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Preface

It is estimated that the number of mobile phones in the world will exceed the human population 
sometime in 2014. It is also estimated that over 90% of all these mobile devices have an ARM 
processor inside them. 

This book provides an introduction to ARM technology for programmers using ARM Cortex-A 
series processors conforming to the ARMv7–A architecture. The book is meant to complement 
rather than replace other ARM documentation available for Cortex-A series processors, such as the 
ARM Technical Reference Manuals (TRMs) for the processors themselves, documentation for 
individual devices or boards or, most importantly, the ARM® Architecture Reference Manual (the 
ARM ARM).

The purpose of this book is to provide a single guide for programmers who want to develop 
applications for the Cortex-A series of processors, bringing together information from a wide 
variety of sources that will be useful to both assembly language and C programmers. Hardware 
concepts such as caches and Memory Management Units are covered, but only where this is 
valuable to the application writer. We will also look at the way operating systems such as Linux 
make use of ARM features, and how to take full advantage of the capabilities of the ARM 
processor, in particular writing software for multi-core processors.

Although much of the content of this book is also applicable to older ARM processors, it does not 
explicitly cover processors that implement older versions of the Architecture. The Cortex-R series 
and M-series processors are mentioned but not described. Our intention is to provide an 
approachable introduction to the ARM architecture, covering the feature set in detail and providing 
practical advice on writing both C and assembly language programs to run efficiently on a 
Cortex-A series processor. 

This is not an introductory level book. It assumes some knowledge of the C programming language 
and microprocessors, but not of any ARM-specific background. In the allotted space, we cannot 
hope to cover every topic in detail. In some chapters, we suggest additional reading (referring either 
to books or web sites) that can give a deeper level of background to the topic in hand, but in this 
ARM DEN0013D Copyright © 2011 – 2013 ARM. All rights reserved. vii
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Preface 
book we focus on the ARM-specific detail. We do not assume the use of any particular tool 
chain. We will mention both GNU and ARM tools in the course of the book. We hope that the 
book is suitable for programmers who have a desktop PC or x86 background and are taking their 
first steps into the ARM processor based world.

The first chapters of the book cover the basic features of the ARM Cortex-A series processors. 
An introduction to the fundamentals of the ARM architecture, covering the various registers, 
and modes and some background on individual processors is provided in Chapter 2 and 3. 
Chapters 4 and 5 provide a brisk introduction to ARM assembly language programming, and 
assembly language instructions. We look at floating-point and the ARM Advanced SIMD 
extensions (NEON™) in Chapters 6 and 7. These chapters are only an introduction to the relevant 
topics. We then switch our focus to the memory system and look at Caches, Memory 
Management and Memory Ordering in Chapters 8, 9 and 10. Dealing with exceptions and 
interrupts are covered in Chapters 11 and 12.

The remaining chapters of the book provide more advanced programming information. 
Chapter 13 provides an overview of boot code. Chapter 14 looks at issues with porting C and 
assembly code to the ARMv7 architecture, from other architectures and from older versions of 
the ARM architecture. Chapter 15 covers the Application Binary Interface, knowledge of which 
is useful to both C and assembly language programmers. Profiling and optimizing of code is 
covered in Chapters 16 and 17. Many of the techniques presented are not specific to the ARM 
architecture, but we also provide some processor-specific hints.

Chapters 18 and 19 cover the area of multi-core processors. We take a detailed look at how these 
are implemented by ARM and how you can write code to take advantage of them. Power 
management is an important part of ARM programming and is covered in Chapter 20. The final 
chapters of the book provide a brief coverage of the ARM Security Extensions (TrustZone®) in 
Chapter 21, the ARM Virtualization extensions in Chapter 22, big.LITTLE™ technology in 
Chapter 23, and the hardware debug features available to programmers in Chapter 24. 
Appendix A gives a summary of the available ARM instructions. Appendix B gives a brief 
introduction to some of the tools and platforms available to those getting started with ARM 
programming, and Appendix C gives step-by-step instructions for configuring and building 
Linux for ARM systems.
ARM DEN0013D Copyright © 2011 – 2013 ARM. All rights reserved. viii
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Preface 
Preface to the 4th Edition
The ARM architecture continues to evolve. ARM recently announced the ARMv8 architecture, 
which, although not covered by this book, has influenced its content. Small changes have been 
made to the ARMv7 instruction set architecture for compatibility reasons. Those changes are 
included in this version. We have also taken advantage of the opportunity to carry out a general 
revision of the contents of the Guide. 

You will find some sections moved, some extensively rewritten, and some with minor changes. 
Chapters that covered the same areas have been combined. The chapter on Registers has been 
largely rewritten, to include the effects of the Security and Virtualization Extensions and the 
introduction of Privilege levels. The chapters on Exception Handling have been consolidated, 
so that they now tell a coherent story. A similar approach has been applied to multiprocessing, 
and parallelization. In all cases, what was two chapters is now one, with the contents updated. 
LPAE is now covered in the chapter on Virtualization. The chapter on Tools, Operating Systems 
and Boards has been moved to the Appendices, while the chapter on big.LITTLE technology 
has been extensively revised to keep pace with rapidly changing technology. 

ARM has added another processor to the ARMv7 Cortex-A series, and the new Cortex-A12 
processor is covered in this new edition. You will also notice that what we call the devices has 
changed. Processor now refers to the marketed device, such as the Cortex-A15 processor, 
elsewhere you will find references to cores, and clusters (of cores).

Some content that existed in the previous editions of the Cortex™-A Series Programmer’s Guide 
has been removed. You will notice that the NEON/VFP Appendix and the chapter on Writing 
NEON Code have been removed. We originally said that the information on NEON would need 
a book of its own. It now has one, in the form of the ARM® NEON™ Programmer’s Guide. 

Additional information has also been provided in the form of programming hints and tips, for 
developers using the Cortex-A series processors. While these cannot cover every eventuality 
that the developer might encounter we hope that the examples included will prove useful.

The ARM® Cortex™-A Series Programmer’s Guide has proved to be a very popular addition to 
the ARM documentation set, and now also forms the reference textbook for the ARM Accredited 
Engineer (AAE) examinations.
ARM DEN0013D Copyright © 2011 – 2013 ARM. All rights reserved. ix
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Preface 
Glossary
Abbreviations and terms used in this document are defined here.

AAPCS ARM Architecture Procedure Call Standard.

ABI Application Binary Interface.

ACP Accelerator Coherency Port.

AEABI ARM Embedded ABI.

AHB Advanced High-Performance Bus.

AMBA® Advanced Microcontroller Bus Architecture.

AMP Asymmetric Multi-Processing.

APB Advanced Peripheral Bus.

ARM ARM The ARM Architecture Reference Manual.

ASIC Application Specific Integrated Circuit.

APSR Application Program Status Register.

ASID Address Space ID.

ATPCS ARM Thumb® Procedure Call Standard.

AXI Advanced eXtensible Interface.

BE8 Byte Invariant Big-Endian Mode.

BIU Bus Interface Unit.

BSP Board Support Package.

BTAC Branch Target Address Cache.

BTB Branch Target Buffer.

CISC Complex Instruction Set Computer.

CP15 Coprocessor 15. System control coprocessor.

CPSR Current Program Status Register.

DAP Debug Access Port.

DBX Direct Bytecode Execution.

DDR Double Data Rate (SDRAM).

DMA Direct Memory Access.

DMB Data Memory Barrier.

DPU Data Processing Unit.

DS-5™ The ARM Development Studio.

DSB Data Synchronization Barrier.

DSP Digital Signal Processing.
ARM DEN0013D Copyright © 2011 – 2013 ARM. All rights reserved. x
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Preface 
DSTREAM® An ARM debug and trace unit.

DVFS Dynamic Voltage/Frequency Scaling.

EABI Embedded ABI.

ECC Error Correcting Code.

ECT Embedded Cross Trigger.

EOF End Of File.

ETB Embedded Trace Buffer™.

ETM Embedded Trace Macrocell™.

FDT Flattened Device Tree.

FIQ An interrupt type (formerly fast interrupt).

FPSCR Floating-Point Status and Control Register.

GCC GNU Compiler Collection.

GIC Generic Interrupt Controller.

GIF Graphics Interchange Format.

GPIO General Purpose Input/Output.

Gprof GNU profiler.

Harvard architecture 
Architecture with physically separate storage and signal pathways for 
instructions and data.

HCR Hyp Configuration Register.

HMP Heterogenous Multi-Processing.

ICU Instruction Cache Unit.

IDE Integrated development environment.

I/F Interface (abbreviation used in some diagrams).

IPA Intermediate Physical Address.

IRQ Interrupt Request (normally external interrupts).

ISA Instruction Set Architecture.

ISB Instruction Synchronization Barrier.

ISR Interrupt Service Routine.

Jazelle™ The ARM bytecode acceleration technology.

JIT Just In Time.

L1/L2 Level 1/Level 2.

LPAE Large Physical Address Extension.

LSB Least Significant Bit.
ARM DEN0013D Copyright © 2011 – 2013 ARM. All rights reserved. xi
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Preface 
MESI A cache coherency protocol with four states; Modified, Exclusive, Shared 
and Invalid.

MMU Memory Management Unit.

MOESI A cache coherency protocol with five states; Modified, Owned, Exclusive, 
Shared and Invalid.

MPU Memory Protection Unit.

MSB Most Significant Bit.

NEON™ The ARM Advanced SIMD Extensions.

NMI Non-Maskable Interrupt.

Normal world The execution environment when the core is in the Non-secure state.

Oprofile A Linux system profiler.

QEMU A processor emulator.

PCI Peripheral Component Interconnect. A computer bus standard.

PCS Procedure Call Standard.

PFU Prefetch Unit.

PIPT Physically Indexed, Physically Tagged.

PLE Preload Engine.

PLI Preload Instruction.

PMU Performance Monitor Unit.

PoC Point of Coherency.

PoU Point of Unification.

PPI Private Peripheral Input.

Privilege The ability to perform certain tasks that cannot be done from User 
(Unprivileged) mode.

PSCI Power State Coordination Interface.

PSR Program Status Register.

RCT Runtime Compiler Target.

RISC Reduced Instruction Set Computer.

RVCT RealView® Compilation Tools (the “ARM Compiler”).

SBZP Should Be Preserved.

SCU Snoop Control Unit.

Secure world The execution environment when the core is in the Secure State.

SGI Software Generated Interrupt.

SIMD Single Instruction, Multiple Data.

SiP System in Package.
ARM DEN0013D Copyright © 2011 – 2013 ARM. All rights reserved. xii
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Preface 
SMP Symmetric Multi-Processing.

SoC System on Chip.

SP Stack Pointer.

SPI Shared Peripheral Interrupt.

SPSR Saved Program Status Register.

Streamline A graphical performance analysis tool.

SVC Supervisor Call instruction. (Previously SWI)

SWI Software Interrupt instruction. (Replaced with SVC)

SYS System Mode.

TAP Test Access Port (JTAG Interface).

TDMI® Thumb, Debug, Multiplier, ICE.

TEX Type Extension.

Thumb® An instruction set extension to ARM.

Thumb-2 A technology extending the Thumb instruction set to support both 16-bit 
and 32-bit instructions.

TLB Translation Lookaside Buffer.

TLS Thread Local Storage.

TrustZone The ARM security extension.

TTB Translation Table Base.

TTBR Translation Table Base Register.

UAL Unified Assembly Language.

UART Universal Asynchronous Receiver/Transmitter.

UEFI Unified Extensible Firmware Interface.

U-Boot A Linux Bootloader.

UNK Unknown.

USR User mode, a non-privileged processor mode.

VFP The ARM floating-point instruction set. Before ARMv7, the VFP 
extension was called the Vector Floating-Point architecture, and was used 
for vector operations.

VIC Vectored Interrupt Controller.

VIPT Virtually Indexed, Physically Tagged.

VMID Virtual Machine ID.

VMSA Virtual Memory Systems Architecture.

XN Execute Never.
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Preface 
Typographical conventions
This book uses the following typographical conventions:

italic  Highlights important notes, introduces special terminology, denotes 
internal cross-references, and citations.

bold  Used for terms in descriptive lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as commands, file 
and program names, instruction names, parameters and source code.

monospace italic Denotes arguments to monospace text where the argument is to be 
replaced by a specific value.

 < and > Enclose replaceable terms for assembler syntax where they appear in code 
or code fragments. For example:
MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>
ARM DEN0013D Copyright © 2011 – 2013 ARM. All rights reserved. xiv
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Preface 
Feedback on this book
We have tried to ensure that the Cortex-A Series Programmer’s Guide is both easy to read and 
still covers the material in enough depth to provide the comprehensive introduction to using the 
processors that we originally intended. 

If you have any comments on this book, don’t understand our explanations, think something is 
missing, or think that it is incorrect, send an e-mail to errata@arm.com. Give:
• The title, The Cortex-A Series Programmer’s Guide.
• The number, ARM DEN0013D.
• The page number(s) to which your comments apply.
• What you think needs to be changed.

ARM also welcomes general suggestions for additions and improvements.
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The individual processor Technical Reference Manuals provide a detailed description of the 
processor behavior. They can be obtained from the ARM web site documentation area 
http://infocenter.arm.com.
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Chapter 1 
Introduction

You can find ARM processors everywhere. More than 10 billion ARM processor based devices had 
been manufactured by the end of 2008. At the end of 2013, over 52 billion ARM processors had 
been shipped. It is likely that readers of this book own at least one product containing ARM 
processor based devices – a mobile phone, tablet device, personal computer, television or even a 
car. It might come as a surprise to programmers more used to the personal computer to learn that 
the highly successful x86 architecture occupies a much smaller position in terms of total 
microprocessor shipments, with over three billion devices.

The ARM architecture has advanced significantly since the first ARM1 silicon in 1985. ARM 
produces a whole family of processors that share common instruction sets and programmer’s 
models and have some degree of backward compatibility. 

Let’s begin, however, with a brief look at the history of ARM.
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Introduction 
1.1 History
The first ARM processor, the ARM1, was designed at Acorn Computers Limited by a team led 
by Sophie Wilson and Steve Furber, with the first silicon (which worked first time!) produced 
in April 1985. The ARM1 was quickly replaced by the ARM2, which added multiplier 
hardware, and was used in real systems, including the Acorn Archimedes personal computer. 

Photograph courtesy of The Centre for Computing History, www.computinghistory.org.uk

Figure 1-1 Acorn Archimedes

ARM as a separate company was formed in Cambridge, England in November 1990, as 
Advanced RISC Machines Ltd. It was a joint venture between Apple Computers, Acorn 
Computers and VLSI Technology and has outlived two of its parents. The original 12 employees 
came mainly from the team within Acorn Computers. One reason for spinning ARM off as a 
separate company was that the processor had been selected by Apple Computers for use in its 
Newton product.
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Introduction 
Figure 1-2 The Apple Newton

The new company quickly decided that the best way forward for their technology was to license 
their Intellectual Property (IP). Instead of designing, manufacturing and selling the chips 
themselves, they would sell rights to their designs to semiconductor companies. These 
companies would design the ARM processor into their own products, in a partnership model. 
This IP licensing business is how ARM continues to operate today. ARM was able to sign up 
licensees, with Sharp, Texas Instruments and Samsung prominent names among the first 
customers. In 1998, ARM floated on the London Stock Exchange and Nasdaq. At the time of 
writing, ARM has over 2000 employees and has expanded somewhat from its original remit of 
processor design. ARM also licenses Physical IP – libraries of cells (NAND gates, RAM and so 
forth), graphics and video accelerators and software development products such as compilers, 
debuggers and development boards.
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Introduction 
1.2 System-on-Chip (SoC)
Designers today can assemble computer chips containing a billion or more transistors. 
Designing and verifying such complex circuits has become an extremely difficult task. It is 
increasingly rare for all of the parts of such systems to be designed by a single company. In 
response to this, ARM and other semiconductor IP companies design and verify components 
(so-called IP blocks or processors). These are licensed by semiconductor companies who use 
these blocks in their own designs and include microprocessors, DSPs, 3D graphics and video 
controllers, along with many other functions.

The semiconductor companies take these blocks and include many other parts to create a 
complete system on the chip, forming a System-on-Chip (SoC). The architects must select the 
appropriate core(s), memory controllers, on-chip memory, peripherals, bus interconnect and 
other logic (perhaps including analog or radio frequency components), in order to produce a 
system. 

 Application Specific Integrated Circuit (ASIC) is another term that we will use in the book. This 
is an Integrated Circuit design that is specific to a particular application. An ASIC might well 
contain an ARM core, memory and other components. Clearly there is a large overlap between 
ASICs and SoCs. The term SoC usually refers to a device with a higher degree of integration, 
including many of the parts of the system in a single device, possibly including analog, 
mixed-signal or radio frequency circuits.

Semiconductor companies investing tens of millions of dollars to create these devices will 
normally invest a great deal in software to run on their platform. It would be uncommon to 
produce a complex system with a powerful processor without at least having ported one or more 
operating systems to it and written device drivers for peripherals. 

Of course, operating systems like Linux require significant amounts of memory to run, more 
than is usually possible on a single silicon device. The term System-on-Chip is therefore not 
always entirely accurate, because the SoC does not always contain the whole system. Apart 
from the issue of silicon area, it is also often the case that many useful parts of a system require 
specialist silicon manufacturing processes that preclude them from being placed on the same 
die. 
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1.3 Embedded systems
An embedded system is conventionally defined as a piece of computer hardware running 
software designed to perform a specific task. Examples of such systems might be TV set-top 
boxes, smartcards, routers, disk drives, printers, automobile engine management systems, MP3 
players or photocopiers. These contrast with what is generally considered a computer system, 
that is, one that runs a wide range of general purpose software and possesses input and output 
devices such as a keyboard, and a graphical display of some kind. 

This distinction is becoming increasingly blurred. Consider the cellular or mobile phone. A 
basic model might only perform the task of making phone calls, but modern smartphones can 
run a complex operating system to which many thousands of applications are available for 
download.

Embedded systems can contain very simple 8-bit microprocessors, such as an Intel 8051 or PIC 
micro-controllers, or some of the more complex 32 or 64-bit processors, such as the ARM 
family described in this book. They require RAM and some form of non-volatile storage to hold 
the program(s) to be executed by the system. Systems will almost always have additional 
peripherals, relating to the actual function of the device – typically including UARTs, interrupt 
controllers, timers, GPIO controllers, but also potentially quite complex blocks such as GPUs, 
or DMA controllers.

Software running on such systems is typically grouped into two separate parts: the Operating 
System (OS) and applications that run on top of the OS. In this book, we will concentrate mainly 
on examples from Linux. The source code for Linux is readily available for inspection by the 
reader and is likely to be familiar to many programmers. Nevertheless, lessons learned from 
Linux are equally applicable to other operating systems.

Memory Footprint 
In many systems, to minimize cost (and power), memory size can be limited. You 
might be forced to consider the size of the program and how to reduce memory 
usage while it runs.

Real-time behavior 
A feature of certain systems is that there are deadlines to respond to external 
events. This might be a “hard” requirement (a car braking system must respond 
within a certain time) or “soft” requirement (audio processing must complete 
within a certain time-frame to avoid a poor user experience – but failure to do so 
under rare circumstances might not render the system worthless).

Power In many embedded systems the power source is a battery, and programmers and 
hardware designers must take great care to minimize the total energy usage of the 
system. This can be done, for example, by slowing the clock, reducing supply 
voltage or switching off the core when there is no work to be done.

Cost Reducing the bill of materials can be a significant constraint on system design.

Time to market 
In competitive markets, the time to develop a working product can significantly 
impact the success of that product.
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ARM Architecture and Processors

ARM does not manufacture silicon devices. Instead, ARM creates microprocessor designs, that are 
licensed to semiconductor companies and OEMs, who then integrate them into System-on-Chip 
devices.

To ensure compatibility between implementations, ARM defines architecture specifications that 
define how compliant products must behave. Processors implementing the ARM architecture 
conform to a particular version of the architecture. 

The ARM architecture supports implementations across a very wide range of performance points. 
Its simplicity leads to very small implementations, and this enables very low power consumption.

The Cortex-A series processors covered in this book conform to the ARMv7-A architecture. There 
might also be multiple processors with different internal implementations and micro-architectures, 
different cycle timings and clock speeds that conform to the same version of the architecture, in that 
they execute the ARM instruction set defined for the architecture and pass the ARM Validation 
System tests. 
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2.1 Architectural profiles
Periodically, new versions of the architecture are announced by ARM. These add new features 
or make changes to existing behaviors. Such changes are almost always backwards compatible, 
meaning that user code that ran on older versions of the architecture will continue to run 
correctly on new versions. Of course, code written to take advantage of new features will not 
run on older processors that lack these features.

In all versions of the architecture, some system features and behaviors are left as 
implementation-defined. For example, the architecture does not define cache sizes or cycle 
timings for individual instructions. These are determined by the individual core and SoC.

Each architecture version can also define optional extensions. These might be implemented in 
a particular implementation of a processor. For example, in the ARMv7 architecture, the 
Advanced SIMD (NEON) technology is available as an optional extension, and is described in 
Chapter 7 Introducing NEON.

The ARMv7 architecture also has the concept of profiles. These are variants of the architecture 
describing processors targeting different markets and usages.

The profiles are as follows:

A The Application profile defines an architecture aimed at high performance 
processors, supporting a virtual memory system using a Memory Management 
Unit (MMU) and therefore capable of running fully featured operating systems. 
Support for the ARM and Thumb instruction sets is provided.
ARMv7-A, the Application profile, is implemented by all Cortex-A series 
processors, and by processors developed by companies who have licensed the 
ARM architecture. At the beginning of 2014, just under three billion Cortex-A 
Series chips had been shipped.
The ARMv8-A architecture, which is not described in this book, supports the 
AArch32 state, a 32-bit implementation of the architecture that is backwards 
compatible with ARMv7-A.

R The Real-time profile defines an architecture aimed at systems that require 
deterministic timing and low interrupt latency. There is no support for a virtual 
memory system, but memory regions can be protected using a simple Memory 
Protection Unit (MPU). 

M The Microcontroller profile defines an architecture aimed at low cost systems, 
where low-latency interrupt processing is vital. It uses a different exception 
handling model to the other profiles and supports only a variant of the Thumb 
instruction set.
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2.2 Architecture history and extensions
The ARM architecture changed relatively little between the first test silicon in the mid-1980s 
through to the first ARM6 and ARM7 devices of the early 1990s. In the first version of the 
architecture, the majority of the load, store and arithmetic operations along with the exception 
model and register set was implemented by the ARM1. Version 2 added multiply and 
multiply-accumulate instructions and support for coprocessors, plus other innovations. These 
early processors only supported 26-bits of address space. Version 3 of the architecture separated 
the program counter and program status registers and added several new modes, enabling 
support for 32-bits of address space. Version 4 adds support for halfword load and store 
operations and an additional kernel-level privilege mode. Readers unfamiliar with the ARM 
architecture should not worry if parts of this description use terms they have not met, because 
all of these topics are covered in the following chapters.

The ARMv4T architecture, which introduced the Thumb (16-bit) instruction set, was 
implemented by the ARM7TDMI® and ARM9TDMI® processors, products that have shipped in 
their billions. 

The ARMv5TE architecture added improvements for DSP-type operations and saturated 
arithmetic and to ARM/Thumb interworking. 

ARMv6 made a number of enhancements, including support for unaligned memory accesses, 
significant changes to the memory architecture and for multi-core support, plus some support 
for SIMD operations operating on bytes or halfwords within the 32-bit registers. It also provided 
a number of optional extensions, notably Thumb-2 and Security Extensions (TrustZone). 
Thumb-2 extends Thumb to be a mixed length (16-bit and 32-bit) instruction set.

 The ARMv7-A architecture makes the Thumb-2 extensions mandatory and adds the Advanced 
SIMD extensions (NEON), described in Chapter 7.

For a number of years, ARM adopted a sequential numbering system for processors with ARM9 
following ARM8, that came after ARM7. Various numbers and letters were appended to the 
base family to denote different variants. For example, the ARM7TDMI processor has T for 
Thumb, D for Debug, M for a fast multiplier and I for EmbeddedICE. 

For the ARMv7 architecture, ARM Limited adopted the brand name Cortex for its processors, 
with a supplementary letter indicating which of the three profiles (A, R, or M) the processor 
supports. Figure 2-1 on page 2-4 shows how different versions of the architecture correspond to 
different processor implementations. The figure is not comprehensive and does not include all 
architecture versions or processor implementations.
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Figure 2-1 Architecture and processors

In Figure 2-2, we show the development of the architecture over time, illustrating additions to 
the architecture at each new version. Almost all architecture changes are backwards-compatible, 
meaning software written for the ARMv4T architecture can still be used on ARMv7 processors.

Figure 2-2 Architecture history

Individual chapters of this book will cover these topics in greater detail, but here we will briefly 
introduce a number of architecture elements.
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2.2.1 DSP multiply-accumulate and saturated arithmetic instructions

These instructions, added in the ARMv5TE architecture, improve the capability for digital 
signal processing and multimedia software and are denoted by the letter E. The new instructions 
provide many variations of signed multiply-accumulate, saturated add and subtract, and count 
leading zeros and are present in all later versions of the architecture. In many cases, this made 
it possible to remove a simple separate DSP from the system.

2.2.2 Jazelle

Jazelle-DBX (Direct Bytecode eXecution) was introduced in ARMv5TEJ to accelerate Java 
performance while conserving power. A combination of increased memory availability and 
improvements in Just-In-Time (JIT) compilers have subsequently reduced its value in 
application processors. For this reason, many ARMv7-A processors do not implement this 
hardware acceleration.

Jazelle-DBX is best suited to providing high performance Java in systems with very limited 
memory (for example, feature phone or low-cost embedded use). In today’s systems, it is mainly 
used for backwards compatibility.

2.2.3 Thumb Execution Environment (ThumbEE)

Introduced in ARMv7-A, ThumbEE is sometimes referred to as Jazelle-RCT (Runtime 
Compilation Target). It involves small changes to the Thumb instruction set that make it a better 
target for code generated at runtime in controlled environments, for example, by managed 
languages like Java, Dalvik, C#, Python or Perl. 

ThumbEE is designed to be used by Just-In-Time (JIT) or Ahead-Of-Time (AOT) compilers, 
where it can reduce the code size of recompiled code. The use of ThumbEE is now deprecated 
by ARM.

2.2.4 Thumb

The ARMv7 architecture contains two main instruction sets, the ARM and Thumb instruction 
sets. Much of the functionality available is identical in the two instruction sets. The Thumb 
instruction set is a subset of the most commonly used 32-bit ARM instructions. Thumb 
instructions are each 16 bits long, and have a corresponding 32-bit ARM instruction that has the 
same effect. The main reason for using Thumb code is to reduce code density. Because of its 
improved density, Thumb code tends to cache better than the equivalent ARM code and can 
reduce the amount of memory required.. You can still use the ARM instruction set and you may 
want to, for particular code sections which require the highest performance. See The ARM 
instruction sets on page 4-3.

2.2.5 Thumb-2

Despite continued rumours to the contrary, there is no such thing as a Thumb-2 instruction set. 
Thumb-2 technology was introduced in ARMv6T2, and is required in ARMv7. This technology 
extends the original 16-bit Thumb instruction set to include 32-bit instructions. The range of 
32-bit Thumb instructions included in ARMv6T2 permits Thumb code to achieve performance 
similar to ARM code, with code density better than that of the purely 16-bit Thumb code.
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2.2.6 Security Extensions (TrustZone)

The optional Security Extensions referred to as TrustZone introduced with ARMv6K have been 
implemented in all ARM Cortex-A processors. TrustZone provides a separate Secure world to 
isolate sensitive code and data from the normal world that contains the operating system and 
applications. The software in the Secure world is therefore intended to provide security services 
to the Normal (non-secure) world applications. TrustZone is described in Chapter 21.

2.2.7 VFP

Before ARMv7, the VFP extension was called the Vector Floating-Point Architecture, and 
supported vector operations. VFP is an extension that implements single-precision and 
optionally, double-precision floating-point arithmetic, compliant with the ANSI/IEEE Standard 
for Floating-Point Arithmetic.

2.2.8 Advanced SIMD (NEON)

The ARM NEON technology provides an implementation of the Advanced SIMD instruction 
set, with separate register files (shared with VFP). Some implementations have a separate 
NEON pipeline back-end. It supports 8, 16, 32 and 64-bit integer, and single-precision (32-bit) 
floating-point data, that can be operated on as vectors in 64-bit and 128-bit registers. NEON is 
described in Chapter 7, and in the ARM® NEON™ Programmer’s Guide.

2.2.9 Coprocessors

The ARM architecture supports a way of extending the instruction set by using Coprocessors, 
to extend the functionality of an ARM processor. There are 16 coprocessors with numbers from 
0 to 15, On earlier ARM cores, a dedicated hardware interface was provided to permit external 
coprocessors to be connected. On the Cortex-A series processors, only internal coprocessors are 
supported. These are CP15 (system control for such things as cache and MMU, CP14 for debug, 
and CP10 and 11 for NEON and VFP operations. Coprocessors are described in Registers on 
page 3-6. Coprocessor operations are described in Miscellaneous instructions on page 5-17.

2.2.10 Large Physical Address Extension (LPAE)

LPAE is optional in the v7-A architecture and is presently supported by the Cortex-A7, 
Cortex-A12, and Cortex-A15 processors. It enables 32-bit processors that are normally limited 
to addressing a maximum of 4GB of address space to access up to 1TB of address space by 
translating 32-bit virtual memory addresses into 40-bit physical memory addresses. See Large 
Physical Address Extensions on page 22-10.

2.2.11 Virtualization

The ARM Virtualization Extensions are optional extensions to the ARMv7-A architecture 
profile. The extensions support the use of a virtual machine monitor, known as the hypervisor, 
to switch from one operating system to another. When implemented in a single core or in a 
multi-core system, the Virtualization Extensions support running multiple virtual machines on 
a single cluster. See Chapter 22.

2.2.12 big.LITTLE

big.LITTLE processing was introduced in ARMv7 to enable devices to balance the 
requirements for processing power and power efficiency. big.LITTLE uses a high performance 
cluster, such as the Cortex-A15 processor, coupled with an energy efficient cluster, such as the 
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Cortex-A7 processor. The “big” cluster can be utilized for heavy workloads, while the 
“LITTLE” cluster can take over for the majority of mobile device workloads. big.LITTLE is 
described in Chapter 23.
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2.3 Processor properties
In this section, we consider some ARM processors and identify which processor implements 
which architecture version. In Cortex-A series processors on page 2-10 we take a slightly more 
detailed look at some of the individual processors that implement architecture version v7-A. 
Some terminology will be used in this chapter that might be unfamiliar to the first-time user of 
ARM processors and will not be explained until later in the book. 

Table 2-1 lists the architecture version implemented by a number of older ARM processors.

Table 2-2 lists the architecture version implemented by the Cortex family of processors.

Table 2-3 on page 2-9 compares the properties of Cortex-A series processors. For processor 
cache information, see Table 8-1 on page 8-11.

Table 2-1 Older ARM processors and architectures

Architecture version Applications processor Embedded processor

v4T ARM720T™

ARM920T™

ARM922T™

ARM7TDMI™

v5TE - ARM946E-S™

ARM966E-S™

ARM968E-S

v5TEJ ARM926EJ-S™ -

v6K ARM1136J(F)-S™

ARM11™ MPCore™

-

v6T2 - ARM1156T2-S™

v6K + security extensions ARM1176JZ(F)-S™ -

Table 2-2 Cortex processors and architecture versions

v7-A (Applications) v7-R (Real Time) v6-M/v7-M (Microcontroller)

Cortex-A5 (Single/MP) Cortex-R4 Cortex-M0+ (ARMv6-M)

Cortex-A7 (MP) Cortex-R5 Cortex-M0 (ARMv6-M)

Cortex-A8 (Single) Cortex-R7 Cortex-M1™ (ARMv6-M)

Cortex-A9 (Single/MP) Cortex-M3™ (ARMv7-M)

Cortex-A12 (MP) Cortex-M4(F) (ARMv7E-M)

Cortex-A15 (MP)
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Table 2-3 Some properties of Cortex-A series processors

Processor

Cortex-A5 Cortex-A7 Cortex-A8 Cortex-A9 Cortex-A12 Cortex-A15

Release date Dec 2009 Oct 2011 July 2006 March 2008 June 2013 April 2011

Typical clock 
speed

~1GHz ~1GHz on 
28nm

~1GHz on 
65nm

~2GHz on 
40nm

~2GHz on 
28nm

~2.5GHz on 
28nm

Execution order In-order In-order In-order Out of order Out of order Out of order

Cores 1 to 4 1 to 4 1 1 to 4 1 to 4 1 to 4

Peak integer 
throughput

1.6DMIPS/
MHz

1.9DMIPS/
MHz

2DMIPS/MHz 2.5DMIPS/M
Hz

3.0DMIPS/
MHz

3.5DMIPS/
MHz

VFP 
architecture

VFPv4 VFPv4 VFPv3 VFPv3 VFPv4 VFPv4

NEON 
architecture

NEON NEONv2 NEON NEON NEONv2 NEONv2

Half precision 
extension

Yes Yes No Yes Yes Yes

Hardware 
Divide

No Yes No No Yes Yes

Fused Multiply 
Accumulate

Yes Yes No No Yes Yes

Pipeline stages 8 8 13 9 to 12 11 15+

Instructions 
decoded per 
cycle

1 Partial dual 
issue

2 
(Superscalar)

2 
(Superscalar)

2 
(Superscalar)

3 
(Superscalar)

Return stack 
entries

4 8 8 8 8 48

LPAE No Yes No No Yes Yes

Floating Point 
Unit

Optional Yes Yes Optional Yes Optional

AMBA 
interface

64-bit 
AMBA 3

128-bit 
AMBA 4

64 or 128-bit 
AMBA 3

2× 64-bit 
AMBA 3

128-bit 
AMBA 4

128-bit 
AMBA 4

Generic 
Interrupt 
Controller 
(GIC) 

Included Optional Not included Included External Optional

Trace Optional 
ETM

Optional 
ETM 
separate 
macrocell

Integrated 
ETM

Integrated 
PTM

Integrated 
PTM

Integrated 
PTM
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2.4 Cortex-A series processors
In this section, we take a closer look at each of the processors that implement the ARMv7-A 
architecture. Only a general description is given in each case, for more specific information on 
each processor, see Table 2-3 on page 2-9 and Table 8-1 on page 8-11.

2.4.1 The Cortex-A5 processor

The Cortex-A5 processor is the smallest ARM multi-core applications processor. Devices based 
on this processor are typically low-cost, capable of delivering the internet to the widest possible 
range of devices from low-cost entry-level smartphones and smart mobile devices, to 
embedded, consumer and industrial devices.

Figure 2-3 Cortex-A5 processor

The Cortex-A5 processor has the following features:

• Full application compatibility with other Cortex-A series processors.

• Multiprocessing capability for scalable, energy efficient performance.

• Optional Floating-point or NEON units for media and signal processing.

• High-performance memory system including caches and memory management unit.

• High value migration path from older ARM processors.
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2.4.2 The Cortex-A7 processor

The ARM Cortex-A7 processor is the most energy efficient application processor developed by 
ARM and extends ARM’s low-power leadership in entry level smart phones, tablets and other 
advanced mobile devices.

Figure 2-4 Cortex-A7 processor

The Cortex-A7 processor has the following features:

• Architecture and feature set identical to the Cortex-A15 processor, enabling big.LITTLE 
configuration.

• Less than 0.5mm2, using 28nm process technology.

• Full application compatibility with all Cortex-A series processors.

• Tightly-coupled low latency level 2 cache (up to 4MB).

• Floating-point unit.

• NEON technology for multimedia and SIMD processing.

2.4.3 The Cortex-A8 processor

The ARM Cortex-A8 processor, has the ability to scale in speed from 600MHz to greater than 
1GHz. The Cortex-A8 processor can meet the requirements for power-optimized mobile 
devices needing operation in less than 300mW; and performance-optimized consumer 
applications requiring 2000 Dhrystone MIPS. It is available in a number of different devices, 
including the S5PC100 from Samsung, the OMAP3530 from Texas Instruments and the 
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i.MX515 from Freescale. From high-end feature phones to netbooks, DTVs, printers and 
automotive-infotainment, the Cortex-A8 processor offers a proven high-performance solution 
with millions of units shipped annually 

Figure 2-5 Cortex-A8 processor

The Cortex-A8 processor has the following features:

• Frequency from 600MHz to more than 1GHz.

• High performance superscalar architecture.

• NEON technology for multi-media and SIMD processing.

• Compatibility with older ARM processors.

2.4.4 The Cortex-A9 processor

The ARM Cortex-A9 processor is a power-efficient and popular high performance choice in low 
power or thermally constrained cost-sensitive devices.

It is currently shipping in large volumes for smartphones, digital TV, consumer and enterprise 
applications. The Cortex-A9 processor provides an increase in performance of greater than 50% 
compared to the Cortex-A8 processor. The Cortex-A9 processor can be configured with up to 
four cores delivering peak performance when required. Configurability and flexibility makes 
the Cortex-A9 processor suitable for wide variety of markets and applications. 
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ARM CoreSight Multicore Debug and Trace
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Figure 2-6 Cortex-A9 processor

Devices containing the Cortex-A9 processor include nVidia’s dual-core Tegra-2, the 
SPEAr1300 from ST and TI’s OMAP4 platform.

The Cortex-A9 processor has the following features:

• Out-of-order speculating pipeline.

• 16, 32 or 64KB four way associative L1 caches.

• Floating-point unit.

• NEON technology for multi-media and SIMD processing.

• Available as a speed or power optimized hard macro implementation.

2.4.5 The Cortex-A12 processor

The Cortex-A12 processor is a high performance mid-range mobile processing solution 
designed for mobile applications, for example, use in smartphones and tablet devices. The 
Cortex-A12 processor is a successor to the highly successful Cortex-A9 processor and is 
optimized for highest performance in the mainstream mobile power envelope leading to 
best-in-class efficiency.

The high performance and high-end feature set of the Cortex-A12 processor is suitable for many 
use cases. Mid-range devices can build on the success of high-end devices and continue driving 
the fastest growing market segment in mobile.

Architecturally, the Cortex-A12 processor is based on the latest ARMv7-A architecture and 
features extensions that are aligned with processors such as the Cortex-A15 processor.
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Figure 2-7 Cortex-A12 processor

The Cortex-A12 processor has the following features:

• 40-bit Large Physical Address Extensions (LPAE) addressing up to 1 TB of RAM.

• Full application compatibility with all Cortex-A series processors.

• NEON technology for multi-media and SIMD processing.

• Virtualization and TrustZone security technology

2.4.6 The Cortex-A15 processor

The ARM Cortex-A15 processor is designed to deliver unprecedented flexibility and processing 
capability. This processor is designed with advanced power reduction techniques, and enables 
products in a wide range of markets ranging from mobile computing, high-end digital home, 
servers and wireless infrastructure.

The Cortex-A15 MPCore processor has full application compatibility with all other Cortex-A 
series processors.
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Figure 2-8 Cortex-A15 processor

The Cortex-A15 processor has the following features:

• Highly scalable, up to 2.5GHz performance.

• Full application compatibility with all Cortex-A series processors.

• Out-of-order superscalar processor.

• Tightly coupled low-latency level 2 cache (up to 4MB).

• Floating-point unit.

• NEON technology for multi-media and SIMD processing.

• Available as a quad-core hard macro implementation.
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2.5 Key architectural points of ARM Cortex-A series processors
A number of key points are common to the Cortex-A family of devices:

• 32-bit RISC core, with 16 × 32-bit visible registers with mode-based register banking.

• Modified Harvard Architecture (separate, concurrent access to instructions and data).

• Load/Store Architecture.

• Thumb-2 technology as standard.

• VFP and NEON options.

• Backward compatibility with code from previous ARM processors.

• 4GB of virtual address space and a minimum of 4GB of physical address space.

• Hardware translation table walking for virtual to physical address translation.

• Virtual page sizes of 4KB, 64KB, 1MB and 16MB. Cacheability attributes and access 
permissions can be set on a per-page basis.

• Big-endian and little-endian data access support.

• Unaligned access support for basic load/store instructions.

• Symmetric Multi-processing (SMP) support on MPCore™ variants, that is, multi-core 
versions of the Cortex-A series processors, with full data coherency at the L1 cache level. 
Automatic cache and Translation Lookaside Buffer (TLB) maintenance propagation 
provides high efficiency SMP operation.

• Physically indexed, physically tagged (PIPT) data caches. See Virtual and physical tags 
and indexes on page 8-11.

All of these architectural points are described in the chapters which follow.
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Chapter 3 
ARM Processor Modes and Registers 

The ARM architecture is a modal architecture. Before the introduction of Security Extensions it 
had seven processor modes, summarized in Table 3-1. There were six privileged modes and a 
non-privileged user mode. Privilege is the ability to perform certain tasks that cannot be done from 
User (Unprivileged) mode. In User mode, there are limitations on operations that affect overall 
system configuration, for example, MMU configuration and cache operations. Modes are 
associated with exception events, which are described in Chapter 11 Exception Handling.

Table 3-1 ARM processor modes before ARMv6

Mode Function Privilege

User (USR) Mode in which most programs and applications run Unprivileged

FIQ Entered on an FIQ interrupt exception

Privileged

IRQ Entered on an IRQ interrupt exception

Supervisor (SVC) Entered on reset or when a Supervisor Call instruction (SVC) 
is executed

Abort (ABT) Entered on a memory access exception

Undef (UND) Entered when an undefined instruction executed

System (SYS) Mode in which the OS runs, sharing the register view with 
User mode
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The introduction of the TrustZone Security Extensions (see Figure 2-2 on page 2-4) created two 
security states for the processor that are independent of Privilege and processor mode, with a 
new Monitor mode to act as a gateway between the Secure and Non-secure states and modes 
existing independently for each security state.

Figure 3-1 Secure and Non-secure worlds

The TrustZone Security Extensions are described in Chapter 21, but for the present, for 
processors that implement the TrustZone extension, system security is achieved by dividing all 
of the hardware and software resources for the device so that they exist in either the Secure 
world for the security subsystem, or the Normal (Non-secure) world for everything else. When 
a processor is in the Non-secure state, it cannot access the memory that is allocated for Secure 
state.

In this situation the Secure Monitor acts as a gateway for moving between these two worlds.

If Security Extensions are implemented, software executing in Monitor mode controls transition 
between Secure and Non-secure processor states. 

The ARMv7-A architecture Virtualization Extensions add a hypervisor mode (Hyp), in addition 
to the existing privileged modes. Virtualization enables more than one Operating System to 
co-exist and operate on the same system. The ARM Virtualization Extensions therefore makes 
it possible to operate multiple Operating Systems on the same platform.

Figure 3-2 The hypervisor
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If the Virtualization Extensions are implemented there is a privilege model different to that of 
previous architectures. In Non-secure state there can be three privilege levels, PL0, PL1 and 
PL2.

PL0 The privilege level of application software, that executes in User mode. Software 
executed in User mode is described as unprivileged software. This software 
cannot access some features of the architecture. In particular, it cannot change 
many of the configuration settings.
Software executing at PL0 can make only unprivileged memory accesses.

PL1 Software execution in all modes other than User mode and Hyp mode is at PL1. 
Normally, operating system software executes at PL1.
The PL1 modes refers to all the modes other than User mode and Hyp mode.
An Operating System is expected to execute across all PL1 modes and its 
applications executing in PL0 (User Mode).

PL2 Hyp mode is normally used by a hypervisor, that controls, and can switch between 
Guest Operating Systems that execute at PL1.
If Virtualization Extensions are implemented, a hypervisor will execute at PL2 
(Hyp mode). A hypervisor will control and enable multiple Operating Systems to 
co-exist and execute on the same processor system.

These privilege levels are separate from the TrustZone Secure and Normal (Non-secure) 
settings.

Note
 The privilege level defines the ability to access resources in the current security state, and does 
not imply anything about the ability to access resources in the other security state.

Figure 3-3 on page 3-4 shows the available processor modes under different processor states.
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Figure 3-3 Privilege levels

The presence of particular processor modes and states depends on whether the processor 
implements the relevant architecture extension, as shown in Table 3-2.

A general purpose Operating System, such as Linux, and its applications, are expected to run in 
Non-secure state. The Secure state is expected to be occupied by vendor-specific firmware, or 
security-sensitive software. In some cases, software running in the Secure state is even more 
privileged than that running in Non-secure.

Non-secure PL0
USER mode

Non-secure PL1

System mode(SYS)
Supervisor mode (SVC)

FIQ mode
IRQ mode

Undef (UND) mode
Abort (ABT) mode

Non-secure PL2
Hyp mode

Non-secure state

Secure PL0
USER mode

Secure state

Secure PL1
Monitor mode (MON)

Secure PL1

System mode(SYS)
Supervisor mode (SVC)

FIQ mode
IRQ mode

Undef (UND) mode
Abort (ABT) mode

Table 3-2 ARMv7 processor modes

Mode Encoding Function
Security
state

Privilege
level

User (USR) 10000 Unprivileged mode in which most applications run Both PL0

FIQ 10001 Entered on an FIQ interrupt exception Both PL1

IRQ 10010 Entered on an IRQ interrupt exception Both PL1

Supervisor
(SVC)

10011 Entered on reset or when a Supervisor Call instruction (SVC) 
is executed

Both PL1

Monitor (MON) 10110 Implemented with Security Extensions. See Chapter 21 Secure only PL1

Abort (ABT) 10111 Entered on a memory access exception Both PL1

Hyp (HYP) 11010 Implemented with Virtualization Extensions. See Chapter 22 Non-secure PL2

Undef (UND) 11011 Entered when an undefined instruction executed Both PL1

System (SYS) 11111 Privileged mode, sharing the register view with User mode Both PL1
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The current processor mode and execution state is contained in the Current Program Status 
Register (CPSR). Changing processor state and modes can be either explicit by privileged 
software, or as a result of taking exceptions link to relevant section.
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3.1 Registers
The ARM architecture provides sixteen 32-bit general purpose registers (R0-R15) for software 
use. Fifteen of them (R0-R14) can be used for general purpose data storage, while R15 is the 
program counter whose value is altered as the core executes instructions. An explicit write to 
R15 by software will alter program flow. Software can also access the CPSR, and a saved copy 
of the CPSR from the previously executed mode, called the Saved Program Status Register 
(SPSR).

Figure 3-4 Programmer visible registers for user code

Although software can access the registers, depending on which mode the software is executing 
in and the register being accessed, a register might correspond to a different physical storage 
location. This is called banking, the shaded registers in Figure 3-5 on page 3-7 are banked. They 
use physically distinct storage and are usually accessible only when a process is executing in 
that particular mode.
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Figure 3-5 The ARM register set

In all modes, 'Low Registers' and R15 share the same physical storage location. Figure 3-5 
shows that some 'High Registers' are banked for certain modes. For example, R8-R12 are 
banked for FIQ mode, that is, accesses to them go to a different physical storage location. For 
all modes other than User and System modes, R13 and the SPSRs are banked.

In the case of banked registers, software does not normally specify which instance of the register 
is to be accessed, this is implied by the mode from which the access is made. For example, a 
program executing in User mode which specifies R13 will access R13_usr. A program 
executing in SVC mode which specifies R13 will access R13_svc.

R13 (in all modes) is the OS stack pointer, but it can be used as a general purpose register when 
not required for stack operations.

R14 (the Link Register) holds the return address from a subroutine entered when you use the 
branch with link (BL) instruction. It too can be used as a general purpose register when it is not 
supporting returns from subroutines. R14_svc, R14_irq, R14_fiq, R14_abt and R14_und are 
used similarly to hold the return values of R15 when interrupts and exceptions arise, or when 
Branch and Link instructions are executed within interrupt or exception routines.

R15 is the program counter and holds the current program address (actually, it always points 
eight bytes ahead of the current instruction in ARM state and four bytes ahead of the current 
instruction in Thumb state, a legacy of the three stage pipeline of the original ARM1 processor). 
When R15 is read in ARM state, bits [1:0] are zero and bits [31:2] contain the PC. In Thumb 
state, bit [0] always reads as zero.
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The reset values of R0-R14 are unpredictable. SP, the stack pointer, must be initialized (for each 
mode) by boot code before making use of the stack. The ARM Architecture Procedure Call 
Standard (AAPCS) or ARM Embedded ABI (AEABI) (see Chapter 15 Application Binary 
Interfaces) specifies how software should use the general purpose registers in order to 
interoperate between different toolchains or programming languages.

3.1.1 Hypervisor mode

Implementations that support the Virtualization Extensions have additional registers available 
in Hypervisor (Hyp) mode. Hypervisor mode operates at the PL2 level of privilege. It has access 
to its own versions of R13 (SP) and SPSR. It uses the User mode link register for storing 
function return addresses, and has a dedicated register, called ELR_hyp, to store the exception 
return address. Hyp mode is available only in the Normal world and provides facilities for 
virtualization, that are only accessible in this mode. See Chapter 22 Virtualization, for more 
information.

3.1.2 Program Status Registers

At any given moment, you have access to 16 registers (R0-R15) and the Current Program Status 
Register (CPSR). In User mode, a restricted form of the CPSR called the Application Program 
Status Register (APSR) is accessed instead.

The Current Program Status Register (CPSR) is used to store:

• The APSR flags.

• The current processor mode.

• Interrupt disable flags.

• The current processor state, that is, ARM, Thumb, ThumbEE, or Jazelle.

• The endianness.

• Execution state bits for the IT block.

The Program Status Registers (PSRs) form an additional set of banked registers. Each exception 
mode has its own Saved Program Status Register (SPSR) where a copy of the pre-exception 
CPSR is stored automatically when an exception occurs. These are not accessible from User 
modes.

Application programmers must use the APSR to access the parts of the CPSR that can be 
changed in unprivileged mode. The APSR must be used only to access the N, Z, C, V, Q, and 
GE[3:0] bits. These bits are not normally accessed directly, but instead set by condition code 
setting instructions and tested by instructions that are executed conditionally. 

For example, the CMP R0, R1 instruction compares the values of R0 and R1 and sets the zero flag 
(Z) if R0 and R1 are equal. 

Figure 3-6 shows the bit assignments in the CPSR.

Figure 3-6 CPSR bits

N Z C V Q IT
[1:0] J Reserved GE[3:0] IT[7:2] E A I F T M[4:0]

31 27 26 25 24 23 20 19 16 15 10 9 8 7 6 5 4 0
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The individual bits represent the following: 

• N – Negative result from ALU.

• Z – Zero result from ALU.

• C – ALU operation Carry out.

• V – ALU operation oVerflowed.

• Q – cumulative saturation (also described as sticky).

• J – indicates whether the core is in Jazelle state.

• GE[3:0] – used by some SIMD instructions.

• IT [7:2] – If-Then conditional execution of Thumb-2 instruction groups.

• E bit controls load/store endianness.

• A bit disables asynchronous aborts.

• I bit disables IRQ.

• F bit disables FIQ.

• T bit – indicates whether the core is in Thumb state.

• M[4:0] – specifies the processor mode (FIQ, IRQ, as described in Table 3-1 on page 3-1).

The core can change between modes using instructions that directly write to the CPSR mode 
bits. More commonly, the processor changes mode automatically as a result of exception events. 
In User mode, you cannot manipulate the PSR bits [4:0] that control the processor mode or the 
A, I and F bits that govern the exceptions to be enabled or disabled.

We will consider these bits in more detail in Chapter 5 and Chapter 11.

3.1.3 Coprocessor 15 

CP15, the System Control coprocessor, provides control of many features of the core. It can 
contain up to sixteen 32-bit primary registers. Access to CP15 is privilege controlled and not all 
registers are available in User mode. The CP15 register access instructions specify the required 
primary register, with the other fields in the instruction used to define the access more precisely 
and increase the number of physical 32-bit registers in CP15. The 16 primary registers in CP15 
are named c0 to c15, but are often referred to by name. For example, the CP15 System Control 
Register is called CP15.SCTLR. 
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Table 3-3 summarizes the function of some of the more relevant coprocessor registers used in 
Cortex-A series processors. We will consider some of these in more detail when we look at the 
operation of the cache and MMU. 

Table 3-3 CP15 Register summary

Register Description

Main ID Register (MIDR) Gives identification information for the 
processor (including part number and 
revision). 

Multiprocessor Affinity Register (MPIDR) Provides a way to uniquely identify 
individual cores within a cluster.

CP15 c1 System Control registers 

System Control Register (SCTLR) The main processor control register (see 
System control register (SCTLR) on 
page 3-12).

Auxiliary Control Register (ACTLR) IMPLEMENTATION DEFINED. 
Implementation specific additional control 
and configuration options.

Coprocessor Access Control Register (CPACR) Controls access to all coprocessors except 
CP14 and CP15.

Secure Configuration Register (SCR) Used by TrustZone (Chapter 21).

CP15 c2 and c3, memory protection and control registers 

Translation Table Base Register 0 (TTBR0) Base address of level 1 translation table (see 
Chapter 9).

Translation Table Base Register 1 (TTBR1) Base address of level 1 translation table (see 
Chapter 9).

Translation Table Base Control Register (TTBCR) Controls use of TTB0 and TTB1 (see 
Chapter 9).

CP15 c5 and c6, memory system fault registers 

Data Fault Status Register (DFSR) Gives status information about the last data 
fault (see Chapter 11).

Instruction Fault Status Register (IFSR) Gives status information about the last 
instruction fault (see Chapter 11).

Data Fault Address Register (DFAR) Gives the virtual address of the access that 
caused the most recent precise data abort 
(see Chapter 11).

Instruction Fault Address Register (IFAR) Gives the virtual address of the access that 
caused the most recent precise prefetch 
abort (see Chapter 11).

CP15 c7, cache maintenance and other functions 

Cache and branch predictor maintenance functions See Chapter 8.

Data and instruction barrier operations See Chapter 10.

CP15 c8, TLB maintenance operations 
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All system architecture functions are controlled by reading or writing a general purpose 
processor register (Rt) from or to a set of registers (CRn) located within Coprocessor 15. The 
Op1, Op2, and CRm fields of the instruction can also be used to select registers or operations. 
The format is shown in Example 3-1.

Example 3-1 CP15 Instruction syntax

MRC p15, Op1, Rt, CRn, CRm, Op2 ; read a CP15 register into an ARM register

MCR p15, Op1, Rt, CRn, CRm, Op2 ; write a CP15 register from an ARM register

We will not go through each of the various CP15 registers in detail, because this would duplicate 
reference information that can readily be obtained from the ARM Architecture Reference 
Manual or product documentation. 

AS an example of how we can read information from one of these registers, we will consider 
the read-only Main ID Register (MIDR), the format is shown in Figure 3-7.

Figure 3-7 Main ID Register format

In a privileged mode, we can read this register, using the instruction:

MRC p15, 0, R1, c0, c0, 0

The result, placed in register R1, tells software the processor it is running on. For an ARM Cortex 
processor the interpretation of the results is as follows:

• Bits [31:24] – implementer, will be 0x41 for an ARM designed processor.

CP15 c9, performance monitors 

CP15 c12, Security Extensions registers 

Vector Base Address Register (VBAR) Provides the exception base address for 
exceptions that are not handled in Monitor 
mode.

Monitor Vector Base Address Register (MVBAR) Holds the exception base address for all 
exceptions that are taken to Monitor mode.

CP15 c13, process, context and thread ID registers 

Context ID Register (CONTEXTIDR) See description of ASID Chapter 9).

Software thread ID registers See description of ASID Chapter 9).

CP15 c15, IMPLEMENTATION DEFINED registers

Configuration Base Address Register (CBAR) Provides a base address for the GIC and 
Local timer type peripherals.

Table 3-3 CP15 Register summary (continued)

Register Description

31 24 23 20 19 16 15 3 0

Implementer Variant Arch Primary part number Rev

4
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• Bits [23:20] – variant, shows the revision number of the processor.

• Bits [19:16] – architecture, will be 0xF for ARM architecture v7.

• Bits [15:4] – part number, for example 0xC08 for the Cortex-A8 processor.

• Bits [3:0] – revision, shows the patch revision number of the processor.

3.1.4 System control register (SCTLR)

The SCTLR is another of a number of registers that are accessed using CP15, and controls 
standard memory, system facilities and provides status information for functions implemented 
in the core.

The System Control Register is only accessible from PL1 or higher.

Figure 3-8 Simplified view of the system control register

The individual bits represent the following: 

• TE – Thumb exception enable. This controls whether exceptions are taken in ARM or 
Thumb state. 

• NMFI – Non-maskable FIQ (NMFI) support. See External interrupt requests on 
page 12-2.

• EE = Exception endianness. This defines the value of the CPSR.E bit on entry to an 
exception. See Endianness on page 14-2.

• U – Indicates use of the alignment model. See Alignment on page 14-5.

• FI – FIQ configuration enable. See External interrupt requests on page 12-2

• V – This bit selects the base address of the exception vector table. See The Vector table 
on page 11-7.

• I – Instruction cache enable bit. See Example 3-2 on page 3-13 and Invalidating and 
cleaning cache memory on page 8-17.

• Z – Branch prediction enable bit. See Example 3-2 on page 3-13 and Invalidating and 
cleaning cache memory on page 8-17

• C – Cache enable bit. See Example 3-2 on page 3-13 and Invalidating and cleaning cache 
memory on page 8-17

• A – Alignment check enable bit. See Alignment on page 14-5.

• M – Enable the MMU. See Configuring and enabling the MMU on page 9-3.

Part of the boot code sequence will typically be to set the Z bit in the CP15:SCTLR, System 
Control Register, that enables branch prediction. A code sequence to do this is shown in 
Example 3-2 on page 3-13.

31 30 29 28 27 26 25 24 14 13 12 11 10 3 2 1 0
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ARM Processor Modes and Registers 
Example 3-2 Setting bits in the SCTLR

MRC     p15, 0, r0, c1, c0, 0   ; Read System Control Register configuration data
ORR     r0, r0, #(1 << 2)       ; Set C bit
ORR     r0, r0, #(1 << 12)      ; Set I bit
ORR     r0, r0, #(1 << 11)      ; Set Z bit
MCR     p15, 0, r0, c1, c0, 0   ; Write System Control Register configuration data

A similar form of this code can be found in Example 13-3 on page 13-3.
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Chapter 4 
Introduction to Assembly Language

Assembly language is a low-level programming language. There is in general, a one-to-one 
relationship between assembly language instructions (mnemonics) and the actual binary opcode 
executed by the core. 

Many programmers writing at the application level will have little reason to code in assembly 
language. However, knowledge of assembly code can be useful in cases where highly optimized 
code is required, when writing compilers, or where low level use of features not directly available 
in C is required. It might be required for portions of boot code, device drivers or when performing 
OS development. Finally, it can be useful to be able to read disassembled code when debugging C 
programs, and particularly, to understand the mapping between assembly instructions and C 
statements.

Programmers seeking a more detailed description of ARM assembly language can also refer to the 
ARM Compiler Toolchain Assembler Reference or the ARM Architecture Reference Manual.
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Introduction to Assembly Language 
4.1 Comparison with other assembly languages
An ARM processor is a Reduced Instruction Set Computer (RISC) processor. Complex 
Instruction Set Computer (CISC) processors, like the x86, have a rich instruction set capable of 
doing complex things with a single instruction. Such processors often have significant amounts 
of internal logic that decode machine instructions to sequences of internal operations 
(microcode). RISC architectures, in contrast, have a smaller number of more general purpose 
instructions, that might be executed with significantly fewer transistors, making the silicon 
cheaper and more power efficient. Like other RISC architectures, ARM cores have a large 
number of general-purpose registers and many instructions execute in a single cycle. It has 
simple addressing modes, where all load/store addresses can be determined from register 
contents and instruction fields.

