

AngularJS UI Development

Design, build, and test production-ready applications
in AngularJS

Amit Gharat

Matthias Nehlsen

BIRMINGHAM - MUMBAI

AngularJS UI Development

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2014

Production reference: 1171014

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-847-2

www.packtpub.com

Cover image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

www.packtpub.com

Credits

Authors
Amit Gharat

Matthias Nehlsen

Reviewers
Ashutosh Das

Abhishek Dey

Anuj Gakhar

Steve Perkins

Commissioning Editor
Akram Hussain

Acquisition Editor
Sam Wood

Content Development Editor
Madhuja Chaudhari

Technical Editor
Indrajit A. Das

Copy Editors
Dipti Kapadia

Deepa Nambiar

Project Coordinator
Akash Poojary

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexers
Hemangini Bari

Rekha Nair

Tejal Soni

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

About the Authors

Amit Gharat is a full-stack engineer and open source contributor. He has built
and made some of his personal projects open source, such as Directives, SPAs, and
Chrome extensions written in AngularJS. He has an excessive urge to share his
programming experiences in an easy-to-understand language through his personal
blog in order to inspire and help others. When not programming, he enjoys reading,
watching videos on YouTube, and watching comedy shows with his family. He has
also written an article for Appliness and Sdjournal Magazine, Poland.

I would like to thank my family who have encouraged me to take
up the challenge of writing this book. Huge thanks to my colleagues
Saikumar Padamati and Akshay Ravindranath, for working hard on
my behalf so that I could focus on my writing.

Matthias Nehlsen is a freelance software engineer and passionate open source
contributor with around 15 years of experience in Information Technology. His
current focus is on web applications, and he frequently works with AngularJS. He also
founded the Hamburg AngularJS Meetup. You can find his open source projects on
https://github.com/matthiasn and his blog at http://matthiasnehlsen.com.
You can also follow him on Twitter at @matthiasnehlsen.

I would like to thank my friends and family for the support. Love
you all. I would also like to thank my co-author and the team at
Packt for making this book a reality after all.

https://github.com/matthiasn
http://matthiasnehlsen.com

About the Reviewers

Ashutosh Das, who hails from Bangladesh, works mainly as a backend developer,
and his experience includes working with Django, Node.js, Laravel, and so on. He
also likes to work with AngularJS. He spends his spare time writing for GitHub. He
also works as a freelancer and has a part-time job. He is currently in the process of
reviewing the following books:

• AngularJS Web Application Development Blueprints, Packt Publishing
• AngularJS Testing Cookbook, Packt Publishing
• AngularJS By Example, Packt Publishing

Abhishek Dey is a graduate student at the University of Florida, Gainesville,
conducting research in the fields of Computer Security, Data Science, Big Data
Analytics, Analysis of Algorithms, and Concurrency and Parallelism. He is a
passionate programmer who started programming in C and Java at the age of 10
and developed a strong interest in web technologies when he was 15. He possesses
profound expertise in developing high-volume software using C++, Java, C#,
JavaScript, AngularJS, HTML5, Bootstrap, Hadoop MapReduce, Pig, Hive, and many
more. He is a Microsoft Certified Professional, an Oracle Certified Java Programmer,
an Oracle Certified Web Component Developer, and an Oracle Certified Business
Component Developer.

Abhishek has contributed in bringing new innovations in the field of Highway
Capacity Software Development at McTrans Center at the University of Florida
(http://mctrans.ce.ufl.edu/mct/) in collaboration with the Engineering School
of Sustainable Infrastructure and Environment (http://www.essie.ufl.edu/). In
his leisure time, he loves to travel to different interesting places, or paint on canvas
and give color to his imagination. He has also reviewed Kali Linux CTF Blueprints,
Packt Publishing. To find out more about him, visit www.abhishekdey.com.

I'd like to take this opportunity to thank Saptaparna Das, who has
always been the biggest support in my life and has always shown
me the right path.

http://mctrans.ce.ufl.edu/mct/
http://www.essie.ufl.edu/
www.abhishekdey.com

Anuj Gakhar is a software consultant based in the UK and has over 14 years of
experience in the industry. He currently works with technologies such as HTML5,
CSS3, and JavaScript with a heavy focus on BDD and TDD, although he started off
his career with server-side technologies such as ColdFusion and PHP. He has also
worked on several enterprise projects using Flex and ActionScript 3.

You can find his blogs at http://www.anujgakhar.com and follow him on Twitter
at @anujgakhar.

Steve Perkins is the author of Hibernate Search by Example, Packt Publishing, and has
over 15 years of experience working with Enterprise Java. He lives in Atlanta, GA,
USA, with his wife, Amanda, and their son, Andrew. Steve currently works as an
architect at BetterCloud, where he writes software for the Google Cloud Platform.

When he is not writing code, Steve plays the fiddle and guitar and enjoys
working with music production software. You can visit his technical blog at
http://steveperkins.net and follow him on Twitter at @stevedperkins.

http://www.anujgakhar.com
http://steveperkins.net

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library
of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com

Table of Contents
Preface 1
Chapter 1: Setting Up the Environment 7

Hello World 8
Using objects instead of primitives 11
Building our first directive 13

Installing Node.js and NPM 15
OS X 15
Windows 15
Linux (Ubuntu) 16

Managing client-side dependencies with Bower 16
Testing the Hello World application 19

Unit tests 19
Installing Karma and Jasmine 20
Integration / end-to-end tests with Protractor 24

Building the application 28
Running Protractor from Grunt 31

Managing the source code with Git 33
Summary 35

Chapter 2: AngularUI – Introduction and Utils 37
Downloading AngularUI 38
Building AngularUI-Utils 38
Integrating AngularUI-Utils into our project 40
uiMask directive 42
Event Binder 46
Keypress 50
jQuery Passthrough 52
Summary 56

Table of Contents

[ii]

Chapter 3: AngularUI – Extended 57
Embedding Google Maps 57

Markers on the map 61
Event Binding 62

Managing application dependencies with Bower 63
Modifying the .gitignore file 65

The calendar component 65
Using a filter for date formatting 67
Styling the calendar 70
Adapting the controller 71
Adding tests 73

Testing the controller 74
Testing the filter 75

Building the application 76
Summary 77

Chapter 4: Customizing and Exploring ng-grid 79
Setting up the project 80
Creating a service in AngularJS 81
The simple grid view 82
Grouping the grid 86
Using a master/details view 88
Summary 91

Chapter 5: Learning Animation 93
Setting up the project 94
Creating our first animation – a simple to-do list 95
Moving elements around on the page 101

Easing functions 103
Using LESS to scale entire animations 104
Using animate.css 106
Staggering animations 108

Understanding how staggering works 110
JavaScript-defined animations 110
Summary 113

Chapter 6: Using Charts and Data-driven Graphics 115
Understanding the importance of charts 116

Creating a bar chart 116
Making the bar chart data driven 118
Converting the bar chart into a widget 122

Creating a bar-chart directive 122

Table of Contents

[iii]

Using Angular Google chart tools 124
Building a dashboard using the GitHub REST API 127

Extending the dashboard 132
Summary 135

Chapter 7: Customizing AngularJS with CSS
and CSS Frameworks 137

The evolution of responsive design 138
Introducing media queries 139

@media 139
The @media expression 140

Better designs with Twitter Bootstrap 142
The foundation of your application 148
Summary 155

Chapter 8: AngularUI Bootstrap Development 157
Why use AngularUI Bootstrap? 158

Building a Project Management Application 158
Creating accordion 161
Creating tabs 164
Hiding less relevant content with collapse 169
Setting timelines with datepicker 172
Utilizing buttons 174
Converting priorities in the form of ratings 175
Notifying users with alert messages 176
Using carousel 177
A progress bar to show the status of an issue 181

Efficient suggestions with typeahead 182
Common housing for application-specific menus with a dropdown 183
Summary 185

Chapter 9: Customizing AngularUI Bootstrap 187
Introduction to external templates 187

Loading a template via the script tag 188
Loading a template via $templateCache 189
Using an external template 189

Customizing the AngularUI Bootstrap pagination widget 190
Extending the AngularUI Bootstrap tab widget 196
Summary 202

Table of Contents

[iv]

Chapter 10: Mobile Development Using AngularJS and Bootstrap 203
Why bother about mobile? 204
Building a bookmarking app with the mobile-first approach 204

Making the application dynamic 208
Allowing users to search through bookmarks 215
Crafting the application for mobile devices 217
Animation for better user experience 219

Mobile optimization for a better user experience 222
Periodic delay for tap events 222
Accelerated transitions and animations 222

Improving initial page load 227
Summary 235

Index 237

Preface
Many web development frameworks for single-page applications have come out
over the years. AngularJS is not just another one of them though; it is different in
important ways. Most importantly, it brings the fun back to client-side development.

How is AngularJS different? It is declarative, meaning that we, as developers,
do not have to manually manipulate the document object model (DOM) in the
browser. Instead, we describe how the data model is supposed to be rendered
on a page, and then, let AngularJS handle the rendering on the page when the
data model changes.

Through the two-way data binding, the data model updates automatically, for
example, when we type text on a page or click on a button. Other UI elements that
are also bound to the model will update. This might not sound like much before
seeing it in action, but it indeed makes all the difference between massive amounts
of jQuery DOM-manipulating code and a clean description of how the current
application state is supposed to look on the page. In practice, this results in much
cleaner and shorter code.

JavaScript is a very powerful language. It has it quirks though, and improper usage
of the language often results in messy code that is really difficult to understand and
very error prone. This is not so much with AngularJS. It encourages us to use the
good parts of the language, with an emphasis on concise modules and proper testing
strategies. Test-driven development is a powerful concept; it allows us to change the
code and see problems immediately instead of being embarrassed later on, when
users find problems on the page that we have overlooked.

There are other books that are really helpful in understanding these concepts more
deeply, most notably Mastering Web Application Development with AngularJS, Packt
Publishing. Nonetheless, we will have a look at these concepts in this book, as they
will be beneficial throughout the development process.

Preface

[2]

jQuery has proven really useful though because so many UI problems can readily
be solved by widgets that have been contributed by the community over the years.
These widgets should not directly be used in AngularJS because they involve direct
DOM manipulation, which is strongly discouraged in AngularJS.

This is where this book comes in: it aims to show you how to solve different kinds of
UI-related problems within AngularJS development. In this book, you will learn:

• How to use the AngularUI companion suite to solve common UI problems
• How to adapt and extend the AngularUI library to solve your

specific problem
• How to use UI Bootstrap, which allows you to quickly come up with an

appealing user interface using Twitter Bootstrap
• How to adapt UI Bootstrap to fit your specific needs
• How CSS works
• How to build custom directives when the companion suite we cover does not

solve your problem

What this book covers
Chapter 1, Setting Up the Environment, walks through how to set up a very basic but
fully tested sample app that will be used as a starting template throughout the rest
of the book. This chapter also covers automating the testing and building process.

Chapter 2, AngularUI – Introduction and Utils, introduces the AngularUI companion
suite and shows how to use the Keypress and Event Binder, jQuery Passthrough,
Validate and Mask, Highlight, and Fragment utilities.

Chapter 3, AngularUI – Extended, shows you how to use date, calendar, Google Maps,
and also the UI-Router modules.

Chapter 4, Customizing and Exploring ng-grid, shows you how to build appealing grids,
from basic examples to more sophisticated topics such as groupings, custom cell and
row templates, paging, mastering seven detail views, and cell selections/editing.

Chapter 5, Learning Animation, will show you how to animate things in AngularJS.
This includes fading page elements in and out and moving elements around,
all based on changes in the AngularJS data model.

Preface

[3]

Chapter 6, Using Charts and Data-driven Graphics, is a more advanced chapter that will
show you how to embed dynamic charts on a web page that reflect changes in the
AngularJS data model. For this, a custom directive is built.

Chapter 7, Customizing AngularJS with CSS and CSS Frameworks, gives you a
solid foundation in Cascading Style Sheets (CSS) and how CSS frameworks
can simplify the UI development process. This chapter lays the foundation
for Chapter 8, AngularUI Bootstrap Development, and particularly for Chapter 9,
Customizing AngularUI Bootstrap.

Chapter 8, AngularUI Bootstrap Development, explains how to seamlessly integrate
AngularJS and Twitter Bootstrap by utilizing the AngularUI Bootstrap project. The
Twitter Bootstrap CSS framework allows building an appealing and adaptive user
interface in much less time than what would be needed if we were to code
all this from scratch.

Chapter 9, Customizing AngularUI Bootstrap, shows you how to adapt UI Bootstrap for
specific needs. The default templates are appealing, but they might not always fit.
In this chapter, we will explore how to adapt the directives using custom templates.

Chapter 10, Mobile Development Using AngularJS and Bootstrap, explores how to build
a mobile single-page application, including touch gestures. It also covers how to
optimize for particular requirements of mobile user experience.

What you need for this book
Trying out the examples in the book is highly recommended. If you want to do so,
all you really need is your text editor or IDE of choice.

However, it is highly recommended to also install Node.js (http://nodejs.org),
NPM with Grunt (http://gruntjs.com), and Karma runner (http://karma-
runner.github.io). These will allow us to test our applications and to automate
tedious tasks. You will find a detailed description on how to do this in Chapter 1,
Setting Up the Environment.

Also, it is highly recommended to use a source control management system.
Although this not a topic in this book, we will briefly introduce Git (http://git-
scm.com) for this purpose when setting up the environment in Chapter 1, Setting Up
the Environment. Trust me, if you haven't used it yet, you really should. It will save
you from a headache (or two).

Other than that, you should bring some curiosity and an interest in building modern
web applications. We will be covering some interesting and fun topics.

http://nodejs.org
http://gruntjs.com
http://karma-runner.github.io
http://karma-runner.github.io
http://git-scm.com
http://git-scm.com

Preface

[4]

Who this book is for
This book is for anyone who is interested in solving UI problems with AngularJS.
Working knowledge of JavaScript, HTML, and CSS is assumed. You should also
have had some basic exposure to AngularJS; however, you might get along with
solid skills particularly.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The $scope object is an object that holds the data for the current environment,
such as inside a controller or inside a directive."

A block of code is set as follows:

body {
 font-family: sans-serif;
 font-size: 1.2em;
 margin: 50px;
}

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

'use strict';
angular.module('myApp', ['myApp.controllers', 'myApp.directives', 'ui.
utils'])
 .value('uiJqConfig', {
 tooltip: {
 placement: 'bottom'
 }
 });

Any command-line input or output is written as follows:

$ npm install

$ bower install

Preface

[5]

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Go ahead and select any issue to see its details in a View Issue tab."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you. The code samples for this title are also hosted
on GitHub at https://github.com/matthiasn/AngularUI-Code. The GitHub code
is maintained and updated, and is the author's preferred repository.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/matthiasn/AngularUI-Code

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Setting Up the Environment
In this chapter, we will set up the environment to work with AngularJS. We will do
a bit of this manually first to understand the concepts before using more automated
approaches. By the end of the chapter, you will have a decent understanding of the
AngularJS tool chain without having to rely on the magic of scaffolding tools, such as
Yeoman (http://yeoman.io). There is nothing wrong whatsoever with using tools
such as Yeoman later on, but there will be times when a deeper understanding serves
you well.

We will follow the tradition of building a Hello World application. It would
be rather boring to only have this application say hello to the world; instead, let's
build an application in which we can enter a name to be greeted with. Let's see the
two-way data binding in action by automatically updating another element on the
page when the name changes.

Then, we will also wrap the markup for this example in a very basic directive that we
will develop together. I have the impression that somehow writing custom directives
is seen as a very advanced topic. Well, so be it; it will be all the more gratifying to get
a basic introduction over with in this initial chapter.

Once this is done, we will build the scaffolding around this Hello World application
by giving it a proper and meaningful structure that will allow us to use the result
as a template for subsequent chapters. This scaffolding will already contain a test
or two plus the means to build the application (bundling JavaScript in one file,
for example).

You can download the source for this chapter; however, I cannot recommend it
highly enough to actually go through the effort of typing these few lines of code.
This always really helps me retain things, which I don't find all that surprising.
After all, reading and then typing engages more parts of the brain than just
reading something. However, ultimately it is, of course, up to you.

http://yeoman.io

Setting Up the Environment

[8]

Even if you do choose to download the source code, please do yourself a favor and
play around with it. Change things, break things, and fix them; all this will enable
you to learn more in a shorter span of time.

In particular, in this chapter, we will:

• Build a very basic Hello World application
• Refine this application by using an object as the model and an additional

input field
• Create our first directive
• Install Node.js and NPM (we'll need these for the subsequent tasks)
• Install and use Bower
• Write unit tests and run them using Karma
• Write integration tests using Protractor
• Create a build system with Grunt.js
• Manage client-side dependencies with Bower
• Learn how to use Git as a version control system

So, without further ado, let's get started.

Hello World
I assume you have used AngularJS before. If not, you may want to go through the
tutorials at http://angularjs.org to get a better understanding of the framework,
particularly the famed two-way data binding. You might get along well by just
following the examples in this chapter too.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.
The code samples for this title are also hosted on GitHub at https://
github.com/matthiasn/AngularUI-Code. The GitHub code is
maintained and updated, and is the author's preferred repository.

http://angularjs.org
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/matthiasn/AngularUI-Code
https://github.com/matthiasn/AngularUI-Code

Chapter 1

[9]

Let's start with the markup; the simplest HTML5 plus some basic CSS for the
styling will suffice for now. Create a directory anywhere you want, create an src
subdirectory, and put a file named index.html with the following content in it.
We will use the input field later to allow the user to input a name:

<!DOCTYPE html>
 <head>
 <meta charset="utf-8">
 <title>Hello World</title>
 <link rel="stylesheet" href="css/main.css">
 </head>
 <body>
 <div>Hello World!</div>
 <input></input>
 </body>
</html>

Then, create a subdirectory named css with a file named main.css and with the
following content:

body {
 font-family: sans-serif;
 font-size: 1.2em;
 margin: 50px;
}

Okay, this will do for the moment. Now, let's see how we can make this interactive
by adding some AngularJS code. First, you need to download AngularJS, which you
can find at https://angularjs.org/. Download the zip archive; we will need a few
files from this. The latest version at the time of writing this book was v1.2.21.

You can also use a Content Delivery Network (CDN) instead to serve the
angular.js files. Google, for example, hosts the AngularJS files; check
out this link:
https://developers.google.com/speed/libraries/
devguide#angularjs

Using a CDN can be advantageous when the file is already in the cache of
the user's browser, as it will then reduce the load time for the application.

Now, create a js subdirectory; create a vendor subdirectory inside the js directory,
in which you place the angular.js file.

https://angularjs.org/
https://developers.google.com/speed/libraries/devguide#angularjs
https://developers.google.com/speed/libraries/devguide#angularjs

Setting Up the Environment

[10]

Then, create two empty files named app.js and controllers.js inside the js
subdirectory. The directory structure of our application now looks as follows:

At this point, it does not matter whether you use the minified version of
AngularJS or not. In production, it is highly recommended that you use
the minified version (of any library) though, as this will reduce the page
load, particularly on slow mobile connections.

Then, add the following to app.js:

'use strict';
angular.module('myApp', ['myApp.controllers']);

The preceding code creates an AngularJS module named myApp and requires the
myApp.controllers module, which we will create in the next step by adding the
following code to controllers.js:

'use strict';
angular.module('myApp.controllers', []).
 controller('helloWorldCtrl', function ($scope) {
 $scope.name = "World";
 });

The preceding code creates the myApp.controllers module with the helloWorldCtrl
controller. This controller holds the $scope object, which is the (admittedly simple)
model we are creating for the application. The name variable on the $scope object
will be used for the two-way data binding that AngularJS is famous for.

With the files in the right places, let's edit the index.html file so that AngularJS can
teach our browser some two-way data binding tricks:

<!DOCTYPE html>
 <head>
 <meta charset="utf-8">
 <title>Hello World</title>
 <link rel="stylesheet" href="css/main.css">

Chapter 1

[11]

 </head>
 <body data-ng-app="myApp">
 <div data-ng-controller="helloWorldCtrl">
 <div>Hello {{ name }}!</div>
 <input data-ng-model="name"></input>
 </div>
 <script src="js/vendor/angular.js"></script>
 <script src="js/app.js"></script>
 <script src="js/controllers.js"></script>
 </body>
</html>

If you want to use a CDN, consider this line:
<script src="js/vendor/angular.js"></script>

Replace it with the following code:
<script src="//ajax.googleapis.com/ajax/libs/
angularjs/1.2.21/angular.min.js"></script>

This is it for the first version of our Hello World example. Open index.html in the
browser and you can see two-way data binding in action, as follows:

You can change the name in the input field, and the text in the header will update
automatically and immediately, as follows:

Using objects instead of primitives
Let's change one more thing that will save us from trouble later. Data models should
reference objects and not primitives, such as a string, because the latter can create
a headache when used in directives. Directives have a child $scope object that
receives the model property by reference in the case of an object but as a copy when
a primitive value is used, in which case, we might introduce difficult-to-spot errors.

Setting Up the Environment

[12]

You might ask what this $scope object is. The $scope object is an object
that holds the data for the current environment, such as inside a controller
or inside a directive. Now, you can pass a property of the controller's
$scope object into the directive, which then becomes a property of the
directive's own $scope object. For this, it is important to understand
how JavaScript deals with parameter passing. When you pass an object
to a function, the object is passed by reference, meaning that wherever
this passed object is modified, these modifications reach back the sender.
When passing objects to directives, this is exactly the behavior we want.
For example, we have a directive to modify personal details, and we pass
a person object from the controller to this directive. When we now edit
the details, we expect the change to reach the controller. However, when
we pass primitives such as Strings or Numbers, they are copied instead
of being passed by reference. When we modify these in the directive, the
changes will not be reflected in the controller's $scope object.

In controllers.js, we only need to change one line, introducing an object with
properties for the first and last names:

'use strict';
angular.module('myApp.controllers', []).
 controller('helloWorldCtrl',function ($scope) {
 $scope.name = { first: "Jane", last: "Doe" };
 });

In index.html, let's create an additional field so that each can be edited separately:

<!DOCTYPE html>
 <head>
 <meta charset="utf-8">
 <title>Hello World</title>
 <link rel="stylesheet" href="css/main.css">
 </head>
 <body data-ng-app="myApp">
 <div data-ng-controller="helloWorldCtrl">
 <h1>Hello {{ name.first }} {{ name.last }}!</h1>
 <input data-ng-model="name.first"></input>
 <input data-ng-model="name.last"></input>
 </div>
 <script src="js/vendor/angular.js"></script>
 <script src="js/app.js"></script>
 <script src="js/controllers.js"></script>
 </body>
</html>

Chapter 1

[13]

Building our first directive
With these changes, we are well prepared to create a basic custom directive.

A directive is a way to create a custom element with its own behavior,
which we can then use later as a building block in our application. One
example of such a directive could be a login form. In this case, we will just
create a directive for greeting us, with the div for both the greeting and
input fields. Directives can be of arbitrary complexity, and we can use
other directives inside the markup of a directive that we define.

For this, add a directives.js file to the js folder, with the following content:

'use strict';
angular.module('myApp.directives', [])
.directive('helloWorld', function () {
 return {
 restrict: 'AE',
 scope: { name: "=name" },
 template:
"<h1>Hello {{ name.first }} {{ name.last }}!</h1>" +
 "<input data-ng-model='name.first'></input>" +
 "<input data-ng-model='name.last'></input>"
 }
 });

AngularJS will now place the markup in the previous template property, inside the
element that uses this directive. This might not seem terribly useful yet, but it will be
when elements are repeated, for example.

Note that we can also load the markup from a template file, which is
much more convenient than the previous multiline string, particularly
as the directive gets more complex. However, for this simple example,
this should serve us well.

The index.html file now becomes simpler than before:

<!DOCTYPE html>
 <head>
 <meta charset="utf-8">
 <title>Hello World</title>
 <link rel="stylesheet" href="css/main.css">
 </head>
 <body data-ng-app="myApp">

Setting Up the Environment

[14]

 <div data-ng-controller="helloWorldCtrl">
 <div hello-world name="name"></div>
 </div>
 <script src="js/vendor/angular.js"></script>
 <script src="js/app.js"></script>
 <script src="js/controllers.js"></script>
 <script src="js/directives.js"></script>
 </body>
</html>

Older versions of Chrome do not support the loading of the template
when the index.html file is loaded from the filesystem; instead, Chrome
complains of cross-origin requests. In order to quickly set up a web
server, you can use SimpleHTTPServer from Python, which comes with
OS X and Linux. All you need for this is to run the following command in
the command line inside the application folder:
python -m SimpleHTTPServer 8000

Of course, you can use any other server to serve your folder, but this is
really simple and often useful.

Nice! We just built our first directive. Much more can be done with them; directives
are a really powerful concept for encapsulating UI elements. However, it's a start.

Directives can apply to elements, classes, and attributes. In this case, we
chose an attribute named hello-world, as follows:
 <div hello-world name="name"></div>

We could use an element, shown as follows; try it out by adding this line
below the previous line:
 <hello-world name="name"></hello-world>

All we need to change now is this line in directives.js:
 restrict: 'AE',

Here, A means attribute, E stands for element, and C stands for class.
Check out step 3a in the accompanying source code to see both versions
side by side.
However, using custom elements might not work in older browsers. You
have been warned!

Chapter 1

[15]

Installing Node.js and NPM
We will need to install a couple of additional tools to test and build our application.
The foundation for this will be Node.js and NPM, the node package manager.
Node.js is a platform built on top of V8, Google's JavaScript runtime, which is
also used in Chrome. You can also build server-side, networked applications with
Node.js, but here, it will only power our test and build the system. For now, think
of it as a way to run the JavaScript code outside the browser. NPM is the package
manager for Node.js, which makes it quite simple to install additional functionality.
It comes bundled with Node.js.

The easiest way to install Node.js is to follow the instructions at http://nodejs.org.

OS X
On a Mac, you could either run the aforementioned installer or you could use
Homebrew, a package manager for many open source libraries.

More information on Homebrew can be found at http://brew.sh/. Run the
following command in the Terminal after installing Homebrew:

brew install npm

The previous command will automatically install Node.js as a dependency of NPM
if necessary.

Shell commands will run in a Terminal window. If you haven't used the Terminal
before, go to the magnifying glass icon in the upper-right corner of your screen
and type Terminal. You will need to open a new window after the installation
is complete in order to run Node or NPM from a Terminal window.

Windows
On Windows, the easiest way to install Node.js is to run the Windows installer from
http://nodejs.org. This installer, by default, now also installs NPM.

Command-line commands will run in the Windows command prompt. On Windows
7, this is available by clicking on the home button and entering cmd in the search box.
You will need to open a new command-line window after the installation in order to
be able to run Node or NPM from the command line.

http://nodejs.org
http://brew.sh/
http://nodejs.org

Setting Up the Environment

[16]

Linux (Ubuntu)
On Ubuntu, there are two ways of installing Node and NPM, as follows:

1. Preferred: download the source package from the Node.js web page
and build it yourself (this may take a few minutes with a lot of output).
This way, you are guaranteed to have the latest version. For this,
perform the following steps:

1. Uncompress the package.
2. Open the folder in the Terminal.
3. Inside the directory, run the following commands:

 # ./configure

 # make

 # sudo make install

4. You may have to install G++ first:
 # sudo apt-get install g++

2. You can also install NPM through Ubuntu's package manager by running the
following command in the Terminal:

sudo apt-get install npm

This will install Node.js as a dependency of NPM as well. Afterwards,
if you want to upgrade NPM itself, then run the following command:
sudo npm install –g npm

While this approach works, you may get an outdated version; so, the first
approach is generally recommended.

Managing client-side dependencies
with Bower
Earlier in this chapter, we downloaded AngularJS and placed the angular.js
file in our directory structure manually. This was not so bad for a single file,
but this process will very soon become tedious and error-prone when dealing
with multiple dependencies.

Luckily, there is a great tool for managing client-side dependencies, and it can be
found at http://bower.io.

http://bower.io

Chapter 1

[17]

Bower allows us to record which dependencies we need for an application.
Then, after downloading the application for the first time, we can simply run
bower install and it will download all the libraries and assets specified in the
configuration file for us.

First, we will need to install Bower (potentially with sudo):

npm install -g bower

Now, let's try it out by running the following command:

bower install angular

You will notice an error message when running the previous
command on a machine that does not have Git installed. In this
case, please head to the final part of this chapter and follow the
installation instructions.

Okay, this will download AngularJS and place the files in the app/bower_
components/ folder. However, our remaining sources are in the src/ folder,
so let's store the Bower files here as well. Create a file named .bowerrc in the
project root, with these three lines in it:

{
 "directory": "src/bower"
}

This will tell Bower that we want the managed dependencies inside the src/bower/
folder. Now, remove the app/ folder and run the earlier bower install command
one more time. You should see the AngularJS files in the src/bower/ folder now.

Now, we said we wanted to record the dependencies in a configuration file so that
we can later run bower install after downloading/checking out the application.

Why can't we just store all the dependencies in our version control
system? Of course, we can, but this would bloat the repository a lot.
Instead, it is better to focus on the artifacts that we created ourselves
and pull in the dependencies when we check out the application for
the first time.

We will create the configuration file now. We could do this by hand or let Bower do
it for us. Let's do the latter and then examine the results:

bower init

Setting Up the Environment

[18]

This will start a dialog that guides us through the initial Bower project setup process.
Give the application a name, version number, and description as you desire. The
main file stays empty for now. In the module type selection, just press Enter on the
first option. Whenever you see something in square brackets, for example, [MIT],
this is the default value that will be used when you simply press Enter. When we
confirm that the currently installed dependencies should be set as dependencies,
AngularJS will automatically appear as a project dependency in the configuration
file if you have followed the previous instructions. Finally, let's set the package as
private. There is no need to have it accidentally appear in the Bower registry.
Once we are done, the bower.json file should look roughly as follows:

{
 name: 'Hello World',
 version: '0.0.0',
 homepage: 'https://github.com/matthiasn/AngularUI-Code',
 authors: ['Matthias Nehlsen <mn@nehlsen-edv.de>'],
 description: 'Fancy starter application',
 license: 'MIT',
 private: true,
 ignore: [
 '**/.*',
 'node_modules',
 'bower_components',
 'src/bower',
 'test',
 'tests'
],
 dependencies: {
 angular: '~1.2.22'
 }
}

Now that we have a dependency management in place, we can use AngularJS from
here and delete the manually downloaded version inside the js/vendor/ folder.
Also, edit index.html to use the file from the bower/ directory. Find the following
line of code:

 <script src="js/vendor/angular.js"></script>

Replace it with this:

 <script src="bower/angular/angular.js"></script>

Now, we have a package manager for client-side dependencies in place. We will use
more of this in the next step.

Chapter 1

[19]

Testing the Hello World application
We might be tempted to leave the application as it is. It works as expected; we can
convince ourselves of this easily by changing the name and then observing if the
rendering changes as expected. However, this is not a viable approach for more
complex applications. In those scenarios, we can easily break something and then
overlook the problem, only to be reminded by customers that something is not
working as expected. This can always happen, even in an application with decent
test coverage. However, we can dramatically decrease the chance of being called at
night because something broke by implementing a proper test strategy, consisting of
both unit and integration tests.

Unit tests
Let's start with unit tests for the controller and the directive we just built.
Unit tests, as the name suggests, test the individual units of an application,
as opposed to integration tests. We will take a look at those later.

We will need additional files and directories for the tests that we are about to
create. Our test runner script and some of the directory structure are inspired
by the angular-seed project (https://github.com/angular/angular-seed).

Create additional files and directories so that your project structure resembles the
following. Note that the src/bower directory contains additional files and folders,
but you can ignore this as these are managed by Bower:

https://github.com/angular/angular-seed

Setting Up the Environment

[20]

We will need angular-mocks.js to run the tests. Now that we have Bower in
place, adding angular-mocks to our project becomes very simple; just run this
single command:

bower install --save angular-mocks

The preceding command will not only download the dependency, but thanks to the
--save option, it will also add it to the bower.json file as a project dependency.

Installing Karma and Jasmine
Karma is a test runner provided by the AngularJS team. More on Karma can be
found at http://karma-runner.github.io/0.12/index.html.

Karma allows us to run all the tests that we write against our codebase so that we
can see at a glance when we break something. These tests can be run either once or
on a continuous basis so that they always run again when a file changes.

The actual tests will be written with the help of Jasmine, a JavaScript testing library.
More on Jasmine can be found at http://jasmine.github.io.

We will see tests written with Jasmine soon; however, we first need to install Karma
and karma-jasmine plus the browser-specific test launchers. From inside your project
directory, run the following commands:

npm install karma
npm install karma-jasmine
npm install karma-chrome-launcher
npm install karma-firefox-launcher

This will install Karma and karma–jasmine plus the Firefox and Chrome launchers
locally, inside the node_modules subdirectory. The launchers are just examples;
there are more for all the relevant browsers on the market. For the demonstration
now, let's use these two.

We could run Karma from inside a nested subdirectory; however, it is not very
convenient; it would be better to always have the command available anywhere.
We can achieve this by installing karma-cli as follows:

npm install –g karma-cli

Note that the -g option installs Node modules globally. The exact location of where
these modules are installed depends on your platform and configuration. You might
have to run the previous command with superuser privileges, as follows, depending
on your local configuration:

sudo npm install -g karma-cli

http://karma-runner.github.io/0.12/index.html
http://jasmine.github.io

Chapter 1

[21]

Only use sudo when the command fails.

With these tools in place, let's edit the karma.conf.js file so that we can run the unit
tests in both Firefox and Chrome:

module.exports = function(config){

 config.set({

 basePath : '../',

 files : [

 'src/bower/angular/angular.js',

 'src/bower/angular-mocks/angular-mocks.js',

 'src/js/**/*.js',

 'test/unit/**/*.js'

],

 autoWatch: true,

 frameworks: ['jasmine'],

 browsers : ['Chrome', 'Firefox'],

 plugins : ['karma-chrome-launcher',

 'karma-firefox-launcher',

 'karma-jasmine']

})};

We specify which files to load and which framework and browsers to use when
running the tests. Note that files and subdirectories are matched using asterisks.
Then, we specify that autoWatch is true, meaning that Karma will watch for
filesystem changes and rerun whenever a file has changed. Thus, we get a very
tight feedback loop. When we break something, we will notice it immediately.

We also specify that we want to use Jasmine as the testing framework. Other
frameworks can also be used here; however, Jasmine is a good choice and the one
we will be using for this book. Just note that you could use others here. Finally, we
specify the plugins, which have the same names as the NPM modules we loaded
earlier. Here, you could, for example, delete the Firefox launcher if you only wanted
to run the tests in Chrome or vice versa.

Now, we will edit the test.sh file:

#!/bin/bash
BASE_DIR=`dirname $0`
echo ""
echo "Starting Karma Server (http://karma-runner.github.io)"
echo "---"
karma start $BASE_DIR/../conf/karma.conf.js $*

Setting Up the Environment

[22]

Now all that remains to make the test script runnable is the following command in
the Terminal inside our main folder, chmod +x scripts/test.sh (this applies to
both Mac OS X and Linux). On Windows, you create a test.bat batch file instead:

@echo off

set BASE_DIR=%~dp0

karma start "%BASE_DIR%\..\conf\karma.conf.js" %*

Let's now create the test for the controller by adding the following to the
test/unit/controllers.spec.js file:

'use strict';
describe('controller specs', function() {
 var $scope;

 beforeEach(module('myApp.controllers'));

 beforeEach(inject(function($rootScope, $controller) {
 $scope = $rootScope.$new();
 $controller('helloWorldCtrl', {$scope: $scope});
 }));

 it('should create "name" model with first name "Jane"', function() {
 expect($scope.name.first).toBe("Jane");
 });
});

The test is contained in the describe block, in which we create a fake $scope object
and then pass this $scope object to an instance of the helloWorldCtrl controller.
As the it-block suggests, we expect the $scope object to now have a name model
that contains an object with the first property that is equal to the string Jane. If this
condition is true, the test passes.

Next, we want to create a simple test for the hello-world directive. Add the following
to the test/unit/directives.spec.js file:

'use strict';
describe('specs for directives', function() {
 beforeEach(module('myApp.directives'));
 var $scope;
 beforeEach(inject(function($rootScope) {
 $scope = $rootScope.$new();
 $scope.name = {first: "John", last: "Doe"};
 }));

Chapter 1

[23]

 describe('hello-world', function() {
 it('should contain the provided name', function() {
 inject(function($compile) {
 var element = $compile('<div hello-world name="name"></div>')
($scope);
 $scope.$digest();
 expect(element.html()).toContain("John");
 });
 });
 });
});

The previous test creates a $scope object, this time with a name model whose first
property equals John. We compile an HTML snippet that contains the directive
inside a <div> tag, passing the mock $scope object. After calling $scope.$digest(),
we would expect the compiled element to contain the string John, and running the
test as described later will show that this expectation is indeed warranted.

