ContactListener class
LibGDX Bullet wrapper offers callback methods to notify us when a collision occurs.
Here, we can define what should happen when a collision occurs. This is similar to
contact listener in Box2D. However, this callback class, ContactListener, is not a
Bullet class but a class specifically created for the Bullet wrapper. For this reason, we
do not have to inform Bullet to use ContactListener.

Bullet Physics

[428]

Create a new MyContactListener.java file in the com.packtpub.libgdx.
collisiontest package and add the following class:

public class MyContactListener extends ContactListener {
@Override
public void onContactStarted(btCollisionObject colObj0,
btCollisionObject colObj1) {
 Gdx.app.log(this.getClass().getName(), "onContactStarted");

}
}

In the create() method of our game class, we simply call the following method:

 MyContactListener contactListener = new MyContactListener();

Bullet contact listener provides a lot of methods for various
collision states. For more information, visit https://
github.com/libgdx/libgdx/wiki/Bullet-
physics#contact-listeners.

Adding some rigid bodies
Now, we will create individual bodies and set their properties and put them into our
dynamics world, as follows:

 modelbuilder.begin();
MeshPartBuilder mpb = modelbuilder.part("parts",
GL20.GL_TRIANGLES, Usage.Position | Usage.Normal | Usage.Color,
new Material(ColorAttribute.createDiffuse(Color.WHITE)));
 mpb.setColor(1f, 1f, 1f, 1f);
 mpb.box(0, 0, 0, 40, 1, 40);
 Model model = modelbuilder.end();
groundInstance = new ModelInstance(model);

 btCollisionShape groundshape = new btBoxShape(new Vector3(20, 1
/ 2f, 20));
 btRigidBodyConstructionInfo bodyInfo = new
btRigidBodyConstructionInfo(0, null, groundshape, Vector3.Zero);
 btRigidBody body = new btRigidBody(bodyInfo);
 world.addRigidBody(body);

https://github.com/libgdx/libgdx/wiki/Bullet-physics#contact-listeners
https://github.com/libgdx/libgdx/wiki/Bullet-physics#contact-listeners
https://github.com/libgdx/libgdx/wiki/Bullet-physics#contact-listeners

Chapter 14

[429]

The preceding steps are to create the ground. In our program, the ground is simply
a box with very low height. Using the mesh builder, we create a box with width,
height, and depth as 40, 1, and 40 units respectively. Remember, this is simply a
visual model that we created. For actual collision, we need to create a physics body
with btCollisionShape. However, btCollisionShape is a base class intended for
low-level usage. Hence, we use btBoxShape, which inherits btCollisionShape that
creates a box primitive around the origin, its side axis aligned with length specified
by half extents, in local shape coordinates. Similar to the box shape, we can also
create a sphere, a cone, a cylinder, a capsule, an arrow, and so on.

To create btRigidBodyConstructionInfo, we need to specify the mass, motion
state, collision shape, and the local inertia. Here, we we defined the mass as zero zero
and local inertia as zero vector. This is because our ground body is static. Zero mass
isn't physically possible. It is used to indicate that the ground should not respond
to any forces applied to it. It should always stay at the same location (and rotation),
regardless of any forces or collisions that may be applied to it. This is called a static
object. The other objects (with a mass greater than zero) are called dynamic objects.
Since our ground is static, we don't have to provide any motion state either.

Static objects do not need a motion state because they do
not move.

Finally, we create the rigid body feeding bodyInfo to the btRigidBody constructor.
This rigid body is then added to our dynamics physics world by calling world.
addRigidBody(body).

Stepping the world
In Bullet, we need to call a function to update the dynamic physics world so that the
game world continues to progress. This is achieved by the stepSimulation()call.
We provide three parameters, the delta time, maximum substeps, and a fixed time
step. The following code will explain everything:

 world.stepSimulation(Gdx.graphics.getDeltaTime(), 5 , 1/60f);

Bullet will perform as many (but not more than the specified maximum) calculations
using the specified 1/60f delta time, until it reaches the specified actual elapsed delta
time. Obviously, it's very unlikely that the delta value is always exactly a multiple of
1/60f. In fact, it is possible in some cases that the value of delta is less than specified
1/60f, causing Bullet not to perform any calculations at all. Using this along with
custom btMotionState will provide a smooth transition in our game.

Bullet Physics

[430]

To find much more about the step simulation in the standard wiki,
visit http://bulletphysics.org/mediawiki-1.5.8/index.
php/Stepping_the_World.

Ray casting in Bullet
Ray casting is like shooting a virtual laser between two points and seeing whether it
hit anything and what it hit. There are a number of useful things you can do with ray
casting, such as firing weapons. This is similar to what we learned in Chapter 13, Basic
3D Programming, under the Ray picking section.

To do a ray cast, you need to:

1. Create a RayResultCallback object.
2. Do the ray test.
3. Process the results of the ray cast.

The ray test is done by calling the world.rayTest(rayFrom, rayTo, rayTestCB);
function where rayFrom and rayTo are objects of the Vector3 class and rayTestCB is
an object of the ClosestRayResultCallback class. The world object is the dynamics
world where physics is simulated. The result of this method is stored in rayTestCB.

A simple test game
We will create a simple physics game just like the previous one. Here, we will
include basic shapes such as a box, sphere, cylinder, and cone and do a simple ray
testing. The program will have a ground shape upon which objects (such as a box
and sphere) will be thrown on touch. There will be buttons on screen, which after
selected will allow the related item to be thrown. The last button demonstrates ray
picking. Your screen will look like this:

http://bulletphysics.org/mediawiki-1.5.8/index.php/Stepping_the_World
http://bulletphysics.org/mediawiki-1.5.8/index.php/Stepping_the_World

Chapter 14

[431]

The whole code and art can be found in code bundle section of this chapter.

We have already created the MyContactListener.java and MyMotionState.java
files in our com.packtpub.libgdx.collisiontest package. The following is a list
of Java files we will be creating:

• MyBulletInterface.java: This is a custom Bullet interface.
• BulletWorld.java: This is the class that contains the dynamics world. This

class implements MyBulletInterface.
• BulletObjects.java: This class inherits BulletWorld. It will have functions

to create a box, a cone, the ground body, and so on.
• MyCollisionWorld.java: This simple class inherits BulletObjects.
• Items.java: This is an enum object that has the basic shapes.
• UserData.java: As the name indicates, this stores the specific data related to

each rigid body.