The ARMv7-Architecture has basic data processing instructions that permit cores to perform 
arithmetic operations (such as ADD) and logical bit manipulation (such as AND). They also transfer 
program execution from one part of the program to another, in order to support loops and 
conditional statements. The architecture also has instructions to read and write external memory.

The ARM instruction set is generally considered to be simple, logical and efficient. It has 
features not found in some processors, while at the same time lacking operations found in others. 
For example, it cannot perform data processing operations directly on memory. To increment a 
value in a memory location, the value must be loaded to an ARM register, the register 
incremented and a third instruction is required to write the updated value back to memory. The 
Instruction Set Architecture (ISA) includes instructions that combine a shift with an arithmetic 
or logical operation, auto-increment and auto-decrement addressing modes for optimized 
program loops, Load, and Store Multiple instructions that enable efficient stack and heap 
operations, plus block copying capability and conditional execution of almost all instructions. 

Like the x86 (but unlike the 68K), ARM instructions typically have a two or three operand 
format, with the first operand in most cases specifying the destination for the result. Load 
multiple and store instructions are an exception to this rule. The 68K, by contrast, places the 
destination as the last operand. For ARM instructions, there are generally no restrictions on 
which registers can be used as operands. Example 4-1 and Example 4-2 give a flavor of the 
differences between the different assembly languages.

Example 4-1 Instructions to add 100 to a value in a register

x86:   add     eax, #100 

68K:   ADD     #100, D0 

ARM:   add     r0, r0, 100 

Example 4-2 Load a register with a 32-bit value from a register pointer

x86:   mov     eax, DWORD PTR [ebx] 

68K:   MOVE.L  (A0), D0 

ARM:   ldr     r0, [r1] 
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Introduction to Assembly Language 
4.2 The ARM instruction sets
The ARMv7 architecture is a 32-bit processor architecture. It is also a load/store architecture, 
meaning that data-processing instructions operate only on values in general purpose registers. 
Only load and store instructions access memory. General purpose registers are also 32 bits. 
Throughout this book, when we refer to a word, we mean 32 bits. A doubleword is therefore 64 
bits and a halfword is 16 bits wide.

Though the ARMv7 architecture is a 32-bit architecture, individual processor implementations 
do not necessarily have 32-bit width for all blocks and interconnections. For example, it is 
possible to have 64-bit, or wider paths for instruction fetches or data accesses. 

Most ARM processors support two or even three different instruction sets, while some (for 
example, the Cortex-M3 processor) do not in fact execute the original ARM instruction set. 
There are at least two instruction sets that ARM processors can use. 

ARM (32-bit instructions) 
This is the original ARM instruction set. 

Thumb The Thumb instruction set was first added in the ARM7TDMI processor and 
contained only 16-bit instructions, which gave much smaller programs (memory 
footprint can be a major concern in smaller embedded systems) at the cost of 
some performance. Recent processors, including those in the Cortex-A series, 
support Thumb-2 technology that extends the Thumb instruction set to provide a 
mix of 16-bit and 32-bit instructions. This gives the best of both worlds, 
performance similar to that of the ARM instruction set, with code size similar to 
that of Thumb instructions. Because of its size and performance advantages, it is 
increasingly common for all code to be compiled or assembled to take advantage 
of Thumb-2 technology.

In older ARM processors, systems often contained code which was compiled for ARM state and 
code which was compiled for Thumb state. ARM code, with 32-bit instructions, was more 
powerful and required fewer instructions to perform a particular task and so might be preferred 
for performance critical parts of the system. It was also used for exception handler code, because 
exceptions could not be handled in Thumb state on ARM7 or ARM9 Series processors. 

Thumb code, using 16-bit instructions, required more instructions to carry out the same task, 
when compared with ARM code. Thumb code could typically encode smaller constant values 
within instructions and has shorter relative branches. See Branches on page 5-15. The available 
range for relative branches is approximately ±32MB for ARM instructions and ±16MB for the 
Thumb-2 extension. Thumb is further limited where only 16-bit instructions are used, with 
conditional branches having a range of ±256 Bytes and unconditional relative branches being 
limited to ±2048 bytes. 

However, because Thumb instructions were only half of the size, programs would be typically 
a third smaller than their ARM code equivalent. Thumb instructions are therefore used for 
reasons of code density and to reduce system memory requirements. Thumb code can also 
outperform ARM when the processor is directly connected to a narrow (16-bit) memory, 
without the benefit of cache. One Thumb instruction can be fetched on each cycle, whereas each 
32-bit ARM instruction requires two clock cycles per fetch.

When executing a Thumb instruction, the PC reads as the address of the current instruction plus 
4. The only 16-bit Thumb instructions which can directly modify the PC are certain encodings 
of MOV and ADD. The value written to the PC is forced to be halfword-aligned by ignoring its least 
significant bit, treating that bit as being 0.

In ARMCC, the option --thumb or –arm (the default) allows selection of the instruction set used 
for compilation. A program can branch between these two instruction sets at run-time.
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The currently used instruction set is indicated by the CPSR T bit and the core is said to be in 
ARM state (T = 0) or Thumb state (T = 1). Code has to be explicitly compiled or assembled to 
one state or the other. An explicit instruction is used to change between instruction sets. Calling 
functions that are compiled for a different state is known as interworking. We’ll take a more 
detailed look at this in Interworking on page 4-11.

For Thumb assembly code, there is often a choice of 16-bit and 32-bit instruction encodings, 
with the 16-bit versions being generated by default. The .W (32-bit) and .N (16-bit) width 
specifiers can be used to force a particular encoding (if such an encoding exists), for example:

BCS.W   label   ; forces 32-bit instruction even for a short branch
B.N     label   ; faults if label out of range for 16-bit instruction
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Introduction to Assembly Language 
4.3 Introduction to the GNU Assembler
The GNU Assembler, part of the GNU tools, is used to convert assembly language source code 
into binary object files. The assembler is extensively documented in the GNU Assembler 
Manual, that can be found online at http://sourceware.org/binutils/docs/as/index.html or (if 
you have GNU tools installed on your system) in the gnutools/doc sub-directory. GNU 
Assembler documentation is also available in the /gcc-doc/ package on Ubuntu.

What follows is a brief description, intended to highlight differences in syntax between the GNU 
Assembler and standard ARM assembly language, and to provide enough information to enable 
programmers to get started with the tools.

The names of GNU tool components will have prefixes indicating the target options selected, 
including operating system. An example would be arm-none-eabi-gcc, that might be used for 
bare metal systems using the ARM EABI.

4.3.1 Invoking the GNU Assembler

You can assemble the contents of an ARM assembly language source file by running the 
arm-none-eabi-as program. 

arm-none-eabi-as -g -o filename.o filename.s

The option -g requests the assembler to include debug information in the output file. 

When all of your source files have been assembled into binary object files (with the extension 
.o), you use the GNU Linker to create the final executable in ELF format.

This is done by executing:

arm-none-eabi-ld -o filename.elf filename.o

For more complex programs, where there are many separate source files, it is more common to 
use a utility like make to control the build process.

You can use the debugger provided by either arm-none-eabi-gdb or arm-none-eabi-insight to run 
the executable files on your host machine, as an alternative to a real target core.

4.3.2 GNU Assembler syntax

The GNU Assembler can target many different processor architectures and is not ARM-specific. 
This means that its syntax is somewhat different from other ARM assemblers, such as the ARM 
toolchain. The GNU Assembler uses the same syntax for all of the many processor architectures 
that it supports.

Assembly language source files consist of a sequence of statements, one per line.

Each statement has three optional parts, ordered as follows:

label: instruction @ comment

A label lets you identify the address of this instruction. This can then be used as a target for 
branch instructions or for load and store instructions. A label can be a letter followed 
(optionally) by a sequence of alphanumeric characters, followed by a colon.

The instruction can be either an ARM assembly instruction, or an assembler directive. These 
are pseudo-instructions that tell the assembler itself to do something. These are required, 
amongst other things, to control sections and alignment, or create data. 

Everything on the line after the @ symbol is treated as a comment and ignored (unless it is inside 
a string). C style comment delimiters “/*” and “*/” can also be used.
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Introduction to Assembly Language 
At link time an entry point can be specified on the command line if one has not been explicitly 
provided in the source code.

4.3.3 Sections

An executable program with code will have at least one section, by convention this is called 
.text. Data can be included in a .data section.

Directives with the same names enable you to specify which of the two sections should hold 
what follows in the source file. Executable code should appear in a .text section and read or 
write data in the .data section. Also read-only constants can appear in a .rodata section. Zero 
initialized data will appear in .bss. The Block Started by Symbol (bss) segment defines the 
space for uninitialized static data.

4.3.4 Assembler directives

This is a key area of difference between GNU tools and other assemblers.

All assembler directives begin with a period “.” A full list of these is described in the GNU 
documentation. Here, we give a subset of commonly used directives.

.align This causes the assembler to pad the binary with bytes of zero value, in data 
sections, or NOP instructions in code, ensuring the next location will be on a word 
boundary. .align n gives 2^n alignment on ARM cores.

.ascii “string” 
 Insert the string literal into the object file exactly as specified, without a NUL 
character to terminate. Multiple strings can be specified using commas as 
separators.

.asciiz  Does the same as .ascii, but this time additionally followed by a NUL character 
(a byte with the value 0 (zero)).

.byte expression, .hword expression, .word expression 
Inserts a byte, halfword, or word value into the object file. Multiple values can be 
specified using commas as separators. The synonyms .2byte and .4byte can also 
be used.

.data Causes the following statements to be placed in the data section of the final 
executable. 

.end Marks the end of this source code file. The assembler does not process anything 
in the file after this point.

.equ symbol, expression 
Sets the value of symbol to expression. The “=” symbol and .set have the same 
effect.

.extern symbol 
Indicates that symbol is defined in another source code file. 

.global symbol 
Tells the assembler that symbol is to be made globally visible to other source files 
and to the linker. 
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.include “filename” 
Inserts the contents of filename into the current source file and is typically used 
to include header files containing shared definitions.

.text This switches the destination of following statements into the text section of the 
final output object file. Assembly instructions must always be in the text section.

For reference, Table 4-1 shows common assembler directives alongside GNU and ARM tools. 
Not all directives are listed, and in some cases there is not a 100% correspondence between 
them. 

Table 4-1 Comparison of syntax

GNU 
Assembler armasm Description

@ ; Comment

#& #0x An immediate hex value

.if IFDEF, IF Conditional (not 100% equivalent)

.else ELSE

.elseif ELSEIF

.endif ENDIF

.ltorg LTORG

| :OR: OR

& :AND: AND

<< :SHL: Shift Left

>> :SHR: Shift Right

.macro MACRO Start macro definition

.endm ENDM End macro definition

.include INCLUDE GNU Assembler requires “filename”

.word DCD A data word

.short DCW

.long DCD

.byte DCB

.req RN

.global IMPORT, 
EXPORT

.equ EQU
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4.3.5 Expressions

Assembly instructions and assembler directives often require an integer operand. In the 
assembler, this is represented as an expression to be evaluated. Typically, this will be an integer 
number specified in decimal, hexadecimal (with a 0x prefix) or binary (with a 0b prefix) or as 
an ASCII character surrounded by single quotes.

In addition, standard mathematical and logical expressions can be evaluated by the assembler 
to generate a constant value. These can utilize labels and other pre-defined values. These 
expressions produce either absolute or relative values. Absolute values are 
position-independent and constant. Relative values are specified relative to some linker-defined 
address, determined when the executable image is produced – such as target addresses for 
branches.

4.3.6 GNU tools naming conventions

Registers are named in GCC as follows:

• General registers: R0 - R15.

• Stack pointer register: SP (R13).

• Frame pointer register: FP (R11).

• Link register: LR (R14).

• Program counter: PC (R15).

• Program Status Register flags: xPSR, xPSR_all, xPSR_f, xPSR_x, xPSR_ctl, xPSR_fs, 
xPSR_fx, xPSR_f, xPSR_cs, xPSR_cf, xPSR_cx (where x = C current or S saved). See 
Program Status Registers on page 3-8.

Note
 Chapter 15 Application Binary Interfaces describes how all of the registers are assigned a role 
within the procedure call standard and how the GNU Assembler lets you refer to the registers 
using their Procedure Call Standard (PCS) names. See Table 15-1 on page 15-2.
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4.4 ARM tools assembly language
The Unified Assembly Language (UAL) format now used by ARM tools enables the same 
canonical syntax to be used for both ARM and Thumb instruction sets. The assembler syntax of 
ARM tools is not identical to that used by the GNU Assembler, particularly for preprocessing 
and pseudo-instructions that do not map directly to opcodes. In the next chapter, we will look at 
the individual assembly language instructions in a little more detail. Before doing that, we take 
a look at the basic syntax used to specify instructions and registers. Assembly language 
examples in this book use both UAL and GNU Assembly syntax.

UAL gives the ability to write assembler code that can be assembled to run on all ARM cores. 
In the past, it was necessary to write code explicitly for ARM or Thumb state. Using UAL the 
same code can be assembled for different instruction sets at the time of assembly, not at the time 
the code is written. This can be either through the use of command line switches or inline 
directives. Legacy code will still assemble correctly. It is worth noting that GNU Assembler 
now supports UAL through use of the .syntax directive, though it might not be identical syntax 
to the ARM tools assembler.

4.4.1 ARM assembler syntax

ARM assembler source files consist of a sequence of statements, one per line.

Each statement has three optional parts, ordered as follows:

label instruction ; comment

A label lets you identify the address of this instruction. This can then be used as a target for 
branch instructions or for load and store instructions.

The instruction can be either an assembly instruction, or an assembler directive. These are 
pseudo-instructions that tell the assembler itself to do something. These are required, amongst 
other things, to control sections and alignment, or create data. 

Everything on the line after the ; symbol is treated as a comment and ignored (unless it is inside 
a string). C style comment delimiters “/*” and “*/” can also be used.

4.4.2 Labels

A label is required to start in the first character of a line. If the line does not have a label, a space 
or tab delimiter is required to start the line. If there is a label, the assembler makes the label equal 
to the address in the object file of the corresponding instruction. Labels can then be used as the 
target for branches or for loads and stores.

Example 4-3 A simple example showing use of a label

Loop  MUL R5, R5, R1
SUBS R1, R1, #1
BNE Loop

In Example 4-3, Loop is a label and the conditional branch instruction (BNE Loop) will be 
assembled in a way that makes the offset encoded in the branch instruction point to the address 
of the MUL instruction that is associated with the label Loop.
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4.4.3 Directives

Most lines will normally have an assembly language instruction, to be converted by the tool into 
its binary equivalent, or a directive that tells the assembler to do something. It can also be a 
pseudo-instruction (one that will be converted into one or more real instructions by the 
assembler). We’ll look at the actual instructions available in hardware in Chapter 5 and focus 
mainly on the assembler directives here. These perform a wide range of tasks. They can be used 
to place code or data at a particular address in memory, create references to other programs and 
so forth.

For example, the Define Constant (DCD, DCB, DCW) directives let you place data into a piece of 
code. This can be expressed numerically (in decimal, hex, binary) or as ASCII characters. It can 
be a single item or a comma separated list. DCB is for byte sized data, DCD can be used for word 
sized data, and DCW for half-word sized data items.

For example, we might have:

MESSAGE DCB “Hello World!”,0

This will produce a series of bytes corresponding to the ASCII characters in the string, with a 0 
termination. MESSAGE is a label that we can use to get the address of this data. Similarly, we might 
have data items expressed in hex:

Masks DCD 0x100, 0x80, 0x40, 0x20, 0x10

The EQU directive lets you assign names to address or data values. For example:

CtrlD EQU 4
TUBE EQU 0x30000000

We can then use these names in other instructions, as parts of expressions to be evaluated. EQU 
does not actually cause anything to be placed in the program executable – it merely sets a name 
to a value, for use in other instructions, in the symbol table for the assembler. It is convenient to 
use such names to make code easier to read, but also so that if we change the address or value 
of something in a piece of code, we must modify the original definition, rather than having to 
change all of the references to it individually. It is usual to group EQU definitions together, often 
at the start of a program or function, or in separate include files.

The AREA pseudo-instruction is used to tell the assembler about how to group together code or 
data into logical sections for later placement by the linker. For example, exception vectors might 
require to be placed at a fixed address. The assembler keeps track of where each instruction or 
piece of data is located in memory. The AREA directive can be used to modify that location.

The ALIGN directive lets you align the current location to a specified boundary. It usually does 
this by padding (where necessary) with zeros or NOP instructions, although it is also possible to 
specify a pad value with the directive. The default behavior is to set the current location to the 
next word (four byte) boundary, but larger boundary sizes and offsets from that boundary can 
also be specified. This can be required to meet alignment requirements of certain instructions 
(for example LDRD and STRD doubleword memory transfers), or to align with cache boundaries. 
As with the .align directive on GNU Assembler, the ALIGN n directive gives 2^n alignment on 
ARM cores.

END is used to denote the end of the assembly language source program. Failure to use the END 
directive will result in an error being returned. INCLUDE tells the assembler to include the contents 
of another file into the current file. Include files can be used as an easy mechanism for sharing 
definitions between related files.
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4.5 Interworking
When the core executes ARM instructions, it is said to be operating in ARM state. When it is 
operating in Thumb state, it is executing Thumb instructions. A core in a particular state can 
only execute instructions from that instruction set. We must make sure that the core does not 
receive instructions of the wrong instruction set. 

Each instruction set includes instructions to change processor state. ARM and Thumb code can 
be mixed, if the code conforms to the requirements of the ARM and Thumb Procedure Call 
Standards (described in Chapter 15). Compiler generated code will always do so, but assembly 
language programmers must take care to follow the specified rules.

Selection of processor state is controlled by the T bit in the CPSR. See Figure 3-6 on page 3-8. 
When T is 1, the processor is in Thumb state. When T is 0, the processor is in ARM state. 
However, when the T bit is modified, it is also necessary to flush the instruction pipeline (to 
avoid problems with instructions being decoded in one state and then executed in another). 
Special instructions are used to accomplish this. These are BX (Branch with eXchange) and BLX 
(Branch and Link with eXchange). LDR of PC and POP/LDM of PC also have this behavior. In addition 
to changing the processor state with these instructions, assembly programmers must also use the 
appropriate directive to tell the assembler to generate code for the appropriate state.

The BX or BLX instruction branches to an address contained in the specified register, or an offset 
specified in the opcode. The value of bit [0] of the branch target address determines whether 
execution continues in ARM state or Thumb state. Both ARM (aligned to a word boundary) and 
Thumb (aligned to a halfword boundary) instructions do not use bit [0] to form an instruction 
address. This bit can therefore safely be used to provide the additional information about 
whether the BX or BLX instruction should change the state to ARM (address bit [0] = 0) or Thumb 
(address bit [0] = 1). The BL label will be turned into a BLX label as appropriate at link time if 
the instruction set of the caller is different from the instruction set of label, assuming that it is 
unconditional.

A typical use of these instructions is when a call from one function to another is made using the 
BL or BLX instruction, and a return from that function is made using the BX LR instruction. 
Alternatively, we can have a non-leaf function that pushes the link register onto the stack on 
entry and pops the stored link register from the stack into the program counter, on exit. Here, 
instead of using the BX LR instruction to return, we have a memory load. Memory load 
instructions that modify the PC might also change the processor state depending on the value of 
bit [0] of the loaded address.
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4.6 Identifying assembly code
When faced with a piece of assembly language source code, it can be useful to be able to 
determine which instruction set will be used and which kind of assembler it is targeted at. 

Older ARM Assembly language code can have three (or even four) operand instructions present 
(for example, ADD R0, R1, R2) or conditional execution of non-branch instructions (for example, 
ADDNE R0, R0, #1). Filename extensions will typically be .s or .S.

Code targeted for the newer UAL, will contain the directive .syntax unified but will otherwise 
appear similar to traditional ARM Assembly language. The pound (or hash) symbol # can be 
omitted in front of immediate operands. Conditional instruction sequences must be preceded 
immediately by the IT instruction, described in Chapter 5. Such code assembles either to 
fixed-size 32-bit (ARM) instructions, or mixed-size (16-bit and 32-bit) Thumb instructions, 
depending on the presence of the directives .thumb or .arm.

You can, on occasion, encounter code written in 16-bit Thumb assembly language. This can 
contain directives such as .code 16, .thumb or .thumb_func but will not specify .syntax unified. 
It uses two operands for most instructions, although ADD and SUB can sometimes have three. Only 
branches can be executed conditionally.

All GCC inline assembler code types, such as .c, .h, .cpp, .cxx, and .c++ can be built for Thumb 
or ARM, depending on GCC configuration and command-line switches (-marm or –mthumb).
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4.7 Compatibility with ARMv8-A
With the introduction of the ARMv8-A architecture a number of changes have been made to the 
ARMv7 ISA to provide backward compatibility. The following instructions have been added to 
the ARMv7 ISA.

These are described in Appendix A Instruction Summary.

Table 4-2 New instructions

Instruction Description

LDA Load-Acquire Word

LDAB Load-Acquire Byte

LDAEX Load-Acquire Exclusive Word

LDAEXB Load-Acquire Exclusive Byte

LDAEXD Load-Acquire Exclusive Double

LDAEXH Load-Acquire Exclusive Halfword

LDAH Load-Acquire Halfword

STL Store-Release Word

STLB Store-Release Byte

STLEX Store-Release Exclusive Word

STLEXB Store-Release Exclusive Byte

STLEXD Store-Release Exclusive Double

STLEXH Store-Release Exclusive Halfword

STLH Store-Release Halfword
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Chapter 5 
ARM/Thumb Unified Assembly Language 
Instructions

This chapter is a general introduction to ARM/Thumb assembly language. It does not provide 
detailed coverage of every instruction, descriptions of individual instructions can be found in 
Appendix A Instruction Summary. 

Instructions can broadly be placed in one of a number of classes: 

• Data processing operations (ALU operations such as ADD).

• Memory access (load and stores to memory).

• Control flow (for loops, goto, conditional code and other program flow control).

• System (coprocessor, debug, mode changes and so forth). 

We will take a brief look at each of these in turn. Before that, let us examine capabilities that are 
common to different instruction classes.
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5.1 Instruction set basics
There are a number of features common to all parts of the instruction set.

5.1.1 Constant and immediate values

ARM or Thumb assembly language instructions have a length of only 16 or 32 bits. This 
presents something of a problem. It means that you cannot encode an arbitrary 32-bit value 
within the opcode.

In the ARM instruction set, as opcode bits are used to specify condition codes, the instruction 
itself and the registers to be used, only 12 bits are available to specify an immediate value. You 
have to be somewhat creative in how these 12 bits are used. Rather than enabling a constant of 
size –2048 to +2047 to be specified, instead the 12 bits are divided into an 8-bit constant and 
4-bit rotate value. The rotate value enables the 8-bit constant value to be rotated right by a 
number of places from 0 to 30 in steps of 2, that is, 0, 2, 4, 6, 8...

So, you can have immediate values like 0x23 or 0xFF. You can produce other useful immediate 
values, for example, addresses of peripherals or blocks of memory. As an example, 0x23000000 
can be produced by expressing it as 0x23 ROR 8 (see ROR on page A-35). But many other 
constants, like 0x3FF, cannot be produced within a single instruction. For these values, you must 
either construct them in multiple instructions, or load them from memory. Programmers do not 
typically concern themselves with this, except where the assembler gives an error complaining 
about an invalid constant. Instead, you can use assembly language pseudo-instructions to do 
whatever is necessary to generate the required constant.

Constant values encoded in an instruction can be one of the following in Thumb:

• a constant that can be produced by rotating an 8-bit value by any even number of bits 
within a 32-bit word

• a constant of the form 0x00XY00XY

• a constant of the form 0xXY00XY00

• a constant of the form 0xXYXYXYXY.

where XY is a hexadecimal number in the range 0x00 to 0xFF.

The MOVW instruction (move wide), will move a 16-bit constant into a register, while zeroing the 
top 16 bits of the target register. MOVT (move top) will move a 16-bit constant into the top half of 
a given register, without changing the bottom 16 bits. This permits a MOV32 pseudo-instruction 
that is able to construct any 32-bit constant. The assembler provides some more help here. The 
prefixes :upper16: and :lower16: enable you to extract the corresponding half from a 32-bit 
constant: 

MOVW R0, #:lower16:label
MOVT R0, #:upper16:label

Although this requires two instructions, it does not require any extra space to store the constant, 
and there is no requirement to read a data item from memory.

You can also use pseudo-instructions LDR Rn, =<constant> or LDR Rn, =label. This was the only 
option for older processors that lacked MOVW and MOVT. The assembler will then use the best 
sequence to generate the constant in the specified register (one of MOV, MVN or an LDR from a literal 
pool). A literal pool is an area of constant data held within the code section, typically after the 
end of a function and before the start of another. If it is necessary to manually control literal pool 
placement, this can be done with an assembler directive – LTORG for armasm, or .ltorg when 
using GNU tools. The register loaded could be the program counter, that would cause a branch. 
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This can be useful for absolute addressing or for references outside the current section; 
obviously this will result in position-dependent code. The value of the constant can be 
determined either by the assembler, or by the linker. 

ARM tools also provides the related pseudo-instruction ADR Rn, =label. This uses a PC-relative 
ADD or SUB, to place the address of the label into the specified register, using a single instruction. 
If the address is too far away to be generated this way, the ADRL pseudo-instruction is used. This 
requires two instructions, that gives a better range. This can be used to generate addresses for 
position-independent code, but only within the same code section.

5.1.2 Conditional execution

A feature of the ARM instruction set is that nearly all instructions can be conditional. On most 
other architectures, only branches or jumps can be executed conditionally. This can be useful in 
avoiding conditional branches in small if/then/else constructs or for compound comparisons. 

As an example of this, consider code to find the smaller of two values, in registers R0 and R1 
and place the result in R2. This is shown in Example 5-1. The suffix LT indicates that the 
instruction must be executed only if the most recent flag-setting instruction returned less than; 
GE means greater than or equal.

Example 5-1 Example code showing branches (GNU)

@ Code using branches
CMP     R0, R1
BLT     .Lsmaller   @ if R0<R1 jump over
MOV     R2, R1      @ R1 is greater than or equal to R0
B       .Lend       @ finish

.Lsmaller:
MOV     R2, R0      @ R0 is less than R1

.Lend:

Now look at the same code written using conditional MOV instructions, rather than branches, in 
Example 5-2

Example 5-2 Same example using conditional execution

CMP      R0, R1
MOVGE    R2, R1  @ R1 is less thanor equal to R0
MOVLT    R2, R0  @ R0 is less than R1

The latter piece of code is both smaller and, on older ARM processors, is faster to execute. 
However, this code can actually be slower on processors like the Cortex-A9, where 
inter-instruction dependencies could cause longer stalls than a branch, and branch prediction can 
reduce, or potentially eliminate the cost of branches.

As a reminder, this style of programming relies on the fact that status flags can be set optionally 
on some instructions. If the MOVGE instruction in Example 5-2 automatically set the flags, the 
program might not work correctly. Load and Store instructions never set the flags. For data 
processing operations, however, you have a choice. By default, flags will be preserved during 
such instructions. If the instruction is suffixed with an S (for example, MOVS rather than MOV), the 
instruction will set the flags. The S suffix is not required, or permitted, for the explicit 
comparison instructions. The flags can also be set manually, by using the dedicated PSR 
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manipulation instruction (MSR). Some instructions set the Carry flag (C) based on the carry from 
the ALU and others based on the barrel shifter carry (that shifts a data word by a specified 
number of bits in one clock cycle).

Thumb-2 technology also introduced an If-Then (IT) instruction, providing conditional 
execution for up to four consecutive instructions. The conditions might all be identical, or some 
might be the inverse of the others. Instructions within an IT block must also specify the 
condition code to be applied. 

IT is a 16-bit instruction that enables nearly all Thumb instructions to be conditionally executed, 
depending on the value of the ALU flags, using the condition code suffix (see IT on 
page A-12).The syntax of the instruction is IT{x{y{z}}} where x, y and z specify the condition 
switch for the optional instructions in the IT block, either Then (T) or Else (E), for example, 
ITTET.

ITT   EQ
SUBEQ r1, r1, #1
ADDEQ r0, r0, #60

Typically, IT instructions are auto-generated by the assembler, rather than being hand-coded. 
16-bit instructions that normally change the condition code flags, will not do so inside an IT 
block, except for CMP, CMN and TST whose only action is to set flags. There are some restrictions 
on which instructions can be used within an IT block. Exceptions can occur within IT blocks, 
the current if-then status is stored in the CPSR and so is copied into the SPSR on exception entry, 
so that when the exception returns, the execution of the IT block resumes correctly.

Certain instructions always set the flags and have no other effect. These are CMP, CMN, TST and 
TEQ, that are analogous to SUBS, ADDS, ANDS and EORS but with the result of the ALU calculation 
being used only to update the flags and not being placed in a register.

Table 5-1 lists the 15 condition codes that can be attached to most instructions. 

Table 5-1 Condition code suffixes

Suffix Meaning Flags

EQ Equal Z = 1

NE Not equal Z = 0

CS Carry set (identical to HS) C = 1

HS Unsigned higher or same C = 1

CC Carry clear (identical to LO) C = 0

LO Unsigned lower (identical to CC) C = 0

MI Minus or negative result N = 1

PL Positive or zero result N = 0

VS Overflow V = 1

VC Now overflow V = 0

HI Unsigned higher C = 1 AND Z = 0

LS Unsigned lower or same C = 0 OR Z = 1

GE Signed greater than or equal N = V

LT Signed less than N != V
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5.1.3 Status flags and condition codes

Program Status Registers on page 3-8, stated that the ARM processor has a Current Program 
Status Register (CPSR) that contains four status flags, (Z)ero, (N)egative, (C)arry and 
o(V)erflow. Table 5-2 indicates the value of these bits for flag setting operations.

The C flag will be set if the result of an unsigned operation overflows the 32-bit result register. 
This bit might be used to implement 64-bit (or longer) arithmetic using 32-bit operations, for 
example. 

The V flag operates in the same way as the C flag, but for signed operations. 0x7FFFFFFF is the 
largest signed positive integer that can be represented in 32 bits. If, for example, 2 is added to 
this value, the result is 0x80000001, a large negative number. The V bit is set to indicate the 
overflow or underflow, from bit [30] to bit [31].

GT Signed greater than Z = 0 AND N = V

LE Signed less than or equal Z = 1 OR N != V

AL Always. This is the default -

Table 5-1 Condition code suffixes (continued)

Suffix Meaning Flags

Table 5-2 PSR flag bits

Flag Bit Name Description

N 31 Negative Set to the same value as bit[31] of the result. For a 32-bit signed integer, bit[31] being set indicates 
that the value is negative.

Z 30 Zero Set to 1 if the result is zero, otherwise it is set to 0.

C 29 Carry Set to the carry-out value from result, or to the value of the last bit shifted out from a shift 
operation.

V 28 Overflow Set to 1 if signed overflow or underflow occurred, otherwise it is set to 0.
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5.2 Data processing operations
These are essentially the fundamental arithmetic and logical operations of the core. 
Multiplication operations on page 5-8 can be considered a special case of these. They typically 
have slightly different format and rules and are executed in a dedicated unit of the core.

ARM cores can only perform data processing on registers, never directly on memory. Data 
processing instructions (for the most part) use one destination register and two source operands. 
The basic format can be considered to be the opcode, optionally followed by a condition code, 
optionally followed by S (set flags), as follows:

Operation{cond}{S} Rd, Rn, Operand2

Table 5-3 summarizes the data processing assembly language instructions, giving their 
mnemonic opcode, operands and a brief description of their function. Appendix A gives a fuller 
description of all of the available instructions.

The purpose and function of many of these instructions will be readily apparent to most 
programmers, but some require additional explanation. 

Table 5-3 Data processing operations in assembly language

Opcode Operands Description Function 

Arithmetic operations

ADC Rd, Rn, Op2 Add with carry Rd = Rn + Op2 + C 

ADD Rd, Rn, Op2 Add Rd = Rn + Op2 

MOV Rd, Op2 Move Rd = Op2 

MVN Rd, Op2 Move NOT Rd = ~Op2 

RSB Rd, Rn, Op2 Reverse Subtract Rd = Op2 – Rn 

RSC Rd, Rn, Op2 Reverse Subtract with 
Carry

Rd = Op2 – Rn - !C 

SBC Rd, Rn, Op2 Subtract with carry Rd = Rn – Op2 -!C 

SUB Rd, Rn, Op2 Subtract Rd = Rn – Op2 

Logical operations

AND Rd, Rn, Op2 AND Rd = Rn & Op2 

BIC Rd, Rn, Op2 Bit Clear Rd = Rn & ~ Op2 

EOR Rd, Rn, Op2 Exclusive OR Rd = Rn ^ Op2 

ORR Rd, Rn, Op2 OR Rd = Rn | Op2 
(OR NOT)
Rd = Rn | ~Op2

Flag setting instructions

CMP Rn, Op2 Compare Rn – Op2 

CMN Rn, Op2 Compare Negative Rn + Op2 

TEQ Rn, Op2 Test EQuivalence Rn ^ Op2 

TST Rn, Op2 Test Rn & Op2
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In the arithmetic operations, notice that the move operations MOV and MVN require only one 
operand (and this is treated as an Operand 2 for maximum flexibility, as we shall see). RSB does 
a reverse subtract – that is to say it subtracts the first operand from the second operand. This 
instruction is required because the first operand is inflexible – it can only be a register value. So 
to write R0 = 100 – R1, you must use RSB R0,R1,#100, as SUB R0,#100,R1 is an illegal instruction. 
The operations ADC and SBC perform additions and subtractions with carry. This lets you 
synthesize arithmetic operations on values larger than 32 bits.

The logical operations are essentially the same as the corresponding C operators. Notice the use 
of ORR rather than OR. This is because the original ARM instruction set had three letter acronyms 
for all data-processing operations. The BIC instruction performs an AND of a register with the 
inverted value of operand 2. If, for example, you want to clear bit [11] of register R0, you can 
do it with the instruction BIC R0, R0, #0x800. 

The second operand 0x800 has only bit [11] set to one, with all other bits at zero. The BIC 
instruction inverts this operand, setting all bits except bit [11] to logical one. ANDing this value 
with the value in R0 has the effect of clearing bit [11] and this result is then written back into R0. 

The compare and test instructions modify the CPSR (and have no other effect). 

5.2.1 Operand 2 and the barrel shifter

The first operand for all data processing operations must always be a register. The second 
operand is much more flexible and can be either an immediate value (#x), a register (Rm), or a 
register shifted by an immediate value or register “Rm, shift #x” or “Rm, shift Rs”. There are 
five shift operations: left shift (LSL), logical right-shift (LSR), arithmetic right-shift (ASR), 
rotate-right (ROR) and rotate-right extended (RRX).

A right shift creates empty positions at the top of the register. In that case, you must differentiate 
between a logical shift, that inserts 0 into the most significant bit(s) and an arithmetic shift, that 
fills vacant bits with the sign bit, from bit [31] of the register. So an ASR operation might be used 
on a signed value, with LSR used on an unsigned value. No such distinction is required on 
left-shifts, that always insert 0 in the least significant position.

So, unlike many assembly languages, ARM assembly language does not require explicit shift 
instructions. Instead, the MOV instruction can be used for shifts and rotates. R0 = R1 >> 2 is done 
as MOV R0, R1, LSR #2. Equally, it is common to combine shifts with ADD, SUB or other instructions. 
For example, to multiply R0 by 5, you might write:

ADD R0, R0, R0, LSL #2 

A left shift of n places is effectively a multiply by 2 to the power of n, so this effectively makes 
R0 = R0 + (4 × R0). A right shift provides the corresponding divide operation, although ASR 
rounds negative values differently than would division in C.

Apart from multiply and divide, another common use for shifted operands is array index 
look-up. Consider the case where R1 points to the base element of an array of int (32-bit) 
values and R2 is the index that points to the nth element in that array. You can obtain the array 
value with a single load instruction that uses the calculation R1 + (R2 × 4) to get the appropriate 
address. Example 5-3 on page 5-8 provides examples of differing operand 2 types used in ARM 
instructions.
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Example 5-3 ARM instructions showing a variety of operand 2 types

add     R0, R1, #1 @ R0 = R2 + 1
add     R0, R1, R2 @ R0 = R1 + R2
add     R0, R1, R2, LSL #4 @ R0 = R1 + R2<<#4
add     R0, R1, R2, LSL R3 @ R0 = R1 + R2<<R3

5.2.2 Multiplication operations

The multiply operations are readily understandable. A key limitation to note is that there is no 
scope to multiply by an immediate value. Multiplies operate only on values in registers. 
Multiplication by a constant might require that constant to be loaded into a register first. Later 
versions of the ARM processor add significantly more multiply instructions, giving a range of 
possibilities for 8-, 16- and 32-bit data. We will consider these in Integer SIMD instructions 
when looking at the DSP instructions.

Table 5-4 summarizes the multiplication assembly language instructions, giving their 
mnemonic opcode, operands and a brief description of their function.

5.2.3 Additional multiplies

Multiplication operations provide the means to multiply one 32-bit register with another, to 
produce either a 32-bit result or a 64-bit signed or unsigned result. In all cases, there is the option 
to accumulate a 32-bit or 64-bit value into the result. Additional multiply instructions have been 
added. There are signed most-significant word multiplies, SMMUL, SMMLA and SMMLS. These 
perform a 32 × 32-bit multiply in which the result is the top 32 bits of the product, with the 
bottom 32 bits discarded. The result might be rounded by applying an R suffix, otherwise it is 
truncated. The UMAAL (Unsigned Multiply Accumulate Accumulate Long) instruction performs 
a 32 × 32-bit multiply and adds in the contents of two 32-bit registers.

5.2.4 Integer SIMD instructions

Single Instruction, Multiple Data (SIMD) instructions were first added in the ARMv6 
architecture and provide the ability to pack, extract and unpack 8-bit and 16-bit quantities within 
32-bit registers and to perform multiple arithmetic operations such as add, subtract, compare or 
multiply to such packed data, with a single instruction. These must not be confused with the 

Table 5-4 Multiplication operations in assembly language

Opcode Operands Description Function 

Multiplies

MLA Rd, Rn, Rm, Ra Multiply accumulate (MAC) Rd = Ra + (Rn × Rm)

MLS Rd, Rn, Rm, Ra Multiply and Subtract Rd = Ra - (Rm × Rn)

MUL Rd, Rn, Rm Multiply Rd = Rn × Rm 

SMLAL RdLo, RdHi, Rn, Rm Signed 32-bit multiply with a 
64-bit accumulate

RdHiLo += Rn × Rm 

SMULL RdLo, RdHi, Rn, Rm Signed 64-bit multiply RdHiLo = Rn × Rm 

UMLAL RdLo, RdHi, Rn, Rm Unsigned 64-bit MAC RdHiLo += Rn × Rm

UMULL RdLo, RdHi, Rn, Rm Unsigned 64-bit multiply RdHiLo = Rn × Rm 
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significantly more powerful Advanced SIMD (NEON) operations that were introduced in the 
ARMv7 architecture and are covered in detail in Chapter 7 and the ARM® NEON™ 
Programmer’s Guide.

Integer register SIMD instructions

The ARMv6 SIMD operations make use of the GE (greater than or equal) flags within the 
CPSR.These are distinct from the normal condition flags. There is a flag corresponding to each 
of the four byte positions within a word. Normal data processing operations produce one result 
and set the N, Z, C and V flags (as seen in Figure 3-6 on page 3-8). The SIMD operations 
produce up to four outputs and set only the GE flags, to indicate overflow. The MSR and MRS 
instructions can be used to write or read these flags directly.

The general form of the SIMD instructions is that subword quantities in each register are 
operated on in parallel (for example, four byte-sized ADDs can be performed) and the GE flags 
are set or cleared according to the results of the instruction. Different types of add and subtract 
can be specified using appropriate prefixes. For example, QADD16 performs saturating addition 
on halfwords within a register. SADD/UADD8 and SSUB/USUB8 set the GE bits individually while 
SADD/UADD16 and SSUB/USUB16 set GE bits [3:2] together based on the top halfword result, and 
[1:0] together on the bottom halfword result.

Also available are the ASX and SAX class of instructions, that reverse halfwords of one operand 
and add/subtract or subtract/add parallel pairs. Like the previously described ADD and Subtract 
instructions, these exist as unsigned (UASX/USAX), signed (SASX/SSAX) and saturated (QASX/QSAX) 
versions.

Figure 5-1 SIMD ADD v6

The SADD16 instruction shown in Figure 5-1 shows how two separate addition operations are 
performed by a single instruction. The top halfwords of registers R3 and R0 are added, with the 
result going into the top halfword of register R1 and the bottom halfwords of registers R3 and 
R0 are added, with the result going into the bottom halfword of register R1. GE[3:2] bits in the 
CPSR are set based on the top halfword result and GE[1:0] based on the bottom halfword result. 
In each case the overflow information is duplicated in the specified pair of bits.

R3 R0

R1

SADD16 R1, R3, R0

GE[1:0]GE[3:2]
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Integer register SIMD multiplies

Like the other SIMD operations, these operate in parallel, on subword quantities within 
registers. The instruction can also include an accumulate option, with and add or subtract to be 
specified. The instructions are SMUAD (SIMD multiply and add with no accumulate), SMUSD 
(SIMD multiply and subtract with no accumulate), SMLAD (multiply and add with accumulate) 
and SMLSD (multiply and subtract with accumulate).

Adding an L (long) before D indicates 64-bit accumulation.

Using the X (eXchange) suffix indicates halfwords in Rm are swapped before calculation.

The Q flag is set if accumulation overflows.

The SMUSD instruction shown in Figure 5-2 performs two signed 16-bit multiplies (top × top and 
bottom × bottom) and then subtracts the two results. This kind of operation is useful when 
performing operations on complex numbers with a real and imaginary component, a common 
task for filter algorithms.

Figure 5-2 v6 SIMD signed dual multiply subtract

Sum of absolute differences

Calculating the sum of absolute differences is a key operation in the motion vector estimation 
component of common video codecs and is carried out over arrays of pixel data. The USADA8 Rd, 
Rn, Rm, Ra instruction is illustrated in Figure 5-3 on page 5-11. It calculates the sum of absolute 
differences of the bytes within a word in registers Rn and Rm, adds in the value stored in Ra and 
places the result in Rd.

Rn Rm

Rd

SMUSD Rd, Rn, Rm

-
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Figure 5-3 Sum of absolute differences

Data packing and unpacking

Packed data is common in many video and audio codecs, (video data is usually expressed as 
packed arrays of 8-bit pixel data, audio data might use packed 16-bit samples), and also in 
network protocols. Before additional instructions were added in the ARMv6 architecture, this 
data had to be either loaded with LDRH and LDRB instructions or loaded as words and then 
unpacked using Shift and Bit Clear operations; both are relatively inefficient. Pack (PKHBT, 
PKHTB) instructions permit 16-bit or 8-bit values to be extracted from any position in a register 
and packed into another register. Unpack instructions (UXTH, UXTB, plus many variants, including 
signed, with addition) can extract 8-bit or 16-bit values from any bit position within a register.

This enables sequences of packed data in memory to be loaded efficiently using word or 
doubleword loads, unpacked into separate register values, operated on and then packed back 
into registers for efficient writing out to memory.

Figure 5-4 Packing and unpacking of 16-bit data in 32-bit registers

In the example shown in Figure 5-4, R0 contains two separate 16-bit values, denoted A and B. 
You can use the UXTH instruction to unpack the two halfwords into registers for future processing 
and then use the PKHBT instruction to pack halfword data from two registers into one. 

Rn Rm

Ra

Rd

Optional accumulation

ABSDIFFABSDIFFABSDIFFABSDIFF

USADA8 Rd, Rn, Rm, Ra

UXTH r1, r0, ROR #16 UXTH r2, r0

PKHBT r0, r2, r1, LSL #16

B R0A

B R200...00AR1 00...00

B R0A
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It would be possible to replace the unpack instruction in each case with a MOV and either LSL or 
LSR instructions, but in this case a single instruction intended to work on parts of registers is 
used.

Byte selection

The SEL instruction enables you to select each byte of the result from the corresponding byte in 
either the first or the second operand, based on the value of the GE[3:0] bits in the CPSR. The 
packed data arithmetic operations set these bits as a result of add or subtract operations, and SEL 
can be used after these to extract parts of the data – for example, to find the smaller of the two 
bytes in each position.
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5.3 Memory instructions
ARM cores perform Arithmetic Logic Unit (ALU) operations only on registers. The only 
supported memory operations are the load (that reads data from memory into registers) or store 
(that writes data from registers to memory). A LDR and STR can be conditionally executed, in the 
same fashion as other instructions.

You can specify the size of the Load or Store transfer by appending a B for Byte, H for 
Halfword, or D for doubleword (64 bits) to the instruction, for example, LDRB. For loads only, an 
extra S can be used to indicate a signed byte or halfword (SB for Signed Byte or SH for Signed 
Halfword). See LDR on page A-18 for examples of this. This approach can be useful, because 
if you load an 8-bit or 16-bit quantity into a 32-bit register you must decide what to do with the 
most significant bits of the register. Unsigned numbers are zero-extended (that is, the most 
significant 16 or 24 bits of the register are set to zero), but for a signed number, it is necessary 
to copy the sign bit (bit [7] for a byte, or bit [15] for a halfword) into the top 16 (or 24) bits of 
the register. 

5.3.1 Addressing modes

There are multiple addressing modes that can be used for loads and stores. The number in 
parentheses refers to Example 5-4:

• Register addressing– the address is in a register (1).

• Pre-indexed addressing – an offset to the base register is added before the memory access. 
The base form of this is LDR Rd, [Rn, Op2]. The offset can be positive or negative and can 
be an immediate value or another register with an optional shift applied.(2),(3).

• Pre-indexed with write-back – this is indicated with an exclamation mark (!) added after 
the instruction. After the memory access has occurred, this updates the base register by 
adding the offset value (4).

• Post-index with write-back – here, the offset value is written after the square bracket. The 
address from the base register only is used for the memory access, with the offset value 
added to the base register after the memory access (5).

Example 5-4 Examples of addressing modes

(1) LDR     R0, [R1] @ address pointed to by R1
(2) LDR     R0, [R1, R2] @ address pointed to by R1 + R2
(3) LDR     R0, [R1, R2, LSL #2] @ address is R1 + (R2*4) 
(4) LDR     R0, [R1, #32]! @ address pointed to by R1 + 32, then R1:=R1 + 32 
(5) LDR R0, [R1], #32 @ read R0 from address pointed to by R1, then R1:=R1 + 32 

5.3.2 Multiple transfers

Load and Store Multiple instructions enable successive words to be read from or written to 
memory. These are extremely useful for stack operations and for memory copying. Only word 
values can be operated on in this way and a word aligned address must be used. 

The operands are a base register (with an optional ! denoting write-back of the base register) 
with a list of registers between braces. The register list is comma separated, with hyphens used 
to indicate ranges. The order in which the registers are loaded or stored has nothing to do with 
the order specified in this list. Instead, the operation proceeds in a fixed fashion, with the lowest 
numbered register always mapped to the lowest address. 
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For example:

LDMIA   R10!, { R0-R3, R12 } 

This instruction reads five registers from the addresses pointed to by register (R10) and because 
write-back is specified, increments R10 by 20 (5 × 4 bytes) at the end.

The instruction must also specify how to proceed from the base register Rd. The four 
possibilities are: IA/IB (Increment After/Before) and DA/DB (Decrement After/Before). These 
might also be specified using aliases (FD, FA, ED and EA) which work from a stack point of 
view and specify whether the stack pointer points to a full or empty top of the stack, and whether 
the stack ascends or descends in memory.

By convention, only the Full Descending (FD) option is used for stacks in ARM processor based 
systems. This means that the stack pointer points to the last filled location in stack memory and 
will decrement with each new item of data pushed to the stack.

For example:

STMFD    sp!, {r0-r5}  ; Push onto a Full Descending Stack
LDMFD    sp!, {r0-r5}  ; Pop from a Full Descending Stack

Figure 5-5 shows a push of two registers to the stack. Before the STMFD (PUSH) instruction is 
executed, the stack pointer points to the last occupied word of the stack. After the instruction is 
completed, the stack pointer has been decremented by 8 (two words) and the contents of the two 
registers have been written to memory, with the lowest numbered register being written to the 
lowest memory address.

Figure 5-5 Stack push operation
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5.4 Branches
The instruction set provides a number of different kinds of branch instruction. For simple 
relative branches (those to an offset from the current address), the B instruction is used. Calls to 
subroutines, where it is necessary for the return address to be stored in the link register, use the 
BL instruction.

If you want to change instruction set (from ARM to Thumb or Thumb to ARM), use BX, or BLX. 

You can also specify the PC as the destination register for the result of normal data processing 
operations such as ADD or SUB, but this is generally deprecated and is unsupported in Thumb. An 
additional type of branch instruction can be implemented using either a load (LDR) with the PC 
as the target, load multiple (LDM), or stack-pop (POP) instruction with PC in the list of registers to 
be loaded.

Thumb has the compare and branch instruction, that fuses a CMP instruction and a conditional 
branch, but does not change the CPSR condition code flags. There are two opcodes, CBZ 
(compare and branch to label if Rn is zero) and CBNZ (compare and branch to label if Rn is not 
zero). These instructions can only branch forward between 4 and 130 bytes. Thumb also has the 
TBB (Table Branch Byte) and TBH (Table Branch Halfword) instructions. These instructions read 
a value from a table of offsets (either byte or halfword size) and perform a forward PC-relative 
branch of twice the value of the byte or the halfword returned from the table. These instructions 
require the base address of the table to be specified in one register, and the index in another.
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5.5 Saturating arithmetic
Saturated arithmetic is commonly used in audio and video codecs. Calculations that return a 
value higher (or lower) than the largest positive (or negative) number that can be represented do 
not overflow. Instead the result is set to the largest positive or negative value (saturated). The 
ARM instruction set includes a number of instructions that enable such algorithms. 

5.5.1 Saturated arithmetic instructions

The ARM saturated arithmetic instructions can operate on byte, word or halfword sized values. 
For example, the 8 in the QADD8 and QSUB8 instructions indicate that they operate on byte sized 
values. The result of the operation will be saturated to the largest possible positive or negative 
number. If the result would have overflowed and has been saturated, the overflow flag (CPSR 
Q bit) is set. This flag is said to be sticky. When set it will remain set until explicitly cleared by 
a write to the CPSR. 

The instruction set provides special instructions with this behavior, QSUB and QADD. Additionally, 
QDSUB and QDADD are provided in support of Q15 or Q31 fixed point arithmetic. These instructions 
double and saturate their second operand before performing the specified add or subtract.

The Count Leading Zeros (CLZ) instruction returns the number of 0 bits before the most 
significant bit that is set. This can be useful for normalization and for certain division 
algorithms. To saturate a value to a specific bit position (effectively saturate to a power of two), 
you can use the USAT or SSAT (unsigned or signed) saturate operations. USAT16 and SSAT16 permit 
saturation of two halfword values packed within a register.
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5.6 Miscellaneous instructions
The remaining instructions cover coprocessor, supervisor call, PSR modification, byte reversal, 
cache preload, bit manipulation and a few others.

5.6.1 Coprocessor instructions

Coprocessor instructions occupy part of the ARM instruction set. Up to 16 coprocessors can be 
implemented, numbered 0 to 15 (CP0, CP1 … CP15). These can either be internal (built-in to 
the processor) or connected externally, through a dedicated interface. Use of external 
coprocessors is uncommon in older processors and is not supported at all in the Cortex-A series.

• Coprocessor 15 is a built-in coprocessor that provides control over many core features, 
including cache and MMU.

• Coprocessor 14 is a built-in coprocessor that controls the hardware debug facilities of the 
core, such as breakpoint units (described in Chapter 24).

• Coprocessors 10 and 11 give access to the floating-point and NEON hardware in the 
system (described in Chapter 6 and Chapter 7).

If a coprocessor instruction is executed, but the appropriate coprocessor is not present in the 
system, an undefined instruction exception occurs.

There are five classes of coprocessor instruction

• CDP – initiate a coprocessor data processing operation.

• MRC – move to ARM register from coprocessor register.

• MCR – move to coprocessor register from ARM register.

• LDC – load coprocessor register from memory.

• STC – store from coprocessor register to memory.

Multiple register and other variants of these instructions are also available:

• MRRC – transfers a value from a Coprocessor to a pair of ARM registers.

• MCCR – transfers a pair of ARM register to a coprocessor.

• LDCL – reads a coprocessor register from multiple registers, 

• STCL – writes a coprocessor register to multiple registers, 

These and other variants are described more fully in Appendix A Instruction Summary.

5.6.2 SVC

The SVC (supervisor call) instruction, when executed, causes a supervisor call exception. This is 
described in Chapter 11 Exception Handling. The instruction includes a 24-bit (ARM) or 8-bit 
(Thumb) number value, that can be examined by the SVC handler code. Through the SVC 
mechanism, an operating system can specify a set of privileged operations that applications 
running in User mode can request. This instruction was originally called SWI (Software 
Interrupt).
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5.6.3 PSR modification

Several instructions enable the PSR to be written to, or read from:

• MRS transfers the CPSR or SPSR value to a general purpose register. MSR transfers a general 
purpose register to the CPSR or SPSR. Either the whole status register, or part of it can be 
updated. In User mode, all bits can be read, but only the condition flags (_f) can be 
modified. 

• In a privileged mode the Change Processor State (CPS) instruction can be used to directly 
modify the mode and interrupt-enable or disable (I and F) bits in the CPSR. See Figure 3-6 
on page 3-8.

• SETEND modifies a single CPSR bit, the E (Endian) bit. This can be used in systems with 
mixed endian data to temporarily switch between little- and big-endian data access.

5.6.4 Bit manipulation

There are instructions that enable bit manipulation of values in registers: 

• The Bit Field Insert (BFI) instruction enables a series of adjacent bits from the bottom of 
one register (specified by supplying a width value and LSB position) to be placed into any 
position in the destination register. 

• The Bit Field Clear (BFC) instruction enables adjacent bits within a register to be cleared. 

• The SBFX and UBFX instructions (Signed and Unsigned Bit Field Extract) copy adjacent bits 
from one register to the least significant bits of a second register, and sign extend or zero 
extend the value to 32 bits. 

• The RBIT instruction reverses the order of all bits within a register.

5.6.5 Cache preload

Cache preloading is described in Chapter 17 Optimizing Code to Run on ARM Processors. Two 
instructions are provided, PLD (data cache preload) and PLI (instruction cache preload). Both 
instructions act as hints to the memory system that an access to the specified address is likely to 
occur soon. Implementations that do not support these operations will treat a preload as a NOP, 
but all of the Cortex-A family processors described in this book are able to preload the cache. 
Any illegal address specified as a parameter to the PLD instruction will not result in a data abort 
exception.

5.6.6 Byte reversal

Instructions to reverse byte order can be useful for dealing with quantities of the opposite 
endianness or other data re-ordering operations. 

• The REV instruction reverses the bytes in a word

• The REV16 reverses the bytes in each halfword of a register 

• The REVSH reverses the bottom two bytes, and sign extends the result to 32 bits. 

Figure 5-6 on page 5-19 illustrates the operation of the REV instruction, showing how four bytes 
within a register have their ordering within a word reversed.
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Figure 5-6 Operation of the REV instruction

5.6.7 Other instructions

A few other instructions are available: 

• The breakpoint instruction (BKPT) will either cause a prefetch abort (see Types of exception 
on page 11-3) or cause the core to enter debug state (depending on the whether the 
processor is configured for monitor or halt mode debug). This instruction is used by 
debuggers. See Debug events on page 24-2.

• Wait For Interrupt (WFI) puts the core into standby mode, that is described in Chapter 20 
Power Management. The core stops execution until woken by an interrupt or debug event. 
If WFI is executed with interrupts disabled, an interrupt will still wake the core, but no 
interrupt exception is taken. The core proceeds to the instruction after the WFI. In older 
ARM processors, WFI was implemented as a CP15 operation. 

• No operation (NOP) does nothing. It is not guaranteed to take time to execute, so the NOP 
instruction must not be used to insert timing delays into code. It is intended to be used as 
padding.

• A Wait for Event (WFE) instruction puts the core into standby mode in a similar way to 
WFI. The core will sleep until woken by an event generated by another core executing a 
REV instruction. An interrupt or a bug event will cause the core to wake up. WFE (Wait for 
Event) is also described in Chapter 20.

• The SEV (Send Event) instruction is used to generate wake-up events that might wake-up 
other cores in the cluster.

Bit[31:24] Bit[23:16] Bit15:8 Bit[7:0]

07 815 1623 2431
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Chapter 6 
Floating-Point

All computer programs deal with numbers. Floating-point numbers, however, can sometimes 
appear counter-intuitive to programmers who are not familiar with their detailed implementation. 
Before looking at floating-point implementation on ARM processors, a short overview of 
floating-point fundamentals is included. Programmers with prior floating-point experience might 
want to skip the following section.
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6.1 Floating-point basics and the IEEE-754 standard
The IEEE-754 standard is the reference for almost all modern computer floating-point 
mathematics implementations, including ARM floating-point systems. The original 
IEEE-754-1985 standard has since been updated with the publication of IEEE-754-2008. The 
standard defines precisely what result will be produced by each of the fundamental 
floating-point operations over all of the possible input values. It describes what a compliant 
implementation should do with respect to rounding of results that cannot be expressed precisely. 
A simple example of such a calculation would be 1.0 ÷ 3.0, that would require an infinite 
number of digits to express precisely in decimal or binary notation.

IEEE-754 provides a number of different rounding options to cope with this (round towards 
positive infinity, round towards negative infinity, round toward zero, and two forms of round to 
nearest, see Rounding algorithms on page 6-4). IEEE-754 also specifies the outcome when an 
exceptional operation occurs. This means a calculation that potentially represents a problem. 
These conditions can be tested, either by querying the FPSCR (on ARM processors) or by 
setting up trap handlers (on some systems). Examples of exceptional operations are as follows:

Overflow A result that is too large to represent. 

Underflow A result that is so small that precision is lost.

Inexact A result that cannot be represented without some loss of precision. It is clear that 
many floating-point calculations will fall into this category.

Invalid For example, attempting to calculate the square root of a negative number.

Division by zero 

The specification also describes what action must be taken when one of these exceptional 
operations is detected. Possible outcomes include the generation of a Not a Number (NaN) result 
for invalid operations, positive or negative infinity, for overflow or division by zero, or 
denormalized numbers in the case of underflow. The standard additionally defines what results 
should be produced if subsequent floating-point calculations operate on NaN or infinities.

One of the things that IEEE-754 defines is how floating-point numbers are represented within 
the hardware. Floating-point numbers are typically represented using either single precision 
(32-bit) or double-precision (64-bit). VFP (see VFP on page 2-6) supports single-precision 
(32-bit) and double-precision (64-bit) formats in hardware. In addition, VFPv3 can have 
half-precision extensions to enable 16-bit values to be used for storage.

Floating-point formats use the available space to store three pieces of information about a 
floating-point number:

• A sign bit (S) that shows whether the number is positive (0) or negative (1).

• An exponent giving its order of magnitude.

• A mantissa giving the fractional binary digits of the number.