Now, you can run the test by typing the following in the Terminal inside our
application folder. This is how the output looks on OS X:

$ scripts/test.sh

Starting Karma Server (http://karma-runner.github.io)

--

INFO [karma]: Karma v0.10.2 server started at http://localhost:9876/

INFO [launcher]: Starting browser Chrome

INFO [launcher]: Starting browser Firefox

INFO [Firefox 24.0.0 (Mac OS X 10.8)]: Connected on socket […]

INFO [Chrome 30.0.1599 (Mac OS X 10.8.5)]: Connected on socket […]

Firefox 24.0.0 (Mac OS X 10.8): Executed 2 of 2 SUCCESS (0.142 secs /
0.025 secs)

Chrome 30.0.1599 (Mac OS X 10.8.5): Executed 2 of 2 SUCCESS (0.541 secs /
0.036 secs)

TOTAL: 4 SUCCESS

On Ubuntu, the output looks very similar. The following is the output when the test
is configured to only run Firefox:

$ scripts/test.sh

Starting Karma Server (http://karma-runner.github.io)

--

INFO [karma]: Karma v0.12.21 server started at http://localhost:9876/

INFO [launcher]: Starting browser Firefox

Setting Up the Environment

[24]

INFO [Firefox 31.0.0 (Ubuntu)]: Connected on socket […]

Firefox 31.0.0 (Ubuntu): Executed 2 of 2 SUCCESS (0.054 secs / 0.041
secs)

This concludes the unit testing for our simple example. In larger applications, the test
scenarios will, of course, be much more complex and potentially complicated, but the
principles remain the same.

Integration / end-to-end tests with Protractor
Unit testing is a great start towards feeling more secure that our application will
work even after changing parts of the code base. However, unit testing does not
cover the entirety of the application. Let's take our simple application that we
have written so far as an example. What else can we test beyond looking at
individual parts?

We could test interactions with the application and then observe if it reacted the
way we expected. In this very simple example, this could be done by opening
the application in the browser, changing the first and last names, and then seeing
whether the displayed greeting changed accordingly.

So far, we don't need tools for this; we can simply do this by hand. However, it gets
increasingly tedious as the application grows, especially when we want to test this
interaction in multiple browsers.

Luckily, there is a tool for this called Protractor, which is also built by the AngularJS
team. You can find out more about Protractor at https://github.com/angular/
protractor.

Let's install and configure Protractor according to the tutorial on its GitHub page,
and apply the tutorial to our own code. We start with the installation of the module,
which will also install webdriver-manager as a dependency, and then update it:

npm install –g protractor

webdriver-manager update

Once again, you might have to run the previous commands with superuser
(sudo) privileges. Once this is complete, we can start the server with the
following command:

webdriver-manager start

https://github.com/angular/protractor
https://github.com/angular/protractor

Chapter 1

[25]

Note that you will need a Java runtime on your system in order to
run webdriver. You can obtain this from http://java.com/en/
download/index.jsp.
On a Mac, you don't have to worry about this. If you don't have a JVM
(Java Virtual Machine) installed yet, the system will notice this and ask
you whether it should download it for you.
On Ubuntu, you can also run the following command instead of using the
previous installer:
sudo apt-get install default-jre

This will start a server application that controls different browsers. We can now write
test scenarios that will call this server application, which will in turn start browsers
as specified, run the tests, and allow us to observe if the results are as desired.

We will write such a test soon, but first, we need to get another prerequisite installed:
a simple local web server that serves our project over HTTP: http-server.

This is an NPM module that gives us a little tool that we can then call on the
command line and that will then serve the content of the working directory over
HTTP, on a specified port. We install it as follows (potentially using sudo):

npm install -g http-server

Let's try it out right away by starting the following from inside our project directory:

http-server -a localhost -p 8000

The previous command will start the server on port 8000 and only listen on the
localhost interface. You could leave out the –a localhost option, but this might
irritate your firewall. Once this is running, you can open the following URL in
the browser:

http://localhost:8000/src/

If you have started http-server from the root of the project, you should now see our
application loaded and working.

http://java.com/en/download/index.jsp
http://java.com/en/download/index.jsp

Setting Up the Environment

[26]

Now, let's write a simple test only to check the title of the page, just to check that the
tool chain is working. For this, create a file named protractor.conf.js inside the
conf folder with the following content:

exports.config = {
 seleniumAddress: 'http://localhost:4444/wd/hub',
 specs: ['../test/protractor/spec.js'],
 capabilities: {
 browserName: 'firefox'
 }
}

The previous configuration reads as follows:

• The address of our selenium instance (the webdriver) is the same
that the server displays when we started it about a page ago,
http://localhost:4444/wd/hub.

• We will run a single test file for now, spec.js, in the test/protractor
directory of the project root. We will create this one next.

• We will run the test in only one browser for now; let's use Firefox this time.
Here, you could, for example, use Chrome instead or select one of the many
other options. We could also use multiple browsers for each and every test.
The Protractor documentation has all the required information.

Now, create spec.js inside the test/protractor folder as follows:

 describe(hello world app', function() {
 it('should have a title', function() {
 browser.get('http://localhost:8000/src/');
 expect(browser.getTitle()).toEqual('Hello World');
 });
});

The previous test will open a browser, Firefox in the case of the current
configuration; open the page at http://localhost:8000/src/ and check
if the title of the page is Hello World, as expected, let's run it:

protractor conf/protractor.conf.js

We should see the following result:

Using the selenium server at http://localhost:4444/wd/hub

Finished in 0.315 seconds

1 test, 1 assertion, 0 failures

Chapter 1

[27]

Now, change the title of the page or the expected string in the test, run the test again,
and you will see that the output changes:

Using the selenium server at http://localhost:4444/wd/hub

Failures:

 1) angularjs homepage should have a title

 Message:

 Expected 'Hello World' to equal 'Hello Worlds'.

 Stacktrace: [...]

Finished in 0.307 seconds

1 test, 1 assertion, 1 failure

Great, we can not only see that something went wrong but also exactly which
expectation failed.

Now, the previous test alone is not all that useful; let's add some interaction by
adding the following to the end of spec.js:

describe('name fields', function() {
 it('should be filled out and editable', function() {
 browser.get('http://localhost:8000/src/');

 var h1 = element.all(by.css('h1')).first();
 var fname = element.all(by.tagName('input')).first();
 var lname = element.all(by.tagName('input')).get(1);
 expect(h1.getText()).toEqual("Hello Jane Doe!");
 expect(fname.getAttribute('value')).toEqual("Jane");
 expect(lname.getAttribute('value')).toEqual("Doe");

 fname.clear().sendKeys('John');
 lname.clear().sendKeys('Smith');

 expect(h1.getText()).toEqual("Hello John Smith!");
 expect(fname.getAttribute('value')).toEqual("John");
 expect(lname.getAttribute('value')).toEqual("Smith");
 });
});

Setting Up the Environment

[28]

Let's go through the previous additional test:

• We open a browser window.
• We create variables for the elements because we will use each variable

multiple times. Note that there are multiple ways to select elements,
for example, here we are using both by.css and by.tagName.

• We expect the elements in their initial state to have the correct values.
• We clear the input elements and enter text through the sendKeys method.
• We expect the elements to have the correct values after the model has

changed through our text input.

The previous section has really only scratched the surface of what we can do with the
very powerful Protractor. Please refer to the useful and detailed documentation and
tutorial to learn more. It will be time well spent.

Building the application
Preparing an application for production environments can be a tedious task.
For example, it is highly recommended that you create a single file that contains all
the JavaScript needed by the application instead of multiple small files, as this can
dramatically reduce page load time, particularly on slow mobile connections with
high latency. It is not feasible to do this by hand though, and it is definitely no fun.

This is where a build system really shines. We are going to use Grunt for this.
A single command in the Terminal will run the tests and then put the necessary
files (with a single, larger JavaScript file) for the application in the dist/ folder.
Many more tasks can be automated with Grunt, such as minifying the JavaScript,
automating tasks by watching folders, running JsHint (http://www.jshint.com),
but we can only cover a fairly basic setup here.

Let's get started. We need to install Grunt first (possibly with sudo):

npm install –g grunt-cli

Then, we create a file named package.json in the root of our application folder with
the following content:

{
 "name": "my-hello-world",
 "version": "0.1.0",
 "devDependencies": {
 "grunt": "~0.4.5",
 "grunt-contrib-concat": "~0.5.0",

http://www.jshint.com

Chapter 1

[29]

 "grunt-contrib-copy": "~0.5.0",
 "grunt-targethtml": "~0.2.6",
 "grunt-karma": "~0.8.3",
 "karma-jasmine": "~0.1.5",
 "karma-firefox-launcher": "~0.1.3",
 "karma-chrome-launcher": "~0.1.4"
 }
}

This file defines the NPM modules that our application depends on. These
will be installed automatically by running npm install inside the root of our
application folder.

Next, we define which tasks Grunt should automate by creating Gruntfile.js,
also in the root of our application folder, with the following content:

module.exports = function(grunt) {
 grunt.initConfig({
 pkg: grunt.file.readJSON('package.json'),
 concat: {
 options: {
 separator: ';'
 },
 dist: {
 src: ['src/js/vendor/*.js','src/js/*.js'],
 dest: 'dist/js/<%= pkg.name %>.js'
 }
 },
 copy: {
 main: {
 src: 'src/css/main.css',
 dest: 'dist/css/main.css',
 },
 },
 targethtml: {
 dist: {
 files: {
 'dist/index.html': 'src/index.html'
 }
 }
 },
 karma: {
 unit: {
 configFile: 'conf/karma.conf.js',
 singleRun: true

Setting Up the Environment

[30]

 }
 }
 });
 grunt.loadNpmTasks('grunt-contrib-concat');
 grunt.loadNpmTasks('grunt-contrib-copy');
 grunt.loadNpmTasks('grunt-targethtml');
 grunt.loadNpmTasks('grunt-karma');
 grunt.registerTask('dist', ['karma', 'concat', 'targethtml',
'copy']);
};

This file contains different sections that are of interest. In the first part, the
configuration object is created, which defines the options for the individual
modules. For example, the concat section defines that a semicolon should be
used as a separator when it merges all JavaScript files into a single file inside the
dist/js folder, with the name of the application. It is important that angular.js
comes before the application code inside this file, which is guaranteed by the order
inside the src array. Files in the vendor subfolder are processed first with this order.

The copy task configuration is straightforward; here, we only copy a single CSS file
into the dist/css folder. We will do more interesting things with CSS later when
talking about CSS frameworks.

The targethtml task processes the HTML so that it only loads the one concatenated
JavaScript file. For this to work, we need to modify index.html, as follows:

<!DOCTYPE html>
 <head>
 <meta charset="utf-8">
 <title>Angular UI Template</title>
 <link rel="stylesheet" href="css/main.css">
 </head>
 <body data-ng-app="myApp">
 <div data-ng-controller="helloWorldCtrl">
 <div hello-world name="name"></div>
 </div>
 <!--(if target dev)><!-->
 <script src="js/vendor/angular.js"></script>
 <script src="js/app.js"></script>
 <script src="js/controllers.js"></script>
 <script src="js/directives.js"></script>
 <!--<!(endif)-->
 <!--(if target dist)><!-->
 <script src="js/my-hello-world.js"></script>
 <!--<!(endif)-->
 </body>
</html>

Chapter 1

[31]

This, together with the configuration, tells the targethtml task to only leave the
section for the dist task inside the HTML file, effectively removing the section that
will load individual files.

You might be tempted to think that it will not make much of a difference
if one or multiple files need to be retrieved when the page is loaded. After
all, the simple concatenation step does not reduce the overall size of what
needs to be loaded.
However, particularly on mobile networks, it makes a huge difference
because of the latency of the network. When it takes 300 ms to get a single
response, it soon becomes noticeable whether one or ten files need to be
loaded. This is still true even when you get the maximum speed in 3G
networks. LTE significantly reduces latency, so the difference is not quite
as noticeable. The improvements with LTE only occur in ideal conditions,
so it is best not to count on them.

The karma section does nothing more than tell the karma task where to find the
previously defined configuration file and that we want a single test run for now.
Next, we tell Grunt to load the modules for which we have created the configuration,
and then we define the dist task, consisting of all the previously described tasks.

All that remains to be done is to run grunt dist in the command line when
we want to test and build the application. The complete AngularJS web
application can then be found in the dist/ folder.

Running Protractor from Grunt
Let's also run Protractor from our grunt task. First, we need to install it as follows:

npm install grunt-protractor-runner --save-dev

This will not only install the grunt-protractor-runner module, but also add it
as a dependency to package.json so that when you, for example, check out your
application from your version control system (covered next) on a new computer and
you want to install all your project's dependencies, you can simply run:

npm install

If you follow along using the companion source code instead of typing
the source code yourself, you will need to run npm install again in the
last step's folder.

Setting Up the Environment

[32]

Next, edit Gruntfile.js so that from the karma section, it looks as follows:

 karma: {
 unit: {
 configFile: 'conf/karma.conf.js',
 singleRun: true
 }
 },
 protractor: {
 e2e: {
 options: {
 configFile: 'conf/protractor.conf.js'
 }
 }
 }
 });
 grunt.loadNpmTasks('grunt-contrib-concat');
 grunt.loadNpmTasks('grunt-contrib-copy');
 grunt.loadNpmTasks('grunt-targethtml');
 grunt.loadNpmTasks('grunt-karma');
 grunt.loadNpmTasks('grunt-protractor-runner');
 grunt.registerTask('dist', ['karma', 'protractor', 'concat',
'targethtml', 'copy']);
};

Now, Protractor will also run every single time we call grunt dist to build
our application. The build process will be stopped when either the karma or the
protractor step reports an error, keeping us from ever finding code in the dist
folder when fails tests.

Note that we will need to have both the webdriver-manager and
http-server modules running in separate windows for the grunt
dist task to work. As a little refresher, these were started as follows:
webdriver-manager start

http-server –a localhost –p 8000

Both can also be managed by Grunt, but that makes the configuration
more complex and it would also mean that the task runs longer because
of startup times. These can also be part of a complex configuration that
watches folders and runs and spawns all the required tasks automatically.
Explore the Grunt documentation further to tailor an environment
specific to your exact needs.

Chapter 1

[33]

We will expand on our basic usage of Grunt and do more sophisticated tasks later,
for example, to create a single, minified CSS file using a CSS framework or to apply
minification to the concatenated JavaScript file when further optimizing for mobile
web applications in Chapter 10, Mobile Development Using AngularJS and Bootstrap.
Now that you know how the build system works in general, you may already want
to explore more advanced features. The project's website is a good place to start
(http://gruntjs.com).

Managing the source code with Git
You are probably using Git already. If not, you really should. You need to have it
installed for working with Bower anyway, so why not use it for your own projects?.
Git is a distributed Version Control System (VCS). I cannot imagine working
without it, neither in a team nor when working on a project myself. We don't have
the space to cover Git for team development here in either case; this topic can easily
fill an entire book. However, if you are working in a team that uses Git, you will
probably know how to use it already. What we can do in this introductory chapter
is go through the basics for a single developer.

First, you need to install Git if you do not have it on your system yet.

OS X
On a Mac, again the easiest way to do this is using Homebrew
(http://brew.sh). Run the following command in the Terminal
after installing Homebrew:
brew install git

Windows
On Windows, the easiest way to install Git is to run the Windows
installer from http://git-scm.com/downloads.
Linux (Ubuntu)
On Ubuntu, run the following command in the shell:
sudo apt-get install git

Let's initialize a fresh repository in the current directory:

git init

Then, we create a hidden file named .gitignore, for now with only the
following content:

node_modules

http://gruntjs.com
http://brew.sh
http://git-scm.com/downloads

Setting Up the Environment

[34]

This tells Git to ignore the hundreds of files and directories in the node_
modules folder. These don't need to be stored in our version control
system because the modules can be restored by running npm install
in the root folder of the application instead, as all the dependencies are
defined in the package.json file.

Next, we add all files in the current directory (and in all subdirectories):

git add

Next, we freeze the file system in its current state:

git commit –m "initial commit"

Now, we can edit any file, try things out, and accidentally break things without
having to worry because we can always come back to anything that was committed
into the VCS. This adds incredible peace of mind when you are playing around with
the code.

When you issue the git status command, you will notice that we are on a branch
called master. A project can have multiple branches at the same time; these are really
useful when working on a new feature. We should always keep master as the latest
stable version; additional features (or bug fixes) should always be worked upon in a
separate branch. Let's create a new feature branch called additional-feature:

git branch additional-feature

Once it is created, we need to check out the branch:

git checkout additional-feature

Now, when the new code is ready to be committed, the process is the same as before:

git add .

git commit –m "additional feature added"

We should commit early and often; this habit will make it much easier to undo
previous changes when things go wrong. Now, when everything is working in the
new branch (all the tests pass), we can go back into the master branch:

git checkout master

Then, we can merge the changes back into the master branch:

git merge additional-feature

Chapter 1

[35]

Being able to freely change between branches, for example, makes it very easy to go
back to the master branch from whatever you are working on and do a quick bug fix
(in a specialized branch, ideally) without having to think about what you just broke
with the current changes in the new feature branch. Please don't forget to commit
before you switch the branch though. You can merge the bug fix in this example
back into the master, go back to the feature branch you were working on, and even
pull those changes that were just done in the master branch into the branch you are
working on. For this, when you are inside the feature branch, merge the changes:

git merge master

If these changes were in different areas of your files, this should run without
any difficulties. If they were in the same lines, you will need to manually resolve
the conflicts.

Using Git is a really useful way to manage source code. However, it is
in no way limited to code files (or text files, for that matter). Any file can
be placed under source control. For example, this book was written with
heavy usage of Git, for any file involved. This is extremely useful when
you are trying to go back to the previous versions of any file.

Summary
We started this chapter by covering some basics about AngularJS. Then, we built a
very simple Hello World app with two-way data binding. We then upgraded the
simple application to use an object for the property of the model instead of using
string primitives.

Afterwards, we built our first custom directive and moved parts of the markup of
our application into this custom directive.

Then, we covered testing. We learned why testing is essential for more complex
applications. For testing, we first installed Karma with Jasmine to run the first unit
tests. We also created our first integration tests, which are useful for testing how the
parts of the application play together.

We then installed and configured Grunt.js as a build system for our application.
A properly configured build system frees us from having to run tedious and
potentially error-prone tasks over and over again.

Finally, we briefly took a look at the usage of Git, an open source distributed version
control system, which is optional for the rest of the book but highly encouraged.

In the next chapter, we will begin with AngularUI, a suite of tools and building blocks,
for making application development with AngularJS simpler and more productive.

AngularUI – Introduction
and Utils

In the previous chapter, we created a build system for an AngularJS application,
including unit and integration / end-to-end tests. This environment should serve
us well even when building much more complicated applications in larger teams.
Testing becomes really essential then, but even in small projects, they add peace
of mind.

This chapter will introduce the AngularUI companion suite and show some elements
of the AngularUI-Utils collection in action. We will be using the final step of the
previous chapter as a template for the examples in this chapter because it provides
a well-structured application.

We will cover the following topics in this chapter:

• Downloading and building the suite with Grunt
• Testing the suite with Karma
• Integrating the suite into our project
• Using the Event Binder component
• Using the Keypress component
• Using the Mask component
• Using the jQuery Passthrough component

AngularUI – Introduction and Utils

[38]

Downloading AngularUI
AngularUI is a companion suite for AngularJS that is used to solve common
problems related to UI development. The common problems include handling
Keypress events, passing through jQuery components, validating and masking
inputs, converting string representations, including fragments, formatting strings,
and handling checkboxes.

You can find more information about the project at
http://angular-ui.github.io/ui-utils/.

On the project's website, you can also find a download link for the current version
of the JavaScript files. However, since we just discussed building AngularJS
applications using Grunt, let's build this project from the project's source on
GitHub instead.

Building AngularUI-Utils
With what we learned about package managing in Chapter 1, Setting Up the
Environment, let's build AngularUI-Utils ourselves before we start using it. We
could just download the JavaScript file(s), but it will be more gratifying to do this
ourselves. Learning how to use Grunt will also be very helpful in any larger project
later on.

For this, first of all, either clone or fork the
repository or just download the ZIP file from
https://github.com/angular-ui/ui-utils.

For simplicity, I suggest that you download the ZIP file; you can find the link on
the right-hand side of the GitHub project page. Once we have unpacked the ZIP file,
we first need to install the dependencies. On your command line inside the project
folder, run the following commands:

$ npm install

$ bower install

This will install the necessary files needed for the build process. Let's first check
whether all the tests are passing after the previous commands have run through:

$ karma start --browsers=Chrome test/karma.conf.js --single-run=true

http://angular-ui.github.io/ui-utils/
https://github.com/angular-ui/ui-utils

Chapter 2

[39]

Alternatively, you can also simply run:

$ grunt

The tests are part of the default task specified in gruntFile.js. Take a moment and
familiarize yourself with the file by trying to find where the default task is specified.
Note that one subtask is the karma:unit task. Try to locate this task further down in
the file; it specifies which Karma configuration file to load.

If all the tests pass, as they should, we can then build the suite using the
following command:

$ grunt build

This will run the following tasks specified in gruntFile.js:

• The concat:tmp task concatenates the modules into a temporary JavaScript
file, except modules/utils.js. Take a look at the configuration for this task;
the easiest way is to search for concat within gruntFile.js.

• The concat:modules task concatenates the resulting temporary file from
step one into the final JavaScript library file, which you can then find in the
bower_components/angular-ui-docs/build directory. The configuration
for the concat:modules task should be right below the previous one. Here,
the difference is that there is no absolute file and path; instead, the name is
resolved so that common parts, such as the repository name and such, are
not repeated within the configuration file. This follows the DRY (don't repeat
yourself) principle and makes the configuration file easier to maintain.

• The clean:rm_tmp task removes the temporary file, created previously.
• The uglify task finally creates a minified version of the JavaScript file for use

in production because of the smaller file size.

I highly recommend that you spend some time reading and following
through the gruntFile.js file and the tasks specified therein. It is not
strictly necessary that you follow along in this chapter, as simply building
the suite (or even downloading it from the project's website) would
suffice, but knowing more about the Grunt build system will always be
helpful for our own projects.
Imagine this: you find an issue in some project and add it to the list of
known issues on the GitHub project. Someone picks it up immediately
and fixes it. Now, do you want to wait for someone (maybe an automated
build system) to decide when it is a good time to publish a version that
includes the said fix? I wouldn't; I'd much rather be able to build it myself.
You never know when the next release will happen.

AngularUI – Introduction and Utils

[40]

Integrating AngularUI-Utils into our
project
In this step, we will take the ui-utils.js file we built in the previous section and
use it in a sample project. The UI-Utils suite consists of a large and growing number
of individual components. We will not be able to cover all of them here, but the ones
we do cover should give you a good idea about what is available. For this, first make
a copy of the code we came up with in the previous chapter. Alternatively, you can
use the code in Chapter01/Step08-Grunt-Protractor as a template.

Now, let's do the following edits:

1. Copy the ui-utils.js file from the ui-utils/bower_components/
angular-ui-docs/build/ folder to the src/js/vendor/ folder of the
current project.

2. Open the package.json file and change the name of the application as you
wish, for example:
{
 "name": "fun-with-ui-utils",
 "version": "0.1.0",
 "devDependencies": {
 "grunt": "~0.4.5",
 "grunt-contrib-concat": "~0.5.0",
 "grunt-contrib-copy": "~0.5.0",
 "grunt-karma": "~0.8.3",
 "grunt-protractor-runner": "^1.1.0",
 "grunt-targethtml": "~0.2.6",
 "karma": "~0.12.0",
 "karma-chrome-launcher": "~0.1.4",
 "karma-firefox-launcher": "~0.1.3",
 "karma-jasmine": "~0.1.5"
 }

3. Edit src/index.html by inserting a script tag right below the script tag
for the angular.js file, and change the name of our concatenated project
JavaScript file, as the name change above will result in a different filename.
The body of the index.html file now looks as follows:
<body ng-app="myApp">
 <div ng-controller="helloWorldCtrl">
 <h1 hello-world name="name" id="greeting"></h1>
 </div>
 <!--(if target dev)><!-->
 <script src="bower/angular/angular.js"></script>
 <script src="js/vendor/ui-utils.js"></script>

Chapter 2

[41]

 <script src="js/app.js"></script>
 <script src="js/controllers.js"></script>
 <script src="js/directives.js"></script>
 <!--<!(endif)-->
 <!--(if target dist)><!-->
 <script src="js/fun-with-ui-utils.js"></script>
 <!--<!(endif)-->
</body>

4. Run grunt dist to see whether our tests are still passing and whether the
project is built without any problems.

Dist folder
You will notice that the my-hello-world.js file is still in the dist/
js/ folder, despite not being used any longer. You can safely remove it.
You could also remove the entire dist folder and run the my-hello-
world.js file again:
$ grunt dist

This will recreate the folder with only the required files. Deleting the
folder before recreating it could become a part of the dist task by adding
a clean task that runs first. Check out gruntFile.js of the UI-Utils
project if you want to know how this is done.

Grunt task concat
Note that all JavaScript files get concatenated into one file during the
concat task that runs in our project during the grunt dist task. These
files need to be in the correct order, as the browser will read the file from
beginning to end and it will complain when, for example, something
references the AngularJS namespace without that being loaded already.
So, while it might be tempting to use wildcards as we did so far for
simplicity, we shall name individual files in the correct order. This might
seem tedious at first, but once you are in the habit of doing it for each file
the moment you create or add it, it will only take a few seconds for each
file and will keep you from scratching your head later. Let's fix this
right away.
Find the source property of the concat task in Gruntfile.js of
our project:

 src: ['src/js/vendor/*.js','src/js/*.js'],

Now, replace it with the following:
 src: ['src/bower/angular/angular.js',
 'src/js/vendor/ui-utils.js',
 'src/js/app.js',
 'src/js/controllers.js',
 'src/js/directives.js'],

AngularUI – Introduction and Utils

[42]

We also need to edit the app module so that it loads UI-Utils. To do this, edit app.js
as follows:

'use strict';
angular.module('myApp', ['myApp.controllers', 'myApp.directives', 'ui.
utils'])

With these changes in place, we are in a pretty good shape to try out the different
components in the UI-Utils suite. We will use a single project for all the different
components; this will save us time by not having to set up separate projects for
every single one of them.

uiMask directive
Let's add a phone number field for our person model in the application we have so
far. Obviously, we want valid phone numbers in our data model so let's make sure
the format is valid by using the mask component.

This component will allow us to define a mask that specifies how a correct entry
looks, for example, (555) 555-5555; ext 55.

First, let's make some changes so that the page renders equally well on desktop
and mobile browsers. We will be using Twitter Bootstrap in later chapters
anyway, so why not get started with it right now! Download Bootstrap from
http://getbootstrap.com and place bootstrap.css inside src/css/vendor/.

We will need to change Gruntfile.js as follows in order to include bootstrap.css
in the dist folder:

copy: {
 main: {
 files: [{ expand: true, cwd: 'src/css/',
 src: ['**'], dest: 'dist/css/' }]
 }
},

This specifies that from the src/css/ current working directory, all files including
subfolders will be copied to dist/css/. Now, edit the head tag of index.html to
look as follows:

<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width,
 user-scalable=no">
 <title>Angular UI Template</title>
 <link rel="stylesheet" href="css/vendor/bootstrap.css">
 <link rel="stylesheet" href="css/main.css">
</head>

http://getbootstrap.com

Chapter 2

[43]

We will be using the viewport meta tag because we want this page to render well on
a mobile browser. Then, we also need to include the bootstrap.css file. Note that
we are not specifying anything different for the dist target here. In a production
environment, we will surely do so by concatenating and minifying the CSS, but for
now, this is fine. We will get to these optimizations in detail later.

Now, let's change controllers.js, as follows:

'use strict';
angular.module('myApp.controllers', [])
.controller('helloWorldCtrl', function ($scope) {
 $scope.person = {
 firstName: "Jane",
 lastName: "Doe"
 };
 $scope.mask = "(999) 999-9999 ext 99";
 $scope.getModel = function () {
 return JSON.stringify($scope.person, undefined, 2);
 };
});

In the previous code, first we added a mask to our model, which we will use for the
entry of the phone number. This works as follows:

• For any allowed number character, you use a 9
• For any allowed letter character, you use an A
• For numbers or letters, you use *
• Anything else is shadowed

Have a look at the following examples:

• For a typical US phone number: (999) 999-9999
• For a typical US phone number with an extension: (999) 999-9999 ext 99
• For a spreadsheet cell location: Row: 99 Col: AA

We will use a <pre><code> block with a pretty-printed JSON representation of the
data model for demonstration purposes. To obtain this representation from the view,
we create a $scope.getModel function, which returns the prettified JSON string.

AngularUI – Introduction and Utils

[44]

Pretty-printed JSON
The JSON.stringify function usually returns a string with the
JSON representation of an object, without line breaks or indentations.
However, when you call it as follows, it will give you a proper
pretty-printed representation, with two-character indentation and
line breaks:

JSON.stringify(object, undefined, 2)

This representation is much easier for humans to decipher than the
regular JSON.stringify output.

With these changes in place, let's get to the actual markup. We will create a
responsive layout that looks fine on a mobile device as well. We are creating a page
with fields for first name, last name, masked phone number, and a representation of
the data model. Change the content of the body tag before the scripts, as follows:

<div class="container" ng-controller="helloWorldCtrl">
 <div class="row spacer-sm">
 <label class="col-xs-5 text-right"
 for="fname">First Name</label>
 <input class="col-xs-7" type="text" id="fname"
 ng-model="person.firstName">
 </div>
 <div class="row spacer-sm">
 <label class="col-xs-5 text-right"
 for="lname">Last Name</label>
 <input class="col-xs-7" type="text" id="lname"
 ng-model="person.lastName">
 </div>
 <div class="row spacer-sm">
 <label class="col-xs-5 text-right"
 for="phone">Phone</label>
 <input class="col-xs-7" type="tel" id="phone"
 ui-mask="{{ mask }}" ng-model="person.phone">
 </div>
 <div class="row spacer-lg">
 <pre class="col-xs-12"><code>{{ getModel() }}</code></pre>
 </div>
</div>

Chapter 2

[45]

Note that for now, we are not using the helloWorld directive but instead integrating
these fields directly into the markup, which is a little easier at the moment.

Let's fine-tune the CSS a little bit and edit main.css as follows:

body {
 margin: 20px;
}

.spacer-sm {
 margin-top: 10px;
}

.spacer-lg {
 margin-top: 30px;
}

We now have a page that renders well on desktop and mobile devices,
shown as follows:

AngularUI – Introduction and Utils

[46]

In the previous image, you see the initial rendering with no phone number entered
yet. Note that the JSON representation of the data model only contains two
properties, first and last. In the following image, you can see how the data
model changes once a valid phone number has been entered:

Event Binder
In this section, we are going to take a look at event binding. The Event Binder
component allows binding to arbitrary events, whereas the KeyPress component is
more specific. As the name suggests, it is helpful when we want to know when the
user has pressed a key. It is also possible to achieve the same without the AngularUI
suite; then, the code required will just be longer.

Let's start with the Event Binder. We will change the color of the background of our
data model JSON representation depending on whether the first name field is in
focus or not. When it is in focus, we will paint the background light red to reflect that
the data model is currently being changed. Once blurred (blur is the opposite of the
focus event; it happens when the focus leaves the element) we paint the background
in light green for a short moment to reflect that the data model editing is over and
then go back to gray. We will make use of the ng-style attribute here to make
this work.

Chapter 2

[47]

ng-style
With ng-style, we can bind the styling of an element (partially or
completely) to the data model. In the data model, a JavaScript object is
expected to hold pairs of CSS property and a value that should change
based on the changes in the model.
For example, if we want to bind the background color of an element
to the data model, the respective model object needs to have a
backgroundColor property with whatever color you want it to
have, as follows:

 { backgroundColor: "orange" }

The associated element will then repaint itself when this object
changes. Note that the properties are Camel Case here, whereas
they would be hyphenated inside the style sheet.

We will change the controller first. We need an array with the possible colors that
the element can have, a variable holding the current index position within this array,
a function that creates the style object as described in the previous information box,
and the callback functions for the focus and blur events:

'use strict';
angular.module('myApp.controllers', []).controller('helloWorldCtrl',
function ($scope, $timeout) {
 $scope.person = {
 firstName: "Jane",
 lastName: "Doe"
 };
 $scope.mask = "(999) 999-9999 ext 99";
 $scope.getModel = function () {
 return JSON.stringify($scope.person, undefined, 2);
 };
 var colors = ["#CCC", "#F77", "#9F9"];
 var activeColor = 0;
 $scope.modelStatus = function() {
 return { backgroundColor: colors[activeColor] };
 };
 $scope.focusCallback = function() {
 activeColor = 1;
 };
 $scope.blurCallback = function() {
 activeColor = 2;
 $timeout(function() { activeColor = 0; }, 2000);
 };
});

AngularUI – Introduction and Utils

[48]

Note the usage of $timeout in the $scope.blurCallback function. The $timeout
function is injected into the controller together with $scope, and it takes two
arguments: a function and the time in milliseconds after which this function
should be run. In this case, we set the color back to the initial gray after 2 seconds.

With these changes in the controller, we can now edit index.html:

<div class="container" ng-controller="helloWorldCtrl">
 <div class="row spacer-sm">
 <label class="col-xs-5 text-right"
 for="fname">First Name</label>
 <input class="col-xs-7" type="text" id="fname"
 ng-model="person.firstName"
 ui-event="{ focus: 'focusCallback()',
 blur : 'blurCallback()' }" >
 </div>
 <div class="row spacer-sm">
 <label class="col-xs-5 text-right"
 for="lname">Last Name</label>
 <input class="col-xs-7" type="text" id="lname"
 ng-model="person.lastName">
 </div>
 <div class="row spacer-sm">
 <label class="col-xs-5 text-right" for="phone">Phone
 </label>
 <input class="col-xs-7" type="tel" id="phone"
 ui-mask="{{ mask }}" ng-model="person.phone">
 </div>
 <div class="row spacer-lg">
 <pre ng-style="modelStatus()" class="col-xs-12">
 <code>{{ getModel() }}</code>
 </pre>
 </div>
</div>

Chapter 2

[49]

Here is how the result looks:

When the first name input field is in focus, the data model representation is shown
with a red background. Once we click on Done, it is shown in green for 2 seconds
and then goes back to the initial gray. On a desktop browser, clicking anywhere else
would have the same effect as clicking on the Done button.

If you want, you can assign the same behavior to the other two input fields by
copying the ui-event attribute from the fname input field.

AngularUI – Introduction and Utils

[50]

Keypress
Next, we will implement a simple help function with the Keypress component.
On pressing F1 inside the Last Name field, we want to show help text below the
field, shown as follows:

The div that holds the text shall be invisible except for when the F1 key was pressed
and will last only for 10 seconds. We will bind UI-keydown to the input field for the
last name, and then we will use ng-show to hide the row with the help text unless
the model contains help text. Here is the new index.html section with the
changes highlighted:

<div class="container" ng-controller="helloWorldCtrl">
 <div class="row spacer-sm">
 <label class="col-xs-5 text-right"
 for="fname">First Name</label>
 <input class="col-xs-7" type="text" id="fname"
 ng-model="person.firstName"
 ui-event="{ focus: 'focusCallback()',
 blur : 'blurCallback()' }" >
 </div>
 <div class="row spacer-sm">
 <label class="col-xs-5 text-right" for="lname">Last
 Name</label>
 <input class="col-xs-7" type="text" id="lname"
 ng-model="person.lastName"
 ui-keydown="{112:'helpKeyDown($event)'}">
 </div>
 <div class="row spacer-sm">

Chapter 2

[51]

 <label class="col-xs-5 text-right"
 for="phone">Phone</label>
 <input class="col-xs-7" type="tel" id="phone"
 ui-mask="{{ mask }}" ng-model="person.phone">
 </div>
 <div class="row spacer-lg" ng-show="helpText">
 <div class="col-xs-2"></div>
 <div class="col-xs-8">{{ helpText }}</div>
 </div>
 <div class="row spacer-lg">
 <pre ng-style="modelStatus()" class="col-xs-12">
 <code>{{ getModel() }}</code>
 </pre>
 </div>
</div>

The changes necessary in controller.js are minimal this time; all we need to add
is this function:

$scope.helpKeyDown = function($event) {
 console.log($event);
 $scope.helpText = "Easy. Just enter your name.";
 $timeout(function() { $scope.helpText = "" }, 10000);
};

Again, we are using $timeout, this time to make the help section disappear
after 10 seconds.

ng-show
The ng-show attribute determines whether an element is visible or not,
depending on the evaluation of the specified model. Specifically, the
model is evaluated for truthiness.
In our case, we need to know that the empty string in JavaScript evaluates
as false, which is great because we can use the model itself to determine
whether the section is supposed to be visible or not.

If you want to get some practice, you can play around with this feature some
more by making it callable from multiple fields. You could, of course, use multiple
functions for this, one for each field. It would be straightforward. It is probably not
ideal though, as it would lead to repeated code with the messages inside the code.

AngularUI – Introduction and Utils

[52]

Or, you could use use a single function that gets called from multiple event-emitting
fields. Then, you could load the messages from a centralized place, with a data
structure that holds the messages for each element's ID. The ID of the caller element
is available in srcElement or in the target property of the $event object, shown
as follows:

jQuery Passthrough
Usually, it is discouraged in AngularJS to do direct DOM manipulation; any jQuery
calls should only happen from inside directives, nowhere else.

The jQuery Passthrough component allows us to use jQuery functions directly
without having to wrap them in a directive by providing the binding to our
data model.

First of all, you will need to download or install jQuery. Since we already installed
Bower for package management, we might as well use it to retrieve the dependency:

$ bower install --save jquery

Chapter 2

[53]

Then, as before, you need to add it to the concat task inside Gruntfile.js. jQuery
needs to be in the first position; it needs to be loaded before AngularJS.

jQuery and AngularJS
AngularJS uses jQuery, if available; otherwise, it uses jQLite, which comes
with AngularJS. jQLite provides some of the jQuery functionalities, but
really only the basics. jQuery must be loaded before AngularJS so that it is
used instead of jQLite.