Bullet Physics

[432]

Now, we will create the previously listed Java files as follows:

1. Add the following code to MyBulletInterface.java:
public interface MyBulletInterface extends Disposable {

public void init();

public void update(float delta);

public void remove(btRigidBody body);

public btDiscreteDynamicsWorld getWorld();

}

2. Add the following code to BulletWorld.java:

public class BulletWorld implements MyBulletInterface {
 protected btDefaultCollisionConfiguration
collisionConfiguration;
 protected btCollisionDispatcher dispatcher;
 protected btDbvtBroadphase broadphase;
 protected btSequentialImpulseConstraintSolver solver;
 protected btDiscreteDynamicsWorld world;

 protected BulletWorld() {

 }

 @Override
 public void init() {
 Bullet.init();
 collisionConfiguration = new
btDefaultCollisionConfiguration();
 dispatcher = new btCollisionDispatcher(collisionConfigur
ation);
 broadphase = new btDbvtBroadphase();
 solver = new
btSequentialImpulseConstraintSolver();
 world = new btDiscreteDynamicsWorld(dispatcher,
broadphase, solver, collisionConfiguration);
 world.setGravity(new Vector3(0, -9.81f, .1f));

 }

Chapter 14

[433]

 @Override
 public void update(float delta) {
 world.stepSimulation(delta, 5 , 1/60f);
 }

 @Override
 public void dispose() {
 world.dispose();
 collisionConfiguration.dispose();
 dispatcher.dispose();
 broadphase.dispose();
 solver.dispose();
 }
 @Override
 public btDiscreteDynamicsWorld getWorld() {
 return world ;
 }

 @Override
 public void remove(btRigidBody body) {
 world.removeRigidBody(body);
 ((UserData) body.userData).dispose();
 }

}

As you can see, BulletWorld implements MyBulletInterface. Here, Bullet
is initiated and the dynamics world is created by providing the properties of
the dynamics world. The update() function will step the dynamics world
and remove() will remove and dispose of the given rigid body from the
dynamics world.
Also, observe that while disposing, the btDiscreteDynamicsWorld parameter
is disposed before all other world parameters such as dispatcher and
broadphase. Otherwise, you will get a runtime exception while disposing
of the following files:

3. Add the following to BulletObjects.java:
public class BulletObjects extends BulletWorld {
private static final Vector3 temp = new Vector3();
private static final Vector3 localIneria = new Vector3(1,
1, 1);

private btCollisionShape boxShape, coneShape, sphereShape,
cylinderShape, groundShape;
private Model boxModel, coneModel, sphereModel,
cylinderModel, groundModel;

Bullet Physics

[434]

protected BulletObjects() {
 super();
}

@Override
public void init() {
 super.init();
 final ModelBuilder builder = new ModelBuilder();
 float width, height, radius;

 width = 20;
 builder.begin();
 MeshPartBuilder mpb = builder.part("parts",
GL20.GL_TRIANGLES, Usage.Position | Usage.Normal |
Usage.Color, new Material(ColorAttribute.createDiffuse(Color.
WHITE)));
 mpb.setColor(1f, 1f, 1f, 1f);
 mpb.box(0, 0, 0, 2 * width, 1, 2 * width);
 groundModel = builder.end();
 groundShape = new btBoxShape(new Vector3(width, 1 / 2f,
width));

 width = 2f;
 boxModel = builder.createBox(width, width, width, new
Material(ColorAttribute.createDiffuse(Color.GREEN)), Usage.
Position | Usage.Normal);
 boxShape = new btBoxShape(new Vector3(width, width,
width).scl(.5f));

 width = 1.5f;
 height = 2f;
 coneModel = builder.createCone(width, height, width, 20,
new Material(ColorAttribute.createDiffuse(Color.LIGHT_GRAY)),
Usage.Position | Usage.Normal);
 coneShape = new btConeShape(width / 2f, height);

 radius = 2f;
 sphereModel = builder.createSphere(radius, radius,
radius, 20, 20, new Material(ColorAttribute.createDiffuse(Color.
ORANGE)),
Usage.Position | Usage.Normal);
 sphereShape = new btSphereShape(radius / 2f);

 width = 2f;

Chapter 14

[435]

 height = 2.5f;
 cylinderModel = builder.createCylinder(width, height,
width, 20, new Material(ColorAttribute.createDiffuse(Color.RED)),
Usage.Position | Usage.Normal);
 cylinderShape = new btCylinderShape(new Vector3(width,
height, width).scl(.5f));

}

private btRigidBody createRigidBody(Model model,
btCollisionShape CollisionShape, Vector3 position, boolean
isStatic) {
 if (isStatic)
 return createStaticRigidBody(model,
CollisionShape, position);

 final ModelInstance instance = new ModelInstance(model);
 final btMotionState motionState = new
MyMotionState(instance);
 motionState.setWorldTransform(instance.transform.trn
(position).rotate(Vector3.Z, MathUtils.random(360)));
 final btRigidBodyConstructionInfo bodyInfo = new
btRigidBodyConstructionInfo(1, motionState, CollisionShape,
localIneria);
 final btRigidBody body = new btRigidBody(bodyInfo);
 body.userData = new UserData(instance, motionState,
bodyInfo, body);
 world.addRigidBody(body);
 return body;
}

private btRigidBody createStaticRigidBody(Model model,
btCollisionShape CollisionShape, Vector3 position) {
 final ModelInstance instance = new ModelInstance(model);
 instance.transform.trn(position);
 final btRigidBodyConstructionInfo bodyInfo = new
btRigidBodyConstructionInfo(0, null, CollisionShape,
Vector3.Zero);
 final btRigidBody body = new btRigidBody(bodyInfo);
 body.translate(instance.transform.getTranslation(temp));
 body.userData = new UserData(instance, null, bodyInfo,
body);
 world.addRigidBody(body);
 return body;
}

Bullet Physics

[436]

public btRigidBody create_box(Vector3 position, boolean
isStatic) {
 return createRigidBody(boxModel, boxShape, position,
isStatic);
}

public btRigidBody create_cone(Vector3 position, boolean
isStatic) {
 return createRigidBody(coneModel, coneShape, position,
isStatic);
}

public btRigidBody create_sphere(Vector3 position, boolean
isStatic) {
 return createRigidBody(sphereModel, sphereShape,
position, isStatic);
}

public btRigidBody create_cylinder(Vector3 position,
boolean isStatic) {
 return createRigidBody(cylinderModel, cylinderShape,
position, isStatic);
}

public btRigidBody create_ground() {
 return createRigidBody(groundModel, groundShape,
Vector3.Zero, true);
}

@Override
public void dispose() {

 super.dispose();
 boxModel.dispose();
 coneModel.dispose();
 sphereModel.dispose();
 cylinderModel.dispose();
 groundModel.dispose();

 boxShape.dispose();
 coneShape.dispose();
 sphereShape.dispose();
 cylinderShape.dispose();
 groundShape.dispose();
}

}

Chapter 14

[437]

This class will generate the rigid bodies with specific sizes. Observe that
we have only created a single instance of btCollisionShape and Model
for each basic shape in the init()function. However, they are called in
other functions repeatedly. This is because we only need a single instance of
btCollisionShape and Model to create a rigid body and a model instance.
This helps save memory.