For a single precision float, for example, bit [31] of the word is the sign bit [S], bits [30: 23] 
give the exponent and bits [22:0] give the mantissa. See Figure 6-1 on page 6-3.

The value of the number is then ±m × 2exp, where “m” is derived from the mantissa and “exp” 
is derived from the exponent.
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Figure 6-1 Single precision floating-point format

The mantissa is not generated by directly taking the 23-bit binary value, but rather, it is 
interpreted as being to the right of the binary point, with a 1 present to the left. In other words, 
the binary mantissa must be greater than or equal to one and less than two. In the case where the 
number is zero, this is represented by setting all of the exponent and mantissa bits to 0. There 
are other special-case representations, for positive and negative infinity, and for the 
not-a-number (NaN) values. Another special case is that of denormalized values.

The sign bit lets you distinguish positive and negative infinity and NaN representations. 
Similarly, the 8-bit exponent value is used to give a value in the range +128 to –127, so there is 
an implicit offset of -127 in the encoding. Table 6-1 summarizes this.

Let’s consider an example: 

The decimal value +0.5 is represented as a single precision float by the hexadecimal value 
0x3F000000. This has a sign value of 0 (positive). 

The value of the mantissa is 1.0, though the integral part (1) is implicit and is not stored. The 
exponent value is specified in bits [30:23] – that hold 0b01111110, or 126 – offset by 127 to 
represent an exponent of -1.

The value is therefore given by (-1)sign × mantissa × 2exponent = 1 × 1 × 2-1 = 0.5 (decimal) 

Denormal numbers are a special case. If you set the exponent bits to zero, you can represent very 
small numbers other than zero, by setting mantissa bits. Because normal values have an implied 
leading 1, the closest value to zero you can represent as a normal value is ±2-126. 

To get smaller numbers, the 1.m interpretation of the mantissa value is replaced with a 0.m 
interpretation. Now, the number's magnitude is determined only by bit positions. When using 
these extremely-small numbers, the available precision does not scale with the magnitude of the 
value. Without the implied 1 attached to the mantissa, all bits to the left of the lowest set bit are 
leading zeros, so the smallest representable number is 1.401298464e-45, represented by 
0x00000001. 

For performance reasons, such denormal values are often ignored and are flushed to zero. This 
is strictly a violation of IEEE-754, but denormal values are used rarely enough in real programs 
that the performance benefit is worth more than correct handling of these extremely small 
numbers. Cortex processors with VFP enable code to select between flush-to-zero mode and full 
denormal support.

31 22 030 23

MantissaExponentS

Table 6-1 Single precision floating-point representation

Exponent Mantissa Description

–127 0 ±0

–127 !=0 Subnormal values

128 0 ±INFINITY

128 !=0 NaN values

Other Any Normal values +/-1.<mantissa> × 2<exp>
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Because a 32-bit floating-point number has a 23-bit mantissa there are many values of a 32-bit 
int that if converted to 32-bit float cannot be represented exactly. This is referred to as loss of 
precision. If you convert one of these values to float and back to int you will get a different, 
but nearby value. In the case of double-precision floating-point numbers, the exponent field has 
11 bits (giving an exponent range from –1022 to +1023) and a mantissa field with 52 bits.

6.1.1 Rounding algorithms

The IEEE 754-1985 standard defines four different ways in which results can be rounded, as 
follows:

• Round to nearest (ties to even). This mode causes rounding to the nearest value. If a 
number is exactly midway between two possible values, it is rounded to the nearest value 
with a zero least significant bit.

• Round toward 0. This causes numbers to always be rounded towards zero (this can be also 
be viewed as truncation).

• Round toward +∞ .This selects rounding towards positive infinity. 

• Round toward -∞. This selects rounding towards negative infinity. 

The IEEE 754-2008 standard adds an additional rounding mode. In the case of round to nearest, 
it is now also possible to round numbers that are exactly halfway between two values, away 
from zero (in other words, upwards for positive numbers and downwards for negative numbers). 
This is in addition to the option to round to the nearest value with a zero least significant bit. At 
present VFP does not support this rounding mode.

6.1.2 ARM VFP

VFP is an optional but rarely omitted extension to the instruction sets in the ARMv7-A 
architecture. It can be implemented with either thirty-two, or sixteen double-word registers. The 
terms VFPv3-D32 and VFPv3-D16 are used to distinguish between these two options. If the 
Advanced SIMD (NEON) extension is implemented together with VFPv3, VFPv3-D32 is 
always present. VFPv3 can also be optionally extended by the half-precision extensions that 
provide conversion functions in both directions between half-precision floating-point (16-bit) 
and single-precision floating-point (32-bit). These operations only enable half-precision floats 
to be converted to and from other formats.

VFPv4 adds both the half-precision extensions and the Fused Multiply-Add instructions to the 
features of VFPv3. In a Fused Multiply-Add operation, only a single rounding occurs at the end. 
This is one of the new facets of the IEEE 754-2008 specification. Fused operations can improve 
the accuracy of calculations that repeatedly accumulate products, such as matrix multiplication 
or dot product calculation. The VFP version supported by individual Cortex-A series processors 
is given in Table 2-3 on page 2-9.

In addition to the registers described, there are a number of other VFP registers:

Floating-Point System ID Register (FPSID) 
This can be read by system software to determine which floating-point features 
are supported in hardware.

Floating-Point Status and Control register (FPSCR) 
This holds comparison results and flags for exceptions. Control bits select 
rounding options and enable floating-point exception trapping. 
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Floating-Point Exception Register (FPEXC) 
The FPEXC register contains bits that enable system software that handles 
exceptions to determine what has happened. 

Media and VFP Feature registers 0 and 1 (MVFR0 and MVFR1) 
These registers enable system software to determine which Advanced SIMD and 
floating-point features are provided on the processor implementation.

User mode code can only access the FPCSR. One implication of this is that applications cannot 
read the FPSID to determine which features are supported unless the host OS provides this 
information. Linux provides this through /proc/cpuinfo, for example, but the information is not 
nearly as detailed as that provided by the VFP hardware registers.

Unlike ARM integer instructions, no VFP operations will affect the flags in the APSR directly. 
The flags are stored in the FPSCR. Before the result of a floating-point comparison can be used 
by the integer processor, the flags set by a floating-point comparison must be transferred to the 
APSR, using the VMRS instruction. This includes use of the flags for conditional execution, even 
of other VFP instructions. 

Example 6-1 shows a simple piece of code to illustrate this. The VCMP instruction performs a 
comparison the values in VFP registers d0 and d1 and sets FPSCR flags as a result. These flags 
must then be transferred to the integer processor APSR, using the VMRS instruction. You can then 
conditionally execute instructions based on this. 

Example 6-1 Example code illustrating usage of floating-point flags

VCMP d0, d1
VMRS APSR_nzcv, FPSCR
BNE  label

Flag meanings

The integer comparison flags support comparisons that are not applicable to floating-point 
numbers. For example, floating-point values are always signed, so there is no requirement for 
unsigned comparisons. On the other hand, floating-point comparisons can result in the 
unordered result (meaning that one or both operands was NaN, or Not a Number). IEEE-754 
defines four testable relationships between two floating-point values, that map onto the ARM 
condition codes as follows:

Table 6-2 ARM APSR flags

IEEE-754 relationship ARM APSR flags

N Z C V

Equal 0 1 1 0

Less Than (LT) 1 0 0 0

Greater Than (GT) 0 0 1 0

Unordered (At least one argument was NaN) 0 0 1 1
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Compare with zero

Unlike the integer instructions, most VFP (and NEON) instructions can operate only on 
registers, and cannot accept immediate values encoded in the instruction stream. The VCMP 
instruction is a notable exception in that it has a special-case variant that enables quick and easy 
comparison with zero. 

Interpreting the flags

When the flags are in the APSR, they can be used almost as if an integer comparison had set the 
flags. However, floating-point comparisons support different relationships, so the integer 
condition codes do not always make sense. Table 6-3 describes floating-point comparisons 
rather than integer comparisons:

It is clear that the condition code is attached to the instruction reading the flags, and the source 
of the flags makes no difference to the flags that are tested. It is the meaning of the flags that 
differs when you perform a vcmp rather than a cmp. Similarly, it is clear that the opposite 
conditions still hold. For example, HS is still the opposite of LO. 

When set by CMP the flags generally have analogous meanings to the flags set by VCMP. For 
example, GT still means greater than. However, the unordered condition and the removal of the 
signed conditions can confuse matters. Often, for example, it is desirable to use LO, normally 
an unsigned less than check, in place of LT, because it does not match in the unordered case.

Table 6-3 Interpreting the flags

Code Meaning (when set by vcmp) Meaning (when set by cmp) Flags tested

EQ Equal to Equal to Z =1

NE Unordered, or not equal to Not equal to. Z = 0

CS or HS Greater than, equal to, or unordered Greater than or equal to (unsigned). C = 1

CC or LO Less than. Less than (unsigned). C = 0

MI Less than Negative. N = 1

PL Greater than, equal to, or unordered Positive or zero. N = 0

VS Unordered. (At least one argument was NaN.) Signed overflow. V = 1

VC Not unordered. (No argument was NaN.) No signed overflow. V = 0

HI Greater than or unordered Greater than (unsigned). (C = 1) && (Z = 0)

LS Less than or equal to Less than or equal to (unsigned). (C = 0) || (Z = 1)

GE Greater than or equal to. Greater than or equal to (signed). N==V

LT Less than or unordered. Less than (signed). N!=V

GT Greater than. Greater than (signed). (Z==0) && (N==V)

LE Less than, equal to or unordered. Less than or equal to (signed). (Z==1) || (N!=V)

AL (or omitted) Always executed. Always executed. None tested.
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6.1.3 Enabling VFP

If an ARMv7-A core includes VFP hardware, it must be explicitly enabled before applications 
can make use of it. Several steps are required to do this:

• The EN bit in the FPEXC register must be set.

• If access to VFP is required in the Normal world, access to CP10 and CP11 must be 
enabled in the Non-Secure Access Control Register (CP15.NSACR). This would normally 
be done inside the Secure bootloader.

• Access to CP10 and CP11 must be enabled in the Coprocessor Access Control Register 
(CP15.CACR). This can be done on demand by the operating system.
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6.2 VFP support in GCC
Use of VFP is fully supported by GCC, although some builds can be configured to default to 
assume no VFP support, in which case floating-point calculations will use library code.

The main option to use for VFP support is:

• -mfpu=vfp specifies that the target has VFP hardware. As does specifying the option 
-mfpu=neon.

Other options can be used to specify support for a specific VFP implementation on an ARM 
Cortex-A series processor:

• -mfpu=vfpv3 or -mfpu=vfpv3-d16 (for Cortex-A8 and Cortex-A9 processors).

• -mfpu=vfpv4 or -mfpu=vfpv4-d16 (for Cortex-A5 and Cortex-A15 processors).

These options can be used for code that will run only on these VFP implementations, and do not 
require backward compatibility with older VFP implementations.

• -mfloat-abi=softfp (or hard) specify which ABI to use to enable the use of VFP.

softfp uses a Procedure Call Standard compatible with software floating-point, and so provides 
binary compatibility with legacy code. This permits running older soft float code with new 
libraries that support hardware floating-point, but still makes use of hardware floating-point 
registers between function calls. hard has floating-point values passed in floating-point 
registers. This is more efficient but is not backward compatible with the softfp ABI variant. 
Particular care is required with libraries, including the C platform library. See VFP and NEON 
register use on page 15-4 for more information on efficient parameter passing.

C programmers must note that there can be a significant function call overhead when using 
-mfloat-abi=softfp, if many floating-point values are being passed.
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6.3 VFP support in the ARM Compiler
Use of VFP is fully supported by the ARM Compiler (although some builds can be configured 
by default to assume no VFP support, in which case floating-point calculations will use library 
code). 

The main option to use with the ARM Compiler for VFP support is:

• --fpu=name that lets you specify the target floating-point hardware.

The options used to specify support for a specific VFP implementation on an ARM Cortex-A 
series processor are:

• --fpu=vfpv3 or --fpu=vfpv3_d16 (for the Cortex-A8 and Cortex-A9 processors).

• --fpu=vfpv4 or --fpu=vfpv4_d16 (for all other Cortex-A series processors).

These options can be used for code that will run only on these VFP implementations, and do not 
require backward compatibility with older VFP implementations. Use --fpu=list to see the full 
list of FPUs supported.

The following options can be used for linkage support:

• --apcs=/hardfp generates code for hardware floating-point linkage.

• --apcs=/softfp generates code for software floating-point linkage.

Hardware floating-point linkage uses the FPU registers to pass the arguments and return values. 
Software floating-point linkage means that the parameters and return value for a function are 
passed using the ARM integer registers R0 to R3 and the stack. --apcs=/hardfp and 
--apcs=/softfp interact with or override explicit or implicit use of --fpu.
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6.4 VFP support in Linux
An application that uses VFP (or calls into a library that uses VFP) places some additional 
requirements on the Linux kernel. For the application to run correctly, the kernel must save and 
restore the VFP registers during context switches. The kernel might also have to decode and 
emulate VFP instructions where the VFP hardware is not present.

6.4.1 Context switching 

In addition to saving and restoring integer registers, the kernel might also have to perform 
saving and restoring of VFP registers on a context switch. To avoid wasting cycles, this is done 
only when an application actually used VFP. Because the VFP initialization code leaves VFP 
disabled, the first time a thread actually tries to access the floating-point hardware, an undefined 
exception occurs. The kernel function that handles this, sees that VFP is disabled and that a new 
thread wants to use VFP. It saves the current VFP state and restores the state for the new thread. 

On clusters, where threads can migrate to a different core, this simple system will no longer 
work correctly. Instead, the kernel saves the state if the VFP was used by the previous thread.
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6.5 Floating-point optimization
This section contains some suggestions for developers writing FP assembly code. Some caution 
is required when applying these points, as recommendations can be specific to a particular piece 
of hardware. A code sequence that is optimal for one core can be sub-optimal on different 
hardware. 

• Avoid mixing of VFP and NEON instructions on the Cortex-A9 processor, as there is a 
significant overhead in switching between data engines. 

• Moves to and from VFP system control registers, such as FPSCR are not typically present 
in high-performance code, and might not be optimized. These must not be placed in 
time-critical loops, if possible. For example, accesses to control registers on the 
Cortex-A9 processor are serializing, and will have a significant performance impact if 
used in tight loops or performance-critical code.

• Register transfer between the integer processor register bank and the floating-point 
register bank must similarly be avoided in time-critical loops. For the Cortex-A8 
processor, this is particularly true of register transfers from VFP registers to integer 
registers.

• Load/store multiple operations are preferred to the use of multiple, individual 
floating-point loads and stores, to make efficient use of available transfer bandwidth.
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Chapter 7 
Introducing NEON

NEON technology provides Single Instruction Multiple Data (SIMD) operations in ARM 
processors implementing the Advanced SIMD architecture extensions and can be used to accelerate 
the performance of multimedia applications running on ARM Cortex-A series processors. These 
operations can significantly accelerate repetitive operations on large data sets. This can be useful 
in applications such as media codecs.

NEON is implemented as a separate hardware unit that is available as an option on Cortex-A series 
processors. Making the NEON hardware optional enables ARM SoCs to be optimized for specific 
markets. In most general-purpose applications processor SoCs, NEON will probably be included. 
However, for an embedded application such as a network router, NEON can be omitted, enabling 
a small saving in silicon area that translates to a small cost saving.
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7.1 SIMD
SIMD is a computational technique for processing a number of data values (generally a power 
of two) using a single instruction, with the data for the operands packed into special wide 
registers. One instruction can therefore do the work of many separate instructions. This type of 
parallel processing instruction is commonly called SIMD (single instruction, multiple data), one 
of four classifications of computer architectures defined by Michael J. Flynn in 1966 based on 
the number of instruction and data streams available in the architecture.

Single Instruction Multiple Data (SIMD) 
A technique for processing multiple data values using a single instruction, with 
the data for the operands packed into wide registers. One instruction can therefore 
do the work of many. SIMD instructions are very powerful for computations on 
media data.

Single Instruction, Single Data (SISD) 
A single core executes a single instruction stream, to operate on data stored in a 
single memory one operation at a time. There is often a central controller that 
broadcasts the instruction stream to all the processing elements. Almost all ARM 
processors prior to the ARMv6 architecture use SISD processing.

Multiple Instruction, Single Data (MISD) 
A type of parallel computing architecture where many functional units perform 
different operations on the same data. Fault-tolerant computers executing the 
same instructions in order to detect and mask errors might be considered to 
belong to this type. One example of this was the Space Shuttle flight control 
computers

Multiple Instruction, Multiple Data (MIMD) 
Multiple computer instructions, that might be the same, and that might be 
synchronized with each other, perform actions simultaneously on two or more 
pieces of data. A multi-core superscalar processor is an MIMD processor.

For code that can be parallelized, large performance improvements can be achieved. SIMD 
extensions exist on many 32-bit architectures – PowerPC has AltiVec, while x86 has several 
variants of MMX/SSE. SIMD is described in Integer SIMD instructions on page 5-8.

Many software programs operate on large datasets. The data items can be less than 32 bits in 
size. 8-bit pixel data is common in video, graphics and image processing, 16-bit samples in 
audio codecs. In such cases, the operations to be performed are simple, repeated many times and 
have little requirement for control code. SIMD can offer considerable performance 
improvements for this type of data processing. It is particularly beneficial for digital signal 
processing or multimedia algorithms, such as:

• Block-based data processing.

• Audio, video, and image processing codecs.

• 2D graphics based on rectangular blocks of pixels

• 3D graphics

• Color-space conversion.

• Physics simulations.
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On a 32-bit core such as the Cortex-A series processors, it is relatively inefficient to perform 
large numbers of 8-bit or 16-bit single operations one at a time. The processor ALU, registers 
and datapath are designed for the 32-bit calculations. SIMD enables a single instruction to treat 
a register value as multiple data elements (for example, as four 8-bit values in a 32-bit register) 
and to perform multiple identical operations on those elements. 

Figure 7-1 Comparing SIMD parallel add with 32-bit scalar add

To achieve four separate additions without using SIMD requires you to use four ADD instructions, 
as shown in Figure 7-1, and additional instructions to prevent one result from overflowing into 
the adjacent byte. SIMD requires only one instruction to do this.

Figure 7-2 4-way 8-bit add operation

Figure 7-2 shows the operation of the SIMD UADD8 R0, R1, R2 instruction. This operation 
performs a parallel addition of four pairs of 8-bit elements (called lanes) packed into vectors 
stored in general purpose registers R1 and R2, and places the result into a vector in register R0. 
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It is important to note that the addition operations are truly independent. Any overflow or carry 
from bit [7] of lane 0 does not affect bit [0] of lane 1 (bit [8] of the whole register), which is a 
separate calculation.

ARM NEON technology is designed to build on the concept of SIMD. NEON is a combined 
64-bit and 128-bit SIMD instruction set that provides 128-bit wide vector operations, compared 
to the 32-bit SIMD in the ARMv6 architecture. NEON technology introduced in the ARMv7 
architecture is at present only available with ARM Cortex-A and Cortex-R series processors. It 
is a SIMD technology targeted at advanced media and signal processing applications and 
embedded processors, and can accelerate multimedia and signal processing algorithms such as 
video encode/decode, 2D/3D graphics, gaming, audio and speech processing, image processing, 
telephony, and sound synthesis by at least twice the performance of ARMv6 SIMD. 

NEON is included by default in the Cortex-A7, Cortex-A12, and Cortex-A15 processors, but is 
optional in all other ARMv7 Cortex-A series processors. NEON can execute MP3 audio 
decoding on processors running at 10 MHz. It features a comprehensive instruction set, a 
separate register file and independent execution hardware. NEON supports 8-, 16-, 32- and 
64-bit integer and single-precision (32-bit) floating-point data and SIMD operations for 
handling audio and video processing as well as graphics and gaming processing. NEON 
supports up to 16 operations at the same time. The NEON hardware shares the same registers 
as used in VFP. It is implemented as part of the ARM processor, but has its own execution 
pipelines and a register bank that is distinct from the ARM core register bank. NEON data is 
organized into very long registers (64 or 128 bits wide). These registers can hold data items that 
are 8, 16, 32 or 64 bits long. 
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7.2 NEON architecture overview
NEON was designed as an additional load/store architecture to provide good vectorizing 
compiler support from languages such as C/C++. A rich set of NEON instructions operate on 
wide 64-bit and 128-bit vector registers, enabling a high level of parallelism. The NEON 
instructions are straightforward and easy to understand, that also makes hand-coding easy for 
applications that require the very highest performance.

A key advantage of NEON technology is that instructions form part of the normal ARM or 
Thumb code, making programming simpler than with an external hardware accelerator. There 
are NEON instructions available to read and write external memory, move data between NEON 
registers and other ARM registers and to perform SIMD operations.

The NEON architecture uses a 32 × 64-bit register file. These are actually the same registers 
used by the floating-point unit (VFPv3). It does not matter that the floating-point registers are 
re-used as NEON registers. All compiled code and subroutines will conform to the EABI, that 
specifies which registers can be corrupted and which registers must be preserved. The compiler 
is free to use any NEON or VFPv3 registers for floating-point values or NEON data at any point 
in the code.

The NEON architecture permits 64-bit or 128-bit parallelism. This choice was made to keep the 
size of the NEON unit manageable (a vector ALU can easily become quite large), while still 
offering good performance benefits from vectorization. The NEON architecture also does not 
specify instruction timings and might require different numbers of cycles to execute the same 
instruction on different processors.

7.2.1 Commonality with VFP

The ARM architecture can support a wide range of different NEON and VFP options, but in 
practice you see only the combinations:

• No NEON or VFP.

• VFP only.

• NEON and VFP.

These are vendor implementation options for the architecture, and so are fixed for a particular 
implementation of an ARM-based design. 

The key differences between NEON and VFP are that NEON only works on vectors, does not 
support double-precision floating-point (double-precision is supported by the VFP), and does 
not support certain complex operations such as square root and divide. NEON has a register 
bank of thirty-two 64-bit registers. If both NEON and VFPv3 are implemented, this register 
bank is shared between them in hardware. This means that VFPv3 must be present in its 
VFPv3-D32 form, that has 32 double-precision floating-point registers. This makes support for 
context switching simpler. Code that saves and restores VFP context also saves and restores 
NEON context.

7.2.2 Data types

NEON instructions operate on elements of the following types:

• 32-bit single precision floating-point

• 8, 16, 32 and 64-bit unsigned and signed integers

• 8 and 16-bit polynomials.
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Data type specifiers in NEON instructions comprise a letter indicating the type of data and a 
number indicating the width. They are separated from the instruction mnemonic by a point, for 
example, VMLAL.S8. So you have the following possibilities:

• Unsigned integer U8 U16 U32 U64.

• Signed integer S8 S16 S32 S64.

• Integer of unspecified type I8 I16 I32 I64.

• Floating-point number F16 F32.

• Polynomial over {0,1} P8.

Note
 F16 is not supported for data processing operations. It is only supported as a format to be 
converted to, or from.

Polynomial arithmetic is useful when implementing certain cryptography or data integrity 
algorithms.

Adding two polynomials over {0,1} is the same as a bitwise exclusive OR. Polynomial 
additional results in different values to a conventional addition.

Multiplying two polynomials over {0,1} involves first determining the partial products as done 
in conventional multiply, then the partial products are exclusive ORed instead of being added 
conventionally. Polynomial multiplication results in different values to conventional 
multiplication because it requires polynomial addition of the partial products.

NEON technology is IEEE 754-1985 compliant, but only supports round-to-nearest rounding 
mode. This is the rounding mode used by most high-level languages, such as C and Java. 
Additionally, NEON instructions always treats denormals as zero.

7.2.3 NEON registers

The register bank can be viewed as either sixteen 128-bit registers (Q0-Q15) or as thirty-two 
64-bit registers (D0-D31). Each of the Q0-Q15 registers maps to a pair of D registers, as shown 
in Figure 7-3. 

Figure 7-3 NEON register bank

The view of registers in Figure 7-4 on page 7-7 is determined by form of the instruction used. 
so that the software does not have to explicitly change state. 
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Figure 7-4 NEON registers

Individual elements can also be accessed as scalars.The advantage of the dual view is that it 
accommodates mathematical operations that widen or narrow the result. For example 
multiplying two D registers gives a Q register result. The dual-view enables the register bank to 
be used more efficiently.

NEON data processing instructions are typically available in Normal, Long, Wide, Narrow and 
Saturating variants.

• Normal instructions can operate on any vector types, and produce result vectors the same 
size, and usually the same type, as the operand vectors. 

• Long instructions operate on doubleword vector operands and produce a quadword vector 
result. The result elements are usually twice the width of the operands, and of the same 
type. Long instructions are specified using an L appended to the instruction. Figure 7-5 
shows this, with input operands being promoted before the operation.

Figure 7-5 NEON long instructions

• Wide instructions operate on a doubleword vector operand and a quadword vector 
operand, producing a quadword vector result. The result elements and the first operand 
are twice the width of the second operand elements. Wide instructions have a W appended 
to the instruction. Figure 7-6 on page 7-8 shows this, with the input doubleword operands 
being promoted before the operation.
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Figure 7-6 NEON wide instructions

• Narrow instructions operate on quadword vector operands, and produce a doubleword 
vector result. The result elements are usually half the width of the operand elements. 
Narrow instructions are specified using an N appended to the instruction. Figure 7-7 
shows this, with input operands being demoted before the operation.

Figure 7-7  NEON narrow instructions

Some NEON instructions act on scalars together with vectors. The scalars can be 8-, 16-, 32-, 
or 64-bit. Instructions that use scalars can access any element in the register bank, although there 
are differences for multiply instructions. The instruction uses an index into a doubleword vector 
to specify the scalar value. Multiply instructions only support 16-bit or 32-bit scalars, and can 
only access the first 32 scalars in the register bank (that is, D0-D7 for 16-bit scalars or D0-D15 
for 32-bit scalars).

7.2.4 NEON instruction set

All mnemonics for NEON instructions (as with VFP) begin with the letter “V”. Instructions are 
generally able to operate on different data types, with this being specified in the instruction 
encoding. The size is indicated with a suffix to the instruction. The number of elements is 
indicated by the specified register size. 

For example, looking at the instruction
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VADD.I8 D0, D1, D2

where:

• VADD indicates a NEON ADD operation.

• The I8 suffix indicates that 8-bit integers are to be added

• D0, D1 and D2 specify the 64-bit registers used (D0 for the result destination, D1 and D2 for 
the operands).

So this instruction performs eight additions in parallel.

There are operations that have different size registers for input and output.

VMULL.S16 Q2, D8, D9

This instruction performs four 16-bit multiplies of data packed in D8 and D9 and produces four 
32-bit results packed into Q2.

The VCVT instruction converts elements between single-precision floating-point and 32-bit 
integer, fixed-point, and (if implemented) half-precision floating-point.

NEON includes load and store instructions that can load or store individual or multiple values 
to a register. In addition, there are instructions that can transfer blocks of data between multiple 
registers and memory. It is also possible to interleave or de-interleave data during such multiple 
transfers.

The following modifiers can be used with certain Advanced SIMD instructions (some modifiers 
can be used only with a small subset of the available instructions):

Q The instruction uses saturating arithmetic, so that the result is saturated within the 
range of the specified data type. The sticky QC bit in the FPSCR is set if 
saturation occurs in any lane. VQADD is an example of such an instruction.

H The instruction will halve the result. It does this by shifting right by one place 
(effectively a divide by two with truncation). VHADD is an example of such an 
instruction – it could be used to calculate the mean of two inputs.

D The instruction doubles the result and saturates. This is commonly required when 
multiplying numbers in Q15 format, where an additional doubling is required to 
get the result into the correct form.

R The instruction will perform rounding on the result, equivalent to adding 0.5 to 
the result before truncating. VRHADD is an example of this. 

Instructions have the following general format:

V{<mod>}<op>{<shape>}{<cond>}{.<dt>}{<dest>}, src1, src2

where:

<mod> is one of the previously described Modifiers (Q, H, D, R)

<op> - operation (for example, ADD, SUB, MUL)

<shape> - Shape (L, W or N, as described in NEON registers on page 7-6)

<cond> - Condition, used with IT instruction

<.dt>  - Data type 

<dest> - Destination
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<src1> - Source operand 1

<src2> - Source operand 2.

The NEON instruction set includes a range of vector addition and subtraction operations, 
including pairwise adding, that adds adjacent vector elements together. 

There are a number of multiply operations, including multiply-accumulate and 
multiply-subtract and doubling and saturating options. There is no SIMD division operation, but 
such an operation can be performed using the VRECPE (Vector Reciprocal Estimate) and VCREPS 
(Vector Reciprocal Step) instructions to perform Newton-Raphson iteration. 

Similarly, there is no vector square root instruction, but VRSQRTE, VRSQRTS, and multiplies can be 
used to compute square roots. Shift left, right and insert operations are also available, along with 
instructions that select minimum or maximum values. Common logic operations (AND, OR, EOR, 
AND NOT and OR NOT) can be performed. The instruction set also includes the ability to count 
numbers of bits set in an element or to count leading zeros or sign bits.

There are a number of different instructions to move data between registers, or between 
elements. It is also possible for instructions to swap or duplicate registers, to perform reversal, 
matrix transposition and extract individual vector elements.
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7.3 NEON C Compiler and assembler
Code targeted at NEON hardware can be written in C or in assembly language and a range of 
tools and libraries is available to support this.

In many cases, it might be preferable to use NEON code within a larger C/C++ function, rather 
than in a separate file to be processed by the assembler. This can be done using NEON intrinsics.

7.3.1 Vectorization

A vectorizing compiler can take your C or C++ source code and parallelize it in a way that 
enables efficient usage of NEON hardware. This means you can write portable C code, while 
still obtaining the levels of performance made possible by NEON. The C language does not 
specify parallelizing behavior, so it can be necessary to provide hints to the compiler about this. 
For example, it might be necessary to use the __restrict keyword when defining pointers. This 
has the effect of guaranteeing that pointers will not address overlapping regions of memory. It 
can also be helpful to ensure that the number of loop iterations is a multiple of four or eight. 
Automatic vectorization is specified with the GCC option -ftree-vectorize (along with 
–mfpu=neon). Using the ARM Compiler, you must specify optimization level –O2 (or –O3), -Otime 
and –-vectorize.

7.3.2 Detecting NEON

As NEON hardware can be omitted from a processor implementation, it might be necessary to 
test for its presence. 

Build-time NEON selection

This is the easiest way to select NEON. In armcc (RVCT 4.0 and later), or GCC, the predefined 
macro __ARM_NEON__ is defined when a suitable set of processor and FPU options is provided to 
the compiler. The armasm equivalent predefined macro is TARGET_FEATURE_NEON.

This could be used to have a C source file that has both NEON and non-NEON optimized 
versions.

Run-time NEON detection

To detect NEON at run-time requires help from the operating system, since the ARM 
architecture intentionally does not expose processor capabilities to user-mode applications.

Under Linux, /proc/cpuinfo contains this information in human-readable form.

On Tegra2 (a dual-core Cortex-A9 processor with FPU), cat /proc/cpuinfo reports:

…
Features    : swp half thumb fastmult vfp edsp thumbee vfpv3 vfpv3d16
…

The ARM quad-core Cortex-A9 processor with NEON gives a slightly different result:

…
Features        : swp half thumb fastmult vfp edsp thumbee neon vfpv3
…

As the /proc/cpuinfo output is text based, it is often preferred to look at the auxiliary vector 
/proc/self/auxv. This contains the kernel hwcap in a binary format. The /proc/self/auxv file can 
be easily searched for the AT_HWCAP record, to check for the HWCAP_NEON bit (4096).
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Some Linux distributions, for example, Ubuntu 09.10 or later, take advantage of NEON 
transparently. The ld.so linker script is modified to read the hwcap using glibc, and add an 
additional search path for NEON-enabled shared libraries. In the case of Ubuntu, a new search 
path /lib/neon/vfp contains NEON-optimized versions of libraries from /lib. 
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Chapter 8 
Caches

The word cache derives from the French verb cacher, “to hide”.The application of this word to a 
processor is obvious – a cache is where the processor stores instructions and data, hidden from the 
programmer and system. In many cases, it would be true to say that the cache is transparent to, or 
hidden from you. But very often, as we shall see, it is important to understand the operation of the 
cache in detail.

When the ARM architecture was first developed, the clock speed of the processor and the access 
speeds of memory were broadly similar. Processor cores today are much more complicated and can 
be clocked orders of magnitude faster. However, the frequency of the external buses and of memory 
devices has not scaled to the same extent. It is possible to implement small blocks of on-chip 
SRAM that can operate at the same speeds as the core, but such RAM is very expensive in 
comparison to standard DRAM blocks, that can have thousands of times more capacity. In many 
ARM processor-based systems, access to external memory will take tens or even hundreds of core 
cycles.
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Figure 8-1 A basic cache arrangement

Essentially, a cache is a small, fast block of memory that (conceptually at least) sits between the 
core and main memory. It holds copies of items in main memory. Accesses to the cache memory 
happen significantly faster than those to main memory. Because the cache holds only a subset 
of the contents of main memory, it must store both the address of the item in main memory and 
the associated data. Whenever the core wants to read or write a particular address, it will first 
look for it in the cache. If it finds the address in the cache, it will use the data in the cache, rather 
than having to perform an access to main memory. This significantly increases the potential 
performance of the system, by reducing the effect of slow external memory access times. It also 
reduces the power consumption of the system, by avoiding the need to drive external signals.

Cache sizes are small relative to the overall memory used in the system. Larger caches make for 
more expensive chips. In addition, making an internal core cache larger can potentially limit the 
maximum speed of the core. Efficient use of this limited resource is a key part of writing 
efficient applications to run on a core. 

On-chip SRAM can be used to implement caches, that hold temporary copies of instructions and 
data from main memory. Code and data have the properties of temporal and spatial locality. This 
means that programs tend to re-use the same addresses over time (temporal locality) and tend to 
use addresses that are near to each other (spatial locality). Code, for instance, can contain loops, 
meaning that the same code gets executed repeatedly or a function can be called multiple times. 
Data accesses (for example, to the stack) can be limited to small regions of memory. It is this 
fact that access to RAM by the core exhibits such locality, and is not truly random, that enables 
caches to be successful.

The write buffer is a block that decouples writes being done by the core when executing store 
instructions from the external memory bus. The core places the address, control and data values 
associated with the store into a set of hardware buffers. Like the cache, it sits between the core 
and main memory. This enables the core to move on and execute the next instructions without 
having to stop and wait for the slow main memory to actually complete the write operation.
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8.1 Why do caches help?
Caches speed things up, as we have seen, because program execution is not random. Programs 
tend to access the same sets of data repeatedly and execute the same sets of instructions 
repeatedly. By moving code or data into faster memory when it is first accessed, subsequent 
accesses to that code or data become much faster. The initial access that provided the data to the 
cache is no faster than normal. It is any subsequent accesses to the cached values that are faster, 
and it is from this that the performance increase derives. The core hardware will check all 
instruction fetches and data reads or writes in the cache, although obviously you must mark 
some parts of memory (those containing peripheral devices, for example) as non-cacheable. 
Because the cache holds only a subset of main memory, you require a way to determine 
(quickly) whether the address you are looking for is in the cache.
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8.2 Cache drawbacks
It might appear that caches and write buffers are automatically a benefit, as they speed up 
program execution. However, they also add some problems that are not present in an uncached 
core. One such drawback is that program execution time can become non-deterministic.

What this means is that, because the cache is small and holds only a subset of main memory, it 
fills rapidly as a program executes. When the cache is full, existing code or data must be 
removed to make room for new items. So, at any given time, it is not normally possible for an 
application to be certain whether or not a particular instruction or data item is to be found in the 
cache.

This means that the execution time of a particular piece of code can vary significantly. This can 
be something of a problem in hard real-time systems where strongly deterministic behavior is 
required. 

Furthermore, you require a way to control how different parts of memory are accessed by the 
cache and write buffer. In some cases, you want the core to read up-to-date data from an external 
device, such as a peripheral. It would not be sensible to use a cached value of a timer peripheral, 
for example. Sometimes you want the core to stop and wait for a store to complete. So caches 
and write buffers give you some extra work to do.

Occasionally the contents of cache and external memory might not be the same, this is because 
the processor can update the cache contents, which have not yet been written back to main 
memory. Alternatively, an agent might update main memory after a core has taken its own copy. 
This is a problem of coherency. This can be a particular problem when you have multiple cores 
or memory agents like an external DMA controller. Coherency issues are described later in the 
book.
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8.3 Memory hierarchy
In computer science, a memory hierarchy refers to a hierarchy of memory types, with faster and 
smaller memories closer to the core and slower and larger memory farther away. In most 
systems, you can have secondary storage, such as disk drives and primary storage such as Flash, 
SRAM and DRAM. In embedded systems, you typically sub-divide this into on-chip and 
off-chip memory. Memory that is on the same chip (or at least in the same package) as the core 
will typically be much faster.

A cache can be included at any level in the hierarchy and can improve system performance 
where there is an access time difference between different parts of the memory system.

In ARM processor-based systems, level 1 (L1) caches are typically connected directly to the 
core logic that fetches instructions and handles load and store instructions. These are Harvard 
caches, that is, there are separate caches for instructions and for data that effectively appear as 
part of the core.

Figure 8-2 Typical Harvard cache

Over the years, the size of L1 caches has increased, because of SRAM size and speed 
improvements. At the time of writing, 16KB or 32KB cache sizes are most common, as these 
are the largest RAM sizes capable of providing single cycle access at a core speed of 1GHz or 
more.

Many ARM systems have, in addition, a level 2 (L2) cache. This is larger than the L1 cache 
(typically 256KB, 512KB or 1MB), but slower and unified (holding both instructions and data). 
It can be inside the core itself, or be implemented as an external block, placed between the core 
and the rest of the memory system. The ARM L2C-310 is an example of such an external L2 
cache controller block.

In addition, cores can be implemented in clusters in which each core has its own level 1 cache. 
Such systems require mechanisms to maintain coherency between caches, so that when one core 
changes a memory location, that change is made visible to other cores that share that memory. 
This is described in more detail when we look at multi-core processors. 
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8.4 Cache architecture
In a von Neumann architecture, a single cache is used for instruction and data (a unified cache). 
A modified Harvard architecture has separate instruction and data buses and therefore there are 
two caches, an instruction cache (I-cache) and a data cache (D-cache). In many ARM systems, 
you can have distinct instruction and data level 1 caches backed by a unified level 2 cache.

The cache requires to hold an address, some data and some status information. The top bits of 
the 32-bit address tells the cache where the information came from in main memory and is 
known as the tag. The total cache size is a measure of the amount of data it can hold; the RAMs 
used to hold tag values are not included in the calculation. The tag does, however, take up 
physical space in the cache. 

It would be inefficient to hold one word of data for each tag address, so several locations are 
typically grouped together under the same tag. This logical block is commonly known as a cache 
line. The middle bits of the address, or index, identify the line. The index is used as address for 
the cache RAMs and does not require storage as a part of the tag. This will be covered in more 
detail later in this chapter. A cache line is said to be valid when it contains cached data or 
instructions, and invalid when it does not.

This means that the bottom few bits of the address (the offset) are not required to be stored in 
the tag – you require the address of a whole line, not of each byte within the line, so the five or 
six least significant bits will always be 0.

Associated with each line of data are one or more status bits. Typically, you will have a valid 
bit, that marks the line as containing data that can be used. (This means that the address tag 
represents some real value.) In a data cache you might also have one or more dirty bits that mark 
whether the cache line (or part of it) holds data that is not the same as (newer than) the contents 
of main memory.

8.4.1 Cache terminology

A brief summary of some of the terms used might be helpful:

Figure 8-3 Cache terminology

• A line refers to the smallest loadable unit of a cache, a block of contiguous words from 
main memory.

• The index is the part of a memory address that determines in which line(s) of the cache 
the address can be found.

Tag Index Offset
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• A way is a subdivision of a cache, each way being of equal size and indexed in the same 
fashion. The line associated with a particular index value from each cache way grouped 
together forms a set.

• The tag is the part of a memory address stored within the cache that identifies the main 
memory address associated with a line of data.

8.4.2 Direct mapped caches

There are different ways of implementing caches, the simplest of which is a direct mapped 
cache.

In a direct mapped cache, each location in main memory maps to a single location in the cache. 
However, as main memory is many times larger than the cache, many addresses will map to the 
same cache location. Figure 8-4 shows a small cache, with four words per line and four lines.

Figure 8-4 Direct mapped cache operation

This means that the cache controller will use two bits of the address (bits [3:2]) as the offset to 
select a word within the line and two bits of the address (bits [5:4]) as the index to select one of 
the four available lines. The remaining bits of the address (bits [31:6]) will be stored as a tag 
value.

Figure 8-5 Cache address

To look up a particular address in the cache, the hardware extracts the index bits from the 
address and reads the tag value associated with that line in the cache. If the two are the same and 
the valid bit indicates that the line contains valid data, it has a hit. It can then extract the data 
value from the relevant word of the cache line, using the offset and byte portion of the address. 
If the line contains valid data, but does not generate a hit (that is, the tag shows that the cache 
holds a different address in main memory) then the cache line is removed and is replaced by data 
from the requested address. 
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It should be clear that all main memory addresses with the same value of bits [5:4] will map to 
the same line in the cache. Only one of those lines can be in the cache at any given time. This 
means a problem called thrashing can easily occur. Consider a loop that repeatedly accesses 
address 0x00, 0x40 and 0x80, as in the following code:

 void add_array(int *data1, int *data2, int *result, int size) 
 {  

int i;

for (i=0 ; i<size ; i++) {
result[i] = data1[i] + data2[i];

}
}

In this code example, if result, data1, and data2 are pointers to 0x00, 0x40 and 0x80 respectively 
then this loop will cause repeated accesses to memory locations that all map to the same line in 
the basic cache, as shown in.Figure 8-4 on page 8-7. 

• When you first read address 0x40, it will not be in the cache and so a linefill takes place 
putting the data from 0x40 to 0x4F into the cache. 

• When you then read address 0x80, it will not be in the cache and so a linefill takes place 
putting the data from 0x80 to 0x8F into the cache – and in the process you lose the data 
from address 0x40 to 0x4F from the cache. 

• The result is written to 0x00. Depending on the allocation policy this can cause another 
line fill. The data from 0x80 to 0x8F might be lost.

• The same thing will happen on each iteration of the loop and our software will perform 
poorly. Direct mapped caches are therefore not typically used in the main caches of ARM 
cores, but you do see them in some places – for example in the branch target address cache 
of the ARM1136 processor.

Cores can have hardware optimizations for situations where the whole cache line is being 
written to. This is a condition that can take a significant proportion of total cycle time in some 
systems. For example, this can happen when memcpy()- or memset()-like functions that perform 
block copies or zero initialization of large blocks are executed. In such cases, there is no benefit 
in first reading the data values that will be over-written. This can lead to situations where the 
performance characteristics of the cache are different to what might normally be expected.

Cache allocate policies act as a hint to the core, they do not guarantee that a piece of memory 
will be read into the cache, and as a result, you should not rely on them.

8.4.3 Set associative caches

The main caches of ARM cores are always implemented using a set associative cache. This 
significantly reduces the likelihood of the cache thrashing seen with direct mapped caches, 
improving program execution speed and giving more deterministic execution. It comes at the 
cost of increased hardware complexity and a slight increase in power (because multiple tags are 
compared on each cycle).

With this kind of cache organization, the cache is divided into a number of equally-sized pieces, 
called ways. A memory location can then map to a way rather than a line. The index field of the 
address continues to be used to select a particular line, but now it points to an individual line in 
each way. Commonly, there are 2- or 4-ways, but some ARM implementations have used higher 
numbers. 

Level 2 cache implementations (such as the ARM L2C-310) can have larger numbers of ways 
(higher associativity) because of their much larger size. The cache lines with the same index 
value are said to belong to a set. To check for a hit, you must look at each of the tags in the set. 
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In Figure 8-6, a 2-way cache is shown. Data from address 0x00 (or 0x40, or 0x80) might be found 
in line 0 of either (but not both) of the two cache ways.

Figure 8-6 A 2-way set-associative cache

Increasing the associativity of the cache reduces the probability of thrashing. The ideal case is 
a fully associative cache, where any main memory location can map anywhere within the cache. 
However, building such a cache is impractical for anything other than very small caches (for 
example, those associated with MMU TLBs – see Chapter 9). In practice, performance 
improvements are minimal for Level 1 caches above 4-way associativity, with 8-way or 16-way 
associativity being more useful for larger level 2 caches.

8.4.4 A real-life example

Before going on to look at write buffers, let’s consider an example that is more realistic than 
those shown in the previous two diagrams. Figure 8-7 on page 8-10 is a 4-way set associative 
32KB data cache, with an 8-word cache line length. This kind of cache structure can be found 
on the Cortex-A7 or Cortex-A9 processors.

The cache line length is eight words (32 bytes) and you have 4-ways. 32KB divided by 4 (the 
number of ways), divided by 32 (the number of bytes in each line) gives you a figure of 256 
lines in each way. This means that you require eight bits to index a line within a way (bits 
[12:5]). Here, you must use bits [4:2] of the address to select from the eight words within the 
line, though the number of bits which are required to index into the line depends on whether you 
are accessing a word, halfword, or byte. The remaining bits [31:13] in this case will be used as 
a tag.
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Figure 8-7 A 32KB 4-way set associative cache

8.4.5 Cache controller

This is a hardware block that has the task of managing the cache memory, in a way that is 
(largely) invisible to the program. It automatically writes code or data from main memory into 
the cache. It takes read and write memory requests from the core and performs the necessary 
actions to the cache memory or the external memory.

When it receives a request from the core it must check to see whether the requested address is 
to be found in the cache. This is known as a cache look-up. It does this by comparing a subset 
of the address bits of the request with tag values associated with lines in the cache. If there is a 
match (a hit) and the line is marked valid then the read or write will happen using the cache 
memory.

When the core requests instructions or data from a particular address, but there is no match with 
the cache tags, or the tag is not valid, a cache miss results and the request must be passed to the 
next level of the memory hierarchy – an L2 cache, or external memory. It can also cause a cache 
linefill. A cache linefill causes the contents of a piece of main memory to be copied into the 
cache. At the same time, the requested data or instructions are streamed to the core. This process 
happens transparently and is not directly visible to a software developer.

The core need not wait for the linefill to complete before using the data. The cache controller 
will typically access the critical word within the cache line first. For example, if you perform a 
load instruction that misses in the cache and triggers a cache linefill, the core first retrieves that 
part of the cache line which contains the requested data. This critical data is supplied to the core 
pipeline, while the cache hardware and external bus interface then read the rest of the cache line, 
in the background.
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8.4.6 Virtual and physical tags and indexes

This section assumes some knowledge of the address translation process. Readers unfamiliar 
with virtual addressing might want to revisit this section after reading Chapter 9. 

A real-life example on page 8-9 was a little imprecise about specification of exactly which 
address is used to perform cache lookups. Early ARM processors such as the ARM720T or 
ARM926EJ-S processors used virtual addresses to provide both the index and tag values. This 
has the advantage that the core can do a cache look-up without the need for a virtual to physical 
address translation. The drawback is that changing the virtual to physical mappings in the 
system means that the cache must first be cleaned and invalidated, and this can have a significant 
performance impact. Invalidating and cleaning cache memory on page 8-17 goes into more 
detail about these terms.

ARM11 family processors use a different cache tag scheme. Here, the cache index is still 
derived from a virtual address, but the tag is taken from the physical address. The advantage of 
a physical tagging scheme is that changes in virtual to physical mappings do not now require 
the cache to be invalidated. This can have significant benefits for complex multi-tasking 
operating systems that can frequently modify translation table mappings. Using a virtual index 
has some hardware advantages. It means that the cache hardware can read the tag value from 
the appropriate line in each way in parallel without actually performing the virtual to physical 
address translation, giving a fast cache response. Such a cache is often described as Virtually 
Indexed, Physically Tagged (VIPT). Cache properties of Cortex-A series processors, including 
the use of these tagged caches are given in Table 8-1. Other properties of the Cortex-A series 
processors are listed in Table 2-3 on page 2-9.

Table 8-1 Cache features of Cortex-A series processors

Processor

Cortex-A5 Cortex-A7 Cortex-A8 Cortex-A9 Cortex-A12 Cortex-A15

L2 Cache External Integrated Integrated External Integrated Integrated

L2 Cache size - 128KB to 
1MBa

0KB to 1MBa - 256KB to 8MB 512KB to 4MBa

Cache 
Implementation 
(Data)

PIPT PIPT PIPT PIPT PIPT PIPT

Cache 
Implementation 
(Instruction)

VIPT VIPT VIPT VIPT VIPT PIPT

L1 Cache size 
(data)a

4K to 64Ka 8KB to 64KBa 16/32KBa 16KB/32KB/64KBa 32KB 32KB

Cache size 
(Inst)a

4K to 64Ka 8KB to 64KBa 16/32KBa 16KB/32KB/64KBa 32KB or 64KB 32KB

L1 Cache 
Structure

2-way set 
associative 
(Inst)
4-way set 
associative 
(Data)

2-way set 
associative 
(Inst)
4-way set 
associative 
(Data)

4-way set 
associative

4-way set 
associative (Inst)
4-way set 
associative (Data)

4-way set 
associative 
(Inst)
4-way set 
associative 
(Data)

2-way set 
associative 
(Inst)
2-way set 
associative 
(Data)

L2 Cache 
Structure

- 8-way set 
associative

8-way set 
associative

- 16-way set 
associative

16-way 
associative
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However, there is a drawback to a VIPT implementation. For a 4-way set associative 32KB or 
64KB cache, bits [12] and [13] of the address are required to select the index. If 4KB pages are 
used in the MMU, bits [13:12] of the virtual address might not be equal to bits [13:12] of the 
physical address. There is therefore scope for potential cache coherency problems if multiple 
virtual address mappings point to the same physical address. This is resolved by placing certain 
restrictions on such multiple mappings that kernel translation table software must obey. This is 
described as a page coloring issue and exists on other processor architectures for the same 
reasons. 

This problem is avoided by using a Physically Indexed, Physically Tagged (PIPT) cache 
implementation. The Cortex-A series of processors use such a scheme for their data caches. It 
means that page coloring issues are avoided, but at the cost of hardware complexity.

Cache line 
(words)

8 8 16 8 - 16

Cache line 
(bytes)

32 64 64 32 64 64

Error protection None None L2 ECC None L1 None, L2 
ECC

Optional for L1 
and L2 

a. Configurable

Table 8-1 Cache features of Cortex-A series processors (continued)

Processor

Cortex-A5 Cortex-A7 Cortex-A8 Cortex-A9 Cortex-A12 Cortex-A15
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8.5 Cache policies
There are a number of different choices that can be made in cache operation. Consider what 
causes a line from external memory to be placed into the cache (allocation policy) and how the 
controller decides which line within a set associative cache to use for the incoming data 
(replacement policy). What happens when the core performs a write that hits in the cache (write 
policy) must also be controlled. 

8.5.1 Allocation policy

When the core performs a cache look-up and the address it wants is not in the cache, it must 
determine whether or not to perform a cache linefill and copy that address from memory.

• A read allocate policy allocates a cache line only on a read. If a write is performed by the 
core that misses in the cache, the cache is not affected and the write goes to the next level 
of the hierarchy.

• A write allocate policy allocates a cache line for either a read or write that misses in the 
cache (and so might more accurately be called a read-write cache allocate policy). For 
both memory reads that miss in the cache and memory writes that miss in the cache, a 
cache linefill is performed. This is typically used in combination with a write-back write 
policy on current ARM cores, as we shall see in Write policy on page 8-14.

8.5.2 Replacement policy

When there is a cache miss, the cache controller must select one of the cache lines in the set for 
the incoming data. The cache line selected is called the victim. If the victim contains valid, dirty 
data, the contents of that line must be written to main memory before new data can be written 
to the victim cache line. This is called eviction.

The replacement policy is what controls the victim selection process. The index bits of the 
address are used to select the set of cache lines, and the replacement policy selects the specific 
cache line from that set that is to be replaced.

• Round-robin or cyclic replacement means that you have a counter (the victim counter) that 
cycles through the available ways and cycles back to 0 when it reaches the maximum 
number of ways.

• Pseudo-random replacement randomly selects the next cache line in a set to replace. The 
victim counter is incremented in a pseudo-random fashion and can point to any line in the 
set.

• Least Recently Used (LRU) replacement is used to replace the cache line or page that was 
least recently used.

Most ARM processors support both Round-robin and Pseudo random policies. The Cortex-A15 
processor also supports LRU.

A round-robin replacement policy is generally more predictable, but can suffer from poor 
performance in certain use cases and for this reason, the pseudo-random policy is often 
preferred.
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8.5.3 Write policy

When the core executes a store instruction, a cache lookup on the address(es) to be written is 
performed. For a cache hit on a write, there are two choices. 

• Write-through. With this policy writes are performed to both the cache and main memory. 
This means that the cache and main memory are kept coherent. Because there are more 
writes to main memory, a write-through policy is slower than a write-back policy for some 
use cases, where the same area of memory is updated frequently. If large contiguous 
blocks of memory are being written to, and the writes can be buffered, it may be just as 
efficient to write-through. If the memory is not expected to be read from anytime soon 
(think large memory copies or memory initialization,) then it is better to not fill up the 
cache with such writes.

• Write-back. In this case, writes are performed only to the cache, and not to main memory. 
This means that cache lines and main memory can contain different data. The cache line 
holds newer data, and main memory contains older data (said to be stale). To mark these 
lines, each line of the cache has an associated dirty bit (or bits). When a write happens that 
updates the cache, but not main memory, the dirty bit is set. If the cache later evicts a cache 
line whose dirty bit is set (a dirty line), it writes the line out to main memory. Using a 
write-back cache policy can significantly reduce traffic to slow external memory and 
therefore improve performance and save power. However, if there are other agents in the 
system that can access memory at the same time as the core, you must consider coherency 
issues. These are described in Cache coherency on page 18-9.
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8.6 Write and Fetch buffers
A write buffer is a hardware block inside the core (but sometimes in other parts of the system 
as well), implemented using a number of buffers. It accepts address, data and control values 
associated with core writes to memory. When the core executes a store instruction, it might place 
the relevant details, such as the location to write to, the data to be written, and the transaction 
size into the buffer. The core does not have to wait for the write to be completed to main 
memory. It can proceed with executing the next instructions. The write buffer itself will drain 
the writes accepted from the core, to the memory system.

A write buffer can increase the performance of the system. It does this by freeing the core from 
having to wait for stores to complete. In effect, provided there is space in the write buffer, the 
write buffer is a way to hide latency. If the number of writes is low or well spaced, the write 
buffer will not become full. If the core generates writes faster than they can be drained to 
memory, the write buffer will eventually fill and there will be little performance benefit.

Some write buffers support write merging (also called write combining). They can take multiple 
writes (for example, a stream of writes to adjacent bytes) and merge them into one single burst. 
This can reduce the write traffic to external memory and therefore boost performance.

It will be obvious that sometimes the behavior of the write buffer is not what you want when 
accessing a peripheral, you might want the core to stop and wait for the write to complete before 
proceeding to the next step. Sometimes you really want a stream of bytes to be written and you 
don’t want the stores to be combined.ARM memory ordering model on page 10-3, describes 
memory types supported by the ARM architecture and how to use these to control how caches 
and write buffers are used for particular devices or parts of the memory map.

Similar components, called fetch buffers, can be used for reads in some systems. In particular, 
cores typically contain prefetch buffers that read instructions from memory ahead of them 
actually being inserted into the pipeline. In general, such buffers are transparent to you. Some 
possible hazards associated with this will be considered when we look at memory ordering 
rules.
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8.7 Cache performance and hit rate
The hit rate is defined as the number of cache hits divided by the number of memory requests 
made to the cache during a specified time, normally calculated as a percentage. Similarly, the 
miss rate is the number of total cache misses divided by the total number of memory requests 
made to the cache. One might also calculate the number of hits or misses on reads or writes only. 

Clearly, a higher hit rate will generally result in higher performance. It is not really possible to 
quote example figures for typical software, the hit rate is very dependent on the size and spatial 
locality of the critical parts of the code or data operated on and of course, the size of the cache. 

There are some simple rules that can be followed to give better performance. The most obvious 
of these is to enable caches and write buffers and to use them wherever possible (typically for 
all parts of the memory system that contain code and more generally for RAM and ROM, but 
not peripherals). Performance will be considerably increased in Cortex-A series processors if 
instruction memory is cached. Placing frequently accessed data together in memory can also be 
helpful. For example, a frequently accessed array might benefit from having a base address at 
the start of a cache line. 

Fetching a data value in memory involves fetching a whole cache line; if none of the other words 
in the cache line will be used, there will be little or no performance gain. This can be mitigated 
by accessing data in a manner that is ‘cache-friendly’.For instance, accesses to sequential 
addresses, for example, accessing a row of an array, benefit from cache behavior, 
Non-predictable or non-sequential access patterns, for example, linked lists, do not. 

Smaller code might cache better than larger code and this can sometimes give seemingly 
paradoxical results. For example, a piece of C code might fit entirely within cache when 
compiled for Thumb (or for the smallest size) but not when compiled for ARM (or for maximum 
performance) and as a consequence can actually run faster than the more optimized version. 
Cache considerations are described in much more detail in Chapter 17 Optimizing Code to Run 
on ARM Processors.
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8.8 Invalidating and cleaning cache memory
Cleaning and invalidation can be required when the contents of external memory have been 
changed and you want to remove stale data from the cache. It can also be required after MMU 
related activity such as changing access permissions, cache policies, or virtual to physical 
address mappings.

The word flush is often used in descriptions of clean and invalidate operations. ARM generally 
uses only the terms clean and invalidate.

• Invalidation of a cache or cache line means to clear it of data. This is done by clearing the 
valid bit of one or more cache lines. The cache must always be invalidated after reset as 
its contents will be undefined. If the cache contains dirty data, it is generally incorrect to 
invalidate it. Any updated data in the cache from writes to write-back cacheable regions 
would be lost by simple invalidation.

• Cleaning a cache or cache line means writing the contents of dirty cache lines out to main 
memory and clearing the dirty bit(s) in the cache line. This makes the contents of the 
cache line and main memory coherent with each other. This is only applicable for data 
caches in which a write-back policy is used. Cache invalidate, and cache clean operations 
can be performed by cache set, or way, or by virtual address.

Copying code from one location to another (or other forms of self-modifying code) might 
require you either to clean and/or to invalidate the cache. The memory copy code will use load 
and store instructions and these will operate on the data side of the core. If the data cache is using 
a write-back policy for the area to which code is written, it is necessary to clean that data from 
the cache before the code can be executed. This ensures that the instructions stored as data go 
out into main memory and are then available for the instruction fetch logic. In addition, if the 
area to which code is written was previously used for some other program, the instruction cache 
could contain stale code (from before main memory was re-written). Therefore, it might also be 
necessary to invalidate the instruction cache before branching to the newly copied code.

The commands to either clean or invalidate the cache are CP15 operations. They are available 
only to privileged code and cannot be executed in User mode. In systems where the TrustZone 
Security Extensions are in use, there can be hardware limitations applied to non-secure use of 
some of these operations.