The concat task then looks as follows:

 concat: {
 options: {
 separator: ';'
 },
 dist: {
 src: ['src/bower/jquery/dist/jquery.js',
 'src/bower/angular/angular.js',
 'src/js/vendor/ui-utils.js',
 'src/js/vendor/bootstrap.js',
 'src/js/app.js',
 'src/js/controllers.js',
 'src/js/directives.js'],
 dest: 'dist/js/<%= pkg.name %>.js'
 }
 },

Next, you need to place the jQuery script tag inside index.html before angular.js:

<script src="bower/jquery/dist/jquery.js"></script>
<script src="bower/angular/angular.js"></script>

With these prerequisites in place, we can now use the jQuery Passthrough
component for a data-driven tooltip. The idea is to provide a tooltip when hovering
over the JSON representation of the data model. The hover event will also be
triggered on mobile devices when tapping on the element in question. The text
of the tooltip will then either ask whether the person's data model has no phone
number property, or it will tell us that all is good.

AngularUI – Introduction and Utils

[54]

This is how it is going to look:

Chapter 2

[55]

We need a function in our controller that provides the tooltip text depending on the
state of the model. Let's call this function tooltip(). We will add it towards the end
of the controller declaration in controllers.js:

$scope.tooltip = function() {
 if(!$scope.person.hasOwnProperty("phone")) {
 return $scope.person.firstName + " has no phone?"
 }
 else { return "All good."}
}

Next, we will edit index.html:

<div ui-jq="tooltip" original-title="{{ tooltip() }}"
 class="row spacer-lg">
 <pre ng-style="modelStatus()" class="col-xs-12">
 <code>{{ getModel() }}</code>
 </pre>
</div>

We are assigning the div an attribute that holds the JSON representation of the
model and a ui-jq attribute with the tooltip value. This tells ui-jq to pass
through to $.fn.tooltip().

Next, we add the original-title="{{ tooltip() }}" attribute. This means
that the title of the tooltip (the text that we see when hovering over the element)
is dynamically generated by the tooltip() function depending on the state of the
data model.

There is just one more thing we need to do in order to place the tooltip at the bottom
of the element it is assigned to: it is to provide the configuration object inside the
app's module. To do this, edit app.js:

'use strict';
angular.module('myApp', ['myApp.controllers', 'myApp.directives', 'ui.
utils'])
 .value('uiJqConfig', {
 tooltip: {
 placement: 'bottom'
 }
 });

AngularUI – Introduction and Utils

[56]

Summary
This concludes our tour of the ui-utils toolbox. There are more components in
there, some of which are still under development. Going through this chapter
should put you in a good position to explore these additional components as
well. Let's recap what we have done in this chapter.

At the beginning of the chapter, we built the AngularUI-Utils library from the
GitHub source. Then, we ran the automated tests for the suite. Normally, we
would not have to do this, but rather use Bower for package management.
However, it can be useful at times to build a project from the source.
We then embedded AngularUI-Utils in our sample project.

Next, we started using Twitter Bootstrap CSS and created a responsive layout for
desktop and mobile clients, into which we integrated the Mask component for
adding a phone number field with a defined format.

Further, we made use of the Event Binder component to detect when an element is in
focus and when it loses focus again. Then, we used the Keypress component to create
a simple help function when F1 is pressed inside an input field.

Finally, we used the tooltip functionality from Bootstrap's JavaScript file, and we
bound it to dynamic data from our model using the jQuery Passthrough component.

In the next chapter, we will see additional AngularUI components, such as
the Google Maps component or the calendar component. We will also use
and test filters.

AngularUI – Extended
In this chapter, we will continue our tour of the AngularUI companion suite and
put additional components to use. We will use the final step of the application we
developed in Chapter 2, AngularUI – Introduction and Utils, as a template. Please refer
to the chapter in order to learn how to set up AngularUI and embed it into our project.
Alternatively, you can start with the companion code for this chapter. Just beware that
we will not cover what we already went through in the previous chapter.

We will cover the following topics in this chapter:

• Using the Google Maps component
• Using the Calendar component
• Using and testing filters

There are more components in the AngularUI suite that we will not cover here, such
as a few code editors, for example, Ace, CodeMirror, and TinyMCE. You can find
more information on these at http://angular-ui.github.io.

Embedding Google Maps
The Google Maps component, as the name suggests, allows us to easily embed
Google Maps into our website, with the location as well as markers and such
being bound to our data model.

For the installation of this module, we will use Bower. With the .bowerrc file in
place, as described in the previous section, run the following command inside the
root directory of the project:

bower install angular-ui-map

http://angular-ui.github.io

AngularUI – Extended

[58]

The previous command will install the maps component inside the ./src/bower_
components folder, together with its dependencies. Note that both AngularJS
and UI-Utils were installed by the previous command because they are listed as
dependencies in the bower.json file of the angular-ui-map package.

Now, we will link these packages in our index.html file, together with the Google
Maps script, which we will load directly from Google.

We will use the example from https://github.com/angular-ui/ui-map as
a template for our efforts. Note that we will have to manually bootstrap our
application because the Google Maps angular-ui module can only be instantiated
after the Google Maps script has been loaded completely. For this, we will get rid
of the automatic bootstrapping of the application and trigger this process manually
in a callback function once the Google Maps script has loaded successfully. This is
mostly a Google Maps API issue, but still we have to work around it in order to use
the maps directive here.

Bootstrapping AngularJS
Normally, an AngularJS application is bootstrapped automatically.
What this means is that the application is loaded automatically by
declaring the ng-app object, as follows:

<body ng-app="myApp">

However, when we want control over when this process should
take place, we can start it manually by calling angular.
bootstrap with the ID of the element to which we want to
bind an AngularJS application.

Let's start by creating the aforementioned callback function inside app.js.
This file will now look as follows:

'use strict';
function onGoogleReady() {
 angular.bootstrap(document.getElementById("myApp"), ['myApp']);
}
angular.module('myApp', ['myApp.controllers', 'myApp.directives', 'ui.
utils']);

The previous code will defer the application's bootstrapping process until Google
Maps has fully loaded. For this, the onGoogleReady function will be passed to the
Google Maps script in the index.html file. Note that this function lives in the global
scope of the browser, which is something that is best avoided but cannot be helped
in this particular case.

https://github.com/angular-ui/ui-map

Chapter 3

[59]

We will add the markup from the ui-map example to our index.html file,
which will then look as follows:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, user-
scalable=no">
 <title>Angular UI Maps</title>
 <link rel="stylesheet" href="css/main.css">
</head>
<body id="myApp">
<section id="map" ng-controller="MapCtrl">
 <div ui-map="myMap" ui-options="mapOptions"
 class="map-canvas">
 </div>
</section>
<!--(if target dev)><!-->
<script src="js/vendor/jquery-1.10.2.js"></script>
<script src="bower_components/angular/angular.js"></script>
<script type="text/javascript" src="https://maps.googleapis.com/maps/
api/js?v=3.exp&sensor=false&callback=onGoogleReady"></script>
<script src="bower_components/angular-ui-map/src/map.js"></script>
<script src="js/app.js"></script>
<script src="js/controllers.js"></script>
<script src="js/directives.js"></script>
<!--<!(endif)-->
<!--(if target dist)>
<script src="js/fun-with-ui-modules.js"></script>
<!(endif)-->
</body>
</html>

Note that we are also loading angular.js and the events module from
angular-ui-utils, present in the bower_components folder. These were
installed as dependencies when installing the maps module, so we might as
well use them. We can then delete the respective files from the js/vendor folder.

AngularUI – Extended

[60]

Next, we will modify controller.js to look as follows:

'use strict';
angular.module('myApp.controllers', []).controller('MapCtrl', function
($scope, $timeout) {
 $scope.myMarkers = [];

 $scope.mapOptions = {
 center: new google.maps.LatLng(37.782,-122.418),
 zoom: 4,
 mapTypeId: google.maps.MapTypeId.SATELLITE
 };

 var cloudLayer = new google.maps.weather.CloudLayer();

 $timeout(function(){
 cloudLayer.setMap($scope.myMap);
 }, 1000);
});

The preceding controller creates the model for our map, such as mapOptions,
eventBindings, and myMarkers. We also create a cloud overlay that reflects the
current cloud layer above the surface of our planet. Note the usage of $timeout to
defer the attachment of the cloudLayer object to the map. This gives the application
time to render the map first. The result now looks as follows:

Chapter 3

[61]

Markers on the map
So far so good, now let's add some functionality. How about setting markers for
when you click on the map, listing these markers below the map, and then adding
a button to pan the map to the particular marker?

For this, we will need the event binding for the click event. Also, we need
clickable div elements for each marker. Add the following code to the body
of our index.html file:

<body id="myApp">
<section id="map" ng-controller="MapCtrl">
 <div ui-map="myMap" ui-options="mapOptions"
 class="map-canvas" ui-event="eventBinding"></div>
</section>
 <div class="marker" ng-repeat="marker in myMarkers"
 ng-click="myMap.panTo(marker.getPosition())">
 Lat: {{ marker.getPosition().lat() }}

 Lng: {{ marker.getPosition().lng() }}</div>
<!--(if target dev)><!-->
<script src="bower_components/angular/angular.js"></script>
<script src="bower_components/angular-ui-utils/modules/event/event.js
"></script>
<script src="bower_components/angular-ui-map/src/map.js"></script>
<script src="https://maps.googleapis.com/maps/api/js?libraries=places,
weather&sensor=false&callback=onGoogleReady"></script>
<script src="js/app.js"></script>
<script src="js/controllers.js"></script>
<script src="js/directives.js"></script>
<!--<!(endif)-->
<!--(if target dist)>
<script src="js/fun-with-ui-modules.js"></script>
<!(endif)-->
</body>

Note that in the scripts' section, we are also loading the events module, which we
need to bind the events.

AngularUI – Extended

[62]

Event Binding
Next, we need to modify controllers.js to include the addMarker function and
the event-binding object, as follows:

'use strict';
angular.module('myApp.controllers', []).controller('MapCtrl', function
($scope, $timeout) {
 $scope.myMarkers = [];

 $scope.mapOptions = {
 center: new google.maps.LatLng(37.782,-122.418),
 zoom: 4,
 mapTypeId: google.maps.MapTypeId.SATELLITE
 };

 var cloudLayer = new google.maps.weather.CloudLayer();
 $timeout(function(){
 cloudLayer.setMap($scope.myMap);
 }, 1000);

 $scope.addMarker = function($event, $params) {
 $scope.myMarkers.push(new google.maps.Marker({
 map: $scope.myMap,
 position: $params[0].latLng
 }));
 };
 $scope.eventBinding = {'map-click':
 'addMarker($event, $params)'};
});

Finally, let's add a little bit of style to this by appending the following to main.css:

.marker {
 width: 200px;
 color: lightskyblue;
 background-color: #333;
 margin: 10px 0;
 padding: 5px;
 box-shadow: 5px 5px 5px #888;
}

Chapter 3

[63]

Now, the final example shows a map, with a cloud layer, that allows us to add
markers by clicking on it and has button-like div elements that pan the map to a
marker position when clicked:

Managing application dependencies
with Bower
In the previous section, we installed the ui-map component manually, which then
installed additional dependencies. Potentially, we would have to go through a whole
list of components that are required when setting up the project on, say, a different
machine. Would it not be nice if we could define the application dependencies and
then only call a single command?

AngularUI – Extended

[64]

It turns out that is what the bower.json file is for; here we can define all the
application dependencies in a single place. Then, when cloning the repository,
for example, all you need to do is run the following command once:

bower install

We can manually set up the bower.json file that is required for this, but there is
a simpler alternative: bower init, which takes care of setting up the file for us,
with the inclusion of the already installed components. Let's walk through the
command-line process:

bower init

[?] name: Step02-Maps

[?] version: 0.1.0

[?] description: AngularUI Map Example

[?] main file: src/index.html

[?] keywords: angular, maps

[?] authors: John Doe <john@doe.com>

[?] license: MIT

[?] homepage: http://some-url.com

[?] set currently installed components as dependencies? Yes

[?] add commonly ignored files to ignore list? Yes

[?] would you like to mark this package as private which prevents it from
being accidentally published to the registry? Yes

The bower init command will then set up the bower.json file for us, including the
currently installed dependencies, if desired. This will be the result of running the
preceding command:

{
 "name": "Step02-Maps",
 "version": "0.1.0",
 "homepage": "http://some-url.com",
 "authors": [
 "Your Name Here"
],
 "description": "AngularUI Map Example",
 "main": "src/index.html",
 "keywords": [
 "angular",
 "maps"
],
 "license": "MIT",

Chapter 3

[65]

 "private": true,
 "ignore": [
 "**/.*",
 "node_modules",
 "bower_components",
 "src/bower_components",
 "test",
 "tests"
],
 "dependencies": {
 "angular-ui-map": "~0.5.0"
 }
}

Modifying the .gitignore file
Next, you should consider excluding the bower_components directory from your
git repository because all the dependencies are reconstructed by running the bower
install command. For this, edit .gitignore, as follows:

node_modules/
dist/
src/bower_components

The calendar component
In this section, we will try out the UI calendar component, which helps to embed
the Arshaw FullCalendar into an AngularJS project. You can find more information
about this project at http://arshaw.com/fullcalendar.

You can duplicate and modify the code from the maps section. This time, we will
use Bower to resolve all our dependencies. First, let's do some cleaning up and delete
the src/bower_components and src/js/vendor folders.

Next, we will add calendar-related dependencies to our calendar example.
In addition, we will also use moment.js, a great little library for anything
date-related in JavaScript. Modify bower.json as follows:

{
 "name": "Step03-Calendar",
 "version": "0.1.0",
 "homepage": "http://some-url.com",
 "authors": ["John Doe <john@doe.com>"],
 "description": "AngularUI Calendar Example",

http://arshaw.com/fullcalendar

AngularUI – Extended

[66]

 "main": "src/index.html",
 "keywords": [
 "angular",
 "calendar"
],
 "license": "MIT",
 "private": true,
 "ignore": [
 "**/.*",
 "node_modules",
 "bower_components",
 "src/bower_components",
 "test",
 "tests"
],
 "dependencies": {
 "angular-ui-calendar": "~0.8.1",
 "momentjs": "~2.8.3"
 }
}

Now, we can install all our dependencies by running a single command:

bower install

Running the previous command will install the AngularUI calendar module with
its dependencies, such as AngularJS, jQuery, and jQuery-UI, plus the separately
specified moment.js. We need to add these to index.html and Gruntfile.js so
that they become available in the distribution version of our application. We will also
use a moment.js based filter in this application, which will live in filters.js, so we
will create entries for this file as well.

Let's start with index.html:

<!--(if target dev)><!-->
<script src="bower_components/jquery/jquery.js"></script>
<script src="bower_components/jquery-ui/ui/jquery-ui.js"></script>
 <script src="bower_components/momentjs/moment.js"></script>
<script src="bower_components/angular/angular.js"></script>
<script src="bower_components/angular-ui-calendar/src/calendar.js"></
script>
<script src="js/app.js"></script>
<script src="js/controllers.js"></script>
<script src="js/directives.js"></script>
<script src="js/filters.js"></script>
<!--<!(endif)-->

Chapter 3

[67]

Next, we will add the same files to Gruntfile.js for the concat task:

concat: {
 options: { separator: ';' },
 dist: {
 src: ['src/bower_components/jquery/jquery.js',
 'src/bower_components/jquery-ui/ui/jquery-ui.js',
 'src/bower_components/fullcalendar/fullcalendar.js',
 'src/bower_components/momentjs/moment.js',
 'src/bower_components/angular/angular.js',
 'src/bower_components/angular-ui-calendar/src/calendar.js',
 'src/js/app.js','src/js/controllers.js','src/js/filters.js'
],
 dest: 'dist/js/<%= pkg.name %>.js'
 }
},

Using a filter for date formatting
We will use a filter to transform raw dates to strings that are easy for humans to
understand. Inside this filter, we will be using the aforementioned moment.js
library. Let's create a file named filters.js inside the src/js/ directory with
the following content:

'use strict';
angular.module("myApp.filters", [])
 .filter('moment', function () {
 return function (input) {
 return moment(input).calendar();
 };
 })
 .filter("duration", function () {
 return function (event) {
 if (!event.end) { return "All Day"; }
 var start = moment(event.start);
 var end = moment(event.end);
 return end.diff(start, "minutes") + " min";
 };
 });

AngularUI – Extended

[68]

In the previous code block, we defined two filters, one named moment and the other
named duration. In the first filter, we allow moment.js to handle the conversation
between the date and a human-friendly string, such as Today or Tomorrow. In the
second filter, we test whether the event has an end, and if it does not, we conclude
that it is an all-day event. Otherwise, we use the diff function from the moment
objects to get the duration of an event in minutes. The moment.js file offers a lot
of functionalities around date formatting; check out http://momentjs.com to
learn more.

Now that we have the filter for proper time-string formatting, we can work on
index.html. We are going to set up the calendar itself plus divs for each item
in our calendar that has input fields in which we can alter the event text. This is
how it will look:

http://momentjs.com

Chapter 3

[69]

In the index.html file, we also need to link the fullcalendar.css file, both for the
development environment and for the distribution version. We will edit the grunt
task afterwards to cater to this. Let's start with the head of index.html:

<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, user-
scalable=no">
 <title>Angular UI Calendar</title>
 <link rel="stylesheet" href="css/main.css">
 <!--(if target dev)><!-->
 <link rel="stylesheet" href="bower_components/fullcalendar/
fullcalendar.css">
 <!--<!(endif)-->
 <!--(if target dist)>
 <link rel="stylesheet" href="css/fullcalendar.css">
 <!(endif)-->
</head>

Note that the targethtml task in Grunt will remove the link to fullcalendar.css
inside the bower_components folder and instead place a link to css/fullcalendar.
css inside the target html file.

Let's edit the copy task in Gruntfile.js now because the link will otherwise be
invalid for the dist version of our application. Find the copy task and edit it
as follows:

copy: {
 main: {
 files: [
 { expand: true, cwd: 'src/css/', src: ['**'],
 dest: 'dist/css/' },
 { expand: true, cwd:'src/bower_components/fullcalendar/',
 src: ['*.css'], dest: 'dist/css/' }]
 }
},

Next, let's focus on the body of index.html. We will add the calendar plus the
editable entries as follows:

<body ng-app="myApp">
<div ng-controller="CalCtrl">
 <div ui-calendar="uiConfig.calendar" ng-model="eventSources"></
div>
 <div class="cal-entry" ng-repeat="event in events">
 <div class="delete" ng-click="remove()">X</div>

AngularUI – Extended

[70]

 <div>{{ event.start | moment }}</div>
 <div>{{ event | duration }}</div>
 <input ng-model="event.title" />
 </div>
</div>

<!--(if target dev)><!-->
<script src="bower_components/jquery/jquery.js"></script>
<script src="bower_components/jquery-ui/ui/jquery-ui.js"></script>
<script src="bower_components/fullcalendar/fullcalendar.js"></script>
<script src="bower_components/momentjs/moment.js"></script>
<script src="bower_components/angular/angular.js"></script>
<script src="bower_components/angular-ui-calendar/src/calendar.js"></
script>
<script src="js/app.js"></script>
<script src="js/controllers.js"></script>
<script src="js/filters.js"></script>
<!--<!(endif)-->
<!--(if target dist)>
<script src="js/fun-with-ui-modules.js"></script>
<!(endif)-->
</body>

The usage of the previous ui-calendar directive is fairly straightforward. We will
create the uiConfig.calendar object that needs to be in the $scope object, next in
the controller. Note the usage of ng-repeat for the calendar entries. Inside these
divs, we have the start time and duration, both formatted with the appropriate
filters, an input field that lets us modify the event text, and a clickable X that
allows the user to delete the entry by calling $scope.remove() when clicked.

Styling the calendar
Let's quickly add some styles before focusing on the controller of our application.
For this, we will edit main.css as follows:

body {
 margin: 20px;
 font-family: sans-serif;
}

.cal-entry {
 width: 180px;
 color: #555;
 font-size: 0.8em;

Chapter 3

[71]

 background-color: #EEE;
 margin: 10px 0;
 padding: 5px;
 box-shadow: 5px 5px 5px #888;
 position: relative;
}
.cal-entry input {
 width: 170px;
}
.cal-entry .delete {
 color: red;
 position: absolute;
 font-weight: bolder;
 right: 7px;
 top: 3px;
}

Adapting the controller
Now let's create the controller to make all this work. Rewrite controller.js
as follows:

'use strict';
angular.module('myApp.controllers', []).controller('CalCtrl', function
($scope) {
 $scope.events = [
 { title: 'All Day Event',
 start: moment().add('days', 3).format('L') },
 { title: 'Fun with AngularJS',
 start: moment().startOf('hour').format(),
 end: moment().endOf('hour').add('hour', 1).format(),
 allDay: false }
];
 $scope.eventSources = [$scope.events];

 $scope.dayClick = function(date){
 $scope.$apply(function() {
 $scope.events.push(
 { title: "new event",
 start: date,
 end: moment(date).add('hours', 1).format(),
 allDay: false });
 });
 };

AngularUI – Extended

[72]

 $scope.remove = function(index) {
 $scope.events.splice(index,1);
 };

 $scope.uiConfig = {
 calendar:{
 height: 400,
 editable: true,
 header:{
 left: 'month agendaWeek agendaDay',
 center: 'title',
 right: 'today prev,next'
 },
 defaultView: 'agendaWeek',
 dayClick: $scope.dayClick,
 eventDrop: $scope.$apply,
 eventResize: $scope.$apply
 }
 };
});

Let's walk through this section by section:

1. First, we create an array with two sample events. The first one is an all-day
event that takes place three days after the application startup, whenever that
is. The second event, Fun with AngularJS, takes place right now, from the
beginning of the current hour until the end of the following hour. Note that
the duration will show as 119 minutes; you can fix this by adding a second to
the end time, as follows:
end: moment().endOf('hour').add('second', 1).add('hour',
1).format()

2. The $scope.eventSources array holds the event sources, with the events
array in it. Here, we can specify additional event sources, but for the purpose
of our example, this will suffice.

3. The $scope.dayClick function is called when you click on the calendar and
creates a new event at the click position.

4. The $scope.remove function is called when we click on the red X in the
upper-right corner of an event. It removes the associated event from the
events array.

Chapter 3

[73]

5. Finally, $scope.uiConfig holds the calendar configuration, including the
callback functions for particular events. One of these is the aforementioned
$scope.dayClick function. Note that for the eventDrop and eventResize
events, we are simply passing the $scope.$apply function. Moving and
resizing events in the calendar modifies an event object, but this happens
outside AngularJS, so we need to call $scope.$apply() for AngularJS to
notice the change in the data model. However, there is no reason for us to
not allow the $scope.$apply calendar call; we can simply pass this function
along. For more information about the available configuration options, check
out the project's website at http://arshaw.com/fullcalendar/docs.

Adding tests
Now, let's finally test the code we have created.

Of course, if you followed proper test-driven development
(TDD), you would want to write these tests first. However, this
is not a book on TDD, so we will only focus on the mechanics of
writing tests, not on the workflow. Having said that, there is a lot
of value in TDD, and you should definitely try it at some point
and form your own opinion on the subject.

In order to test the application, we first have to adapt karma.conf.js to include all
the necessary files. Edit it as follows:

module.exports = function (config) {
 config.set({
 basePath: '../',
 files: [
 'src/bower_components/jquery/jquery.js',
 'src/bower_components/jquery-ui/ui/jquery-ui.js',
 'src/bower_components/fullcalendar/fullcalendar.js',
 'src/bower_components/momentjs/moment.js',
 'src/bower_components/angular/angular.js',
 'src/bower_components/angular-ui-calendar/src/calendar.js',
 'test/lib/angular-mocks.js',
 'src/js/app.js',
 'src/js/controllers.js',
 'src/js/filters.js',
 'test/unit/**/*.js'
],

http://arshaw.com/fullcalendar/docs

AngularUI – Extended

[74]

 autoWatch: true,
 frameworks: ['jasmine'],
 browsers: ['Chrome'],
 plugins: ['karma-chrome-launcher', 'karma-jasmine']
 })
};

Testing the controller
Now, we will add three tests for the controller. For this, we will modify
controllers.spec.js, as follows:

'use strict';
describe('controller specs', function () {
 var $scope;
 beforeEach(module('myApp.controllers'));

 beforeEach(inject(function ($rootScope, $controller) {
 $scope = $rootScope.$new();
 $controller("CalCtrl", { $scope: $scope });
 }));

 it("should contain 'Fun with AngularJS' event", function () {
 expect($scope.events[1].title).toBe('Fun with AngularJS');
 });

 it("should contain new event after execution of dayCLick
function", function () {
 $scope.dayClick();
 expect($scope.events[2].title).toBe('new event');
 });

 it("should remove an event", function () {
 $scope.remove(2);
 expect($scope.events.length).toBe(2);
 });
});

In the previous spec, we tested the following behaviors of the controller:

• After initialization, $scope.events contains an event with the title
Fun with AngularJS

• The execution of the $scope.dayClick function will add an event,
titled new event

Chapter 3

[75]

• The execution of $scope.remove(2) will remove the event that was added in
the previous step and thus, bring the size of the $scope.events object back
to the original size

Testing the filter
Now, we will finally create a test for the filters. For this, all that we have to do is
create a file named filters.spec.js in the same directory as controllers.spec.
js. Karma will run all the tests in this directory, so we don't have to modify any
additional files for this. Add the following to filter.spec.js:

'use strict';
describe('controller specs', function () {
 beforeEach(module('myApp.filters'));

 var tomorrowAtNine = moment().add('days', 1).hours(21).minutes(0).
format();
 var event1 = { start: moment().add('days', 1) };
 var event2 = { start: moment().add('days', 1),
 end: moment().add('days', 1).add('hours', 2) };

 it("should return 'Tomorrow at 9:00 PM' for the appropriate time",
 inject(function (momentFilter) {
 expect(momentFilter(tomorrowAtNine)).toBe("Tomorrow at
9:00 PM");
 }));

 it("should return 'All Day' when event has no specified end date",
 inject(function (durationFilter) {
 expect(durationFilter(event1)).toBe("All Day");
 }));

 it("should return '120 min' for the modified event",
 inject(function (durationFilter) {
 expect(durationFilter(event2)).toBe("120 min");
 }));
});

In the previous three tests, we completed the following:

• We set up a few variables to be passed into the tests
• We injected the moment filter into a spec, passed the tomorrowAtNine

variable, and expected the result of the filter to be Tomorrow at 9:00 PM

AngularUI – Extended

[76]

• We injected the duration filter, passed the event with no end time, and
expected the result to be All Day

• We have again injected the duration filter, passed the event with an end
time that is known to be 2 hours past the beginning of the event, and
expected the result to be 120 min

Building the application
Now, let's see what happens when we allow Grunt to run tests and package the
distribution version as follows:

This wasn't that difficult, was it? It is straightforward and not too complicated to
achieve decent test coverage with AngularJS.

Chapter 3

[77]

Summary
We kicked off this chapter by using the Google Maps component with markers
for various positions on the map. We installed this component using the Bower
package manager.

Then, we went into a little more detail on dependency management with Bower and
saw how we can manage all the project dependencies by initializing a Bower project
and by editing the managed bower.json file.

We also briefly took a look at how to configure Git so that we can keep repository
sizes reasonable instead of checking in external artifacts.

Afterwards, we used the calendar component to create a calendar with entries from
the data managed by AngularJS.

We built a filter based on moment.js for date-string formatting so that the dates look
more pleasing and used this filter in conjunction with the calendar component.

Finally, we created some tests for the application using the calendar. Tests are
a great insurance against future trouble. This is because they will alert us or
other developers in our team immediately when we break something in an
unintended way. This is much more pleasant than having to find this out
from an angry customer.

In the next chapter, we will closely examine how we can make use of the ng-grid
component. The ng-grid directive is very useful when it comes to displaying table/
grid style data, and as such, it is much more powerful than the good old HTML
table. For example, it becomes simple to edit data the way we would in a spreadsheet
application such as Microsoft Excel, something that otherwise requires a lot of work.

Customizing and
Exploring ng-grid

In this chapter, we will take a look at the ng-grid component (http://angular-ui.
github.io/ng-grid), which provides a good and useful data-driven grid. This grid
can become quite sophisticated, as we will explore throughout the chapter.

While going through the examples of increasing complexity, we will also introduce
the concept of services in AngularJS. Services allow the creation of singleton objects
that exist for the life cycle of an application. This becomes useful when a state is
being shared between different controllers. It also allows the proper separation of
concerns, where data services become a black box from the controller's perspective,
with a defined interface for interacting with the data.

With this separation of concerns, we can then start with static data in the service
and swap this out for asynchronous loading from a REST API, without having
to change the controller.

Let's get started. We have some interesting material ahead:

• Creating our first AngularJS service (in this book, at least)
• Creating a simple grid to display data from the service
• Creating more sophisticated grids that connect to the same controller

http://angular-ui.github.io/ng-grid
http://angular-ui.github.io/ng-grid

Customizing and Exploring ng-grid

[80]

Setting up the project
You can copy the Step03 folder from the previous chapter and modify it to remove
all the references to specific parts. This might be a good exercise in itself. In this
chapter, we want to talk about ng-grid, so we will skip the specific parts. You can
use Step01 of the source code for this chapter as a reference for the exercise or also
as a starting point. I have removed all references already in order to have a blank
slate for this chapter. I have left a fake test in there, just in case you wonder whether
the grunt dist task still works instead of failing when there are zero tests.

From this starting point, let's install AngularJS, jQuery, and ng-grid through Bower:

bower install ng-grid --save

bower install angular --save

bower install jquery --save

Remember that the --save switch will save the dependency to the bower.json file,
which is really convenient, because it also automatically finds the latest version for
doing so.

While we're at it, we might as well resolve the angular-mocks dependencies for our
subsequent tests using Bower:

bower install angular-mocks --save

Then, we can modify karma.conf.js as follows:

module.exports = function (config) {
 config.set({
 basePath: '../',
 files: [
 'src/bower_components/jquery/dist/jquery.js',
 'src/bower_components/angular/angular.js',
 'src/bower_components/angular-mocks/angular-mocks.js',
 'src/js/app.js',
 'src/js/controllers.js',
 'src/js/filters.js',
 'test/unit/**/*.js'
],
 autoWatch: true,
 frameworks: ['jasmine'],
 browsers: ['Chrome'],
 plugins: ['karma-chrome-launcher', 'karma-jasmine']
 })
};

Chapter 4

[81]

Now for the future, we will get a matching version of angular-mocks by running
bower install, without having to manually manage the file version.

Now, we are ready to get started with a simple grid. First, we need a data source
for this. We could just place the data source in the controller, but it might not make
much sense in the life cycle of an application. This particular controller might only be
active temporarily, but we might want access to the data model from other views as
well. A service singleton will be a better choice here.

Creating a service in AngularJS
We have previously discussed that a controller might not be a good place to hold on
to data. If the controller goes out of the scope, the data residing in the controller will
become inaccessible, and garbage will get collected in the JavaScript virtual machine.

Services are singletons, on the other hand. They get instantiated once and stay alive
during the entire life cycle of the application. Let's create such a service.

We will make this service known to the application by editing app.js as follows:

'use strict';

angular.module('myApp', ['myApp.controllers', 'myApp.filters', 'myApp.
services', 'ng-grid']);

Then, we create a file named services.js that contains the following code:

'use strict';

/** data service, manages data model throughout the life cycle of the
application */
angular.module('myApp.services', []).factory('dataService', function
() {
 var exports = {};

 exports.data = ["x", "y"];

 return exports;
});

In this service module, we use the factory function to initiate the dataService
singleton object. This object holds an exports object, which we will make available
to any caller using this service, for example, the controller we will use to access
the data.

Customizing and Exploring ng-grid

[82]

Now, we will use this from our controller. Modify controllers.js as follows:

'use strict';
angular.module('myApp.controllers', []).controller('NgGridCtrl',
 ['$scope', 'dataService', function ($scope, dataService) {

 console.log(dataService.data);
}]);

Note how we are naming the dependencies as $scope and dataService. This makes
minification possible; otherwise, the application will fall victim to variable name
changes during the minification process.

You should now be able to run the application in the browser. You will not see
anything rendered, but in the console under the developer tools of your browser,
you will see the data array being logged.

Congratulations! We now have a data service. In real-world scenarios, this data
would likely come from some server backend. However, this is the beauty of a data
service; on the controller side, we need not concern ourselves with this. Instead, we
can start with a local data model and then later migrate to fetch it from a REST API
without having to change anything in the controller and view at all.

The simple grid view
Now, it is time to do something with the data from our model. After all, we are
going to talk about grids in this chapter. Let's work with some data that I find
somewhat interesting: the years when different programming languages were
invented. We will put this data into the data service, as follows:

'use strict';

/** data service, manages data model throughout the life cycle of the
application */
angular.module('myApp.services', []).factory('dataService', function
() {
 var exports = {};

 exports.data = [
 {lang: "Plankalkül", year: 1943, decade: "1940s"},
 {lang: "Fortran", year: 1954, decade: "1950s"},
 {lang: "LISP", year: 1956, decade: "1950s"},
 {lang: "Basic", year: 1964, decade: "1960s"},
 {lang: "Pascal", year: 1970, decade: "1970s"},
 {lang: "C", year: 1972, decade: "1970s"},

Chapter 4

[83]

 {lang: "ML", year: 1973, decade: "1970s"},
 {lang: "Postscript", year: 1982, decade: "1980s"},
 {lang: "C++", year: 1983, decade: "1980s"},
 {lang: "Postscript", year: 1982, decade: "1980s"},
 {lang: "Erlang", year: 1987, decade: "1980s"},
 {lang: "Haskell", year: 1990, decade: "1990s"},
 {lang: "Python", year: 1991, decade: "1990s"},
 {lang: "Java", year: 1995, decade: "1990s"},
 {lang: "Javascript", year: 1995, decade: "1990s"},
 {lang: "Scala", year: 2003, decade: "2000s"},
 {lang: "F#", year: 2005, decade: "2000s"},
 {lang: "Dart", year: 2011, decade: "2010s"},
 {lang: "Typescript", year: 2012, decade: "2010s"},
];
 return exports;
});

Now, we can use this data in the controller.js file, which we will modify
as follows:

'use strict';
angular.module('myApp.controllers', []).controller('NgGridCtrl',
 ['$scope', 'dataService', function ($scope, dataService) {
 $scope.data = dataService.data;
 $scope.gridOptions = {
 data: 'data',
 columnDefs: [
 { field: 'lang', displayName: 'Language',
 width: "45%" },
 { field: 'year', displayName: 'Year',
 width: "25%" },
 { field: 'decade', displayName: 'Decade',
 width: "30%"}
]
 };
 }]);

Note how we pass the dataService object as a dependency of the controller.
We then bind this service to $scope.data. Then, we define the gridOptions object,
which defines both the appearance of the grid and the data source. Note in particular
how the data property is a string that maps how the data object is available on the
current $scope object to the name. This is why we bound dataService.data to
$scope.data. We also specify how the column is labeled and how wide each
column is supposed to be as a relative percentage.

Customizing and Exploring ng-grid

[84]

Now all that is left to be done is to modify the HTML and the style sheet.
Let's start with main.css:

body {
 margin: 20px;
 font-family: sans-serif;
}

.gridStyle {
 border: 1px solid #999;
 max-width: 500px;
 height: 600px;
}

Here, we defined the grid to be 500px wide at the most and 600px tall as well as to
have a solid, light-gray border. Specifying max-width instead of the width will result
in the table taking up the entire width of the enclosing element, but only up to a
width of at most 500px.

Finally, we bring it all together in index.html, as follows:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, user-
scalable=no">
 <title>Angular UI NG-Grid</title>
 <link rel="stylesheet" href="css/main.css">
 <link rel="stylesheet" href="bower_components/ng-grid/ng-grid.
css">
</head>
<body ng-app="myApp">

<div ng-controller="NgGridCtrl">
 <div class="gridStyle" ng-grid="gridOptions"></div>
</div>

<!--(if target dev)><!-->
<script src="bower_components/jquery/jquery.js"></script>
<script src="bower_components/angular/angular.js"></script>
<script src="bower_components/ng-grid/ng-grid-2.0.7.debug.js"></
script>
<script src="js/app.js"></script>
<script src="js/services.js"></script>
<script src="js/controllers.js"></script>

Chapter 4

[85]

<script src="js/filters.js"></script>
<!--<!(endif)-->
<!--(if target dist)>
<script src="js/fun-with-ng-grid.js"></script>
<!(endif)-->
</body>
</html>

This is it for our first grid, with data properly being provided by a data
service. Notice the highlighted code in the previous <head> tag. The <meta
name="viewport" content="width=device-width, user-scalable=no"> line
is for the mobile-first approach; it sets the content's width to the width of the device
and disables zooming.

When you refresh the page, you will now see the following table:

Customizing and Exploring ng-grid

[86]

Pretty good, considering how little we had to do in terms of styling the data. No
more dealing with tables when presenting information. Now, click on any of the
column headers and you will notice that we will get sorting for free. Even better,
we didn't have to write a single line of code for this!

Now, let's make the examples a little more sophisticated.

Grouping the grid
There are two ways of grouping the grid within the ng-grid project. Unfortunately,
the native version does not work at this point, so we can only take a look at the
version relying on jQuery UI.