4. Add the following to MyCollisionWorld.java:
public class MyCollisionWorld extends BulletObjects {
 public static final MyCollisionWorld instance = new
MyCollisionWorld();

 private MyCollisionWorld() {
 super();
 }

 @Override
 public void init() {
 super.init();
 }

}

Observe that the constructor is private. Hence, this class cannot be called
from other classes. Similarly, the constructors of the base classes are all
protected so that only MyCollisionWorld can call it. However, we have a
static final instance of MyCollisionWorld, which is public. This is to ensure
that only one instance of the dynamics world is available in the game.

5. Add the following to Items.java:
public enum Items {
 GROUND, CONE, BOX, CYLINDER, SPHERE, RAY_PICKING;
}

6. Add the following to UserData.java:

public class UserData implements Disposable {

 public static final Array<UserData> data = new
Array<UserData>();
 private static final Vector3 temp = new Vector3();
 final ModelInstance instance;
 final btMotionState motionState;
 final btRigidBody body;

Bullet Physics

[438]

 final btRigidBodyConstructionInfo bodyInfo;

 public UserData(ModelInstance instance, btMotionState
motionState, btRigidBodyConstructionInfo bodyInfo,
btRigidBody body) {
 this.instance = instance;
 this.motionState = motionState;
 this.bodyInfo = bodyInfo;
 this.body = body;
 data.add(this);
 }

 public btRigidBody getBody() {
 return body;
 }

 public ModelInstance getInstance() {
 return this.instance;
 }

 public boolean isVisible(Camera cam) {
 return
cam.frustum.pointInFrustum(instance.transform.
getTranslation(temp));
 }

 @Override
 public void dispose() {
 if (motionState != null) {
 motionState.dispose();
 }
 bodyInfo.dispose();
 body.dispose();

 data.removeValue(this, true);
 Gdx.app.log(this.getClass().getName(), " Rigid
body removed and disposed.");
 }

}

All the user data created is stored in the static array data declared at the beginning of
this class.

Chapter 14

[439]

Now, we will update the ModelTest.java file as follows:

• Code for ray picking
• Orthographic camera for displaying FPS and the buttons
• InputAdapter to handle the input from user

First, add the code to MyCollisionTest.java as follows:

public class MyCollisionTest extends ApplicationAdapter {
PerspectiveCamera cam;
ModelBatch modelBatch;
Environment environment;

MyCollisionWorld worldInstance;
btRigidBody groundBody;
MyContactListener collisionListener;
Sprite box, cone, cylinder, sphere, raypick, tick;
ClosestRayResultCallback rayTestCB;
Vector3 rayFrom = new Vector3();
Vector3 rayTo = new Vector3();

BitmapFont font;
OrthographicCamera guiCam;
SpriteBatch batch;

...
}

Here, we added the custom classes that implement the physics as well as the images,
font, camera, and SpriteBatch to control the 2D plane. We also added the Vector3
objects for ray testing.

Next, we update the create() method to initialize our classes as follows:

@Override
public void create() {

...

worldInstance = MyCollisionWorld.instance;
worldInstance.init();
groundBody = worldInstance.create_ground();

int w = -10;
for (int i = 0; i < 10; i++) {

Bullet Physics

[440]

worldInstance.create_box(new Vector3(w += 2, 1.5f, 10), true);
}
rayTestCB = new ClosestRayResultCallback(Vector3.Zero, Vector3.Z);

font = new BitmapFont();
guiCam = new OrthographicCamera(Gdx.graphics.getWidth(), Gdx.graphics.
getHeight());
guiCam.position.set(guiCam.viewportWidth / 2f, guiCam.viewportHeight /
2f, 0);
guiCam.update();
batch = new SpriteBatch();

float wt = Gdx.graphics.getWidth() / 5f;
float dt = .1f * wt;
box = new Sprite(new Texture("cube.png"));
box.setPosition(0, 0);

cone = new Sprite(new Texture("cone.png"));
cone.setPosition(wt + dt, 0);

sphere = new Sprite(new Texture("sphere.png"));
sphere.setPosition(2 * wt + dt, 0);

cylinder = new Sprite(new Texture("cylinder.png"));
cylinder.setPosition(3 * wt + dt, 0);

raypick = new Sprite(new Texture("ray.png"));
raypick.setPosition(4 * wt + dt, 0);

tick = new Sprite(new Texture("mark.png"));
enableButton(sphere);

collisionListener = new MyContactListener();
Gdx.input.setInputProcessor(adapter);

}

public void enableButton(Sprite sp) {
tick.setPosition(sp.getX(), sp.getY());
}

Chapter 14

[441]

Next, we update the render() method as follows:

@Override
public void render() {
Gdx.gl.glViewport(0, 0, Gdx.graphics.getWidth(), Gdx.graphics.
getHeight());
Gdx.gl.glClearColor(.2f, 0.2f, 0.2f, 1);
Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT | GL20.GL_DEPTH_BUFFER_BIT);

float delta = Gdx.graphics.getDeltaTime();
worldInstance.update(delta);

for (UserData data : UserData.data) {
if (!data.isVisible(cam)) {
worldInstance.remove(data.getBody());

}
}

modelBatch.begin(cam);
for (UserData data : UserData.data) {
modelBatch.render(data.getInstance(), environment);
}
modelBatch.end();

batch.setProjectionMatrix(guiCam.combined);
batch.begin();
font.draw(batch, "FPS: " + Gdx.graphics.getFramesPerSecond(), 0, Gdx.
graphics.getHeight());
box.draw(batch);
cone.draw(batch);
cylinder.draw(batch);
sphere.draw(batch);
raypick.draw(batch);
tick.draw(batch);
batch.end();
}

We have already created a singleton instance of the dynamics world in
MyCollisionWorld. This instance is accessed here and initiated as follows:

 worldInstance = MyCollisionWorld.instance;
 worldInstance.init();

Bullet Physics

[442]

This dynamics world is stepped by calling worldInstance.update() in the
render() method.