CP15 instructions exist that will clean, invalidate, or clean and invalidate level 1 data or 
instruction caches. Invalidation without cleaning is safe only when it is known that the cache 
cannot contain dirty data – for example a Harvard instruction cache, or when the data is going 
to be overwritten, and you don't care about losing the previous values. You can perform the 
operation on the entire cache, or on individual lines. These individual lines can be specified 
either by giving a virtual address to be cleaned or to be invalidated, or by specifying a line 
number in a particular set, in cases where the hardware structure is known. The same operations 
can be performed on the L2 or outer caches and we will look at this in Level 2 cache controller 
on page 8-22. A typical example of such code can be found in Setting up caches, MMU and 
branch predictors on page 13-3.

Example 8-1 Preparing the caches

setup_caches
 MRC p15, 0, r1, c1, c0, 0           ; Read System Control Register (SCTLR)
 BIC r1, r1, #1                      ; mmu off
 BIC r1, r1, #(1 << 12)              ; i-cache off
 BIC r1, r1, #(1 << 2)               ; d-cache & L2-$ off

 MCR p15, 0, r1, c1, c0, 0           ; Write System Control Register (SCTLR)
 ;-----------------------------------------------
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 ; 1.MMU, L1$ disable
 ;-----------------------------------------------
 MRC p15, 0, r1, c1, c0, 0           ; Read System Control Register (SCTLR)
 BIC r1, r1, #1                      ; mmu off
 BIC r1, r1, #(1 << 12)              ; i-cache off
 BIC r1, r1, #(1 << 2)               ; d-cache & L2-$ off
 MCR p15, 0, r1, c1, c0, 0           ; Write System Control Register (SCTLR)
 ;-----------------------------------------------
 ; 2. invalidate: L1$, TLB, branch predictor
 ;-----------------------------------------------
 MOV     r0, #0
 MCR     p15, 0, r0, c7, c5, 0       ; Invalidate Instruction Cache
 MCR     p15, 0, r0, c7, c5, 6       ; Invalidate branch prediction array
 MCR     p15, 0, r0, c8, c7, 0       ; Invalidate entire Unified Main TLB
 ISB                                 ; instr sync barrier
 ;-----------------------------------------------
 ; 2.a. Enable I cache + branch prediction
 ;----------------------------------------------- 
 MRC     p15, 0, r0, c1, c0, 0           ; System control register
 ORR     r0, r0, #1 << 12                ; Instruction cache enable
 ORR     r0, r0, #1 << 11                ; Program flow prediction
 MCR     p15, 0, r0, c1, c0, 0           ; System control register
 ;-----------------------------------------------

Of course, these operations will be accessed through kernel code – in GCC on Linux, you will 
use the __clear_cache() function implemented in arch/arm/mm/cache-v7.S. 

void __clear_cache(char* beg, char* end);

The start address (char* beg) is inclusive, while the end address (char* end) is exclusive.

Equivalent functions exist in other operating systems, Google Android has cacheflush(), for 
example.

A common situation where cleaning or invalidation can be required is DMA (Direct Memory 
Access). When it is required to make changes made by the core visible to external memory, so 
that it can be read by a DMA controller, it might be necessary to clean the cache. When external 
memory is written by a DMA controller and it is necessary to make those changes visible to the 
core, the affected addresses must be invalidated in the cache.
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8.9 Point of coherency and unification
For set/way based clean and invalidate, the operation is performed on a specific level of cache. 
For operations that use a virtual address, the architecture defines two conceptual points:

Point of Coherency (PoC) 
For a particular address, the PoC is the point at which all blocks, for example, 
cores, DSPs, or DMA engines, that can access memory are guaranteed to see the 
same copy of a memory location. Typically, this will be the main external system 
memory.

Figure 8-8 Point of Coherency

Point of Unification (PoU) 
The PoU for a core is the point at which the instruction and data caches of the core 
are guaranteed to see the same copy of a memory location. For example, a unified 
level 2 cache would be the point of unification in a system with Harvard level 1 
caches and a TLB for cacheing translation table entries. If no external cache is 
present, main memory would be the Point of unification.
In the Cortex-A9 processor the PoC and PoU is essentially the same place, at the 
L2 interface.
Since the Cortex-A8 processor incorporates a L2 cache under CP15 control PoU 
and PoC are in different places, PoU is in the L2 cache and PoC is outside the L2 
interfaces.

System Control 
Coprocessor CP15

Data cacheData cacheI D

Point of Coherency
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System Control 
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Figure 8-9 Point of Unification

Readers unfamiliar with the terms hardware translation table walk or Translation 
Lookaside Buffer (TLB) will find these described in Chapter 9. If no external 
cache is present, main memory would be the PoU.

In the case of a cluster, or a big.LITTLE combination, the PoU is where instruction and data 
caches and translation table walks of all the cores within the cluster are guaranteed to see the 
same copy of a memory location.

Knowledge of the PoU enables self-modifying code to ensure future instruction fetches are 
correctly made from the modified version of the code. They can do this by using a two-stage 
process: 
• Clean the relevant data cache entries by address.
• Invalidate instruction cache entries by address.

In addition, the use of memory barriers will be required.

8.9.1 Example code for cache maintenance operations

The following code illustrates a generic mechanism for cleaning the entire data or unified cache 
to the point of coherency.

Note
 In the case of a cluster where multiple cores share a cache before the point of coherency, running 
this sequence on multiple cores results in the operations being repeated on the shared cache

MRC p15, 1, R0, c0, c0, 1   ; Read CLIDR into R0
ANDS R3, R0, #0x07000000
MOV R3, R3, LSR #23         ; Cache level value (naturally aligned)
BEQ Finished
MOV R10, #0

Loop1 
ADD R2, R10, R10, LSR #1    ; Work out 3 x cache level
MOV R1, R0, LSR R2          ; bottom 3 bits are the Cache type for this level

System Control Coprocessor 
CP15

Instruction 
cache Data cache

TLB

I D

Point of Unification
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Caches 
AND R1, R1, #7              ; get those 3 bits alone
CMP R1, #2
BLT Skip                    ; no cache or only instruction cache at this level
MCR p15, 2, R10, c0, c0, 0  ; write CSSELR from R10
ISB                         ; ISB to sync the change to the CCSIDR
MRC p15, 1, R1, c0, c0, 0   ; read current CCSIDR to R1
AND R2, R1, #7              ; extract the line length field
ADD R2, R2, #4              ; add 4 for the line length offset (log2 16 bytes)
LDR R4, =0x3FF
ANDS R4, R4, R1, LSR #3     ; R4 is the max number on the way size (right aligned)
CLZ R5, R4                  ; R5 is the bit position of the way size increment
MOV R9, R4                  ; R9 working copy of the max way size (right aligned)

Loop2 
LDR R7, =0x00007FFF
ANDS R7, R7, R1, LSR #13    ; R7 is the max num of the index size (right aligned)

Loop3 
ORR R11, R10, R9, LSL R5    ; factor in the way number and cache number into R11
ORR R11, R11, R7, LSL R2    ; factor in the index number
MCR p15, 0, R11, c7, c10, 2 ; DCCSW, clean by set/way
SUBS R7, R7, #1             ; decrement the index
BGE Loop3
SUBS R9, R9, #1             ; decrement the way number
BGE Loop2

Skip 
ADD R10, R10, #2            ; increment the cache number
CMP R3, R10
BGT Loop1
DSB

Finished 

Similarly, you can use the clean data cache entry and invalidate TLB operations to ensure that 
all writes to the translation tables are visible to the MMU.
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8.10 Level 2 cache controller
At the start of this chapter, we briefly described the partitioning of the memory system and 
explained how many systems have a multi-level cache hierarchy. The Cortex-A5 and Cortex-A9 
processors, however, do not have an integrated level 2 cache. Instead, the system designer can 
opt to connect another cache controller, such as the ARM L2 cache controller (L2C-310) outside 
of the processor instance.

The L2C-310 cache controller can support a cache of up 8MB in size, with a set associativity of 
between four and sixteen ways. The size and associativity are fixed by the SoC designer. The 
level 2 cache can be shared between multiple cores, or indeed between the core and other agents, 
such as a graphics processor. It is possible to lockdown cache data on a per-master per-way 
basis, enabling management of cache sharing between multiple components.

8.10.1 Level 2 cache maintenance

Virtual and physical tags and indexes on page 8-11 described how you might require the ability 
either to clean or invalidate some or all of a cache. This can be done by writing to 
memory-mapped registers within the L2 cache controller in the case where the cache is external 
to the core, or through CP15, where the level 2 cache is implemented inside the core. The 
registers themselves are not cached, which makes this feasible. Where such operations are 
performed by having the core perform memory-mapped writes, the core must have a way of 
determining when the operation is complete. It does this by polling an additional 
memory-mapped register within the L2 cache controller.

The ARM L2C-310 Level 2 cache controller operates only on physical addresses. Therefore, to 
perform cache maintenance operations, it might be necessary for the program to perform a 
virtual to physical address translation. The L2C-310 provides a cache sync operation that forces 
the system to wait for pending operations to complete.
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8.11 Parity and ECC in caches
So-called soft errors are an increasing concern. Smaller transistor geometries and lower 
voltages give circuits an increased sensitivity to perturbation by cosmic rays and other 
background radiation, alpha particles from silicon packages, or from electrical noise. This is 
particularly true for memory devices that rely on storing small amounts of charge and that also 
occupy large proportions of total silicon area. In some systems, mean-time-between-failure 
could be measured in seconds if appropriate protection against soft errors was not employed.

The ARM architecture provides support for parity and Error Correcting Code (ECC) in the 
caches. Parity means that there is an additional bit that marks whether the number of bits with 
the value one is even or odd, depending on the scheme chosen. This provides a simple check 
against single bit errors. 

An ECC scheme enables detection of multiple bit failures and possible recovery from soft 
errors, but recovery calculations can take several cycles. Implementing a core that is tolerant of 
level 1 cache RAM accesses taking multiple clock cycles significantly complicates the design. 
ECC is therefore more commonly used only on blocks of memory (for example, the Level 2 
cache), outside the core. The Cortex-A15, however, supports ECC and parity inside the core.

Parity is checked on reads and writes, and can be implemented on both tag and data RAMs. 
Parity mismatch generates a prefetch or data abort exception, and the fault status address 
registers are updated appropriately. 
ARM DEN0013D Copyright © 2011 – 2013 ARM. All rights reserved. 8-23
ID012214 Non-Confidential



Chapter 9 
The Memory Management Unit

An important function of a Memory Management Unit (MMU) is to enable you to manage tasks as 
independent programs running in their own private virtual memory space. A key feature of such a 
virtual memory system is address relocation, or the translation of the virtual address issued by the 
processor to a physical address in main memory. 

The ARM MMU is responsible for translating addresses of code and data from the virtual view of 
memory to the physical addresses in the real system. The translation is carried out by the MMU 
hardware and is transparent to the application. In addition, the MMU controls such things as 
memory access permissions, memory ordering and cache policies for each region of memory. 

In multi-tasking embedded systems, we typically require a way to partition the memory map and 
assign permissions and memory attributes to these regions of memory. In situations where we are 
running more complex operating systems, like Linux, we require even greater control over the 
memory system.

The MMU enables tasks or applications to be written in a way that requires them to have no 
knowledge of the physical memory map of the system, or about other programs that might be 
running simultaneously. This enables you to use the same virtual memory address space for each 
program. It also lets you work with a contiguous virtual memory map, even if the physical memory 
is fragmented. This virtual address space is separate from the actual physical map of memory in the 
system. Applications are written, compiled and linked to run in the virtual memory space. Virtual 
addresses are those used by you, and the compiler and linker, when placing code in memory. 
Physical addresses are those used by the actual hardware system. 

It is the responsibility of the operating system to program the MMU to translate between these two 
views of memory. Figure 9-1 on page 9-2 shows an example system, illustrating the virtual and 
physical views of memory. Different processors and/or devices in a single system might have 
different virtual and physical address maps, for example, some multi-core boards and PCI devices.
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The Memory Management Unit 
Figure 9-1 Virtual and physical memory

When the MMU is disabled, all virtual addresses map directly to the corresponding physical 
address (a flat mapping). If the MMU cannot translate an address, it generates an abort exception 
on the processor and provides information to the processor about what the problem was. This 
feature can be used to map memory or devices on-demand, one page at a time.
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The Memory Management Unit 
9.1 Virtual memory
The MMU enables you to build systems with multiple virtual address maps. Each task can have 
its own virtual memory map. The OS kernel places code and data for each application in 
physical memory, but the application itself does not require the location.

The address translation carried out by the MMU is done using translation tables. These are 
tree-shaped table data structures created by software in memory, that the MMU hardware 
traverses to accomplish virtual address translation. 

Note
 In the ARM architecture, the concept referred to in generic computer terminology as page tables 
has a more specific meaning. The ARM architecture uses multi-level page tables, and defines 
translation tables as a generic term for all of these. An entry in a translation table contains all 
the information required to translate a page in virtual memory to a page in physical memory. 
The specific mechanism of traversal and the table format are configurable by software and are 
explained later.

Translation table entries are organized by virtual address. In addition to describing the 
translation of that virtual page to a physical page, they also provide access permissions and 
memory attributes necessary for that page.

Figure 9-2 The Memory Management Unit

Addresses generated by the core are virtual addresses. When the MMU is enabled all memory 
accesses made by the core pass through it. The MMU essentially replaces the most significant 
bits of this virtual address with some other value, to generate the physical address (effectively 
defining a base address of a piece of memory).The same translation tables are used to define the 
translations and memory attributes that apply to both instruction fetches and to data accesses. 
Dedicated hardware within the MMU enables it to read the translation tables in memory. This 
process is known as translation table walking.

9.1.1 Configuring and enabling the MMU

Before the MMU is enabled, the translation tables must be written to memory. The TTBR 
register must be set to point to the tables. The following code sequence can then be used to 
enable the MMU:

MRC p15, 0, R1, c1, C0, 0 ;Read control register
ORR R1, #0x1 ;Set M bit
MCR p15, 0,R1,C1, C0,0 ;Write control register and enable MMU

Care must be taken if enabling the MMU changes the address mapping of the region in which 
code is currently being executed. Barriers (See Memory barriers on page 10-6) may be 
necessary to ensure correct operation.
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The Memory Management Unit 
9.2 The Translation Lookaside Buffer
The Translation Lookaside Buffer (TLB) is a cache of recently executed page translations within 
the MMU. On a memory access, the MMU first checks whether the translation is cached in the 
TLB. If the requested translation is available, you have a TLB hit, and the TLB provides the 
translation of the physical address immediately. If the TLB does not have a valid translation for 
that address, you have a TLB miss and an external translation table walk is required. This newly 
loaded translation can then be cached in the TLB for possible reuse.

The exact structure of the TLB differs between implementations of the ARM processors. What 
follows is a description of a typical system, but individual implementations might vary from 
this. There are one or more micro-TLBs that are situated close to the instruction and data caches. 
Addresses with entries that hit in the micro-TLB require no additional memory look-up and no 
cycle penalty. However, the micro-TLB has only a small number of mappings, typically eight 
on the instruction side and eight on the data side. This is backed by a larger main TLB (typically 
64 entries), but there might be some penalty associated with accesses that miss in the micro-TLB 
but that hit in the main TLB. Figure 9-3 shows how each TLB entry contains physical and 
virtual addresses, but also attributes (such as memory type, cache policies and access 
permissions) and potentially an ASID value, described in Address Space ID on page 9-17.

The TLB is like other caches and so has a TLB line replacement policy, but this is effectively 
transparent to users. If the translation table entry is a valid one, the virtual address, physical 
address and other attributes for the whole page or section are stored as a TLB entry. If the 
translation table entry is not valid, the TLB will not be updated. The ARM architecture requires 
that only valid translation table descriptors are cached within the TLB. 

Figure 9-3 Illustration of TLB structure

9.2.1 TLB coherency

When the operating system changes translation table entries, it is possible that the TLB could 
contain stale translation information. The OS must take steps to invalidate TLB entries. There 
are several CP15 operations available that permit a global invalidate of the TLB or removal of 
specific entries. 

As speculative instruction fetches and data reads might cause translation table walks, it is 
essential to invalidate the TLB when a valid translation table entry is changed. Invalid 
translation table entries cannot be cached in the TLB so they can be changed without 
invalidation. 
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The Linux kernel has a number of functions that use these CP15 operations, including 
flush_tlb_all() and flush_tlb_range(). Such functions are not typically required by device 
drivers.
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9.3 Choice of page sizes
Page size is essentially controlled by the operating system, but it is worth being aware of the 
considerations involved when selecting a size. Smaller page sizes enable finer control of a block 
of memory and potentially can reduce the amount of unused memory in a page. If a task requires 
7KB of data space, there is less unused space if it is allocated two 4KB pages as opposed to a 
64KB page or a 1MB section. Smaller page sizes also enable finer control over permissions, 
cache properties and so forth.

However, with increased page sizes, each entry in the TLB holds a reference to a larger piece of 
memory. It is therefore more likely that a TLB hit will occur on any access and so there will be 
fewer translation table walks to slow external memory. For this reason, 16MB supersections can 
be used with large pieces of memory that do not require detailed mapping. In addition, each L2 
translation table requires 1KB of memory. 
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9.4 First level address translation
Consider the process by which a virtual address is translated to a physical address using level 1 
translation table entries on an ARM core. The first step is to locate the translation table entry 
associated with the virtual address.

The first stage of translation uses a single level 1 translation table, sometimes called a master 
translation table. The L1 translation table divides the full 4GB address space of a 32-bit core 
into 4096 equally sized sections, each of which describes 1MB of virtual memory space. The 
L1 translation table therefore contains 4096 32-bit (word-sized) entries. 

Each entry can either hold a pointer to the base address of a level 2 translation table or a 
translation table entry for translating a 1MB section. If the translation table entry is translating 
a 1MB section determined by the encoding, (See Figure 9-5 on page 9-8), it gives the base 
address of the 1MB page in physical memory. 

The lower bits are the same in both addresses (defining an offset in physical memory from the 
base address). The ARM MMU supports a multi-level translation table architecture with two 
levels of translation tables, level 1 (L1) and level 2 (L2). Unless the Large Physical Address 
Extensions (See Large Physical Address Extensions on page 22-10) are implemented, both L1 
and L2 translation tables use the Short-descriptor translation table format that feature:

• 32-bit page descriptors.

• Up to two levels of translation tables.

• Support for 32-bit physical addresses

• Support for the following memory sizes:
— 16 MB or 1 MB sections.
— 64KB or 4KB page sizes.

The base address of the L1 translation table is known as the Translation Table Base Address and 
is held in CP15 c2. It must be aligned to a 16KB boundary. The Translation table locations are 
defined by the Translation Table Base Registers (TTRB0 and TTRB1). 

When the MMU performs a translation, the top 12 bits of the requested virtual address act as the 
index into the translation table.
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Figure 9-4 Finding the address of the level 1 translation table entry

To take a simple example, shown in Figure 9-4, suppose the L1 translation table is stored at 
address 0x12300000. The processor issues virtual address 0x00100000. The top 12 bits [31:20] 
define which 1MB of virtual address space is being accessed. In this case 0x001, so the MMU 
must read table entry 1. To get the offset into the table you must multiply the entry number by 
entry size:

0x001 * 4 bytes = address offset of 0x004

The address of the entry the MMU reads the physical address from is 0x12300000 + 0x004 = 
0x12300004.

Now that you have the location of the translation table entry, you can use it to determine the 
physical memory address

Figure 9-5 shows the format of L1 translation table entries in CP15 c2.

Figure 9-5 Level 1 translation table entry format

First level translation tables contain first level descriptors.

L1 translation table entries can be one of four possible types:

• A 1MB section translation entry, mapping a 1MB region to a physical address.
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The Memory Management Unit 
• An entry that points to an L2 translation table. This enables a 1MB piece of memory to be 
sub-divided into pages.

• A 16MB supersection. This is a special kind of 1MB section entry, that requires 16 entries 
in the translation table, but can reduce the number of entries allocated in the Translation 
Lookaside Buffer for this region.

• A fault entry that generates an abort exception. This can be either a prefetch or data abort, 
depending on the type of access. This effectively indicates virtual addresses that are 
unmapped.

The least significant two bits [1:0] in the entry define whether the entry is a fault entry, a 
translation table entry, or a section entry. Bit [18] is used to distinguish between a normal section 
and supersection.

A supersection is a 16MB piece of memory, that must have both its virtual and physical base 
address aligned to a 16MB boundary. Because L1 translation table entries each describe 1MB, 
you require 16 consecutive, identical entries within the table to mark a supersection. Choice of 
page sizes on page 9-6 described why supersections can be useful.

Figure 9-6 shows the simplest case in which the physical address of a 1MB section is directly 
generated from the contents of a single entry in the level 1 translation table.

Figure 9-6 First level address translation

The translation table entry for a section (or supersection) contains the physical base address used 
to translate the virtual address. Many other bits are given in the translation table entry, including 
the Access Permissions (AP) and Cacheable (C) or Bufferable (B) types that we will consider 
in Memory attributes on page 9-14. This is all of the information required to access the 
corresponding physical address and in these cases, there is no requirement for the MMU to look 
beyond the L1 table. 

Figure 9-7 on page 9-10 summarizes the translation process for an address translated by a 
section entry in the L1 translation table.
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Figure 9-7 Generating a physical address from a level 1 translation table entry

In a translation table entry for a 1MB section of memory, the upper 12 bits of the translation 
table entry replace the upper 12 bits of the virtual address when generating the physical address, 
as Figure 9-5 on page 9-8 shows.
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9.5 Level 2 translation tables
An L2 translation table has 256 word-sized (4 byte) entries, requires 1KB of memory space and 
must be aligned to a 1KB boundary. Each entry translates a 4KB block of virtual memory to a 
4KB block in physical memory. A translation table entry can give the base address of either a 
4KB or 64KB page. 

There are three types of entry used in L2 translation tables, identified by the value in the two 
least significant bits of the entry:

• A large page entry points to a 64KB page. You should note that, since each entry points 
to a 4KB address space, large page entries must be repeated 16 times.

• A small page entry points a 4KB page.

• A fault page entry generates an abort exception if accessed.

Figure 9-8 shows the format of L2 translation table entries. 

Figure 9-8 Format of a level 2 translation table entry

As with the L1 translation table entry, a physical address is given, along with other information 
about the page. Type extension (TEX), Shareable (S), and Access Permission (AP, APX) bits 
are used to specify the attributes necessary for the ARMv7 memory model. Along with TEX, 
the C and B bits control the cache policies for the memory governed by the translation table 
entry. The nG bit defines the page as being global (applies to all processes) or non-global (used 
by a specific process). These are described in more detail in Memory attributes on page 9-14. 
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Figure 9-9 Generating the address of the level 2 translation table entry

In Figure 9-9 we see how the address of the L2 translation table entry that we require is 
calculated by taking the (1KB aligned) base address of the level 2 translation table (given by the 
level 1 translation table entry) and using 8 bits of the virtual address (bits [19:12]) to index 
within the 256 entries in the L2 translation table.

Figure 9-10 on page 9-13 summarizes the address translation process when using two layers of 
translation tables. Bits [31:20] of the virtual address are used to index into the 4096-entry L1 
translation table, whose base address is given by the CP15 TTB register. The L1 translation table 
entry points to an L2 translation table that contains 256 entries. Bits [19:12] of the virtual 
address are used to select one of those entries that then gives the base address of the page. The 
final physical address is generated by combining that base address with the remaining bits of the 
virtual address.
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Figure 9-10 Summary of generation of physical address using the L2 translation table entry
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9.6 Memory attributes
We have seen how translation table entries enable the MMU hardware to translate virtual to 
physical addresses. However, they also specify a number of attributes associated with each page, 
including access permissions, memory type and cache policies.

9.6.1 Memory Access Permissions

The Access Permission (AP and APX) bits in the translation table entry give the access 
permissions for a page. See Table 9-1.

An access that does not have the necessary permission (or that faults) will be aborted. On a data 
access, this will result in a precise data abort exception. On an instruction fetch, the access will 
be marked as aborted and if the instruction is not subsequently flushed before execution, a 
prefetch abort exception will be taken. Faults generated by an external access will not, in 
general, be precise.

Information about the address of the faulting location and the reason for the fault is stored in 
CP15 (the fault address and fault status registers). The abort handler can then take appropriate 
action – for example, modifying translation tables to remedy the problem and then returning to 
the application to retry the access. Alternatively, the application that generated the abort might 
have a problem and must be terminated.

9.6.2 Memory types

Earlier ARM architecture versions enabled you to specify the memory access behavior of pages 
by configuring whether the cache and write buffer could be used for that location. This simple 
scheme is inadequate for today’s more complex systems and processors, where you can have 
multiple levels of caches, hardware managed coherency between multiple processors sharing 
memory and processors that can speculatively fetch both instructions and data. The new 
memory types added to the ARM architecture in ARMv6 and extended in the ARMv7 
architecture are designed to meet these requirements.

Three mutually exclusive memory types are defined in the ARM architecture. All regions of 
memory are configured as one of these three types:
• Strongly-ordered
• Device 
• Normal.

Table 9-1 Summary of Access Permission encodings

APX AP Privileged Unprivileged Description

0 00 No access No access Permission fault

0 01 Read/Write No access Privileged Access only

0 10 Read/Write Read No user-mode write

0 11 Read/Write Read/Write Full access

1 00 - - Reserved

1 01 Read No access Privileged Read only

1 10 Read Read Read only

1 11 - - Reserved
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These are used to describe the memory regions. A summary of the memory types is shown in 
Table 9-2.

More descriptions of these memory types can be found in ARM memory ordering model on 
page 10-3.

Table 9-3 shows how the TEX, C and B bits within the translation table entry are used to set the 
memory types of a page and also the cache policies to be used. The meaning of each of the 
memory types is described in Chapter 10, while the cache policies were described in Chapter 8. 

The final entry within the table requires more explanation. For normal cacheable memory, the 
two least significant bits of the TEX field are used to provide the outer cache policy (perhaps 
for level 2 or level 3 caches) while the C and B bits give the inner cache policy (for level 1 and 

Table 9-2 Memory attributes

Memory type 
Shareable/
Non-shareable

Cacheable Description

Normal Shareable Yes Designed to handle normal memory that is shared between
multiple cores.

Non-shareable Yes Designed to handle normal memory that is used only by a
single core.

Device - No Designed to handle memory-mapped peripherals.a All memory 
accesses to Device memory occur in program order.

Strongly-ordered - No All memory accesses to Strongly-ordered memory occur in
program order. All Strongly-ordered accesses are assumed to be
shared.

a. Shared memory was originally used to distinguish between accesses directed to the “peripheral private port” found on several 
ARM11 processors. This use is now deprecated and processors implementing LPAE treat all device accesses as Shareable.

Table 9-3 Memory type and cacheable properties encoding in translation table entry

TEX C B Description Memory type

000 0 0 Strongly-ordered Strongly-ordered

000 0 1 Shareable device Devicea

a. LPAE treats all device accesses as Shareable

000 1 0 Outer and Inner write-through, no allocate on write Normal

000 1 1 Outer and Inner write-back, no allocate on write Normal

001 0 0 Outer and Inner non-cacheable Normal

001 - - Reserved -

010 0 0 Non-shareable device Devicea

010 - - Reserved -

011 - - Reserved -

1XX Y Y Cached memory
XX = Outer policy
YY = Inner policy

Normal
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any other cache that is to be treated as inner cache). This enables you to specify different cache 
policies for both the inner and outer cache. For the Cortex-A15 and Cortex-A8 processors, inner 
cache properties set by the translation table entry apply to both L1 and L2 caches. On some older 
processors, outer cache might support write allocate, while the L1 cache might not. Such 
processors must still behave correctly when running code that requests this cache policy, of 
course.

9.6.3 Execute Never

When set, the Execute Never (XN) bit in the translation table entry prevents speculative 
instruction fetches taking place from desired memory locations and will cause a prefetch abort 
to occur if execution from the memory location is attempted. Typically device memory regions 
are marked as execute never to prevent accidental execution from such locations, and to prevent 
undesirable side-effects which might be caused by speculative instruction fetches.

9.6.4 Domains

The ARM architecture has an unusual feature that enables regions of memory to be tagged with 
a domain ID. There are 16 domain IDs provided by the hardware and CP15 c3 contains the 
Domain Access Control Register (DACR) that holds a set of 2-bit permissions for each domain 
number. This enables each domain to be marked as no-access, manager mode or client mode. 
No-access causes an abort on any access to a page in this domain, irrespective of page 
permissions. Manager mode ignores all page permissions and enables full access. Client mode 
uses the permissions of the pages tagged with the domain.

Note
 The use of domains is deprecated in the ARMv7 architecture, and will eventually be removed, 
but in order for access permissions to be enforced, it is still necessary to assign a domain number 
to a section and to ensure that the permission bits for that domain are set to client. Typically, you 
would set all domain ID fields to 0 and set all fields in the DACR to ‘Client’.
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9.7 Multi-tasking and OS usage of translation tables
In most systems using Cortex-A series processors, you will have a number of applications or 
tasks running concurrently. Each task can have its own unique translation tables residing in 
physical memory. Typically, much of the memory system is organized so that the 
virtual-to-physical address mapping is fixed, with translation table entries that never change. 
This typically is used to contain operating system code and data, and also the translation tables 
used by individual tasks.

Whenever an application is started, the operating system will allocate it a set of translation table 
entries that map both the code and data used by the application to physical memory. If the 
application has to map in code or extra data space (for example through a malloc() call), the 
kernel can subsequently modify these tables. When a task completes and the application is no 
longer running, the kernel can remove any associated translation table entries and re-use the 
space for a new application. In this way, multiple tasks can be resident in physical memory. On 
a task switch, the kernel switches translation table entries to the page in the next thread to be 
run. In addition, the dormant tasks are completely protected from the running task. This means 
that the MMU can prevent the running task from accessing the code or data of other tasks. 

9.7.1 Address Space ID

When we described the translation table bits in Level 2 translation tables on page 9-11 we noted 
a bit called nG (non-global). If the nG bit is set for a particular page, the page is associated with 
a specific application. When the MMU performs a translation, it uses both the virtual address 
and an ASID value.

The ASID is a number assigned by the OS to each individual task. This value is in the range 
0-255 and the value for the current task is written in the ASID register (accessed using CP15 
c13). When the TLB is updated and the entry is marked as non-global, the ASID value will be 
stored in the TLB entry in addition to the normal translation information. Subsequent TLB 
look-ups will only match on that entry if the current ASID matches with the ASID that is stored 
in the entry. You can therefore have multiple valid TLB entries for a particular page (marked as 
non-global), but with different ASID values. This significantly reduces the software overhead 
of context switches, as it avoids the requirement to flush the on-chip TLBs. The ASID forms 
part of a larger (32-bit) process ID register that can be used in task-aware debugging.

Note
 A context switch denotes the scheduler transferring execution from one process to another. This 
typically requires saving the current process state and restoring the state of the next process 
waiting to be run.

Figure 9-11 on page 9-18 illustrates this. Here, you have multiple applications (A, B and C), 
each of which is linked to run from virtual address 0. Each application is located in a separate 
address space in physical memory. There is an ASID value associated with each application so 
you can have multiple entries within the TLB at any particular time, that will be valid for virtual 
address 0. 
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Figure 9-11 ASIDs in TLB mapping the same virtual address

9.7.2 Translation Table Base Register 0 and 1

An additional potential difficulty associated with managing multiple applications with their 
individual translation tables is that there could be multiple copies of the L1 translation table, one 
for each application. Each of these will be 16KB in size. Most of the entries will be identical in 
each of the tables, as typically only one region of memory will be task-specific, with the kernel 
space being unchanged in each case. Furthermore, if a global translation table entry is to be 
modified, the change will be required in each of the tables.

To help reduce the effect of these problems, a second translation table base register is provided. 
CP15 contains two Translation Table Base Registers, TTBR0 and TTBR1. A control register 
(the TTB Control Register) is used to program a value in the range 0 to 7. This value (denoted 
by N) tells the MMU how many of the upper bits of the virtual address it must check to 
determine which of the two TTB registers to use.

When N is 0 (the default), all virtual addresses are mapped using TTBR0. With N in the range 
1-7, the hardware looks at the most significant bits of the virtual address. If the N most 
significant bits are all zero, TTBR0 is used, otherwise TTBR1 is used.
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For example, if N is set to 7, any address in the bottom 32MB of memory will use TTBR0 and 
the rest of memory will use TTBR1. As a result, the application-specific translation table 
pointed to by TTBR0 will contain only 32 entries (128 bytes). The global mappings are in the 
table pointed to by TTBR1 and only one table must be maintained.

When these features are used, a context switch will typically require the operating system to 
change the TTBR0 and ASID values, using CP15 instructions. However, as these are two 
separate, non-atomic operations, some care is required to avoid problems associated with 
speculative accesses occurring using the new value of one register together with the older value 
of the other. OS programmers making use of these features should become familiar with the 
sequences recommended for this purpose in the ARM Architecture Reference Manual.

9.7.3 The Fast Context Switch Extension

The Fast Context Switch Extension (FCSE) was added to the ARMv4 architecture but has been 
deprecated since ARMv6. It enabled multiple independent tasks to run in a fixed, overlapping 
area at the bottom of the virtual memory space without having to clean the cache or TLB on a 
context switch. It did this by modifying virtual addresses by substituting a process ID value into 
the top seven bits of the virtual address (but only if that address lay within the bottom 32MB of 
memory). Some ARM documentation distinguishes Modified Virtual Addresses (MVA) from 
Virtual Addresses (VA). This distinction is useful only when the FCSE is used.
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Chapter 10 
Memory Ordering

Older implementations of the ARM architecture execute all instructions in program order and each 
instruction is completely executed before the next instruction is started.

Newer processors employ a number of optimizations that relate to the order in which instructions 
are executed and the way memory accesses are performed. As we have seen, the speed of execution 
of instructions by the core is significantly higher than the speed of external memory. Caches and 
write buffers are used to partially hide the latency associated with this difference in speed. One 
potential effect of this is to re-order memory accesses. The order in which load and store 
instructions are executed by the core will not necessarily be the same as the order in which the 
accesses are seen by external devices. 
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Figure 10-1 Memory ordering example

In Figure 10-1, three instructions are listed in program order. The first instruction performs a 
write to external memory that in this example, goes to the write buffer (Access 1). It is followed 
in program order by two reads, one that misses in the cache (Access 2) and one that hits in the 
cache (Access 3). Both of the read accesses could complete before the write buffer completes 
the write associated with Access 1. Hit-under-miss behaviors in the cache mean that a load that 
hits in the cache (like Access 3) can complete before a load earlier in the program that missed 
in the cache (like Access 2). 

It is still possible to preserve the illusion that the hardware executes instructions in the order you 
wrote them. There are generally only a few cases where you have to worry about such effects. 
For example, if you are modifying CP15 registers, copying or otherwise changing code in 
memory, it might be necessary to explicitly make the core wait for such operations to complete.

For very high performance cores that support speculative data accesses, multi-issuing of 
instructions, cache coherency protocols and out-of-order execution in order to make additional 
performance gains, there are even greater possibilities for re-ordering. In general, the effects of 
this re-ordering are invisible to you, in a single core system. The hardware takes care of many 
possible hazards. It will ensure that data dependencies are respected and ensure the correct value 
is returned by a read, allowing for potential modifications caused by earlier writes. 

However, in cases where you have multiple cores that communicate through shared memory (or 
share data in other ways), memory ordering considerations become more important. In general, 
you are most likely to care about exact memory ordering at points where multiple execution 
threads must be synchronized.

Processors that conform to the ARMv7-A architecture employ a weakly-ordered model of 
memory, this means that the order of memory accesses is not required to be the same as the 
program order for load and store operations. The model can reorder memory read operations 
(such as LDR, LDM and LDD instructions) with respect to each other, to store operations, and certain 
other instructions. Reads and writes to Normal memory can be re-ordered by hardware, with 
such re-ordering being subject only to data dependencies and explicit memory barrier 
instructions. In cases where stronger ordering rules are required, this is communicated to the 
core through the memory type attribute of the translation table entry that describes that memory. 
Enforcing ordering rules on the core limits the possible hardware optimizations and therefore 
reduces performance and increases power consumption. 

STR R12, [R1]        @Access 1.  

Program Order of Instructions Instruction ExecutionTimeline

Access 1 goes into write buffer

Time

Access 2 causes a cache lookup which misses

Access 3 causes a cache lookup which hits

Access 3 returns data into ARM register

Cache linefill triggered by Access 2 returns data

Memory store triggered by Access 1 is performed  

LDR R0, [SP], #4    @Access 2.

LDR R2, [R3,#8]     @Access 3.  
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10.1 ARM memory ordering model
Cortex-A series processors employ a weakly-ordered memory model. However, within this 
model specific regions of memory can be marked as Strongly-ordered. In this case memory 
transactions are guaranteed to occur in the order they are issued,

Three mutually exclusive memory types are defined. All regions of memory are configured as 
one of these three types:
• Strongly-ordered.
• Device. 
• Normal.

In addition, for Normal memory, it is possible to specify whether the memory is Shareable 
(accessed by other agents) or not. For Normal memory, inner and outer cacheable properties can 
be specified.

In Table 10-1 A1 and A2 are two accesses to non-overlapping addresses. A1 occurs before A2 
in program code, but writes can be issued out of order.

10.1.1 Strongly-ordered and Device memory

Accesses to Strongly-ordered and Device memory have the same memory-ordering model. 
Access rules for this memory are as follows:

• The number and size of accesses will be preserved. Accesses will be atomic, and will not 
be interrupted part way through. 

• Both read and write accesses can have side-effects on the system. Accesses are never 
cached. Speculative accesses will never be performed.

• Accesses cannot be unaligned.

• The order of accesses arriving at Device memory is guaranteed to correspond to the 
program order of instructions that access Device memory. This guarantee applies only to 
accesses within the same peripheral or block of memory. The size of such a block is 
implementation defined, but has a minimum size of 1KB.

• In the ARMv7 architecture, the core can re-order Normal memory accesses around 
Strongly-ordered or Device memory accesses.

The only difference between Device and Strongly-ordered memory is that:

• A write to Strongly-ordered memory can complete only when it reaches the peripheral or 
memory component accessed by the write.

Table 10-1 Memory type access order

A2 Normal Device
Strongly-
ordered

A1
Normal No order enforced No order enforced No order enforced

Device No order enforced Issued in program order Issued in program order

Strongly-
ordered

No order enforced Issued in program order Issued in program order
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• A write to Device memory is permitted to complete before it reaches the peripheral or 
memory component accessed by the write.

System peripherals will almost always be mapped as Device memory.

Regions of Device memory type can be described using the Shareable attribute.

On some ARMv6 processors, the Shareable attribute of Device accesses is used to determine 
which memory interface will be used for the access, with memory accesses to areas marked as 
Device, Non-Shareable performed using a dedicated interface, the private peripheral port. This 
mechanism is not used on ARMv7 processors.

Note
 These memory ordering rules provide guarantees only about explicit memory accesses (those 
caused by load and store instructions). The architecture does not provide similar guarantees 
about the ordering of instruction fetches or translation table walks with respect to such explicit 
memory accesses.

10.1.2 Normal memory

Normal memory is used to describe most parts of the memory system. All ROM and RAM 
devices are considered to be Normal memory. 

The properties of Normal memory are as follows:

• The core can repeat read and some write accesses.

• The core can pre-fetch or speculatively access additional memory locations, with no 
side-effects (if permitted by MMU access permission settings). The core will not perform 
speculative writes, however.

• Unaligned accesses can be performed. 

• Multiple accesses can be merged by core hardware into a smaller number of accesses of 
a larger size. Multiple byte writes could be merged into a single double-word write, for 
example.

Regions of Normal memory must also have cacheability attributes described. See Chapter 8 for 
details of the supported cache policies. The ARM architecture supports cacheability attributes 
for Normal memory for two levels of cache, the inner and outer cache. The mapping between 
these levels of cache and the implemented physical levels of cache is implementation defined. 

Inner refers to the innermost caches, and always includes the core level 1 cache. An 
implementation might not have any outer cache, or it can apply the outer cacheability attribute 
to an L2 or L3 cache. For example, in a system containing a Cortex-A9 processor and the 
L2C-310 level2 cache controller, the L2C-310 is considered to be the outer cache. The 
Cortex-A8 L2 cache can be configured to use either inner or outer cache policy.

Shareability

Normal memory must also be designated either as Shareable or Non-Shareable. A region of 
Normal memory with the Non-Shareable attribute is one that is used only by this core. There is 
no requirement for the core to make accesses to this location coherent with other cores. If other 
cores do share this memory, any coherency issues must be handled in software. For example, 
this can be done by having individual cores perform cache maintenance and barrier operations.
ARM DEN0013D Copyright © 2011 – 2013 ARM. All rights reserved. 10-4
ID012214 Non-Confidential



Memory Ordering 
The Outer Shareable attribute enables the definition of systems containing multiple levels of 
coherency control. For example, an Inner Shareable domain could consist of an Cortex-A15 
cluster and Cortex-A7 cluster. Within a cluster, the data caches of the cores are coherent for all 
data accesses that have the Inner Shareable attribute. The Outer Shareable domain, meanwhile, 
might consist of this cluster and a graphics processor with multiple cores. An Outer Shareable 
domain can consist of multiple Inner Shareable domains, but and Inner Shareable domain can 
only be part of one Outer Sharable domain.

A region with the Shareable attribute set is one that can be accessed by other agents in the 
system. Accesses to memory in this region by other processors within the same shareability 
domain are coherent. This means that you do not have to take care of the effects of data or 
caches. Without the Shareable attribute, in situations where cache coherency is not maintained 
between cores for a region of shared memory, you would have to explicitly manage coherency 
yourself.

The ARMv7 architecture enables you to specify Shareable memory as Inner Shareable or Outer 
Shareable (this latter case means that the location is both Inner and Outer Shareable).
ARM DEN0013D Copyright © 2011 – 2013 ARM. All rights reserved. 10-5
ID012214 Non-Confidential



Memory Ordering 
10.2 Memory barriers
A memory barrier is an instruction that requires the core to apply an ordering constraint between 
memory operations that occur before and after the memory barrier instruction in the program. 
Such instructions can also be called memory fences in other architectures. 

The term memory barrier can also be used to refer to a compiler mechanism that prevents the 
compiler from scheduling data access instructions across the barrier when performing 
optimizations. For example in GCC, you can use the inline assembler memory clobber, to 
indicate that the instruction changes memory and therefore the optimizer cannot re-order 
memory accesses across the barrier. The syntax is as follows:

asm volatile("" ::: "memory");

ARM RVCT includes a similar intrinsic, called __schedule_barrier().

Here, however, we are looking at hardware memory barriers, provided through dedicated ARM 
assembly language instructions. As we have seen, core optimizations such as caches, write 
buffers and out-of-order execution can result in memory operations occurring in an order 
different from that specified in the executing code. Normally, this re-ordering is invisible to you. 
Application developers do not normally have to worry about memory barriers. However, there 
are cases where you might have to take care of such ordering issues, for example in device 
drivers or when you have multiple observers of the data that must be synchronized.

The ARM architecture specifies memory barrier instructions, that enable you to force the core 
to wait for memory accesses to complete. These instructions are available in both ARM and 
Thumb code, in both user and privileged modes. In older versions of the architecture, these were 
performed using CP15 operations in ARM code only. Use of these is now deprecated, although 
preserved for compatibility.

Let’s start by looking at the practical effect of these instructions in a single core system. This 
description is a simplified version of that given in the ARM Architecture Reference Manual, this 
section is intended to introduce the use of these instructions. The term explicit access is used to 
describe a data access resulting from a load or store instruction in the program. It does not 
include instruction fetches. 

Data Synchronization Barrier (DSB) 
This instruction forces the core to wait for all pending explicit data accesses to 
complete before any additional instructions stages can be executed. There is no 
effect on pre-fetching of instructions.

Data Memory Barrier (DMB) 
This instruction ensures that all memory accesses in program order before the 
barrier are observed in the system before any explicit memory accesses that 
appear in program order after the barrier. It does not affect the ordering of any 
other instructions executing on the core, or of instruction fetches.

Instruction Synchronization Barrier (ISB) 
This flushes the pipeline and prefetch buffer(s) in the core, so that all instructions 
following the ISB are fetched from cache or memory, after the instruction has 
completed. This ensures that the effects of context altering operations, for 
example, CP15 or ASID changes or TLB or branch predictor operations, executed 
before the ISB instruction are visible to any instructions fetched after the ISB. 
This does not, in itself, cause synchronization between data and instruction 
caches, but is required as a part of such an operation.
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Several options can be specified with the DMB or DSB instructions, to provide the type of access 
and the shareability domain it applies to, as follows:

SY This is the default and means that the barrier applies to the full system, including 
all cores and peripherals.

ST A barrier that waits only for stores to complete.

ISH A barrier that applies only to the Inner Shareable domain.

ISHST A barrier that combines ST and ISH. That is, it only stores to the Inner Shareable.

NSH A barrier only to the Point of Unification (PoU). (See Point of coherency and 
unification on page 8-19).

NSHST A barrier that waits only for stores to complete and only out to the point of 
unification.

OSH Barrier operation only to the Outer Shareable domain.

OSHST Barrier operation that waits only for stores to complete, and only to the Outer 
Shareable domain.

To make sense of this, you must use a more general definition of the DMB and DSB operations in 
a multi-core system. The use of the word processor (or agent) in the following text does not 
necessarily mean a core and also could refer to a DSP, DMA controller, hardware accelerator or 
any other block that accesses shared memory.

The DMB instruction has the effect of enforcing memory access ordering within a shareability 
domain. All processors within the shareability domain are guaranteed to observe all explicit 
memory accesses before the DMB instruction, before they observe any of the explicit memory 
accesses after it. 

The DSB instruction has the same effect as the DMB, but in addition to this, it also synchronizes the 
memory accesses with the full instruction stream, not only other memory accesses. This means 
that when a DSB is issued, execution will stall until all outstanding explicit memory accesses have 
completed. When all outstanding reads have completed and the write buffer is drained, 
execution resumes as normal. 

It might be easier to appreciate the effect of the barriers by considering an example. Consider 
the case of a quad core Cortex-A9 cluster. The cluster forms a single Inner Shareable domain. 
When a single core within the cluster executes a DMB instruction, that core will ensure that all 
data memory accesses in program order before the barrier complete, before any explicit memory 
accesses that appear in program-order after the barrier. This way, it can be guaranteed that all 
cores within the cluster will see the accesses on either side of that barrier in the same order as 
the core that performs them. If the DMB ISH variant is used, the same is not guaranteed for external 
observers such as DMA controllers or DSPs.
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10.2.1 Memory barrier use example

Consider the case where you have two cores A and B and two addresses in Normal memory 
(Addr1 and Addr2) held in core registers. Each core executes two instructions as shown in 
Example 10-1:

Example 10-1 Code example showing memory ordering issues

Core A: 
STR R0, [Addr1]
LDR R1, [Addr2]

Core B: 
STR R2, [Addr2]
LDR R3, [Addr1]

Here, there is no ordering requirement and you can make no statement about the order in which 
any of the transactions occur. The addresses Addr1 and Addr2 are independent and there is no 
requirement on either core to execute the load and store in the order written in the program, or 
to care about the activity of the other core.

There are therefore four possible legal outcomes of this piece of code, with four different sets 
of values from memory ending up in core A, register R1 and core B, register R3: 

• A gets the old value, B gets the old value.

• A gets the old value, B gets the new value.

• A gets the new value, B gets the old value.

• A gets the new value, B gets the new value.

If you were to involve a third core, C, you must also note that there is no requirement that it 
would observe either of the stores in the same order as either of the other cores. It is perfectly 
permissible for both A and B to see an old value in Addr1 and Addr2, but for C to see the new 
values.

Consider the case where the code on B looks for a flag being set by A and then reads memory, 
for example, if you are passing a message from A to B. We might have code similar to that in 
Example 10-2:

Example 10-2 Possible ordering hazard with postbox

Core A: 
STR R0, [Msg] @ write some new data into postbox
STR R1, [Flag] @ new data is ready to read

Core B: 
Poll_loop:

LDR R1, [Flag]
CMP R1,#0 @ is the flag set yet?
BEQ Poll_loop
LDR R0, [Msg] @ read new data. 
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Again, this might not behave in the way that is expected. There is no reason why core B is not 
permitted to speculatively perform the read from [Msg] before the read from [Flag]. This is 
normal, weakly-ordered memory and the core has no knowledge of a possible dependency 
between the two. You must explicitly enforce the dependency by inserting a memory barrier. In 
this example, you actually require two memory barriers. Core A requires a DMB between the two 
store operations, to make sure they happen in the order you originally specified. Core B requires 
a DMB before the LDR R0, [Msg] to be sure that the message is not read until the flag is set.

10.2.2 Avoiding deadlocks with a barrier

Another situation that can cause a deadlock if barrier instructions are not used is where a core 
writes to an address and then polls for an acknowledge value to be applied by a peripheral.

Example 10-3 shows the type of code that can cause a problem.

Example 10-3 Deadlock

STR R0, [Addr] @ write a command to a peripheral register
DSB
Poll_loop:

LDR R1, [Flag]
CMP R1,#0 @ wait for an acknowledge/state flag to be set
BEQ Poll_loop

Without multiprocessing extensions the ARMv7 architecture does not strictly require the store 
to [Addr] to ever complete (it could be sitting in a write buffer while the memory system is kept 
busy reading the flag), so both cores could potentially deadlock, each waiting for the other. 
Inserting a DSB after the STR for the core forces its store to be observed before it will read from 
Flag. 

Cores that implement the multiprocessing extensions are required to complete accesses in a 
finite time (that is, their write buffers must drain) and so the barrier instruction is not required. 

10.2.3 WFE and WFI Interaction with barriers

The WFE (Wait For Event) and WFI (Wait For Interrupt) instructions enable you to stop execution 
and enter a low-power state. To ensure that all memory accesses prior to executing WFI or WFE 
have been completed (and made visible to other cores), you must insert a DSB instruction. 

An additional consideration relates to usage of WFE and SEV (Send Event) in an MP system. These 
instructions enable you to reduce the power consumption associated with a lock acquire loop (a 
spinlock). A core that is attempting to acquire a mutex might find that some other core already 
has the lock. Instead of having the core repeatedly poll the lock, you can suspend execution and 
enter a low-power state, using the WFE instruction. 

The core wakes either when an interrupt or other asynchronous exception is recognized, or 
another core sends an event (with the SEV instruction). The core that had the lock will use the SEV 
instruction to wake-up other cores in the WFE state after the lock has been released. For the 
purposes of memory barrier instructions, the event signal is not treated as an explicit memory 
access. We therefore have to take care that the update to memory that releases the lock is actually 
visible to other processors before the SEV instruction is executed. This requires the use of a DSB. 
DMB is not sufficient as it only affects the ordering of memory accesses without synchronizing 
them to a particular instruction, whereas DSB will prevent the SEV from executing until all 
preceding memory accesses have been seen by other cores.
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10.2.4 Linux use of barriers

Barriers are required to enforce ordering of memory operations. Normally you will not have to 
understand, or explicitly use memory barriers. This is because they are already included within 
kernel locking and scheduling primitives. Nevertheless, writers of device drivers or those 
seeking an understanding of kernel operation might find a detailed description useful.

Both the compiler and core micro-architecture optimizations permit the order of instructions and 
associated memory operations to be changed. Sometimes, however, you want to enforce a 
specified order of execution of memory operations. For example, you can write to a memory 
mapped peripheral register. This write can have side effects elsewhere in the system. Memory 
operations that are in before or after this operation in our program can appear as if they can be 
re-ordered, as they operate on different locations. In some cases, however, you want to ensure 
that all operations complete before this peripheral write completes. Or, you might want to make 
sure that the peripheral write completes before any additional memory operations are started. 
Linux provides some functions to do this, as follows:

• Instruct the compiler that re-ordering is not permitted for a particular memory operation. 
This is done with the barrier() function call. This controls only the compiler code 
generation and optimization and has no effect on hardware re-ordering.

• Call a memory barrier function that maps to ARM processor instructions that perform the 
memory barrier operations. These enforce a particular hardware ordering. The available 
barriers are as follows (in a Linux kernel compiled with Cortex-A SMP support): 
— The read memory barrier rmb() function ensures that any read that appears before 

the barrier is completed before the execution of any read that appears after the 
barrier.

— The write memory barrier wmb() function ensures that any write that appears before 
the barrier is completed before the execution of any write that appears after the 
barrier.

— The memory barrier mb() function ensures that any memory access that appears 
before the barrier is completed before the execution of any memory access that 
appears after the barrier.

• There are corresponding SMP versions of these barriers, called smp_mb(), smp_rmb() and 
smp_wmb(). These are used to enforce ordering on Normal cacheable memory, between 
cores inside the same cluster, for example, each core in a Cortex-A15 cluster. They can be 
used with devices and they work even for normal non-cacheable memory. When the 
kernel is compiled without CONFIG_SMP, each invocation of these are expanded to 
barrier() statements.
All of the locking primitives provided by Linux include any required barrier.

For these memory barriers, it is almost always the case that a pair of barriers is required. For 
more information, see http://www.kernel.org/doc/Documentation/memory-barriers.txt.
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10.3 Cache coherency implications
The caches are largely invisible to the application programmer. However they can become 
visible when memory locations are changed elsewhere in the system or when memory updates 
made from the application code must be made visible to other parts of the system.

A system containing an external DMA device and a core provides a simple example of possible 
problems. There are two situations in which a breakdown of coherency can occur. If the DMA 
reads data from main memory while newer data is held in the core cache, the DMA will read the 
old data. Similarly, if a DMA writes data to main memory and stale data is present in the core 
cache, the core can continue to use the old data.

Therefore dirty data that is in the core data cache must be explicitly cleaned before the DMA 
starts. Similarly, if the DMA is copying data to be read by the core, it must be certain that the 
core data cache does not contain stale data. The cache will not be updated by the DMA writing 
memory and this might require the core to clean or invalidate the affected memory areas from 
the cache(s) before starting the DMA. Because all ARMv7-A processors can do speculative 
memory accesses, it will also be necessary to invalidate after using the DMA. 

10.3.1 Issues with copying code

Boot code, kernel code or JIT compilers can copy programs from one location to another, or 
modify code in memory. There is no hardware mechanism to maintain coherency between 
instruction and data caches. You must invalidate stale code from the instruction cache by 
invalidating the affected areas, and ensure that the code written has actually reached the main 
memory. Specific code sequences including instruction barriers are required if the core is then 
intended to branch to the modified code. 

10.3.2 Compiler re-ordering optimizations

It is important to understand that memory barrier instructions apply only to hardware 
re-ordering of memory accesses. Inserting a hardware memory barrier instruction might not 
have any direct effect on compiler re-ordering of operations. The volatile type qualifier in C 
tells the compiler that the variable can be changed by something other than the currently 
executing code that is accessing it. This is often used for C language access to memory mapped 
I/O, enabling such devices to be safely accessed through a pointer to a volatile variable. The C 
standard does not provide rules relating to the use of volatile in systems with multiple cores. 
So, although you can be sure that volatile loads and stores will happen in program specified 
order with respect to each other, there are no such guarantees about re-ordering of accesses 
relative to non-volatile loads or stores. This means that volatile does not provide a shortcut to 
implement mutexes.
ARM DEN0013D Copyright © 2011 – 2013 ARM. All rights reserved. 10-11
ID012214 Non-Confidential



Chapter 11 
Exception Handling

An exception is any condition that requires the core to halt normal execution and instead execute a 
dedicated software routine known as an exception handler associated with each exception type. 
Exceptions are conditions or system events that usually requires remedial action or an update of 
system status by privileged software to ensure smooth functioning of the system. This is called 
handling an exception. When the exception has been handled, privileged software prepares the core 
to resume whatever it was doing before taking the exception. Other architectures might refer to 
what ARM calls exceptions as traps or interrupts, however, in the ARM architecture, these terms 
are reserved for specific types of exceptions, described in Types of exception on page 11-3.

All microprocessors must respond to external asynchronous events, such as a button being pressed, 
or a clock reaching a certain value. Normally, there is specialized hardware that activates input lines 
to the core. This causes the core to temporarily stop the current program sequence and execute a 
special privileged handler routine. The speed that a core can respond to such events might be a 
critical issue in system design, and is called interrupt latency. Indeed in many embedded systems, 
there is no main program as such – all of the functions of the system are handled by code that runs 
from interrupts, and assigning priorities to these is a key area of design. Rather than the core 
constantly testing flags from different parts of the system to see if there is something to be done, 
the system informs the core that something has to happen, by generating an interrupt. Complex 
systems have very many interrupt sources with different levels of priority and requirements for 
nested interrupt handling in which a higher priority interrupt can interrupt a lower priority one.

In normal program execution, the program counter increments through the address space, with 
explicit branches in the program modifying the flow of execution, for example, for function calls, 
loops, and conditional code. When an exception occurs, this pre-determined sequence of execution 
is interrupted, and temporarily switches to a routine to handle the exception.
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In addition to responding to external interrupts, there are a number of other things that can cause 
the core to take an exception, both external, such as resets, external aborts from the memory 
system, and internal, such as MMU generated aborts or OS calls using the SVC instruction. You 
will recall from Chapter 3 that dealing with exceptions causes the core to switch between modes 
and copy some registers into others. Readers new to the ARM architecture might want to refresh 
their understanding of the modes and registers described in Chapter 3, before continuing with 
this chapter.
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11.1 Types of exception
Table 3-1 on page 3-1, describes how the ARMv7-A and ARMv7-R architectures support a 
number of processor modes, six privileged modes called FIQ, IRQ, Supervisor, Abort, 
Undefined and System, and the non-privileged User mode. The Hyp mode and Monitor modes 
can be added to the list if the Virtualization Extensions and Security Extensions are 
implemented. The current mode can change under privileged software control or automatically 
when taking an exception.

Unprivileged user mode cannot directly affect the exception behavior of a core, but can generate 
an SVC exception to request privileged services. This is how user applications requests the 
Operating System to accomplish tasks on behalf of them.

When an exception occurs, the core saves the current status and the return address, enters a 
specific mode and possibly disables hardware interrupts. Execution handling for a given 
exception starts from a fixed memory address called an exception vector for that exception. 
Privileged software can program the location of a set of exception vectors into system registers, 
and they are executed automatically when respective exceptions are taken.

The following types of exception exist:

Interrupts There are two types of interrupts provided on ARMv7-A cores, called IRQ and 
FIQ. 
FIQ is higher priority than IRQ. FIQ also has some potential speed advantages 
owing to its position in the vector table and the higher number of banked registers 
available in FIQ mode. This potentially saves clock cycles on pushing registers to 
the stack within the handler. Both of these kinds of exception are typically 
associated with input pins on the core – external hardware asserts an interrupt 
request line and the corresponding exception type is raised when the current 
instruction finishes executing, assuming that the interrupt is not disabled.
Both FIQ and IRQ are physical signals to the core, and when asserted, the core 
will take the corresponding exception if it is currently enabled. On almost all 
systems, various interrupts sources will be connected using an interrupt 
controller. The interrupt controller arbitrates and prioritizes interrupts, and in turn 
provides a serialized single signal that is then connected to the FIQ or IRQ signal 
of the core. For more information see The Generic Interrupt Controller on 
page 12-7.
Because the occurrence of IRQ and FIQ interrupts are not directly related to the 
software being executed by the core at any given time, they are classified as 
asynchronous exceptions.