For the jQuery UI way, we will have to add it to the dependencies of our project.
On the command line, run the following command:

bower install --save jquery-ui

Once this is done, we need to load it in index.html:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, user-
scalable=no">
 <title>Angular UI NG-Grid</title>
 <link rel="stylesheet" href="css/main.css">
 <link rel="stylesheet" href="bower_components/ng-grid/ng-grid.
css">
</head>
<body ng-app="myApp">

<div ng-controller="NgGridCtrl">
 <div class="gridStyle" ng-grid="gridOptions"></div>
</div>

<!--(if target dev)><!-->
<script src="bower_components/jquery/jquery.js"></script>
<script src="bower_components/jquery-ui/ui/jquery-ui.js"></script>
<script src="bower_components/angular/angular.js"></script>
<script src="bower_components/ng-grid/ng-grid-2.0.7.debug.js"></
script>
<script src="js/app.js"></script>
<script src="js/services.js"></script>
<script src="js/controllers.js"></script>
<script src="js/filters.js"></script>
<!--<!(endif)-->

Chapter 4

[87]

<!--(if target dist)>
<script src="js/fun-with-ng-grid.js"></script>
<!(endif)-->
</body>
</html>

Now all that is left is a modification of controller.js:

'use strict';
angular.module('myApp.controllers', []).controller('NgGridCtrl',
 ['$scope', 'dataService', function ($scope, dataService) {
 $scope.data = dataService.data;
 $scope.gridOptions = {
 data: 'data',
 columnDefs: [
 { field: 'lang', displayName: 'Language',
 width: "45%"},
 { field: 'year', displayName: 'Year',
 width: "25%"},
 { field: 'decade', displayName: 'Decade',
 width: "30%"}
],
 showGroupPanel: true,
 jqueryUIDraggable: true
 };
 }]);

Now, we can group the rows by dragging a particular column header to the group
panel, similar to Decade in our example:

Customizing and Exploring ng-grid

[88]

Using a master/details view
Next, let's combine what we have so far with a master/details view. We will modify
the grid so that we can select a row and then show text input fields below the grid,
which will allow us to modify the data model. The changes made here will, of
course, be reflected immediately in the grid.

AngularJS is declarative
This is a good place to be reminded of how nice a declarative approach
to UI development really is. We don't have to concern ourselves with
facilitating the data model changes. AngularJS will take care of this for
us; all we need to do is define once how the data model is supposed to
be rendered in the browser. The framework will then take care of the
changes for us.

The changes we need to make are relatively minor. First of all, let's edit index.html.
We will create a div element with the details for selected languages, with an extra
comment field that will be reflected in the data model, as follows:

<div ng-controller="NgGridCtrl">
 <div class="gridStyle" ng-grid="gridOptions"></div>
 <div class="gridStyle" ng-repeat="item in selection">
 <h1>{{ item.decade}}: {{ item.lang }}</h1>
 <p>{{ item.lang }} was created in {{ item.year }}.
 {{ item.comment }}</p>
 <label for="comment-{{ $index }}">Details:
 <textarea id="comment-{{ $index }}"
 ng-model="item.comment" rows="3"></textarea>
 </label>
 </div>
</div>

The following are a few things to note in the previous HTML:

• We use ng-repeat, which means that the div element will be created for
every selected item in the table.

• We create the comment property on the item. This didn't exist in the data
model, but it will be added when it is filled out and it will persist.

• We create a <textarea> tag for this comment property. A <textarea>
tag needs <label> that references a particular element ID. However, we
potentially have multiple selected items in the detail view, so a static ID
will result in conflicts as element IDs have to be unique. We, however, have
access to the $index object here, which we can use to make the ID unique.

Chapter 4

[89]

Now, we have to modify the configuration object and create a selection array
inside controllers.js. We will add an additional feature, making the cells editable:

'use strict';
angular.module('myApp.controllers', []).controller('NgGridCtrl',
 ['$scope', 'dataService', function ($scope, dataService) {
 $scope.data = dataService.data;
 $scope.selection = [];
 $scope.gridOptions = {
 data: 'data',
 columnDefs: [
 { field: 'lang', displayName: 'Language',
 width: "45%" },
 { field: 'year', displayName: 'Year',
 width: "25%" },
 { field: 'decade', displayName: 'Decade',
 width: "30%" }
],
 showGroupPanel: true,
 jqueryUIDraggable: true,
 selectedItems: $scope.selection,
 multiSelect: true,
 enableCellEdit: true
 };
 }]);

Now, we could leave things as they are, but let's add some very basic styling inside
main.css so that the <label> and <textarea> tags are properly aligned and the
detail view is not wider than the grid:

.detail {
 max-width: 500px;
}

label textarea{
 vertical-align: middle;
 width: 100%;
}

Customizing and Exploring ng-grid

[90]

This is how the result will look:

Note that I have modified the height of the grid for layout purposes. I have selected
the JavaScript entry and pasted some text from Wikipedia, which shows immediately
in the previous paragraph. You can now deselect the entry, and this text will still be
there later; it has been added to the data model. You can also select multiple entries
and edit the comment field in any of these. You can also double-click on any cell and
edit the cell's contents.

Chapter 4

[91]

Summary
In this chapter, we took a look at the ng-grid component in varying levels of
complexity, from simple to complicated. Our first step was to create a simple
ng-grid view that did nothing but display data from the application's data model.

As the second step, we added the ability to group the grid by column. This allowed
us, for example, to group the programming languages by the decade in which they
were invented.

Finally, we created a grid with a master/detail view. In the detail view, we added
a comment property with an associated textarea object. This textarea object
automatically added a property to the objects in the data model, which stayed
with the respective object although the row was deselected. In this final version,
we also made individual cells editable by double-clicking on the cell.

During the course of this chapter, we also introduced the concept of services. These
are important building blocks in web applications because they allow us to manage
the state beyond the lifetime of any single controller. This allows us to change the
route of the application, to show a different view, and to have the data present
when viewing this particular view later again.

In the next chapter, we are going to take a look at animations, which are a neat way
to make a web application more sophisticated. Animations are also a lot of fun.

Learning Animation
In this chapter, you will learn how to animate DOM elements using AngularJS,
which translate into underlying CSS animations but are much simpler to use,
as you will see shortly.

We will be covering the following topics in this chapter:

• Creating a simple to-do list that fades in new items and fades out checked
items. For this, we will also create a custom filter that ensures that only the
items that are not marked as completed are actually shown on the page.

• Using angular-animate enables CSS animations without having to do
much extra work.

• Moving elements on and off the page.
• Applying Bezier curves for more interesting motion patterns.
• Introducing LESS; this is helpful to change the duration of animation groups,

among many other things.
• Importing readily available animations from animate.css and utilizing

them inside an AngularJS application.
• Implementing a staggering animation effect.
• Setting up a fallback in JavaScript for CSS animations for

incompatible browsers.

Learning Animation

[94]

Setting up the project
You can copy the final code from the previous chapter and remove the
chapter-specific parts if you want to get some additional exercise in navigating
around an AngularJS project. Alternatively, you can start with Step01 from the
code provided. Either should work equally well. However, by now, I trust you
can find your way around the project files, so I will not cover where to remove
which parts from when using the code from the previous chapter as a template.
The previous chapters offer much more guidance in doing so.

Let's take a look at what we need to add to the project for the animation to work.
First, we need to install angular-animate, which we will do by leveraging Bower.
We will also use Bootstrap, just to get some good styling of the button. Inside the
project folder, run the following command in the shell:

bower install --save angular-animate

bower install --save bootstrap

This will install the appropriate bower component, and it will also update
bower.json accordingly. Next, we load the JavaScript file in index.html
and also name the controller for our chapter's project:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, user-
scalable=no">
 <title>Angular Animation</title>
 <link rel="stylesheet" href="bower_components/bootstrap/dist/css/
bootstrap.css">
 <link rel="stylesheet" href="css/main.css">
</head>
<body ng-app="myApp">

<div ng-controller="NgAnimateCtrl">
</div>

<!--(if target dev)><!-->
<script src="bower_components/jquery/dist/jquery.js"></script>
<script src="bower_components/angular/angular.js"></script>
<script src="bower_components/angular-animate/angular-animate.js"></
script>
<script src="js/app.js"></script>
<script src="js/controllers.js"></script>

Chapter 5

[95]

<script src="js/filters.js"></script>
<!--<!(endif)-->
<!--(if target dist)>
<script src="js/fun-with-ng-animate.js"></script>
<!(endif)-->
</body>
</html>

Then, we update controllers.js and we are good to go:

'use strict';
angular.module('myApp.controllers', [])
.controller('NgAnimateCtrl', function ($scope) {
});

The modifications described can also be found in Step01 of the
companion code of this chapter if you prefer to start with a clean
and prepared slate.

Creating our first animation – a simple
to-do list
Prior to AngularJS Version 1.2, it was very difficult to sprinkle animation effects in
an AngularJS application as DOM updates occur under the hood by the framework
itself, and there is no control over how and when the updates are completed. With
AngularJS 1.2, the AngularJS team enables developers to add animations in a snap
using $animate service. Basically, AngularJS provides animation hooks, also
known as events, for some of the built-in directives, such as ngRepeat, ngSwitch,
and so on, as well as for custom directives. These animation events are automatically
triggered by AngularJS during the life cycle of various directives. AngularJS
animation has evolved as a separate module that is not part of the core: to reduce the
overall size of the framework and also because animation is not a necessary piece
for every AngularJS application. Imagine that you want to toggle a div element
using the ng-hide directive, AngularJS applies the ng-hide CSS class in order to
hide the element and removes it to show it again. The ngHide directive tracks two
events, namely ng-hide-add (ng-hide-add-active) and ng-hide-remove (ng-
hide-remove-active). For CSS-based animations, the $animate service object
parses the transitions/animations associated with an element defined in those CSS
classes. The service then extracts the animation details, such as transition-property,
transition-duration, transition-delay, and so on, that delay DOM updates till the
animation is completed. So, this is how animation works and it's no magic.

Learning Animation

[96]

Going forward, let's explore it with cool examples. In this first example, we will
create a simple to-do list with a text input field to add items to the list. Each new item
will then be animated upon entering and also upon checking off the item, which will
result in the item fading out. For this to work, we first need a text input box. Modify
the NgAnimateCtrl div inside index.html, as follows:

<div ng-controller="NgAnimateCtrl">
 <input ng-model="inputText" />
 <button ng-click="addItem()">add</button>

 <div class="item" ng-repeat="item in items | active"><input
type="checkbox" ng-model="item.completed" />

 </div>
</div>

Then, we will need a custom active filter, which as the name suggests, filters our
items such that only the active (noncompleted) items are shown on the page.
For this, we modify filters.js:

'use strict';
angular.module('myApp.filters', [])
 .filter('active', function() {
 return function(items) {
 var filteredItems = [];
 for (var i = 0; i < items.length; i++) {
 if (!items[i].completed) {
 filteredItems.push(items[i]);
 }
 }
 return filteredItems;
 }
 });

Just so the items look a little nicer, we will add some styling in main.css. Modify the
file as follows:

body {
 margin: 20px;
 font-family: sans-serif;
}

.item {
 width: 230px;
 padding: 10px;
 margin: 10px 0;
 background: #cccccc;
 box-shadow: 5px 5px 5px #888888;
 font-weight: bold;
}

Chapter 5

[97]

Now, we need to modify controllers.js in order to make the to-do list functional:

'use strict';
angular.module('myApp.controllers', ['myApp.filters'])
 .controller('NgAnimateCtrl', ['$scope', function ($scope) {
 $scope.items = [
 { text: "call mum", completed: false },
 { text: "do laundry", completed: false }
];
 $scope.inputText = "";
 $scope.addItem = function () {
 $scope.items.push({
 text: $scope.inputText,
 completed: false
 });
 $scope.inputText = "";
 };
 }]);

With these modifications, we have a fully functional to-do list application.
Nothing is animated yet though. Let's change this by defining a CSS-based
animation. First, add the following lines to main.css:

.item.ng-enter {
 -webkit-transition: 1.2s linear all;
 transition: 1.2s linear all;
 opacity: 0;
}

.item.ng-enter.ng-enter-active {
 opacity: 1;
}

.item.ng-leave {
 -webkit-transition: 1.2s linear all;
 transition: 1.2s linear all;
 opacity: 1;
}

.item.ng-leave.ng-leave-active {
 opacity: 0;
}

Next, we need to modify the declaration of the app module to actually use the
angular-animate module. For this, we modify app.js:

'use strict';
angular.module('myApp', ['myApp.controllers', 'myApp.filters',
'ngAnimate']);

Learning Animation

[98]

This is all that there is to a simple fade-in / fade-out animation. The following
screenshot shows how our application will look during fade-out after you check
off the prepare taxes task:

So, what actually happens in the preceding example? Let's walk through it step
by step:

1. We load the angular-animate library.
2. The angular-animate library now attaches certain CSS classes, for example,

when elements enter or leave, and detaches the classes again when the
animation is done.

3. These classes are prefixed with ng-, for example, ng-enter for the initial
state of the element and ng-enter.ng-enter-active for the target state of
the animation.

4. All that we needed to do then was to define these classes in CSS, as we have
done in main.css in the case of our to-do list application.

5. We have defined pairs of these classes for our specific item class: .item.
ng-enter, which defines the initial state of the element, with the duration of
how long the animation is supposed to run, and then the .item.ng-enter.
ng-enter-active class, which defines the target state of the same animation.
The initial state has an opacity of 0, making it fully transparent, and the
target state has an opacity of 1, making it fully visible. During the animation,
the specific property transitions between these two values.

6. We have defined the transition to be linear, which means that the changes in
the value(s) are distributed evenly over the duration of time. This is called an
easing function, and it is specified in this line:
transition: 1.2s linear all;

7. The transition we have used applies to all the eligible properties that
can transition. We can omit this, but explicitly specifying this makes it
immediately obvious that there are different transitions for different
properties. We will see in the next section how to animate different
properties differently.

Chapter 5

[99]

8. Note that we have defined the transition time twice, once in prefixed
and again in the nonprefixed form. This is because new CSS features first
appear in vendor-specific prefixed form before they are generally adopted
into the standard. Check http://caniuse.com to find out more about
browser support for this feature (and many others): http://caniuse.
com/#search=transition.

Let's try an other easing function instead. We could try ease, but the difference
will not be very noticeable in the case of opacity transitions, much more so when
changing the size or position. However, distinct steps are very noticeable:

transition: 1.2s steps(5) all;

In this case, the value transition is not even, but instead takes place in the number of
specified, distinct steps, which can give an interesting effect as well.

There are different events/hooks used by various directives that you can
learn more about in the documentation.

I have claimed that AngularJS assigns these classes automatically, but don't take my
word for it; instead let's see this in action by opening the web inspector. In Chrome,
for example, right-click on an element and choose the inspect element. We will find
that at this moment, when no animation is active, the classes assigned to the element
are item and ng-scope, as shown in the following screenshot:

http://caniuse.com
http://caniuse.com/#search=transition
http://caniuse.com/#search=transition

Learning Animation

[100]

Now, when we mark an item as completed, we will see that the CSS classes we have
defined are automatically assigned to the element for the duration of the animation,
as shown in the following screenshot:

This is what angular-animate does by adding or removing such CSS classes
dynamically to enable the animation in AngularJS applications.

Increase the duration of a transition when you want to inspect what is
actually happening under the hood. In this case, I have increased the
duration to 20 seconds instead of one second; otherwise, I would not have
been able to observe and capture this behavior:
.item.ng-leave {
 -webkit-transition: 20s linear all;
 transition: 20s linear all;
 opacity: 1;
}

Chapter 5

[101]

Moving elements around on the page
Let's play around and animate additional properties. Imagine that the items in our
to-do application fly in from the top until they reach their correct vertical position
and then make a 90-degree turn to slide into their slot horizontally, all while fading
in from invisibility to full visibility. Then, on completing an item, it will do the
opposite, slide to the right, and then fall from the page while fading away.

All we need to change is the CSS for this scenario; everything else stays the same.
Modify main.css as follows:

body {
 margin: 100px 40px;
 font-family: sans-serif;
}

.item {
 width: 230px;
 padding: 10px;
 margin: 10px 0;
 background: #ddd;
 box-shadow: 5px 5px 5px #888888;
 font-weight: bold;
 position: relative;
}

.item.ng-enter {
 -webkit-transition: left 1s ease 1s, top 1s ease,
 opacity 2s linear;
 transition: left 1s ease 1s, top 1s ease,
 opacity 2s linear;
 opacity: 0;
 left: 300px;
 top: -500px;
}

.item.ng-enter.ng-enter-active {
 opacity: 1;
 left: 0;
 top: 0;
}

.item.ng-leave {
 -webkit-transition: left 1s ease, top 1s ease 1s,
 opacity 2s linear;
 transition: left 1s ease, top 1s ease 1s,
 opacity 2s linear;

Learning Animation

[102]

 top:0;
 left:0;
 opacity: 1;
}

.item.ng-leave.ng-leave-active {
 opacity: 0;
 left: 300px;
 top: 1500px;
}

So, what is going on in the previous CSS?

1. First of all, we have adjusted the margin at the top to make the move from
the top a little more visible.

2. Next, we set the item class to the relative position, which means that the
position is relative to where it would usually be (which is in the places where
we have previously seen them).

3. Then, we set top: 0 and left: 0 as the target state of ng-enter and as the
starting point of the ng-leave animation. This, in effect, means that during
the majority of the life cycle of the div element, it will be positioned as
expected without the relative position property.

4. As the starting point of the ng-enter transition, we have chosen a position
that is 300px to the right of the target position and off the page to the top.

5. As the destination of the ng-leave transition, we have chosen a place
at the bottom of the page, resulting in the illusion of the element falling
off the page.

Let's take a look at the result, with the limitation, of course, that we cannot capture
motion well in this book:

Chapter 5

[103]

Easing functions
So, in the preceding CSS, we created some motion on the page, but we can still
spice this up by making the movement a little more interesting and less predictable.
CSS animations give us a great tool for this, the so-called cubic-bezier function,
which lets us specify exactly how we want the movement to look. You can find
more information about these at http://en.wikipedia.org/wiki/Bézier_curve.
For our purpose, you should suffice to know that a Bezier curve specifies two
control points in two-dimensional space, which defines a curve that will be used to
determine any point of the value transition over time. You can find a nice interactive
tool to create these curves at http://cubic-bezier.com.

There is also a great open source cheat sheet available online, which the curve used
in this example originates from. Refer to the following shape:

You can find this and many other interesting curves at http://easings.
net/#easeInOutBack and the source code at https://github.com/ai/easings.net.

For this, we specify a Bezier curve, describing the change of the value in question.
Again, we only need to modify main.css:

.item.ng-enter {
 -webkit-transition: left 1s cubic-bezier(0.68, -0.55,
 0.265, 1.55) 1s, top 1s cubic-bezier(0.68, -0.55,
 0.265, 1.55), opacity 2s linear;
 transition: left 1s cubic-bezier(0.68, -0.55, 0.265,
 1.55) 1s, top 1s cubic-bezier(0.68, -0.55, 0.265,
 1.55), opacity 2s linear;
 opacity: 0;
 left: 300px;
 top: -500px;
}
.item.ng-enter.ng-enter-active {

http://en.wikipedia.org/wiki/B�zier_curve
http://cubic-bezier.com
http://easings.net/#easeInOutBack
http://easings.net/#easeInOutBack
https://github.com/ai/easings.net

Learning Animation

[104]

 opacity: 1;
 left: 0;
 top: 0;
}

.item.ng-leave {
 -webkit-transition: left 1s cubic-bezier(0.68, -0.55,
 0.265, 1.55), top 1s cubic-bezier(0.68, -0.55, 0.265,
 1.55) 1s, opacity 2s linear;
 transition: left 1s cubic-bezier(0.68, -0.55, 0.265,
 1.55), top 1s cubic-bezier(0.68, -0.55, 0.265, 1.55)
 1s, opacity 2s linear;
 top:0;
 left:0;
 opacity: 1;
}

Take a look at your end to see how the animation is orchestrated.

Using LESS to scale entire animations
It can become quite annoying to tweak the duration of an entire animation because
we will have to change every single duration inside CSS. Consider a much more
complex animation and you can imagine how tedious this would be. However, for
this we can use LESS (Leaner CSS), a language that compiles into CSS and allows us
to use variables to scale individual values. We will cover LESS in much more detail
later, but it is worth introducing it here already. If you are not using it yet, you really
should. Of course, you can also use SASS, but if you are using SASS, you will easily
be able to achieve the same in SASS. I believe using SASS over LESS or vice versa is a
matter of your choice, and it should not really stop you from using SASS just because
we have covered LESS in this chapter. There is an in-depth article on SASS versus
LESS that I would like you to check out in order to avoid confusion, which can be
found at http://css-tricks.com/sass-vs-less/. Typically, the compilation of
LESS (or SASS) into CSS will take place inside a grunt task, but for development
purposes, we can also run the compilation phase in the browser. We will install it
using Bower:

bower install --save less

http://css-tricks.com/sass-vs-less/

Chapter 5

[105]

As the LESS compiler only looks for *.less files in the page, we have to rename
main.css to main.less first. Then, we load less.js and the new main.less file
inside index.html:

<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width,
 user-scalable=no">
 <title>Angular Animation</title>
 <link rel="stylesheet" href="bower_components/bootstrap/dist/css/
bootstrap.css">
 <link rel="stylesheet/less" type="text/css"
 href="css/main.less">
 <script src="bower_components/less/dist/less-
 1.5.1.js"></script>
</head>

Now when you load the page, it should look exactly as before. Under the hood, the
browser now compiles the LESS into CSS. LESS is a superset of CSS, meaning that
it contains the entirety of the CSS language. Thus, the current CSS simply remains
unchanged so far.

Now, we can add a scaling variable and also add variables for the individual
phases in main.less, which we will use as a multiplier for all the durations
in our animation example. Edit main.less as follows:

@time-scale: 10;
@enter-left: 1s;
@enter-left-delay: 1s;
@enter-top: 1s;
@enter-fade: 2s;
@leave-left: 1s;
@leave-top: 1s;
@leave-top-delay: 1s;
@leave-fade: 2s;

.item.ng-enter {
 transition: left (@time-scale * @enter-left)
 cubic-bezier(0.68, -0.55, 0.265, 1.55) (@time-scale *
 @enter-left-delay),
 top (@time-scale * @enter-top) cubic-bezier(0.68, -0.55,
 0.265, 1.55),
 opacity (@time-scale * @enter-fade) linear;
 opacity: 0;

Learning Animation

[106]

 left: 300px;
 top: -500px;
}
.item.ng-enter.ng-enter-active {
 opacity: 1;
 left: 0;
 top: 0;
}

.item.ng-leave {
 transition: left (@time-scale * @leave-left)
 cubic-bezier(0.68, -0.55, 0.265, 1.55),
 top (@time-scale * @leave-top) cubic-bezier(0.68, -0.55,
 0.265, 1.55) (@time-scale * @leave-top-delay),
 opacity (@time-scale * @leave-fade) linear;
 top:0;
 left:0;
 opacity: 1;
}

The preceding LESS code will compile into plain old CSS, with the individual values
multiplied by the @time-scale variable wherever we have specified. We could have
left the individual values in the place where they were, but it is often easier if the
variables are in one place. Now, we only need to change a single variable when we
want to scale the entire animation. Of course, we could also use separate variables to
scale the ng-enter and the ng-leave groups separately, or whatever other grouping
we can think of.

Note that in the previous code, we didn't specify the prefixed
-webkit- CSS property to make the code a little neater and
less repetitive. If you need it, you can just create a copy of the
transition with the prefix and the otherwise unchanged syntax.

Using animate.css
Now that we have created a transition manually, let's make things a bit simpler for
ourselves by making use of the great open source animate.css library, which
comes with many interesting animations that we can easily use in our AngularJS
application. You can find out more about this library and the source code at
https://github.com/daneden/animate.css. We install animate.css by
running the following in the command line:

bower install --save animate.css

https://github.com/daneden/animate.css

Chapter 5

[107]

Next, we modify index.html to load animate.css:

<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, user-
scalable=no">
 <title>Angular Animation</title>
 <link rel="stylesheet" href="bower_components/bootstrap/dist/css/
bootstrap.css">
 <link rel="stylesheet"
 href="bower_components/animate.css/animate.css">
 <link rel="stylesheet/less" type="text/css" href="css/main.less">
 <script src="bower_components/less/dist/less-1.5.1.js"></script>
</head>

With these modifications in place, we can now edit our main.less file, which will
become significantly simpler, despite the fact that we are now also introducing
prefixed versions for legacy Mozilla and Microsoft browsers:

body {
 margin: 100px 40px;
 font-family: sans-serif;
}

@enter: 1s;
@leave: 1s;

.item {
 width: 230px;
 padding: 10px;
 margin: 10px 0;
 background: #ddd;
 box-shadow: 5px 5px 5px #888888;
 font-weight: bold;
 position: relative;
}
.item.ng-enter {
 -webkit-animation: lightSpeedIn @enter;
 -moz-animation: lightSpeedIn @enter;
 -ms-animation: lightSpeedIn @enter;
 animation: lightSpeedIn @enter;
}

.item.ng-leave {
 -webkit-animation: lightSpeedOut @leave;

Learning Animation

[108]

 -moz-animation: lightSpeedOut @leave;
 -ms-animation: lightSpeedOut @leave;
 animation: lightSpeedOut @leave;
}

Note that all we really need to do is call the named animations from animate.css
inside the ng-enter and ng-leave classes. This is how the result looks when
checking off an item:

Pretty good, particularly considering that all we had to do was to import a library.
There are all kinds of great animations available in animate.css, and the source
code is available too, making it a great way to learn how these animations are
actually created with CSS. CSS animations are a mighty feature, and we can only
scratch the surface here.

Staggering animations
AngularJS 1.2 or higher introduced a new feature in its ngAnimate module, that is,
a native staggering support to CSS transitions and keyframe animations without
much CSS code from our end. The built-in $animate service does all the Grunt work
to render animations in a staggering fashion. To get more clarity on this, let's take a
look at the following example.

Let's modify the addItem() method from controllers.js to add multiple to-dos at
the same time with a comma as the separator. We'll then split the inputText object
by a comma to add each to-do separately:

 $scope.addItem = function () {
 var arrTodos = $scope.inputText.split(',');

 for(var i = 0; i < arrTodos.length; i++) {

Chapter 5

[109]

 $scope.items.push({
 text: arrTodos[i],
 completed: false
 });
 }
 $scope.inputText = "";
 };

With this change, we want to see how multiple to-do items are animated
simultaneously. If you've done said modifications, then you'll see all the to-dos
move at the same time in the following screenshot, which looks quite weird:

What if we could issue a slight delay in between that would bring a curtain-like effect
to the animation? This is what staggering animations do. They allow us to add a
delay while animating multiple elements.

The stagger effect can be performed by creating a ng-EVENT-stagger CSS class and
attaching it to the base class used for the animation. The style property expected
within the stagger class can be a transition-delay or an animation-delay
property (or both, depending on your requirement). We'll extend the example we
saw in the earlier section, Using LESS to scale entire animations, by adding staggering
classes in main.less, as follows:

 .item.ng-enter-stagger,
 .item.ng-leave-stagger,
 .item.ng-move-stagger {
 -webkit-transition-delay: 0.1s;
 transition-delay: 0.1s;

 -webkit-transition-duration:0;
 transition-duration:0;
 }

Learning Animation

[110]

Note that a 100 ms delay will be used between each successive enter/leave/move
operation. The last two lines are pretty much required to prevent any kind of CSS
inheritance issues, as the chances are that the transition-duration property is
being accidentally inherited and, therefore, the stagger may not work as expected.
Here is how the stagger animation will look:

Understanding how staggering works
Well, it's fairly simple, but it is complex under the hood. The ngAnimate service
looks for the ng-EVENT-stagger CSS class associated with the element and extracts
the animation/transition details to perform the staggering effect. It also takes care of
when the animation starts, ends, and how much delay was proposed for a stagger
operation so that each animation is spaced out. Note that the service is only there
to parse the timing details in order to delay the addition/removal of the ng-*
classes accordingly.

JavaScript-defined animations
We may have to rely on JavaScript sometimes to perform the animation because of
browser compatibility issues with CSS animations/transitions. As you know, the
moment we introduce ngAnimate as a dependency to our application, the $animate
service starts adding/removing the ng-* classes on/off the elements during the
course of the animation, but within 0 ms, in case we do not have the CSS animations
in place. This gives us a control over how we want to enable the animation, that is,
either using CSS or JavaScript.

Chapter 5

[111]

Let's create a JavaScript fallback for the example from the Using animate.css section.
Add the following to controllers.js:

.animation('.item', function() {
 return {
 enter: function(element, done) {
 element.css({'opacity': 0, 'margin-left': '-230px'});
 element.animate({'opacity': 1, 'margin-left': 0}, 500,
done);
 },
 leave: function(element, className, done) {
 element.animate({'opacity': 0, 'margin-left': -230}, 500,
done);
 }
 }
 });

So, what's happening here?

1. First of all, we've used the animation service (such as controller)
in AngularJS to enable class-based animation in JavaScript.

2. The animation name (.item) should begin with a dot, resembling a
CSS class definition.

3. As we are dealing with ngRepeat, we have to take care of the enter and
leave events for this particular example. This is applicable to other directives
too, such as ngView, ngInclude, ngSwitch, and ngIf. For the remaining
directives, such as ngClass, ngShow, form, and ngModel, there are the
addClass and removeClass events to consider.

4. Going ahead with the enter event, we mentioned the start and end states.
Initially, we want an element to be out of the viewport, with a negative
margin, and hidden with an opacity of 0. Moving towards the destination,
we reduced the negative margin to 0 by animating within the viewport and
making it visible.

5. For the leave event, it is reversed.
6. Note that the done callback is extremely important to be triggered after the

animation is over. For CSS animations, AngularJS calls it internally. The
purpose of the done callback is to remove the ng-* classes on the element
upon the completion of the animation. AngularJS may not remove the
element (mainly in ngRepeat, ngIf, and ngSwitch), assuming that the
animation is still in progress if we fail to call the done method, and may
not detach those classes.

Learning Animation

[112]

However, there is one problem: when a CSS animation is supported by the browser,
both the CSS and JS animations will collapse. To fix this, we have to know whether
the browser has support for transitions/animations. For this, we'll use Modernizr,
a feature detection library for HTML5/CSS3.

We'll install Modernizr using the following in the command line:

bower install --save modernizr

This will install the latest version of Modernizr in the bower_components/ directory
and then we'll have to insert it in index.html:

<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, user-
scalable=no">
 <title>Angular Animation</title>
 <link rel="stylesheet" href="bower_components/bootstrap/dist/css/
bootstrap.css">
 <link rel="stylesheet"
 href="bower_components/animate.css/animate.css">
 <link rel="stylesheet/less" type="text/css" href="css/main.less">
 <script src="bower_components/less/dist/less-1.5.1.js"></script>
 <script src="bower_components/modernizr/modernizr.js"></script>
</head>

Next, we'll slightly update the defined JavaScript animation to seamlessly fall back.
Modernizr has a bunch of tests to check browser support for various features.
One of them is cssanimations. Let's add it, as follows:

.animation('.item', function() {
 if (Modernizr.cssanimations) return angular.noop;
 return {
 enter: function(element, done) {
 element.css({'opacity': 0, 'margin-left': '-230px'});
 element.animate({'opacity': 1, 'margin-left': 0}, 500,
done);
 },
 leave: function(element, className, done) {
 element.animate({'opacity': 0, 'margin-left': -230}, 500,
done);
 }
 }
});

Chapter 5

[113]

In this case, we do the following steps:

1. We first check for the support of cssanimations in a browser using
Modernizr.cssanimations—it will return true if there is support;
otherwise, it will return false.

2. The animation service should return an empty object/function if we do not
want to overwrite CSS animations. We've returned angular.noop to save
some keystrokes: a built-in method in AngularJS that performs no operation,
which is similar to function() { }.

3. If you use the older version of Internet Explorer, that is, version 8 or 9,
then you can catch the JavaScript animation in motion.

Now, our animation will work seamlessly in evergreen browsers that support CSS3
animations as well as old browsers with JS fallback.

To add animation hooks to custom directives, Matias' (the core angular
team member) article is worth taking a look at, which can be found at
http://www.yearofmoo.com/2013/08/remastered-animation-
in-angularjs-1-2.html#rolling-out-animations-with-your-
own-directives.

Summary
In this chapter, we took a look at the animation functionality in AngularJS and how
easy it is to simply use CSS transitions/animations in order to make elements dance
or fall back to JavaScript animations otherwise. First, we created a simple to-do list
application with an animated entry and exit of items using a CSS-based animation.
In this application, we also created a custom filter to only show the items that are not
marked as completed. We looked at what angular-animate is doing under the hood
to facilitate CSS animations. We created motion on the page inside the ng-enter and
ng-leave phases. We created more interesting motion paths by making use of the
bezier-curve function in CSS. We started using LESS to make our lives easier by
introducing variables into CSS and letting us specify values in a central place. We
used animate.css as a simple way of importing rather sophisticated animations.
We also created a staggering animation to space out multiple elements being
animated simultaneously and learned how AngularJS manages to do so. Finally,
we set up a fallback for CSS transitions/animations in JavaScript. Also, we trained
Modernizr to detect the HTML5/CSS3 feature with simple to-use utility functions.
In the next chapter, we will be covering data-driven charts.

http://www.yearofmoo.com/2013/08/remastered-animation-in-angularjs-1-2.html#rolling-out-animations-with-your-own-directives
http://www.yearofmoo.com/2013/08/remastered-animation-in-angularjs-1-2.html#rolling-out-animations-with-your-own-directives
http://www.yearofmoo.com/2013/08/remastered-animation-in-angularjs-1-2.html#rolling-out-animations-with-your-own-directives

Using Charts and
Data-driven Graphics

In the previous chapter, we covered animations in AngularJS and the reason why
$animate service exists in the first place to enable CSS or JavaScript animations
seamlessly in AngularJS applications, which was not possible before. In this chapter,
we will learn the benefits of using charts, how to implement them in AngularJS,
and in the end, we will make it dynamic with real-world data to create a simple
dashboard application.

We will cover the following topics in this chapter:

• Creating a simple bar chart in pure CSS
• Extending the same with static data and converting it into a widget using the

AngularJS directives API
• Using an open source alternative to our CSS-based chart and learning how

charting libraries are better than reinventing the wheel
• Consuming RESTful APIs to create a dashboard application to portray

real-world data using various types of charts with the D3 library

Using Charts and Data-driven Graphics

[116]

Understanding the importance of charts
It's always good to know the purpose prior to learning anything, and I'm pretty sure
you must be wondering why we need to learn about charts. Charts are an extremely
effective medium to convey the importance of any sort of data in a graphical manner.
Let's start with a story. Imagine that you are trying to convince your boss to allow
you to use AngularJS for your next project. Although there are many ways to win
them over, you might choose a simple path to just compare your current JavaScript
framework or library with AngularJS and try explaining to them what AngularJS
can do and the current stack cannot. You might also brag about Google backing it,
thereby ensuring its authenticity and long-term success, and expect your boss to give
you the green signal but they do not even budge. Finally, you would show them the
following line chart and the rest will be history:

Creating a bar chart
Let's handcraft a simple bar chart in pure CSS to strengthen our learning before
using the ready-made solutions. A bar chart, also known as bar graph, is a chart with
rectangular bars with lengths proportional to the values that they represent. It is very
useful to display categorical data. In this first example, we'll use static data to display
on the graph.

Chapter 6

[117]

To begin with, we'll use the same template from the Step01 folder of Chapter 5,
Learning Animation. Let's replace index.html with the following markup:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, user-scalable=no">
<title>Angular Bar Chart: Pure CSS</title>
<link rel="stylesheet" type="text/css" href="css/main.css">
</head>
<body>
<div class='container'>
<div class='bar blue'>Blue - 50%</div>
<div class='bar green'>Green - 80%</div>
</div>
</body>
</html>

Then, we'll add very straightforward CSS styles in main.css to bring these inert div
objects to life:

 .container {
 position: relative;
 width: 300px;
 height: 300px;
 border: 1px solid gray;
 margin: 0 auto;
 box-shadow: 2px 2px 2px gray;
 font-size: 14px;
 color: white;
 padding-right: 10px;
}
.bar {
 position: absolute;
 bottom: 0;
 text-align: center;
 word-break: break-all;
}
.blue {
width: calc(300px/2 - 10px);
 height: 50%;
 background: blue;
 left: 10px;
}

Using Charts and Data-driven Graphics

[118]

.green {
width: calc(300px/2 - 10px);
 height: 80%;
 background: green;
 left: calc(300px/2 + 10px);
}

You might be familiar with most of the styles here, so I'll just focus on the
highlighted ones because we have to come up with a formula to calculate the same
in JavaScript in the next section. First of all, we want the width of each bar to be
exactly half the container size, excluding some padding around. We'll also have 10px
padding between the bars and the container. Note that the calc() method is really
handy here to perform calculations and make it readable for developers than using
some precalculated arbitrary values in place.