Game objects that are not visible in our camera are destroyed immediately.
The following code will check whether the rigid body is within the view. If not,
then the object will be removed and disposed:

 for (UserData data : UserData.data) {
 if (!data.isVisible(cam)) {
 worldInstance.remove(data.getBody());
 }
 }

Add InputAdapter and ray testing as follows:

private final InputAdapter adapter = new InputAdapter() {
 private Items item = Items.SPHERE;
 private final Vector3 temp = new Vector3();

 public boolean touchUp(int screenX, int screenY, int pointer, int
button) {
 guiCam.unproject(temp.set(screenX, screenY, 0));
 if (box.getBoundingRectangle().contains(temp.x, temp.y)) {
 enableButton(box);
 item = Items.BOX;
 return true;
 } else if (cone.getBoundingRectangle().contains(temp.x, temp.y)) {
 enableButton(cone);
 item = Items.CONE;
 return true;
 } else if (sphere.getBoundingRectangle().contains(temp.x, temp.y))
{
 enableButton(sphere);
 item = Items.SPHERE;
 return true;
 } else if (cylinder.getBoundingRectangle().contains(temp.x,
temp.y)) {
 enableButton(cylinder);
 item = Items.CYLINDER;
 return true;
 } else if (raypick.getBoundingRectangle().contains(temp.x,
temp.y)) {
 enableButton(raypick);
 item = Items.RAY_PICKING;
 return true;

Chapter 14

[443]

 }

 Ray ray = cam.getPickRay(screenX, screenY);
 Vector3 position = ray.origin.cpy();
 btRigidBody body;
 switch (item) {
 default:
 case BOX:
 body = worldInstance.create_box(position, false);
 break;
 case CONE:
 body = worldInstance.create_cone(position, false);
 break;
 case CYLINDER:
 body = worldInstance.create_cylinder(position, false);
 break;
 case SPHERE:
 body = worldInstance.create_sphere(position, false);
 break;
 case RAY_PICKING:

 rayFrom.set(ray.origin);
 rayTo.set(ray.direction).scl(50f).add(rayFrom); // 50 meters max
 rayTestCB.setCollisionObject(null);
 rayTestCB.setClosestHitFraction(1f);
 worldInstance.getWorld().rayTest(rayFrom, rayTo, rayTestCB);

 if (rayTestCB.hasHit()) {
 final btCollisionObject obj = rayTestCB.getCollisionObject();
 body = (btRigidBody) (obj);
 if (body != groundBody)
 worldInstance.remove(body);
 }

 return true;
 }
 body.applyCentralImpulse(ray.direction.scl(20));

 return true;
 };
};

}

Bullet Physics

[444]

The buttons are simply sprites that on selection will be ticked with a green tick mark.
The InputAdapter interface processes the touch input from the user. The touchup()
function in InputAdapter will check whether the current touch is inside any button.
If the user selects any button, then the button is set, or the program will continue
with the throw/raypicking functions.

To throw the physics object, the applyCentralImpulse() function is called. The
object is thrown at the direction cast by the ray.

The following is the code for ray picking:

 Ray ray = cam.getPickRay(screenX, screenY);
 Vector3 position = ray.origin.cpy();
 rayFrom.set(ray.origin);
 rayTo.set(ray.direction).scl(50f).add(rayFrom); // 50 meters
max
 rayTestCB.setCollisionObject(null);
 rayTestCB.setClosestHitFraction(1f);

 worldInstance.getWorld().rayTest(rayFrom, rayTo, rayTestCB);
 if (rayTestCB.hasHit()) {
 final btCollisionObject obj =
rayTestCB.getCollisionObject();

/**
Do something
*/
 }

Here, a ray is created from the input coordinates by the getPickRay()function.
The rayFrom value, a Vector3 value, is set to the origin of the ray, whereas rayTo
is set at a distance of 50 units from the origin point in the ray direction. The callback
object, rayTestCB, is cleared by setting null to the setCollisionObject() function.
Finally, by calling rayTest(), we check whether the ray has hit any object within the
rayFrom and rayTo points.

Finally, dispose everything as shown here:

@Override
public void dispose() {
for (UserData data : UserData.data) {
data.dispose();
}
worldInstance.dispose();

Chapter 14

[445]

modelBatch.dispose();

box.getTexture().dispose();
cone.getTexture().dispose();
cylinder.getTexture().dispose();
raypick.getTexture().dispose();
sphere.getTexture().dispose();
Gdx.app.log(this.getClass().getName(), "Disposed.");
}

Having fun with shadows
It appears that something is missing since we have light and reflection but no
shadows. Shadow in LibGDX is still evolving. The way of using shadows might
change in the next version. However, we will simply put a shadow here just to
make the scene look more complete:

DirectionalShadowLight shadowLight;
ModelBatch shadowBatch;
@Override
public void create() {
. . .
environment = new Environment();
environment.set(new ColorAttribute(ColorAttribute.AmbientLight,
.4f, .4f, .4f, 1f));
environment.add(new DirectionalLight().set(0.8f, 0.8f, 0.8f, -1f,
-0.8f, -0.2f));

 shadowLight = new DirectionalShadowLight(1024, 1024, 60, 60,
1f, 300);
 shadowLight.set(0.8f, 0.8f, 0.8f, -1f, -.8f, -.2f);
 environment.add(shadowLight);
 environment.shadowMap = shadowLight;
 shadowBatch = new ModelBatch(new DepthShaderProvider());
 . . .

}
@Override
public void render() {
 //update the world
 . . .

 shadowLight.begin(Vector3.Zero, cam.direction);
 shadowBatch.begin(shadowLight.getCamera());

Bullet Physics

[446]

 for (UserData data : UserData.data) {
 shadowBatch.render(data.getInstance());
 }
 shadowBatch.end();
 shadowLight.end();
. . .

// draw the modelBatch
}

@Override
public void dispose() {
. . .
 shadowBatch.dispose();
 shadowLight.dispose();

}

The shadowLight object is an object of DirectionalShadowLight and shadowBatch
is ModelBatch with a depth shader. The model instances are rendered using
shadowBatch to simulate the shadows near the actual model instances.

Here is the screenshot of the scene with shadows enabled:

Chapter 14

[447]

To know about shadow mapping, visit the Wikipedia page at
http://en.wikipedia.org/wiki/Shadow_mapping.