Aborts Aborts can be generated either on failed instruction fetches (prefetch aborts) or 
failed data accesses (data aborts). They can come from the external memory 
system giving an error response on a memory access (indicating perhaps that the 
specified address does not correspond to real memory in the system). 
Alternatively, the abort can be generated by the Memory Management Unit 
(MMU) of the core. An operating system can use MMU aborts to dynamically 
allocate memory to applications. 
An instruction can be marked within the pipeline as aborted, when it is fetched. 
The prefetch abort exception is taken only if the core then tries to execute it. The 
exception takes place before the instruction executes. If the pipeline is flushed 
before the aborted instruction reaches the execute stage of the pipeline, the abort 
exception will not occur. A data abort exception happens when a load or store 
instruction executes and is considered to happen after the data read or write has 
been attempted. 
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An abort is described as synchronous if it is generated as a result of execution or 
attempted execution of the instruction stream, and where the return address will 
provide details of the instruction that caused it. 
An asynchronous abort is not generated by executing instructions, while the 
return address might not always provide details of what caused the abort.
The ARMv7 architecture distinguishes between precise and imprecise 
asynchronous aborts. Aborts generated by the MMU are always synchronous. 
The architecture does not require particular classes of externally aborted accesses 
to be synchronous. 
For example, on a particular implementation, an external abort reported on a 
translation table walk might be treated as precise, but this is not required for all 
cores. For precise asynchronous aborts, the abort handler can be certain which 
instruction caused the abort and that no additional instructions were executed 
after that instruction. This is in contrast to an imprecise asynchronous abort, the 
result when the external memory system reports an error on an unidentifiable 
access. 
In this case, the abort handler cannot determine which instruction caused the 
problem, or if additional instructions might have executed after the one that 
generated the abort. 
For example, if a buffered write receives an error response from the external 
memory system, additional instructions will have been executed after the store. 
This means that it is impossible for the abort handler to fix the problem and return 
to the application. All it can do is to kill the application that caused the problem. 
Device probing therefore requires special handling, as externally reported aborts 
on reads to non-existent areas will generate imprecise synchronous aborts even 
when such memory is marked as Strongly-ordered, or Device. 
Detection of asynchronous aborts is controlled by the CPSR A bit. If the A bit is 
set, asynchronous aborts from the external memory system will be recognized by 
the core, but no abort exception is generated. Instead, the core keeps the abort 
pending until the A bit is cleared and takes an exception at that time. Kernel code 
will use a barrier instruction to ensure that pending asynchronous aborts are 
recognized against the correct application. If a thread has to be killed because of 
an imprecise abort, it must be the correct one! 

Reset All cores have a reset input and will take the reset exception immediately after 
they have been reset. It is the highest priority exception and cannot be masked. 
This exception is used to execute code on the core to initialize it, after power up.

Exception generating instructions 
Execution of certain instructions can generate exceptions. Such instructions are 
typically executed to request a service from software that runs at a higher 
privilege level:
• The Supervisor Call (SVC) instruction enables User mode programs to 

request an Operating System service.
• The Hypervisor Call (HVC) instruction, available if the Virtualization 

Extensions are implemented, enables the guest OS to request Hypervisor 
services.

• The Secure Monitor Call (SMC) instruction, available if the Security 
Extensions are implemented, enables the Normal world to request Secure 
world services.

Any attempt to execute an instruction that is not recognized by the core generates 
an UNDEFINED exception.
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When an exception occurs, the core executes the handler corresponding to that exception. The 
location in memory where the handler is stored is called the exception vector. In the ARM 
architecture, exception vectors are stored in a table, called the exception vector table. Vectors 
for individual exception can therefore be located at fixed offsets from the beginning of the table. 
The table base is programmed in a system register by privileged software so that the core can 
locate the respective handler when an exception occurs. The fixed offsets for exceptions are 
shown in Table 11-3 on page 11-9.

Separate vector tables can be configured for Secure PL1, Non-secure PL1, Secure monitor and 
Non-secure PL2 privilege levels. The table the core uses to look up the handler depends on 
current execution privilege, and also on what privilege or security state it is configured to be 
taken to.

You can write the exception handlers in either ARM or Thumb code. The CP15 SCTLR.TE bit 
is used to specify whether exception handlers will use ARM or Thumb. When handling 
exceptions, the prior mode, state, and registers of the core must be preserved so that the program 
can be resumed after the exception has been handled. 
ARM DEN0013D Copyright © 2011 – 2013 ARM. All rights reserved. 11-5
ID012214 Non-Confidential



Exception Handling 
11.1.1 Exception priorities
When exceptions occur simultaneously, each exception is handled in turn before returning to the 
original application. It is not possible for all exceptions to occur concurrently. For example, the 
Undefined instruction (Undef) and supervisor call (SVC) exceptions are mutually exclusive 
because they are both triggered by executing an instruction.

Note
 The ARM architecture does not define when asynchronous exceptions are taken. Therefore the 
prioritization of asynchronous exceptions relative to other exceptions, both synchronous and 
asynchronous, is implementation defined.

All exceptions disable IRQ, only FIQ and reset disable FIQ. This is done by the core 
automatically setting the CPSR I (IRQ) and F (FIQ) bits. 

So, unless the handler explicitly disables it, an FIQ exception can interrupt an abort handler or 
IRQ exception. In the case of a data abort and FIQ occurring simultaneously, the data abort 
(which has higher priority) is taken first. This lets the core record the return address for the data 
abort. But as FIQ is not disabled by data abort, the core then takes the FIQ exception 
immediately. At the end of the FIQ you return back to the data abort handler.

More than one exception can potentially be generated at the same time, but some combinations 
are mutually exclusive. A prefetch abort marks an instruction as invalid and so cannot occur at 
the same time as an undefined instruction or SVC (and of course, an SVC instruction cannot also 
be an undefined instruction). These instructions cannot cause any memory access and therefore 
cannot cause a data abort. The architecture does not define when asynchronous exceptions, FIQ, 
IRQ or asynchronous aborts must be taken, but the fact that taking an IRQ or data abort 
exception does not disable FIQ exceptions means that FIQ execution will be prioritized over 
IRQ or asynchronous abort handling.

Exception handling on the core is controlled through the use of an area of memory called the 
vector table. This lives by default at the bottom of the memory map in word-aligned addresses 
from 0x00 to 0x1C. Most of the cached cores enable the vector table to be moved from 0x0 to 
0xFFFF0000.

The situation is more complicated for cores with Security Extensions. Here there are three 
vector tables, Non-secure, Secure and Secure Monitor. For cores with the Virtualization 
Extension there are four, adding a Hypervisor vector table. For cores with an MMU, all these 
vector addresses are virtual.

Table 11-1 Summary of exception behavior

Normal 
Vector offset

High vector 
address Non-secure Secure Hypervisora Monitor

0x0 0xFFFF0000 Not used Reset Reset Not used

0x4 0xFFFF0004 UNDEFINED 
instruction

UNDEFINED 
instruction

UNDEFINED 
instruction from 
Hyp mode.

Not used

0x8 0xFFFF0008 Supervisor 
Call

Supervisor Call Secure Monitor Call Secure 
Monitor Call

0xC 0xFFFF000C Prefetch 
Abort

Prefetch Abort Prefetch Abort from 
Hyp mode.

Prefetch Abort
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11.1.2 Exception mode summary

Table 11-2 lists the state of the interrupt disabling I and F bits of the CPSR on entering an 
exception handler.

11.1.3 The Vector table

The first column in Table 11-1 on page 11-6 gives the vector offset within the vector table 
associated with the particular type of exception. This is a table of instructions that the ARM core 
jumps to when an exception is raised. These instructions are located in a specific place in 
memory. The default vector base address is 0x00000000, but most ARM cores permit the vector 
base address to be moved to 0xFFFF0000 (or HIVECS). All Cortex-A series processors permit this, 
and it is the default address selected by the Linux kernel. Cores that implement the Security 
Extensions can additionally set the vector base address, separately for Secure and Non-secure 
states, using the CP15 Vector Base Address registers.

0x10 0xFFFF0010 Data Abort Data Abort Data Abort from 
Hyp mode,

Data Abort

0x14 0xFFFF0014 Not used Not used Hyp mode entry Not used

0x18 0xFFFF0018 IRQ interrupt IRQ interrupt IRQ interrupt IRQ interrupt

0x1C 0xFFFF001C FIQ interrupt FIQ interrupt FIQ interrupt FIQ interrupt

a. Hypervisor entry exception (described in Chapter 22 Virtualization) is available only in cores that support 
Virtualization Extensions and is unused in other cores.

Table 11-1 Summary of exception behavior (continued)

Normal 
Vector offset

High vector 
address Non-secure Secure Hypervisora Monitor

Table 11-2 CPSR behavior

Exception Mode CPSR interrupt mask

Reset Supervisor F = 1
I = 1

UNDEFINED instruction Undef I = 1

Supervisor Call Supervisor I = 1

Prefetch Abort Abort I = 1

Data Abort Abort I = 1

Not used HYP -

IRQ interrupt IRQ I = 1

FIQ interrupt FIQ F = 1
I = 1
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You will notice that there is a single word address associated with each exception type. 
Therefore, only a single instruction can be placed in the vector table for each exception 
(although, in theory, two 16-bit Thumb instructions could be used). Therefore, the vector table 
entry almost always contains one of the following two forms of branches.

B<label> 
This performs a PC-relative branch. It is suitable for calling exception handler 
code that is close enough in memory that the 24-bit field provided in the branch 
instruction is large enough to encode the offset.

LDR PC, [PC, #offset] 
This loads the PC from a memory location whose address is defined relative to 
the address of the exception instruction. This lets the exception handler be placed 
at any arbitrary address within the full 32-bit memory space (but takes some extra 
cycles relative to the simple branch).

When the core is operating in Hyp mode, it uses Hyp mode vector entries, that are taken from a 
dedicated vector table belonging to the hypervisor. Hypervisor mode is entered through a special 
exception process called Hyp trap entry that makes use of the previously reserved 0x14 address 
within the vector table. A dedicated register (the Hyp Syndrome Register) gives information to 
the hypervisor about the exception or other reason for entering the hypervisor (a trapped CP15 
operation, for example).

11.1.4 FIQ and IRQ

FIQ is reserved for a single, high-priority interrupt source that requires a guaranteed fast 
response time, with IRQ used for all of the other interrupts in the system.

As FIQ is the last entry in the vector table, the FIQ handler can be placed directly at the vector 
location and run sequentially from that address. This avoids a branch instruction and any 
associated delay, speeding up FIQ response times. The extra banked registers available in FIQ 
mode relative to other modes allows state to be retained between calls to the FIQ handler, again 
increasing execution speed by potentially removing the need to push some registers before using 
them.

A further key difference between IRQ and FIQ is that the FIQ handler is not expected to 
generate any other exceptions. FIQ is therefore reserved for special system-specific devices 
which have all their memory mapped and no need to make SVC calls to access kernel functions 
(so FIQ can be used only by code which does not need to use the kernel API). 

FIQ is not typically used by Linux. As the kernel is architecture-independent, it does not have 
a concept of multiple forms of interrupt. Some systems running Linux can still make use of FIQ, 
but as the Linux kernel never disables FIQs they have priority over anything else in the system 
and so some care is required.

11.1.5 The return instruction

The Link Register (LR) is used to store the appropriate return address for the PC after the 
exception has been handled. Its value must be modified as shown in Table 11-3 on page 11-9, 
depending on the type of exception occurred.The ARM Architecture Reference Manual defines 
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the LR values that are appropriate (the definition derives from the values that were convenient 
for early hardware implementations) Table 11-3 also supplies an example return instruction 
from the exception that includes this adjustment.

Table 11-3 Link Register Adjustments

Exception Adjustment Return instruction Instruction returned to

SVC 0 MOVS PC, R14 Next instruction

Undef 0 MOVS PC, R14 Next instruction

Prefetch Abort -4 SUBS PC, R14, #4 Aborting instruction

Data abort -8 SUBS PC, R14, #8 Aborting instruction if precise

FIQ -4 SUBS PC, R14, #4 Next instruction

IRQ -4 SUBS PC, R14, #4 Next instruction
ARM DEN0013D Copyright © 2011 – 2013 ARM. All rights reserved. 11-9
ID012214 Non-Confidential



Exception Handling 
11.2 Exception handling
When an exception occurs, the ARM core automatically does the following: 

1. Copies the CPSR to the SPSR_<mode>, the banked register specific to the (non-user) 
mode of operation.

2. Stores a return address in the Link Register (LR) of the new mode.

3. Modifies the CPSR mode bits to a mode associated with the exception type. 
• The other CPSR mode bits are set to values determined by bits in the CP15 System 

Control Register. 
• The T bit is set to the value given by the CP15 TE bit.
• The J bit is cleared and the E bit (Endianness) is set to the value of the EE 

(Exception Endianness) bit.
This enables exceptions to always run in ARM or Thumb state and in little or big-endian, 
irrespective of the state the core was in before the exception.

4. Sets the PC to point to the relevant instruction from the exception vector table.

Figure 11-1 Taking the exception

When in the new mode the core will access the register associated with that mode, as shown in 
Figure 3-5 on page 3-7.

It will almost always be necessary for the exception handler software to save registers onto the 
stack immediately on exception entry. FIQ mode has more banked registers and so a simple 
handler might be able to be written in a way that requires no stack usage.

A special assembly language instruction is provided to assist with saving the necessary registers, 
called SRS (Store Return State). This instruction pushes the LR and SPSR onto the stack of any 
mode; the stack to be used is specified by the instruction operand. 

11.2.1 Exit from an exception handler

To return from an exception handler, two separate operations must take place atomically:

1. Restore the CPSR from the saved SPSR.

1

Save status
Change status

Program 
flow
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Figure 11-2 Returning from an exception

2. Set the PC to the return address offset, see Table 11-1 on page 11-6. 

In the ARM architecture this can be achieved either by using the RFE instruction or any 
flag-setting data processing operation (with the S suffix) with the PC as the destination register, 
such as SUBS PC, LR, #offset (note the S). The Return From Exception (RFE) instruction pops the 
link register and SPSR off the current mode stack.

There are a number of ways to achieve this.

• You can use a data processing instruction to adjust and copy the LR into the PC, for 
example:

SUBS pc, lr, #4

Specifying the S means the SPSR is copied to the CPSR at the same time.
If the exception handler entry code uses the stack to store registers that must be preserved 
while it handles the exception, it can return using a load multiple instruction with the ^ 
qualifier. For example, an exception handler can return in one instruction using:
LDMFD sp! {pc}^
LDMFD sp!,{R0-R12,pc}^

The ^ qualifier in this example means the SPSR is copied to the CPSR at the same time.
To do this, the exception handler must save the following onto the stack:
— All the work registers in use when the handler is invoked.
— The link register, modified to produce the same effect as the data processing 

instructions.

Note
 You cannot use 16-bit Thumb instructions to return from exceptions because these are 

unable to restore the CPSR.

• The RFE instruction (See RFE on page A-35) restores the PC and SPSR from the stack of 
the current mode.
RFEFD sp!

1

Save status
Change status

Program 
flow

2
Return from 
exception

Exception 
handler
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11.3 Other exception handlers
This section briefly describes handlers for aborts, undefined instructions and SVC exceptions 
and considers how interrupts are handled by the Linux kernel. Reset handlers are covered in 
Chapter 13 Boot Code.

11.3.1 Abort handler

Abort handler code can vary significantly between systems. In many embedded systems, an 
abort indicates an unexpected error and the handler will record any diagnostic information, 
report the error and have the application (or system) quit gracefully.

In systems that support virtual memory using an MMU, the abort handler can load the required 
virtual page into physical memory. In effect, it tries to fix the cause of the original abort and then 
return to the instruction that aborted and re-execute it. Chapter 9 gives more information about 
how Linux does this.

CP15 registers provide the address of the memory access that caused an abort (the Fault Address 
Register) and the reason for the abort (Fault Status Register). The reason might be lack of access 
permission, an external abort or an address translation fault. In addition, the link register (with 
a –8 or –4 adjustment, depending on whether the abort was caused by an instruction fetch or a 
data access), gives the address of the instruction that caused the abort exception. By examining 
these registers, the last instruction executed and possibly other things in the system, for 
example, translation table entries, the abort handler can determine what action to take. 

11.3.2 Undefined instruction handling

An undefined instruction exception is taken if the core tries to execute an instruction with an 
opcode, described in the ARM architecture specification as UNDEFINED, or when a coprocessor 
instruction is executed but no coprocessor recognizes it as an instruction that it can execute.

In some systems, it is possible that code includes instructions for a coprocessor (such as a VFP 
coprocessor), but that no corresponding VFP hardware is present in the system. In addition, it 
is possible that the VFP hardware cannot handle the particular instruction and wants to call 
software to emulate it. Alternatively, the VFP hardware might be disabled, and you take the 
exception so that it can be enabled and then re-execute the instruction.

Such emulators are called through the undefined instruction vector. They examine the 
instruction opcode that caused the exception and determine what action to take (for example, 
perform the appropriate floating-point operation in software). In some cases, such handlers 
might have to be daisy-chained together (for example, there might be multiple coprocessors to 
emulate).

If there is no software that makes use of undefined or coprocessor instructions, the handler for 
the exception must record suitable debug information and kill the application that failed because 
of this unexpected event.

An additional use for the undefined instruction exception in some cases is to implement user 
breakpoints, see Chapter 24 Debug for more information on breakpoints. See also the 
description of the Linux context switch for VFP in Context switching on page 6-10.

11.3.3 SVC exception handling

A supervisor call (SVC) is typically used to enable User mode code to access OS functions. For 
example, if user code wants to access privileged parts of the system (for example to perform file 
I/O) it will typically do this using an SVC instruction. 
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Parameters can be passed to the SVC handler either in registers or (less frequently) by using the 
comment field within the opcode.

An exception handler might have to determine whether the core was in ARM or Thumb state 
when the exception occurred.

SVC handlers, especially, might have to read the instruction set state. This is done by examining 
the SPSR T-bit. This bit is set for Thumb state and clear for ARM state.

Both ARM and Thumb instruction sets have the SVC instruction. When calling SVCs from 
Thumb state, you must consider the following:

• The instruction address is at LR-2, rather than LR-4.

• The instruction itself is 16-bit, and so requires a halfword load,

• The SVC number is held in 8 bits instead of the 24 bits in ARM state.

• The SVC number is held in 8 bits instead of the 24 bits in ARM state.

Code to illustrate SVC usage with the Linux kernel is shown in Example 11-1.

Example 11-1 Linux kernel SVC usage

_start:
MOV     R0, #1 @ STDOUT
ADR R1, msgtext @ Address
MOV     R2, #13 @ Length
MOV     R7, #4 @ sys_write
SVC #0
....

.align 2
msgtxt:

.asciz "Hello World\n"

The SVC #0 instruction makes the ARM core take the SVC exception, the mechanism to access a 
kernel function. Register R7 defines which system call you want (in this case, sys_write). The 
other parameters are passed in registers; for sys_write you have R0 telling where to write to, 
R1 pointing to the characters to be written and R2 giving the length of the string.
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11.4 Linux exception program flow
Linux utilizes a cross-platform framework for exception handling that does not distinguish 
between different privileged core modes when handling exceptions. Therefore, the ARM 
implementation uses an exception handler stub to enable the kernel to handle all exceptions in 
SVC mode. All exceptions other than SVC and FIQ use the stub to switch to SVC mode and 
invoke the correct exception handler.

11.4.1 Boot process

During the boot process, the kernel will allocate a 4KB page as the vector page. It maps this to 
the location of the exception vectors, virtual address 0xFFFF0000 or 0x00000000. This is done by 
devicemaps_init() in the file arch/arm/mm/mmu.c. This is invoked very early in the ARM system 
boot. After this, trap_init (in arch/arm/kernel/traps.c), copies the exception vector table, 
exception stubs and kuser helpers into the vector page. The exception vector table obviously has 
to be copied to the start of the vector page, the exception stubs being copied to address 0x200 
(and kuser helpers copied to the top of the page, at 0x1000 - kuser_sz), using a series of memcpy() 
operations, as shown in Example 11-2.

Example 11-2 Copying exception vectors during Linux boot

unsigned long vectors = CONFIG_VECTORS_BASE; 

memcpy((void *)vectors, __vectors_start, __vectors_end - __vectors_start);
memcpy((void *)vectors + 0x200, __stubs_start, __stubs_end - __stubs_start); 
memcpy((void *)vectors + 0x1000 - kuser_sz, __kuser_helper_start, kuser_sz);

When the copying is complete, the kernel exception handler is in its runtime dynamic status, 
ready to handle exceptions

11.4.2 Interrupt dispatch

There are two different handlers, __irq_usr and __irq_svc. These save all of the core registers 
and use a macro get_irqnr_and_base that indicates if there is an interrupt pending. The handlers 
loop around this code until no interrupts remain. If there is an interrupt, the code will branch to 
do_IRQ that exists in arch/arm/kernel/irq.c.

At this point, the code is the same in all architectures and you call an appropriate handler written 
in C.

There is, however, an additional point to consider. When the interrupt is completed, you would 
normally have to check whether or not the handler has done something that requires the kernel 
scheduler to be called. If the scheduler decides to go to a different thread, the one that was 
originally interrupted stays dormant until it is selected to run again.
ARM DEN0013D Copyright © 2011 – 2013 ARM. All rights reserved. 11-14
ID012214 Non-Confidential



Chapter 12 
Interrupt Handling

Older versions of the ARM architecture enabled implementers considerable freedom in the design 
of an external interrupt controller, with no agreement over the number or types of interrupts or the 
software model to be used to interface to the interrupt controller block. The Generic Interrupt 
Controller v2 (GIC) architecture provides a much more tightly controlled specification, with a 
greater degree of consistency between interrupt controllers from different manufacturers. This 
enables interrupt handler code to be more portable. 
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12.1 External interrupt requests
Types of exception on page 11-3, described how all ARM cores have two external interrupt 
requests, FIQ and IRQ. Both of these are level-sensitive active-LOW inputs. Individual 
implementations have interrupt controllers that accept interrupt requests from a wide variety of 
external sources and map them onto FIQ or IRQ, causing the core to take an exception. 

In general, an interrupt exception can be taken only when the appropriate CPSR disable bit (the 
F and I bits respectively) is clear and if the corresponding input is asserted.

The CPS instruction provides a simple mechanism to enable or disable the exceptions controlled 
by CPSR A, I and F bits (asynchronous abort, IRQ and FIQ respectively).

CPS IE or CPS ID will enable or disable exceptions respectively. The exceptions to be enabled or 
disabled are specified using one or more of the letters A, I and F. Exceptions whose 
corresponding letters are omitted will not be modified.

In Cortex-A series processors, it is possible to configure the core so that FIQs cannot be masked 
by software. This is known as Non-Maskable FIQ and is controlled by a hardware configuration 
input signal that is sampled when the core is reset. They will still be masked automatically on 
taking an FIQ exception.

12.1.1 Assigning interrupts

A system will always have an interrupt controller that accepts and arbitrates interrupts from 
multiple sources. This typically contains a number of registers enabling software running on the 
core to mask individual interrupt sources, to acknowledge interrupts from external devices, to 
assign priorities to individual interrupt sources and to determine which interrupt sources are 
currently requesting attention or require servicing.

This interrupt controller can be a design specific to the system, or it can be an implementation 
of the ARM Generic Interrupt Controller (GIC) architecture, described in The Generic 
Interrupt Controller on page 12-7.

12.1.2 Simplistic interrupt handling

This represents the simplest kind of interrupt handler. On taking an interrupt, additional 
interrupts of the same kind are disabled until explicitly enabled later. We can only handle 
additional interrupts at the completion of the first interrupt request and there is no scope for a 
higher priority or more urgent interrupt to be handled during this time. This is not generally 
suitable for complex embedded systems, but it is useful to examine before proceeding to a more 
realistic example, in this case of a non re-entrant interrupt handler.

The steps taken to handle an interrupt are as follows:

1. An IRQ exception is raised by external hardware. The core performs several steps 
automatically. The contents of the PC in the current execution mode are stored in 
LR_IRQ. The CPSR register is copied to SPSR_IRQ. The CPSR content is updated so that 
the mode bits reflects the IRQ mode, and the I bit is set to mask additional IRQs. The PC 
is set to the IRQ entry in the vector table.
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Figure 12-1 Save the context of the program

2. The instruction at the IRQ entry in the vector table (a branch to the interrupt handler) is 
executed.

3. The interrupt handler saves the context of the interrupted program, that is, it pushes onto 
the stack any registers that will be corrupted by the handler. These registers will be popped 
from stack when the handler finishes execution.

Figure 12-2

4. The interrupt handler determines which interrupt source must be processed and calls the 
appropriate device driver.
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5. Prepare the core to switch to previous execution state by copying the SPSR_IRQ to CPSR, 
and restoring the context saved earlier, and finally the PC is restored from LR_IRQ.

Figure 12-3

The same sequence is also applicable to an FIQ interrupt.

A very simple interrupt handler is shown in Example 12-1.

Example 12-1 Simple interrupt handler

IRQ_Handler
PUSH {r0-r3, r12, lr} @ Store AAPCS registers and LR onto the IRQ mode stack
BL @ identify_and_clear_source
BL @ C-irq_handler
POP {r0-r3, r12, lr} @ Restore registers and
SUBS pc, lr, #4 @ return from exception using modified LR

12.1.3 Nested interrupt handling

Nested interrupt handling is where the software is prepared to accept another interrupt, even 
before it finishes handling the current interrupt. This enables you to prioritize interrupts and 
make significant improvements to the latency of high priority events at the cost of additional 
complexity. It is worth noting that nested interrupt handling is a choice made by the software, 
by virtue of interrupt priority configuration and interrupt control, rather than imposed by 
hardware.

A reentrant interrupt handler must save the IRQ state and then switch core modes, and save the 
state for the new core mode, before it branches to a nested subroutine or C function with 
interrupts enabled. This is because a fresh interrupt could occur at any time, which would cause 
the core to store the return address of the new interrupt and overwrite the original interrupt. 
When the original interrupt attempts to return to the main program, it will cause the system to 
fail. The nested handler must change into an alternative kernel mode before re-enabling 
interrupts in order to prevent this.
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Figure 12-4  Nested interrupts

Note
 A computer program is reentrant if it can be interrupted in the middle of its execution and then 
be called again before the previous version has completed.

In Figure 12-4 the value of SPSR must be preserved before interrupts are re-enabled. If it is not, 
any new interrupt will overwrite the value of SPSR_irq. The solution to this is to stack the SPSR 
before re-enabling the interrupts by using the following:

SRSFD  sp!, #0x12

Additionally, using the BL instruction within the interrupt handler code will cause LR_IRQ 
corruption. The solution is to switch to Supervisor mode before using the BL instruction.

A reentrant interrupt handler must therefore take the following steps after an IRQ exception is 
raised and control is transferred to the interrupt handler in the way previously described.

1. The interrupt handler saves the context of the interrupted program (that is, it pushes onto 
the alternative kernel mode stack any registers that will be corrupted by the handler, 
including the return address and SPSR_IRQ).

2. It determines which interrupt source must be processed and clears the source in the 
external hardware (preventing it from immediately triggering another interrupt).

3. The interrupt handler changes to the core SVC mode, leaving the CPSR I bit set (interrupts 
are still disabled).

4. The interrupt handler saves the exception return address on the stack (a stack for the new 
mode, located in kernel memory) and re-enables interrupts.

5. It calls the appropriate handler code.

6. On completion, the interrupt handler disables IRQ and pops the exception return address 
from the stack.
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7. It restores the context of the interrupted program directly from the alternative kernel mode 
stack. This includes restoring the PC, and the CPSR which switches back to the previous 
execution mode. If the SPSR does not have the I bit set then the operation also re-enables 
interrupts.

Sample code for a nested interrupt handler (for non-vectored interrupts) is given in 
Example 12-2.

Example 12-2  Nested interrupt handler

IRQ_Handler
SUB lr, lr, #4

SRSFD sp!, #0x1f @ use SRS to save LR_irq and SPSR_irq in one step onto the
@ System mode stack

CPS #0x1f @ Use CPS to switch to system mode

PUSH {r0-r3, r12} @S tore remaining AAPCS registers on the System mode stack
AND r1, sp, #4 @ Ensure stack is 8-byte aligned. Store adjustment and

@ LR_sys to stack
SUB sp, sp, r1
PUSH {r1, lr}

BL @ identify_and_clear_source

CPSIE i @ Enable IRQ with CPS

BL C_irq_handler

CPSID i @ Disable IRQ with CPS

POP  {r1, lr} @ Restore LR_sys
ADD sp, sp, r1 @ Unadjust stack
POP {r0-r3, r12} @ Restore AAPCS registers
RFEFD sp! @ Return using RFE from the System mode stack.
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12.2 The Generic Interrupt Controller
The GIC architecture defines a Generic Interrupt Controller (GIC) that comprises a set of 
hardware resources for managing interrupts in a single or multi-core system. The GIC provides 
memory-mapped registers that can be used to manage interrupt sources and behavior and (in 
multi-core systems) for routing interrupts to individual cores. It enables software to mask, 
enable and disable interrupts from individual sources, to prioritize (in hardware) individual 
sources and to generate software interrupts. It also provides support for the TrustZone Security 
Extensions described in Chapter 21 Security. The GIC accepts interrupts asserted at the system 
level and can signal them to each core it is connected to, potentially resulting in an IRQ or FIQ 
exception being taken.

From a software perspective, a GIC has two major functional blocks:

Distributor 
to which all interrupt sources in the system are wired. The distributor has registers 
to control the properties of individual interrupts such as priority, state, security, 
routing information and enable status. The distributor determines which interrupt 
is to be forwarded to a core, through the attached CPU interface.

CPU Interface 
through which a core receives an interrupt. The CPU interface hosts registers to 
mask, identify and control states of interrupts forwarded to that core. There is a 
separate CPU interface for each core in the system.

Interrupts are identified in the software by a number, called an interrupt ID. An interrupt ID 
uniquely corresponds to an interrupt source. Software can use the interrupt ID to identify the 
source of interrupt and to invoke the corresponding handler to service the interrupt. The exact 
interrupt ID presented to the software is determined by the system design,

Interrupts can be of a number of different types:

Software Generated Interrupt (SGI) 
This is generated explicitly by software by writing to a dedicated distributor 
register, the Software Generated Interrupt Register (ICDSGIR). It is most 
commonly used for inter-core communication. SGIs can be targeted at all, or a 
selected group of cores in the system. Interrupt numbers 0-15 are reserved for 
this. The exact interrupt number used for communication is at the discretion of 
software.

Private Peripheral Interrupt (PPI) 
This is generated by a peripheral that is private to an individual core. Interrupt 
numbers 16-31 are reserved for this. These identify interrupt sources private to 
the core, and is independent of the same source on another core, for example, 
per-core timer.

Shared Peripheral Interrupt (SPI) 
This is generated by a peripheral that the Interrupt Controller can route to more 
than one core. Interrupt numbers 32-1020 are used for this. SPIs are used to signal 
interrupts from various peripherals accessible across the whole the system.

Interrupts can either be edge-triggered (considered to be asserted when the Interrupt Controller 
detects a rising edge on the relevant input – and to remain asserted until cleared) or 
level-sensitive (considered to be asserted only when the relevant input to the Interrupt 
Controller is HIGH).
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An interrupt can be in a number of different states:

• Inactive – this means that the interrupt is not asserted yet.

• Pending – this means that the interrupt source has been asserted, but is waiting to be 
handled by a core. Pending interrupts are candidates to be forwarded to the CPU interface 
and then later on to the core.

• Active – this describes an interrupt that has been acknowledged by a core and is currently 
being serviced.

• Active and pending – this describes the situation where a core is servicing the interrupt 
and the GIC also has a pending interrupt from the same source.

The priority and list of cores to which an interrupt can be delivered to are all configured in the 
distributor. An interrupt asserted to the distributor by a peripheral will be marked in Pending 
state (or Active and Pending if was already Active). The distributor determines the highest 
priority pending interrupt that can be delivered to a core and forwards that to the CPU interface 
of the core. At the CPU interface, the interrupt is in turn signalled to the core, at which point the 
core takes the FIQ or IRQ exception. 

The core executes the exception handler in response. The handler must query the interrupt ID 
from a CPU interface register and begin servicing the interrupt source. When finished, the 
handler must write to a CPU interface register to report the end of processing. Later on the CPU 
interface is prepared to signal the next interrupt forwarded to it by the distributor.

While servicing an interrupt, the distributor cycles through Pending, Active states, ending in 
Inactive state when it has finished. The state of an interrupt is therefore reflected in the 
distributor registers.

More detailed information on GIC behavior can be found in the TRMs for the individual 
processor types and in the ARM Generic Interrupt Controller Architecture specification.

12.2.1 Configuration

The GIC is accessed as a memory-mapped peripheral. All cores can access the common 
distributor block, but the CPU interface is banked, that is, each core uses the same address to 
access its own private CPU interface. It is not possible for a core to access the CPU interface of 
another core. See Handling interrupts in an SMP system on page 18-14 for more details.

The distributor hosts a number of registers that you can use to configure the properties of 
individual interrupts. These configurable properties are:

• An interrupt priority. The distributor uses this to determine which interrupt is next 
forwarded to the CPU interface.

• An interrupt configuration. This determines if an interrupt is level- or edge-sensitive.

• An interrupt target. This determines a list of cores to which an interrupt can be forwarded.

• Interrupt enable or disable status. Only those interrupts that are enabled in the distributor 
are eligible to be forwarded when they become pending.

• Interrupt security determines whether the interrupt is allocated to Secure or Normal world 
software.

• An Interrupt state.

The distributor also provides priority masking by which interrupts below a certain priority are 
prevented from reaching the core. The distributor uses this when determining whether a pending 
interrupt can be forwarded to a particular core.
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The CPU interfaces on each core helps with fine-tuning interrupt control and handling on that 
core:

12.2.2 Initialization

Both the distributor and the CPU interfaces are disabled at reset.The GIC must be initialized 
after reset before it can deliver interrupts to the core. 

In the distributor, software must configure the priority, target, security and enable individual 
interrupts. The distributor block must subsequently be enabled through its control register. For 
each CPU interface, software must program the priority mask and preemption settings. 

Each CPU interface block itself must be enabled through its control register. This prepares the 
GIC to deliver interrupts to the core.

Before interrupts are expected in the core, software prepares the core to take interrupts by setting 
a valid interrupt vector in the vector table, and clearing interrupt masks bits in the CPSR.

The entire interrupt mechanism in the system can be disabled by disabling the distributor block. 
Interrupt delivery to an individual core can be disabled by disabling its CPU interface block, or 
by setting mask bits in CPSR of that core. Individual interrupts can also be disabled (or enabled) 
in the distributor.

For an interrupt to reach the core, the individual interrupt, distributor and CPU interface must 
all be enabled, and the CPSR interrupt mask bits cleared.

12.2.3 Interrupt handling

When the core takes an interrupt, it jumps to the top-level interrupt vector obtained from the 
vector table and begins execution.

The top-level interrupt handler reads the Interrupt Acknowledge Register from the CPU 
Interface block to obtain the interrupt ID.

As well as returning the interrupt ID, the read causes the interrupt to be marked as active in the 
distributor. Once the interrupt ID is known (identifying the interrupt source), the top-level 
handler can now dispatch a device-specific handler to service the interrupt. 

When the device-specific handler finishes execution, the top-level handler writes the same 
interrupt ID to the End of Interrupt register in the CPU Interface block, indicating the end of 
interrupt processing.

Apart from removing the active status, which will make the final interrupt status either Inactive, 
or Pending (if the state was Active and Pending), this will enable the CPU Interface to forward 
more pending interrupts to the core. This concludes the processing of a single interrupt.

It is possible for there to be more than one interrupt waiting to be serviced on the same core, but 
the CPU Interface can signal only one interrupt at a time. The top-level interrupt handler repeats 
the above sequence until it reads the special interrupt ID value 1023, indicating that there are no 
more interrupts pending at this core. This special interrupt ID is called the spurious interrupt ID. 

The spurious interrupt ID is a reserved value, and cannot be assigned to any device in the 
system. When the top-level handler has read the spurious interrupt ID it can complete its 
execution, and prepare the core to resume the task it was doing before taking the interrupt.
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Chapter 13 
Boot Code

This chapter considers the boot code running in an ARM processor based system, and focuses on 
two distinct areas:

• Code to be run immediately after the core comes out of reset, on a so-called bare-metal 
system, that is, one in which code is run without the use of an operating system. This is a 
situation that is often encountered when first starting up a chip or system.

• How a bootloader loads and runs the Linux kernel.
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13.1 Booting a bare-metal system
When the core has been reset, it will commence execution at the location of the reset vector in 
the exception vector table (at either address 0x00000000 or 0xFFFF0000, see Table 11-3 on 
page 11-9). The reset handler code must do some, or all of the following: 

• In a multi-core system, enable non-primary cores to sleep See Booting SMP systems on 
page 18-17.

• Initialize exception vectors.

• Initialize the memory system, including the MMU.

• Initialize core mode stacks and registers.

• Initialize any critical I/O devices.

• Perform any necessary initialization of NEON or VFP.

• Enable interrupts.

• Change core mode or state.

• Handle any set-up required for the Secure world (see Chapter 21).

• Call the main() application.

The first consideration is placement of the exception vector table. You must make sure that it 
contains a valid set of instructions that branch to the appropriate handlers. 

The _start directive in the GNU Assembler tells the linker to locate code at a particular address 
and can be used to place code in the vector table. The initial vector table will be in non-volatile 
memory and can contain branch to self instructions (other than the reset vector) as no exceptions 
are expected at this point. Typically, the reset vector contains a branch to the boot code in ROM. 
The ROM can be aliased to the address of the exception vector. The ROM then writes to some 
memory-remap peripheral that maps RAM into address 0 and the real exception vector table is 
copied into RAM. This means the part of the boot code that handles remapping must be 
position-independent, as only PC-relative addressing can be used. Example 13-1 shows an 
example of typical code that can be placed in the exception vector table. 

Example 13-1 Typical exception vector table code

start
B Reset_Handler
B Undefined_Handler
B SWI_Handler
B Prefetch_Handler
B Data_Handler
NOP @ Reserved vector
B IRQ_Handler 

@ FIQ_Handler will follow directly after this table

You might then have to initialize stack pointers for the various modes that your application can 
make use of. Example 13-2 on page 13-3 gives a simple example, showing code that initializes 
the stack pointers for FIQ and IRQ modes.
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Example 13-2 Code to initialize the stack pointers

LDR     R0, stack_base 
@ Enter each mode in turn and set up the stack pointer
MSR     CPSR_c, #Mode_FIQ:OR:I_Bit:OR:F_Bit ;
MOV     SP, R0 
SUB     R0, R0, #FIQ_Stack_Size
MSR     CPSR_c, #Mode_IRQ:OR:I_Bit:OR:F_Bit ; 
MOV     SP, R0

The next step is to set up the caches, MMU and branch predictors. An example of such code is 
shown in Example 13-3. We begin by disabling the MMU and caches and invalidating the 
caches and TLB. This example code is for the Cortex-A9 processor. Some of the Cortex-A 
processors automatically invalidate the L1 and/or L2 caches at reset, others require manual 
invalidation. You must check the TRM for a particular core to determine which options have 
been implemented.

The MMU TLBs must be invalidated. The branch target predictor hardware might not have to 
be explicitly invalidated, but it must be enabled by boot code. Branch prediction can safely be 
enabled at this point; this will improve performance. 

Example 13-3 Setting up caches, MMU and branch predictors

@ Disable MMU
MRC   p15, 0, r1, c1, c0, 0 @ Read Control Register configuration data
BIC   r1, r1, #0x1
MCR   p15, 0, r1, c1, c0, 0 @ Write Control Register configuration data

@ Disable L1 Caches
MRC   p15, 0, r1, c1, c0, 0 @ Read Control Register configuration data
BIC   r1, r1, #(0x1 << 12) @ Disable I Cache
BIC   r1, r1, #(0x1 << 2) @ Disable D Cache
MCR   p15, 0, r1, c1, c0, 0 @ Write Control Register configuration data

@ Invalidate L1 Caches
@ Invalidate Instruction cache
MOV   r1, #0
MCR   p15, 0, r1, c7, c5, 0

@ Invalidate Data cache
@ to make the code general purpose, we calculate the
@ cache size first and loop through each set + way

MRC   p15, 1, r0, c0, c0, 0  @ Read Cache Size ID 
LDR r3, #0x1ff
AND   r0, r3, r0, LSR #13 @ r0 = no. of sets - 1

MOV   r1, #0 @ r1 = way counter way_loop
way_loop:
MOV   r3, #0 @ r3 = set counter set_loop

set_loop:
MOV   r2, r1, LSL #30 @
ORR   r2, r3, LSL #5 @ r2 = set/way cache operation format
MCR   p15, 0, r2, c7, c6, 2 @ Invalidate line described by r2
ADD   r3, r3, #1 @ Increment set counter
CMP   r0, r3 @ Last set reached yet?
BGT   set_loop @ if not, iterate set_loop
ADD   r1, r1, #1 @ else, next
CMP   r1, #4 @ Last way reached yet?
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BNE   way_loop @ if not, iterate way_loop

@ Invalidate TLB
MCR   p15, 0, r1, c8, c7, 0

@ Branch Prediction Enable
MOV   r1, #0
MRC   p15, 0, r1, c1, c0, 0 @ Read Control Register configuration data
ORR   r1, r1, #(0x1 << 11) @ Global BP Enable bit
MCR   p15, 0, r1, c1, c0, 0 @ Write Control Register configuration data

After this, you can create some translation tables, as shown in the example code of 
Example 13-4. The variable ttb_address is used to denote the address to be used for the initial 
translation table. This must be a 16KB area of memory (whose start address is aligned to a 16KB 
boundary), to which an L1 translation table can be written by this code. 

Example 13-4 Create translation tables

@ Enable D-side Prefetch
MRC   p15, 0, r1, c1, c0, 1 @ Read Auxiliary Control Register
ORR   r1, r1, #(0x1 <<2) @ Enable D-side prefetch
MCR   p15, 0, r1, c1, c0, 1 ; @ Write Auxiliary Control Register
DSB
ISB
@ DSB causes completion of all cache maintenance operations appearing in program
@ order before the DSB instruction
@ An ISB instruction causes the effect of all branch predictor maintenance
@ operations before the ISB instruction to be visible to all instructions 
@ after the ISB instruction.
@ Initialize PageTable

@ We will create a basic L1 page table in RAM, with 1MB sections containing a flat 
(VA=PA) mapping, all pages Full Access, Strongly Ordered

@ It would be faster to create this in a read-only section in an assembly file

LDR   r0, =2_00000000000000000000110111100010 @ r0 is the non-address part of 
descriptor
LDR   r1, ttb_address
LDR   r3, = 4095 @ loop counter

write_pte
ORR   r2, r0, r3, LSL #20 @ OR together address & default PTE bits
STR   r2, [r1, r3, LSL #2] @ write PTE to TTB
SUBS  r3, r3, #1 @ decrement loop counter
BNE   write_pte

@ for the very first entry in the table, we will make it cacheable, normal, 
write-back, write allocate
BIC   r0, r0, #2_1100 @ clear CB bits
ORR   r0, r0, #2_0100 @ inner write-back, write allocate
BIC   r0, r0, #2_111000000000000 @ clear TEX bits
ORR   r0, r0, #2_101000000000000 @ set TEX as write-back, write allocate
ORR r0, r0, #2_10000000000000000 @ shareable
STR   r0, [r1]

@ Initialize MMU
MOV   r1,#0x0
MCR   p15, 0, r1, c2, c0, 2 @ Write Translation Table Base Control Register
LDR   r1, ttb_address
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MCR   p15, 0, r1, c2, c0, 0 @ Write Translation Table Base Register 0

@ In this simple example, we don't use TRE or Normal Memory Remap Register.
@ Set all Domains to Client
LDR r1, =0x55555555
MCR p15, 0, r1, c3, c0, 0 @ Write Domain Access Control Register

@ Enable MMU
MRC   p15, 0, r1, c1, c0, 0 @ Read Control Register configuration data
ORR   r1, r1, #0x1 @ Bit 0 is the MMU enable
MCR   p15, 0, r1, c1, c0, 0 @ Write Control Register configuration data

The L2 cache, if present, and if running without an operating system, might also require 
invalidating and enabling at this point. NEON or VFP access must also be enabled. If the system 
makes use of the TrustZone Security Extensions, it might have to switch to the Normal world 
when the Secure world is initialized. See Chapter 21 Security for details of this.

The next steps will depend on the exact nature of the system. It might be necessary, for example, 
to zero-initialize memory that will hold uninitialized C variables, copy the initial values of other 
variables from a ROM image to RAM, and set up application stack and heap spaces. It might 
also be necessary to initialize C library functions, call top-level constructors (for C++ code) and 
other standard embedded C initialization.

A common approach is to permit a single core within the cluster to perform system initialization, 
while the same code, if run on a different core, will cause it to sleep, that is, enter WFI state, as 
described in Chapter 20. The other cores might be woken after core 0 has created a simple set 
of L1 translation table entries, as these could be used by all cores in the system. Example 13-5 
shows example code that determines which core it is running on and either branches to 
initialization code (if running on core 0), or goes to sleep otherwise. The secondary cores are 
typically woken up later by an SMP OS.

Example 13-5  Determining which core is running

@ Only CPU 0 performs initialization. Other CPUs go into WFI
@ to do this, first work out which CPU this is
@ this code typically is run before any other initialization step

MRC   p15, 0, r1, c0, c0, 5 @ Read Multiprocessor Affinity Register
AND   r1, r1, #0x3 @ Extract CPU ID bits
CMP   r1, #0 
BEQ initialize @ if we’re on CPU0 goto the start

wait_loop:
@ Other CPUs are left powered-down
.....
.....
.....

initialize:
@ next section of boot code goes here
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13.2 Configuration
There are a number of control register bits within the core that will typically be set by boot code. 
In all cases, for best performance, code must run with the MMU, instruction and data caches and 
branch prediction enabled. Translation table entries for all regions of memory that are not 
peripheral I/O devices must be marked as L1 Cacheable and (by default) set to read-allocate, 
write-back cache policy. For multi-core systems, pages must be marked as Shareable and the 
broadcasting feature for CP15 maintenance operations must be enabled.

In addition to the CP15 registers required by the ARM architecture, cores typically have 
registers that control implementation-specific features. Programmers of boot code should refer 
to the relevant technical reference manual for the correct usage of these. 
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13.3 Booting Linux
It is useful to understand what happens from the core coming out of reset and executing its first 
instruction at the exception base address 0x00000000 or 0xFFFF0000 if HIVECS (known as high 
vectors) is selected, until the Linux command prompt appears. (See The Vector table on 
page 11-7.) 

When the kernel is present in memory, the sequence on an ARM processor based system is 
similar to what might happen on a desktop computer. However, the bootloading process can be 
very different, as ARM processor based phones or more deeply embedded devices can lack a 
hard drive or PC-like BIOS. 

Typically, what happens when you power the system on is that hardware specific boot code runs 
from flash or ROM. This code initializes the system, including any necessary hardware 
peripheral code and then launches the bootloader (for example U-Boot). This initializes main 
memory and copies the compressed Linux kernel image into main memory (from a flash device, 
memory on a board, MMC, host PC or elsewhere). The bootloader passes certain initialization 
parameters to the kernel. The Linux kernel then decompresses itself and initializes its data 
structures and running user processes, before starting the command shell environment. Let’s 
take a more detailed look at each of those processes.

13.3.1 Reset handler

There is typically a small amount of system-specific boot monitor code that configures memory 
controllers and performs other system peripheral initialization. It sets up stacks in memory and 
typically copies itself from ROM into RAM, before changing the hardware memory mapping 
so that RAM is mapped to the exception vector address, rather than ROM. In essence this code 
is independent of that operating system is to be run on the board and performs a function similar 
to a PC BIOS. When it has completed execution, it will call a Linux bootloader, such as U-Boot.

13.3.2 Bootloader

Linux requires a certain amount of code to be run out of reset, to initialize the system. This 
performs the basic tasks required for the kernel to boot: 

• Initializing the memory system and peripherals.

• Loading the kernel image to an appropriate location in memory (and possibly also an 
initial RAM disk).

• Generate the boot parameters to be passed to the kernel (including machine type).

• Set up a console (video or serial) for the kernel.

• Enter the kernel.

The exact steps taken vary between different bootloaders, so for detailed information, refer to 
documentation for the one that you want to use. U-Boot is a widely used example, but other 
bootloader possibilities include Apex, Blob, Bootldr and Redboot. 

When the bootloader starts, it is typically not present in main memory. It must start by allocating 
a stack and initializing the core (for example invalidating its caches) and installing itself to main 
memory. It must also allocate space for global data and for use by malloc() and copy exception 
vector entries into the appropriate location. 
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13.3.3 Initialize memory system

This is very much a board or system specific piece of code. The Linux kernel has no 
responsibility for the configuration of the RAM in the system. It is presented with the physical 
memory layout, but has no other knowledge of the memory system. In many systems, the 
available RAM and its location are fixed and the bootloader task is straightforward. In other 
systems, code must be written that discovers the amount of RAM available in the system.

13.3.4 Kernel images

The kernel image from the build process is typically compressed in zImage format (the 
conventional name given to the bootable kernel image). Its head code contains a magic number, 
used to verify the integrity of the decompression, plus start and end addresses. The kernel code 
is position independent and can be located anywhere in memory. Conventionally, it is placed at 
a 0x8000 offset from the base of physical RAM. This gives space for the parameter block placed 
at a 0x100 offset (used for translation tables etc). 

Many systems require an initial RAM disk (initrd), as this lets you have a root filesystem 
available without other drivers being setup. The bootloader can place an initial ramdisk image 
into memory and pass the location of this to the kernel using ATAG_INITRD2 (a tag that describes 
the physical location of the compressed RAM disk image) and ATAG_RAMDISK.

The bootloader will typically setup a serial port in the target, enabling the kernel serial driver to 
detect the port and use it for a console. In some systems, another output device such as a video 
driver can be used as a console. The kernel command line parameter console= can be used to 
pass the information.

13.3.5 Kernel parameters using ATAGs

Historically, the parameters passed to the kernel are in the form of a tagged list, placed in 
physical RAM with register R2 holding the address of the list. Tag headers hold two 32-bit 
unsigned ints, with the first giving the size of the tag in words and the second providing the tag 
value (indicating the type of tag). For a full list of parameters that can be passed, consult the 
appropriate documentation. Examples include ATAG_MEM to describe the physical memory map 
and ATAG_INITRD2 to describe where the compressed ramdisk image is located. The bootloader 
must also provide an ARM Linux machine type number (MACH_TYPE). This can be a hard-coded 
value, or the boot code can inspect the available hardware and assign a value accordingly.

There is a more flexible, or generic method for passing this information using Flattened Device 
Trees (FDTs).

13.3.6 Kernel parameters using Flattened Device Trees

The Linux device tree or FDT support was introduced for the PowerPC kernel as a part of the 
merger of a 32-bit and 64-bit kernel to standardize the firmware interface by using an Open 
Firmware interface for all PowerPC platforms, servers, desktop and embedded. It has become 
the configuration methodology used in the Linux kernel for PowerPC, Micro Blaze and SPARC 
architectures.

A device tree is a data structure that describes the hardware configuration. It includes 
information about processors, memory sizes and banks, interrupt configuration, and peripherals. 
The data structure is organized as a tree with a single root node named /. With the exception of 
the root node, each node has a single parent. Each node has a name and can have any number 
of child nodes. Nodes can also contain named properties values with arbitrary data, and they are 
expressed in key-value pairs. 
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The device tree data format follows the conventions defined in IEEE standard 1275. To simplify 
system description, a device tree source format (.dts) is used to express device tree data. 

A device tree node must comply with the following syntax:

[label:] node-name[@unit-address] {
[properties definitions]
[child nodes]

 }

Nodes are defined with a name and a unit-address. Braces mark the beginning and end of the 
node definition.

You can use a Device Tree Compiler (DTC) tool to convert the device tree source file (.dts) to 
the device tree blob (dtb) format. The dtb, or blob, is known as the Flattened Device Tree and 
is a firmware independent description of the system, in a compressed format that requires no 
firmware calls to retrieve its properties. The Linux kernel loads the dtb before it loads the 
operating system.

The chosen node is a placeholder for any environment information that does not belong 
anywhere else, such as boot arguments for the kernel and default console. Chosen node 
properties are usually defined by the boot loader, but the dts file can specify a default value.

The following code fragment shows a root node description for an ARM Versatile Platform 
Board. The model and compatible properties are assigned the name of the platform in the form 
<manufacturer>,<model>. This string concatenation is the universal identifier for the machine 
and must be defined at the top node.

/ {
model = "arm,versatilepb";
compatible = "arm,versatilepb";
#address-cells = <1>;
#size-cells = <1>;

memory {
 name = "memory";

 device_type = "memory";
reg = <0x0 0x08000000>;

};

chosen {
 bootargs = “console=ttyAMA0 debug”;

}
};

13.3.7 Kernel entry

Kernel execution must commence with the core in a fixed state. The bootloader calls the kernel 
image by branching directly to its first instruction, the start label in 
arch/arm/boot/compressed/head.S. The MMU and data cache must be disabled. The core must 
be in Supervisor mode, with CPSR I and F Bits set (IRQ and FIQ disabled). R0 must contain 0, 
R1 the MACH_TYPE value and R2 the address of the tagged list of parameters.

The first step in getting the kernel working is to decompress it. This is mostly architecture 
independent. The parameters passed from the bootloader are saved and the caches and MMU 
are enabled. Checks are made to see if the decompressed image will overwrite the compressed 
image, before calling decompress_kernel() in arch/arm/boot/compressed/misc.c, The cache is 
then cleaned and invalidated before being disabled again. We then branch to the kernel startup 
entry point in arch/arm/kernel/head.S. 
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13.3.8 Platform-specific actions

A number of architecture specific tasks are now undertaken. The first checks core type using 
__lookup_processor_type() that returns a code specifying which core it is running on. The 
function __lookup_machine_type() is then used (unsurprisingly) to look up machine type. A 
basic set of translation tables is then defined which map the kernel code. The cache and MMU 
are initialized and other control registers set. The data segment is copied to RAM and 
start_kernel() is called.

13.3.9 Kernel start-up code

In principle, the rest of the startup sequence is the same on any architecture, but in fact some 
functions are still hardware dependent.

1. IRQ interrupts are disabled with local_irq_disable(), while lock_kernel() is used to stop 
FIQ interrupts from interrupting the kernel. It initializes the tick control, memory system 
and architecture-specific subsystems and deals with the command line options passed by 
the bootloader.

2. Stacks are set up and the Linux scheduler is initialized.

3. The various memory areas are set-up and pages allocated.

4. The interrupt and exception table and handlers are setup, along with the GIC.

5. The system timer is setup and at this point IRQs are enabled. Additional memory system 
initialization occurs and then a value called BogoMips is used to calibrate the core clock 
speed.

6. Internal components of the kernel are set up, including the filesystem and the initialization 
process, followed by the thread daemon that creates kernel threads. 

7. The kernel is unlocked (FIQ enabled) and the scheduler started.

8. The function do_basic_setup() is called to initialize drivers, sysctl, work queues and 
network sockets. At this point, the switch to User mode is performed.
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Figure 13-1 Linux virtual memory view

The memory map used by Linux is shown in Figure 13-1. ZI refers to zero-initialized data. 
There is a broad split between kernel memory, above address 0xBF000000 and user memory, 
below that address. Kernel memory uses global mappings, while user memory uses non-global 
mappings, although both code and data can be shared between processes. As already mentioned, 
application code starts at 0x1000, leaving the first 4KB page unused, to enable trapping of NULL 
pointer references. 

Vectors page

Static mappings

Dynamic mappings

Kernel linear mapping

Modules

User stacks

Heap

Dynamic libraries

Data

ZI data

Code

0xFFFF.0000

0xC000.0000

0xBF00.0000

0x4000.0000

0x0000.0000

K
er

ne
l m

em
or

y
U

se
r m

em
or

y

ARM DEN0013D Copyright © 2011 – 2013 ARM. All rights reserved. 13-11
ID012214 Non-Confidential



Chapter 14 
Porting

New projects will normally use an existing operating system and re-use code from existing 
applications. New code might be targeted at the ARMv7-A architecture, but might eventually 
require porting to a different board. There are a number of issues associated with porting code from 
a different architecture to run on an ARM processor, or from older versions of the ARM 
architecture to ARMv7-A. 

For many applications, particularly those coded with portability issues in mind, this will mean 
recompiling the source code. For example, a large amount of Linux application software is 
designed to run in many different environments and tends to make fewer assumptions about the 
underlying hardware. However, there are a number of areas where C code is not fully portable. In 
particular, low level, hardware-specific code such as device drivers might require more effort than 
porting applications.

There is an additional consideration when porting code between processors: that of efficiency. It 
might be the case that optimizations applied to code running on another processor, or to older 
versions of the ARM architecture, do not apply to that code when running on ARMv7-A. Equally, 
there might be scope for making code smaller or faster on ARMv7-A class processors. 
Optimizations might differ between processors or systems. Code that is optimal for one processor 
might not be optimal for others. ARM-specific optimization is covered in Chapter 17.
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14.1 Endianness
The use of the terms little-endian and big-endian was introduced by Danny Cohen in his 1980 
paper “On Holy Wars and a Plea for Peace”. Cohen has also been responsible for many advances 
in the fields of networks and computer graphics. It is a reference to Gulliver’s Travels, a famous 
satire from the early 18th century, by Irish writer Jonathan Swift, in which a war is fought 
between the fictional countries of Lilliput and Blefuscu over the correct end to open a boiled 
egg.

There are two basic ways of viewing bytes in memory – little-endian and big-endian. On 
big-endian machines, the most significant byte of an object in memory is stored at the least 
significant (closest to zero) address. On little-endian machines, the most significant byte is 
stored at the highest address.

The term byte-ordering can also be used rather than endian. Other kinds of endianness do exist, 
notably middle-endian and bit-endian, but we will not discuss these.

Consider the following simple piece of code (Example 14-1):

Example 14-1 Endian access

int i = 0x44332211;
unsigned char c = *(unsigned char *)&i;

On a 32-bit big-endian machine, c is given the value of the most significant byte of i: 0x44. On 
little-endian machines, c is the least significant byte of i: 0x11. 

Figure 14-1 on page 14-3 illustrates the two differing views of memory. It should be stated at 
this point that many people find endianness confusing and that even the act of drawing a 
diagram to illustrate it can reveal a personal bias. The diagram shows a 32-bit value in a register 
being written to address 0x1000, using a STR instruction. The core then performs a read of a byte, 
using a LDRB instruction. A different value will be returned by this instruction sequence 
depending on whether you have a little- or big-endian memory system.
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Figure 14-1 Different endian behaviors

ARM cores support both modes, but are most commonly used in, and typically default to 
little-endian mode. Most Linux distributions for ARM tend to be little-endian only. The x86 
architecture is little-endian. The PowerPC or the venerable 68K, on the other hand, are generally 
big-endian, although the Power architecture can also handle little-endian. Several common file 
formats and networking protocols specify different endianness. For example, .BMP and .GIF 
files are little-endian, while .JPG is big-endian, and TCP/IP is big-endian, but USB and PCI are 
little-endian. 

So, there are two issues to consider – code portability and data sharing. Systems are built from 
multiple blocks and can include one or more cores, DSPs, peripherals, memory, and network 
connections. Whenever data is shared between these elements, there is a potential endianness 
conflict. If code is being ported from a system with one endianness to a system with different 
endianness, it might be necessary to modify that code, either to make it endian-neutral or to 
work with the opposite byte-ordering.