If all is good, then you'll see our CSS bar chart, as follows:

Making the bar chart data driven
By now, you've seen how easy it is to create a static bar chart, so let's customize it
to lay multiple bars to showcase a large dataset. In the previous section, we've not
used angular.js but for the data-driven charts, it will be required. So, let's add it by
running the following command on the shell:

bower install --save angular

Chapter 6

[119]

This will install the latest version of angular.js in the bower_components folder.
Now update index.html to wrap the chart container within BarChartCtrl to have
a proper encapsulation for the static data, as follows:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, user-scalable=no">
<title>Angular Bar Chart: Data Driven</title>
<link rel="stylesheet" href="css/main.css">
</head>
<body ng-app="myApp">
<div ng-controller="BarChartCtrl">
<div class='container'>
 <div class='bar blue'>Blue – 50%</div>
 <div class='bar green'>Green– 80%</div>
</div>
</div>
<script src="bower_components/angular/angular.js"></script>
<script src="js/app.js"></script>
<script src="js/controllers.js"></script>
</body>
</html>

You are aware of the use of ng-app to bootstrap the AngularJS application. We'll go
straight into updating app.js and controllers.js. Let's put the following line into
app.js quickly:

angular.module('myApp', ['myApp.controllers']);

Add the following code in controllers.js. Here, we have defined the container's
size details to be further customizable and a collection of data to render on the graph:

angular.module('myApp.controllers', [])
.controller('BarChartCtrl', function ($scope) {
 $scope.container = { width: 300, height: 300, gap: 10 };

 $scope.bars = [
 { color: 'blue', percentage: 50 },
 { color: 'orange', percentage: 60 },
 { color: 'red', percentage: 10 }
];
});

Using Charts and Data-driven Graphics

[120]

Let's use this data in index.html, as follows:

<div ng-controller="BarChartCtrl">
<div class='container' ng-style="setContainer()">
<div class='bar' ng-repeat="bar in bars"ng-style="setDetails(bar,
$index)">{{bar.color}} - {{bar.percentage}}%</div>
</div>
</div>

The following explains the preceding code:

• First of all, we apply the width and height to div.container using
ng-style and passing a method that will return the expected styles as
defined in $scope.container. The ng-style directive in AngularJS lets you
apply in-line styles. You can either pass a function that returns an object that
consists of a key/value pair of CSS properties to be applied on the element,
or directly pass an object.

• As we have a collection of data to iterate through, AngularJS comes up
with a really prolific directive named ng-repeat to iterate over a collection
and will render the associated element three times for blue, orange, and red
bars, respectively.

• The ng-repeat directive also gives access to each item in the collection to get
the item details. As you can see, we've retrieved {{bar.color}} and {{bar.
percentage}} out of it.

As of now, the methods passed to ng-style do not do anything because we've
not defined them yet in the controller. Let's add the following methods in
controllers.js:

 $scope.setContainer = function() {
 return {
 'padding-right': $scope.container.gap + 'px',
 'width': $scope.container.width + 'px',
 'height': $scope.container.height + 'px'
 };
 };
 $scope.setDetails = function(bar, index) {
 var barWidth = $scope.container.width/$scope.bars.length - $scope.
container.gap;
 return {
 height: bar.percentage + '%',
 background: bar.color,
 width: barWidth + 'px',
 left: $scope.container.gap + ($scope.container.gap +
barWidth)*index + 'px'
 };
 };

Chapter 6

[121]

The setContainer() method just returns a plain object containing the styles to be
applied on the container. In the setDetails() method, we calculate the ideal width
for each bar in order to fit them all inside the container without overflow. Notice that
we've passed bar and index as parameters to get the details for each bar to set the
proper height and position.

Finally, we'll just update our main.css file to remove the hardcoded styles, as follows:

.container {
 position: relative;
 border: 1px solid gray;
 margin: 0 auto;
 box-shadow: 2px 2px 2px gray;
 font-size: 14px;
 color: white;
}
.bar {
 position: absolute;
 bottom: 0px;
 text-align: center;
 word-break: break-all;
}

If all is well, then you'll be amazed to see the following chart. Notice how each bar
has equal width and is perfectly spaced out:

Using Charts and Data-driven Graphics

[122]

You can experiment with it by adding more data in the $scope.bars collection and
see how it fits in.

Converting the bar chart into a widget
Imagine that you want to use this data-driven bar chart in many places in your
application and obviously do not want to repeat the same code everywhere by
creating a separate controller for each instance. The better solution to this
problem is to convert it into a reusable widget with the AngularJS directives API.

Let's update index.html to get rid of the controller and add directives.js instead:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, user-scalable=no">
<title>Angular Bar Chart:: Widget </title>
<link rel="stylesheet" href="css/main.css">
</head>
<body ng-app="myApp">
<bar-chart
 width="400"
 height="400"
 gap="5"
 data="[{ color: 'blue', percentage: 50 }, { color: 'orange',
percentage: 60 }, { color: 'red', percentage: 10 }]">
</bar-chart>
<script src="bower_components/angular/angular.js"></script>
<script src="js/app.js"></script>
<script src="js/directives.js"></script>
</body>
</html>

Creating a bar-chart directive
That's right! We've created our own element, bar-chart, to solve the problem.
You can pass the container's width and height, a breathing space between a container
and bars, and of course, the data to it. Let's revive it by adding the following code in
directives.js:

angular.module('myApp.directives', []).directive('barChart',
function() {
 return {
restrict: 'E',

Chapter 6

[123]

template: "<div class='container' ng-style='setContainer()'>\
<div class='bar' ng-repeat='bar in bars' ng-style='setDetails(bar,
$index)'>{{bar.color}} - {{bar.percentage}}%</div>\
</div>",
 link: function(scope, element, attrs) {
scope.container = {
 width: scope.$eval(attrs.width) || 300,
 height: scope.$eval(attrs.height) || 300,
 gap: scope.$eval(attrs.gap) || 10
 };
scope.bars = scope.$eval(attrs.data) || [];
scope.setContainer = function() {
 return {
 'padding-right': scope.container.gap + 'px',
 'width': scope.container.width + 'px',
 'height': scope.container.height + 'px'
 };
 };
scope.setDetails = function(bar, index) {
 var barWidth = scope.container.width/scope.bars.length -
scope.container.gap;
 return {
 height: bar.percentage + '%',
 background: bar.color,
 width: barWidth + 'px',
 left: scope.container.gap + (scope.container.gap +
barWidth)*index + 'px'
 };
 };
 }
 };
});

There are a few things to note here:

• The directive name, barChart, should be in Camel Case unlike how it was
used in the DOM as <bar-chart>.

• The restrict option lets you restrict how the directive should be used in
HTML. The E stands for Element. Other variations are C (CSS Class),
A (Attribute), and M (Comments). If you want to use it both as an
Element and Attribute, then you can put EA in the option.

• The template option takes the markup you want to put inside the directive
once it is registered. In our case, we've placed the container- and bar-related
markups here without any modification.

Using Charts and Data-driven Graphics

[124]

• The link function is a postdirective registration callback method where
you can simply do any sort of DOM manipulation, attach events, and bind
methods on the scope to be further used in the template. You can see that
we've moved our methods named setContainer() and setDetails() in it.

• The attrs parameter in the link function returns all the attributes and their
values (post evaluation using scope.$eval) associated with the element.

Then update app.js as well:

angular.module('myApp', ['myApp.directives']);

Now, you are free to use as many chart instances as you want in your application
without duplicating the original piece of code. That's the beauty of AngularJS!

Using Angular Google chart tools
There are different variations of charts to display a large data set; sometimes, a bar
chart is not an ideal choice. Google chart tools (https://developers.google.com/
chart) are powerful, simple to use, and a free rich gallery of interactive charts and
data tools. However, Google has not ported it to AngularJS yet, but the AngularJS
community, which is so vast and full of enthusiastic people, made this possible. We
are going to use a AngularJS wrapper for the same called angular-google-chart.
Let's build a pie chart with it.

Install angular-google-chart using the following commands in the terminal:

bower install --save angular-google-chart

Now, update index.html with the following:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, user-
scalable=no">
 <title>Angular Pie Chart: Google Chart</title>
</head>
<body ng-app="myApp">
 <h1>Google Trends: JS frameworks</h1>
 <div ng-controller="ChartCtrl">
 <div google-chart chart="chartObject" style="height:400px;
width:100%;"></div>
 </div>
 <script src="bower_components/angular/angular.js"></script>
 <script src="bower_components/angular-google-chart/ng-google-chart.
js"></script>

https://developers.google.com/chart
https://developers.google.com/chart

Chapter 6

[125]

 <script src="js/app.js"></script>
 <script src="js/controllers.js"></script>
</body>
</html>

Take a note of the following:

• The google-chart directive embeds any of the Google chart types
• The chartObject object is an AngularJS model that consists of columns

and rows to be rendered

To leverage the angular-google-chart directives, we need to inject its module in
our app; so, add the following in app.js:

'use strict';
angular.module('myApp', ['googlechart', 'myApp.controllers']);

Then, we'll set up our chart's configuration and data to feed to. For this example,
we're going to use a real-world Google search data for different JavaScript
frameworks for the past 12 months:

'use strict';
angular.module('myApp.controllers', []).controller('ChartCtrl',
function ($scope) {
 $scope.chartObject = {
 type: 'PieChart',
 data: {
 "cols": [
 {label: "frameworks", type: "string"},
 {label: "shares", type: "number"}
],
 "rows": [
 {c: [{v: "Angular.js" }, {v: 54 }]},
 {c: [{v: "Backbone.js"}, {v: 9 }]},
 {c: [{v: "Ember.js" }, {v: 2 }]},
 {c: [{v: "Knockout" }, {v: 21 }]},
 {c: [{v: "Others" }, {v: 14 }]}
]
 }
 };
});

Notice that $scope.chartObject contains web searches (in percentage) performed
on Google for AngularJS, Backbone, Ember, and Knockout MVC JavaScript
frameworks. You can check it out at http://goo.gl/p7kgQn, if you want to
take a look.

http://goo.gl/p7kgQn

Using Charts and Data-driven Graphics

[126]

We've defined the type of chart and the value field to be read from the data to
create sectors. Also, $scope.chartObject holds the actual data that consists
of the columns, rows, and the title for each sector.

This will render the following beautiful interactive pie chart with these mere lines of
JavaScript code:

Try hovering over the pie chart to have each sector pop out to show area covered in
percentage in the tooltip.

You will notice that we have not included the original Google Chart
library to render the pie chart. That's because the angular-google-
chart module itself resolves all the necessary JavaScript and CSS
dependencies in the background. Do check out the <head> tag of this
example in the developer tool to find out.

Chapter 6

[127]

Building a dashboard using the GitHub
REST API
Enough with all the charts. Let's build a cool application using the GitHub REST API.
The GitHub API exposes RESTful services in order to fetch details for any software
projects, also known as repositories, hosted there. All the data that is stored on the
GitHub server can be accessible for developers through these APIs to implement
their ideas or build applications atop.

GitHub (https://github.com) is a web-based hosting service for
software development projects that use the Git revision control system.
In addition to it, developers can star/favorite projects they are interested
in and collaborate with other developers by reporting bugs or sending
patches (also known as pull requests) to improve them.

In this section, we are going to build a simple dashboard to watch over the
development of the AngularJS framework and the pace. We'll consume two GitHub
services to find the top 10 developers working on the top 100 open issues and the
top 100 pull requests merged to get a glance at the developers' productivity during
the week.

In this example, we are going to use a different charting library named nvd3,
which is based on d3.js. We'll first install all the dependencies as follows:

bower install --save angular
bower install --save underscore
bower install --save d3
bower install --save nvd3
bower install --save angularjs-nvd3-directives

D3.js (http://d3js.org/) is a JavaScript library used to manipulate
HTML based on data with the help of HTML, SVG, and CSS. NVD3
(http://nvd3.org/) is a library of reusable chart components for
d3.js. The angularjs-nvd3-directives project has ported nvd3.js charts
to AngularJS.

Let's update index.html with the following to have a clean slate:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, user-
scalable=no">

https://github.com
http://d3js.org/
http://nvd3.org/

Using Charts and Data-driven Graphics

[128]

 <title>Angular Dashboard: nvd3 charts with external data point</
title>
 <link rel="stylesheet" href="css/main.css">
</head>
<body ng-app="myApp">
 <h1>AngularJS Dashboard</h1>
 <script src="bower_components/underscore/underscore.js"></script>
 <script src="bower_components/angular/angular.js"></script>
 <script src="bower_components/d3/d3.js"></script>
 <script src="bower_components/nvd3/nv.d3.js"></script>
 <script src="bower_components/angularjs-nvd3-directives/dist/
angularjs-nvd3-directives.js"></script>
 <script src="js/app.js"></script>
 <script src="js/controllers.js"></script>
</body>
</html>

Then we need to inject nvd3 chart's module in app.js as:

angular.module('myApp', ['nvd3ChartDirectives', 'myApp.controllers']);

We are going to use Twitter Bootstrap, which is a CSS framework, to themify our
dashboard application in order to save our time from designing but building it.
Let's quickly install the same. Run the following command in the terminal:

bower install --save bootstrap

This will install the latest version of bootstrap. Do not worry about bootstrap now
because we're going to cover it in detail in the next chapter. However, we'll have to
reference it inside the index.html file along with nv.d3.css, as follows:

<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, user-
scalable=no">
 <title>Angular Dashboard: nvd3 charts with external data point</
title>
 <link rel="stylesheet" href="css/main.css">
 <link rel="stylesheet" href="bower_components/bootstrap/dist/css/
bootstrap.css">
 <link rel="stylesheet" href="bower_components/nvd3/nv.d3.css">
</head>

Right now our application does not do anything, so let's make it alive by performing
GitHub API integration. We are going to fetch the top 100 open issues assigned,
group them by contributors, and sort the contributors that have the most issues to
get the top 10 developers. Here is how the service looks:

var service = "https://api.github.com/repos/angular/angular.js/issues?
state=open&sort=updated&page=1&per_page=100&assignee=*"

Chapter 6

[129]

It's a simple URL that takes a few options, such as:

• state: This denotes the status of an issue, that is, open, close, or all.
• sort: This sorts all issues by created date, updated date, or total number of

comments made on the issue.
• assignee: This targets a specific GitHub user. The * symbol means

any assignee.
• per-page: This is the total number of issues the service should return.

The service returns paginated data in a descending order, so you can change the
page option to say, 2, to get a slot of the previous 100 issues.

The service returns lots of information about an issue but I trimmed down the
unnecessary part for brevity here:

[
 {
 "url": "https://api.github.com/repos/angular/angular.js/
issues/6934",
 "title": "Return type annotation invisible in docs",
 "user": {
 "login": "IgorMinar"
 },
 "state": "open",
 "assignee": {
 "login": "petebacondarwin"
 }
]

Let's create an issue controller to encapsulate the issues fetched by the service.
We'll first add some necessary markup in index.html:

<div class="row">
<div class="col-md-6">
<div class="panel panel-default" ng-controller="IssueCtrl">
<div class="panel-heading">Top 100 Open Issues with Assignee</
div>
<div class="panel-body">
<div nvd3-pie-chart data="data" width="500" height="500" x="x()"
y="y()" showLabels="true" donut="true" donutLabelsOutside="true"></
div>
</div>
</div>
</div>
</div>

Using Charts and Data-driven Graphics

[130]

Notice that data attributes take the data model to render, whereas the x and y
attributes tell the pie chart to read object properties from the data model to be used
on the x and y axes, respectively. We've added the controller named IssueCtrl here
and the nvd3-pie-chart directive to render the contributors.

Let's define the controller in controllers.js, as follows:

angular.module('myApp.controllers', [])
.controller('IssueCtrl', function ($scope, $http) {
 $scope.x = function() {
 return function(d) {
 return d.category;
 };
 };

 $scope.y = function() {
 return function(d) {
 return d.value;
 };
 };
})

For the moment, we have not passed any data, so you'll not see the pie chart in place.
Let's add the following snippet into the same controller in controllers.js to fill the
pie with remote data:

$http.get('https://api.github.com/repos/angular/angular.js/iss
ues?state=open&sort=updated&page=1&per_page=100&assignee=*').
success(function(issues) {
 var assignees = [], data = [];
 issues.forEach(function(issue) {
 assignees.push({category: issue.assignee.login});
 });
 assignees = _.groupBy(assignees, function(assignee) { return
assignee.category; });
 assignees = _.sortBy(assignees, function(assignee) { return
assignee.length; }).reverse();
 assignees = assignees.slice(0, 10);

 assignees.forEach(function(assignee) {
 data.push({category: assignee[0].category, value: assignee.
length});
 });
 $scope.data = data;
 });

Chapter 6

[131]

As soon as we call the API, we'll receive the response in the success callback of the
$http service. The $http service is a wrapper around the native XHR object that
facilitates communication with the remote HTTP servers. It broadcasts events such
as success, error, and then with the data received, from the remote endpoints.

As you saw earlier, the service returns a lot of data but we only need the assignees
out of it. So, we first iterate through the issues and extract all assignees as categories
out in a collection named assignees.

Then, we group the collection by assignee so that common assignees will be
combined together to get us the details about the total number of bugs each
one has been taking care of.

Later, we sort the collection by assignees that have the maximum issues in a
descending order to get the top 10 assignees by cutting out the remaining.

Once we get our top 10 contributors, we then create one more collection named data
to maintain a list of assignees with their respective issues.

Finally, we update the scope data model with the data collection that we just created
to update the chart, as shown in the following screenshot:

Using Charts and Data-driven Graphics

[132]

With this, everyday you'll get new updates about the progress of what the AngularJS
community is doing.

We have used the donut chart here, which is a variation of the pie
chart, and there is a lot of cool stuff you can do with it. Visit http://
cmaurer.github.io/angularjs-nvd3-directives/pie.chart.
html for more details.

Extending the dashboard
Let's extend the dashboard to take a look at how AngularJS contributors are working
and when they are most productive during a week. Just update index.html first,
as follows:

<div class="row">
 <div class="col-md-6">
 <div class="panel panel-default" ng-controller="IssueCtrl">
 <div class="panel-heading">
 Top 100 Open Issues with Assignee
 </div>
 <div class="panel-body">
 <div nvd3-pie-chart data="data" width="500"
height="500" x="x()" y="y()" showLabels="true" donut="true"
donutLabelsOutside="true"></div>
 </div>
 </div>
 </div>
 <div class="col-md-6">
 <div class="panel panel-default" ng-controller="PullCtrl">
 <div class="panel-heading">
 Top 100 Pull Requests Closed
 <div class="btn-group">
 <button type="button" class="btn btn-default" ng-
click="page = page + 1;loadData();">«</button>
 <button type="button" class="btn btn-default" ng-
click="page = page - 1;loadData();" ng-disabled="page == 1">»</
button>
 </div>
 </div>
 <div class="panel-body">
 <div nvd3-stacked-area-chart data="data" showXAxis="true"
showYAxis="true" width="500" height="500" showLegend="true"></div>
 </div>
 </div>
 </div>
 </div>

http://cmaurer.github.io/angularjs-nvd3-directives/pie.chart.html
http://cmaurer.github.io/angularjs-nvd3-directives/pie.chart.html
http://cmaurer.github.io/angularjs-nvd3-directives/pie.chart.html

Chapter 6

[133]

Here, we've added one more controller named PullCtrl to show the top 100 pull
requests merged. A pull request is a patch for a bug or a feature request included
for the next release of angular.js. Notice that we've used the nvd3-stacked-
area-chart directive to get an area chart for the same and that the collection data
is the same. However, the data in IssueCtrl will not override this collection of the
pull request because of different controllers. Controllers basically create a barricade
surrounding the data so that it will not be shared across. Also, notice the navigation
buttons to go back to the history to see how many pull requests were closed.

Let's quickly look at a service we're going to use for this chart:

Var service2 = "https://api.github.com/repos/angular/angular.js/pulls?
state=closed&sort=updated&page=1&per_page=100&sort=updated"

Almost all the parameters passed to the service are the same as we saw earlier. The
only service name changes from issues to pulls.

Let's define our PullCtrl controller in controllers.js and set up the configuration
for the area chart:

angular.module('myApp.controllers', [])
controller('PullCtrl', function ($scope, $http) {
 $scope.page = 1;
 $scope.loadData();
});

Let's go over what is important here:

• The $scope.page = 1 line of code will return 100 pull requests closed
recently and then you can go back and fetch the previous 100 pull requests
and so on using the navigation buttons added earlier.

• The loadData() method will be called immediately to fetch the first 100 pull
requests. It will also be called when a page changes via navigation buttons.

Now we can consume the service2 defined previously to fetch the data for the
chart. Add the following method before the $scope.loadData() call in PullCtrl
because the method should be defined before we call it as:

$scope.loadData = function() {
 $http.get('https://api.github.com/repos/angular/angular.js/
pulls?state=closed&sort=updated&page=' + $scope.page + '&per_
page=100&sort=updated').success(function(pulls) {
 var pulley = [], data = [];
 pulls.forEach(function(pull) {
 pulley.push({value: new Date(pull.updated_at).getDay()});
 });

Using Charts and Data-driven Graphics

[134]

 pulley = _.groupBy(pulley, function(pull) { return pull.value;
});
 pulley = _.sortBy(pulley, function(pull, i) { return pull[0].
value; });
 pulley.forEach(function(pull, i) {
 data.push([i, pull.length]);
 });
 $scope.data = [{
 "key": "Sun - Sat",
 "values": data
 }];
 });
 };

Here, we first store the last updated date in a collection named pulley. We then
group them by the date to get the number of pull requests merged per day. The week
starts with 0, that is, Sunday. Later, we just sort them in the ascending order. At the
end, we make a new collection of data having total number of pull requests merged
from 0 (Sunday) to 6 (Saturday).

Here is our minimal dashboard in AngularJS:

Do not forget to click on the navigation buttons to see the graph changing. I'm sure
you've learned a lot about charts in this chapter and you will take this dashboard to
the next level and create something amazing.

Chapter 6

[135]

Summary
That was a mouthful! We've learned a lot about different types of charts, writing
custom directives, using external widgets, and executing XHR requests. At the
beginning of the chapter, we created a simple CSS-based bar chart from scratch and
then made it dynamic with AngularJS models. We then converted the chart into a
reusable and declarative widget to facilitate code reuse. To avoid reinventing the
wheel, we tried the cool framework named Kendo UI and used its data visualization
component to create a stunning pie charts. At the end of the chapter, we consumed
GitHub APIs to build a simple but useful dashboard application.

In the next chapter, we'll learn how to leverage various CSS frameworks to make
AngularJS applications look beautiful without writing CSS on our own.

Customizing AngularJS with
CSS and CSS Frameworks

After playing with animations for a while in the previous chapter, it's time to find
out what it takes to combine the power of CSS frameworks with AngularJS in order
to create a responsive web app in a matter of time. In this chapter, we'll get a solid
grounding in CSS, which is essential when we are trying to customize the looks of
anything in AngularJS.

We'll be covering the following topics in this chapter:

• Solving problems with media queries
• Taking a look at the Twitter Bootstrap CSS framework to quickly mock up

well-designed applications
• Creating a simple bookmarking application in Foundation, a mobile-friendly

and responsive framework
• Learning how the CSS grid system lays the foundation for any application

and what role it plays in designing a flexible layout

Customizing AngularJS with CSS and CSS Frameworks

[138]

The evolution of responsive design
In the early days, HTML was born as a structural markup language to create
documents on the Web. At that time, it had various elements that were useful for
describing things, such as headings, paragraphs, hyperlinks, bulleted lists, tables
for tabular data, and so on. All of a sudden, the power of HTML was obvious to
a lot of developers and they started playing with it. While doing so, developers
quickly found the missing pieces to write great documents, resulting in a new set of
elements to be introduced to focus on emphasizing a bit of text that would improve
the presentation in the document. Eventually, the rising demand for presentation
increased and a structural language started to become presentational. However,
adding new markup elements in every new version of HTML was not possible and
reliable. At last, W3C (World Wide Web Consortium) brought CSS to the world in
order to fill the gap.

Since then, CSS has been widely respected and is used more than HTML to bring
aesthetic designs on the Web. Developers began using CSS to build everything
from simple to lucrative websites and web applications, in order to make them
look good and to make it easy to customize them later instead of polluting HTML
with presentational markups. Everything was going great, until the mobile web
came along. These days, developers have to help their websites/apps to run on
mobile devices, and the worst thing is that they come in many shapes/sizes unlike
a desktop. Having different versions of the same website/app to support different
mobile devices is not only a bad practice, but it can also lead to maintenance hell.

This problem gave birth to responsive layout. The responsive design adapts the
layout to the viewing environment using fluid- and proportion-based CSS grids,
which we are going to explore in later sections. The main difference between fluid
and responsive layouts is that fluid layouts are based on proportionally laying out
your websites, so elements take up the same percentage of space on different screen
sizes; while responsive design uses CSS media queries to present different layouts
based on the screen size / type of screen. There is an in-depth article in Smashing
Magazine on fixed versus fluid versus responsive that is worth checking out; go to
http://www.smashingmagazine.com/2009/06/02/fixed-vs-fluid-vs-elastic-
layout-whats-the-right-one-for-you/. It's funny if I were to say that an HTML
table (having the width in percentage) is the father of responsive layout, but it's
very difficult to design a highly responsive design with it, such as Pinterest's
card-like interface.

http://www.smashingmagazine.com/2009/06/02/fixed-vs-fluid-vs-elastic-layout-whats-the-right-one-for-you/
http://www.smashingmagazine.com/2009/06/02/fixed-vs-fluid-vs-elastic-layout-whats-the-right-one-for-you/

Chapter 7

[139]

I really liked the book Mobile First, Luke Wroblewski, Ingram Publishing,
when I read it for the first time; hence, I will definitely suggest that you
give it a try. However, this is not a book with code examples but with
a lot of theoretical knowledge and covers the whys more than the
hows—which is quite essential as well.

Introducing media queries
W3C created media queries as part of the CSS3 specification to solve the problem.
Media queries allow the presentation of content to be tailored to a specific range of
output devices without having to change the content itself. A media query consists of
a media type and at least one expression that limits the style sheet's scope by using
media features, such as width, height, and color.

@media
The @media CSS at-rule lets us control CSS properties to be applicable to a certain
media. It allows different style rules for different media/devices. There are plenty
of media types, as follows:

• all
• print
• screen

There are many others media types that we're not going to cover
here, so feel free to visit https://developer.mozilla.org for
more information.

The all media type is suitable for all devices. The print type targets printers,
whereas the screen type is intended primarily for color computer screens.
You can define it as follows:

@media <media types> {
 /* media-specific rules */
}

https://developer.mozilla.org

Customizing AngularJS with CSS and CSS Frameworks

[140]

Let's quickly create a small demonstration to check whether the screen and print
types are working. We'll create at-media-css.html as follows:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, user-
scalable=no">
 <title>@media CSS at-rule</title>
 <style type="text/css">
 @media screen {
 p {
 font-size: 50px;
 }
 }
 @media print {
 p {
 font-size: 10px;
 }
 }
 </style>
</head>
<body>
 <p>AngularJS UI Development</p>
 <blockquote>Try pressing Ctrl+P and see the above text</blockquote>
</body>
</html>

It does a simple thing, that is, the fontSize object of the <p> tag changes to 10px
while printing. You can press CTRL + P in your browser to see it in action.

The @media expression
Along with the media type, you can also target one or more expressions as media
features, which resolve to either true or false. If it turns to true, then the styles
defined within a block will be applied to the page/elements.

Chapter 7

[141]

In the following example, we are targeting all devices with a maximum width of
600px. If they exceed the width, then the text color will change to green, as follows:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, user-
scalable=no">
 <title>@media CSS features</title>
 <style type="text/css">
 p {
 font-size: 50px;
 color: red;
 }
 @media all and (max-width: 600px) {
 p {
 color: green;
 }
 }
 </style>
</head>
<body>
 <p>AngularJS UI Development</p>
 <blockquote>Try resizing the Window</blockquote>
</body>
</html>

In addition to this, you can even use the CSS media query on a link element by
moving all the CSS styles into the style.css file and you can reference it in
index.html, as follows:

<link media="all and (max-width: 600px)" href="style.css"
rel="stylesheet" />

In the mobile era, we often need to customize the application's look and feel based on
orientation. Because of limited space in portrait mode (than in landscape), we might
want to hide a few features of an application or group them in a drop-down menu.
To do this, you can use the orientation feature, as follows:

@media all and (orientation: landscape) {
 button.double-page-mode { display: block; }
}
@media all and (orientation: portrait) {
 button.double-page-mode { display: none; }
}

Customizing AngularJS with CSS and CSS Frameworks

[142]

With the previous styles in index.html, you can figure out the orientation in devices
with the JavaScript API for the same. The following snippet returns true if the
device is in the portrait mode, and you are free to perform any sort of operations
or checks to adjust the behavior of the application:

<script type="text/javascript">
 if (window.matchMedia("(orientation: portrait)").matches) {
 document.getElementsByTagName('body')[0].style.display = 'none';
 alert('The Portrait mode is not supported.');
 } else {
 document.getElementsByTagName('body')[0].style.display =
'block';
 }
</script>

If you tilt a device or resize a browser window and reload the page again, you will
get an alert, suggesting that you use landscape mode.

Media queries come in many flavors to suit your needs. Visit the media
queries section on https://developer.mozilla.org for more
supported media features.

Better designs with Twitter Bootstrap
Designing for applications is a really exciting job, but sometimes browser quirks
might drive you crazy and it's daunting to keep track of ways to work around
cross-browser issues. Before any CSS framework, various libraries were used to
design a UI, which led to inconsistencies and a high maintenance burden. Twitter
Bootstrap (http://getbootstrap.com/) was developed to solve these kind of
problems that developers face in their day-to-day lives and to encourage consistency
at a higher level. It contains HTML- and CSS-based design templates for typography,
forms, buttons, navigation, and other UI components, as well as optional JavaScript
extensions. In short, if you have a quick idea for any sort of application and don't
want to waste your precious time in designing it, then you can build a prototype of
your application with Twitter Bootstrap in no time. There is an Expo section on their
website that showcases various websites from around the world built using Twitter
Bootstrap, which will literally blow your mind. Do check it out!

https://developer.mozilla.org
http://getbootstrap.com/

Chapter 7

[143]

Moving forward, in this section, we'll revamp the to-do application that we built
in Chapter 5, Learning Animation. We'll only modify the HTML and update the CSS
without touching the JS part of the application. Here is the index.html file we
used earlier:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, user-
scalable=no">
 <title>Angular Animation</title>
 <link rel="stylesheet" href="bower_components/animate.css/animate.
css">
 <link rel="stylesheet/less" type="text/css" href="css/main.less">
 <script src="bower_components/less/dist/less-1.5.1.js"></script>
 <script src="bower_components/modernizr/modernizr.js"></script>
</head>
<body ng-app="myApp">
 <div ng-controller="NgAnimateCtrl">
 <input ng-model="inputText" />
 <button ng-click="addItem()">add</button>
 <div class="item" ng-repeat="item in items | active">
 <input type="checkbox" ng-model="item.completed" />

 </div>
 </div>
 <script src="bower_components/jquery/dist/jquery.js"></script>
 <script src="bower_components/angular/angular.js"></script>
 <script src="bower_components/angular-animate/angular-animate.
js"></script>
 <script src="js/app.js"></script>
 <script src="js/controllers.js"></script>
 <script src="js/filters.js"></script>
</body>
</html>

So, let's first install Bootstrap by running the following command in the terminal:

bower install --save bootstrap

Then, reference bootstrap.css in the <head> tag of index.html:

<link rel="stylesheet" href="bower_components/bootstrap/dist/css/
bootstrap.css">

Customizing AngularJS with CSS and CSS Frameworks

[144]

Now, replace the highlighted markup in index.html with the following:

 <div class="cover-container">
 <div class="masthead clearfix">
 <div class="inner text-center">
 <h3 class="masthead-brand">TodoStrap</h3>
 </div>
 </div>
 <div class="inner cover">
 // here goes our Todo App
 </div>
 </div>

In this markup, the div.cover-container element is a wrapper for our application
in order to make it center-aligned horizontally, which will contain the following
styles. Update the main.less file, as follows:

.cover-container {
 margin-right: auto;
 margin-left: auto;
}

The div.masthead element denotes the name of the application that uses Bootstrap's
text-align CSS class to center align the text. It contains:

.inner {
 padding: 30px;
}
.masthead-brand {
 margin-top: 10px;
 margin-bottom: 10px;
}

Then, add a slight padding around a list of to-dos:

.cover {
 padding: 0 20px;
}

Apply a background color to the window to make the application stand out:

html,
body {
 height: 100%;
 background-color: #333;

Chapter 7

[145]

 color: #fff;
 text-shadow: 0 1px 3px rgba(0,0,0,.5);
 box-shadow: inset 0 0 100px rgba(0,0,0,.5);
 overflow: hidden;
}

Finally, adjust the view for portrait and landscape modes in devices in such a way
that the whole application will be center-aligned in landscape and will occupy the
available space in portrait. So, update main.less as follows:

@media all and (orientation: portrait) {
 .masthead,
 .cover-container {
 width: 100%;
 }
}
@media all and (orientation: landscape) {
 .masthead,
 .cover-container {
 width: 500px;
 }
}

Now, we'll update the empty div.inner.cover element with the actual to-do form
and a list, as follows:

<div class="inner cover">
 <div ng-controller="NgAnimateCtrl">
 <form role="form">
 <input ng-model="inputText" type="text" class="input-lg
form-control" placeholder="What do you wanna do today?" autofocus>
 </form>
 <div class="list-group" style="padding: 0px;margin-top:
10px;">
 <a href="javascript:void(0);" class="list-group-item item"
ng-repeat="item in items | active">

 </div>
 </div>
 </div>

Customizing AngularJS with CSS and CSS Frameworks

[146]

Nothing has changed except that extra div tags are added, but there are still a few
things to make a note of:

• We've applied two new bootstrap CSS classes on the input as .input-lg
and .form-control. The .input-lg class is a shortcut for a large input box
that makes it big and attractive, whereas .form-control lets you enlarge the
input to occupy the available space.

• The purpose of .list-group is to render complex and customized content in
a list, and .list-group-item carries an item from the list.

You must be thinking how on earth you'll add a to-do without the add button.
Actually, the add button was making the design ugly, so we removed it. Let's track
the keypress event to add a to-do item when you press the Enter key. Replace the
input with:

<input ng-model="inputText" type="text" class="input-lg form-
control" placeholder="What do you wanna do today?" autofocus ng-
keyup="addItem($event)">

So, on every keyup, the addItem() method will be called; this needs to be prevented
and that's why we are passing $event as a parameter to find out whether the enter
key has been pressed or not in order to update the to-do list accordingly.
Let's update the addItem() method in controllers.js, as follows:

$scope.addItem = function ($event) {
 if ($event.keyCode !== 13) return;
 $scope.items.push({
 text: $scope.inputText,
 completed: false
 });
 $scope.inputText = ""
};

If you've noticed, we also removed the checkbox next to each to-do item, which is
used to clear it, as it's cluttering up the new design. So, now you can just click on
the to-do item to remove it from the list; quite simple! Update the list, as follows:

<div class="list-group" style="padding: 0px;margin-top: 10px;">
 <a href="javascript:void(0);" class="list-group-item item"
ng-repeat="item in items | active" ng-click="item.completed = !item.
completed">

 </div>

Chapter 7

[147]

That's it! If all went well, then you will see a beautiful to-do application running on
the desktop browser, as follows:

If you look at the same application on iPhone 5, then you will be amazed to see it
working there as well:

I believe that if you add a bunch of important features, such as syncing across
devices/browsers, e-mails/SMS notifications, and alerts, people would even be
happy to pay for the same. Go build something great!

Customizing AngularJS with CSS and CSS Frameworks

[148]

The foundation of your application
Foundation is a frontend framework similar to Twitter Bootstrap, consisting of
many useful tools to make responsive, mobile-first websites and web applications.
However, it is not recommended that you use it along with Bootstrap as it may affect
the layout of the application. Both the frameworks are on a par, so it's quite difficult
to judge any of them; however, I would suggest that you try out both to see for
yourself. There is a nice article on the comparison by treehouse to get you going,
at http://blog.teamtreehouse.com/use-bootstrap-or-foundation.

In this section, we are going to design a bookmarking application named PinIt in
pure Foundation. Let's begin with the installation first. Run the following command
in the terminal:

bower install --save foundation

Create a fresh copy of index.html and reference foundation.css in the following:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, user-
scalable=no">
 <title>Pin It</title>
 <link rel="stylesheet" href="bower_components/foundation/css/
foundation.css">
</head>
<body ng-app="myApp">

</body>
</html>

We'll start off by creating a black-colored bar to display the application's name and
a few options in the top-right corner, as follows:

<nav class="top-bar">
 <ul class="title-area">
 <li class="name"><h1>Pin It - <i>The Universal
Bookmarking App</i></h1>
 <li class="toggle-topbar menu-icon">Menu

 /* menu comes here */
 </nav>

http://blog.teamtreehouse.com/use-bootstrap-or-foundation

Chapter 7

[149]

The things to note here are given as follows:

• The .top-bar class creates a fixed position header with black background
color and a height of 45px

• The .menu-icon class places a tiny hamburger icon and the .toggle-topbar
class makes sure that it is hidden until a display is small enough, that is,
in devices

Then, we'll add a bookmark Search box and Add button to store new bookmarks.
So, replace the comment with the following markup:

 <section class="top-bar-section">
 <ul class="right">
 <li class="has-form">
 <div class="row collapse">
 <div class="small-9 columns">
 <input type="text" placeholder="Find Bookmarks">
 </div>
 <div class="small-3 columns">
 Search
 </div>
 </div>

 <li class="has-form">
 Add New
Bookmark

 </section>

The important bits to note are as follows:

• The framework comes with really useful classes, such as positioning an
element to the left or right; just add .right to move the Search box and
the Add button to the right.