Summary
In this chapter, you learned the basics of Bullet Physics. You learned to create a
rigid body and apply physics and ray testing in Bullet. You also experimented with
basic physics shapes such as a box, a sphere, a cylinder, and so on. You understood
callbacks such as contact listeners and motion states. Finally, you applied shadows to
make the scene look more complete.

A special note from the author to you:

Congratulations! You have just finished reading this book and I really hope you
enjoyed it just as much as I did while writing it. You should now feel confident enough
about using the LibGDX framework to start developing your very own games.

You can take a look at the wonderful games that have already been made with
LibGDX at http://libgdx.badlogicgames.com/gallery.html. All that's
left to say is that I wish you good luck in your future projects that will hopefully
make great use of LibGDX.

http://en.wikipedia.org/wiki/Shadow_mapping
http://libgdx.badlogicgames.com/gallery.html

Index
Symbols
3D frustum culling 404-410
3D programming 393
3D scene

camera, using 398
creating 421-425
creating, LibGDX used 394
environment 400
model 399
ModelBatch class, using 399
ModelInstances, creating 399
project setup 394-397

A
accelerometers

used, for adding alternative input
controls 364-368

actions
actors, manipulating through 369-371
add() method 371
alpha() method 371
color() method 371
execution order, controlling 372
execution time, controlling 372
fadeIn() method 371
fadeOut() method 371
hide() method 371
layout() method 371
moveBy() method 371
moveTo() method 371
removeActor() method 371
rotateBy() method 371
rotateTo() method 371
run() method 371

scaleBy() method 371
scaleTo() method 371
show() method 372
sizeBy() method 372
sizeTo() method 372
touchable() method 372
visible() method 372

actions, execution time
after() method 372
delay() method 372
forever() method 372
parallel() method 372
repeat() method 372
sequence() method 372

actor game objects
implementing 195-198

ADT Plugin
URL 15

alternative input controls
adding, accelerometers used 364-368

ambient light 393
Android

demo application, running on 79-83
URL, for API guide 66

Android API levels
URL 29

Android Developer
URL 140

Android SDK
installing 21-29
URL, for downloading 21

animations
packing, TexturePacker used 379, 380
play modes, selecting 380, 381
sequences of images, using 378

[450]

Apple Developer
URL 141

application
creating 37
creating, Gradle-based setup used 46-51
creating, old setup tool used 37-46

application life cycle, LibGDX 74-76
application module

about 68
Android API level, querying 69
data persistence 69
graceful shutdown 68
logging facility 68
memory usage, querying 70
multithreading 70
platform type, querying 70

Application Programming
Interface (API) 10, 67

as3sfxr
about 314
URL 315

assets
loading 148
organizing 149-157
testing 157-160
tracking 148

audio device
accessing, directly 312
AudioDevice interface 313
AudioRecorder interface 314

audio files
.mp3 (MPEG-2 Audio Layer III) 310
.ogg (Ogg Vorbis) 310
.wav (RIFF WAVE) 309

audio module
about 71
music, streaming for playback 72
sounds, loading for playback 71

B
backends, LibGDX

about 65
Android 66
LWJGL 66
RoboVM 67
URL, for list of unresolved issues 67

WebGL 66
background layer

adding 246
bfxr generator

about 314, 317
URL 317

Blender
used, for loading model 400-402

Box2D
about 329, 330
adding 333
adding, for non-Gradle users 337
body types, selecting 331, 332
dependency, adding in Gradle 334-336
exploring 331
fixtures, using 332
Physics Body Editor 333
physics, simulating 330, 332
reference link 330
rigid bodies 331
shapes, using 332
URL 332

Box2D, features
constraints 332
contact listener 332
joints 332
sensors 332

Bullet
about 331, 415
collision shapes 417
initializing 426
MotionStates 418
physics, simulating 418
ray casting 430
rigid bodies 417
simple test game, creating 430-444
step simulation 429
URL, for downloading manual 418

Bullet Physics
about 415
reference link 416
URL, for documentation 416

Bullet, with LibGDX
3D scene, creating 421-425
Bullet, initializing 426
ContactListener class, defining 427, 428
custom MotionState class, creating 427

[451]

dynamics world, creating 426
project, setting up 419, 420

bunny head object
creating 201-210

C
camera

about 398
fixing 220-222
orthographic camera 398
perspective camera 398

CameraHelper class
implementing 130-132
used, for adding camera debug

controls 132-135
Canyon Bunny

about 58, 59, 107
camera debug controls, adding Camera-

Helper class used 132-135
CameraHelper class, adding 130-132
class diagram, using 110-112
creating 57
debug controls, adding 126-130
game loop, building 117-121
implementing 117
music and sound effects, adding 318-327
project, setting with gdx-setup-ui

tool 108, 109
raining carrots, adding 338
resources, gathering 137
scene, creating 165
screen transitions, implementing 287-296
test sprites, adding 121-126

CanyonBunnyMain class
implementing 114

cfxr generator
about 314-316
URL 316

clouds
moving 274

clouds object
creating 174-176

code hot swapping 100-105
collision detection

adding 213-220

collision shapes
about 417
URL 417

community, LibGDX project
reference link 14

complex effects
creating, with particle systems 264-270

Constants class
implementing 113

ContactListener class
defining 427, 428

controls layer
adding 247, 248

core modules, LibGDX
about 67
application 68
audio 71
files 73
graphics 71
input 72
network 73

create() method 95, 97
custom Android application icon

setting up 138-140
custom iOS application icon

setting 140
custom MotionState class

creating 427

D
Dashboards section, Android developer

website
URL 79

debugger
using 100-105

demo-android project 62
demo application

about 62-64
actual code 94
create() method 95-97
dispose() method 98
example code, inspecting of 94, 95
render() method 97
running, in iOS device 88-93
running, in WebGL-capable

web browser 83-88

[452]

running, on Android 79-83
running, on desktop 77, 78

demo-desktop project 62
demo project 62
device capabilities

URL, for official documentation 93
directional light 393
dispose() method 98
dust particle effect

adding, to player character 270-272
dynamic rigid bodies 332, 417

E
Eclipse

about 9
installing 19
running 30-36
URL, for downloading 19

Eclipse 4.3.2 (Kepler)
URL 31

Eclipse Integration Gradle
URL 15

environment
about 394, 400
reference link 394

event handling
reference link 413

extra lives, game GUI
implementing 191, 192

F
fade transition effect

creating 298-300
FBX 403
FBX converter

about 403
URL, for downloading 404

feather icon
adding, to GUI 222-225

feather object
creating 200, 201

files module
about 73
external file handle, obtaining 73
internal file handle, obtaining 73

