
ARM calling convention

• Register usage:

Registers Function Value preserved 

during call

R0-R3 Arguments / Return values No

R4-R11 Local variables Yes

R12 (IP) Intra-procedure-call scratch reg. No

R13 (SP) Stack Pointer Yes

R14 (LR) Link register No

R15 (PC) Program Counter No 

• If a routine has more than 4 arguments R0-R3 are used for the first 4 

arguments and the rest are placed on the stack before the call

• The stack must be of the Full-Descending type

• Local variables can also be stored in R0-R3, R12, and even LR, specially in 

“leaf” subroutines (no other subroutine call)



ARM calling convention

• Typical subroutine prologue:

routine: stmfd sp !,{ r4 - r6 , lr }

Saves R4, R5, R6 and LR on the stack. R4-R6 will be used for local 

variables and LR for calling other subroutines.

• Typical subroutine epilogue:

ldmfd sp !,{ r4 - r6 , pc }

Restores R4, R5 and R6 from the stack. PC is restored instead of LR, 

therefore also making this instruction a subroutine return



ARM calling convention

• Calling a thumb subroutine from ARM (interworking):

.arm
…
ldr r12 ,=(tmbrout+1)
mov lr , pc @return addr.
bx r12 @jump to thumb
…

.thumb
…

tmbrout: …
…
bx lr @return (interworking)

Notes:

• PC is 8 bytes (2 instructions) ahead of “mov lr,pc”

• Bit 0 of R12 is 1, meaning a jump to thumb code in “bx r12”

• Bit 0 of LR is 0, meaning a jump to ARM code in “bx lr”