• The .has-form class adds padding between form elements to perfectly space
them out. Use it wherever required.

• Like Twitter Bootstrap, Foundation also comes pre-equipped with a built-in
CSS grid system that allows us to create tables using the div elements. Each
grid row has 12 columns. You can add .small-1 to .small-12 or .large-1
to the .large-12 class in order to split the markup in the columns. These
classes only have the width set, so you have to use .columns with it to place
content side by side.

Customizing AngularJS with CSS and CSS Frameworks

[150]

• The Search button has to have the .button class, and the .alert class is
optional to color it in red. Additionally, you can use the .secondary and
.success classes, replacing .alert to change the look of the button. The
.expand class just lets the button occupy the remaining space, if available.

• The Add button has the data-reveal-id attribute that makes it workable.
It points to a modal to open, if clicked.

This minimal markup will create a nice top bar in no time, as follows:

Moreover, it's even responsive. On a small display, the Search box and the Add
button will be hidden under the menu icon, which will be revealed when clicked:

Chapter 7

[151]

To extend it, we'll now add markups for the Add New Bookmark pop up:

<div id="addBookmark" class="reveal-modal medium" data-reveal>
 <h2>New Bookmark</h2>
 <form>
 <div class="row">
 <div class="large-12 columns">
 <label class='error'>URL
 <input type="url" name="url" placeholder="Add bookmark
URL" required />
 </label>
 <small class="error">Please enter valid URL - should begin
with http or https</small>
 </div>
 </div>
 <div class="row">
 <div class="large-12 columns">
 <label class='error'>Title
 <input type="text" name="title" placeholder="Add bookmark
Title" required />
 </label>
 <small class="error">Please enter bookmark Title</small>
 </div>
 </div>
 <div class="row">
 <div class="large-12 columns">
 <label class='error'>Tags
 <input type="text" name="tags" placeholder="comma
separated tags i.e. angular,jquery,foundation" required />
 </label>
 <small class="error">Please use comma for more tags</small>
 </div>
 </div>
 <button type='submit' class="button expand">Save Bookmark</
button>
 </form>
 ×
 </div>

Now, you are pretty familiar with the markups and CSS classes used in Foundation.
We'll dabble into the modal size, which is configured by the .medium class that sets
the width to 60 percent of the window width. Alternatively, you can use the .tiny,
.small, .large, and .xlarge classes.

Customizing AngularJS with CSS and CSS Frameworks

[152]

Unlike the top bar, here we're using large grid classes with .large-12. The .error
class on the label will highlight the form labels in red—useful during form
validation—and small.error points to actual error messages.

By the end, we have a close icon with .close-reveal-modal, which simply hides
the modal. To make the modal work, we need to rely on foundation.js. So let's
add it in index.html:

<script src="bower_components/jquery/dist/jquery.js"></script>
<script src="bower_components/angular/angular.js"></script>
<script src="bower_components/foundation/js/foundation.js"></script>
<script src="js/app.js"></script>

Please note that Foundation JavaScript components depend on jQuery. Now, update
app.js as follows:

angular.module('myApp', []).run(function($document) {
 $document.foundation();
});

The $document.foundation() call activates custom attributes that we used earlier
in the top bar, such as data-reveal-id, top-bar, and so on. With this call, you will
see a modal after clicking on the Add button, as follows:

Chapter 7

[153]

Now, we'll list all the bookmarks. Update index.html as follows:

<div class="row" style="padding-top: 20px;">
 <div class="large-12 columns">
 <div class="row">
 <div class="columns small-2 text-center"><a class="th
radius"></div>
 <div class="columns small-10">
 <p>AngularJS 2.0 is a framework for mobile apps
<a
href="http://blog.angularjs.org/2014/03/angular-20.html" target='_
blank'>http://blog.angularjs.org/2014/03/angular-20.html</p>
 angular
 angular advanced
 mvc
 </div>
 </div>
 <hr/>
 </div>

Here, we want a two-column layout. In the first column, we are showing a
thumbnail related to the bookmarked link, and in the second column, we are
showing the bookmarked title, URL, and tags to make them searchable. That's
why we've used the columns .small-2 and .small-10 for thumbnail and
bookmark details, respectively.

Similar to the alerts we saw in the modal, Foundation also has support for labels
with different colors, that is, by default, .secondary, .success, and .alert.
You can also make them rounded with the .round class.

You can repeat the same row after <hr/> to show more bookmarks. This is what
you'll see in the browser now:

Customizing AngularJS with CSS and CSS Frameworks

[154]

Let's quickly add pagination at the bottom of the bookmarks list in index.html,
as follows:

 <div class="pagination-centered">
 <ul class="pagination">
 <li class="arrow unavailable">«
 <li class="current">1
 2
 <li class="arrow">»

 </div>

The pagination uses a utility CSS class to center-align the pagination with
.pagination-centered. Use the .unavailable class to disable the previous
or next arrow and the .current class to activate the page you are on.
Our application design is now ready:

Currently, the application is not usable, but we'll make that happen in Chapter 10,
Mobile Development Using AngularJS and Bootstrap and also covert the same into
Twitter Bootstrap.

Chapter 7

[155]

Although we have just scratched the surface here, it should not stop
you from learning further to build your next ambitious application.
Here are couple of books on the Foundation framework (http://www.
packtpub.com/zurb-foundation-blueprints/book) and Twitter
Bootstrap (http://www.packtpub.com/twitter-bootstrap-web-
development/book) from the same publisher to get you going.

Summary
In this chapter, we got a head start with two of the most popular and capable
responsive CSS frameworks. We went through the history of responsive layout and
learned how CSS frameworks are born out of the necessity to simplify developers'
lives. We learned the usage of media queries to design a responsive layout from
scratch. We then dived into an extremely powerful CSS framework named Twitter
Bootstrap to incarnate our to-do application to be the stunning TodoStrap. Finally,
we designed a full-fledged bookmarking application in an equally compelling and
mobile-first, Foundation CSS framework in a short span of time.

In the next chapter, we'll cover the implementation of Twitter Bootstrap JavaScript
components in the form of AngularUI Bootstrap.

http://www.packtpub.com/zurb-foundation-blueprints/book
http://www.packtpub.com/zurb-foundation-blueprints/book
http://www.packtpub.com/twitter-bootstrap-web-development/book
http://www.packtpub.com/twitter-bootstrap-web-development/book

AngularUI Bootstrap
Development

In this chapter, you'll learn why the AngularUI Bootstrap project has been initiated,
what problem it solves, and how to use its components' offerings to build modern
web apps.

We'll be covering the following topics in this chapter:

• Using the accordion widget to show vast details without information overload
• Creating a Tabbed Interface declaratively using the tab component
• Converting traditional radio/checkbox buttons into an intuitive button set
• Notifying users with custom messages and progress using alerts

and progressbar
• Implementing the quick search functionality using typeahead
• Understanding when to use the AngularUI collapse, calendar, ratings,

carousel, and dropdown plugins

AngularUI Bootstrap Development

[158]

Why use AngularUI Bootstrap?
We saw in the previous chapter how powerful the Twitter Bootstrap CSS framework
is. In addition to the CSS helper classes, it also offers a set of useful and extensible
JavaScript widgets that we can use to create world-class web apps. However, when
it comes to AngularJS, you have to use it declaratively, so you have to add an extra
layer on top of the existing libraries by writing custom AngularJS directives. This
not only compounds to extra overload for your application (in terms of KBs) but also
makes it complex to manage. In fact, rewriting it from scratch solely in AngularJS
is ideal to obviate the need for external libraries. This is how the AngularUI
project came into existence, which consists of many subprojects that deliver native
implementation in pure AngularJS. AngularUI Bootstrap is one of them, which
focuses on migrating the Twitter Bootstrap JavaScript widgets to native, lightweight
directives, without any dependency on jQuery or Bootstrap's JavaScript. The reason
why it is better to rewrite an existing JavaScript or jQuery code into new AngularJS
directive is that the resulting directive is smaller in size compared to the original
code and better integrated into the AngularJS ecosystem.

All the directives have their own AngularJS module without any dependencies on
other modules or third-party JavaScript code, which allows us to easily use a subset
of it (as per our requirements) without loading the entire offering.

Building a Project Management Application
In this chapter, we will build a simple yet useful Project Management Application
(PMA), such as Redmine, Pivotal Tracker, and so on, to keep track of software
projects and maintain team progress. We'll call it ShipIt. Let's begin.

We'll start off with a bare minimal template and extend it to have various AngularUI
Bootstrap components to make up the final usable Project Management Application.
First of all, clone the template from the Step01 folder from Chapter 5, Learning
Animation. Let's replace index.html with the following markup:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, user-
scalable=no">
 <title>Ship It</title>
 <link rel="stylesheet" href="css/main.css">
</head>

Chapter 8

[159]

<body ng-app="myApp">
 <div class="navbar navbar-inverse navbar-fixed-top"
role="navigation">
 <div class="container">
 <div class="navbar-header">
 Ship It - Universal Project
Management Application
 </div>
 </div>
 </div>

 <div class="container-fluid">
 <div class="row">
 <div class="col-xs-4 col-sm-4 col-md-3 sidebar">
 <!-- Navigation Area -->
 </div>
 <div class="col-xs-8 col-xs-offset-4 col-sm-8 col-sm-offset-4
col-md-9 col-md-offset-3 main">
 <!-- Main Area -->
 </div>
 </div>
 </div>
<script src="bower_components/angular/angular.js"></script>
<script src="js/app.js"></script>
</body>
</html>

As you can see, we created a header for a Single Page Application highlighted as
navigation and then designed a two-column layout to showcase handy options on
the left and main area to display information when any option is selected. For now,
you will not see any such layout as we've not included Twitter Bootstrap CSS yet,
so let's quickly install it. Run the following command in the terminal:

bower install --save bootstrap

bower install --save jquery

Now, reference bootstrap.css in index.html inside the <head> tag before
main.css is included and load jQuery before angular.js. Then, add the
following CSS styles in main.css as follows:

body {
 padding-top: 60px;
}

AngularUI Bootstrap Development

[160]

.sidebar {
 position: fixed;
 top: 51px;
 bottom: 0;
 left: 0;
 z-index: 1000;
 display: block;
 padding: 5px 0 0 0;
 overflow-x: hidden;
 overflow-y: auto;
 background-color: #f5f5f5;
 border-right: 1px solid #eee;
}
.tab-content {
 padding: 10px;
 border: 1px solid #ddd;
 border-top: 0px solid transparent;
}

Here is an inert but nice two-column layout to get you excited:

Chapter 8

[161]

Creating accordion
In a PMA, the stakeholders (such as developers, designers, project managers, and so
on) often require easy navigation to various projects they are managing to quickly
get a good grasp of the overall progress. The accordion UI (http://en.wikipedia.
org/wiki/Accordion_(GUI)) fulfills this purpose by showing shortcuts to details
without an information overload in the first place. First, we'll install angular-
bootstrap on the command line as follows:

bower install --save angular-bootstrap

Do not forget to reference this after angular.js in index.html as follows:

<script src="bower_components/angular-bootstrap/ui-bootstrap-tpls.
js"></script>

Note that ui-bootstrap-tpls.js contains all the necessary templates used by
various AngularUI components cached using the $templateCache AngularJS
built-in service so that you do not have to worry about loading them via AJAX.
Feel free to go ahead and take a look at it if you wish.

There are two variants of ui-bootstrap—one that comes with
inline templates, that is, ui-bootstrap-tpls.js (required by the
widgets) and another without, that is, ui-bootstrap.js. If you
include ui-bootstrap.js, you will need to provide your own
HTML template with all the bindings and directives. These templates
allow us to use external templates to redesign any widget using the
$templateCache service, which you are going to learn in the
next chapter.

Now, we'll update app.js to make all the AngularUI bootstrap's custom directives
available for us:

'use strict';
angular.module('myApp', ['ui.bootstrap']);

http://en.wikipedia.org/wiki/Accordion_(GUI)
http://en.wikipedia.org/wiki/Accordion_(GUI)

AngularUI Bootstrap Development

[162]

As everything is set up, let's add an accordion component to showcase a list of
top projects as it is relevant information everybody needs from a typical PMA.
Replace the <!-- Navigation Area --> comment block in index.html with
the following markup:

<accordion close-others="false">
 <accordion-group ng-init="project.open = true" is-open="project.
open">
 <accordion-heading>
 Projects
 <i class="pull-right glyphicon" ng-class="{'glyphicon-
chevron-down': project.open, 'glyphicon-chevron-right': !project.
open}"></i>
 </accordion-heading>
 <div class="media">

 <div class="media-body">
 <h4 class="media-heading">Project 1</
a></h4>
 </div>
 </div>
 <div class="media">

 <div class="media-body">
 <h4 class="media-heading">Project 2</
a></h4>
 </div>
 </div>
 </accordion-group>
</accordion>

Chapter 8

[163]

Things to note here are:

• The accordion is a custom AngularJS directive that comprises multiple
accordion-group elements. Each accordion-group element denotes a
different accordion panel, and you can add as many you want. Currently,
we are just showing the Projects panel that should list all the top
projects running.

• You can customize the accordion with the close-others attribute to
restrict it to keep only a single panel open at a time.

• The is-open option on accordion-group takes a data model that turns
to true when the panel is open and false otherwise. Although it's not
necessary, we are using it just for the sake of an arrow icon that is toggled
using ngClass to make it appealing. So, you will a see a nice down arrow if
the panel is closed and an up arrow if it is open.

• The ng-init directive is a built-in AngularJS directive to initialize a data
model within the template itself. As you can see, we have set project.open
to true to keep the projects panel open by default.

• At the end, div.media contains a list of projects that we want to show inside
the panel.

Let's add one more panel named Recent Documents so that you can actually see
collapsible panels in action if close-others is set to true. Add the following snippet
after accordion-group ends:

<accordion-group is-open="recent.open">
 <accordion-heading>
 Recent Documents
 <i class="pull-right glyphicon" ng-class="{'glyphicon-chevron-
down': recent.open, 'glyphicon-chevron-right': !recent.open}"></i>
 </accordion-heading>
 <ol class="list-unstyled">
 Document 1
 Document 2
 Document 3
 Document 4
 Document 5

</accordion-group>

AngularUI Bootstrap Development

[164]

The only difference here is that we are relying on a different model named recent.
open to toggle the arrow icon again. Make sure you use a different model for each
accordion to avoid any abnormal behavior. Here is how it looks; also, notice the
arrow icons for both open and close panels:

Creating tabs
As the left panel started looking nice and clean, we'll show general details and open
issues for all the projects in the right column known as tabs. Add the following
markup replacing the <!-- Main Area --> comment in index.html:

<tabset>
 <tab heading="Projects Overview">Project Details not Found.</tab>
 <tab heading="Issues">Issues not Found.</tab>
</tabset>

Chapter 8

[165]

Similar to accordion, the tabset element comprises all the tabs, which in turn have a
tab heading and tab content inside to show when the tab is active. For now, both tabs
do not show relevant information, so let's stuff them with some useful information.
So, replace the Project details not found message with the following markup:

<div class="row">
 <div class="col-xs-6">
 <div class="panel panel-default">
 <div class="panel-heading">

 Issue Tracking
 </div>
 <ul class="list-group">
 <li class="list-group-item"><span class="label label-
danger">Defect 1168 open / 6313
 <li class="list-group-item"><span class="label label-
success">Feature 2729 open / 5089
 <li class="list-group-item"><span class="label label-
warning">Patch 409 open / 1848

 </div>
 </div>
 <div class="col-xs-6">
 <div class="panel panel-default">
 <div class="panel-heading">

 Top Developers
 </div>
 <table class="table">
 <tr>
 <td class="text-center">Sai Padamati</
a></td>
 <td class="text-center">Akshay
Ravindranath</td>
 </tr>
 <tr>
 <td class="text-center">Dipti Kadge</
td>
 <td class="text-center">Santosh Badge</
a></td>

AngularUI Bootstrap Development

[166]

 </tr>
 <tr>
 <td class="text-center">Shripad Joshi</
a></td>
 <td class="text-center">Abshishek
Kulkarni</td>
 </tr>
 </table>
 </div>
 </div>
</div>

Here, we have just split the available space into two columns, one for issue tracking
and another to list the top six productive developers, by simply using the Twitter
Bootstrap table layout, which you learned in the previous chapter, to render tabular
data intuitively. Then, we'll show a list of activities going on such as issue fixed, new
feature introduced, merged a patch, and so on. Let's add the following markup:

<div class="row">
 <div class="col-xs-12">
 <h4>Activity</h4>
 <table class="table">
 <tr>
 <td class="col-sm-1"></
span>21:24</td>
 <td class="col-sm-4">#1134</
span> OAUTH is not functional</td>
 <td class="col-sm-6"><small class='text-muted'>The backend
service throws an XML error even though credentials are valid.
Sometimes authenticates with wrong password.</small></td>
 </tr>
 <tr>
 <td class="col-sm-1"></
span>18:24</td>
 <td class="col-sm-4">#1078</
span> Popup design issue in IE</td>
 <td class="col-sm-6"><small class='text-muted'>It is not
properly center align and also the backdrop is pitch dark unlike
Chrome and FF.</small></td>
 </tr>
 <tr>
 <td class="col-sm-1"></
span>13:24</td>
 <td class="col-sm-4">#2690</
span> Dictionary service implementation</td>

Chapter 8

[167]

 <td class="col-sm-6"><small class='text-muted'>We've
integrated Google Translate service to improve dictionary lookup</
small></td>
 </tr>
 </table>
 </div>
</div>

This readable chunk of markup will generate the following fancy projects
overview tab:

Let's update the Issues tab to show a list of open issues in a grid. So, replace the
Issues not found text inside the second tab with the following markup:

<table class="table table-bordered">
 <thead>
 <tr>
 <th class="text-right">#</th>
 <th class="text-center">Tracker</th>
 <th>Status</th>
 <th>Subject</th>
 <th class="text-right">Updated</th>
 </tr>
 </thead>
 <tbody>

AngularUI Bootstrap Development

[168]

 <tr>
 <td class="col-sm-1 text-right">16877</
a></td>
 <td class="col-sm-1 text-center"><span class='label label-
danger'>Defect</td>
 <td class="col-sm-1">New</td>
 <td class="col-sm-7">No hook for issues
closed by commit</td>
 <td class="col-sm-2 text-right">2014-05-13 21:43</td>
 </tr>
 </tbody>
</table>

Here is what you'll see if you click on the Issues tab:

Notice that this table is not interactive in the sense that we can not sort issues by
updated date or status, which is a quite useful requirement.

We could have used NgGrid that you learned about in Chapter 4,
Customizing and Exploring ng-grid, but I'll leave that to you as an exercise.

Chapter 8

[169]

Before we finish with tabs, we'll add one more tab without text but with an icon in
order to add a new issue. If the tab heading is too complex to handle extra markups
(bold/italic) or a custom icon, then AngularUI Bootstrap's tab component also
supports another way to achieve this as shown. Just add the following snippet
after the last tab we added earlier:

<tab>
 <tab-heading>
 <i class="glyphicon glyphicon-plus"></i>
 </tab-heading>
 <!-- new issue form goes here -->
</tab>

This will create a tab with the plus sign without any text but we'll make it alive in
the next section.

Glyphicons is a library of precisely prepared monochromatic icons
and symbols, created with an emphasis on simplicity and easy
orientation. Glyphicons contains all the basic symbols for everyday
work. These symbols include graphic layouts of websites, mobile,
or web applications; they also include symbols for the creation
of wireframes and prints. The biggest benefit of Glyphicons is its
perfectly prepared data, modern look, and easy usability for graphics
of all kinds.

Hiding less relevant content with collapse
The AngularJS version of Bootstrap's collapse plugin provides a simple way to hide
and show an element with a CSS transition. Let's create a simple form to add a new
issue to our PMA. So, quickly replace the <!-- new issue form goes here -->
comment with the following markup:

<form class="form-horizontal" role="form">
 <div class="form-group">
 <label class="col-lg-2 control-label">
 Tracker *
 </label>
 <div class="col-lg-3">
 <select class="form-control">
 <option value="defect">Defect</option>
 <option value="feature">Feature</option>

AngularUI Bootstrap Development

[170]

 <option value="patch">Patch</option>
 </select>
 </div>
 <label class="col-lg-2 control-label">
 Project *
 </label>
 <div class="col-lg-3">
 <select class="form-control">
 <option value="project1">Project 1</option>
 <option value="project2">Project 2</option>
 </select>
 </div>
 </div>
 <div class="form-group">
 <label class="col-lg-2 control-label">
 Subject *
 </label>
 <div class="col-lg-10">
 <input type="text" class="form-control">
 </div>
 </div>
 <div class="form-group">
 <label class="col-lg-2 control-label">
 Description
 </label>
 <div class="col-lg-10">
 <textarea class="form-control" rows="3"></textarea>
 </div>
 </div>
 <div class="form-group">
 <label class="col-lg-2 control-label">
 Priority *
 </label>
 <div class="col-lg-10">
 <select class="form-control">
 <option value="low">Low</option>
 <option value="normal">Normal</option>
 <option value="high">High</option>
 <option value="urgent">Urgent</option>
 <option value="immediate">Immediate</option>
 </select>
 </div>
 </div>
 <div class="form-group">

Chapter 8

[171]

 <label class="col-lg-2 control-label">
 Files
 </label>
 <div class="col-lg-2" style='padding-top:8px;'>
 <input type="file" multiple>

 </div>
 <!-- Collaspse goes here -->
 </div>
</form>

This will allow you to choose a tracker, set the priority, and upload attachments to
provide more clarity about the issue as shown in the following figure:

As you have already imagined, there must be a way to add estimates in terms
of hours to be spent to fix the issue. However, it's not mandatory for all kinds
of issues. So, we'll reveal the details using the collapse widget. Let's replace the
<!-- Collaspse goes here --> comment with the following:

<label class="col-lg-2 control-label" style="margin-top: -8px;">
<h4 ng-init="showEstimate = false" ng-click="showEstimate =
!showEstimate">Estimate</h4>
</label>
<div class="col-lg-6 form-inline">
 <div class="well" collapse="showEstimate">
 <p><input type="text" class="form-control"> Hours and
 % Done
 <select class="form-control">
 <option value="0">0%</option>
 <option value="10">10%</option>

AngularUI Bootstrap Development

[172]

 <option value="20">20%</option>
 <option value="30">30%</option>
 <option value="40">40%</option>
 <option value="50">50%</option>
 <option value="60">60%</option>
 <option value="70">70%</option>
 <option value="80">80%</option>
 <option value="90">90%</option>
 <option value="100">100%</option>
 </select></p>
 </div>
</div>

Here, we use an AngularJS model named showEstimate, which is set to false by
default using ngInit in order to keep it hidden by default. Then, we just toggle it
via ngClick. Finally, we pass the model to the collapse directive to hide/reveal
the detail with animation as follows:

Go ahead and try clicking on the Estimate button to see it in action.

Setting timelines with datepicker
Along with the hours needed to fix the issue, the dates are also necessary so you
know when a developer begins his work. The datepicker widget will be useful to set
a timeline in terms of from and to dates that are required to fix an issue or implement
a new feature. Let's add following markup inside the collapse directive as follows:

Chapter 8

[173]

<p class="input-group">
 <input type="text" class="form-control" datepicker-popup="dd-MMMM-
yyyy" ng-model="dateFrom" is-open="dateFrom.opened" placeholder="From
Date"/>

 <button type="button" class="btn btn-default" ng-click="$event.
stopPropagation();dateFrom.opened = true;"><i class="glyphicon
glyphicon-calendar"></i></button>

</p>
<p class="input-group">
 <input type="text" class="form-control" datepicker-popup="dd-MMMM-
yyyy" ng-model="dateTo" is-open="dateTo.opened" placeholder="To
Date"/>

 <button type="button" class="btn btn-default" ng-click="$event.
stopPropagation();dateTo.opened = true;"><i class="glyphicon
glyphicon-calendar"></i></button>

</p>

A few things to remember are:

• The datepicker-popup option takes a format of the date to be displayed
• The AngularJS model named dateFrom holds the actual selected date
• The dateFrom.opened AngularJS model keeps track of the datepicker's

visibility and that's why we set it to true if the calendar button is clicked

You will finally see a nice calendar with this minimal declarative markup:

AngularUI Bootstrap Development

[174]

Utilizing buttons
To improve the form and make it fun to add new issues, we'll revamp the tracker
option and replace it with the buttons widget to make it visually rich. There are
two directives (btn-checkbox and btn-radio) that can make a group of buttons
behave like a set of checkboxes, radio buttons, or a hybrid where radio buttons can
be unchecked. Let's use the radio format and replace the select box that we added
earlier for the tracker option with the following:

<div class="btn-group">
 <label class="btn btn-danger" ng-model="tracker" btn-
radio="'defect'">Defect</label>
 <label class="btn btn-success" ng-model="tracker" btn-
radio="'feature'">Feature</label>
 <label class="btn btn-warning" ng-model="tracker" btn-
radio="'patch'">Patch</label>
</div>

The btn-radio directive allows us to set the value for the model when clicked so
that the respective radio button gets selected by deselecting the previously selected
one. We'll also add a save button to quickly save the issue. Add following line of
code after the files row:

<div class="form-group">
 <label class="col-lg-2"></label>
 <div class="col-lg-10">
 <button type="button" class="btn btn-inverse btn-lg">Create and
Continue</button>
 </div>
</div>

This will complete our add new issue form as follows:

Chapter 8

[175]

Converting priorities in the form of ratings
To improve usability, instead of having a typical select box to choose a priority
for issues from, we could use star ratings. So, replace the previous select box with
the following:

<rating ng-model="priority" max="5" on-hover="prepriority=value"></
rating>
<span class="label" ng-class="{'label-default': prepriority == 1,
'label-success': prepriority == 2, 'label-warning': prepriority == 3,
'label-info': prepriority == 4, 'label-danger': prepriority == 5}">
{{['Low', 'Normal', 'High', 'Urgent', 'Immediate'][prepriority - 1]}}

On hovering, we can get the value of a star, which we store in a model named
prepriority and update the label accordingly. The ngClass directive lets you
apply CSS classes conditionally. Refer to the following screenshot:

Try hovering over each individual star and notice how priority changes from low
to high.

AngularUI Bootstrap Development

[176]

Notifying users with alert messages
The last thing remaining is that as we have some of the fields mandatory in the form;
we need to show alert messages in case there is any error. Alert is an AngularJS
version of Bootstrap's alert. This directive can be used to generate alerts from the
dynamic model data (using the ng-repeat directive). Let's add a fancy alert message
on top of the form as follows:

<div class="form-group col-lg-12">
 <alert type="danger" close="hideAlert=true" ng-
hide="hideAlert">Mandatory fields can't be blank.</alert>
</div>

Note that the type attribute determines the color for the alert. The presence of the
close attributes figures if a close button is displayed or not. Also, we have extended
its behavior by adding a custom action to hide the alert using the hideAlert model,
which is eventually used with ngHide to manually hide the alert. You can see it here:

However, the alert should be displayed only if the form is submitted, which I'll
leave to you as an exercise. Go explore!

Chapter 8

[177]

Using carousel
Now from the Issues tab, we'll give you a provision to open any issue to see the
details of it. For this, we'll need the angular-route module for easy browser
navigation and also to maintain its history. We'll first install angular-route
using the following command on the terminal:

bower install --save angular-route

Then, update index.html by referencing angular-route.js after angular.js
and also update app.js to set up a dependency as follows:

angular.module('myApp', ['ui.bootstrap', 'ngRoute');

Now, we can create a route definition to map the URL (#/issue/1234) in order
to load the relevant view. The routes should be defined before the application
bootstraps, so the AngularJS configuration phase is the ideal place for this:

angular.module('myApp', ['ui.bootstrap', 'ngRoute'])
.config(function($routeProvider) {
 $routeProvider.when('/issue/:issue', {templateUrl: 'views/view-
issue.tpl.html'});
 $routeProvider.otherwise({redirectTo: '/'});
});

As you can see, $routeProvider takes a simple key/value store, that is, the key is
the actual route we want to map and the value is an object that consists of various
options such as a template to load, an AngularJS controller to bind, and so on.
Here, we simply want to load view-issue.tpl.html as our template.

Now, create a new controllers.js file in the js/ directory and put the following
snippet in it:

angular.module('myApp.controllers', [])
.controller('ViewIssueCtrl', function($scope, $route, $element,
$timeout) {
 $scope.$watch(
 function() { return $route.current && $route.current.params.issue;
}, function(newVal, oldVal) {
 $scope.showTab = !!newVal;
 $scope.issueId = newVal;
 if ($scope.showTab) {
 $timeout(function() {
 $element.find('a').click();
 }, 0, false);
 }
 });
});

AngularUI Bootstrap Development

[178]

Note the following:

• The $route object in the controller gives access to the current route
information, that is, the issue number in this case.

• We then created a custom $watcher object to make sure that the tab is
loaded only if user navigates to any issue. That's why showTab is there
to keep track of the tab's visibility and immediately select the same tab
dynamically if it's visible.

• Using $element, we find the tab and open it dynamically. The $timeout
object is an AngularJS wrapper around window.setTimeout, which delays
the execution until the tab is rendered.

So, let's update index.html to create a new tab in order to view any issue that
the user wants to check out. Add the following before the Add Issue tab we
added earlier:

<tab ng-controller="ViewIssueCtrl" ng-show="showTab">
 <tab-heading>
 <i class="glyphicon glyphicon-warning-sign"></i>
 Issue #{{issueId}}
 </tab-heading>
 <div ng-view></div>
</tab>

There is nothing to be scared of; we've just used showTab model in the DOM, which
is set to true/false in the $watch method to the show/hide the tab. The ng-view
directive is a helper directive in AngularJS that allows us to load the template for our
route. So, our view-issue.tpl.html file will be loaded into it.

Now, create view-issue.tpl.html in the views/ directory, containing the
following code:

<h4>Immediate | New | View Issue
tab is broken</h4>
<div class="well well-sm">
 After creating a new tab to View any issue, other tabs stop working.
Steps to reproduce:

 Open Application
 Goto Issues Tab
 Open any issue from the list
 A new tab will be added next to issues tab
 Try switching between tabs

Chapter 8

[179]

 Expected behavior:

 Existing tabs should work as before

</div>

This just displays dummy information about the issue, as follows:

Remember that we also allow the attaching of images to add more clarity on the
issue to make it easy for developers to fix it. Let's create a carousal of uploaded
images against this issue in view-issue.tpl.html as follows:

<h4>Files: </h4>
<carousel style="width: 500px;">
 <slide ng-repeat="item in carousel" active="item.active">

 <div class="carousel-caption">
 <p>{{item.text}}</p>
 </div>
 </slide>
</carousel>

AngularUI Bootstrap Development

[180]

We are just rendering a list of images uploaded against the issue, which are wrapped
within the carousel directive to render a beautiful carousel in a snap. To enable
the carousel, we'll create a collection named carousel in our ViewIssueCtrl object
as follows:

 $scope.carousel = [
 { image: 'images/1.png' },
 { image: 'images/2.png' },
 { image: 'images/3.png' }
];

Let's look at the nice image carousel in action:

You can even add intervals in seconds so that it will automatically rotate images.
The carousel also offers support for touchscreen devices in the form of swiping.
To enable swiping, load the ngTouch module in the way we added the
angularRoute module earlier in the chapter.

Chapter 8

[181]

A progress bar to show the status of an issue
If you remember, we added the estimates option (optional) to add the number
of hours to be spent fixing the issue and its progress as a percentage. We'll convert
those percentages into a progress bar to highlight them visually. So, add the
following markup before the carousel in view-issue.tpl.html:

<h4>Estimates:
 <small>12 Hours and % Done </small>
 <progressbar class="progress-striped active" max="100" value="70"
type="success" style="width: 100px;display: inline-block;margin-
bottom: -5px;"><i>70%</i></progressbar>
</h4>

We often need to show feedback of the progress with different colors. You can apply
types such as success for green, danger for red, and so on, to highlight the progress.
You can also customize it with predefined options, such as maximum range, current
range, and so forth. This is what it could look like:

AngularUI Bootstrap Development

[182]

Efficient suggestions with typeahead
Users will not always just go to the issues tab to find a particular issue, so there has
to be a way to search quickly. Using AngularUI Bootstrap's typeahead directive, you
can easily achieve that. Let's add a search field in the header next to our application
name (.navbar-header) as:

 <form class="navbar-form navbar-right" ng-controller="FindCtrl">
 <input type="text" class="form-control" placeholder="Find
Issues" ng-model="find" typeahead="issue.name for issue in issues |
filter:$viewValue" typeahead-on-select='onSelect($item)'>
 </form>

Things to remember here are:

• The typeahead directive takes a collection of items to search through,
which is then filtered based on a search criteria such as $viewValue

• Finally, when a user selects any of the options listed, we simply call a
method, onSelect, to change the route to #/issue/:issueNumber

As you might have noticed that we are relying on a new controller for this,
let's create it and put the following code in controllers.js:

angular.module('myApp.controllers', [])
.controller('ViewIssueCtrl', function($scope, $route, $element,
$timeout) {
 // removed this for brevity
}).controller('FindCtrl', function($scope, $location) {
 $scope.issues = [
 {'id': 16877, 'name': '#16877'},
 {'id': 1030, 'name': '#1030'},
 {'id': 2039, 'name': '#2039'},
 {'id': 1134, 'name': '#1134'},
 {'id': 1078, 'name': '#1078'},
 {'id': 2690, 'name': '#2690'}
];

 $scope.onSelect = function(item) {
 $location.path('/issue/' + item.id);
 $scope.find = '';
 };
});

Chapter 8

[183]

To change the route, we have used the $location built-in AngularJS service to
manipulate URLs. Although it offers many methods such as .hash, .replace,
.search, .host, and so on, we'll just use $location.path to change the route,
say, from #/ to #/issue/1078. Let's play with it:

Go ahead and select any issue to see details about it in a View Issue tab.

Common housing for application-specific
menus with a dropdown
In every application, we often need an interface to show a bunch of choices floating
(unlike collapse) but we want to keep them hidden if they are not needed. AngularUI
Bootstrap's dropdown is a simple directive that will toggle a drop-down menu
when clicked or programmatically. Let's quickly add the following markup
after typeahead:

<div class="btn-group" dropdown >
 <button type="button" class="btn btn-primary dropdown-toggle">

 </button>

AngularUI Bootstrap Development

[184]

 <ul class="dropdown-menu" role="menu">
 New Project
 Upload Documents
 <li class="divider">
 My Account
 Sign Out

</div>

Note that the attribute named dropdown is mandatory to activate it. The button with
the .dropdown-toggle class becomes a handler that shows a menu sitting next to it
as .dropdown-menu. Check it out in the following screenshot:

You can even track when the dropdown opens/closes with
on-toggle='callback(open)' to perform further actions. So far,
it is a static application, not communicating to any server to fetch data, but
this can easily be accomplished with the REST APIs integration that we saw in
Chapter 6, Using Charts and Data-driven Graphics. Go take this application to the
next level!

Chapter 8

[185]

This chapter was all about integration of AngularUI Bootstrap to build
complex web apps in a matter of time that would have taken weeks.
Although the application we built in this chapter does not talk to any
server to fetch live data because of space constraints, I would like to
share some insights into how you can make it dynamic to look like
a real PMA. As you already learned about fetching dynamic data
in Chapter 6, Using Charts and Data-driven Graphics, you can leverage
this knowledge to fuel it using the $http service that enables the
consumption of REST-based APIs.
You probably have to use node.js or any other server-side
programming language that can lay out the structure for the REST
APIs by talking to a database such as MongoDB, CouchDB, MySQL,
and so on.
In addition, you can even store all the static data used in the application
in JSON files, which you can consume via the $http service to create
an illusion of being a dynamic application and later set up the base to
glue the actual REST APIs.

Summary
In this chapter, we went through the history a bit and figured why projects such as
AngularUI came into existence to create dependency-free widgets in pure AngularJS.
We also went through some of the very useful components such as accordion,
tab, ratings, carousel, and so on to use them declaratively. Finally, we built a
well-designed PMA in no time.

In the next chapter, we'll look at customizing AngularUI Bootstrap.

Customizing AngularUI
Bootstrap

In this chapter, you will learn how AngularUI Bootstrap can be customized by
editing the underlying templates of the directives that are part of the project.
This knowledge is crucial when trying to become an expert in UI development
using AngularJS.

We'll cover the following topics in this chapter:

• Understanding what external templates are and ways to load them
• Customizing the existing AngularUI Bootstrap pagination widget to make it

look similar to the one used by Google Search
• Understanding how the AngularUI Bootstrap tab component works internally
• Upgrading the same to have few extra features such as closing a tab or

adding a new tab dynamically

Introduction to external templates
The awesome PMA that we built in the previous chapter was written on top
of AngularUI Bootstrap's components and all the widgets we used had
precompiled templates that we did not even touch. If you remember, we just
added the ui-bootstrap-tpls.js file to use them as is. Every widget or component
consists of a logic (or behavior) and underlying markup (or template) that shapes
it. In Chapter 6, Using Charts and Data-driven Graphics, when we built a pie chart
directive for the first time, we relied on the template option of the directive as:

angular.module('myApp.directives', []).directive('barChart',
function() {
 return {

Customizing AngularUI Bootstrap

[188]

 restrict: 'E',
 template: "<div class='container' ng-style='setContainer()'>\
 <div class='bar' ng-repeat='bar in bars' ng-
style='setDetails(bar, $index)'>{{bar.color}} - {{bar.percentage}}%</
div>\
 </div>"
 };
});

If we want to build a complex widget, it is difficult to maintain huge markup within
the directive definition as it is now. So, keeping the template outside is a flexible as
well as robust approach to follow.