finite state machine
reference link 388

fixtures
using 332

FPS counter, game GUI
implementing 192, 193

fragment shaders 357
Framebuffer Objects (FBO) 288
Freenode

URL 14
frustum

about 409
reference link, for viewing 409

frustum culling 404

G
G3DB 403
G3DJ 403
game

basic concepts 55, 56
game assets 55
game GUI

enhancing 280
extra lives, implementing 191, 192
feather icon, adding 222-225
FPS counter, implementing 192, 193
game score, displaying 283, 284
implementing 186-190
player lives, displaying 280-282
rendering 193
score, implementing 190, 191

game logic
about 55
adding 213
camera, fixing 220-222
collision detection, adding 213-220
feather icon, adding to GUI 222-225
game over 220-222
game over text, adding 222-225
lives, losing 220-222

game objects
actor game objects, implementing 195-198
bunny head object, creating 201-210
clouds object, creating 174-176
creating 166, 167
feather object, creating 200, 201

[453]

gold coin object, creating 198-200
mountains object, creating 171-173
rock object, creating 167-210
water overlay object, creating 173, 174

game screen
animating 381
bunny copter animation, defining 381-384
bunny head game object,

animating 387-391
gold coin animation, defining 381-384
gold coin game object, animating 384-387

game settings
using 260-262

game world
assembling 182-185

Garbage Collector (GC) 115
gdx-setup.jar file

URL, for downloading 46
gdx-setup-ui tool

used, for setting up Canyon Bunny
project 108, 109

versus gdx-setup 52-54
Glyph Designer

about 186
URL 186

GNU Image Manipulation Program (GIMP)
about 161
URL 161

gold coin object
creating 198-200

Google Web Toolkit (GWT)
about 63
URL 66

Gradle
Box2D dependency, adding 334-336

Gradle-based setup
used, for creating application 46-51

graphical particle editor
using 265

Graphical User Interface (GUI) 166
graphics module

about 71
delta time, querying 71
display size, querying 71
frames per second (FPS) counter,

querying 71
Graphics Processing Unit (GPU) 329

H
Head-Up Display (HUD) 166
Hiero

about 186
URL 186

I
icons, iOS version

reference link 64
images

used, for animations 378
Independent Game Developers (Indies) 9
Info.plist keys

CFBundleIconFiles 92
CFBundleIdentifier 92
CFBundleName 92
UIRequiredDeviceCapabilities 92
UISupportedInterfaceOrientations 92
URL, for official documentation 93

Inkscape
about 59
URL 59

input module
about 72
accelerometer, reading 72
Android's soft keys, catching 73
keyboard/touch/mouse input, reading 72
vibrator, canceling 72
vibrator, starting 72

installation, Android SDK 21-29
installation, Eclipse 19
installation, Java Development

Kit (JDK) 15-18
installation, plugins 30-36
Integrated Development Environment

(IDE) 9, 19
interface, LibGDX 74-76
interpolation algorithms

using 296-298
iOS device

demo application, running on 88-93

[454]

J
Java Development Kit (JDK)

installing 15-18
URL, for downloading 15

Java Perspective 30
Java Runtime Environment (JRE) 16
Java Virtual Machine (JVM) 10
Joint Photographic Experts Group (JPEG)

about 59
reference link 59

jumpState, bunny head object
FALLING 207
GROUNDED 207
JUMP_FALLING 207
JUMP_RISING 207

JVM Code Hot Swapping feature 61

K
kinematic rigid bodies 331, 417

L
Lerp

about 263, 275
used, for creating rocks movement 276, 277
using 275

level data
handling 161, 162

level loader
completing 210-212
implementing 177-182

LibGDX
about 10
application life cycle 74-76
core modules 67
downloading 20
interface 74-76
URL, for downloading 20
used, for creating 3D scene 394

LibGDX 1.2.0, features
audio 12
file I/O 12
graphics 11, 12
input handling 12
math and physics 13
storage 12

tools 13
URL 11
utilities 13

LibGDX 3D API
reference link 394

LibGDX backends
about 65
Android 66
LWJGL 66
RoboVM 67
WebGL 66

LibGDX installation
prerequisites 14

LibGDX reflection
URL 239

light sources
about 393, 394
ambient light 393
directional light 393
point light 394
spotlight 394

Lightweight Java Game Library. See LWJGL
linear interpolation. See Lerp
lives

losing 220-222
log levels

LOG_DEBUG 68
LOG_ERROR 68
LOG_INFO 68
LOG_NONE 68

logos layer
adding 247

LWJGL
about 66
URL 66

M
Main loop thread 70
manifest file, Android

icon 82
label 82
minSdkVersion 82
name 82
screenOrientation 82
targetSdkVersion 82
URL, for official documentation 81

[455]

materials
about 394
reference link 394

menu screen
animating 372, 373
background layer, adding 246
bunny head actors, animating 374, 375
controls layer, adding 247, 248
gold coins, animating 374, 375
logos layer, adding 247
menu buttons, animating 375-377
objects layer, adding 246
Options window, animating 375-377
Options window layer, adding 249-253
scene, building 240-245

menu UI
creating, scene graph used 236-240

Mesh 394
model

about 399
loading, Blender used 400-402

ModelBatch class
using 399

model formats
about 403
FBX 403
G3DB 403
G3DJ 403
Wavefront OBJ 403

ModelInstances
creating 399

monochrome filter shader program
creating 358-360
using 360-364

MotionStates
about 418
URL, for documentation 418

mountains object
creating 171-173

multiple screens
managing 227-234

music and sound effects
adding 318-327
Music interface 312
playing back 309, 310
Sound interface 310, 311

N
native orientations

reference link 365
network module

about 73
client/server sockets, creating 74
HTTP requests, making 73
URI, opening in web browser 74

Non-Power-Of-Two (NPOT)
textures 80, 141

O
objects layer

adding 246
old setup tool

URL, for downloading 37
used, for creating application 37-46

OpenGL (ES) 2.0
reference link 358

OpenGL ES 2.0 Reference Card
URL 358

OpenGL Shading Language (GLSL) 358
Options, particle editor

Additive 269
Aligned 269
Attached 269
Behind 269
Continuous 269

Options window layer
adding 249-253
building 253-260
game settings, using 260-262

orthographic camera 398

P
Paint.NET

URL 161
parallax scrolling

about 278
adding 278-280

Particle Editor, properties
Angle 268
Count 267
Delay 267
Duration 268

[456]