Cortex-A series processors provide support for systems of either endian configuration, 
controlled by the CPSR E bit that enables software to switch dynamically between viewing data 
as little or big-endian. Instructions in memory are always treated as little-endian. The REV 
instruction (see Byte reversal on page 5-18) can be used to reverse bytes within an ARM 
register, providing simple conversion between big and little-endian formats.

In principle, it is straightforward to support mixed endian systems. Typically this means the 
system is natively of one endian configuration, but there are peripherals which are of the 
opposite endianness. The CPSR E bit can be modified dynamically by software, and there is a 
SETEND assembly instruction provided to do this. The CP15:SCTLR (System Control Register, 
c1), contains the EE bit (see Coprocessor 15 on page 3-9) that defines the endian mode to switch 
to on an exception and also the endianness of translation table lookups. 
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It would be difficult if exception code had to worry about which endian state the core was in on 
arrival at the handler. In practice, however, it can be difficult to tell the compiler that part of the 
system is of a different endian configuration to the rest of memory.

Modern ARM processors support a big-endian format known architecturally as BE8 that is only 
applied to the data memory system. Older ARM processors used a different format known as 
BE-32 that applied to both instructions and data. BE8 corresponds to what most other computer 
architectures call big-endian.

Example 14-2 provides a simple piece of code that behaves differently when run on 
architectures with different endianness. 

Example 14-2 Non-portable code

int i- 0x12345678; 
char *buf = (char*)&i; 
char i0, i1, i2, i3; 

i0 = buf[0]; 
i1 = buf[1]; 
i2 = buf[2]; 
i3 = buf[3]; 

The values of i0…i3 are not guaranteed to be the same if the system endianness changes. This 
kind of code is therefore inherently non-portable.

When inspecting code in which you suspect endianness problems, you must look for the 
following potential causes of problems:

Unions A union can hold objects of different types and sizes. You must keep track of what 
the data member represents at any particular time. Code that uses unions must be 
carefully checked. If the union is used to access the same data, but with different 
data types, there exists a possible endianness, alignment, and packing problem. 
Any time that halfword, word (or longer) data types are combined or viewed as 
an array of bytes is a potential issue.

Casting of data types 
Anywhere that data is accessed in a way outside of its native data type is a 
potential problem. Similarly, if there are arrays of bytes, they must not be 
accessed other than as a byte data type. Casting of pointers changes how data is 
addressed and can be endian sensitive.

Bitfields To avoid endianness problems code that defines bitfields or performs bit 
operations must not be used in code that is intended to be portable.

Data sharing 
Any code that reads shared data from another block, or exports data to another 
block, must be checked to see whether the two blocks agree endian definitions. If 
the two are different, it might be necessary to implement byte swapping at one 
location.

Network code 
Code that accesses networking or other I/O devices must be reviewed to see if 
there is any endian dependency. Again, it might be necessary to re-write code for 
greater efficiency, or swap bytes at the interface.
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14.2 Alignment
The alignment of accesses is significant on ARM cores. On older ARM processors, accesses to 
addresses that are not aligned are possible, but with a different behavior to those using the 
ARMv7 architecture. On ARM7 and ARM9 processors, an unaligned LDR is performed in the 
memory system in the same way as an aligned access, but with the data returned being rotated 
so that the data at the requested address is placed in the least significant byte of the loaded 
register. Some older compilers and operating systems were able to use this behavior for clever 
optimizations. This can represent a portability problem when moving code from an ARMv4 or 
ARMv5 to ARMv7 architecture.

ARM MMUs can be configured to automatically detect such unaligned accesses and abort them 
(using the CP15:SCTL A bit), see System control register (SCTLR) on page 3-12 and 
Coprocessor 15 on page 3-9.

For the Cortex-A series of processors, unaligned accesses are supported, although you must 
enable this by setting the U bit in the CP15:SCTL register, indicating that unaligned accesses 
are permitted. This means that instructions to read or write words or halfwords can access 
addresses that are not aligned to word or halfword boundaries. However, load and store multiple 
instructions (LDM and STM) and load and store double-word (LDRD or STRD) must be aligned to at 
least a word boundary. Loads and stores of floating-point values must always be aligned. 
Additional alignment constraints might be imposed by the ABI that are stronger than those 
imposed by the ARM architecture.

These unaligned accesses can take additional cycles in comparison with aligned accesses and 
therefore alignment is also a performance issue. In addition, such accesses are not guaranteed 
to be atomic. This means that a external agent (another core in the system) might perform a 
memory access that appears to occur part way through the unaligned access. For example, it 
might read the accessed location and see the new value of some bytes and the old value of others.

Figure 14-2 Aligned words at address 0 or 8

A word aligned address is one that is a multiple of four, for example 0x100, 0x104, 0x108, 0x10C, 
0x110. Figure 14-2 shows examples of aligned accesses.

0123

4567

89AB

The word at address 0

The word at address 8

0x100

0x104

0x108
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Figure 14-3 An unaligned word

An unaligned word at address 1 is shown in Figure 14-3. It takes three bytes from the word at 0 
and one byte from the word at 4.

A simple example where alignment effects can have significant performance effects is the use 
of memcpy(). Copying small numbers of bytes between word aligned addresses will be compiled 
into LDM or STM instructions. Copying larger blocks of memory aligned to word boundaries will 
typically be done with an optimized library function that will also use LDM or STM. Copying blocks 
of memory whose start or end points do not fall on a word boundary can result in a call to a 
generic memcpy() function that can be significantly slower. Although, if the source and 
destination are similarly unaligned then only the start and end fragments are non-optimal. 
Whenever explicit typecasting is performed, that cast always carries alignment implications.

0123

4567

89AB

The word at address 1

The word at address 8
ARM DEN0013D Copyright © 2011 – 2013 ARM. All rights reserved. 14-6
ID012214 Non-Confidential



Porting 
14.3 Miscellaneous C porting issues
In this section we consider some other possible causes of problems when porting C code.

14.3.1 unsigned char and signed char

The piece of code in Example 14-3 illustrates a very simple example of a possible issue when 
porting code to ARM.

Example 14-3 Use of unsigned char

char c = -1;
if (c > 0)  printf("c is positive \n");
else    printf("c is negative \n”);

When this is compiled for some architectures (for example, for x86) the result is the one you 
might intuitively expect, which is that it reports the variable c as negative, but compiling the 
code on an ARM Compiler will produce code that reports c as positive, and typically a warning 
will be emitted by the compiler too.

The ANSI C standard specifies a range for both signed (at least -127 to +127) and unsigned (at 
least 0 to 255) chars. Simple chars are not specifically defined and it is compiler dependent 
whether they are signed or unsigned. Although the ARM architecture has the LDRSB instruction, 
that loads a signed byte into a 32-bit register with sign extension, the earliest versions of the 
architecture did not. It made sense at the time for the compiler to treat simple chars as unsigned, 
whereas on the x86 simple chars are, by default, treated as signed.

One workaround for users of GCC is to use the -fsigned-char command line switch or 
--signed-chars for RVCT, that forces all chars to become signed, but a better practice is to write 
portable code by declaring char variables appropriately. Unsigned char must be used for 
accessing memory as a block of bytes or for small unsigned integers. Signed char must be used 
for small signed integers and simple char must be used only for ASCII characters and strings. 
In fact, on an ARM core, it is usually better to use ints rather than chars, even for small values, 
for performance reasons. You can read more on this in Chapter 17 Optimizing Code to Run on 
ARM Processors. 

A second piece of code, in Example 14-4, illustrates another possible problem with chars. Here 
EOF is compared with an unsigned char. On an ARM core, the while loop will never complete. 
The value of EOF is defined as -1 and when it is converted to be compared with a char (which is 
unsigned and therefore in the range 0 to 255), it can never be equal and so the loop does not 
terminate.

Example 14-4 Use of EOF

char c; 
while ((c = getchar()) != EOF) putchar(c);

You must declare the variable as int instead of char to avoid the problem, in fact, this is how 
the functions in stdio.h are defined.

Similar cases to look out for include the use of getopt() and getc() – both are defined as 
returning an int.
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14.3.2 Compiler packing of structures

Compilers are not permitted to re-order members of a structure and have to follow the alignment 
restrictions of the core architecture. This means that compilers might have to add unused bytes 
into user defined structures, for best performance and code size. Such padding is architecture 
specific and can therefore lead to portability problems if assumptions have been made about the 
location and size of this padding.

Marking a structure as __packed in the ARM Compiler or using the attribute __packed__ in GCC, 
will remove any padding. This reduces the size of the structure and can be useful when porting 
code or for structures being passed from external hardware, but can reduce performance and 
increase code size, although generally it will be relatively efficient on Cortex-A series 
processors.

If you have some simple struct code, as shown in Example 14-5:

Example 14-5 A typical C struct

struct test
{

unsigned char  c;
unsigned int i ; 
unsigned short s; 

}

Then the arrangement of data within the struct will be as in Figure 14-4.

Figure 14-4 Unpacked structure

If you now mark the structure as packed, as in Example 14-6:

Example 14-6 Packed structure

struct test
{

unsigned char  c;
unsigned int i ; 
unsigned short s; 

} __attribute__((__packed__));

C

I

S.

0 1

4

3

7

8 9

Unpacked structure layout
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Figure 14-5 Packed structure

In Figure 14-5 byte 0 now holds C, bytes 1-4 hold I and bytes 5-6 will hold S. To access S or I 
will require the core to perform an unaligned access.

14.3.3 Use of the stack

Code that makes assumptions about the stack structure can require porting effort. For example, 
functions with a variable number and type of arguments can receive their variables through the 
stack. The <stdarg.h> macros dealing with accessing these arguments will walk through the 
stack frame and provide compatibility between systems, but code that does not use standard 
libraries or macros can have a problem.

14.3.4 Other issues

A function prototype is a declaration that omits the function body but gives the function name, 
argument and return types. It effectively gives a way to specify the interface of a function 
separately from its definition. Incorrectly prototyped functions can behave differently between 
different compilers. 

Compilers can allocate different numbers of bytes to enum. Care is therefore required when 
enumerations are used; cross-linking of code and libraries between different compilers might 
not be possible if enums are used.

Code written for 8-bit or 16-bit cores might assume that integer variables are 16-bit. On 
ARMv7-A processors, they will always be 32 bits. The program might rely on 16-bit behaviors. 
In general, this is easily fixed by the use of the C short type. Use of short ints can be less 
efficient, as we shall see in the chapter on optimization and in cases where the code does not 
rely on 16-bit behavior, it is usually better to promote these variables to a 32-bit int.

C

I S.

0 1

4

3

5 6

Packed structure layout

I
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14.4 Porting ARM assembly code to ARMv7-A
So far in this chapter, we have looked at porting C code from other architectures to ARM. It is 
sometimes necessary to port assembly code from older ARM processors to the Cortex-A series. 
Sometimes, it can be difficult to determine which ARM architecture variant your code was 
originally targeting. GCC has a series of macros, with names like __ARM_ARCH_6__ which are 
mutually exclusive. The ARM Compiler has a similar set of macros such as __TARGET_ARCH_7_A. 
In general, ARM assembler code is backward compatible and will work unmodified.

There are a few special cases to look for:

CP15 Operations 
The architecture specifies a consistent mapping of CP15 to designed system 
control operations. In general, you should attempt to understand the purpose of 
code that performs CP15 instructions and ensure that this code is appropriate for 
the ARMv7-A Architecture. In addition, a number of CP15 registers (for example 
CP15:ACTL, the Auxiliary Control Register) are implementation specific. Code 
that references such registers will always require attention when being ported.

SWP The SWP (or SWPB) instruction was used to implement atomic operations in older 
versions of the ARM architecture, but is deprecated and its use strongly 
discouraged in the ARMv7 Architecture. There is no encoding for SWP in Thumb 
at all, so SWP is not permitted when building for Thumb. In the ARMv7 
Architecture, SWP is disabled by default, but can be re-enabled by setting 
CP15:SYSCTL bit [10]. See System control register (SCTLR) on page 3-12. Code 
that uses SWP must be rewritten to make use of LDREX or STREX (and possibly also 
barrier instructions – see Chapter 10). Alternatively, the GCC __sync_... intrinsics 
could be used. It is usually preferable to use library functions for such things as 
spinlocks, semaphores, and mutexes, rather than writing such primitives yourself. 
The mechanisms used are different from those used by SWP, so it is necessary to 
port all code accessing an atomic object, not just some of it. Usually an atomic 
object will be managed by a piece of library code shared between the threads that 
access it, so this is not typically a problem. Cortex-A series cores treat SWP as 
Undefined out of reset.

14.4.1 Memory access ordering and memory barriers

The ARMv7 architecture has a weakly-ordered memory model. Code for older processors that 
makes implicit assumptions about ordering of memory accesses might not operate correctly on 
ARMv7 devices. This might be particularly true for code that interacts with other devices, such 
as a DMA controller or other bus master. Such code must be inspected and modified, possibly 
by the insertion of appropriate barrier instructions or by the use of suitable atomic primitives. 
See Chapter 10 for a more detailed description of memory ordering and memory barriers. 
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14.5 Porting ARM code to Thumb
We also consider problems associated with porting code written for the ARM instruction set to 
the Thumb instruction set. As we have seen, use of Thumb is often preferred because of its 
combination of small code size with higher performance relative to the older 16-bit only Thumb 
instruction set.

14.5.1 Use of PC as an operand

Instructions that use PC (R15) as an explicit operand can cause problems when assembling in 
Thumb. As we have seen, it is not possible to encode any arbitrary 32-bit address into any 
instruction as an operand. For this reason, it is common to address data stored in a literal pool 
using offsets relative to the current instruction location. In ARM code, the PC value can be used 
(with some adjustment) to determine the address of the currently executing instruction, for this 
purpose and this enables position-independent coding. However, the PC value obtained in this 
way can show some inconsistencies between ARM and Thumb states and can also depend on 
the type of instruction executed. For this reason, ARM assembly code that directly references 
the PC register might require modifying to work correctly in Thumb. 

It is better to avoid explicit PC arithmetic and instead to use an instruction such as:

LDR     r0, =<value>

This automatically puts <value> somewhere in the text section and assembles an appropriate 
PC-relative LDR instruction. It will, however, only do this if <value> cannot be encoded in a MOV 
instruction.You can still do a load from a local text section label that you declare explicitly, as 
shown below, but again, the assembler or linker can be permitted to perform the PC offset 
calculation:

LDR     r0, data
...
data:   .long   <value>

Sometimes the required PC-relative address offset is too large to encode in a single LDR 
instruction, causing the assembler to complain that a literal pool is out of range. This can be 
resolved by explicitly placing a literal pool, using the .ltorg directive that tells the assembler 
where to insert literal data. You must ensure that the literal data is not located where it might be 
executed as code. This typically means the .ltorg directive is placed after an unconditional 
branch or function return instruction.

14.5.2 Branches and interworking

When using Thumb, the system will typically have both ARM and Thumb functions. Even if 
you compile your application for Thumb, you might still have to think about such things as 
libraries and prebuilt binaries. The core must know which instruction set is to be used for the 
code being executed after a branch, procedure call or return. This interworking between 
instruction sets is described in Interworking on page 4-11. When writing C code, the linker takes 
care of this for us, but a little more care is required when porting assembly code.

The target instruction set state is determined in different ways depending on the type of branch. 
We can consider a number of different instructions:

Function return 
Legacy code might use the MOV PC, LR instruction. This is unsafe for systems that 
contain a mix of ARM and Thumb code and must be replaced by BX LR for code 
running on all later architectures. 
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Function return from the stack 
This is done using the LDMFD SP!, {registers, pc} instruction that will continue 
to work correctly in the ARMv7-A architecture, although a newer, equivalent 
form, POP {<registers>, pc} is also available. This is used when registers that 
must be preserved by the function are PUSHed at the start of the function.

Branch A simple B instruction will work in the same fashion on all ARM architectures. If 
ARM and Thumb instructions are mixed in a single source file (this is unusual), 
there is no automatic instruction set switch for local symbols. The assembler 
might introduce a veneer depending on whether it knows that the destination is in 
a different instruction set and is definitely a code symbol (such as a .type 
<symbol>, %function or .thumb_func). Because a symbol appears in a code 
section it is not assumed to be a code symbol unless specifically tagged in this 
way. If the label is in a different file, the linker will take care of any necessary 
instruction set change. Similar considerations apply for a function call (BL).

Note
 Veneers are small pieces of code that are automatically inserted by the linker 

when it detects that a branch target is out of range or is a conditional branch to 
code in the other state, for example, from Thumb to ARM or ARM to Thumb. The 
veneer becomes an intermediate target of the original branch with the veneer itself 
then being a branch to the target address. Often these veneers can be inlined. The 
linker can reuse a veneer generated for a previous call, for other calls to the same 
function if it is in range from both calls. Occasionally, such veneers can be a 
performance factor. If you have a loop that calls multiple functions through 
veneers, you will get many pipeline flushes and therefore sub-optimal 
performance. Placing related code together in memory can avoid this. The ARM 
linker can be made to export information on this by specifying the –-info veneers 
option.

PC modification 
Care might be required with other instructions that modify the PC and produce a 
branch effect. For example, MOV PC, register must be replaced with BX register in 
systems that contain both ARM and Thumb code. 

Function call to register address 
If code contains a sequence like MOV LR, PC followed by MOV PC, register, this 
will not work in a system that has both ARM and Thumb code. You must replace 
it with the single instruction BLX <register>.

When a destination or return address is variable or calculated at run-time, take care to 
appropriately set the Thumb bit (bit [0]) in the address correctly and to use the correct type of 
branch, to make sure that the call (and return, if applicable) switches instruction set 
appropriately. 

If an external label or function defined in another object is referenced, the linker will produce 
an address with the Thumb bit (bit [0]) set appropriately. However, if you reference a symbol 
internal to the object, things are more complicated. For C functions, or code tagged as Thumb, 
bit [0] will be set appropriately, but it will not be set appropriately for other symbols. In 
particular, GNU Assembler local labels will not have the Thumb bit set appropriately, nor will 
the GNU current assembly location symbol “.”.

Therefore, when coding in assembler, if an address will be passed to any other function or 
object, for example, as a return address, method address or callback, you must handle the Thumb 
bit setting yourself, setting bit [0] of the address where required. 
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14.5.3 Operand combinations

Thumb and ARM Assembly code have different restrictions on instruction operands. You might 
find that existing ARM code can produce assembler errors when targeted for Thumb.

Branch out of range errors occur when the distance between the current instruction and the 
branch target is too large to be encoded in a Thumb instruction. To resolve this, it might be 
necessary to use a different type of branch, move code sections or to use two separate branches, 
a so-called trampoline. 

Similarly, index out of range errors might be produced on load and store operations, and to 
resolve these it might be necessary to manually add part (or all) of the required index offset to 
the base register in a separate explicit instruction.

Generally, use of SP is limited to stack operations, other forms of use might not be permitted in 
Thumb code. This means that PUSH, POP, LDMFD SP!, STMFD SP!, ADD, SUB or MOV instructions that use 
the SP are permitted, but other operations should be treated as possible problems. Similarly, 
operations that directly operate on the PC must be checked (other than the usual function or 
exception return operations, or literal pool loads).

14.5.4 Other ARM/Thumb differences

There are a number of other differences that can require attention by the assembly language 
programmer.

• The RSC instruction is not available in Thumb. Therefore, code that uses RSC must be 
re-coded using RSB or SBC, or be built in ARM state.

• Most ARM instructions can optionally be made conditional. This is not the case in 
Thumb, other than for branches. Instead, small instruction sequences can be executed 
conditionally by preceding them with the IT instruction. For compatibility with both ARM 
and Thumb, the IT block construct is always understood when using unified assembler 
syntax. Manually modifying code to use IT instructions can be tedious. Fortunately, the 
assembler command-line option -mimplicit-it=<when>, where <when> can be one of never, 
arm, thumb or always. In this case you don’t have to add IT instructions, the assembler will 
work out the right thing to do for the given target. When assembling for Thumb, however, 
it is sensible to use -mimplicit-it=thumb.
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Application Binary Interfaces

The C compiler is able to generate code from many separately compiled modules. For programs to 
execute successfully these modules must be able to interoperate, with the operating system code 
and any code that is written in assembler or any other compiled language. For that reason, we must 
define a set of conventions to govern inter-operability between separate pieces of code. 

The Application Binary Interface (ABI) for the ARM architecture specification describes a set of 
rules that an ARM executable must adhere to in order to execute in a specific environment. It 
specifies conventions for executables, including file formats and ensures that objects from different 
compilers or assemblers can be linked together successfully. There are variants of the ABI for 
specific purposes, for example, the Linux ABI for the ARM architecture or the Embedded ABI 
(EABI).

The ARM Architecture Procedure Call Standard (AAPCS) is part of the ABI (although the ABI 
actually calls it the Procedure Call Standard for the ARM Architecture). It specifies conventions for 
register and stack usage by the compiler and during subroutine calls. Knowledge of this is vital for 
inter-working C and assembly code and can be useful for writing optimal code. The AAPCS 
supersedes the previous ARM-Thumb Procedure Call Standard (ATPCS).

The AAPCS specifies rules that must be adhered to by callers to enable a callee function to run and 
what callee routines must do in order to ensure that callers can continue function correctly when 
the callee returns. It describes the way that data is laid out in memory and how the stack is laid out, 
plus permitted variations for processor extensions. It defines how code that has been separately 
compiled or assembled works together. 
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15.1 Procedure Call Standard
As we have seen, there are sixteen 32-bit integer registers available in the core. These are 
labeled R0 - R15. Table 15-1 shows the role assigned to registers within the procedure call 
standard.

For the purposes of function calls, the registers are divided into three groups:

• Argument registers R0-R3 (a1-a4). These can be used as scratch registers or as 
caller-saved register variables that can hold intermediate values within a routine, between 
calls to other functions.

• Callee-saved registers, normally used as register variables. Typically, the registers R4-R8, 
R10 and R11 (v1-v5, v7 and v8) are used for this purpose. 

• Registers that have a dedicated role.
The function of the program counter, link register and stack pointer ought to be clear. If 
not, read Registers on page 3-6. 
The IP (R12) register can be used by the linker, as a scratch register between a routine and 
any subroutine it calls, or as an additional local variable within a function. Because the BL 
instructions cannot address the full 32-bit address space, the linker might have to insert a 

Table 15-1 APCS registers

Register PCS name PCS role

R0 a1 argument 1/scratch register/result

R1 a2 argument 2/scratch register/result

R2 a3 argument 3/scratch register/result

R3 a4 argument 4/scratch register/result

R4 v1 register variable

R5 v2 register variable

R6 v3 register variable

R7 v4 register variable

R8 v5 register variable

R9 tr/sb/v6 static base/ register variable

R10 v7 register variable

R11 v8 register variable

R12 IP scratch register/new -sb in inter-link-unit calls

R13 SP SP always points at the top of the stacka

a. The ARM instruction set provides instructions which can facilitate the 
implementation of different types of stacks but the ABI only uses full 
descending stacks.

R14 LR link register/scratch register

R15 PC program counter
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veneer between the caller and callee. Veneers can also be used for ARM-Thumb 
inter-working or dynamic linking. Veneers are permitted to modify the contents of IP 
(R12). 
Register R9 has a role that is specific to a particular environment. It can be used as the 
static base register (SB) to point to position-independent data, or as the thread register 
(TR) where thread-local storage is used. In code that has no requirement for such a special 
register, it can be used as an extra callee-saved variable register, v6.

The first four word-sized parameters passed to a function will be transferred in registers R0-R3. 
Sub-word sized arguments, for example, char, will still use a whole register. Arguments larger 
than a word will be passed in multiple registers. If more arguments are passed, the fifth and 
subsequent words will be passed on the stack. Passing arguments on the stack always requires 
additional instructions and memory accesses and therefore reduces performance. For optimal 
code, you must always try to limit arguments to four words or fewer. If this is not possible, the 
most commonly used parameters must be defined in the first four positions of the function 
definition. If the arguments are part of a structure then it might be more efficient to pass a pointer 
to the structure instead. C++ uses the first argument to pass the this pointer to member 
functions, so only three arguments can be passed in registers. 

There are additional rules about 64-bit types. 64-bit types must always be 8-byte aligned in 
memory. Recall that in Alignment on page 14-5 we described how there are limitations on use 
of LDRD and STRD double-word instructions to unaligned addresses. In addition, 64-bit arguments 
to functions must be passed in an even + consecutive odd register pair (for example, R0 + R1 or 
R2 + R3). 

If 64-bit arguments are passed on the stack, they must be at an 8-byte aligned location. Again, 
this is because of restrictions on LDRD and STRD instructions. If such 64-bit arguments are listed 
in a sub-optimal fashion, there can be wasted space in registers or on the stack. When 
considering such issues, it is important to take into account the this pointer in R0 present in all 
non-static C++ member functions.

Figure 15-1 Efficient parameter passing

Figure 15-1 shows some examples of how sub-optimal listing of arguments can cause 
unnecessary spilling of variables to the stack. The figure shows how two different function calls, 
that pass identical parameters, make use of the registers and stack. 

The first function passes an int, a double and an additional int. The first parameter is passed in 
R0. The second argument is 64-bits and must be passed in an even and consecutive odd register 
(or in an 8-byte aligned location on the stack). It is therefore passed in R2 and R3. This means 
that the final argument is passed on the stack. 

R0 R1 R2 R3

Stack

Foo1 (int i0, double d, int i1)

i0 d d

Stack

Foo2 (int i0, int i1, double d)

i0 d d

Stack

i1

Unused Unusedi1
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As the stack pointer must be 8-byte aligned (a constraint imposed by the ABI to simplify the 
interface at function boundaries), there will be an additional unused word pushed and popped. 
In the second function call, you can pass the two int values in registers R0 and R1 and the 
double value in R2 and R3. This means that no values are spilled to the stack, which gives more 
efficient code, requiring both fewer instructions and fewer memory accesses.

The registers R4-R11 (v1-v8) are used to hold the values of the local variables of a subroutine. 
A subroutine is required to preserve (on the stack), the contents of the registers R4-R8, R10, R11 
and SP (and R9 in PCS variants that designate R9 as v6), if they are used by that subroutine. 

A caller function will have code like this:

@ may need to preserve r0-r3
@ does not need to preserve r4-r11
BL Func

while the callee function will have code like this:

Func:

@ Must preserve r4-r11, lr (if used)
@ May corrupt r0-r3, r12
PUSH {r4-r11, lr}
...
...
...
POP {r4-r11, pc}

@ Returns value in r0 - char, short or int
@ Returns value in r0 & r1 - double

The PUSH/POP instructions must maintain 8-byte stack alignment, and so use an even number of 
registers. Leaf functions do not have to do so. The example callee code as shown pushes or pops 
R4-R11 and LR and PC, which would not preserve an 8-byte aligned stack. It is shown like this 
to indicate which registers must be saved. In practice, the compiler will normally push an extra 
register, depending on whether the function is leaf and which registers are modified by the 
function. Actual instructions will usually be one of PUSH/POP {r4, lr/pc}, PUSH/POP {r4-r8, lr/pc}, 
PUSH/POP {r4-r10, lr/pc} or PUSH/POP {r4-r12, lr/pc}. In each case, you would PUSH lr and POP pc.

15.1.1 VFP and NEON register use

Readers unfamiliar with ARM floating-point might want to refer to Chapter 6 Floating-Point 
before reading this section.

VFPv3 has 32 single-precision registers s0-s31 that can also be accessed in pairs as 
double-precision registers d0-d15. There are an additional 16 double-precision registers, 
d16-d31. NEON can also view these as quadword registers q0-q15. Registers s16-s31 (d8-d15, 
q4-q7) must be preserved across subroutine calls; registers s0-s15 (d0-d7, q0-q3) do not have to 
be preserved (and can be used for passing arguments or returning results in standard 
procedure-call variants). Registers d16-d31 (q8-q15), do not have to be preserved.

The Procedure Call Standard specifies two ways in which floating-point parameters can be 
passed. For software floating-point, they will be passed using ARM registers R0-R3 and on the 
stack, if required. An alternative, where floating-point hardware exists in the core, is to pass 
parameters in the VFP or NEON registers.
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This hardware floating-point variant behaves in the following way:

• Integer arguments are treated in exactly the same way as in softfp. So, if you consider the 
function f below, you will see that the 32-bit value a will be passed to the function in R0, 
and because the value b must be passed in an even or odd register pair, it will go into R2 
or R3, leaving R1 unused.
void f(uint32_t a, uint64_t b)

r0: a
r1: unused
r2: b[31:0]
r3: b[63:32]

• FP arguments fill d0-d7 (or s0-s15), independently of any integer arguments. This means 
that integer arguments can flow onto the stack and FP arguments will still be slotted into 
FP registers (if there are enough available).

• FP arguments are able to back-fill, so it's less common to get the unused slots that we see 
in integer arguments. Consider the following examples:
void f(float a, double b)

d0:
s0: a
s1: unused

d1: b 

Here, b is aligned automatically by being assigned to d1 (that occupies the same physical 
registers as VFP s2 or VFP s3).
void f( float a, double b, float c)

d0:
s0: a
s1: c 

d1: b 

In this example, the compiler is able to place c into s1; it does not have to be placed into s4.
In practice, this is implemented (and described) by using separate counters for s, d and q 
arguments, and the counters always point at the next available slot for that size. In the 
second FP example, a is allocated first because it is first in the list, and it goes into first 
available s register, which is s0. Next, b is allocated into the first available d register, 
which is d1 because a is using part of d0. When c is allocated, the first available s register 
is s1. A subsequent double or single argument would go in d2 or s4, respectively.

• There is an additional case when filling FP registers for arguments. When an argument 
must be spilled to the stack, no back-filling can occur, and stack slots are allocated in 
exactly the same way for additional parameters as they are for integer arguments.

void f( double a, double b, double c, double d,
double e, double f, float g, double h,
double i, float j)

d0: a
d1: b
d2: c
d3: d
d4: e
d5: f
d6:
s12: g
s13: unused

d7: h
*sp:    i
*sp+8:  j
*sp+12: unused (4 bytes of padding for 8-byte sp alignment)

Arguments a-f are allocated to d0-d5 as expected.
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The single-precision g is allocated to s12, and h goes to d7.
The next argument, i, cannot fit in registers, so it is stored on the stack. It would be 
interleaved with stacked integer arguments if there were any. However, while s13 is still 
unused, j must go on the stack because we cannot back-fill to registers when FP 
arguments have hit the stack.

• Double-precision and quad-precision registers can also be used to hold vector data. This 
would not occur in typical C code.

• No VFP registers are used for variadic procedures, that is, a procedure that does not have 
a fixed number of arguments. They are instead treated as in softfp, in that they are passed 
in integer registers (or the stack). Single-precision variadic arguments are converted to 
doubles, as in softfp.

15.1.2 Linkage

If the platform has hardware support for NEON technology or a Floating Point Unit (FPU), the 
highest performance is achieved by passing NEON and FPU parameters and return values in 
NEON and FPU registers. This is called hardware floating-point linkage. In some situations, 
using the general-purpose registers for parameter passing might be preferred, to simplify 
software compatibility between platforms with and without hardware floating-point support. 
This is called software floating-point linkage.

Floating-point arithmetic might use either hardware coprocessor instructions, or library 
functions. Floating-point linkage, however, is concerned with passing arguments between 
functions that use floating-point variables.

Software floating-point linkage means that the parameters and return value for a function are 
passed using the ARM integer registers R0 to R3 and the stack. Hardware floating-point linkage 
uses the VFP coprocessor registers to pass the arguments and return value. The benefit of using 
software floating-point linkage is that the code can be run on a core with or without a VFP 
coprocessor and is therefore more portable. The benefit of using hardware floating-point linkage 
is that it is more efficient than software floating-point linkage, but only runs on systems that 
have a VFP coprocessor. 

You cannot mix objects with different floating-point linkage in a single image. Any dynamic 
libraries loaded while the application is running must also use the same linkage.

Any system that supports both NEON and VFP instructions uses a common register bank for 
these instructions, therefore configuration options that affect the floating-point calling 
convention also affect how NEON parameters are passed and returned.

15.1.3 Stack and heap

The stack implementation is full-descending, with the current top of the stack pointed to by R13 
(SP). The stack must be contiguous in the virtual memory space. Detection of a stack overflow 
is usually handled with memory management. The stack must always be aligned to a word 
boundary, except at an external interface, when it must be double-word aligned. 

The heap is an area (or areas) of memory that are managed by the process itself, for example, 
with the C malloc() function. It is typically used for the creation of dynamic data objects. 

15.1.4 Returning results

A function that returns a char, short, int or single-precision float value will do so using R0. A 
function that returns a 64-bit value (a double-precision float or long long) does so in R0 and R1. 
As mentioned in VFP and NEON register use on page 15-4, floating-point and NEON return 
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values will be in s0, d0, or q0 when using hardware linkage. If the software uses hardware 
linkage it will return floating-point values in s0, d0, or q0. If the software uses software linkage, 
it will return single-precision float in r0. 
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15.2 Mixing C and assembly code
One example of why it can be useful to understand the AAPCS is to write assembly code that 
is compatible with C code. One way to do this is write separate modules and assemble them with 
GNU Assembler. They can be defined as extern functions in C and called. Provided the AAPCS 
rules are followed, there should be no problem.

We can also insert assembly code into our C code, through the GCC asm statement. This is very 
simple to use. For example, we can implement a NOP as shown in Example 15-1.

Example 15-1 NOP

asm("nop");

The time taken to carry out a NOP is undefined.

In fact, it is likely that this NOP will have no effect, because the C compiler might optimize it 
away, or the core might discard the instruction. When you include assembly language code with 
inline assembler, the resulting code is still subject to optimization by the C compiler. This is a 
very important point that must be taken into account whenever inline assembly is used. Even if 
the compiler does not optimize-away the NOP instruction, the core itself can filter out the NOP 
from the instruction stream so that it never reaches the execute stage.

Inline assembly code has a different syntax to regular assembly code. Registers and constants 
have to be specified differently, if they refer to C expressions. 

A slightly more complicated example takes the value of an int and uses the USAD8 assembly 
instruction to calculate the sum of difference of bytes and then store the result in a different int. 
Example 15-2 shows the relevant code.

Example 15-2 Using the USAD8 instruction

asm volatile (“usad8 %0, %1, %2” : “=r” (result): “r”(value1), “r”(value2));

The general format of such inline assembly code is:

asm volatile (assembler instructions : output operands (optional) : input operands 
(optional) : clobbered registers (optional) );

The colons divide the statement up into parts. The first part “usad8 %0, %1, %2” is the actual 
assembly instruction. The second part is an (optional) list of output values from the sequence. 
If more than one output is required, commas are used to separate the entries. You might then 
optionally have a list of input values for the sequence, with the same format as the output. If you 
don’t specify an output operand for an assembly sequence, it is quite likely that the C compiler 
optimizer will decide that it is not serving any useful purpose and optimize it away! A way to 
avoid this is to use the volatile attribute that tells GCC not to optimize the sequence.

In the actual assembly language statement, operands are referenced by a percent sign followed 
by the symbolic name in square brackets. The symbolic name references the item with the same 
name in either the input or output operand list. This name is completely distinct from any other 
symbol within your C code (although clearly it is less confusing to use symbols that do have a 
meaning within your code). Alternatively, the name can be omitted and the operand can be 
specified using a percent sign followed by a digit indicating the position of the operand in the 
list (that is, %0, %1 … %9), as shown in the example.
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There is an optional fourth part to an asm statement, called the clobber list. This enables you to 
specify to the compiler what will be changed by the assembly code. We can specify registers 
(for example, R0), the condition code flags (cc) or memory.

This makes the compiler store affected values before and reload them after executing the 
instruction.

The constraints mentioned when we talked about input and output operand lists relate to the fact 
that assembly language instructions have specific operand type requirements. When passing 
parameters to inline assembly statements, the compiler must know how they are represented. 
For example, the constraint “r“ specifies one of the registers R0-R15 in ARM state, while “m” 
is a memory address and “w” is a single precision floating-point register. These characters have 
an = placed before them to indicate a write-only output operand, a “+” for a read/write output 
operand (that is, one that is both input and output to the instruction). The “&” modifier instructs 
the compiler not to select any register for the output value that is used for any of the input 
operands. 

You can force the inline assembler to use a particular register to hold a local variable by using 
something like the code shown in Example 15-3.

Example 15-3 Inline assembler local variable usage

void func (void) {
register unsigned int regzero asm(“r0”);

and later

asm volatile("rev r0, r0");

This usage can interfere with the compiler optimization and does not guarantee that the register 
will not be re-used, for example when the local variable is no longer referenced. Hard coding 
register usage is always bad practice. It is almost always better to use local variables instead.

Example 15-4 gives a longer example of inline assembler, taken from the Linux kernel. It shows 
how a series of inline assembly language instructions can be used. The code manipulates the 
CPSR, to change modes. This would not be possible using C code.

Example 15-4 Inline assembler

void __naked get_fiq_regs(struct pt_regs *regs)
{
register unsigned long tmp;
asm volatile (
"mov ip, sp\n\
stmfd sp!, {fp, ip, lr, pc}\n\
sub fp, ip, #4\n\
mrs %0, cpsr\n\
msr cpsr_c, %2 @ select FIQ mode\n\
mov r0, r0\n\
stmia %1, {r8 - r14}\n\
msr cpsr_c, %0 @ return to SVC mode\n\
mov r0, r0\n\
ldmfd sp, {fp, sp, pc}"
: "=&r" (tmp)
: "r" (&regs->ARM_r8), "I" (PSR_I_BIT | PSR_F_BIT | FIQ_MODE));

}
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The ARM compiler tools have a similar concept, albeit with different syntax. In addition to 
inline assembly, they also support embedded assembly that is assembled separately from the C 
code and produces a compiled object that is combined with the object from the C compilation.
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Chapter 16 
Profiling

Donald Knuth once famously observed that “Premature optimization is the root of all evil”. 
However, Knuth's comment does not argue against appropriate optimization. 

Code optimization is an important part of the work of software engineers– modifying software so 
that it runs more quickly, uses less power and makes less use of memory or other resources. To do 
this, you must first identify which part or parts of the code should be optimized. It is worth noting, 
however, that a programmer’s best guesses about where the time is spent can be notoriously 
inaccurate, hence the importance of profiling.

Profiling is a technique that lets you identify sections of code that consume large proportions of the 
total execution time. It is usually more productive to focus optimization efforts on code segments 
that are executed very frequently, or that take a significant proportion of total execution time than 
to optimize rarely used functions or code that takes only a small proportion of total execution time. 
A profiler will tell you which parts of the code are frequently executed and which occupy the most 
core cycles. A profiler can help you identify bottlenecks, situations where the performance of the 
system is constrained by a small number of functions. This data is collected using instrumentation, 
an execution trace or sampling. 

When you have identified some slow part of your code it is important to consider whether you can 
change the algorithm, before attempting to improve the existing code. For example, if the time is 
being spent searching a linked list, it is probably much more beneficial to change to using a tree or 
hash table instead of spending effort to speed up the linked list search.
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Profiling can be considered as a form of dynamic code analysis. Profiling tools can gather 
information in a number of different ways. We can distinguish two basic approaches to 
gathering information.

Time based sampling 
Here, the state of the system is sampled at a periodic, time-based interval. The 
size of this interval can affect the results, a smaller sampling interval can increase 
execution time but produce more detailed data.

Event based sampling 
Here, sampling is driven by occurrences of an event, which means that the time 
between sampling intervals is usually variable. Events can often be hardware 
related, for example, cache misses.

It is also important to understand that profilers typically operate on a statistical basis, they might 
not necessarily produce absolute counts of events. In complex systems, it might be necessary to 
control profiling information by use of annotation options to specify which events are to be 
recorded, which events shown, or thresholds to avoid displaying large numbers of functions 
with low count numbers. 
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16.1 Profiler output
Profiler tools normally provide two kinds of information:

Call graph The call graph tells you the number of times each function was called. This can 
help point out which function calls can be eliminated or replaced and shows 
inter-relations between different functions. Viewing a call graph can suggest code 
to optimize and reveal hidden bugs, for example, if code is unexpectedly calling 
an error function many times. Collecting call graph information can require 
building the code with special options. 

Flat profile A flat profile, as in Example 16-1 shows how much core time each function uses 
and the number of times it was called. This enables a simple identification of 
which functions consume large fractions of run-time and should therefore be 
considered first for possible optimizations.

Example 16-1 Example flat profile

Flat profile:

Each sample counts as 0.01 seconds.
 %   cumulative self self total 
 time   seconds   seconds    calls  ms/call  ms/call  name 
 33.34     0.02     0.02     6275     0.00     0.00  start
 16.67     0.03     0.01      192     0.07     0.21  func1
 16.67     0.04     0.01       15     1.20     1.20  memcpy
 16.67     0.05     0.01        7     1.41     1.41  write

It might be useful at this point to consider some example profiling tools which can be used in 
Cortex-A series processors.

16.1.1 Gprof

GProf is a GNU tool that provides an easy way to profile your C/C++ application and find the 
locations that require work. 

Using GCC, you can generate profile information by compiling with a special flags. The source 
code has to be compiled with the -pg option. For line-by-line profiling, the –g option would also 
be required. You then execute the compiled program and the profiling data is collected. You then 
run gprof on the resulting statistics file to view the data, in a variety of convenient formats.

When you compile with -pg the compiler adds profiling instrumentation that collects data at 
function entry and exits at runtime. It therefore profiles only the user application code and not 
anything that happens in code that has not been built for profiling (for example, libc) or the 
kernel. Gprof can give misleading results if the performance limitations of the code come from 
kernel or I/O issues (memory fragmentation or file accesses for example).

It might be necessary to remove GCC optimization flags, as some compiler optimizations can 
cause problems while profiling. It is also the case that the use of the profiling flags will actually 
slow the program down. This can be an important consideration in some types of real-time 
system, where it might be that the interaction of real-time events has a significant effect on the 
performance of the profiled code. A binary file called gmon.out containing profiling information 
is generated. This file can then be operated on by the gprof tool.
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16.1.2 OProfile

OProfile is a whole system profiling tool that runs on Linux and includes the kernel in its 
metrics. Unlike gprof, it works using a statistical sampling method. OProfile can examine the 
system at regular intervals, determine what code is running, and update appropriate counters. If 
a long enough profile is taken, with a sufficient sample rate, an accurate picture of the execution 
is obtained. Like other profilers that make use of interrupts, code that disables interrupts can 
cause inaccuracies. For this reason, the Linux function spinlock_irq_restore() that re-enables 
interrupts after a spinlock has been relinquished can erroneously appear to be a major system 
bottleneck, as the time for which interrupts were disabled can be counted against it. OProfile 
can also be made to trigger on hardware events and will record all system activity including 
kernel and library code execution.

OProfile does not require code to be recompiled with any special flags (provided symbol 
information is available). It provides useful hardware information about such things as clock 
cycles and cache misses. Call graphs are statistically generated, so might not be completely 
accurate.

16.1.3 DS-5 Streamline

DS-5 Streamline is a graphical performance analysis tool that can be used to analyze the 
performance of an Linux or Android system. It is a component of ARM DS-5 and combines a 
kernel driver, target daemon and Eclipse-based user interface. (For more information about 
DS-5, see ARM DS-5 on page B-10.)

DS-5 Streamline takes sampling data and system trace information and produces reports that 
present the data visually and in a statistical form. It uses hardware performance counters and 
kernel metrics to provide an accurate representation of system resources. DS-5 Streamline 
enables the application source code to be annotated to augment its graphical display with 
additional textual or visual information, such as labelled timing markers or screen shots from 
the target.

For example, DS-5 Streamline has a display mode called Core map. In this mode the process 
trace view changes from an intensity map of time to a view that highlights core affinity. 
Figure 16-1 on page 16-5 shows the DS-5 Streamline view of a multi-threaded Linux 
application running on a multi-core cluster. Threads are being assigned to the cores by the Linux 
kernel:
ARM DEN0013D Copyright © 2011 – 2013 ARM. All rights reserved. 16-4
ID012214 Non-Confidential



Profiling 
Figure 16-1 Core map in ARM DS-5 Streamline

16.1.4 ARM performance monitor

The performance monitor hardware is able to count several events, using multiple counters. 
Normally, you combine together multiple values to generate useful parameters to optimize. For 
example, you can choose to count the total number of clock cycles and the number of 
instructions executed and use this to derive a cycles per instruction figure that is a useful proxy 
for the efficiency with which the core is operating. We can generate information about cache hit 
or miss rates (separately for both L1 data and instruction caches) and examine how code changes 
can affect these.

Cortex-A series processors contain event counting hardware that can be used to profile and 
benchmark code, including generation of cycle and instruction count figures and to derive 
figures for cache misses and so forth. The performance counter block contains a cycle counter 
that can count core cycles, or be configured to count every 64 cycles. There are also a number 
of configurable 32-bit wide event counters that can be set to count instances of events from a 
wide-ranging list (for example, instructions executed, or MMU TLB misses). These counters 
can be accessed through debug tools, or by software running on the core, through the CP15 
Performance Monitoring Unit (PMU) registers. They provide a non-invasive debug feature and 
do not change the behavior of the core. CP15 also provides a number of controls for enabling 
and resetting the counters and to indicate overflows (there is an option to generate an interrupt 
on a counter overflow). The cycle counter can be enabled independently of the event counters.

It is important to understand that information generated by such counters might not be exact. In 
a superscalar, out-of-order core, for example, it can be difficult to guarantee that the number of 
instructions executed is precise at the time any other counter is updated.
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The standard countable events, common to all ARMv7-A processors are listed in Table 16-1. 
The TRM for the specific processor being used provides more information on the lists of events 
that can be monitored, that can include a large number of additional possibilities in addition to 
those listed here.

Table 16-1 Performance monitor events

Number Event counted

0x00 Software increment of the Software Increment Register

0x01 Instruction fetch that causes a Level 1 instruction cache refill

0x02 Instruction fetch that causes a Level 1 instruction TLB refill

0x03 Data Read or Write operation that causes a Level 1 instruction TLB refill

0x04 Data Read or Write operation that causes a Level 1 data cache access

0x05 Data Read or Write operation that causes a Level 1 data TLB refill

0x06 Memory-reading instruction executed

0x07 Memory-writing instruction executed

0x09 Exception taken

0x0A Exception return executed

0x0B Instruction that writes to the Context ID register

0x0C Software change of program counter

0x0D Immediate branch instruction executed

0x0F Unaligned load or store

0x10 Branch mispredicted or not predicted

0x11 Cycle count; the register is incremented on every cycle

0x12 Predictable branch speculatively executed

0x13 Data memory access

0x14 Level 1 instruction cache access

0x15 Level 1 data cache write-back

0x16 Level 1 data cache write-back

0x17 Level 2 data cache refill

0x18 Level 2 data cache write-back

0x19 Bus access

0x1A Local memory error

0x1B Instruction speculatively executed

0x1C Instruction write to TTBR

0x1D Bus cycle

0x1E-0x3F Reserved
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Multi-core clusters include a significant number of additional events relating to SMP 
capabilities, described in Chapter 18 Multi-core processors. These include numbers of barrier 
instructions executed, measures of coherent cache activity and counts of exclusive access 
failures.

In Linux, these counters are normally accessed through the kernel using the Linux OProfile tool 
or the Linux perf events framework. However, User mode access to these counters can be 
enabled for direct access if required. 

16.1.5 Linux perf events

Linux contains patches (as of Linux-2.6.34) to support the Ingo Molnar Perf Events framework. 
It handles multiple events, including core cycles and cache-misses but also measures kernel 
events like context switches. It provides simple, platform independent access to the ARM 
performance counter registers and also to software events. Through this framework, tools can 
produce graphs and statistics about such things as function calls. You can also record execution 
traces, profile on a per-core, per-application and per-thread basis and generate summaries of 
events.

16.1.6 Ftrace

Ftrace is an increasingly widely used trace tool on Linux. It provides visualization of the flow 
within the kernel by tracing each function call. It enables interactions between parts of the kernel 
to be viewed and enables to developers to investigate potential problem paths where interrupts 
or pre-emption are disabled for long periods.

16.1.7 Valgrind and Cachegrind 

Valgrind is a widely used tool, commonly used for detection of memory leaks and other memory 
handling problems; however, it can also be used for profiling memory usage and is potentially 
able to give much more detailed results than OProfile. Valgrind translates a program into a 
core-neutral intermediate representation. Other tools associated with Valgrind are able to 
operate on this and then Valgrind translates the code back into native machine code. This 
process makes the code run an order of magnitude slower, but enables checks for accesses to 
undefined memory, off-by-one errors and so forth to be performed by tools like Memcheck.

For memory access optimization, the Cachegrind tool can be used. Because Valgrind simulates 
the execution of the program, you can use Cachegrind to record all uses of program memory. 
By simulating the operation of the core caches, you can generate statistics about cache usage. 
Some care is required – this is a simulation of the cache and it is possible that it does not 
represent the real cache hardware completely accurately. Nevertheless, it can be a very useful 
tool to examine cache and memory usage by an application. When writing high level 
applications, it can be difficult to have much appreciation for (or control over) addresses used 
by a program. The linker will typically generate many of the virtual addresses used within an 
image, while the runtime loader will control positioning of libraries and so forth. Finally, the 
kernel is responsible for placement of code and data in physical memory. Memory profiling 
tools can therefore be a useful aid. 
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Optimizing Code to Run on ARM Processors

Optimization does not necessarily mean optimizing to make programs faster. In embedded systems, 
you might prefer to optimize for battery life, code density or memory footprint. Writing code that 
is more efficient delivers not only higher levels of performance, but can also be crucial in 
conserving battery life. If you can get a job done faster, in fewer cycles, you can turn off the power 
for longer periods.

Many compilers provide options to help with this. For example, both the ARM Compiler and the 
GNU GCC compiler have -O flags to specify the level of optimization. 

Although cycle timing information can be found in the Technical Reference Manual (TRM) for the 
processor that you are using, it is very difficult to work out how many cycles even a trivial piece of 
code will take to execute. The movement of instructions through the pipeline is dependent on the 
progress of the surrounding instructions and can be significantly affected by memory system 
activity. Pending loads or instruction fetches that miss in the cache can stall code for tens of cycles. 
Standard data processing instructions (logical and arithmetic) will take only one or two cycles to 
execute, but this does not give the full picture. Instead, you must use profiling tools, or the system 
performance monitor built-in to the core, to extract useful information about performance.
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17.1 Compiler optimizations
The ARM Compiler and GNU GCC give you a wide range of options that aim to increase the 
speed, or reduce the size, of the executable files they generate. For each line in the source code 
there are generally many possible choices of assembly instructions that could be used. The 
compiler must trade-off a number of resources, such as registers, stack and heap space, code size 
(number of instructions), compilation time, ease of debug, and number of cycles per instruction 
in order to produce the best image file. 

17.1.1 Function inlining

When a function is called, there is a certain overhead. A called function must store its own return 
address on the stack if it has to reuse R14. Instructions might also be required to place arguments 
in the appropriate registers and push registers on the stack, in accordance with the Procedure 
Call Standard. There is a possible overhead when returning to the original point of execution 
when the function ends, again requiring a branch (and corresponding instruction pipeline flush) 
and possibly popping registers from the stack. However, the pipeline will not be flushed if the 
return is correctly predicted using the return stack. This function-call overhead can become 
significant when there are functions that contain only a few instructions, and where these 
functions represent a significant amount of the total run-time. Also, executing branches uses 
branch predictor resources, that can affect overall program performance. Function inlining 
eliminates this overhead by replacing calls to a function by a copy of the actual code of the 
function itself (known as placing the code inline). 

Inlining for critical code paths is always a worthwhile optimization if there is only one place 
where the function is called. It is always worthwhile if calling the function requires more 
instructions (memory) than inlining the function body. An additional consideration is that 
inlining can help permit other optimizations. Clearly, increasing the number of times that a 
function is called will increase the number of inlined copies of the function that are made and 
this will increase the cost in code size.

GCC performs inlining only within each compilation unit. The inline keyword can be used to 
request that a specific function must be inlined wherever possible, even in other files. The GCC 
documentation gives more details of this and how its use can be combined with static and 
extern.

We will look at inlining in a little more detail when we consider cache optimizations.

17.1.2 Eliminating common sub-expressions 

Another simple source-level optimization is re-using already computed results in a later 
expression. This common sub-expression elimination is performed automatically when 
optimization command line switches are used and can make code both smaller and faster. 
However, the compiler might not necessarily catch all cases, and it can sometimes be more 
useful to do this by hand.
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Example 17-1 illustrates how this works:

Example 17-1 Common sub-expression

i = a * b + c;
j = a * b * d;

The compiler can treat this code as if it had been written as in Example 17-2. It must be noted 
though, that it can only do this if neither a nor b is volatile.

Example 17-2 Common sub-expression elimination

tmp = a * b;
i = tmp + c;
j = tmp * d;

This reduces both the instruction count and cycle count.

17.1.3 Loop unrolling

Every iteration of a loop has a certain penalty associated with it. Every conditional loop must 
include a test for the end of loop on each iteration. Furthermore, there is a branch instruction to 
iterate over the loop, that can take a number of cycles to execute. We can avoid this penalty by 
unrolling loops, partially or fully.

Consider the simple code shown in Example 17-4, to initialize an array. 

Example 17-3 Initializing an array

for (i = 0; i < 10; i++)
{

x[i] = i;
}

Each iteration of the loop contains an assembler sequence of the form in Example 17-4.

Example 17-4 Loop termination assembly code

CMP i,#10
BLT for_loop 

A large proportion of the total run time will have been spent checking if the loop has terminated 
and in executing a branch to re-execute the loop. 

The same code can be written by unrolling the loop, as shown in Example 17-5.

Example 17-5 Unrolled loop

x[0] = 0;
x[1] = 1;
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x[2] = 2;
x[3] = 3;
x[4] = 4;
x[5] = 5;
x[6] = 6;
x[7] = 7;
x[8] = 8;
x[9] = 9;

When the code is written in this way, we remove the compare and branch instruction and have 
a sequence of stores and adds. This is clearly larger than the original code but can execute 
considerably faster.

Conventionally, loop unrolling is often considered to increase the speed of the program but at 
the expense of an increase in code size (except for very short loops). However, in practice this 
might not always be the case on many hardware platforms. In many systems, an access to 
external memory takes significant numbers of cycles and an instruction cache is provided. Code 
that loops will often fit into the cache very well. The code is fetched into the cache during the 
first loop iteration and is executed directly from cache after that. Unrolling the loop can mean 
that the code is executed only once and, because it is larger, does not cache so well. This is more 
likely to be the case for functions that are executed only once. Loops that are executed 
frequently might be cached whether they are unrolled or not. An additional consideration is that 
modern ARM processors typically include branch prediction logic that can hide the effect of 
pipeline flushes from you by speculatively predicting whether a branch will or will not be taken 
ahead of the actual evaluation of a condition. In some cases, the branch instruction can be 
folded, so that it does not require an actual processor cycle to execute.

Cortex-A series processors can have long, complex instruction pipelines, with 
interdependencies between instructions, particularly loads and instructions that set condition 
code flags. The compiler understands the rules associated with a particular processor and can 
often re-arrange instructions so that pipeline interlocks are avoided. This is called scheduling 
and typically involves re-arranging the order of instructions in ways that do not alter the logical 
correctness of the program or its size, but that reduce its execution time. This can significantly 
increase the compiler effort, increasing both the time and memory required for the compilation. 
It can also restrict the ability to perform source level debug. There might no longer be a strict 
one-to-one link between a line of C source and a sequence of assembly instructions. We can 
instead have a couple of instructions from a C statement followed by instructions for the next 
statement and then some more instructions for the first statement.

17.1.4 GCC optimization options

GCC has a range of optimization levels, plus individual options to enable or disable particular 
optimizations. 

The overall compiler optimization level is controlled by the command line option -On, where n 
is the required optimization level, as follows: 

• -O0. (default). No optimization is performed. Each source code command relates directly 
to the corresponding instructions in the executable file. This gives the clearest view for 
source level debugging.

• -O1. This enables most common forms of optimization that requires no size versus speed 
decisions, including function inlining. It can often actually produce a faster compile than 
–O0, because the resulting files are smaller.

• -O2.This enables additional optimizations, such as instruction scheduling. Again, 
optimizations that can have speed versus size implications will not be used.
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• -O3. This enables additional optimizations, such as aggressive function inlining and can 
therefore increase the speed at the expense of image size. Furthermore, this option enables 
-ftree-vectorize - causing the compiler to attempt to automatically generate NEON code 
from standard C or C++. See Chapter 20 Writing NEON Code.

• -funroll-loops. This option is independent of the -On option, and enables loop unrolling. 
Loop unrolling can increase code size and might not have a beneficial effect in all cases.

• -Os. This selects optimizations that attempt to minimize the size of the image, even at the 
expense of speed.

Higher levels of optimization can restrict debug visibility and increase compile times. It is usual 
to use -O0 for debugging, and -O2 for finished code. When using the above optimization options 
with the –g (debug) switch, it can be difficult to see what is happening. The optimizations can 
change the order of statements or remove (or add) temporary variables among other things. But 
an understanding of the kinds of things the compiler will do means that satisfactory debug is 
normally still possible with –O2 -g.

For optimal code, it is important to specify to the compiler as much detailed information about 
the target platform as practically possible. Many useful options are documented on 
http://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html.

The main platform-specifying parameters are:

-march=<arch>

where <arch> is the architecture version to compile for. This defines the instruction set 
supported, It can make a significant difference to performance to specify –march=armv7-a if this 
is supported by your platform but is not used by default by your compiler.

-mcpu=<cpu>

More specific than –march, -mcpu specifies which processor to optimize for, including scheduling 
instructions in the way most efficient for that processor’s pipeline.

-mtune=<cpu>

This option provides processor specific tuning options for code, even when only an architecture 
version is specified on the command line. For instance, the command line might contain 
-march=armv5te -mtune=cortex-a8. This selects instructions for the architecture ARMv5TE but 
tunes the selected instructions for execution on a Cortex-A8 processor.

-mfpu=<fpu>

If your target platform supports hardware floating-point or NEON, specify this to ensure that 
the compiler can make use of these instructions. For a Cortex-A5 target, you would specify 
–mfpu=neon-vfpv4.

-mfloat-abi=<name>

This option specifies the floating-point ABI to use. Values for <name> are:

soft causes GCC to generate code containing calls to the software floating-point 
library for floating-point operations.

softfp enables GCC to generate code containing hardware floating-point instructions, 
but still uses the software floating-point linkage.

hard enables GCC to generate code containing hardware floating-point instructions 
and uses FPU-specific hardware floating-point linkage.
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The default depends on the target configuration. You must compile your entire program with the 
same ABI, and link with a compatible set of libraries.

Table 17-1 shows a few examples of code generation for floating-point operations.

17.1.5 armcc optimization options

The armcc compiler enables you to compile your C and C++ code. It is an optimizing compiler 
with a range of command-line options to enable you to control the level of optimization. 

The command line option gives a choice of optimization levels, as follows: 

• -Ospace. This option instructs the compiler to perform optimizations to reduce image size 
at the expense of a possible increase in execution time.

• -Otime. This option instructs the compiler to perform optimizations to reduce execution 
time at the expense of a possible increase in image size.

• -O0. Turns off most optimizations. It gives the best possible debug view and the lowest 
level of optimization.

• -O1. Removes unused inline functions and unused static functions. Turns off optimizations 
that seriously degrade the debug view. If used with --debug, this option gives a satisfactory 
debug view with good code density.