Loading a template via the script tag
The easiest way to abstract the template out is to keep it inside a pair of script tags.
Usually, we use text/JavaScript as a type to load any JavaScript code for a browser
to recognize and parse it to be available during the life cycle of a web app. The
AngularJS template does not contain JavaScript but declarative HTML, which has
to be evaluated in the context of AngularJS to make it alive. This is why AngularJS
encourages the use of a special type of attribute such as text/ng-template.
Browsers ignore it but AngularJS does compile it before using a special type of
attribute. This is how we'll keep the template for the barChart directive in a
script tag:

<script type="text/ng-template" id="bar-chart.html">
 <div class='container' ng-style='setContainer()'>
 <div class='bar' ng-repeat='bar in bars' ng-
style='setDetails(bar, $index)'>{{bar.color}} - {{bar.percentage}}%</
div>
 </div>
</script>

Note that the template must have a unique ID, which is used as a key by AngularJS
internals to cache for later use. Also, it is not mandatory to keep this script tag inside
a head tag. Alternatively, you can even create a new file named bar-chart.html
and have the same markup in it by getting rid of the script tags altogether. The next
time if you request the template via a URL, AngularJS triggers an XHR or AJAX call
to grab its content, compile, and cache it for later use. Both behave in the same way
with only one difference, that is, a round-trip to the server to fetch the template can
be avoided if script tags are used.

Chapter 9

[189]

Loading a template via $templateCache
You already learned what AngularJS does when you request a template, but the
real trick here is that it uses a $templateCache service under the hood to cache the
request and its response. Note that the cache content stays during the life cycle of
AngularJS and will be wiped out if the page is reloaded but will be around when
routes change. AngularJS lets us use the $templateCache service directly to avoid
any mediators such as a script tag or template URL. The $templateCache service is
just a service with the setter and getter methods to cache a template and retrieve it
later, respectively. This is how you can cache a template:

angular.module('myApp.directives', []).run(function($templateCache) {
 $templateCache.put('bar-chart.html',
 <div class='container' ng-style='setContainer()'>
 <div class='bar' ng-repeat='bar in bars' ng-
style='setDetails(bar, $index)'>{{bar.color}} - {{bar.percentage}}%</
div>
 </div>
);
});

As it's an AngularJS service, you need to inject it before using. The setter method
named put takes two parameters, that is, the template ID and the template itself.
This benefits in a way that the template is retrieved from the cache when requested.
It is useful to keep all your templates in one place similar to angular-bootstrap-
tpls.js to organize your application well.

Using an external template
In order to use an external template, we'll need a slight modification to our pieChart
directive. The AngularJS directive definition object allows us to load an external
template via the templateUrl option. Let's quickly update the directive as follows:

angular.module('myApp.directives', []).directive('barChart',
function() {
 return {
 restrict: 'E',
 templateUrl: "bar-chart.html"
 };
});

Customizing AngularUI Bootstrap

[190]

This way, when the directive is compiled, the AngularJS compiler will first look
for the template in a cache with the same key, that is, bar-chart.html. If it is not
available, it will initiate an AJAX request to fetch the same. Additionally, you can
pass a function that returns a template reference conditionally as follows:

angular.module('myApp.directives', []).directive('barChart',
function() {
 return {
 restrict: 'E',
 templateUrl: function(element, attrs) {
 return attrs.touch == 'false' ? "bar-chart.html" : "bar-
advance-chart.html";
 }
 };
});

Assuming that the environment is a touch device, you might just want to load a
simpler version of the bar chart and an advanced one on desktop browsers.

Customizing the AngularUI Bootstrap
pagination widget
Now you understand how external templates can be cached and used, you are pretty
much aware of the fact that AngularUI Bootstrap uses the same technique for all
the components it offers. Let's look at how pagination widget works. To begin with,
we'll use the same template from the Step04-issue folder of Chapter 8, AngularUI
Bootstrap Development and replace index.html as follows:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, user-
scalable=no">
 <title>Google Pagination</title>
 <link rel="stylesheet" href="bower_components/bootstrap/dist/css/
bootstrap.css">
 <link rel="stylesheet" href="css/main.css">
</head>
<body ng-app="myApp">
 <div ng-controller="GooglePaginationCtrl">
 <pagination total-items="totalItems" ng-model="currentPage"></
pagination>
 </div>
<script src="bower_components/angular/angular.js"></script>
<script src="bower_components/angular-bootstrap/ui-bootstrap-tpls.
js"></script>

Chapter 9

[191]

<script src="js/app.js"></script>
<script src="js/controllers.js"></script>
</body>
</html>

Here, we are simply using AngularUI Bootstrap's pagination widget with the default
template. The ng-model directive takes a selected current page number.

Let's update controllers.js as follows:

angular.module('myApp.controllers', []).controller('GooglePaginationCt
rl', function($scope {
 $scope.totalItems = 100;
 $scope.currentPage = 2;
});

By default, it shows 10 items per page, so we'll see 10 page numbers to navigate as
shown in the following figure:

If you want to take a look at how AngularJS rendered it, go to ui-bootstrap-tpls.
js and search for template/pagination/pagination.html. Here it is for
your reference:

angular.module("template/pagination/pagination.html", []).
run(["$templateCache", function($templateCache) {
 $templateCache.put("template/pagination/pagination.html",
 <ul class="pagination">
 <li ng-if="boundaryLinks" ng-class="{disabled: noPrevious()}"><a
href ng-click="selectPage(1)">{{getText('first')}}
 <li ng-if="directionLinks" ng-class="{disabled:
noPrevious()}"><a href ng-click="selectPage(page -
1)">{{getText('previous')}}

Customizing AngularUI Bootstrap

[192]

 <li ng-repeat="page in pages track by $index" ng-class="{active:
page.active}"><a href ng-click="selectPage(page.number)">{{page.
text}}
 <li ng-if="directionLinks" ng-class="{disabled: noNext()}"><a
href ng-click="selectPage(page + 1)">{{getText('next')}}
 <li ng-if="boundaryLinks" ng-class="{disabled: noNext()}"><a
href ng-click="selectPage(totalPages)">{{getText('last')}}
);
}]);

Keep an eye on the methods used to enable/disable navigation buttons or handle
click events because even though we use custom template, it should behave the
same. This means we need to use the same method calls in the custom template
wherever possible or exclude any if not required. As this chapter is all about
customizing AngularUI Bootstrap; we'll convert this typical pagination to a fancy
one. Imagine that you want to use Google-like pagination, which we often notice
on their search page; let's see how to do it.

Go to http:// google.com, search for something, and inspect their pagination in
the developer tool. You will notice that they are using an HTML table to render
it as follows:

http:// google.com

Chapter 9

[193]

Here, I've abstracted it for you to understand:

angular.module('myApp.controllers', []).controller('GooglePaginationCt
rl', function($scope, $templateCache) {
 $templateCache.put("template/pagination/pagination.html",
 '<table class="google-pagination">\
 <tbody>\
 <tr valign="top">\
 <td><!-- Prev Navigation --></td>\
 <td><!-- Page Numbers --></td>\
 <td><!-- Next Navigation --></td>\
 </tr>\
 </tbody>\
 </table>'
);

 $scope.totalItems = 100;
 $scope.currentPage = 2;
});

Now replace <!-- Prev Navigation --> with:

<td>\
 \
 <a -if="!noPrevious()" ng-click="selectPage(page - 1)"><span
class="csb prev">\
</td>\

The first span element will be shown if the previous action is disabled and the
second span element lets you navigate to the previous page otherwise. Similarly,
replace <!-- Next Navigation --> with:

<td>\
 \
 <a href ng-if="!noNext()" ng-click="selectPage(page + 1)"><span
class="csb next">\
</td>\

Same thing here, we just want to disable the next button if we are on the last page
or keep it enabled otherwise. Finally, replace the pagination column, <!-- Page
Numbers -->, with:

<td ng-repeat="page in pages track by $index" ng-
click="selectPage(page.number)">\
 {{page.
text}}\
 <a ng-if="!page.active">{{page.
text}}\
</td>\

Customizing AngularUI Bootstrap

[194]

This basically renders a long list of page numbers, depending upon total number
of items to list. Then, we attach a click handler on the td element to navigate to the
particular page when clicked on. Note that we have not written any of these methods
as they are already a part of the pagination directive.

Let's spice it up with a pinch of CSS. Add the following in css/main.css:

 body {
 padding: 50px;
}
.google-pagination {
 text-align: center;
}
.google-pagination .csb {
 height: 40px;
 display: block;
}
.google-pagination .csb.prev {
 background:url(https://www.google.co.in/images/nav_logo195_hr.png)
no-repeat;
 background-position:0 0;
 background-size:167px;
 width:53px;
}
.google-pagination .csb.noprev {
 background:url(https://www.google.co.in/images/nav_logo195_hr.png)
no-repeat;
 background-position:-24px 0 !important;
 background-size:167px;
 width:28px !important;
}
.google-pagination .csb.active {
 background:url(https://www.google.co.in/images/nav_logo195_hr.png)
no-repeat;
 background-position:-53px 0;
 background-size:167px;
 width:20px;
}
.google-pagination .csb.nonactive {
 background:url(https://www.google.co.in/images/nav_logo195_hr.png)
no-repeat;
 background-position:-74px 0;
 background-size:167px;

Chapter 9

[195]

 width:20px;
}
.google-pagination .csb.nonext {
 background:url(https://www.google.co.in/images/nav_logo195_hr.png)
no-repeat;
 background-position:-96px 0 !important;
 background-size:167px;
 width:45px !important;
}
.google-pagination .csb.next {
 background:url(https://www.google.co.in/images/nav_logo195_hr.png)
no-repeat;
 background-position:-96px 0;
 background-size:167px;
 width:71px;
}

We've borrowed the same styles that Google uses for their pagination. We've just
added some extra CSS classes, next, nonext, prev, and noprev, to avoid clutter
with inline styles, and our Google pagination is ready:

Even though it looks like the Google Search pagination now but it is still a Bootstrap
pagination widget, which works as before.

Customizing AngularUI Bootstrap

[196]

Extending the AngularUI Bootstrap
tab widget
So far, you have seen how easy it is to skin a particular AngularUI Bootstrap widget,
but we have not yet explored an area wherein we can extend the functionality of
the existing widget to expect more from it. The AngularUI Bootstrap tab component
is the best place to start with as it does not allow us to remove a tab out of the box.
Allowing us to close the opened tabs will be a really useful feature to have in our
Project Management Application called ShipIt that we built in the previous chapter.
Imagine, every project, issue, or document you want to have a look at will be opened
in a new tab, which you can close if not needed.

Before we begin, let's look at what the tab component is made up of. The tab
component is a combination of two nested directives named tabset and tab.
A tabset directive is just a wrapper that comprises a list of tabs and their
contents. Here is the default template used:

<div>
 <ul class="navnav-{{type || 'tabs'}}" ng-class="{'nav-stacked':
vertical, 'nav-justified': justified}" ng-transclude>
 <div class="tab-content">
 <div class="tab-pane" ng-repeat="tab in tabs" ng-class="{active:
tab.active}" tab-content-transclude="tab"></div>
 </div>
</div>

A few things to note:

• The tabs are created using the li HTML elements that are included inside the
ul element highlighted previously using a built-in AngularJS directive called
ngTransclude. The ngTransclude directive allows us to feed the external
markup, which was added while defining in the DOM.

• The tab-content-transclude directive is a custom one that facilitates the
inclusion of tab content in a special wrapper called tabPane.

When the tabset and tab directives get compiled, both will be replaced by this
template. As said earlier, the tab directive uses a simple li element to make up
the tab interface as follows:

<li ng-class="{active: active, disabled: disabled}">
 <a ng-click="select()" tab-heading-transclude>{{heading}}

Chapter 9

[197]

This goes right into the ul element that we saw before. The heading
attribute set on the tab directive is wrapped by an anchor element using the
tabHeadingTransclude custom directive. This makes the picture clear for us
that in order to customize the tab interface, we need to update the template
used by the tab directive. Let's do it then.

Create an index.html file for an advanced tab example as follows:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, user-
scalable=no">
 <title>Advance Tab</title>
 <link rel="stylesheet" href="bower_components/bootstrap/dist/css/
bootstrap.css">
 <link rel="stylesheet" href="css/main.css">
</head>
<body ng-app="myApp">
<!-- tabs go here -->
<script src="bower_components/angular/angular.js"></script>
<script src="bower_components/angular-bootstrap/ui-bootstrap-tpls.
js"></script>
<script src="js/app.js"></script>
<script src="js/controllers.js"></script>
</body>
</html>

Now, let's have a collection for tabs that consists of the tab heading and tab content
in js/controllers.js as follows:

angular.module('myApp.controllers', []).controller('AdvanceTabCtrl',
function($scope, $templateCache) {
 $templateCache.put("template/tabs/tab.html",
 '<li ng-class="{active: active, disabled: disabled}">\
 <a ng-click="select()" tab-heading-transclude>\
 <button type="button" class="close" ng-click="$parent.
close($parent.$index)" ng-style="{true: {visibility: \'hidden\'}}
[!active]">×</button>\
 {{heading}}\
 \
 '
);
 $scope.tabList = [{

Customizing AngularUI Bootstrap

[198]

 heading: 'Tab 1', content: '1.html'
 }, {
 heading: 'Tab 2', content: '2.html'
 }];
 $templateCache.put('1.html', '<h1>I am One</h1>');
 $templateCache.put('2.html', '<h1>I am Two</h1>');
 $scope.close = function(tabScope) {
 $scope.tabList.splice(tabScope, 1);
 };
});

There are a few things to note here:

• First of all, we override the existing template to have a close button next
to each tab in order to close it. We make sure that it is only visible for the
selected tab using ngStyle.

• We bind a click handler to the close icon, which is defined outside the
existing directive but in our controller named AdvanceTabCtrl. Note that the
tabset directive creates an isolate scope that means it is not prototypically
inherited from the parent scope, that is, the scope for the AdvanceTabCtrl
controller. In JavaScript, objects can be prototypically inherited, which means
that if a method or function is not available on the object, then it goes up the
prototype chain to find the same on the parent object from which the current
object is derived. Similarly, a close method is not available on the current
scope; it will go up the scope chain to find the same. However, a tab widget
does not inherit the scope in which it is defined to have complete isolation
for the widget as well as to avoid accidental read/write. Even though it is
not prototypically inherited from the parent scope, AngularJS still maintains
a reference of its parent scope via the $parent object. So, to access the close
method defined in AdvanceTabCtrl, we need to use $parent.close.

• We then have a collection of tabs and their templates defined. Additionally,
you can keep the tab templates in separate files for brevity.

Now, replace <!-- tab goes here --> with the following in index.html:

<div ng-controller="AdvanceTabCtrl">
 <tabset>
 <tab heading="{{tab.heading}}" ng-repeat="tab in tabList">
 <div ng-include="tab.content"></div>
 </tab>
 </tabset>
 </div>

Chapter 9

[199]

In this, we are simply iterating over a collection of tabs to render them dynamically.
The ngInclude directive allows us to inject the content of each tab defined by
$templateCache in the controller. Finally, add minor CSS styles to position
the icon correctly in css/main.css as follows:

.close {
 position: relative;
 top: -8px;
 right: -10px;
}

Now, take a look at your end:

Customizing AngularUI Bootstrap

[200]

Wouldn't it be great to have an add button to create tabs dynamically? Let's do
it. We'll add a custom tab at the end with a plus icon on it. To distinguish it from
the other tabs and have it behave differently, we'll set new_tab as a heading for it
and check the same to toggle the behavior for other tabs. Let's add the following in
controllers.js as follows:

$scope.tabList = [{
 heading: 'Tab 1', content: '1.html'
 }, {
 heading: 'Tab 2', content: '2.html'
 }, {
 heading: 'new_tab',
 content: ''
 }];
$scope.add = function() {
 $scope.tabList.splice($scope.tabList.length - 1, 0, {heading: 'Tab
' + $scope.tabList.length, content: ''});
 };

This will add a new tab at the end but before new_tab. Now, update the template a
bit like this:

$templateCache.put("template/tabs/tab.html",
 '<li ng-class="{true: {active: active, disabled: disabled}}[heading
!= \'new_tab\']">\
 <a ng-show="heading != \'new_tab\'" ng-click="select()" tab-
heading-transclude>\
 <button type="button" class="close" ng-click="$parent.
close($parent.$index)" ng-style="{true: {visibility: \'hidden\'}}
[!active]">×</button>\
 {{heading}}\
 \
 <a ng-show="heading == \'new_tab\'" ng-click="$parent.add()">\
 <i class="glyphicon glyphicon-plus"></i>\
 \
 '
);

Chapter 9

[201]

Nothing has changed. We just hide the default tab interface if the heading equals
new_tab. That's it! Here is how it looks after adding few more tabs:

Now, imagine ShipIt for a second and you will realize that having a close icon for
all tabs does not make sense at all because sometimes, we need a few tabs available
all the time. We can achieve this easily by introducing a special attribute called
closeable as follows:

$scope.tabList = [{
 heading: 'Tab 1', content: '1.html', closeable: false
}, {
 heading: 'Tab 2', content: '2.html'
}, {
 heading: 'new_tab',
 content: ''
}];

Customizing AngularUI Bootstrap

[202]

We'll keep all tabs closeable by default, use closeable: false otherwise. Then,
update the template slightly to hide the close icon if closeable is set to false:

$templateCache.put("template/tabs/tab.html",
 '<li ng-class="{true: {active: active, disabled: disabled}}[heading
!= \'new_tab\']">\
 <a ng-show="heading != \'new_tab\'" ng-click="select()" tab-
heading-transclude>\
 <button type="button" class="close" ng-click="$parent.
close($parent.$index)" ng-style="{true: {visibility: \'hidden\'}}
[!active || $parent.tab.closeable == false]">×</button>\
 {{heading}}\
 \
 <a ng-show="heading == \'new_tab\'" ng-click="$parent.add()">\
 <i class="glyphicon glyphicon-plus"></i>\
 \
 '
);

Here, we want to hide the close icon if the tab is not active or not allowed to close.
Cool! Now you are free to use the upgraded tab widget in our ShipIt application to
have a dynamic tab when any project, issue, or document is opened. I'll leave that to
you as an exercise.

Summary
In this chapter, you got to know that the external templates are nothing but an
HTML snippet consumed by widgets/components. With this new learning, we tried
to change the look and feel of the pagination widget to make it look like the Google
Search pagination for fun. Then, we looked at the complex AngularUI Bootstrap tab
component to extend its behavior to allow users to close the tab manually and add a
new one dynamically. We analyzed the scope hierarchy to have the widgets interact
with the outside world for advanced interactions.

In the next chapter, we'll discover mobile development using AngularJS and Bootstrap.

Mobile Development Using
AngularJS and Bootstrap

In this chapter, you will learn how to build a mobile single-page application that
adapts nicely to the varying screen sizes of current smartphones. We'll also include
page optimizations for a slick user experience over a slow network connection,
which extends what we covered when we set up the build environment in
the first chapter.

We'll be covering the following topics in this chapter:

• Why mobile application?
• Creating a bookmarking application with mobile users in mind
• Making the application dynamic so that bookmarks will be persisted in

localStorage, browser's internal storage
• Adding touch gestures to quickly navigate through bookmarks on mobile

devices instead of relying on standard pagination
• Optimizing animations used while navigating through bookmarks by

offloading it to GPU to make it buttery smooth
• Using various Grunt plugins to optimize the production build size from

1.4 MB to 370 KB to improve initial page load on low bandwidth

Mobile Development Using AngularJS and Bootstrap

[204]

Why bother about mobile?
For years, many of us designed websites or web applications for the desktop PC.
At that time, smartphones were costly and bandwidth costed a lot, so the majority
of people were using desktop browsers to browse the Internet. However, things have
changed dramatically over the past few years; even developing countries have access
to smartphones at an affordable price these days. According to the trend, people use
smartphones more than desktops on a daily basis now, which puts a question mark on
whether we should focus on mobile first and gracefully degrade it to work on desktop
as well. The answer to this is yes, because designing for mobile first not only prepares
you for the explosive growth and opportunities in this space, but it also forces you to
focus and enables you to innovate. So, keep in mind that whatever you build on the
Web should work seamlessly on mobile devices too. Refer to Chapter 7, Customizing
AngularJS with CSS and CSS Frameworks, to understand the benefit of responsive design
over fixed layout if you have not. Let's build a mobile application in the next section.

Building a bookmarking app with the
mobile-first approach
In this section, we are going to resurrect the bookmarking application built on top of
Foundation in Chapter 7, Customizing AngularJS with CSS and CSS Frameworks. We'll
port it on Twitter Bootstrap in this chapter to make it mobile friendly. To begin with,
you can take the Chapter07/Step03-foundation/ source code from the companion
suite as a base. Assuming you have made a copy of the same as Chapter10/Step01-
mobile, it's time to get our hands dirty. However, I'll not go over how to design an
application in Twitter Bootstrap again as it was covered in Chapter 7, Customizing
AngularJS with CSS and CSS Frameworks already.

Go into the Chapter10/Step01-mobile directory and run following commands to
install Twitter Bootstrap:

cd Chapter10/Step01-mobile

bower install --save bootstrap

With Bootstrap, we'll try to keep the layout same as what we designed in Foundation
earlier. First of all, replace the content of index.html with the following markup:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, user-scalable=no">
<title>Pin It</title>

Chapter 10

[205]

<link rel="stylesheet" href="bower_components/bootstrap/dist/css/
bootstrap.css">
</head>
<body ng-app="myApp">
<div class="navbar navbar-inverse navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle" data-toggle="collapse"
data-target=".navbar-collapse">
Toggle navigation

</button>
Pin It <small>- The Universal
Bookmarking App</small>
</div>
<div class="navbar-collapse collapse">
<form class="navbar-form navbar-right" role="form">
<div class="input-group">
<input type="text" class="form-control" placeholder="Find Bookmarks">

<button class="btn btn-danger">Search</button>

</div>
<button class='btn btn-primary form-control' data-toggle="modal" data-
target="#addBookmark">Add New Bookmark</button>
</form>
</div>
</div>
</div>

<!-- A list of bookmarks with pagination go here -->

<!-- Add Bookmark Modal goes here -->

<script src="bower_components/jquery/dist/jquery.js"></script>
<script src="bower_components/angular/angular.js"></script>
<script src="bower_components/bootstrap/dist/js/bootstrap.js"></
script>
<script src="js/app.js"></script>
</body>
</html>

Mobile Development Using AngularJS and Bootstrap

[206]

First, we replace the Foundation style sheet used earlier with Twitter Bootstrap.
Then, customize the top bar to have a collapsible but responsive header so that it
turns into a nice hamburger icon that you can expand to get to the search box and
add the bookmark option on small-scale devices. This works pretty much same
as Foundation with slight differences in the CSS naming conventions. Finally,
we replace the Foundation JavaScript reference with bootstrap.js.

Then, update app.js with:

angular.module('myApp', []).run(function() { });

Here, we simply removed the constructor call used for Foundation before as
Bootstrap widgets work out of the box by just injecting the respective JavaScript
in the page. You can now take a look at it in a browser:

It's time to add some dummy bookmarks now. Just replace the <!-- A list of
bookmarks with pagination go here --> comment added earlier with the
following markup:

<div class="container-fluid" style="padding-top: 70px;">
<div class="row">
<div class="col-xs-3 col-sm-3 col-md-2 col-lg-2 text-right">

</div>
<div class="col-xs-9 col-sm-9 col-md-10 col-lg-10">
AngularJS 2.0 is a framework for mobile apps
<p>

Chapter 10

[207]

<a href="http://blog.angularjs.org/2014/03/angular-20.html" target='_
blank'>http://blog.angularjs.org/2014/03/angular-20.html
</p>
angular
angular advanced
mvc
</div>
</div>
<hr>
<div class="row">
<div class="col-xs-3 col-sm-3 col-md-2 col-lg-2 text-right">

</div>
<div class="col-xs-9 col-sm-9 col-md-10 col-lg-10">
Angular and Durandal Converge
<p>
<a href="http://blog.angularjs.org/2014/04/angular-and-durandal-
converge.html" target='_blank'>http://blog.angularjs.org/2014/04/
angular-and-durandal-converge.html
</p>
angular
durandal
</div>
</div>
<hr>

<div class='text-center'>
<ul class="pagination">
«
1
2
3
4
5
»

</div>

This will simply render a bookmark with a thumbnail next to it, quite similar to
the Foundation layout. The only thing to notice here is that we are using Bootstrap's
grid system to have a responsive layout in order to adapt varying sizes of screen
resolutions and form factors. If you refresh the tab, you will be quite happy to see
the exact same application in Twitter Bootstrap now. Woohoo!

Mobile Development Using AngularJS and Bootstrap

[208]

Making the application dynamic
In this section, we'll store new bookmarks in localStorage in order to make
it dynamic. Let's enable an add new bookmark button. Replace the <!-- Add
Bookmark Modal goes here --> comment in index.html with the following:

<div ng-controller="BookmarkCtrl" class="modal fade" id="addBookmark"
tabindex="-1" role="dialog">
<div class="modal-dialog">
<div class="modal-content">
<div class="modal-header">
<button type="button" class="close">
×
Close</button>
<h4 class="modal-title" id="myModalLabel">New Bookmark</h4>
</div>
<div class="modal-body">
<div class="form-group">
<label for="url">URL</label>
<input type="url" class="form-control" id="url" placeholder="Add
bookmark URL" ng-model="bookmark.url">
</div>
<div class="form-group">
<label for="title">Title</label>
<input type="text" class="form-control" id="title" placeholder="Add
bookmark title" ng-model="bookmark.title">
</div>
<div class="form-group">
<label for="title">Tags</label>
<input type="text" class="form-control" id="title" placeholder="comma
separated tags i.e. angular, jquery, foundation" ng-model="bookmark.
tags">
</div>
</div>
<div class="modal-footer">
<button type="button" class="btn btn-primary btn-block" data-
dismiss="modal"ng-disabled="!bookmark.url || !bookmark.title ||
!bookmark.tags" ng-click="save()">Save Bookmark</button>
</div>
</div>
</div>
</div>

Chapter 10

[209]

A few points to note are as follows:

• Remember we did not call a Bootstrap construction function in app.js unlike
Foundation. This is because the data-* attribute makes all the difference.
In order to open a modal, we simply added data-target="#addBookmark"
to tell the button to find an element with the same ID, which in this case is
addBookmark, to open up as a modal when clicked on.

• We are going to have a separate controller named BookmarkCtrl to isolate
it from the other parts of the application to avoid accidentally overriding
any scoped variables. Also, the controller helps you make the application
modular and manageable when it grows.

• We have three form fields, url, title, and tags, binded to the $scope
object of the controller with ngModel. The ngModel directive stores the form
control's state or value in its respective model so that we can access it using,
say, $scope.url, instead of $('url').val() in jQuery.

• Then, we keep the Submit button disabled until the form is filled as
expected. We can store a new bookmark then.

To make it work, add controllers.js and services.js in index.html after
app.js as follows:

<script src="js/controllers.js"></script>
<script src="js/services.js"></script>

Create controllers.js as follows:

angular.module('myApp.controllers', [])
.controller('BookmarkCtrl', function($scope, BookmarkStore,
$rootScope, $element) {
 $scope.save = function() {
 var arrBookmarks = BookmarkStore.get();

 arrBookmarks.push({
 url : $scope.bookmark.url,
 title : $scope.bookmark.title,
 tags : $scope.bookmark.tags.split(','),
 created : new Date().getTime()
 });

 BookmarkStore.put(arrBookmarks);
 $scope.bookmark = null;
$rootScope.$broadcast('mainCtrl:loadBookmarks', {});
 $element.modal('hide');
 };
 })

Mobile Development Using AngularJS and Bootstrap

[210]

We just read the form values via the $scope object and store them in localStorage
using a custom service named BookmarkStore, which we are yet to write. Then, we
broadcast an event named mainCtrl:loadBookmarks towards MainCtrl to inform
it to refresh the list. Remember the $broadcasted event goes downwards from
$rootScope to all of its child scopes and their children. The $element parameter
refers to the element on which we applied BookmarkCtrl in bookmarks.html.

Let's create it as js/services.js:

angular.module('myApp.services', [])
 .factory('BookmarkStore', function() {
 return {
 searchCriteria: '',

 get: function(sorted) {
 var bookmarks = JSON.parse(localStorage.getItem('pin-
bookmarks') || '[]');
 return sorted ? bookmarks.sort(function(a, b) { return
a.created <b.created; }) : bookmarks;
 },

 put: function(bookmarks) {
 localStorage.setItem('pin-bookmarks', JSON.
stringify(bookmarks));
 }
 };
 });

The factory function is the easiest way to create a service that returns a literal object.
In our case, it consists of two methods, get and put, to fetch stored bookmarks and
store new bookmarks respectively in localStorage.

Then, quickly update app.js to reference the newly created controllers and services
as follows:

angular.module('myApp', ['myApp.controllers', 'myApp.services'])

You can now go ahead and try adding couple of bookmarks.

You might notice that a list of bookmarks does not update, and this is because it's
static. Let's make it dynamic too. We'll basically use the same BookmarkStore service
to fetch all the stored bookmarks using the .get() method call and render all of
them with the ngRepeat directive in AngularJS. Replace the previously added the
div.container-fluid block with the following:

<div ng-controller="MainCtrl" class="container-fluid" style="padding-
top: 70px;">

Chapter 10

[211]

<div class="row" ng-repeat-start="bookmark in pageBookmarks">
<div class="col-xs-3 col-sm-3 col-md-2 col-lg-2 text-right">
<a ng-href="{{bookmark.url}}" target='_blank'><img src="http://
lorempixel.com/random/80/80">
</div>
<div class="col-xs-9 col-sm-9 col-md-10 col-lg-10">
<b ng-bind="bookmark.title">
<p>
<a ng-href="{{bookmark.url}}" target='_blank' ng-bind="bookmark.
url">
</p>
<span style="margin-right: 5px;" class="label" ng-class="{0:'label-
default', 1: 'label-primary', 2: 'label-success', 3: 'label-info', 4:
'label-warning', 5: 'label-danger'}[$index % 6]" ng-repeat="tag in
bookmark.tags" ng-bind="tag">
</div>
</div>
<hr ng-repeat-end>

<div class='text-center'>
<ul class="pagination">
<li ng-class="{'disabled': isFirst()}">
«
<a ng-if="!isFirst()" ng-href="#/page/{{currentPage - 1}}">«

<li ng-repeat="page in pages" ng-class="{'active': page ==
currentPage}">
<a ng-href="#/page/{{$index + 1}}" ng-bind="page">

<li ng-class="{'disabled': isLast()}">
»
<a ng-if="!isLast()" ng-href="#/page/{{currentPage + 1}}">»

</div>
</div>

Note the following points:

• The ngRepeatStart and ngRepeatEnd directives are variations of the
ngRepeat directive to repeat over multiple elements without any root node.
The ngRepeat directive only works with the root node. In our case, we
repeat both the div.row and hr elements together using ngRepeatStart
and ngRepeatEnd.

Mobile Development Using AngularJS and Bootstrap

[212]

• We then render the bookmark title and URL using ngBind, which is a
replacement for double curly base syntax in AngularJS for data binding.
The benefit of using the directive over a curly notation is that it avoids
flash of unstyled content and shows a value after it is parsed.

• Later, we loop through a list of tags to display them with ngRepeat and
apply different styles to distinguish them.

• At the end, we render the dynamic pagination based on the number of
bookmarks we list.

Now, add MainCtrl in controllers.js as follows:

angular.module('myApp.controllers', [])
 .controller('MainCtrl', function($scope, BookmarkStore, $location) {
loadBookmarks();

 $scope.$on('mainCtrl:loadBookmarks', loadBookmarks);

 function loadBookmarks() {
 $scope.bookmarks = BookmarkStore.get(true);
 $scope.perPage = 10;
 $scope.totalPages = Math.ceil($scope.bookmarks.length / $scope.
perPage);
 $scope.currentPage = 1;
 if ($scope.currentPage > $scope.totalPages) {
 $location.path('/page/1');
 } else {
 $scope.pageBookmarks = $scope.bookmarks.slice(($scope.
currentPage - 1) * $scope.perPage, $scope.currentPage * $scope.
perPage);
 $scope.pages = [];
 for (var i = 0; i < $scope.totalPages; i++) {
 $scope.pages.push(i + 1);
 }
 }
 }

 $scope.isFirst = function() {
 return $scope.currentPage === 1;
 };

$scope.isLast = function() {
 return $scope.currentPage === $scope.totalPages;
 };
 })

Chapter 10

[213]

Note the following:

• Again, we use a separate controller named MainCtrl for isolation from other
parts of the application.

• We fetch all stored bookmarks and calculate the total number of pages to
be shown by the pagination widget. For the record, we want to show 10
bookmarks per page.

• We also catch an event broadcasted by BookmarkCtrl earlier to refresh the
list of bookmarks whenever a new bookmark is saved.

You are now free to take a look at the updates. Do not forget to add dozens of
bookmarks to see the pagination widget in action.

However, you might notice that the pagination does not work even though the URL
changes. This is because we are yet to use the AngularJS route module to maintain
browser history for pagination. Let's install angular-route.js with the following
command in the terminal:

bower install --save angular-route

Also, reference angular-route.js in index.html as follows:

<script src="bower_components/angular-route/angular-route.js"></
script>

Then, reference its module in app.js to access the $routeProvider service:

angular.module('myApp', ['ngRoute', 'myApp.controllers', 'myApp.
services'])
 .config(function($routeProvider){
 $routeProvider.when('/page/:pageNumber', {templateUrl: 'views/
bookmarks.html'});
 $routeProvider.otherwise({redirectTo: '/page/1'});
 });

The ngRoute module allows us to access $routeProvider in the configuration phase
in order to set up custom routes for the application. This route simply tells AngularJS
that if pageNumber is provided in the URL, then fetch views/bookmark.html, which
is a view for the route. Okay, so where will it be rendered? To solve this problem,
AngularJS has a special type of directive named ng-view that allows us to render
the template into it.

Mobile Development Using AngularJS and Bootstrap

[214]

So, create views/bookmark.html and move the div.container-fluid and
bookmark modal markups into it. Add the following in index.html, replacing
the same:

<div ng-view></div>

Now, we need to tell MainCtrl to render a new set of bookmarks when the route
changes. To do this, we need to read pageNumber from the route object. So, update
controllers.js as follows:

angular.module('myApp.controllers', [])
 .controller('MainCtrl', function($scope, BookmarkStore, $route,
$location) {
 loadBookmarks();

 function loadBookmarks() {
 $scope.bookmarks = BookmarkStore.get(true);
 $scope.perPage = 10;
 $scope.totalPages = Math.ceil($scope.bookmarks.length / $scope.
perPage);
 $scope.currentPage = parseInt($route.current.params.pageNumber,
false) || 1;
 if ($scope.currentPage > $scope.totalPages) {
 $location.path('/page/1');
 } else {
 $scope.pageBookmarks = $scope.bookmarks.slice(($scope.
currentPage - 1) * $scope.perPage, $scope.currentPage * $scope.
perPage);
 $scope.pages = [];
 for (var i = 0; i < $scope.totalPages; i++) {
 $scope.pages.push(i + 1);
 }
 }
 }

 $scope.isFirst = function() {
 return $scope.currentPage === 1;
 };

 $scope.isLast = function() {
 return $scope.currentPage === $scope.totalPages;
 };
 })

Give it a shot! The pagination should be working for you now.

Chapter 10

[215]

Allowing users to search through bookmarks
In this section, we'll allow users to search bookmarks by title or tag to quickly filter
out. Update the .navbar markup added at the beginning of the chapter with the
following one in index.html:

<div class="navbar navbar-inverse navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle" data-toggle="collapse"
data-target=".navbar-collapse">
Toggle navigation

</button>
Pin It <small>- The Universal
Bookmarking App</small>
</div>
<div class="navbar-collapse collapse">
<form class="navbar-form navbar-right" role="form">
<div class="input-group" ng-controller="SearchCtrl">
<input type="text" class="form-control" placeholder="Find Bookmarks"
ng-model="searchCriteria">

<button class="btn btn-danger" ng-click="searchIt(searchCriteria)">Se
arch</button>

</div>
<button class='btn btn-primary form-control' data-toggle="modal" data-
target="#addBookmark">Add New Bookmark</button>
</form>
</div><!--/.navbar-collapse -->
</div>
</div>

Here, we have a separate controller named SearchCtrl that encompasses a model
named searchCriteria to read the search term. Then, we call the searchIt()
method to trigger a search call within bookmarks. Add the SearchCtrl controller
in controllers.js after BookmarkCtrl as follows:

.controller('SearchCtrl', function($scope, BookmarkStore, $location,
$route) {
 $scope.searchIt = function(searchCriteria) {
BookmarkStore.searchCriteria = searchCriteria;
 $location.path('/page/1');
 $route.reload();
 };
 });

Mobile Development Using AngularJS and Bootstrap

[216]

This is fairly simple. We are simply storing the search term in BookmarkStore.
searchCriteria and taking the user to the first pagination post search. The
$location object is a wrapper around the window.location object in AngularJS
that allows you to modify or read an URL and querystrings out of the box.