Emission 268
Gravity 268
Image 267
Life 268
Life Offset 268
Options 269
Rotation 268
Size 268
Spawn 268
Tint 268
Transparency 268
Velocity 268
Wind 268
X Offset 268
Y Offset 268

ParticleEffect class, methods
allowCompletion() 264
dispose() 265
draw() 264
load() 265
reset() 264
save() 265
setDuration() 265
setFlip() 265
setPosition() 265
start() 264
update() 264

particle.png file
about 271
reference link 271

particle systems
complex effects, creating with 264-270

permissions, Android
URL, for official documentation 82

perspective camera 398
physics

simulating, with Box2D 330-332
simulating, with Bullet 418

Physics Body Editor
about 333
reference link 333

pixel bleeding. See texture bleeding
pixel shaders. See fragment shaders
planning, game projects 56
player character

dust particle effect, adding to 270-272

play modes
LOOP 380
LOOP_PINGPONG 380
LOOP_RANDOM 380
LOOP_REVERSED 380
NORMAL 380
REVERSED 380
selecting 380, 381

plugins
installing 30-36

point light 394
Portable Network Graphics (PNG)

about 59
reference link 59

prerequisites, LibGDX installation
Android SDK, installing 21-29
Eclipse 19
Eclipse, running 30-36
Java Development Kit (JDK) 15-18
plugins, installing 30-36

Programmable Pipeline 357
Pulse Code Modulation (PCM) 309

R
raining carrots

adding 338
assets, adding 338
carrot game object, adding 339
goal game object, adding 340, 341
implementing 345-356
level, extending 342-344

raster graphics
reference link 59

ray casting 430
ray picking 411, 412
red, green, blue, and alpha (RGBA) 118
render() method 97
Render to Texture (RTT) 287
rigid bodies

about 331, 417
adding 428, 429
features 331
selecting 331, 332

rigid bodies, types
dynamic 332, 417
kinematic 331, 417

[457]

static 331, 417
RoboVM

about 67
URL 67

rock object
creating 167-170, 210
rendering 170

S
Scene2D

about 227
URL, for documentation 235

Scene2D UI
about 235
URL, for documentation 236

scene, Canyon Bunny
building, for menu screen 240-245
creating 165

scene graph
about 235
used, for creating menu UI 236-240

score, game GUI
implementing 190, 191

screen transitions, Canyon Bunny
implementing 287-296
transition effects, implementing 296

sfxr generator
about 315
URL 315

shaders
about 329, 357
advantages 357
fragment shaders 357
monochrome filter shader program,

creating 358, 359
monochrome filter shader program,

using 360-364
reference link 358
vertex shaders 357

shadow mapping
reference link 447

shadows 445, 446
shapes

using 332
simple test game

creating 430-444

singleton 151
skins

about 235
URL, for documentation 236

slice transition effect
creating 304-306

slide transition effect
creating 301-303

sound generators
about 314
bfxr generator 314, 317
cfxr generator 314, 316
sfxr generator 315
using 314

Sound interface 310, 311
SoundManager2 (SM2)

about 66
URL 67

spotlight 394
sprite sheet. See texture atlases
starter classes

about 76
demo application, running in

WebGL-capable web browser 83-88
demo application, running on

Android 79-83
demo application, running on

desktop 76-78
demo application, running on

iOS device 88-93
static imports

reference link 370
static rigid bodies 331, 417
step simulation

about 429
reference link 430

T
TableLayout

about 235
URL, for documentation 236

texture atlases
about 80, 141
creating 141-147

texture bleeding 144

[458]

TexturePacker
about 148
URL 148
used, for packing animations 379, 380

TexturePacker-GUI
about 147
URL 147

time stepping strategies
reference link 293

transition effects, Canyon Bunny
fade transition effect, creating 298-300
implementing 296
interpolation algorithms, using 296-298
slice transition effect, creating 304-306
slide transition effect, creating 301-303

U
Unified Modeling Language (UML) class

diagram 107
Uniform Resource Identifier (URI) 74

V
vector graphics

reference link 59
vertex shaders 357
vertical synchronization (vsync) 115

W
water overlay object

creating 173, 174
Wavefront OBJ 403
WebGL

URL 67
WebGL-capable web browser

demo application, running in 83-88
widgets 235
WorldController class

implementing 115
WorldRenderer class

implementing 116

Thank you for buying
Learning LibGDX Game Development

Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Libgdx Cross-platform Game
Development Cookbook
ISBN: 978-1-78328-729-1 Paperback: 516 pages

Over 75 practical recipes to help you master
cross-platform 2D game development using
the powerful Libgdx framework

1. Gain an in-depth understanding of every Libgdx
subsystem, including 2D graphics, input, audio,
file extensions, and third-party libraries.

2. Write once and deploy to Windows, Linux,
Mac, Android, iOS, and browsers.

3. Full of uniquely structured recipes that help
you get the most out of Libgdx.

Unity Game Development
Blueprints
ISBN: 978-1-78355-365-5 Paperback: 318 pages

Explore the various enticing features of Unity and
learn how to develop awesome games

1. Create a wide variety of projects with Unity
in multiple genres and formats.

2. Complete art assets with clear step-by-step
examples and instructions to complete all
tasks using Unity, C#, and MonoDevelop.

3. Develop advanced internal and external
environments for games in 2D and 3D.

Please check www.PacktPub.com for information on our titles

Learning Cocos2d-x
Game Development
ISBN: 978-1-78398-826-6 Paperback: 266 pages

Learn cross-platform game development
with Cocos2d-x

1. Create a Windows Store account and upload
your game for distribution.

2. Develop a game using Cocos2d-x by going
through each stage of game development
process step by step.

HTML5 Game Development
[Video]
ISBN: 978-1-84969-588-6 Duration: 1:58 hrs

Build two HTML5 games in two hours with these
fast-paced beginner-friendly videos

1. Create two simple yet elegant games
in HTML5.

2. Build games that run on both desktops
and mobile browsers.

3. Presented in a modular approach with
elegant code and illustrated concepts to
help you learn quickly.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to LibGDX and Project Setup
	Diving into LibGDX
	Features of LibGDX 1.2.0
	Graphics
	Audio
	Input handling
	File I/O and storage
	Math and physics
	Utilities
	Tools