• -O2 (default). High optimization. If used with --debug, the debug view might be less 
satisfactory because the mapping of object code to source code is not always clear.

• -O3. performs the same optimizations as -O2 however the balance between space and time 
optimizations in the generated code is more heavily weighted towards space or time 
compared with -O2. That is:
— -O3 -Otime aims to produce faster code than -O2 -Otime, at the risk of

increasing your image size
— -O3 -Ospace aims to produce smaller code than -O2 -Ospace, but performance might 

be degraded.

Table 17-1 Floating-point code generation

-mfpu -mfloat-abi Resultant code

Any value soft Floating-point emulation using software floating-point library

vfpv3 softfp VFPv3 floating-point code

vfpv3-d16 softfp VFPv3 floating-point code

neon hard VFPv3 and Advanced SIMD code, where the floating-point and 
SIMD types use the hardware FP registers
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17.2 ARM memory system optimization
Writing code that is optimal for the system it will run on is a key part of the art of programming. 
It requires you to understand how the compiler and underlying hardware will carry out the tasks 
described in the lines of code. If you can do the job with less access to external memory, you 
can save power by keeping everything on-chip. Furthermore, by accessing the external memory 
less frequently, you improve the performance of the system, enabling software to run faster, or 
the processor to be clocked more slowly or for shorter periods, to save power.

17.2.1 Data cache optimization

In most Cortex-A series processors, there is a significant gap in performance between memory 
accesses that hit in the cache and those that do not. Cache misses can take tens of cycles to 
resolve. Cache hits return data within a few cycles and the compiler can often schedule 
instructions in a way that hides latency. For most algorithms, therefore, ensuring that cache 
misses are minimized is the most important possible optimization. The most important 
improvements are those that affect the level 1 cache. 

Consider the problem of data cache misses. Optimization is particularly significant for pieces of 
code that use a dataset larger than the available cache size. It is important for you to understand 
the arrangement of data in memory and how that corresponds to data cache accesses. Code must 
be structured in a way that ensures maximum re-use of data already loaded into the cache. It is 
this principle of data locality, the degree to which accesses to the same cache line are 
concentrated during program execution, in both space and time, which gives best performance. 

Several techniques to improve this locality can be considered.

17.2.2 Loop tiling

Loop tiling divides loop iterations into smaller pieces, in a way which promotes data cache 
re-use. Large arrays are divided into smaller blocks (tiles) that match the accessed array 
elements to the cache size. The classic example to illustrate this approach is a large matrix vector 
product.

Consider two square matrices a and b, each of size 1024 × 1024. Example 17-6 shows code to 
compute a matrix vector product. This requires you to multiply each element in each array with 
each element in the other array.

Example 17-6 Matrix vector product code

for (i = 0; i < 1024; i++)
for (j = 0; j < 1024; j++)
for (k = 0; k < 1024; k++)

result[i][j] = result[i][j] + a[i][k] * b[k][j];

In this case, the contents of matrix a are accessed sequentially, but matrix b advances in the inner 
loop, by row. It is therefore, highly probable that you will encounter a cache miss for each 
multiply operation.

It is obvious that the order in which the additions for each element of the result matrix are 
calculated does not change the result, ignoring the effect of such things as overflows. Code can 
be rewritten in a way that improves the cache hit rate. In the example, the elements of matrix b 
are accessed in the following way (0,0), (1,0), (2,0)… (1023, 0), (0,1), (1,1)… (1023,1). The 
elements are stored in memory in the order (0,0), (0,1) etc. For word sized elements, it means 
that the elements (0,0), (0,1)…(0,7) will be stored in the same cache line. For simplicity, we will 
assume that the start address of the matrix is aligned to a cache line. Alignment will be 
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mentioned again in Structure alignment on page 17-9. Therefore, elements (0,0), (0,1), (0,2) etc. 
will be in the same cache line; when you load (0,0) into the cache, you get (0,1...7) too. By the 
time the inner loop completes, it is likely that this cache line will be evicted. 

If you modify the code so that two (or indeed four, or eight) iterations of the middle loop are 
performed immediately while executing the inner loop, as in Example 17-7 you can make a big 
improvement. Similarly, you can unroll the outer loop two (or four, or eight) times as well. 

Example 17-7 Code using tiles

for (io = 0; io < 1024; io += 8)
for (jo = 0; jo < 1024; jo += 8)
for (ko = 0; ko < 1024; ko += 8)
for (ii = 0, rresult = &result[io][jo],
ra = &a[io][ko]; ii < 8;
ii++, rresult += 1024, ra += 1024)
for (ki = 0, rb = &b[ko][jo];
ki < 8; ki++, rb += 1024)
for (ji = 0; ji < 8; ji++)

rresult[ji] += ra[ki] * rb[ji];

There are now six nested loops. The outer loops iterate with steps of 8, representing the fact that 
eight int sized elements are stored in each line of the level 1 cache. Some additional 
optimizations have also been introduced. The order of ji and ki has been reversed as only one 
expression uses ki, but two use ji. In addition, you can optimize by removing common 
expressions from the inner loops. All pointer accesses are potential sources of aliasing in C, so 
by using result, ra and rb to access array elements, the array indexing is speeded up. This is 
covered in more detail in Source code modifications on page 17-12. 

Figure 17-1 illustrates the changing cache access pattern that results from changes to the C code.

Figure 17-1 Effect of tiling on cache usage

17.2.3 Loop interchange

In many programs, there will be nested loops, a very simple example would be code that stepped 
through the items in a 2-dimensional array. For reasonably complex code, you can sometimes 
get better performance by re-arrangement of the loops. It is better to have the loop with the 
smaller number of iterations as the outer loop and the one with the highest iteration count as the 
innermost loop.

This gives two potential advantages. One is that the compiler can potentially unroll the inner 
loop. Perhaps more importantly for complex loops where the size of the nested loop is 
sufficiently large that it might not all be held in the level 1 cache at the same time, the overall 
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cache hit rate will be improved by this change. Some compilers can make this change 
automatically at higher levels of optimization. For example, GCC 4.4 adds the switch 
-floop-interchange to do this.

17.2.4 Structure alignment

Efficient placement of structure elements and alignment are not the only aspects of data 
structures that influence cache efficiency. Where code has a large working set, it is important to 
make efficient use of the available cache space. To achieve this, it might be necessary to 
rearrange data structures. 

It is common to have data structures that span multiple cache lines, but where the program uses 
only a few parts of the structure at any particular time. If there are many objects of this type, it 
can make sense to try to split the structure so that it fits within a cache line. For example, you 
can split an array of structures into two or more arrays of smaller structures. This only makes 
sense if the object itself is aligned to a cache boundary. For example, consider the case where 
you have a very large array of instances of a 64-byte structure (much larger than the cache size). 
Within that structure, you have a byte-sized quantity and you have a commonly used function 
that iterates through the array looking only at that byte-sized quantity. This function would make 
inefficient use of the cache, as you would have to load an entire cache line to read the 8-bit value. 
If instead those 8-bit values were stored in their own array (rather than as part of a larger 
structure), you would get 32 or 64 values per cache linefill. 

As we saw in Chapter 14 Porting, unaligned accesses are supported, but can take extra cycles 
in comparison to aligned accesses. For performance reasons, therefore, it can be sensible to 
remove or reduce unaligned accesses. 

17.2.5 Associativity effects

As we have seen, ARM L1 caches are normally 4-way set-associative, but L2 caches typically 
have 8- or 16-way associativity. There can be performance problems if more than four of the 
locations in the data fall into the same cache set, as there can be repeated cache misses, even 
though other parts of the cache can be unused. The ARM L1 Cache uses physical rather than 
virtual addresses, so it can be difficult for programmers operating in User mode to take care of 
this.

A particularly common cause of this problem is arranging data so that it is on boundaries of 
powers of two. If the cache size is 16KB, each way is 4KB in size. If you have multiple blocks 
of data arranged on boundaries that are multiples of 4KB, the first access to each block will go 
into line 0 of a way. If code accesses the first line in several such blocks then you can get cache 
misses even if only five cache lines in total are being used. Unaligned accesses can increase the 
likelihood of this, as each access might require two cache lines rather than one. 

17.2.6 Optimizing instruction cache usage 

The C programmer does not directly have control over how the instruction cache is used by 
code. Code is linear between branch instructions and this pattern of sequential accesses uses the 
cache efficiently. The branch prediction logic of the core will try to minimize the stalls because 
of branches, so there is little you can do to assist. The main goal for you is to reduce the code 
footprint. Many of the compiler optimizations enabled at -O2 and -O3 for the ARM Compiler and 
GCC deal with loop optimizations and function inlining. These optimizations will improve 
performance if the code accounts for a significant part of the total program execution. In 
particular, function inlining has multiple potential benefits. Obviously, it can reduce branch 
penalties by removing branches on both function call and exit, and potentially also stack usage. 
Equally importantly, it enables the compiler to optimize over a larger block of code that can lead 
to better optimizations for value range propagation and elimination of unused code.
ARM DEN0013D Copyright © 2011 – 2013 ARM. All rights reserved. 17-9
ID012214 Non-Confidential



Optimizing Code to Run on ARM Processors 
However, modifications intended for speed optimizations that increase code size can actually 
reduce performance because of cache issues. Larger code is less likely to fit in the L1 cache (or 
indeed the L2 cache) and the performance lost by the additional cache linefills can well 
outweigh any benefits of the optimization. It is often better to use the armcc -Ospace or gcc –Os 
option to optimize for code density rather than speed. Clearly, using Thumb code will also 
improve code density and cache efficiency.

There are some interesting decisions to be made around function inlining and in some cases 
human judgment can improve on that of the compiler. A function that is only ever called from 
one place will always give a benefit if inlined. One might think that inlining very small functions 
always gives a benefit, but this is not the case. An instance of a tiny function that is called from 
many places is likely to be re-used many times within the instruction cache. If the same function 
is repeatedly inlined, it is much more likely that it will cause a cache miss and also evict other 
potentially useful code from the cache. The branch prediction logic within Cortex-A series 
processors is efficient and an unconditional function call and return consumes few cycles, much 
less than would be used for a cache linefill. You might want to use the GCC function attributes 
noinline or always_inline to control such cases.

This is a general problem and not specific to inlining functions. Whenever conditional execution 
is used and it is lopsided, that is, the expression far more often leads to one result than the other, 
there is the potential for false static branch prediction and bubbles (a delay in execution of an 
instruction) in the pipeline. It is usually better to order conditional blocks so that the 
often-executed code is linear, while the less commonly executed code has to be branched to and 
does not get pre-fetched unless it is actually used. The GCC attribute __builtin_expect used 
with the –freorder-blocks optimization option can help with this. 

The performance monitor block of the processor (and OProfile) can be used to measure branch 
prediction rates in code. There are two effects at play here. Correct branch prediction saves 
clock cycles by avoiding pipeline flushes, but taking fewer conditional branches that skip 
forward over code can help performance by making more of the program fit within the L1 cache.

17.2.7 Optimizing L2 and outer cache usage 

Everything said about optimizations for using the L1 cache also applies to the L2 cache 
accesses. Best performance results from having a working dataset that is smaller than the L2 
cache size, and where the data is used more than once; there is little benefit caching data that is 
used only once, other than possibly producing more optimal bus accesses. If the dataset is larger 
than the cache size, you can consider similar techniques to those already described for the L1 
cache. There is, however, an additional point to consider with outer caches, which is that they 
might well be shared with other cores and therefore the effective size for an individual processor 
can be less than the actual size. In addition, when writing generic code to run on a number of 
ARM families, it can be difficult to make optimal use of the L2 cache. The presence of such a 
cache is not guaranteed and its size can vary significantly between systems.

17.2.8 Optimizing TLB usage 

In general, the scope for optimizing usage of the Translation Lookaside Buffer (see Chapter 9) 
is much less than for optimizing cache accesses. The key points are to minimize the number of 
pages in use (this obviously gives fewer TLB misses) and to use large MMU mappings 
(supersections or sections in preference to 4KB pages) as this reduces the cost of individual 
translation table walks (one external memory access rather than two) and also means that a 
larger amount of memory is represented within an individual TLB entry (also giving fewer TLB 
misses). In practice, however, an operating system like Linux uses 4KB pages everywhere, so 
the main optimization technique available is to separate the frequently accessed code and data 
from the infrequently accessed code and data (for example exception handling code can be 
moved to a different page) and trying to limit the number of frequently accessed pages to below 
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the maximum number supported by the processor hardware. The main optimization would be 
to try to process multiple cache lines’ worth of data per page, so that the L1 cache is the limiting 
factor rather than TLB entries.

17.2.9 Data abort optimization

Chapter 9 The Memory Management Unit, in the context of Linux, describes how data aborts 
will be generated by page faults on the first time that a memory page is accessed and again when 
the page is first written to. This means that the kernel abort handler is called to take appropriate 
action and there is a certain performance overhead to this. Simplistically, you can reduce this 
overhead by using fewer pages. Again, code optimizations that make code smaller will help, as 
will reducing the size of the data space.

17.2.10 Prefetching a memory block access

ARM Cortex-A series processors contain sophisticated cache systems, and support for 
speculation and out of order execution that can hide latencies associated with memory accesses. 
However, accesses to the external memory system are usually sufficiently slow that there will 
still be some penalty. If you can prefetch instructions or data into the cache before you require 
them, you can hide this latency. 

ARM processors provide support for preloading of data, using the PLD instruction. The PLD 
instruction is a hint that enables you to request that data is loaded to the data cache in advance 
of it actually being read or written by the application. The PLD operation might generate a cache 
linefill or a data cache miss, independent of load and store instruction execution, while the core 
continues to execute other instructions. If supported and used correctly, PLD can significantly 
improve performance by hiding memory access latencies. There is also a PLI instruction that 
enables you to hint to the processor that an instruction load from a particular address is likely in 
the near future. This can cause the processor to preload the instructions to its cache.

In addition to this programmer-initiated prefetch, the core might also support automatic data 
prefetching. Essentially, the core can detect a series of sequential accesses to memory. When it 
does, it automatically requests the following cache lines speculatively, in advance of the 
program actually using them. 

In many systems, significant numbers of cycles are consumed initializing or moving blocks of 
memory, using the memset() or memcpy() functions. Optimized ARM libraries will typically 
implement such functions by using Store Multiple instructions, with each store aligned to a 
cache line boundary. 
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17.3 Source code modifications
Profiling tools enable you to identify code segments or functions that can benefit from 
optimization and how different compiler options can enable compiler optimizations to our code. 
We will now consider a variety of source code modifications that can yield faster or smaller code 
on the ARM. 

17.3.1 Loop termination

For loops that have been identified by the profiler, it might be appropriate to have integer loop 
counters that end at 0 (zero), rather than start from 0 (zero). This is because a compare with zero 
comes for free with the ADD or SUB instruction used to update the loop counter, whereas a compare 
with a non-zero value will typically require an explicit CMP instruction.

Replace a loop that counts up to a terminating value: 

for (i = 1; i<= total; i++)

with one that counts down to zero: 

for (i = total; i != 0; i--)

This will remove a CMP instruction from each iteration of the loop.

It is also good practice to use int (32-bit) variables for loop counters. This is because the ARM 
is natively a 32-bit machine. Its ADD assembly language instruction operates on two 32-bit 
registers. If it carries out an ADD (or other data processing operation) with a smaller quantity, the 
compiler might insert additional instructions to handle overflow (see also Variable selection on 
page 17-13).

17.3.2 Loop fusion

This is one of a variety of other possible loop techniques that can be employed either by you, or 
by an optimizing compiler. It essentially means merging loops that have the same iteration count 
and no interdependencies (Example 17-8 and Example 17-9). 

Example 17-8 Loop fusion

for (i = 0; i < 10; i++)
{
x[i] = 1;

}
for (j = 0; j < 10; j++)
{
y[j] = j;

}

It is immediately apparent that this can be optimized to:

Example 17-9 Fused loops

for (i = 0; i < 10; i++)
{
x[i] = 1;
y[i] = i;
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}

It is worth mentioning that this approach can sometimes lead to a reduction in performance 
because of cache effects such as thrashing, depending on the cache associativity and the 
addresses of the data being accessed.

17.3.3 Reducing stack and heap usage

In general, it is a good idea to try to minimize memory usage by code. The ARM processor has 
a register set that provides a relatively limited set of resources for the compiler to keep variables 
in. When all registers are allocated with currently live variables, additional variables will be 
spilled to the stack, causing memory operations and extra cycles for the code to execute. There 
are a number of ways available to you, to try to help. A key rule is to try to limit the number of 
live variables at any one time. 

Chapter 15 stated that up to four parameters can be passed in registers to a function. Additional 
parameters are passed on the stack. It is therefore significantly more efficient to pass four or 
fewer parameters than to pass five or more. Of course, the ARM registers in question are 32-bits 
in size and therefore if you pass a 64-bit variable, it will take two of our four register slots. For 
similar reasons, recursive functions do not typically yield efficient processor register usage. 
Remember also that non-static C++ functions also consume one argument slot with the this 
pointer.

17.3.4 Variable selection

ARM integer registers are 32-bit sized and optimal code is therefore produced most readily 
when using 32-bit sized variables, as this avoids the requirement to provide extra code to deal 
with the case where a 32-bit result overflows an 8-bit or 16-bit sized variable.

Consider the following code: 

unsigned int i, j, k;
i = j+k;

The compiler would typically emit assembly code similar to:

ADD R0, R1, R2 

If these variables were instead short (16-bit) or char (8-bit), the compiler must ensure the result 
does not overflow the halfword or byte. 

The same code might be as shown in Example 17-10, for signed halfwords (shorts).

Example 17-10 Addition of 2 signed shorts (assembly code)

ADD      R0, R1, R2
SXTH R0, R0

Or for unsigned halfwords as in Example 17-11.

Example 17-11 Addition of 2 unsigned shorts (assembly code)

ADD       R0, R1, R2
BIC       R0, R0, #0x10000
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This has the effect of clipping the result to the defined size.

Although the compiler can sometimes cope with such things as an incorrect type specification 
for a loop counter variable, it is generally best to use the correct type in the first place.

17.3.5 Pointer aliasing

If a function has two pointers pa and pb, with the same value, we say the pointers alias each 
other. This introduces constraints on the order of instruction execution. If two write accesses that 
alias occur in program order, they must happen in the same order on the processor and cannot 
be re-ordered. This is also the case for a write followed by a read, or a read followed by a write. 
Two read accesses to aliases are safe to re-order. Because any pointer could alias any other 
pointer in C, the compiler must assume that memory regions accessed through these pointers 
can overlap, which prevents many possible optimizations. C++ enables more optimizations, as 
pointer arguments will not be treated as possible aliases if they point to different types.

C99 introduces the restrict keyword that specifies that a particular pointer argument does not 
alias any other. If you know that pointers do not overlap, using this keyword to give the compiler 
this information can yield significant improvements. However, misusing it can lead to incorrect 
program function. The restrict keyword qualifies the pointer and not the object being pointed to. 
This consideration is not specific to the ARM architecture. When using GCC, you can enable 
the C99 standard by adding -std=c99 to your compilation flags. 

In code that cannot be compiled with C99, use either __restrict or __restrict__ to enable the 
keyword as a GCC extension.

Consider the following simple code sequence:

void foo(unsigned int *ptr1, unsigned int *ptr2, unsigned int *i)
{
*ptr1 += *i;
*ptr2 += *i;

}

The pointers could possibly refer to the same memory location and this causes the compiler to 
generate code that is less efficient. In this example, it must read the value *i from memory twice, 
once for each add, as it cannot be certain that changing the value of *ptr1 does not also change 
the value of *i.

If the function is instead declared as:

void foo(unsigned int *restrict ptr1, unsigned int *restrict ptr2, unsigned int 
*restrict i)

This means that the compiler can assume that the three pointers might not refer to the same 
location and optimize accordingly. You must ensure that the pointers never overlap.

17.3.6 Division and modulo

Not all ARM processors have hardware support for division (See Table 2-3 on page 2-9). For 
these processors, C division typically calls a library routine that takes tens of cycles to run for 
divides of 32-bit integers,

Note
 Division is slower than multiplication even in hardware. In performance-critical code it is 
almost always worth replacing it if possible. This must be done as a trade-off against code 
maintainability.
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Where possible, divides must be avoided, or removed from loops. Division with a fixed divisor, 
that is, one that is known at compile time, is faster than dividing two variable quantities. The 
compiler can replace a divide by a shift-multiply pair in this case. A 32 × 32 multiply by fixed 
constant, then shift right to adjust the most significant word.

Modulo arithmetic is another case to be aware of, as this will also use division library routines. 

The code

minutes = (minutes + 1) % 60;

will run significantly faster on machines with no hardware divide, if coded as

if (++minutes == 60) minutes=0;

that substitutes a two cycle add and compare in place of a call to a library function.

17.3.7 Extern data

Accessing external variables requires the processor to execute a series of load instructions to 
acquire the address of the variable through a base pointer and then read the actual variable value. 
If multiple variables are defined as members of a structure, they can share a base pointer, saving 
cycles and instructions. It is therefore good practice to define the variables inside the same 
struct.

17.3.8 Inline or embedded assembler

In some cases, it can be a worthwhile optimization to use assembly code, in addition to C. The 
general principle here is for you to code in a high level language, use a profiler to determine 
which sections will produce the most benefit if optimized and then inspect the 
compiler-produced assembly code to look for possible improvements.

If a code section is identified as being a performance bottleneck, don’t reach immediately for 
the assembly language manual. Improvements to the algorithm should first be sought and then 
compiler optimizations tried before considering use of assembly code. Even then, it is often the 
case that poor performance is because of cache misses and memory access delays rather than 
the actual assembly code.

The ARM Compiler, GCC, and most other C compilers use the –s flag to tell the compiler to 
produce assembly code output. The –fverbose-asm command line option can also be useful in 
gcc. Interleaved source and assembler can be produced by the ARM Compiler with the 
--interleave option.

Chapter 14 Porting provides more information about the use of an inline assembler.

17.3.9 Complex addressing modes

It is often better to avoid complex addressing modes. In cases where the address to be used for 
a load or store requires a complex calculation, dual-issue of instructions is not possible. Only 
the addressing mode that uses a base register plus an offset, specified either by a register or an 
immediate value, with an optional shift left by an immediate value of two is fast. Other, less 
commonly used, addressing modes can be executed more quickly by splitting into two 
instructions that might be dual-issued. For example:

MOV R2, R1 LSL#3; LDR R2,[R0, R2]

can be faster than

LDR R2, [R0, R1 LSL #3]
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LDRH and LDRB have no extra penalty, but LDRSH and LDRSB have a single cycle load-use penalty, 
but no early forwarding path and can incur additional latency if a subsequent instruction uses 
the loaded value. 

17.3.10 Unaligned access

Unaligned LDRs have an extra cycle penalty compared with aligned loads, but unaligned LDRs 
that cross cache-lines have many cycles of additional penalty. In general, stores are less likely 
to stall the system compared to loads. STRB and STRH have similar performance to STR, because 
of the merging write buffer. Because there are four slots in the load/store unit, more than four 
consecutive pending loads will always cause a pipeline stall. 

17.3.11 Linker optimizations

Some code optimizations can be performed at the link, rather than the compile stage of the build, 
for example, unused section elimination and linker feedback. Multi-file optimization can be 
carried out across multiple C files, and unused sections can be removed. Similarly, multi-file 
compilation enables the compiler to perform optimization across multiple files instead of on 
individual files.
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Chapter 18 
Multi-core processors

Up to this point, we have considered the ARM processor core as a single entity. Most Cortex-A 
series processors, however, can include up to four processing cores.

Multi-core systems can potentially deliver higher performance, because more processing units 
(cores) are available. This enables multiple tasks to be executed in parallel, potentially reducing the 
amount of time required to perform the allocated task.

Multi-processing can be defined as running two or more sequences of instructions simultaneously 
within a single device containing two or more cores. The concept of multi-processing has been a 
subject of research for a number of decades, and has seen widespread commercial use over the past 
15 years. Multi-processing is now a widely adopted technique in both systems intended for 
general-purpose application processors and in areas more traditionally defined as embedded 
systems. 

The overall energy consumption of a multi-core system can be significantly lower than that of a 
system based on a single processor core. Multiple cores enable execution to be completed faster 
and so some elements of the system might be completely powered down for longer periods. 
Alternatively, a system with multiple cores might be able to operate at a lower frequency than that 
required by a single processor to achieve the same throughput. A lower power silicon process or a 
lower supply voltage can result in lower power consumption and reduced energy usage. Most 
current systems do not permit the frequency of cores to be changed independently. However, each 
core can be dynamically clock gated, giving additional power and energy savings.

Multi-core systems also add flexibility and scalability to system designs. A system that contains 
one or two cores could be scaled up for more performance by adding additional cores, without 
requiring redesign of the whole system or significant changes to software.
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Having multiple cores at our disposal also enables more options for system configuration. For 
example, you might have a system that uses separate cores, one to handle a hard real-time 
requirement and another for an application requiring high, uninterrupted performance. These 
could be consolidated into a single multi-processor system.

A multi-core device is also likely to be more responsive than one with a single core. When 
interrupts are distributed between cores there will be more than one core available to respond to 
an interrupt and fewer interrupts per core to be serviced. Multiple cores will also enable an 
important background process to progress simultaneously with an important but unrelated 
foreground process.

Multi-core systems can also extract more performance from high latency memory systems (for 
example, DDR memory) by enabling a memory controller to queue up and optimize requests to 
the memory. Processors working on coherent data can benefit from reductions in linefills and 
evictions. When the data is not shared, it is likely that performance will be adversely affected. 
An L2 cache can mean improved utilization for shared memory regions (including file caches), 
shared libraries and kernel code. Additionally, if the number of cores is increased, then without 
a corresponding increase in memory bandwidth performance will also deteriorate.

In the past, much software was written to operate within the context of a single core. Some 
operating systems provide support for time-slicing. this gives the illusion of multiple processes 
or tasks running simultaneously. It is important to clearly understand the difference between 
multi-threading, for example POSIX threads, or Java and multi-processing. A multi-threaded 
application can be run on a single core, but only with multi-processing can the threads truly 
execute in parallel.

Migrating multi-threaded software from a single core system to a multi-core one can trigger 
problems with incorrect programs that could not be exposed by running the same program 
time-sliced on a single core. It can also cause very infrequent bugs to become very frequently 
triggered. What it cannot do is to cause correctly written multi-threaded programs to misbehave, 
only expose previously unnoticed errors.
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18.1 Multi-processing ARM systems
From early in the history of the architecture, ARM processors were likely to be implemented in 
systems that contained other processors. This commonly meant a heterogeneous system, 
perhaps containing an ARM processor plus a separate DSP processor. Such systems have 
different software executing on different cores and the individual processors can have differing 
privileges and views of memory. Many widely used ARM systems, such as the TI OMAP series, 
or the Freescale i.MX, are examples of this.

Figure 18-1 Example of a multi-cluster system

We can distinguish between systems that contain:

• A single processor containing a single core, such as the Cortex-A8 processor.

• A multi-core processor, that contains several cores capable of independent instruction 
execution, that can be externally viewed as a single unit or cluster, either by the system 
designer or by an operating system that can abstract the underlying resources from the 
application layer. 

• Multiple clusters (such as that shown in Figure 18-1), in which each cluster contains 
multiple cores.

ARM was among the first companies to introduce multi-core processors to the SoC market, 
when it introduced the ARM11 MPCore processor in 2004. All the processors described in this 
book, with the exception of the Cortex-A8 processor, are examples of such multi-core systems. 

An ARM multi-core processor can contain between one and four cores. Each core can be 
individually configured to take part (or not) in a data cache coherency management scheme. A 
Snoop Control Unit (SCU) device inside the processor has the task of automatically maintaining 
level 1 data cache coherency, between cores within the cluster without software intervention.

ARM multi-core processors include an integrated interrupt controller. Multiple external 
interrupt sources can be independently configured to target one or more of the individual 
processor cores. Furthermore, each core is able to signal (or broadcast) any interrupt to any 
other core or set of cores in the system, from software (software triggered interrupts). These 
mechanisms enable the OS to share and distribute interrupts across all cores and to coordinate 
activities using the low-overhead signaling mechanisms provided.
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Cortex-A MPCore processors also provide hardware mechanisms to accelerate OS kernel 
operations such as system-wide cache and TLB maintenance operations. (This feature is not 
found in the ARM11 MPCore.)

Each of the Cortex-A series multi-core processors have the following features:

• Configurable between one and four cores (at design time).

• Level 1 data cache coherency.

• Integrated interrupt controller.

• Local timers and watchdogs.

• An optional Accelerator Coherency Port (ACP). 

Figure 18-2 illustrates the structure of the Cortex-A9 MPCore processor, though a generalized 
form of this description also applies to other multi-core processors. These features are described 
in more detail in the course of this chapter and those that follow.

Figure 18-2 Cortex-A9 MPCore processor
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18.2 Symmetric multi-processing
Symmetric multi-processing (SMP) is a software architecture that dynamically determines the 
roles of individual processors. Each core in the cluster has the same view of memory and of 
shared hardware. Any application, process or task can run on any core and the operating system 
scheduler can dynamically migrate tasks between cores to achieve optimal system load.

We expect that readers will be familiar with the fundamental operating principles of an OS, but 
OS terminology will be briefly reviewed here. An application that executes under an operating 
system is known as a process. It performs many operations through calls to the system library 
that provides certain functions from library code, but also acts a wrapper for system calls to 
kernel operations. Individual processes have associated resources, including stack, heap and 
constant data areas, and properties such as scheduling priority settings. The kernel view of a 
process is called a task.

For the purposes of describing SMP operation, we will use the term kernel to represent that 
portion of the operating system that contains exception handlers, device drivers and other 
resource and process management code. We will also assume the presence of a task scheduler 
that is typically called using a timer interrupt. The scheduler is responsible for time-slicing the 
available cycles on cores between multiple tasks, dynamically determining the priority of 
individual tasks and deciding which task to run next. 

Threads are separate tasks executing within the same process space that enable separate parts of 
the application to execute in parallel on different cores. They also permit one part of an 
application to keep executing while another part is waiting for a resource.

In general, all threads within a process share a number of global resources (including the same 
memory map and access to any open file and resource handles). Threads also have their own 
local resources, including their own stacks and register usage that will be saved and restored by 
the kernel on a context switch. The fact that these resources are local does not, however, mean 
that the local resources of any thread are guaranteed to be protected from incorrect accesses by 
other threads. Threads are scheduled individually and can have different priority levels even 
within a single process.

An SMP-capable operating system provides an abstracted view of the available core resources 
to the application. Multiple applications can run concurrently in an SMP system without 
re-compilation or source code changes. A conventional multitasking OS enables the system to 
perform several task or activities at the same time, in both single-core and multi-core processors. 
There is, however, a key distinction. In the single (uniprocessor) case, multitasking is performed 
through time-slicing of a single core, giving the illusion of many tasks being performed at the 
same time. In a multi-core system, we can have true concurrency; multiple tasks are actually run 
at the same time, in parallel, on separate cores. The role of managing the distribution of such 
tasks across the available cores is performed by the operating system.

Typically, the OS task scheduler can distribute tasks across available cores in the system. This 
feature, known as load balancing, is aimed at obtaining better performance, or energy savings 
or even both. For example, with certain types of workloads, energy savings can be achieved if 
the tasks making up the workload are scheduled on fewer cores. This would allow more 
resources to be left idling for longer periods, thereby saving energy. 

In other cases, the performance of the workload could be increased if the tasks were spread 
across more cores. These tasks could make faster forward progress, without getting perturbed 
by each other than if they ran on fewer cores. 

In another case, it might be worth running tasks on more cores at reduced frequencies as 
compared to fewer cores at higher frequencies. Doing this could provide a better trade-off 
between energy savings and performance.
ARM DEN0013D Copyright © 2011 – 2013 ARM. All rights reserved. 18-5
ID012214 Non-Confidential



Multi-core processors 
The scheduler in an SMP system can dynamically re-prioritize tasks. This dynamic task 
prioritization enables other tasks to run while the current task sleeps. In Linux, for example, 
tasks whose performance is bound by I/O activity can have their priority decreased in favor of 
tasks whose performance is limited by processor activity. The I/O-bound task will typically 
schedule I/O activity and then sleep pending such activity.

Interrupt handling can also be load balanced across cores. This can help improve performance 
or save energy. Balancing interrupts across cores or reserving cores for particular types of 
interrupts can result in reduced interrupt latency. This might also result in reduced cache use 
which will help improve performance.

Using fewer cores for handling interrupts could result in more resources idling for longer 
periods, resulting in an energy saving at the cost of reduced performance. The Linux kernel does 
not support automatic interrupt load balancing. However, the kernel provides mechanisms to 
change the binding of interrupts to particular cores. There are open source projects such as 
irqbalance https://github.com/Irqbalance/irqbalance which use these mechanisms to arrange 
a spread of interrupts across the available cores. irqbalance is made aware of system attributes 
such as the shared cache hierarchy (which cores have a common cache) and power domain 
layout (which cores can be powered off independently). It can then determine the best interrupt 
to core binding.

An SMP system will by definition have shared memory between cores in the cluster. To 
maintain the required level of abstraction to application software, the hardware must take care 
of providing a consistent and coherent view of memory for you.

Changes to shared regions of memory must be visible to all cores without any explicit software 
coherency management. Likewise, any updates to the memory map (for example because of 
demand paging, allocation of new memory or mapping a device into the current virtual address 
space) of either the kernel or applications must be consistently presented to all cores.
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18.3 Asymmetric multi-processing
In an Asymmetric Multi-processing (AMP) system, you can statically assign individual roles to 
a core within a cluster, so that in effect, you have separate cores, each performing separate jobs, 
within each cluster. This can be referred to as a function-distribution software architecture and 
typically means that you have separate operating systems running on the individual cores. The 
system can appear to you as a single-core system with dedicated accelerators for certain critical 
system services. In general AMP does not refer to systems in which tasks or interrupts are 
associated with a particular core.

In an AMP system, each task can have a different view of memory and there is no scope for a 
core that is highly loaded to pass work to one that is lightly loaded. There is no requirement for 
hardware cache coherency in such systems, although there will typically be mechanisms for 
communication between the cores through shared resources, possibly requiring dedicated 
hardware. The system described in Cache coherency on page 18-9 can help reduce the 
overheads associated with sharing data between the systems.

Reasons for implementing an AMP system using a multi-core processor might include security, 
a requirement for guaranteeing meeting of real-time deadlines, or because individual cores are 
dedicated to perform specific tasks.

There are classes of systems that have both SMP and AMP features. This means that we have 
two or more cores running an SMP operating system, but the system has additional elements 
that do not operate as part of the SMP system. The SMP sub-system can be regarded as one 
element within the AMP system. Cache coherency is implemented between the SMP cores, but 
not necessarily between SMP cores and AMP elements within the system. In this way, 
independent subsystems can be implemented within the same cluster.

It is entirely possible (and normal) to build AMP systems in which individual cores are running 
different operating systems (these are called Multi-OS systems). 

The selection of software MP model is determined by the characteristics of the applications 
running in the system. In networking systems, for example, it can be convenient to provide a 
separation between control-plane (AMP) and data-plane (SMP) sections of the system. In other 
systems, it might be desirable to isolate those parts of the system that require hard real-time 
response from applications that require raw performance and to implement these on separate 
cores. 

Note
 Where synchronization is required between these separate cores, it can be provided through 
message passing communication protocols, for example, the Multicore Communications 
Association API (MCAPI). These can be implemented by using shared memory to pass data 
packets and by the use of software triggered interrupts to implement a so-called door-bell 
mechanism.
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18.4 Heterogeneous multi-processing
The term Heterogeneous multi-processing (HMP) finds application in many different contexts. 
It is often conflated with AMP to describe systems that are composed of different types of 
processors, such as a multi-core ARM applications processor and an application specific 
processor (such as a baseband controller chip or an audio codec chip).

ARM uses HMP to mean a system composed of clusters of application processors that are 100% 
identical in their instruction set architecture but very different in their microarchitecture. All the 
processors are fully cache coherent and a part of the same coherency domain.

This is best explained using the ARM implementation of HMP technology known as 
big.LITTLE. In a big.LITTLE system energy efficient LITTLE cores are coherently coupled 
with high performance big cores to form a system that can accomplish both high intensity and 
low intensity tasks in the most energy efficient manner. 

Figure 18-3 A typical big.LITTLE system

The central principle of big.LITTLE is that application software can run unmodified on either 
type of processor. For a detailed overview of big.LITTLE technology, including the software 
execution models see Chapter 23.
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18.5 Cache coherency
Coherency is about ensuring all processors, or bus masters in the system see the same view of 
memory. It means that changes to data held in the cache of one core are visible to the other cores, 
making it impossible for cores to see stale copies of data (the old data from before it was 
changed by the first core). For example, if you have a processor that is creating a data structure 
then passing it to a DMA engine to move, both the processor and DMA must see the same data. 
If that data were cached in the core and the DMA reads from external memory, the DMA will 
read old, stale data.

There are three mechanisms to maintain coherency:

Disable caching 
This is the simplest mechanism but might cost significant core performance. To 
get the highest performance processors are pipelined to run fast, and to run from 
caches that offer a very low latency. Caching of data that is accessed multiple 
times increases performance significantly and reduces DRAM accesses and 
power. Marking data as “non-cached” could impact performance and power.

Software managed coherency 
Software managed coherency is the traditional solution to the data sharing 
problem. Here the software, usually device drivers, must clean or flush dirty data 
from caches, and invalidate old data to enable sharing with other processors or 
masters in the system. This takes processor cycles, bus bandwidth, and power.
Where there are high rates of sharing between requesters the cost of software 
cache maintenance can be significant, and can limit performance.

Hardware managed coherency 
Hardware Coherency is the most efficient solution. Any data marked ‘shared’ in 
a hardware coherent system will always be up to date. All cores and bus masters 
in that sharing domain see the exact same value.
While hardware coherency might add some complexity to the interconnect and 
clusters, it greatly simplifies the software and enables applications that would not 
be possible with software coherency. 

18.5.1 MESI and MOESI protocols

There are a number of standard ways by which cache coherency schemes can operate. Most 
ARM processors use the MOESI protocol, while the Cortex-A9 uses the MESI protocol.

Depending on which protocol is in use, the SCU marks each line in the cache with one of the 
following attributes: M (Modified), O (Owned), E (Exclusive), S (Shared) or I (Invalid). These 
are described below:

Modified The most up-to-date version of the cache line is within this cache. No other copies 
of the memory location exist within other caches. The contents of the cache line 
are no longer coherent with main memory.

Owned This describes a line that is dirty and in possibly more than one cache. A cache 
line in the owned state holds the most recent, correct copy of the data. Only one 
core can hold the data in the owned state. The other cores can hold the data in the 
shared state.

Exclusive The cache line is present in this cache and coherent with main memory. No other 
copies of the memory location exist within other caches.
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Shared The cache line is present in this cache and coherent with main memory. Copies of 
it can also exist in other caches in the coherency scheme.

Invalid The cache line is invalid.

The rules for the standard implementation of the protocol are as follows:

• A write can only be done if the cache line is in the Modified or Exclusive state. If it is in 
the Shared state, all other cached copies must be invalidated first. A write moves the line 
into the Modified State.

• A cache can discard a Shared line at any time, changing to the Invalid state. A Modified 
line is written back first.

• If a cache holds a line in the Modified state, reads from other caches in the system will get 
the updated data from the cache. Conventionally, this is done by first writing the data to 
main memory and then changing the cache line to the Shared state, before performing a 
read.

• A cache that has a line in the Exclusive state must move the line to the Shared state when 
another cache reads that line.

• The Shared state might not be precise. If one cache discards a Shared line, another cache 
might not be aware that it could now move the line to Exclusive status.

ARM multi-core processors also implement optimizations that can copy clean data and move 
dirty data directly between participating L1 caches, without having to access (and wait for) 
external memory. This activity is handled in multi-core systems by the Snoop Control Unit 
(SCU).

18.5.2 Snoop Control Unit

 The SCU maintains coherency between the L1 data cache of each core. Since executable code 
changes much less frequently, this functionality is not extended to the L1 instruction caches. The 
coherency management is implemented using a MOESI-based protocol, optimized to decrease 
the number of external memory accesses. In order for the coherency management to be active 
for a memory access, all of the following must be true:

• The SCU is enabled, through its control register located in the private memory region. See 
Private memory region on page 18-19. The SCU has configurable access control, 
restricting which processors can configure it.

• The core performing the access is configured to participate in the Inner Shareable domain, 
configured using the operating system at boot time, by setting the somewhat misleadingly 
named SMP bit in the CP15:ACTLR, Auxiliary Control Register.
The following code example sets the SMP bit in either a Cortex-A7 or Cortex-A15 
ACTLR:
MRC     p15, 0, r0, c1, c0, 1   ; Read ACTLR
ORR     r0, r0, #0x040          ; Set bit[6] SMP (coherency)
MCR     p15, 0, r0, c1, c0, 1   ; Write ACTLR
DSB

• The MMU is enabled.

• The page being accessed is marked as Normal Shareable, with a cache policy of 
write-back, write-allocate. Device and Strongly-ordered memory, however, are not 
cacheable, and write-through caches behave like uncached memory from the point of 
view of the core.
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The SCU can only maintain coherency within a single cluster. If there are additional processors 
or other bus masters in the system, explicit software synchronization is required when these 
share memory with the MP block. Alternatively, the Accelerator Coherency Port (ACP) can be 
used.

18.5.3 Accelerator Coherency Port (ACP) 

The Accelerator Coherency Port (ACP) is a feature of the Cortex-A5, Cortex-A9, Cortex-A12 
and Cortex-A15 processors. 

It provides an AXI slave interface into the Snoop Control Unit of the processor. The AXI bus 
interface is defined in the ARM AMBA specification.

This slave interface can be connected to an external uncached AXI master, such as a DMA 
engine, for example, which is able to initiate both read and write memory transfers to the ACP. 
It enables such a device to snoop the L1 caches of all cores, avoiding the requirement for 
synchronization through external memory. A cached device can also be connected, but this 
requires manual coherency management through software.

The behavior of accesses performed on the ACP is as follows:

• Addresses used by the ACP are physical addresses that can be snooped by the SCU to be 
fully coherent.

• ACP reads can hit in the L1 D-cache of any core.

• Writes on the ACP invalidate any stale data in L1 and write-through to L2. 

The ACP enables an external device to see core-coherent data without knowledge of where the 
data is in the memory hierarchy. Memory transfers are automatically coherent in the same way 
as happens between the L1 D-caches of the cores in the cluster.

Use of the ACP can both increase performance and save power, as there will be reduced traffic 
to external memory and faster execution.

Programmers writing device drivers that use the ACP do not have to be concerned with 
coherency issues, because no cache cleaning or invalidation is required to ensure coherency. 
However, the use of memory barriers (DMB) or external cache synchronization operations can 
still be necessary, if a particular ordering must be enforced.

18.5.4 The Cache Coherent Interface (CCI)

Extending hardware coherency to a multi-cluster system requires a coherent bus protocol. In 
2011 ARM released the AMBA 4 ACE specification that introduces the AXI Coherency 
Extensions (ACE) on top of the popular AXI protocol. The full ACE interface enables hardware 
coherency between clusters and enables an SMP operating system to extend to more cores. In 
the ACE protocol, three coherency channels are added in addition to the normal five channels 
of AXI. If you have two clusters, any shared access to memory can snoop into the cache of the 
other cluster to see if the data is already on chip, if not, it is fetched from external memory.

The AMBA 4 ACE-Lite interface is designed for I/O (or one-way) coherent system masters like 
DMA engines, network interfaces and GPUs. These devices might not have any caches of their 
own, but they can read shared data from the ACE processors.

The CoreLink™ CCI-400 is one of the first implementations of AMBA 4 ACE and supports up 
to two ACE processor clusters enabling up to eight cores to see the same view of memory and 
run an SMP OS. 

If we return to our example of a multi-cluster system:
ARM DEN0013D Copyright © 2011 – 2013 ARM. All rights reserved. 18-11
ID012214 Non-Confidential



Multi-core processors 
Figure 18-4 Cache coherency in a multi-cluster system

Figure 18-4 shows the steps in a coherent data read from the Cortex-A7 cluster to the 
Cortex-A15 cluster. This starts with the Cortex-A7 cluster issuing a Coherent Read Request. 
The CCI-400 hands over the request to the Cortex-A15 processor to snoop into Cortex-A15 
cluster cache. 

When the request from the CCI-400 is received, the Cortex-A15 cluster checks the data 
availability and reports this information back. If the requested data is in the cache, the CCI-400 
moves the data from the Cortex-A15 cluster to the Cortex-A7 cluster, resulting in a cache linefill 
in the Cortex-A7 cluster. The CCI-400 and the ACE protocol enable full coherency between the 
Cortex-A15 and Cortex-A7 clusters, enabling data sharing to take place without external 
memory transactions.
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18.6 TLB and cache maintenance broadcast
An individual core can broadcast Translation Lookaside Buffer and cache maintenance 
operations to other cores in the Inner Shareable coherency domain. This can be required 
whenever shared translation tables are modified, for example. This behavior might have to be 
enabled by you. For example, in the Cortex-A9 processor, this is controlled by the FW bit in the 
Auxiliary Control Register (ACTLR). Maintenance operations can only be broadcast and 
received when the processor is configured to participate in the Inner Shareable domain, using 
the SMP bit in ACTLR. Only Inner Shareable operations are broadcast, for example:

• To invalidate TLB entry by virtual address.

• To clean or invalidate data cache line by virtual address.

• To invalidate instruction cache line by virtual address.

Some care is required with cache maintenance activity in multi-core systems that include a 
L2C-310 L2 cache (or similar). Cleaning or invalidating the L1 cache and L2 cache will not be 
a single atomic operation. A core might therefore perform cache maintenance on a particular 
address in both L1 and L2 caches only as two discrete steps. If another core were to access the 
affected address between those two actions, a coherency problem can occur. Such problems can 
be avoided by following two simple rules.

• When cleaning, always clean the innermost (L1) cache first and then clean the outer 
cache(s).

• When invalidating, always invalidate the outermost cache first and the L1 cache last.
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18.7 Handling interrupts in an SMP system
Multi-core processors include an integrated interrupt controller that implements the GIC 
architecture (see The Generic Interrupt Controller on page 12-7 for additional details). This 
controller provides 32 private interrupts per core, of which the lower 16 are Software Generated 
Interrupts (SGI) that can be generated only through software operations, and the rest are Private 
Peripheral Interrupts (PPI). It also provides a configurable number of Shared Peripheral 
Interrupts (SPI), up to 224 in current multi-core implementations). It supports interrupt 
prioritization, pre-emption and routing to different cores.

In a multi-core processor, the GIC control registers are memory-mapped and located within the 
Private memory region, see Private memory region on page 18-19.

The Interrupt Processor Targets registers configure that cores individual interrupts are routed to. 
They are ignored for private interrupts. 

The registers controlling the private interrupts (0-31) are banked, so that each core can have its 
own configuration for these. This includes priority configuration and the enabling or disabling 
of individual interrupts.

The Software Generated Interrupt (SGI) Register can assert a private SGI on any core, or a 
groups of cores. The priority of a software interrupt is determined by the priority configuration 
of the receiving core, not the one that sends the interrupt. The interrupt acknowledge register 
bits [12:10] will provide the ID of the core that made the request. The target list filter field within 
this register provides shorthand for an SGI to be sent to all processors, all but self or to a target 
list.

For a software generated interrupt in a multi-core processor, the Interrupt Acknowledge 
Register also contains a bitfield holding the ID of the core that generated it. When the interrupt 
service routine has completed, it must write-back the value previously read from the Interrupt 
Acknowledge Register into the End Of Interrupt Register. For an SGI, this must also match the 
ID of the signalling core.

In both AMP and SMP systems, it is likely that cores will trigger interrupts on other cores (or 
themselves), a so called softirq. These can be used for kernel synchronization operations, or for 
communicating between AMP cores. For operations requiring more information passed than a 
raised interrupt, you can use a shared buffer to store messages. Before the core can receive an 
interrupt, some initialization steps are required both in the distributor and in the core interface.
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18.8 Exclusive accesses
In an SMP system, data accesses frequently have to be restricted to one modifier at any 
particular time. This can be true of peripheral devices, but also for global variables and data 
structures accessed by more than one thread or process. Furthermore, library code that is used 
by multiple threads must be designed to ensure that concurrent access or execution is possible 
– it must be reentrant. 

Note
 Code is reentrant if it can be interrupted in the middle of its execution and then be called again 
before the previous invocation has completed.

Protection of such shared resources is often through a method known as mutual exclusion. The 
section of code that is being executed by a core while accessing such a shared resource is known 
as the critical section.

In a single core system, mutual exclusion can be achieved by disabling interrupts when inside 
critical sections. This is not sufficient in a multi-core system, as disabling interrupts on one core 
will not prevent others from entering the critical section. It is also not ideal since interrupts 
cannot be disabled from within User mode. Of course, there are other problems with this 
technique, including reduced responsiveness to real-time events, particularly if the critical 
section is long.

In a multi-core system, we can use a spinlock – effectively a shared flag with an atomic 
(indivisible) mechanism to test and set its value. We perform this operation in a tight loop to 
wait until another thread (or core) clears the flag. We require hardware assistance in the form of 
special machine instructions to implement this. Application developers should not worry about 
the low-level implementation detail, but should instead become familiar with the lock and 
unlock calls available in their OS or threading library API.

The ARM architecture provides three instructions relating to exclusive access. Variants of these 
instructions, that operate on byte, halfword, word or doubleword sized data, are also provided. 
The instructions rely on the ability of the core or memory system to tag particular addresses to 
be monitored for exclusive access by that core, using an exclusive access monitor.

• LDREX (Load Exclusive) performs a load of memory, but also tags the physical address to 
be monitored for exclusive access by that core.

• STREX (Store Exclusive) performs a conditional store to memory, succeeding only if the 
target location is tagged as being monitored for exclusive access by that core. This 
instruction returns the value of 1 in a general purpose register if the store does not take 
place, and a value of 0 if the store is successful.

• CLREX (Clear Exclusive) clears any exclusive access tag for that core.

Load Exclusive and Store Exclusive operations must be performed only on Normal memory 
(see Normal memory on page 10-4) and have slightly different effect depending on whether the 
memory is marked as Shareable or not. If the core reads from Shareable memory with an LDREX, 
the load happens and that physical address is tagged to be monitored for exclusive access by that 
core. If any other core writes to that address and the memory is marked as Shareable, the tag is 
cleared.

If the memory is not Shareable then any attempt to write to the tagged address by the one that 
tagged it results in the tag being cleared. If the core does an additional LDREX to a different 
address, the tag for the previous LDREX address is cleared. Each core can only have one address 
tagged.
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STREX can be considered as a conditional store. The store is performed only if the physical 
address is still marked as exclusive access (this means it was previously tagged by this core and 
no other core has since written to it). STREX returns a status value showing if the store succeeded. 
STREX always clears the exclusive access tag.

The use of these instructions is not limited to multi-core systems. In fact, they are frequently 
employed in single core systems, to implement synchronization operations between threads 
running on the same core. 

In hardware, the core includes a device named the local monitor. This monitor observes the 
core. When the core performs an exclusive load access, it records that fact in the local monitor. 
When it performs an exclusive store, it checks that a previous exclusive load was performed and 
fails the exclusive store if this was not the case. The architecture enables individual 
implementations to determine the level of checking performed by the monitor. The core can 
only tag one physical address at a time. An LDREX from a particular address can be followed 
shortly after by an STREX to the same location, before an LDREX from a different address is 
performed. This is because the local monitor does not have to store the address of the exclusive 
tag (although it can do, if the processor implementer decides to do this). The architecture enables 
the local monitor to treat any exclusive store as matching a previous LDREX address. For this 
reason, use of the CLREX instruction to clear an existing tag is required on context switches. 

Where exclusive accesses are used to synchronize with external masters outside the core, or to 
regions marked as Sharable even between cores in the same cluster, it is necessary to implement 
a global monitor within the hardware system. This acts as a wrapper to one or more memory 
slave devices and is independent of the individual cores. This is specific to a particular SoC and 
might not exist in any particular system. An LDREX/STREX sequence performed to a memory 
location that has no suitable exclusive access monitor will fail, with the STREX instruction always 
returning 1.
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18.9 Booting SMP systems
Initialization of the external system might have to be synchronized between cores. Typically, 
only one of the cores in the system has to run code that initializes the memory system and 
peripherals. Similarly, the SMP operating system initialization typically runs on only one core 
– the primary core. When the system is fully booted, the remaining cores are brought online and 
this distinction between the primary core and the others (secondary cores) is lost.

If all of the cores come out of reset at the same time, they will normally all start executing from 
the same reset vector. The boot code will then read the cluster ID to determine which core is the 
primary. The primary core will perform the initialization and then signal to the secondary ones 
that everything is ready. An alternative method is to hold the secondary cores in reset while the 
primary core does the initialization. This requires hardware support to co-ordinate the reset.

In an AMP system, the bootloader code will determine the suitable start address for the 
individual cores, based on their cluster ID (as each core will be running different code). Care 
might be required to ensure correct boot order in the case where there are dependencies between 
the various applications running on different cores.

18.9.1 Processor ID

Booting provides a simple example of a situation where particular operations must be performed 
only on a specific core. Other operations perform different actions dependent on the core on 
which they are executing. 

The CP15:MPIDR Multiprocessor Affinity Register provides an identification mechanism in a 
multi-core system.

This register was introduced in version 7 of the ARM architecture, but was in fact already used 
in the same format in the ARM11 MPCore. In its basic form, it provides up to three levels of 
affinity identification, with 8 bits identifying individual blocks at each level (Affinity Level 0, 
1 and 2).

This information can also be of value to an operating system scheduler, as an indication of the 
order of magnitude of the cost of migrating a process to a different core, processor or cluster.

The format of the register was slightly extended with the ARMv7-A multiprocessing 
extensions. This extends the previous format by adding an identification bit to reflect that this 
is the new register format, and adds the U bit that indicates whether the current core is the only 
core in a single-core implementation or not.

18.9.2 SMP boot in Linux

The boot process for the primary core is as described in Boot process on page 11-14. The method 
for booting the secondary cores can differ somewhat depending on the SoC being used. The 
method that the primary core invokes in order to get a secondary core booted into the operating 
system is called boot_secondary() and must be implemented for each mach type that supports 
SMP. Most of the other SMP boot functionality is extracted out into generic functions in 
linux/arch/arm/kernel.

The method below describes the process on an ARM Versatile Express development board 
(mach-vexpress).

While the primary core is booting, the secondary cores will be held in a standby state, using the 
WFI instruction. It will provide a startup address to the secondary cores and wake them using an 
Inter-Processor Interrupt (IPI), meaning an SGI signalled through the GIC (see Handling 
interrupts in an SMP system on page 18-14). Booting of the secondary cores is serialized, using 
the global variable pen_release. Conceptually, you can think of the secondary cores being in a 
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holding pen and being released one at a time, under control of the primary core. The variable 
pen_release is set by the kernel code to the ID value of the processor to boot and then reset by 
that core when it has booted. When an inter-processor interrupt occurs, the secondary core will 
check the value of pen_release against their own ID value using the MPIDR register.

Booting of the secondary core will proceed in a similar way to the primary. It enables the MMU 
(setting the TTB register to the new translation tables already created by the primary). It enables 
the interrupt controller interface to itself and calibrates the local timers. It sets a bit in 
cpu_online_map and calls cpu_idle(). The primary processor will see the setting of the 
appropriate bit in cpu_online_map and set pen_release to the next secondary core.
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18.10 Private memory region
In the Cortex-A5, and Cortex-A9 MPCore processors, all of the internal peripherals are mapped 
to the private address space. This is an 8KB region location within the memory map at an 
address determined by the hardware implementation of the specific device used (this can be read 
using the CP15 Configuration Base Address Register).

The registers in this region are fixed in little-endian byte order, so some care is required if the 
CPSR E bit is set when accessing it. Some locations within the region exist as banked versions, 
dependent on the processor ID. The Private memory region is not accessible through the ACP. 
Table 18-1 shows the layout of this Private memory region.

18.10.1 Timers and watchdogs

Each core in a multi-core processor implements a standard timer and a watchdog, both private 
to that core.

These can be configured to trigger after a number of core cycles, using a 32-bit start value and 
an 8-bit pre-scaler. They can be operated using interrupts, or by periodic polling, supported by 
the Timer and Watchdog Interrupt Status Registers. They stop counting while the core is in 
debug state. The timer can be configured in single-shot or auto-reload mode. The watchdog can 
be operated in classic watchdog fashion, where it asserts the core reset signal, for that specific 
core on time-out. Alternatively, it can be used as a second timer.

The Cortex-A9, and Cortex-A5 processors also include a global timer, shared between all cores, 
but with banked comparator and auto-increment registers for each core. It is a single, 
incrementing 64-bit counter, accessible only through 32-bit accesses. It can be configured to 
trigger an interrupt when the comparator value is reached. The auto-increment feature causes 
the processor comparator register to be incremented after each match. This is typically used by 
the OS scheduler, to trigger the scheduler on each core, at different times.

Table 18-1 Private memory region layout

Base Address offset Function

0x0000 Snoop Control Unit (SCU)

0x0100 Interrupt controller CPU Interface

0x0200 Global Timer

0x0600 Local Timer/Watchdog

0x1000 Interrupt Controller Distributor
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Parallelizing Software

Chapter 18 Multi-core processors, described how an SMP system can enable you to run multiple 
threads efficiently and concurrently across multiple cores. In this case, the parallelization is, in 
effect, handled on our behalf by the OS scheduler.

In many cases, however, this is insufficient and you must take steps to rewrite code to take 
advantage of speed-ups available through parallelization. An obvious example is where a single 
application requires more performance than can be delivered by a single core. More commonly, we 
can have the situation where an application requires much more performance than all of the others 
within a system, when it is said to be dominant. This prevents efficient energy usage, as we cannot 
perform optimal load-balancing. An unbalanced load distribution does not permit efficient dynamic 
voltage and frequency scaling.

The operating system cannot automatically parallelize an application. It is limited to treating that 
application as a single scheduling unit. In such cases, the application itself has to be split into 
multiple smaller tasks by you. Of course, this means each of these tasks must be able to be 
independently scheduled by the OS, as separate threads. A thread is a part of a program that can be 
run independently and concurrently with other parts of a program. If you decompose an application 
into smaller execution entities that can be separately scheduled, the OS can spread the threads of 
the application across multiple cores. 
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19.1 Amdahl’s law
Amdahl’s Law defines the theoretical maximum speedup achievable by parallelizing an 
application. The maximum speedup is given by the formula:

Max speedup = 1/ ((1-P) + (P/N))

where:

P = parallelizable proportion of program, 

N = Number of cores.

This is, of course, an abstract, academic view. In practice, this provides a theoretical maximum 
speedup, as there are a number of overheads associated with concurrency. Synchronization 
overheads occur when a thread must wait for another task or tasks before it can continue 
execution. If a single task is slow, the whole program must wait. In addition, you might have 
critical sections of code, where only a single task is able to run at a time. There might also be 
occasions when all tasks are contending for the same resource or where no other tasks can be 
scheduled to run by the OS.
ARM DEN0013D Copyright © 2011 – 2013 ARM. All rights reserved. 19-2
ID012214 Non-Confidential



Parallelizing Software 
19.2 Decomposition methods
The best approach to decomposition of an application into smaller tasks capable of parallel 
execution depends on the characteristics of the original application. Large data-processing 
algorithms can be broken down into smaller pieces by sub-division into a number of similar 
threads that execute in parallel on smaller portions of a dataset. This is known as data 
decomposition.