Finally, update MainCtrl in controllers.js to read the searchCriteria model to
filter bookmarks upon searching as follows:

angular.module('myApp.controllers', [])
 .controller('MainCtrl', function($scope, BookmarkStore, $route,
$location, $filter) {
 loadBookmarks();

 function loadBookmarks() {
 $scope.bookmarks = $filter('filter')(BookmarkStore.get(true),
BookmarkStore.searchCriteria);
 $scope.perPage = 10;
$scope.totalPages = Math.ceil($scope.bookmarks.length / $scope.
perPage);
 $scope.currentPage = parseInt($route.current.params.pageNumber,
false) || 1;
 if ($scope.currentPage > $scope.totalPages) {
 $location.path('/page/1');
 } else {
 $scope.pageBookmarks = $scope.bookmarks.slice(($scope.
currentPage - 1) * $scope.perPage, $scope.currentPage * $scope.
perPage);
 $scope.pages = [];
 for (var i = 0; i < $scope.totalPages; i++) {
 $scope.pages.push(i + 1);
 }
 }
 }

 $scope.isFirst = function() {
 return $scope.currentPage === 1;
 };

 $scope.isLast = function() {
 return $scope.currentPage === $scope.totalPages;
 };
 })

The $filter filter takes a collection to search through and a search term itself.
Try searching!

Chapter 10

[217]

Crafting the application for mobile devices
The pagination widget that we used to navigate a list of bookmarks is not really
useful in terms of usability in mind for touch devices. People often prefer swipe
gestures to navigate to anything quickly. In AngularJS, adding touch support is
easier than ever.

First, we need to install the angular-touch module separately as it does not come
with the core:

bower install --save angular-touch

Reference angular-touch.js in index.html after angular-route.js:

<script src="bower_components/angular-touch/angular-touch.js"></
script>

Then, add its module as a dependency in app.js:

angular.module('myApp', ['ngRoute', 'ngTouch', 'myApp.controllers',
'myApp.services'])
 .config(function($routeProvider){
 $routeProvider.when('/page/:pageNumber', {templateUrl: 'views/
bookmarks.html'});
 $routeProvider.otherwise({redirectTo: '/page/1'});
 })

The AngularJS touch module provides touch events and other helpers for
touch-enabled devices. This supports a special set of directives to specify custom
behavior when any touch action is triggered. There is a 300 ms delay between
touch and click event so that browsers would wait after tap-and-release action
before firing the click event. However, this module handles it automatically with
ngClick directive that works out of the box without modifying the underling code.
So apply the ngSwipeLeft and ngSwipeRight directives on div.container-fluid
in bookmarks.html as follows:

<div ng-controller="MainCtrl" class="container-fluid" style="padding-
top: 70px;" ng-swipe-left="paginate('forward')" ng-swipe-
right="paginate('backward')">

Going forward with this, any swipe gesture (left/right) will be captured and the
appropriate method will be called thereafter. We now have to define a method
named paginate under MainCtrl in controllers.js. First, inject $rootScope
in MainCtrl as follows:

angular.module('myApp.controllers', [])
 .controller('MainCtrl', function($scope, $rootScope, BookmarkStore,
$route, $location, $filter) {

Mobile Development Using AngularJS and Bootstrap

[218]

Add the paginate() method in the same controller:

$scope.paginate = function(mode) {
 if ((mode === 'backward' && $scope.isFirst()) || (mode === 'forward'
&& $scope.isLast())) return;

$rootScope.slideDirection = mode;
$location.path('/page/' + (mode === 'forward' ? $scope.currentPage +
1 : $scope.currentPage - 1));
};

Here, the mode that is forward or backward, which is passed to the function, helps
us to find the next or previous page to jump to, based on currentPage. Then, we
bind the mode itself on the $rootScope object that we'll see soon. At this time,
swiping should be working fine for you. You can either check the application in
a tablet if you have one or use the Chrome DevTool emulation as shown in the
following screenshot:

Chapter 10

[219]

You can click on the third drawer icon on the top-right corner in DevTool and go to
the Emulation tab. Then, select any device and click on the Emulate button. Now the
touch events will work on desktop too. Try swiping left or right to check whether the
list updates. How about adding a transition when the list changes?

Animation for better user experience
As AngularJS handles all sort of operations, including the updating of views and
automatic binding of events, it is quite difficult to add animation in between that
requires imperative DOM manipulation. The AngularJS team addressed the problem
early on and came up with an angular-animate module to easily add animation in
no time. You already learned about animations in Chapter 5, Learning Animation,
so we'll go straight into installing it. Run the following
commands in a terminal:

bower install --save angular-animate

bower install --save modernizr

Add modernizr.js before jQuery in index.html and angular-animate.js after
angular-touch.js. Then, inject the ngAnimate module in app.js for use as follows:

angular.module('myApp', ['ngRoute', 'ngAnimate', 'ngTouch', 'myApp.
controllers', 'myApp.services'])
 .config(function($routeProvider){
 $routeProvider.when('/page/:pageNumber', {templateUrl: 'views/
bookmarks.html'});
 $routeProvider.otherwise({redirectTo: '/page/1'});
 })

The ngClass directive allows us to dynamically apply the forward or backward CSS
class upon swiping. That's why we bound the same as the slideDirection model in
MainCtrl earlier. We can now apply it on the div[ng-view] element in index.html:

<div ng-view class="view-animation" ng-class="slideDirection"></div>

When you swipe to the left, the slideDirection model value changes to forward
and on swiping to the right, it changes to backward. The same class gets applied on
the div element as shown previously. This is useful to have a different animation
when you swipe to the left or right, based on the CSS class it has. We want the
content to flow from right to left when we swipe to the left and left to right when
we swipe to the right. Let's add the CSS styles in css/style.css and then reference
it in index.html under the head tag as follows:

html.touch .view-animation.backward.ng-enter {
 position: relative;
 -webkit-animation: enter_backward 0.5s linear;

Mobile Development Using AngularJS and Bootstrap

[220]

 -moz-animation: enter_backward 0.5s linear;
 -o-animation: enter_backward 0.5s linear;
 animation: enter_backward 0.5s linear;
}
@-webkit-keyframes enter_backward {
 from { left: -100%; }
 to { left: 0%; }
}
@-moz-keyframes enter_backward {
 from { left: -100%; }
 to { left: 0%; }
}
@-o-keyframes enter_backward {
 from { left: -100%; }
 to { left: 0%; }
}
@keyframes enter_backward {
 from { left: -100%; }
 to { left: 0%; }
}

html.touch .view-animation.forward.ng-enter {
 position: relative;
 -webkit-animation: enter_forward 0.5s linear;
 -moz-animation: enter_forward 0.5s linear;
 -o-animation: enter_forward 0.5s linear;
 animation: enter_forward 0.5s linear;
}
@-webkit-keyframes enter_forward {
 from { left: 100%; }
 to { left: 0%; }
}
@-moz-keyframes enter_forward {
 from { left: 100%; }
 to { left: 0%; }
}
@-o-keyframes enter_forward {
 from { left: 100%; }
 to { left: 0%; }
}
@keyframes enter_forward {
 from { left: 100%; }
 to { left: 0%; }
}

Chapter 10

[221]

As you learned in Chapter 5, Learning Animation, we are just targeting the ng-enter
event here so that a new list of bookmarks will be animating in either from the left
or right. You can have it animating out when the old list of bookmarks wipe out
but I'll leave that to you as an exercise. Also, notice that we want this transition on
touch devices only, that's why we installed Modernizr earlier. Modernizr adds the
touch CSS class on the HTML tag, which we have used to target touch-enabled
devices only.

Note that CSS3 keyframe animation requires vendor prefixes to
support different browsers such as -webkit for Safari and Chrome,
-moz for Firefox, and so on. You can check out http://caniuse.
com/#search=keyframe for more details.

Now we have introduced swipe gestures to navigate through a list of bookmarks,
it's time to get rid of the pagination widget on touch devices. Add the following
ng-if directive to show the widget only on the desktop:

<div class='text-center' ng-if="isDesktop()">
<ul class="pagination">
<li ng-class="{'disabled': isFirst()}">
«
<a ng-if="!isFirst()" ng-href="#/page/{{currentPage - 1}}">«

<li ng-repeat="page in pages" ng-class="{'active': page ==
currentPage}">
<a ng-href="#/page/{{$index + 1}}" ng-bind="page">

<li ng-class="{'disabled': isLast()}">
»
<a ng-if="!isLast()" ng-href="#/page/{{currentPage + 1}}">»

</div>

Add the following in MainCtrl of controllers.js:

 $scope.isDesktop = function() {
 return !Modernizr.touch && $scope.pages;
 };

Take a look at the application now in both desktop and touch device (or in emulation
using Chrome DevTools) to see different but notable behaviors.

http://caniuse.com/#search=keyframe
http://caniuse.com/#search=keyframe

Mobile Development Using AngularJS and Bootstrap

[222]

Mobile optimization for a better user
experience
In this section, we are going to optimize the whole application that we built in the
previous section to perform well on low-end mobile devices. Sometimes, you need to
cut down a few features (that are not important in mobile scope) to do so like other
mobile applications such as Facebook, Twitter, or Google+ mobile apps. In our case,
there is no extraneous feature or functionality that we can remove, so we can skip
this step of optimization for PinIt. There are other things that we can improve upon
to make our application rock.

Periodic delay for tap events
All mobile devices wait approximately 300 milliseconds from the time that you tap
the button to fire the click event. The reason for this is that the browser is waiting
to see whether you are actually performing a double tap. However, this check often
leads to a laggy delay while performing user actions and sometimes gives a bad
impression to your users. To eliminate this problem, we often have to use an external
JavaScript library, such as FastButton, FastClick, and so on, to convert all the
click events to touch on mobile.

The good thing is that AngularJS itself takes care of this with the ngTouch module
that we enabled earlier. For touch-enabled devices, ngClick converts the click
events to touch events under the hood by excluding the 300 ms delay so that your
application feels native to end users.

Accelerated transitions and animations
Knowing the fact that animations and transitions really make your application
user-friendly and intuitive but it might be disastrous on mobile devices if you do
not pay attention to it. For this, we need to know what happens when animation
happens in the browser. The mantra of silky smooth animation is 60 frames per
second (FPS), that is, render everything within 16 ms. Chrome DevTool's timeline
feature is extremely useful to understand how page transition works in our
application. Let's take a look at it.

Chapter 10

[223]

Open our PinIt app in Google Chrome and press F12 to open up devtool as shown in
the following screenshot:

As highlighted in the screenshot, you need to emulate any mobile device
(it's Apple iPad in this case) and click on the Timeline tab on the top.
The gray circle highlighted on the left is to capture the timeline when
the animation is running.

Mobile Development Using AngularJS and Bootstrap

[224]

Now, go ahead and click on that gray circle and swipe through a few bookmarks.
You will notice that many green bars almost cross the 60 FPS limit, as shown
as follows:

This gives us an insight into how badly our application can perform on low-end
mobile devices, which is not a good thing. The green lines represent the browser
repaint events in which the browser has to repaint pixels for every animation frame.
The more it repaints, the more janky the animation will become.

The problem is with the CSS property, left, that we use to animate a list. It is
recommended to use the transform CSS property to animate cheaply. The reason is
that transform uses hardware acceleration to animate stuff. This means we want the
mobile device CPU to set up the initial animation and then have the GPU responsible
for composing different layers during the animation process. The native application
can access the device's GPU to perform animation smoothly, which was not possible
until the CSS transform standardized in HTML. So, now we can leverage the same to
have jank-free animations at a 60 FPS scale.

Chapter 10

[225]

Let's hardware accelerate the page transition in style.css as follows:

html.touch .view-animation.backward.ng-enter {
 -webkit-animation: enter_backward 0.5s linear;
 -moz-animation: enter_backward 0.5s linear;
 -o-animation: enter_backward 0.5s linear;
 animation: enter_backward 0.5s linear;
}
@-webkit-keyframes enter_backward {
 from { -webkit-transform: translate(-100%, 0); }
 to { -webkit-transform: translate(0%, 0); }
}
@-moz-keyframes enter_backward {
 from { -moz-transform: translate(-100%, 0); }
 to { -moz-transform: translate(0%, 0); }
}
@-o-keyframes enter_backward {
 from { -o-transform: translate(-100%, 0); }
 to { -o-transform: translate(0%, 0); }
}
@keyframes enter_backward {
 from { transform: translate(-100%, 0); }
 to { transform: translate(0%, 0); }
}

html.touch .view-animation.forward.ng-enter {
 -webkit-animation: enter_forward 0.5s linear;
 -moz-animation: enter_forward 0.5s linear;
 -o-animation: enter_forward 0.5s linear;
 animation: enter_forward 0.5s linear;
}
@-webkit-keyframes enter_forward {
 from { -webkit-transform: translate(100%, 0); }
 to { -webkit-transform: translate(0%, 0); }
}
@-moz-keyframes enter_forward {
 from { -moz-transform: translate(100%, 0); }
 to { -moz-transform: translate(0%, 0); }
}
@-o-keyframes enter_forward {
 from { -o-transform: translate(100%, 0); }
 to { -o-transform: translate(0%, 0); }
}

Mobile Development Using AngularJS and Bootstrap

[226]

@keyframes enter_forward {
 from { transform: translate(100%, 0); }
 to { transform: translate(0%, 0); }
}

The only difference here is that we have replaced all the instances of the
CSS property named left with translate. The translate property takes
two parameters as the x and y axes. We are only considering the x axis to
animate horizontally.

Refresh the browser and record the timeline again to see the difference in painting
as shown as follows:

As you can see, there are almost no green bars, which means the animation will
perform extremely smoothly without any performance overhead on low-end
devices. We have barely scratched the surface here when it comes to performance
optimization. Heavy JavaScript can also cause performance issues but we
do not have it in our application and hence it can not be addressed. Visit
http://jankfree.org for cool stuff on performance optimization.

http://jankfree.org

Chapter 10

[227]

Improving initial page load
We often have a lot of crazy things on a development server that might or might
not require on production so that the application should be extremely lightweight
to load quickly for users. Let's create a build for PinIt, which we already covered in
Chapter 1, Setting Up the Environment. So, our strategy to reduce the initial page load
time is to concatenate all JavaScript and CSS files to reduce multiple requests. This
boils down further to add a subset of JavaScript or CSS libraries, which are relevant
for the application by excluding unnecessary baggage. In this section, we'll extend
what we learned in the first chapter and install additional Grunt modules to reduce
the initial page load time.

First, create package.json in the Chapter10/Step01-mobile/ directory with the
following code:

{
 "name": "pin-it",
 "version": "0.1.0",
 "devDependencies": {
 "grunt": "~0.4.1",
 "grunt-contrib-copy": "~0.4.1",
 "grunt-contrib-concat": "~0.3.0",
 "grunt-targethtml": "~0.2.6"
 }
}

Then, open up a terminal to install the previous Grunt packages and run the
following command:

cd Chapter10/Step01-mobile

npm install

Now, write a Grunt script in Gruntfile.js in Chapter10/Step01-mobile
as follows:

module.exports = function(grunt) {
 grunt.initConfig({
 pkg: grunt.file.readJSON('package.json'),
 concat: {
 options: { separator: ';' },
 dist: {
 src: [
 'src/bower_components/modernizr/modernizr.js',
 'src/bower_components/jquery/dist/jquery.js',
 'src/bower_components/angular/angular.js',

Mobile Development Using AngularJS and Bootstrap

[228]

 'src/bower_components/angular-route/angular-route.js',
 'src/bower_components/angular-touch/angular-touch.js',
 'src/bower_components/angular-animate/angular-animate.js',
 'src/bower_components/bootstrap/dist/js/bootstrap.js',
 'src/js/app.js',
 'src/js/controllers.js',
 'src/js/services.js'
],
 dest: 'dist/js/<%= pkg.name %>.js'
 }
 },
 copy: {
 main: {
 files: [
 { expand: true, cwd: 'src/css/', src: ['**'], dest: 'dist/
css/' },
 { expand: true, cwd: 'src/bower_components/bootstrap/dist/
css/', src: ['bootstrap.css'], dest: 'dist/bower_components/bootstrap/
dist/css' },
 { expand: true, cwd: 'src/views/', src: ['**'], dest: 'dist/
views/' }
]
 }
 },
 targethtml: {dist:{files:{'dist/index.html': 'src/index.html'}}},
 });
 grunt.loadNpmTasks('grunt-contrib-concat');
 grunt.loadNpmTasks('grunt-contrib-copy');
 grunt.loadNpmTasks('grunt-targethtml');
 grunt.registerTask('dist', ['concat', 'targethtml', 'copy']);
};

This is the exact Gruntfile.js file that we created in Chapter 1, Setting Up the
Environment, we just added some extra JavaScript and HTML files to copy to the
dist/ directory when the build command is run.

Finally, wrap all the scripts tags in index.html into a comment block to reference
the concatenated pin-it.js file:

<!--(if target dev)><!-->
<script src="bower_components/modernizr/modernizr.js"></script>
<script src="bower_components/jquery/dist/jquery.js"></script>
<script src="bower_components/angular/angular.js"></script>
<script src="bower_components/angular-route/angular-route.js"></
script>

Chapter 10

[229]

<script src="bower_components/angular-touch/angular-touch.js"></
script>
<script src="bower_components/angular-animate/angular-animate.js"></
script>
<script src="bower_components/bootstrap/dist/js/bootstrap.js"></
script>
<script src="js/app.js"></script>
<script src="js/controllers.js"></script>
<script src="js/services.js"></script>
<!--<!(endif)-->
<!--(if target dist)>
<script src="js/pin-it.js"></script>
<!(endif)-->

The Grunt plugin named targetHtml will replace all the JS files with pin-it.js
during the build process. Now, everything is up and running. We can go ahead
and create our first build for PinIt; run the following commands in a terminal:

cd Chapter10/Step01-mobile

grunt dist

You should see the Done, without errors. message in green in a terminal by
now. Fire up a browser and open dist/index.html to see the production
PinIt application working as expected.

The one thing that worries us is the size of the production app, which is almost 1.4
MB; a bad thing for our users on mobile devices with low bandwidth. Let's fix it.

First, modify package.json to add couple of Grunt modules as follows:

{
 "name": "pin-it",
 "version": "0.1.0",
 "devDependencies": {
 "grunt": "~0.4.1",
"grunt-contrib-clean": "~0.4.0",
 "grunt-contrib-copy": "~0.4.1",
 "grunt-contrib-concat": "~0.3.0",
 "grunt-contrib-cssmin": "~0.5.0",
"grunt-contrib-uglify": "~0.2.0",
 "grunt-ng-annotate": "^0.3.0",
 "grunt-contrib-htmlmin": "^0.3.0",
 "grunt-targethtml": "~0.2.6"
 }
}

Mobile Development Using AngularJS and Bootstrap

[230]

There are four new Grunt modules, namely, clean, cssmin, ngAnnotate, and
uglify. Run the following command to install the remaining Grunt modules
that we just added in package.json:

cd Chapter10/Step01-mobile

npm install

This will install new Grunt modules in the node_modules/ directory, so we can use
them in Gruntfile.js to fix the build process. Replace the whole Gruntfile.js file
with the following code:

module.exports = function (grunt) {
 grunt.initConfig({
 pkg: grunt.file.readJSON('package.json'),
clean: { dist: { files: [{ dot: true, src: ['.tmp', 'dist/*']}]},
post: { files: [{ dot: true, src: ['dist/.tmp']}]} },
ngAnnotate: {
 options: { singleQuotes: true },
 app: { files: {
 'dist/.tmp/js/app.js': ['src/js/app.js'],
 'dist/.tmp/js/controllers.js': ['src/js/controllers.js'],
 'dist/.tmp/js/services.js': ['src/js/services.js']
 }}
 },
copy: { main: { files: [{ expand: true, cwd: 'src/views/', src:
['**'], dest: 'dist/views/' }] } },
 cssmin: { dist: { files: { 'dist/css/style.css': [
 'src/bower_components/bootstrap/dist/css/bootstrap.css',
 'src/css/style.css'
]}}},
concat: {
 options: { separator: ';' },
 dist: {
 src: [
 'src/bower_components/modernizr/modernizr.js',
 'src/bower_components/jquery/dist/jquery.js',
 'src/bower_components/angular/angular.js',
 'src/bower_components/angular-route/angular-route.js',
 'src/bower_components/angular-touch/angular-touch.js',
 'src/bower_components/angular-animate/angular-animate.js',
 'src/bower_components/bootstrap/dist/js/bootstrap.js',
'dist/.tmp/js/app.js',
 'dist/.tmp/js/controllers.js',
 'dist/.tmp/js/services.js'
],

Chapter 10

[231]

 dest: 'dist/js/<%= pkg.name %>.js'
 }
 },
 uglify: {dist:{files:{'dist/js/<%= pkg.name %>.js': ['dist/js/<%=
pkg.name %>.js']}}},
targethtml: {dist:{files:{'dist/index.html': 'src/index.html'}}},
htmlmin: {
 dist: {
 options: {
 removeCommentsFromCDATA: true,
 collapseWhitespace: true,
 collapseBooleanAttributes: true,
 removeAttributeQuotes: true,
 removeRedundantAttributes: true,
useShortDoctype: true,
 removeEmptyAttributes: true,
 removeOptionalTags: true
 },
 files: [
 { expand: true, cwd: 'dist', src: ['index.html'], dest:
'dist' },
 { expand: true, cwd: 'dist/views', src: ['bookmarks.html'],
dest: 'dist/views' }
]
 }
 }
 });
 grunt.loadNpmTasks('grunt-contrib-clean');
 grunt.loadNpmTasks('grunt-contrib-copy');
 grunt.loadNpmTasks('grunt-contrib-cssmin');
 grunt.loadNpmTasks('grunt-contrib-concat');
 grunt.loadNpmTasks('grunt-contrib-uglify');
 grunt.loadNpmTasks('grunt-ng-annotate');
 grunt.loadNpmTasks('grunt-targethtml');
 grunt.loadNpmTasks('grunt-contrib-htmlmin');
 grunt.registerTask('dist', ['clean', 'ngAnnotate', 'copy', 'cssmin',
'concat', 'uglify', 'targethtml', 'htmlmin', 'clean:post']);
};

The following are a few points to remember:

• The clean:dist task removes all the files from the previous build.
• The ngAnnotate task annotates dependencies in app.js, controllers.js,

and services.js so that it does not break when minified and gzipped.
The annotated files are kept in the dist/.tmp/ directory.

Mobile Development Using AngularJS and Bootstrap

[232]

• The copy task moves the index.html and bookmarks.html files as is in the
dist/ directory.

• The cssmin task combines bootstrap.css and style.css into the
dist/css/style.css file.

• The concat task merges all JS files into pin-it.js. Notice that it takes
app.js, controllers.js, and services.js from the dist/.tmp directory
instead of the src/ directory because they are annotated by the ngAnnotate
task earlier.

• The uglify task takes pin-it.js from the dist/js/ directory and then
minifies and gzips it.

• The targethtml task updates the references of the newly created pin-it.
js and style.css files in index.html with the help of the <!--(if target
dist)> comment block.

• The htmlmin task removes unnecessary spaces and HTML tags to reduce the
size further.

• At the end, the clean:post task removes the dist/.tmp directory created by
the ngAnnotate task earlier.

Then, modify the head tag in index.html to use the minified style.css file in
production as follows:

<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, user-scalable=no">
<title>Pin It</title>
<!--(if target dev)><!-->
<link rel="stylesheet" href="bower_components/bootstrap/dist/css/
bootstrap.css">
<link rel="stylesheet" type="text/css" href="css/style.css">
<!--<!(endif)-->
<!--(if target dist)>
<link rel="stylesheet" type="text/css" href="css/style.css">
<!(endif)-->
</head>

Chapter 10

[233]

It's time to create a new build again. Run the grunt dist command again in a
terminal to gruntify, I mean gratify yourself to know that the overall size of the
application reduces to merely 400 KB from 1.4 MB. That's incredible!

Again, we included the entire Bootstrap framework in index.html but only
using the modal widget. Why not use just modal.js and collapse.js instead?
Go ahead and replace the reference of bootstrap.js in index.html with the
following code:

<script src="bower_components/bootstrap/js/modal.js"></script>
<script src="bower_components/bootstrap/js/collapse.js"></script>

Then, update the concat task in Gruntfile.js as follows:

concat: {
 options: { separator: ';' },
 dist: {
 src: [
 'src/bower_components/modernizr/modernizr.js',
 'src/bower_components/jquery/dist/jquery.js',
 'src/bower_components/angular/angular.js',
 'src/bower_components/angular-route/angular-route.js',
 'src/bower_components/angular-touch/angular-touch.js',
 'src/bower_components/angular-animate/angular-animate.js',
 'src/bower_components/bootstrap/js/modal.js',
 'src/bower_components/bootstrap/js/collapse.js',
 'dist/.tmp/js/app.js',
 'dist/.tmp/js/controllers.js',
 'dist/.tmp/js/services.js'
],
 dest: 'dist/js/<%= pkg.name %>.js'
 }
 },

Mobile Development Using AngularJS and Bootstrap

[234]

This will reduce our build size down to 350 KB, which is super impressive!
In addition to this, we can even use a customized bootstrap.css file to reduce
its size further but I'll leave that to you as an exercise. On a final note, here is
Pin It in the Google Nexus 7 device:

You might have noticed that the thumbnails we show next to each bookmark are
common for all because we have not yet fetched them from the bookmark URLs,
which can only be done using a server-side programming language, such as
Node.js, which is out of the scope of this book. Alternatively, you can use an
online API (http://grabz.it) to do so as an exercise for you.

http://grabz.it

Chapter 10

[235]

Summary
In this chapter, you learned a new term called mobile first to build anything on the
Web. To understand it, we built a simple bookmarking application with mobile users
in mind and made it work on the desktop PC at the same time. We then leverage the
browser's internal storage API to have a persistent layer on top. Towards the end of
the chapter, we were bugged by a few performance issues on low-end devices. We
figured that the transform property in CSS offloads heavy animations on the GPU
to be performed without any jank. We also tried to reduce the overall size of the
application to mere KBs from MBs earlier, which helped us load the application in
a snap on low bandwidth. All in all, we built a really useful application that we can
take to the next level by adding extra features. I'm really excited to see what you will
build next. Keep learning. All the best!

Index
Symbols
$animate service object 95
$filter filter 216
$http service 131
$location object 216
$scope.$apply function 73
$scope.blurCallback function 48
$scope.dayClick function 72
$scope.eventSources array 72
$scope.getModel function 43
$scope object 12
$scope.remove function 72
$templateCache

external template, loading via 189
$timeout function 48
.gitignore file

modifying 65
@media 139, 140
@media expression 141
@time-scale variable 106

A
accordion UI

reference link 161
add new issue form 174
alert 176
angular-animate

installing 94
Angular Google chart tools

URL 124
using 124-126

AngularJS
about 53
bootstrapping 58

service, creating 81, 82
URL 9

angular-seed project
URL 19

angular-touch module
installing 217

AngularUI
about 38
calendar component 65
downloading 38
Google Maps component 57

AngularUI Bootstrap
about 158
accordion, creating 161-164
buttons, utilizing 174
carousel, using 177-180
content, hiding with collapse 169-172
customizing 187
pagination widget, customizing 190-195
PMA, building 158, 159
priorities, converting in form of ratings 175
progress bar, displaying status of issue 181
tabs, creating 164-169
tab widget, extending 196-202
timelines, setting with datepicker 172, 173
users, notifying with alert messages 176

AngularUI-Utils
building 38
integrating, into project 40-42
URL 38

animate.css
URL 106
using 106-108

animations
creating 95-100
scaling, LESS used 104-106

[238]

staggering 108-110
application dependencies

managing, with Bower 63, 64
application foundation

designing 148-154
application-specific menus

common housing, with dropdown 183, 184
Arshaw FullCalendar

URL 65

B
bar chart

converting, into widget 122
creating 116, 117

bar chart data driven
creating 118-121

bar-chart directive
creating 122-124

Bezier curves
applying 103, 104

bookmarking app
animations, installing 219-221
building, with mobile

first approach 204-207
crafting for mobile devices 217-219
creating, as dynamic 208-214
search, enabling 215, 216

Bootstrap
download link 42

Bower
client-side dependencies,

managing with 16-18
URL 16

bower.json file
about 64
setting up, manually 64

C
calendar component

about 65-67
application, building 76
controller, adapting 71-73
controller, testing 74, 75
date formatting, filter used 67-70
filter, testing 75

styling 70
tests, adding 73

callback function 58
charts

about 116
bar chart, creating 116, 117
bar chart data driven, creating 118-121
importance 116

Chrome DevTool emulation 218
clean:dist task 231
clean:post task 232
client-side dependencies

managing, with Bower 16-18
concat task 53, 232
Content Delivery Network (CDN) 9
copy task 232
CouchDB 185
cssmin task 232
cubic-bezier function 103

D
D3.js

URL 127
dashboard

building, GitHub REST API used 127-131
extending 132-134

data service
creating 81, 82

datepicker widget
about 172
used, for setting timelines 172

declarative approach 88
directive

building 13
dist folder 41

E
elements

animating 101, 102
Event Binder component 46-49
external template

about 187, 188
loading, via $templateCache 189
loading, via script tag 188
using 189, 190

[239]

F
filters.spec.js 75
Foundation 148

G
Git

about 17
installing, on Linux (Ubuntu) 33
installing, on OS X 33
installing, on Windows 33
source code, managing with 33-35

GitHub
about 38, 127
URL 127

GitHub REST API
used, for building dashboard 127-131

Glyphicons 169
Google Maps

about 57
embedding 57-60
event binding 62, 63
markers 61

Grunt
about 28
Protractor, running from 31-33

gruntFile.js
clean:rm_tmp task 39
concat:modules task 39
concat:tmp task 39
uglify task 39

grunt task concat 41

H
Hello World application

about 7-11
building 28-31
directive, building 13, 14
end-to-end tests, with Protractor 24-28
integration tests, with Protractor 24-28
objects, using instead of primitives 11, 12
testing 19
unit tests, performing 19, 20

Homebrew
reference link 15

htmlmin task 232

J
Jasmine

about 20
installing 20-23
reference link 20

Java runtime
reference link 25

JavaScript-defined animations
performing 110-113

jQLite 53
jQuery 53
jQuery Passthrough component 52-55
JsHint

about 28
URL 28

JSON.stringify function 44

K
Karma

about 20
installing 20-23
reference link 20

Keypress component 50-52

L
Leaner CSS (LESS)

used, for scaling entire animations 104-106
Linux (Ubuntu)

Git, installing on 33
Node.js, installing on 16
NPM, installing on 16

M
master/details view

using 88
media queries

@media 139
@media expression 140
expression 139
overview 139
URL 142

media type
about 139
URL 139

[240]

mobile application
designing 204

mobile optimization
accelerated animations 222-226
accelerated transitions 222-226
initial page load, improving 227-234
performing 222
periodic delay, for tap events 222

Modernizr
about 112, 221
installing 112

moment.js file
URL 68

MongoDB 185
MySQL 185

N
ngAnnotate task 231
ng-grid component

URL 79
ng-grid project

grid, grouping 86, 87
master/details view, using 88-90
setting up 80
simple grid view 82-86

ngHide directive 95
ng-repeat directive 120
ngRepeatEnd directive 211
ngRepeatStart directive 211
ngRoute module 213
ng-show attribute 51
ng-style attribute 47
Node.js

about 15
installing, on Linux (Ubuntu) 16
installing, on OS X 15
installing, on Windows 15
reference link 15

NPM
about 15
installing, on Linux (Ubuntu) 16
installing, on OS X 15
installing, on Windows 15

NVD3
URL 127

O
OS X

Git, installing on 33
Node.js, installing on 15
NPM, installing on 15

P
progress bar

issue status, displaying 181
project

reference link 38
setting up 94

Project Management Application (PMA)
building 158, 159

Protractor
about 24, 28
reference link 24
running, from Grunt 31-33

R
responsive design

evolution 138
URL 138

S
SASS 104
script tag

external template, loading via 188
service singleton 81
setContainer() method 121
setDetails() method 121
ShipIt 158, 196, 199
simple grid view 82-86
Single Page Application 159
source code

managing, with Git 33-35
staggering

animations 108-110
working 110

[241]

T
targethtml task 232
test-driven development (TDD) 73
tooltip() function 55
Twitter Bootstrap

about 142
URL 142
using 143-147

typeahead directive
using 182, 183

types, @media
all 139
print 139
screen 139

U
uglify task 232
uiMask directive component 42-46
unit tests, Hello World application

performing 19, 20

V
Version Control System (VCS) 33

W
W3C (World Wide Web Consortium) 138
widget

bar chart, converting into 122
Windows

Git, installing on 33
Node.js, installing on 15
NPM, installing on 15

Y
Yeoman

URL 7

Thank you for buying
AngularJS UI Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

AngularJS Services
ISBN: 978-1-78398-356-8 Paperback: 152 pages

Design, build, and test services to create a solid
foundation for your AngularJS applications

1. Understand how services are a vital
component of the AngularJS framework
and how leveraging services can benefit
your application.

2. Design and structure your AngularJS services
and learn the best practices used in designing
AngularJS services.

3. Effectively write, test, and finally deploy
your application.

Mastering Web Application
Development with AngularJS
ISBN: 978-1-78216-182-0 Paperback: 372 pages

Build single-page web applications using the power
of AngularJS

1. Make the most out of AngularJS by
understanding the AngularJS philosophy and
applying it to real-life development tasks.

2. Effectively structure, write, test, and finally
deploy your application.

3. Add security and optimization features to your
AngularJS applications.

Please check www.PacktPub.com for information on our titles

AngularJS Web Application
Development Blueprints
ISBN: 978-1-78328-561-7 Paperback: 300 pages

A practical guide to developing powerful web
applications with AngularJS

1. Get to grips with AngularJS and the
development of single-page web applications.

2. Develop rapid prototypes with ease using
Bootstraps Grid system.

3. Complete and in depth tutorials covering
many applications.

Mastering AngularJS Directives
ISBN: 978-1-78398-158-8 Paperback: 210 pages

Develop, maintain, and test production-ready
directives for any AngularJS-based application

1. Explore the options available for creating
directives, by reviewing detailed explanations
and real-world examples.

2. Dissect the life cycle of a directive and
understand why they are the base of the
AngularJS framework.

3. Discover how to create structured,
maintainable, and testable directives through a
step-by-step, hands-on approach to AngularJS.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Setting Up the Environment
	Hello World
	Using objects instead of primitives
	Building our first directive

	Installing Node.js and NPM
	OS X
	Windows
	Linux (Ubuntu)

	Managing client-side dependencies
with Bower
	Testing the Hello World application
	Unit tests
	Installing Karma and Jasmine
	Integration / end-to-end tests with Protractor

	Building the application
	Running Protractor from Grunt

	Managing the source code with Git
	Summary

	Chapter 2: AngularUI – Introduction and Utils
	Downloading AngularUI
	Building AngularUI-Utils
	Integrating AngularUI-Utils into our project
	uiMask directive
	Event Binder
	Keypress
	jQuery Passthrough
	Summary

	Chapter 3: AngularUI – Extended
	Embedding Google Maps
	Markers on the map
	Event Binding

	Managing application dependencies
with Bower
	Modifying the .gitignore file

	The calendar component
	Using a filter for date formatting
	Styling the calendar
	Adapting the controller
	Adding tests
	Testing the controller
	Testing the filter

	Building the application

	Summary

	Chapter 4: Customizing and Exploring ng-grid
	Setting up the project
	Creating a service in AngularJS
	The simple grid view
	Grouping the grid
	Using a master/details view
	Summary

	Chapter 5: Learning Animation
	Setting up the project
	Creating our first animation – a simple
to-do list
	Moving elements around on the page
	Easing functions

	Using LESS to scale entire animations
	Using animate.css
	Staggering animations
	Understanding how staggering works

	JavaScript-defined animations
	Summary

	Chapter 6: Using Charts and Data-driven Graphics
	Understanding the importance of charts
	Creating a bar chart

	Making the bar chart data driven
	Converting the bar chart into a widget
	Creating a bar-chart directive

	Using Angular Google chart tools
	Building a dashboard using the GitHub REST API
	Extending the dashboard

	Summary

	Chapter 7: Customizing AngularJS with CSS and CSS Frameworks
	The evolution of responsive design
	Introducing media queries
	@media
	The @media expression

	Better designs with Twitter Bootstrap
	The foundation of your application
	Summary

	Chapter 8: AngularUI Bootstrap Development
	Why use AngularUI Bootstrap?
	Building a Project Management Application
	Creating accordion
	Creating tabs
	Hiding less relevant content with collapse
	Setting timelines with datepicker
	Utilizing buttons
	Converting priorities in the form of ratings
	Notifying users with alert messages
	Using carousel
	A progress bar to show the status of an issue

	Efficient suggestions with typeahead
	Common housing for application-specific menus with a dropdown
	Summary

	Chapter 9: Customizing AngularUI Bootstrap
	Introduction to external templates
	Loading a template via the script tag
	Loading a template via $templateCache
	Using an external template

	Customizing the AngularUI Bootstrap pagination widget
	Extending the AngularUI Bootstrap
tab widget
	Summary

	Chapter 10: Mobile Development Using AngularJS and Bootstrap
	Why bother about mobile?
	Building a bookmarking app with the mobile-first approach
	Making the application dynamic
	Allowing users to search through bookmarks
	Crafting the application for mobile devices
	Animation for better user experience

	Mobile optimization for a better user experience
	Periodic delay for tap events
	Accelerated transitions and animations
	Improving initial page load

	Summary

	Index