	Getting in touch with the community
	Prerequisites to install and configure LibGDX
	Java Development Kit
	Eclipse – Integrated Development Environment
	Downloading LibGDX
	Installing Android SDK
	Running Eclipse and installing plugins

	Creating a new application
	Using the old setup tool
	Using the Gradle-based setup

	gdx-setup versus gdx-setup-ui
	Kicking your game to life
	Key to success lies in planning
	Game project – Canyon Bunny
	Description of the game

	Summary

	Chapter 2: Cross-platform Development – Build Once, Deploy Anywhere
	The demo application – how the projects work together
	LibGDX backends
	Lightweight Java Game Library
	Android
	WebGL
	RoboVM (iOS backend)

	LibGDX core modules
	The application module
	Logging
	Shutting down gracefully
	Persisting data
	Querying the Android API level
	Querying the platform type
	Querying the memory usage
	Multithreading

	The graphics module
	Querying delta time
	Querying display size
	Querying the frames per second (FPS) counter

	The audio module
	Sound playback
	Music streaming

	The input module
	Reading the keyboard/touch/mouse input
	Reading the accelerometer
	Starting and canceling vibrator
	Catching Android's soft keys

	The files module
	Getting an internal file handle
	Getting an external file handle

	The network module
	HTTP requests
	Client/server sockets
	Opening a URI in a web browser

	LibGDX's application life cycle and interface
	Starter classes
	Running the demo application on a desktop
	Running the demo application on Android
	Running the demo application in a
WebGL-capable web browser
	Running the demo application on a iOS device

	The demo application – time for code
	Inspecting an example code of the demo application
	The create() method
	The render() method
	The dispose() method

	Having fun with the debugger and code hot swapping

	Summary

	Chapter 3: Configuring the Game
	Setting up the Canyon Bunny project
	Using a class diagram for Canyon Bunny
	Laying foundations
	Implementing the Constants class
	Implementing the CanyonBunnyMain class
	Implementing the WorldController class
	Implementing the WorldRenderer class

	Putting it all together
	Building the game loop
	Adding the test sprites
	Adding the game world's debug controls
	Adding the CameraHelper class
	Adding the camera debug controls using CameraHelper

	Summary

	Chapter 4: Gathering Resources
	Setting up a custom Android application icon
	Setting a custom iOS application icon
	Creating the texture atlases
	Loading and tracking assets
	Organizing the assets
	Testing the assets
	Handling level data
	Summary

	Chapter 5: Making a Scene
	Creating game objects
	The rock object
	The mountains object
	The water overlay object
	The clouds object

	Implementing the level loader
	Assembling the game world
	Implementing the game GUI
	The GUI score
	The GUI extra lives
	The GUI FPS counter
	Rendering the GUI

	Summary

	Chapter 6: Adding the Actors
	Implementing the actor game objects
	Creating the gold coin object
	Creating the feather object
	Creating the bunny head object
	Updating the rock object

	Completing the level loader
	Adding the game logic
	Adding collision detection
	Losing lives, game over, and fixing the camera
	Adding the game over text and the feather icon to the GUI

	Summary

	Chapter 7: Menus and Options
	Managing multiple screens
	Exploring Scene2D UI, TableLayout, and skins
	Using LibGDX's scene graph for the menu UI
	Building the scene for the menu screen
	Adding the background layer
	Adding the objects layer
	Adding the logos layer
	Adding the controls layer
	Adding the Options window layer

	Building the Options window
	Using the game settings

	Summary

	Chapter 8: Special Effects
	Creating complex effects with particle systems
	Adding a dust particle effect to the player character
	Moving the clouds
	Smoothing with Linear interpolation (Lerp)
	Letting the rocks float on the water

	Adding parallax scrolling to the mountains in the background
	Enhancing the game screen's GUI
	Event – player lost a life
	Event – score increased

	Summary

	Chapter 9: Screen Transitions
	Adding the screen transition capability
	Implementing the transition effects
	Knowing about interpolation algorithms
	Creating a fade transition effect
	Creating a slide transition effect
	Creating a slice transition effect

	Summary

	Chapter 10: Managing the Music and Sound Effects
	Playing back the music and sound effects
	Exploring the Sound interface
	Exploring the Music interface

	Accessing the audio device directly
	Exploring the AudioDevice interface
	Exploring the AudioRecorder interface

	Using sound generators
	The sfxr generator
	The cfxr generator
	The bfxr generator

	Adding music and sounds to Canyon Bunny
	Summary

	Chapter 11: Advanced Programming Techniques
	Simulating physics with Box2D
	Exploring the concepts of Box2D
	Understanding the rigid bodies
	Choosing the body types
	Using shapes
	Using fixtures
	Simulating physics in the world

	Physics body editor
	Adding Box2D
	Adding Box2D dependency in Gradle
	For non-Gradle users

	Preparing Canyon Bunny for raining carrots
	Adding the new assets
	Adding the carrot game object
	Adding the goal game object
	Extending the level

	Letting it rain carrots

	Working with shaders in LibGDX
	Creating a monochrome filter shader program
	Using the monochrome filter shader program in Canyon Bunny

	Adding alternative input controls
	Summary

	Chapter 12: Animations
	Manipulating actors through actions
	Actions for manipulating actors
	Controlling the order and time of execution

	Animating the menu screen
	Animating the gold coins and bunny head actors
	Animating the menu buttons and options window

	Using sequences of images for animations
	Packing animations using the texture packer
	Choosing between animation play modes

	Animating the game screen
	Defining and preparing new animations
	Animating the gold coin game object
	Animating the bunny head game object

	Summary

	Chapter 13: Basic 3D Programming
	Light sources
	Environment and materials
	Basic 3D using LibGDX
	The project setup
	The camera
	Model and ModelInstances
	The ModelBatch class
	The environment

	Loading a model
	Model formats and the FBX converter

	3D frustum culling
	Ray picking
	Summary

	Chapter 14: Bullet Physics
	About Bullet Physics
	A few basic concepts
	Understanding rigid bodies
	Static, dynamic, and kinematic rigid bodies

	Collision shapes
	MotionStates
	Simulating physics

	Learning Bullet with LibGDX
	Setting up a project
	Creating a basic 3D scene
	Initializing Bullet
	Creating a dynamics world
	A custom MotionState class
	A simple ContactListener class

	Adding some rigid bodies
	Stepping the world
	Ray casting in Bullet
	A simple test game

	Having fun with shadows
	Summary

	Index