Consider the example of color-space conversion, from RGB to YUV. Start with an array of pixel 
data. The output is a similar array giving chrominance and luminance data for each pixel. Each 
output value is calculated by performing a small number of multiplies and adds. Crucially, the 
output Y, U and V values for each pixel depend only on the input R, G and B values for that 
pixel. There is no dependency on the data values of other pixels. Therefore, the image can be 
divided into smaller blocks and you can perform the calculation using any number of instances 
of your code. This does not require any change to your original algorithm, only changes to the 
amount of data supplied to each thread. 

Split the image into stripes (1/N arrays, where we have N threads) so that each thread works on 
a stripe. The level of detail of the stripes can be an important consideration, given that it is 
clearly better for cacheability if each thread works on a contiguous block of pixels in array order. 
The code does not have to be modified to take care of scheduling, the operating system takes 
care of it. Color space conversion would be a task where the NEON unit could significantly 
improve performance. Splitting the task across several cores can provide additional 
parallelization gains than using NEON instructions alone.

A different approach is that of task decomposition. Here, areas of code that are independent of 
each other and capable of being executed concurrently can be identified. This is a little more 
difficult, as you must consider the discrete operations being carried out and the interactions 
between them. A simple example might be the start-up sequence of a program. One task might 
be to check that you have a valid license for the software. Another task might be to display a 
start-up banner with a copyright message. These are independent tasks with no dependency on 
each other and can be performed in separate threads. Again, no change is required to the source 
code that carries out these isolated tasks. These must be supplied to the OS kernel Scheduler as 
separate execution threads.

Of course, not all algorithms are able to be handled through data or task decomposition. Instead, 
you must analyze the program with the aim of identifying functional blocks. These are 
independent pieces of code with defined inputs and outputs that have some scope to be 
parallelized. Such functional blocks often depend on input from other blocks (they have a serial 
dependency), but do not have a corresponding dependency on time (a temporal dependency). 
This is (in some respects) analogous to the hardware pipelining employed in the core itself.

The software for an MPEG video encoder provides a good example of this. Input data, in the 
form of an analog video signal is sampled and processed through a pipeline of discrete 
functional blocks. First, both inter-frame and intra-frame redundancies are removed. Then, 
quantization takes place to reduce the number of bits required to represent the video. After this, 
motion vector compensation takes place, run length compression and finally the encoded 
sub-stream is stored.

At the same time that data from one frame is being run-length compressed and stored, you can 
also start to process the next frame. Within a frame, the motion vector compensation process can 
be parallelized. You can use multiple parallel threads to operate on a frame (an example of data 
decomposition).
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When decomposing an application using these techniques, you must consider the overheads 
associated with task creation and management. An appropriate level of granularity is required 
for best performance. If you make your datasets too small, too big, or have too many datasets, 
it can reduce performance. In the color-space conversion example, it would not be sensible to 
have a separate thread for each pixel, even though this is logically possible.
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19.3 Threading models
When an algorithm has been analyzed to determine the potential changes that can be made for 
parallelization, you must modify code to map the algorithm to smaller, threaded execution units. 
There are two widely-used threading models, the workers’ pool model and the fork-join model, 
not to be confused with the UNIX fork system call. The latter creates (spawns) a new thread 
whenever one is required (that is, threads are created on-demand.) The operating system then 
schedules the various threads across the available cores. 

Each of the newly spawned threads is typically considered to be either a detached thread, or a 
joinable thread. A detached thread executes in the background and terminates when it has 
completed, without any message to the parent process. Of course, communication to or from 
such processes can be implemented manually by you, through the available signaling 
mechanisms, or using global variables. A joinable thread, in contrast, will communicate back to 
the main thread, at a point set by you. The parent process might have to wait for all joinable 
threads to return before proceeding with the next execution step. 

In the fork-join model, individual threads have explicit start and end conditions. There is an 
overhead associated with managing their creation and destruction and latencies associated with 
the synchronization point. This means that threads must be sufficiently long-lived to justify 
these costs.

If you know that some execution threads will be repeatedly required to consume input data, you 
can instead use the workers’ pool threading model. Here, you create a pool of worker threads at 
the start of the application. The pool can consist of multiple instances of the same algorithm, 
where the distributor (also called producer or boss) will dispatch the task to the first available 
worker (consumer) thread. Alternatively, the workers’ pool can contain several different data 
processing operators and data-items will be tagged to show which worker can consume the data.

The number of worker threads can be changed dynamically to handle peaks in the workload. 
Each worker thread performs a task until it is finished, then interrupts the boss to be assigned 
another task. Alternatively, the boss can periodically poll workers to see whether one is ready 
to receive another task. The work queue model is similar. The boss places tasks in a queue, and 
workers check the queue and take tasks to perform. An additional variant is to have multiple 
bosses, sharing the pool of workers. The boss threads place tasks onto a queue, from where they 
are taken by the worker threads.

In each of these models, it must be understood that the amount of work to be performed by a 
thread can be variable and unpredictable. Even for threads that operate on a fixed quantity of 
data, it can be the case that data dependencies cause different execution times for similar 
threads. There is always likely to be some synchronization overhead associated with the 
requirement for a parent thread to wait for all spawned threads to return (in the fork-join model) 
or for a pool of workers to complete data consumption before execution can be resumed.
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19.4 Threading libraries
We have looked at how to make our target application capable of concurrent execution. We must 
now consider actual source code modifications. This is normally done using a threading library, 
normally utilizing multi-threading support available in the OS. When modifying existing code, 
you must take care to ensure that all shared resources are protected by proper synchronization. 
This includes any libraries used by the code, as all libraries are not reentrant. In some cases, 
there can be separate reentrant libraries for use in multi-threaded applications. A library that is 
designed to be used in multi-threaded applications is called thread-safe. If a library is not known 
to be thread-safe, only one thread can be permitted to make calls to the library functions.

The most commonly used standard in this area is POSIX threads (Pthreads), a subset of the 
wider POSIX standard. POSIX (IEEE std. 1003) is the Portable Operating System Interface, a 
collection of OS interface standards. Its goal is to assure interoperability and portability of code 
between systems. Pthreads defines a set of API calls for creating and managing threads. 
Pthreads libraries are available for Linux, Solaris, and Windows.

There are several other multi-threading frameworks, such as OpenMP that can simplify 
multi-threaded development by providing high-level primitives, or even automatic 
multi-threading. OpenMP is a multi-platform, multi-language API that supports shared memory 
multi-processing through a set of libraries and compiler directives plus environment variables 
that affect run-time behavior. 

Pthreads provides a set of C primitives that enable you to create, manage, and terminate threads 
and to control thread synchronization and scheduling attributes. Let you examine, in general 
terms, how you can use Pthreads to build multi-threaded software to run on our SMP system. 
We’ll deal with the following types:

• pthread_t – thread identifier

• pthread_mutex_t – mutex

• sem_t - semaphore.

You must modify your code to include the appropriate header files.

#include <pthread.h>
#include <semaphore.h>

You must also link your code using the pthread library with the switch -lpthread.

To create a thread, you must call pthread_create(), a library function that requires four 
arguments. The first of these is a pointer to a pthread_t, which is where you will store the thread 
identifier. The second argument is the attribute that can point to a structure that modifies the 
thread's attributes (for example scheduling priority), or be set to NULL if no special attributes 
are required. The third argument is the function the new thread will start by executing. The 
thread will be terminated if this function returns. The fourth argument is a void * pointer 
supplied to the thread. This can receive a pointer to a variable or data structure containing 
relevant information to the thread function. 

A thread can complete either by returning, or calling pthread_exit(). Both will terminate the 
thread. A thread can be detached, using pthread_detach(). A detached thread will automatically 
have its associated data structures (but not explicitly allocated data) released on exit. 

For a thread that has not been detached, this resource cleanup will happen as part of a 
pthread_join() call from another thread. The library function pthread_join() enables you to 
make a thread stall and wait for completion of another thread. Take care, as so-called zombie 
threads can be created by joining a thread that has already completed. It is not possible to join a 
detached thread (one that has called pthread_detach()).
ARM DEN0013D Copyright © 2011 – 2013 ARM. All rights reserved. 19-6
ID012214 Non-Confidential



Parallelizing Software 
Mutexes are created with the pthread_mutex_init() function. The functions 
pthread_mutex_lock() and pthread_mutex_unlock() are used to lock or unlock a mutex. 
pthread_mutex_lock() blocks the thread until the mutex can be locked. pthread_mutex_trylock() 
checks whether the mutex can be claimed and returns an error if it cannot, rather than blocking. 
A mutex can be deleted when no longer required with the pthread_mutex_destroy() function.

Semaphores are created in a similar way, using sem_init() – one key difference being that you 
must specify the initial value of the semaphore. sem_post() and sem_wait() are used to increment 
and decrement the semaphore.

The GNU tools for ARM cores support full thread-local storage using the Native POSIX Thread 
library (NPTL) that enables efficient use of POSIX threads with the Linux kernel. There is a 
one-to-one correspondence between threads created with pthread_create() and kernel tasks

Example 19-1 provides a simple example of using the Pthreads library.

Example 19-1 Pthreads code

void *thread(void *vargp);
int main(void)
{
pthread_t tid;
pthread_create(&tid, NULL, thread, NULL);
/* Parallel execution area */
pthread_join(tid, NULL);
return 0;

}
/* thread routine */
void *thread(void *vargp)
{
/* Parallel execution area */
printf(“Hello World from a POSIX thread!\n”); 
return NULL;

}

19.4.1 Inter-thread communications

Semaphores can be used to signal to another thread. A simple example would be where one 
thread produces a buffer containing shared data. It could use a semaphore to indicate to another 
thread that the data can now be processed.

For more complex signaling, a message passing protocol might be required. Threads within a 
process use the same memory space, so an easy way to implement message passing is by posting 
in a previously agreed-upon mailbox and then incrementing a semaphore.

19.4.2 Threaded performance

There are a few general points to consider when writing a multi-threaded application:

• Each thread has its own stack space and care might be required with the size of this if large 
numbers of threads are in use.

• Multiple threads contending for the same mutex or semaphore creates contention and 
wasted core cycles. There is a large body of research on programming techniques to 
reduce this performance loss.
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• There is an overhead associated with thread creation. Some applications avoid this by 
creating a thread pool at startup. These threads are used on demand and then returned to 
the thread pool for later re-use, rather than being closed completely.

19.4.3 Thread affinity

Thread affinity refers to the practice of assigning a thread to a particular core or cores. When the 
scheduler wants to run a particular thread, it will use only the selected core(s) even if others are 
idle. This can be a problem if too many threads have an affinity set to a specific core. By default, 
threads are able to run on any core in an SMP system. 

ARM DS-5 Streamline is able to reveal the affinity of a thread by using a display mode called 
Core map. This mode can be used to visualize how tasks are divided up by the kernel and shared 
amongst several cores. See DS-5 Streamline on page 16-4.

19.4.4 Thread safety and reentrancy

Functions that can be used concurrently by more than one thread concurrently must be both 
thread-safe and reentrant. This is particularly important for device drivers and for library 
functions.

For a function to be reentrant, it must fulfill the following conditions:

• All data must be supplied by the caller.

• The function must not hold static or global data over successive calls.

• The function cannot return a pointer to static data.

• The function cannot itself call functions that are not reentrant.

For a function to be thread-safe, it must protect shared data with locks. This means that the 
implementation must be changed by adding synchronization blocks to protect concurrent 
accesses to shared resources, from different threads. Reentrancy is a stronger property, this 
means that not every thread-safe function is reentrant.

There are number of common library functions that are not reentrant. For example, the function 
ctime() returns a pointer to static data that is over-written on each call.
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19.5 Performance issues
There are several multi-core specific issues relating to performance of threads:

Bandwidth The connection to external memory is shared between all cores within a cluster. 
The individual cores run at speeds far higher than the external memory and so are 
potentially limited (in I/O intensive code) by the available bandwidth. 

Thread dependencies and priority inversion 
The execution of a higher priority thread can be stalled by a lower priority thread 
holding a lock to some shared data. Alternatively, an incorrect split in thread 
functionality can lead to a situation where no benefit is seen because the threads 
have fully serialized dependencies.

Cache contention and false sharing 
If multiple threads are using data that reside within the same coherent cache lines, 
there can be cache line migration overhead even if the actual variables are not 
shared.

19.5.1 Bandwidth concerns

Bandwidth issues can be optimized in a number of ways. Clearly, the code itself must be 
optimized using the techniques described in Chapter 17, to minimize cache misses and therefore 
reduce the bandwidth utilization. 

Another option is to pay attention to thread allocation. The kernel scheduler does not pay any 
attention to data usage by threads; instead it makes use of priority to decide which threads to 
run. You can provide hints that enable more efficient scheduling through the use of thread 
affinity. 

19.5.2 Thread dependencies

In real systems you can have threads with higher or lower priority that both access a shared 
resource. This gives scope for some potential difficulties. The term starvation is used to describe 
the situation where a thread is unable to get access to a resource after repeated attempts to claim 
it.

Priority inversion is said to occur when a lower priority task has a lock on a resource that a 
higher priority requires in order to be able to execute. In other words, a lower priority task 
prevents the higher priority task from executing. Priority inheritance resolves this by 
temporarily raising the priority of the task that has the lock to the highest level. This causes that 
task to execute as quickly as possible and relinquish the shared resource as soon as it can.

Operating systems (particularly real time operating systems) have ways to avoid such problems 
automatically. One method is not to permit lower-priority threads from directly accessing 
resources required by higher-priority threads, they might have to use a higher-priority proxy 
thread to perform the operation. A similar approach is to temporarily increase the priority of the 
low-priority thread while it is holding the critical resource, ensuring that the scheduler will not 
pre-empt execution of that thread while in the critical selection.

A program that relies on threads executing in a particular sequence to work correctly might have 
a race condition. Single-core real-time systems often implicitly rely on tasks being executed in 
a priority based order. Tasks will then execute to completion, without pre-emption. Later tasks 
can rely on earlier tasks having completed. This can cause problems if such software is moved 
to a multi-core system without careful checking for such assumptions. A lower-priority task can 
run at the same time as a higher-priority task and the expected execution order of the original 
single-core system is no longer guaranteed. There are number of ways to resolve this. A simple 
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approach is to set task affinity to make those tasks run on the same core. This requires little 
change to the legacy code, but does break the symmetry of the system and remove scope for load 
balancing. A better approach is to enforce serial execution through the use of the kernel 
synchronization mechanisms that give you explicit control over the execution flow and better 
SMP performance, but does require the legacy code to be modified.

19.5.3 Cache thrashing

Cortex-A series processors use physically tagged caches that remove the requirement for 
flushing caches on context switch. In an SMP system, it is possible for tasks to migrate between 
the different cores in the system. The scheduler starts a task on a core. It runs for a certain period 
and is then replaced by a different task. When that task is restarted at a later time by the 
scheduler, this could be on a different core. This means that the task does not get the potential 
benefit of cache data already being present in the core cache. Memory intensive tasks that 
quickly fill the data cache might thrash each others’ cached data. This has an impact on both 
performance (slower execution because of the higher number of cache misses) and system 
energy usage (because of additional interaction with external memory). Multi-core 
optimizations for cache line migration mitigate the effects of this. In addition, the OS scheduler 
can try to reduce the problem by aiming to keep tasks on the same core. As we have seen, you 
can also do this by setting core affinity to threads and processes.

19.5.4 False sharing

This is a problem of systems with shared coherent caches and is effectively a form of 
involuntary memory contention. It can happen when a core regularly accesses data that is never 
changed, and shares a cache line with data that will be altered by another core. The MESI 
protocol can end up migrating data that is not truly shared between different parts of the memory 
system, costing clock cycles and power. Even though there is no actual coherency to be 
maintained, the MESI protocol invalidates the cache line, forcing it to be re-loaded on each 
write. However, the cache-to-cache migration capability of multi-core clusters reduces the 
overhead. Therefore, you must avoid having cores operating on independent data that is stored 
within the same cache line and increasing the level of detail for inner loop parallelization.

19.5.5 Deadlock and livelock

When writing code that includes critical sections, it is important to be aware of common 
problems that can break correct execution of the program:

• Deadlock is the situation where two (or more) threads are each waiting for another thread 
to release a resource. Such threads are effectively blocked, waiting for a lock that can 
never be released.

• Livelock occurs when multiple threads are able to execute, without blocking indefinitely 
(the deadlock case), but the system as a whole is unable to proceed, because of a repeated 
pattern of resource contention.

Both deadlocks and livelocks can be avoided either by correct software design, or by use of 
lock-free software techniques.
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19.6 Synchronization mechanisms in the Linux kernel
When porting software from a single core environment to run on multi-core cluster, there can 
be situations where you must modify code to enforce a particular order of execution or to control 
parallel access to shared peripherals or global data. The Linux kernel (like other operating 
systems) provides a number of different synchronization primitives for this purpose. Most such 
primitives are implemented using the same architectural features as application-level threading 
libraries like Pthreads. Understanding which of these is best suited for a particular case will give 
software performance benefits. Serialization and multiple threads contending for a resource can 
cause suboptimal use of the increased processing throughput provided by the multiple cores. In 
all cases, minimizing the size of the critical section provides best performance.

19.6.1 Completions

Completions are a feature provided by the Linux kernel that can be used to serialize task 
execution. They provide a lightweight mechanism with limited overhead that essentially 
provides a flag to signal completion of an event between two tasks. The task that is waiting can 
sleep until it receives the signal, using wait_for_completion (struct completion *comp) and the 
task that is sending the signal typically uses either complete (struct completion *comp), that will 
wake up one waiting process, or complete_all (struct completion *comp) that wakes all 
processes that are waiting for the event. Kernel version 2.6.11 added support for completions 
that can time out and for interruptible completions.

19.6.2 Spinlocks

A spinlock provides a simple binary locking mechanism, designed for protection of critical 
sections. It implements a busy-wait loop. A spinlock is a generic synchronization primitive that 
can be accessed by any number of threads. More than one thread might be spinning for obtaining 
the lock. However, only one thread can obtain the lock. The waiting task executes spin_lock 
(spinlock_t *lock) and the signaling task uses spin_unlock(spinlock_t *lock). Spinlocks do 
not sleep and disable pre-emption.

19.6.3 Semaphores

Semaphores are a widely used method to control access to shared resources, and can also be 
used to achieve serialization of execution. They provide a counting locking mechanism that can 
cope with multiple threads attempting to lock. They are designed for protection of critical 
sections and are useful when there is no fixed latency requirement. However, where there is a 
significant amount of contention for a semaphore, performance will be reduced. The Linux 
kernel provides a straightforward API with functions down(struct semaphore *sem) and 
up(struct semaphore *sem); to lower and raise the semaphore.

Unlike spinlocks, which spin in a busy wait loop, semaphores have a queue of pending tasks. 
When a semaphore is locked, the task yields, so that some other task can run. Semaphores can 
be binary (in which case they are also mutexes) or counting. 

19.6.4 Lock-free synchronization

The use of lock-free data structures, such as circular buffers, is widespread and can avoid the 
overheads associated with spinlocks or semaphores. The Linux kernel also provides two 
synchronization mechanisms that are lock-free, the Read-Copy-Update (RCU) and seqlocks. 
Neither of these mechanisms is normally used in device drivers.

If you have multiple readers and writers to a shared resource, using a mutex might not be very 
efficient. A mutex would prevent concurrent read access to the shared resource because only a 
single thread is permitted inside the critical section. Large numbers of readers might delay a 
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writer from being able to update the shared resource. RCUs can help in the case where the 
shared resource is mainly accessed by readers. Reader threads execute with little 
synchronization overhead. A thread that writes the shared resource has a much higher overhead, 
but is executed relatively infrequently. The writer thread must make a copy of the shared 
resource (access to shared resources must be done though pointers). When the update is 
complete, it publishes the new data structure, so that it is visible to all readers. The original copy 
is preserved until the next context switch on all cores. This guarantees that all current read 
operations can complete. RCUs are more complex to use than standard mutexes and are 
typically used only when traditional solutions are not suitable. Examples include shared file 
buffers or networking routing tables and garbage collection. 

Seqlocks are also intended to provide quick access to shared resources, without use of a lock. 
They are optimized for short critical sections. Readers are able to access the shared resource 
with no overhead, but must explicitly check and re-try if there is a conflict with a write. Writes, 
of course, still require exclusive access to the shared resource. They were originally developed 
to handle things like system time, a global variable that can be read by many processes and is 
written only by a timer-based interrupt (on a frequent basis, obviously) The timer write has a 
high priority and a hard deadline, in order to be accurate. Using a seqlock instead of a mutex 
enables many readers to share access, without locking out the writer from accessing the critical 
section.
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19.7 Profiling in SMP systems
ARM multi-core processors contain additional performance counter functions, that enable 
counting of the following SMP cache events:

• Coherent linefill missed in all cores.

• Coherent linefill hit in other core caches.

ARM DS-5 Streamline configures a default set of hardware performance counters that are a 
best-fit for optimizing applications. See DS-5 Streamline on page 16-4 for more information.
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Power Management

Many ARM systems are mobile devices, powered by batteries. In such systems, optimization of 
power usage (in fact, it would be more accurate to look at total energy usage) is a key design 
constraint. Programmers often spend significant amounts of time trying to save battery life in such 
systems. Power-saving can also be of concern even in systems that do not use batteries. For 
example, you might want to minimize energy usage for reduction of electricity costs to the 
consumer or for environmental reasons. 

Built into ARM cores are many hardware design methods aimed at reducing power usage. 

Energy usage can be divided into two components – dynamic and static. Both are important. Static 
power consumption occurs whenever the core logic or RAM blocks have power applied to them. 
In general terms, the leakage currents (any current that flows when the ideal current is zero) are 
proportional to the total silicon area – the bigger the chip, the more the leakage. The proportion of 
power consumption due to leakage gets significantly higher as you move to more advanced 
manufacturing processes – they are much worse on fabrication geometries of 130nm and below. 
Dynamic power consumption occurs because of transistors switching and is a function of the core 
clock speed and the numbers of transistors that change state per cycle. Clearly, higher clock speeds 
and more complex cores will consume more power.

Power management aware operating systems dynamically change the power states of cores, 
balancing the available compute capacity to the current workload, while attempting to use the 
minimum amount of power. Some of these techniques dynamically switch cores on and off, or place 
them into quiescent states, where they no longer perform computation. This means they consume 
very little power. The main examples of these techniques are: 

• Idle management on page 20-3.

• Hotplug on page 20-6.
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• Dynamic Voltage and Frequency Scaling on page 20-7.

Performance management for something like a big.LITTLE system intersects directly with 
power management. Operating System Power Management (OSPM) might have to turn cores 
and clusters on and off as it transfers computation from a big core to a LITTLE one, or from a 
LITTLE core to a big one. 
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20.1 Idle management
When a core is idle the OSPM transitions it into a low power state. Typically, a choice of states 
is available, with different entry and exit latencies, and different levels of power consumption, 
associated with each state. The state that is used typically depends on how quickly the core will 
be required again. The power states that can be used at any one time might also depend on the 
activity of other components in an SoC, beside the cores. Each state is defined by the set of 
components that will be clock-gated or power-gated when the state is entered. States are 
sometimes described as being shallow or deep.

The time required to move from a low power state to a running state, known as the wakeup 
latency, is longer in deeper states. Although idle power management is driven by thread 
behavior on a core, the OSPM can place the platform into states that affect many other 
components beyond the core itself. If the last core in a cluster becomes idle, the OSPM can 
target power states that affect the whole cluster. Equally, if the last core in a SoC becomes idle 
the OSPM can target power states that affect the whole SoC. The choice is also driven by the 
usage of other components in the system. A typical example is placing memory in self-refresh 
when all cores, and any other bus masters, are idle.

The OSPM has to provide the necessary power management software infrastructure to 
determine the correct choice of state. In idle management, when a core or cluster has been 
placed into a low power state, it can be reactivated at any time by a core wakeup event. That is, 
an event that can wake up a core from a low power state, such as an interrupt. No explicit 
command is required by the OSPM to bring the core or cluster back into operation. The OSPM 
considers the affected core or cores to be available at all times even if they are currently in a low 
power state. 

20.1.1 Power and clocking

One way in which you can reduce energy usage is to remove power, which removes both 
dynamic and static currents (sometimes called power gating) or to stop the clock of the core 
which removes dynamic power consumption only and can be referred to as clock gating.

ARM cores typically support a number of levels of power management, as follows:

• Standby.

• Power down on page 20-4.

For certain operations, there is a requirement to save and restore state before and after removing 
power and both the time taken to do this and power consumed by this extra work can be an 
important factor in software selection of the appropriate power management activity.

The SoC device that includes the core can have additional low power states, with names such 
as “STOP” and “Deep sleep.” These refer to the ability for the hardware Phase Locked Loop 
(PLL) and voltage regulators to be controlled by power management software.

20.1.2 Standby

In the standby mode of operation, the core is left powered-up, but most of its clocks are stopped, 
or clock-gated. This means that almost all parts of the core are in a static state and the only power 
drawn is because of leakage currents and the clocking of the small amount of logic that looks 
out for the wake-up condition.

This mode is entered using either the WFI (Wait For Interrupt) or WFE (Wait For Event) 
instructions. ARM recommends the use of a Data Synchronization Barrier (DSB) instruction 
before WFI or WFE, to ensure that pending memory transactions complete before changing state.
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If a debug channel is active, it will remain active. The core stops execution until a wakeup event 
is detected. The wakeup condition is dependent on the entry instruction. For WFI an interrupt or 
external debug request will wake the core. For WFE, a number of specified events exist, including 
another core in the cluster executing the SEV instruction. A request from the Snoop Control Unit 
(SCU) can also wake up the clock for a cache coherency operation in an multi-core system. This 
means that the cache of a core that is in standby state will continue to be coherent with caches 
of other cores. A core reset will always force the core to exit from the standby condition.

Various forms of dynamic clock gating can also be implemented in hardware. For example the 
SCU, GIC, timers, CP15, instruction pipeline or NEON blocks can be automatically clock gated 
when an idle condition is detected, to save power.

Standby mode can be entered and exited quickly (typically in two-clock-cycles). It therefore has 
an almost negligible affect on the latency and responsiveness of the core.

To an operating system managing power, a standby state is mostly indistinguishable from a 
retention state. The difference is evident to an external debugger, and in hardware 
implementation, but not evident to the idle management subsystem of an operating system.

20.1.3 Retention

The core state, including the debug settings, is preserved in low-power structures, enabling the 
core to be at least partially turned off. Changing from low- power retention to running operation 
does not require a reset of the core. The saved core state is restored on changing from low-power 
retention state to running operation. From an operating system point of view there is no 
difference between a retention state and standby state, other than method of entry, latency and 
usage- related constraints. However, from an external debugger point of view the states differ 
as External Debug Request debug events stay pending and debug registers in the core power 
domain cannot be accessed.

20.1.4 Power down

In this state the core is powered off. Software on the device must save all core state, so that it 
can be preserved over the power-down. Changing from power-down to running operation must 
include: 

• A reset of the core, after the power level has been restored.

• Restoring the saved core state.

The defining characteristic of power down states is that they are destructive of context. This 
affects all the components that are switched off in a given state, including the core, and in deeper 
states other components of the system such as the GIC or platform-specific IP. Depending on 
how debug and trace power domains are organized, in some power-down states one or both of 
debug and trace context might be lost. Mechanisms must be provided to enable the operating 
system to perform the relevant context saving and restoring for each given state. Resumption of 
execution starts at the reset vector, after which each OS must restore its context.

For power down states, the interface requires a return address. This is the address at which the 
calling OS expects resumption of execution on wakeup at its level of privilege. From a powered 
down state, the core will restart at the reset vector, typically in secure mode. After initializing, 
the Secure world must resume the OS that called the power down interface, at the required return 
address. 
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20.1.5 Dormant mode

In dormant mode, the core logic is powered down, but the cache RAMs are left powered up. 
Often the RAMs will be held in a low-power retention state where they hold their contents but 
are not otherwise functional. This provides a far faster restart than complete shutdown, as live 
data and code persists in the caches. Again, in a multi-core system, individual cores can be 
placed in dormant mode.

In a multi-core system that permits individual cores within the cluster to go into dormant mode, 
there is no scope for maintaining coherency while the core has its power removed. Such cores 
must therefore first isolate themselves from the coherence domain. They will clean all dirty data 
before doing this and will typically be woken up using another core signaling the external logic 
to re-apply power. 

The woken core must then restore the original core state before rejoining the coherency domain. 
Because the memory state might have changed while the core was in dormant mode, it might 
have to invalidate the caches anyway. Dormant mode is therefore much more likely to be useful 
in a single core environment rather than in a cluster. This is because of the additional expense 
of leaving and rejoining the coherency domain. In a cluster, dormant mode is typically likely to 
be used only by the last core when the other cores have already been shutdown.
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20.2 Hotplug
CPU hotplug is a technique that can dynamically switch cores on or off. Hotplug can be used by 
the OSPM to change available compute capacity based on current compute requirements. 
Hotplug is also sometimes used for reliability reasons. There are a number of differences 
between hotplug and use of a power-down state for idle: 

1. When a core is hot unplugged, the supervisory software stops all use of that core in 
interrupt and thread processing. The core is no longer considered to be available by the 
calling OS. 

2. The OSPM has to issue an explicit command to bring a core back online, that is, hotplug 
a core. The appropriate supervisory software will only start scheduling on or enabling 
interrupts to that core after this command. 

Operating systems typically perform much of the kernel boot process on one primary core, 
bringing secondary cores online at a later stage. Secondary boot behaves very similarly to 
hotplugging a core into the system.The operations in both cases are almost identical. 
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20.3 Dynamic Voltage and Frequency Scaling
Many systems operate under conditions where their workload is very variable. It would be 
useful to have the ability to reduce or increase the core performance to match the expected core 
workload. If you could clock the core more slowly when it is less busy, you could save dynamic 
power consumption. 

Dynamic Voltage and Frequency Scaling (DVFS) is an energy saving technique that exploits:
• The linear relationship between power consumption and operational frequency.
• The quadratic relationship between power consumption and operational voltage.

This relationship is given as:

P = C × V2 × f

Where:

P Is the dynamic power.

C Is the switching capacitance of the logic circuit in question.

V Is the operational voltage.

f Is the operational frequency.

Power savings are achieved by modulating the frequency of a core in proportion to its current 
load. Some frequencies can be served at lower voltages and a net quadratic power saving is 
achieved.

If the core is running more slowly, it is also the case that its supply voltage can be reduced 
somewhat. The advantage of reducing supply voltage is that it reduces both dynamic and static 
power. Compared to the alternative of running fast, then entering standby, then running fast and 
so forth, the approach of running slowly at a lower supply can save energy. To do this 
successfully requires two difficult engineering problems to be solved. The SoC requires a way 
in which software running on the ARM core can reliably modify the clock speed and supply 
voltage of the core, without causing problems in the system. This requires such things as voltage 
level-shifters and split power supplies on chip to cope with the variable supply, plus 
synchronizers between voltage domains to cope with timing changes. Of equal importance is 
the ability of software running in the system to make accurate predictions about future 
workloads to set the voltage and clock speed accordingly.

There is an implementation-specific relationship between the operational voltage for a given 
circuit and the range of frequencies that circuit can safely operate at. A given frequency of 
operation together with its corresponding operational voltage is expressed as a tuple and is 
known as an Operating Performance Point (OPP). For a given system, the range of attainable 
OPPs are collectively termed as the system DVFS curve.

Operating systems use DVFS to save energy and, where necessary, keep within thermal limits. 
The load on a core modulates its frequency of operation. The OS provides DVFS policies to 
manage the power consumed and the required performance. A policy aimed at 
high-performance selects higher frequencies and uses more energy. A policy aimed at saving 
energy selects lower frequencies and therefore results in lower performance.
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20.4 Assembly language power instructions
ARM assembly language includes instructions that can be used to place the core in a low power 
state. The architecture defines these instructions as hints – the core is not required to take any 
specific action when it executes them. In the Cortex-A processor family, however, these 
instructions are implemented in a way that shuts down the clock to almost all parts of the core. 
This means that the power consumption of the core is significantly reduced – only static leakage 
currents will be drawn, and there will be no dynamic power consumption.

The WFI instruction has the effect of suspending execution until the core is woken up by one of 
the following conditions:

• An IRQ interrupt, even if the CPSR I-bit is set.

• An FIQ interrupt, even if the CPSR F-bit is set.

• An asynchronous abort.

• A Debug Entry request, even if JTAG Debug is disabled.

In the event of the core being woken by an interrupt when the relevant CPSR interrupt flag is 
disabled, the core will implement the next instruction after WFI. On older versions of the ARM 
architecture, the wait for interrupt function (also called standby mode) was accessed using a 
CP15 operation, rather than a dedicated instruction.

The WFI instruction is widely used in systems that are battery powered. For example, mobile 
telephones can place the core in standby mode many times a second, while waiting for you to 
press a button. 

WFE is similar to WFI. It suspends execution until an event occurs. This can be one the events 
listed, or an additional possibility – an event signaled by another core in a cluster. Other cores 
can signal events by executing the SEV instruction. SEV signals an event to all cores in a cluster. 
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20.5 Power State Coordination Interface
The ARM architecture provides a convenient method of partitioning a software stack through 
its architectural definition of privilege levels, and through the Security and Virtualization 
Extensions. This introduces different modes of execution in the architecture, which in turn 
provide a way to partition the systems that compose the software stack used on a device. As we 
have seen, the ARMv7 architecture has the following privilege levels in which software from 
different software vendors can operate:

• PL0 - For User Application vendors, such as apps downloaded from an App Store.

• PL1 - Rich OS vendors, such as the Linux Kernel used by Android.

• PL2 - Hypervisor Vendors.

• Secure PL0 - Trusted OS applications, from Trusted OS vendors.

• Secure PL1 - Trusted OS.

• Secure PL1 - OEMs providing secure firmware.

As operating systems from different vendors can be simultaneously executing in an ARM 
system, it is necessary to have a method of collaboration when performing power control. This 
means that, if the operating system that is managing power, be it at supervisor (PL1) or 
hypervisor level (PL2), wants to enter an idle state, power up/down a core, or perform a 
big.LITTLE migration, operating systems at other levels of privilege must react to this request. 
Equally, if a core is roused from a power state by a wake up event, it might be necessary for 
operating systems running at different levels of privilege to perform actions such as restoring 
state. There are no freely available interfaces that allow interoperation, and integration amongst 
the various operating systems. This presents difficulties for the OS vendors. 

ARM provides a software interface, the Power State Coordination Interface (PSCI) so that the 
OSPM can place a core into a low power state when it has no work for it. Using this interface 
operating systems and firmware can implement power management techniques such as idle, 
hotplug and state migration on big.LITTLE systems. The messages sent using this interface are 
received by all relevant levels of execution. That is, if Virtualization and Security Extensions 
are implemented, a message sent by a Rich OS must be received by a hypervisor. If the latter 
sends it, the message must be received by the secure firmware that then coordinates with a 
Trusted OS. This enables each operating system to determine whether context saving is 
required. 

PSCI specifies the following functions:

CPU_SUSPEND 
Suspend the execution on a core. This call is intended for use in idle subsystems 
where the core is expected to return to execution through a wake up event. 

CPU_OFF 
Power down a core. This call is intended for use in hotplug. A core that is powered 
down by CPU_OFF can only be powered up again by a CPU_ON. 

CPU_ON Power up a core. This call is used to power up cores that either:
• Have not yet been booted into the calling OS.
• Have been previously powered down with a CPU_OFF call.

MIGRATE 
This is used to request the Trusted OS of a single core to migrate its context to a 
specific core. 
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Chapter 21 
Security

The term security is used in the context of computer systems to cover a wide variety of features. In 
this chapter, we will use a narrower definition. A secure system is one that protects assets (resources 
that require protecting, for example passwords, or credit card details) from a range of plausible 
attacks to prevent them from being copied or damaged or made unavailable (denial of service). 
Confidentiality is a key security concern for assets such as passwords and cryptographic keys. 
Defense against modification and proof of authenticity is vital for security software and on-chip 
secrets used for security. Examples of secure systems might include entry of Personal Identification 
Numbers (PINs) for such things as mobile payments, digital rights management, and e-Ticketing. 

Security is harder to achieve in the world of open systems where a wide range of software can be 
downloaded onto a platform. This gives the potential for malevolent or untrusted code to tamper 
with the system. 

ARM processors include specific hardware extensions to enable construction of secure systems. 
Creating secure systems is outside the scope of this book. In the remainder of this chapter, we 
present the basic concepts behind the ARM Security Extensions (TrustZone). If your system is one 
that makes use of these extensions, be aware that this imposes some restrictions on the operating 
system and on unprivileged code (in other words, code that is not part of the secure system). 
TrustZone is of little or no use without memory system support.

It must, of course, be emphasized, that no security is absolute!
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21.1 TrustZone hardware architecture
The TrustZone hardware architecture aims to provide resources that enable a system designer to 
build secure systems. It does this through a range of components and infrastructure additions. 
Low-level programmers must have some awareness of the restrictions placed on the system by 
the TrustZone architecture, even if they are not intending to make use of the security features.

In essence, system security is achieved by dividing all of the device’s hardware and software 
resources, so that they exist in either the Secure world for the security subsystem, or the Normal 
world for everything else. System hardware ensures that no Secure world resources can be 
accessed from the Normal world. A secure design places all sensitive resources in the Secure 
world, and has robust software running that can protect assets against a wide range of possible 
attacks.

The use of the term Non-Secure is used in the ARM Architecture Reference Manual as a contrast 
to Secure state, but this does not imply that there is a security vulnerability associated with this 
state. We will refer to this as Normal operation here. The use of the word world is to emphasize 
the relationship between the Secure world and other states the device is capable of.

The additions to the architecture enable a single physical core to execute code from both the 
Normal world and the Secure world in a time-sliced fashion. The memory system is similarly 
divided. An additional bit, indicating whether the access is Secure or Non-Secure (the NS bit) 
is added to all memory system transactions, including cache tags and access to system memory 
and peripherals. This can be considered as an additional address bit, giving a 32-bit physical 
address space for the Secure world and a completely separate 32-bit physical address space for 
the Normal world. 

Figure 21-1 Switching between Normal and Secure worlds

As the cores execute code from the two worlds in a time-sliced fashion, context switching 
between them is done using an additional core mode (like the existing modes for IRQ, FIQ etc.) 
called Monitor mode. A limited set of mechanisms by which the core can enter Monitor mode 
from the Normal world is provided. Entry to monitor can be through a dedicated instruction, the 
Secure Monitor Call (SMC) instruction, or by hardware exception mechanisms. IRQ, FIQ and 
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external aborts can all be configured to cause the core to switch into Monitor mode. In each case, 
this will appear as an exception to be dealt with by the Monitor mode exception handler. 
Figure 21-1 on page 21-2 provides a conceptual summary of this switching.

Figure 21-2 shows how, in many systems, FIQ is reserved for use by the secure world (it 
becomes, in effect, a non-maskable secure interrupt). An IRQ that occurs when in the Normal 
world is handled in the normal way, described in the chapters on exception handling. An FIQ 
that occurs while executing in the Normal world is vectored directly to Monitor mode. Monitor 
mode handles the transition to Secure world and transfers directly to the Secure world FIQ 
handler. If the FIQ occurs when in the Secure world, it is handled through the Secure vector table 
and routed directly to the Secure world handler. IRQs are typically disabled during execution in 
the Secure world.

Figure 21-2 Normal and Secure worlds

The software handler for Monitor mode is implementation specific, but will typically save the 
state of the current world and restore the state of the world being switched to, much like a normal 
context switch.

The NS bit in the Secure Configuration Register (SCR) in CP15 indicates which world the core 
is currently in. In Monitor mode, the core is always executing in the Secure world, regardless of 
the value of the SCR NS-bit that is used to signal which world you were previously in. The 
NS-bit also enables code running in Monitor mode to snoop security banked registers, to see 
what is in either world.

TrustZone hardware also effectively provides two virtual MMUs, one for each virtual core. This 
enables each world to have a local set of translation tables, with the Secure world mappings 
hidden and protected from the Normal world. The translation table descriptions include a NS bit 
that is used to determine whether accesses are made to the secure or non-secure physical address 
space. Although the translation table entry bit is still present, the Normal virtual core hardware 
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does not use this field, and memory accesses are always made with NS = 1. The Secure virtual 
core can therefore access either Secure or Normal memory. Cache and TLB hardware permits 
Normal and Secure entries to co-exist.

It is good practice for code that modifies translation table entries and that does not care about 
TrustZone based security, to always set the translation table NS-bit to zero. This means that it 
will be equally applicable when the code is executing in the Secure or Normal worlds.

The ability to direct aborts, IRQ and FIQ directly to the monitor, enables trusted software to 
route the interrupt request accordingly, enabling a design to provide secure interrupt sources 
immune from manipulation by the Normal world software. Similarly, the Monitor mode routing 
means that from the point of view of Normal world code, an interrupt that occurs during Secure 
world execution appears to occur in the last Normal world instruction that occurred before the 
Secure world was entered.

A typical implementation is to use FIQ for the Secure world and IRQ for the Normal world. 
Exceptions are configured to be taken by the current world (whether Secure or Normal), or to 
cause an entry to the monitor. The monitor has its own vector table. Because of this, the core has 
three sets of exception vector tables. It has a table for the Normal world, one for the Secure 
world, and one for Monitor mode.

The hardware must also provide the illusion of two separate cores within CP15. Sensitive 
configuration CP15 registers can only be written by Secure world software. Other settings are 
normally banked in the hardware, or by the Monitor mode software, so that each world sees its 
own version. 

Implementations that use TrustZone will typically have a light-weight kernel (Trusted 
Execution Environment) that hosts services (for example, encryption) in the Secure world. A 
full OS runs in the Normal world and is able to access the secure services using the SMC 
instruction. In this way, the Normal world gets access to functions of the service, without any 
ability to see keys or other protected data.

21.1.1 Multi-core systems with security extensions

Each core in a multi-core system has the programmer’s model features described for single 
cores earlier in this book. Any number of the cores in the cluster can be in the Secure world at 
any point in time, and cores are able to transition between the worlds independently of each 
other. The Snoop Control Unit is aware of security settings. Additional registers are provided to 
control whether Normal world code can modify SCU settings. Similarly, the generic interrupt 
controller that distributes prioritized interrupts across the Multi-core cluster must also be 
modified to be aware of security concerns.

Theoretically, the Secure world OS on an SMP system could be as complicated as the Normal 
world OS. However, this is undesirable when aiming for security. In general, it is expected that 
a Secure world OS will actually only execute on one core of an SMP system (with security 
requests from the other cores being routed to this chosen core). This does provide some 
bottleneck issues. To some extent these will be balanced by the Normal world OS performing 
load balancing against the core that it will see as busy for unknown reasons. Beyond that this 
limitation has to be seen as one of the compromises that can be reached to hit a particular target 
level of security.

21.1.2 Interaction of Normal and Secure worlds

If you are writing code in a system that contains some secure services, it can be useful to 
understand how these are used. As we have seen, a typical system will have a light-weight 
kernel, Trusted Execution Environment (TEE) hosting services (for example, encryption) in the 
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Secure world. This interacts with a full OS in the Normal world that can access the secure 
services using the SMC call. In this way, the Normal world is able to have access to functions 
of the service, without getting to see keys (for example).

Generally applications developers won’t directly interact with TrustZone (or TEEs or Trusted 
Services). Instead, one makes use of a high level API (for example, it might be called 
reqPayment()) provided by a Normal world library. The library would be provided by the same 
vendor as the Trusted Service (for example, a credit card company), and would handle the low 
level interactions. Figure 21-3 shows this interaction and illustrates the flow from user 
application calling the API that makes an appropriate OS call, which then passes to the 
TrustZone driver code, and then passes execution into the TEE through the Secure monitor.

Figure 21-3 Interaction with TrustZone

It is common to share data between the Secure and Normal worlds. For example, in the Secure 
world you might have a signature checker. The Normal world can request that the Secure world 
verifies the signature of a downloaded update, using the SMC call. The Secure world requires 
access to the memory used by the Normal world to store the package. The Secure world can use 
the NS-bit in its translation table descriptors to ensure that it used non-secure accesses to read 
the data. This is important because data relating to the package might already be in the caches, 
because of the accesses done by the Normal world. These accesses with addresses marked as 
non-secure. As mentioned previously the security attribute can be thought of as an additional 
address bit. If the core used secure access to try to read the package, it would not hit on data 
already in the cache.

If you are a Normal world programmer, in general, you can ignore something happening in the 
Secure world, as its operation is hidden from you. One side effect is that interrupt latency can 
increase slightly, if an interrupt goes off in the Secure world, but this increase is small compared 
to the overall latency on a typical OS. 

If you do have to access a secure application, you will require a driver-like function to talk to 
the Secure world OS and Secure applications, but the details of creating that Secure world OS 
and applications are beyond the scope of this book. Those writing code for the Normal world 
only require the particular protocol for the secure application being called.
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Finally, the TrustZone System also controls availability of debug provision. Separate hardware 
over full JTAG debug and trace control is separately configurable for Normal and Secure 
software worlds, so that no information about the Secure system leaks.
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Chapter 22 
Virtualization

Modern compute subsystems are powerful but often under utilized. The domains that these systems 
address increasingly require multiple software environments working simultaneously on the same 
physical processor systems. Software applications and their environments might have to be 
completely separated for reasons of robustness, differing requirements for real-time behavior, or to 
have them isolated from each other. This is done by providing virtual cores for the software to 
execute on.

Implementing such virtual cores in an efficient fashion requires both dedicated hardware 
extensions (to accelerate switching between virtual machines) and hypervisor software. The 
volume of legacy software to be ported to new hardware might make it more expedient to provide 
a virtual machine matching the legacy OS requirements than to port the OS and drivers to new 
hardware and OS versions. The Virtualization Extensions to the ARMv7 architecture provide a 
standard hardware accelerated implementation enabling the creation of high performance 
hypervisors. Writing a hypervisor is outside the scope of this book, as such software is typically 
produced by specialized teams. In this chapter, we will provide an overview of how the 
Virtualization Extensions work and the effects of this on OS and application code, in a fashion 
similar to our previous discussion of the TrustZone Security Extensions.

The term hypervisor actually dates back to the 1960s and was first used by IBM to describe 
software running on mainframes. Today’s hypervisors are conceptually very similar and might be 
thought of as operating at a level higher than the supervisor or operating system. They typically 
permit multiple instances of one or more different operating systems, called Guest Operating 
Systems (Guest OS), to run on the system. The hypervisor provides a virtual system to each of the 
Guest operating systems and monitors their execution. The Guest OS does not typically need to be 
aware that it is running under a hypervisor or that other operating systems might be using the 
system. The term Virtual Machine Monitor (VMM) is sometimes used to describe a hypervisor. 
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There are two types of hypervisors being deployed on ARM. Type1 is as described with each 
Virtual Machine (VM) containing Guest OS. In Type 2, the hypervisor is an extension of the 
Host OS with each subsequent Guest OS contained in a separate VM. 

One possible use of virtual machine hypervisors is in so-called cloud computing solutions, 
where software can be partitioned into client or server devices or where large amounts of data 
or content exist. This scenario is likely to increase the amount of addressable physical memory 
required in the system. For this reason, the Virtualization Extensions require that the core also 
implement the Large Physical Address Extension (LPAE) described on page 22-10. This 
enables each of the multiple software environments, as well as different processes within, to 
access separate windows of physical addresses. LPAE provides an additional level of MMU 
translation table, so that each 32-bit virtual memory address can be mapped within a 40-bit 
physical memory range. In this scenario, this permits software to allocate enough physical 
memory to each virtual machine, even when total demands on memory exceed the range of 
32-bit addressing. It would also be possible for a single operating system kernel to handle up to 
40 bits of physical address space, with up to 4GB available at any given time. In theory, this can 
mean up to ~3GB per process.
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22.1 ARMv7-A Virtualization Extensions
For the most part, this book assumes that a system is owned and managed by a single privileged 
Operating System that deploys many unprivileged applications. Most main stream Operating 
Systems are also built on this assumption. Virtualization is the concept where more than one 
Operating System is enabled to co-exist and operate on a same system. The ARM Virtualization 
Extensions make it possible to operate multiple Operating Systems on the same system, while 
offering each such Operating System an illusion of sole ownership of the system by virtue of 
introduction of new architectural features. These are:

• A hypervisor mode, in addition to the existing privileged modes. This PL2 mode is even 
more privileged than PL1 modes. Hyp mode is expected to be occupied by Hypervisor 
software managing multiple guest operating systems occupying PL1 and PL0 modes. Hyp 
mode only exists in the Normal (Non-secure) world.

• An additional memory translation, called Stage 2 is introduced. Previously, the Virtual 
Address (VA) is translated to Physical Address (PA) by the PL1 and PL0 MMU described 
in Chapter 9. This translation is now known as Stage 1 and the old Physical Address is 
now called Intermediate Physical Address (IPA). The IPA is subjected to another level of 
translation in Stage 2 to get the final PA corresponding to the VA.

• Interrupts can be configured to be taken (routed) to the Hypervisor. The hypervisor will 
then take care of delivering interrupts to the appropriate guest.

• A Hypervisor Call instruction (HVC) for guests to request Hypervisor services.

ARM Virtualization Extensions aim to run conventional Operating Systems as guests on a 
virtualized system with no or little modification.

22.1.1 Types of virtualization

Virtualization solutions can be broadly classified as bare metal or hosted according to their 
design. Regardless of the classification, the functional role of a Hypervisor remains the same, 
arbitration of platform resources, and seamless operation of individual guests with minimal 
porting effort and run time sacrifices.

In bare metal virtualization, the Hypervisor is the most privileged non-secure software to boot 
on the core. It initializes various aspects of PL2 for housekeeping, for example its own 
translation tables for PL2 translation regime. The Hypervisor will then initialize settings for 
each guest operating system that it will launch. This will involve setting up stage 2 translation 
tables for individual guests, interrupt delivery mechanisms etc., and goes on to launching them. 
The Hypervisor will schedule guest operating systems on available cores, handle exceptions on 
behalf of the guests, and deliver interrupts to appropriate guests at run time.

Figure 22-1 on page 22-4 contrasts conventional systems with systems deploying bare-metal 
virtualization.
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Figure 22-1 Bare metal virtualization

22.1.2 Memory translation

A number of memory translation regimes are possible in a virtualized system in the Normal 
world. A translation regime is a broad term encompassing the privileges and execution mode of 
the core and the set of translation tables used. These translations are carried out using the MMUs 
and the Translation Table structures created by the software that controls the translation. A stage 
of translation comprises of a set of translation tables that translates an input address to an output 
address. The input and output addresses take different names depending on the stage of 
translation.

PL1&0 Stage 1 
This is the translation regime that an Operation System will setup and control, 
exactly as described in Chapter 9 The Memory Management Unit. This 
translation regime is applied when the core is in one of execution modes that falls 
under PL1 (Kernel) and PL0 (application) privilege levels. On a conventional 
system, this regime is used to translate virtual addresses to physical addresses.
In a virtualized system however, this physical address is treated as an 
Intermediate Physical Address (IPA) because it is subjected to another stage 
(Stage 2) of translation. In the presence of an oncoming Stage 2, this translation 
regime qualifies as Stage 1.
IPAs cannot be used to address system memory. Although called an intermediate 
physical address, from the perspective of a guest, the output of this translation 
regime is what it sees and uses as physical address.

PL1&0 Stage 2 
This comprises of a set of translation tables that the Hypervisor sets up for each 
of the guests it manages. This regime will translate the IPA that was output by 
Stage 1, and translates it to a physical address that can finally be used to address 
system memory.
The Virtualization Extensions add a set of core registers to control the Stage 2 
translation tables. The hypervisor saves and restores these registers whenever it 
schedules a different guest on the core. Individual guests that are managed by the 
Hypervisor have no control over, nor are aware of the presence of a Stage 2 
translation. When virtualization is in effect, all PL1&0 Stage 1 translations are 
implicitly subjected to this Stage 2 translation. It is also important to note that a 
Stage 2 translation is applied even if Stage 1 translation is turned off by the guest, 
As a result, Stage 2 translation is always applied when virtualization is in effect.
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Because it is managed by the Hypervisor, exceptions arising from Stage 2 
translation are taken in Hyp mode so that Hypervisor can respond to them. 
Exceptions from Stage 1, as before, are taken to PL1 Abort mode for the 
respective guest to handle.
What Stage 2 translation achieves is virtualization of the guest's view of physical 
memory. Every virtual address used in PL1&0 stage is first translated to an IPA 
by Stage 1. This IPA is translated to the actual physical address by Stage 2. The 
guest is unaware of, and cannot control, translation by Stage 2. By appropriately 
setting up the Stage 2 translation tables the hypervisor can manage and allocate 
physical memory to guests. This can be thought of a natural extension of what an 
operating system does, managing and allocating physical memory to its 
applications. In that respect, the guests could be considered as applications of the 
Hypervisor.

PL2 This comprises of a set of translation tables that the Hypervisor sets up for itself 
to manage its own virtual memory. This regime will translate virtual addresses 
used in Hyp mode to Physical Addresses. No additional stages are applied to this 
translation, therefore it is not qualified by stages. The Virtualization Extension 
includes a set of registers for the Hypervisor to manage its own translation tables, 
much like an operating system kernel manages its own translation tables
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22.2 Hypervisor software
This section lists some of the functions that a Hypervisor performs. As we have seen, these 
functions do not depend on the type of virtualization solution deployed.

22.2.1 Memory management

The hypervisor is responsible for memory management for itself and for the guest operating 
systems it manages. The entire physical memory is at the direct disposal of the Hypervisor.

The PL2 MMU is used in Hyp mode to translate the virtual addresses that the Hypervisor uses 
to address physical memory. Apart from setting up and managing its own translation tables, a 
Hypervisor has to create and manage Stage 2 translation tables for each of its guests. 

In addition to both Secure and Non Secure versions of the TTBR, there are also a Virtualization 
Translation Table Base Register (VTTBR) and Hyp Translation Table Base Register (HTTBR) 
where the VTTBR is used to point to second stage translation tables (See Large Physical 
Address Extensions on page 22-10) and the HTTBR is used to point to tables used for 
Hypervisor memory mapping. Secure functions are the same as the Non-secure TTBR and can 
use the short-descriptor format, but VTTBR and HTTBR are long descriptor only. 

Stage 2 translation tables setup by the Hypervisor translate intermediate physical memory 
addresses to physical memory addresses. Any aborts resulting from attempting to translate 
addresses in Stage 2 are taken in Hyp mode. The Hypervisor is responsible for receiving the 
aborts, and handling them appropriately. For intended and legitimate faults, the Hypervisor 
might take remedial measures such as emulating a device or allocating more memory to a guest 
operating systems. For unexpected faults the Hypervisor can choose to terminate the guest 
operating system or report aborts to the guest in turn.

22.2.2 Device emulation

Platform devices are memory-mapped, and guest accesses to devices are subject to at least Stage 
2 translation when virtualization is in effect. When Virtualization is in effect, there are use cases 
for a Hypervisor to emulate a device in software, or to hide it from the guests.

Device emulation is necessary where more than one guest is aware of a platform device (using 
the physical address), and attempt to access it. Because of the shared nature, guests cannot be 
permitted direct accesses to it without arbitration. In such cases the Hypervisor can prohibit 
access to the said device region to all such guests, by means of their respective stage 2 
translation table descriptors. 

Alternatively, the hypervisor might choose to hide a device from a chosen set of guests either 
because the device is not actually present or has already been assigned to a different guest. 
(Guests would typically detect a platform device by reading its ID register.) By employing the 
same trapping mechanism as before, the Hypervisor can return dummy values for guest reads 
and ignore writes, effectively giving the guest the impression that the device does not exist on 
the platform.

One of the important jobs of the Hypervisor is to schedule guests on available cores in the 
system. The task is accomplished in much the same way that an operating system schedules 
different tasks. In a virtualized system the Hypervisor schedules a guest operating system on a 
core to execute. A scheduled guest assumes sole ownership of the core, and schedules its tasks 
on the core, as it would do on a conventional system. Guests will not be aware of the fact that a 
Hypervisor is functioning and that they are being constantly scheduled in and out of the core.
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22.2.3 Device assignment

Device emulation is necessary but turns out to be expensive as all accesses to the device by the 
guest have to be trapped and emulated in software. The Hypervisor has the option of assigning 
individual devices to individual guests so that the guest can own and operate the device without 
requiring Hypervisor arbitration. The challenge is to hide from the guest the fact that the device 
is actually located at a different physical address, and generates a different interrupt ID than that 
which the guest is expecting. Transparent Stage 2 mappings, and interrupt virtualization can 
circumvent these challenges.

22.2.4 Exception handling

Asynchronous exceptions (IRQ, FIQ and asynchronous aborts) can be routed to Hypervisor 
mode. This behavior can be selected through dedicated control bits in the Hyp Configuration 
Register (HCR). An additional bit in this register also enables synchronous exceptions (Undef, 
SVC or precise aborts) to be routed to the Hypervisor Trap entry. The hypervisor can also be 
called through the HVC instruction. If this is performed while in privilege level PL1, it causes a 
hypervisor trap exception and entry into Hypervisor mode. If performed when already in 
Hypervisor mode, it causes an HVC exception.

The Virtualization Extensions introduce the concept of virtual exceptions. The exceptions we 
have met before are real events occurring in the system. Virtual exceptions are events of similar 
nature, that is, interrupts and aborts, but are manufactured by the Hypervisor, either in response 
to an actual physical exception, or manufactured (as a result of Device emulation) with no 
relation to a physical exception. These are taken in their conventional exception mode, for 
example, a virtual abort is taken in Abort mode. Physical exceptions can be configured to be 
consumed by the Hypervisor, only virtual exceptions are delivered to guests. 

This concept is useful only when the corresponding physical exception is routed to Hyp mode. 
This means that the hypervisor has control of masking and generating a virtual exception. When 
a real physical exception occurs, and is routed to the hypervisor software, the Hypervisor then 
signals a virtual exception to the current Guest OS. The Guest OS handles the exception as it 
would do for an equivalent physical exception and need not be aware that the hypervisor has 
been involved. The virtual exception is signalled through the virtual GIC, or by using dedicated 
HCR bits. When exceptions are routed to the hypervisor in this fashion, the CPSR A, I and F 
bits no longer mask physical exceptions, instead they mask the handling of virtual exceptions 
within the Guest OS.

22.2.5 Interrupt handling

When virtualization is in effect, interrupts reaching a core can be targeted to a guest that is 
running on a different core, or even to a guest that does not currently occupy a core at all 
(suspended because of inactivity). In a virtualized system the hypervisor must be the primary 
arbitrator, and configures the core so that interrupts delivered to a core are handled in Hyp mode. 
This enables the Hypervisor to be in charge of receiving and delivering interrupts to guests.

The Hypervisor Configuration Register (HCR) in the core, that is accessible to guests, has a set 
of three bits corresponding to IRQ, FIQ and abort virtual exceptions. When any of these bits are 
set while the core is in PL1&0 modes, This has the same effect as the core taking the 
corresponding exception in a conventional system, that is, they will not be taken in Hypervisor 
mode again. Physical exceptions take the core to Hyp mode. 

If, after handling the exception, the hypervisor chooses to deliver the exception to the guest, it 
sets the required bits and resumes the guest, the guest, being in one of PL1&0 modes, will take 
the exception as if it were running standalone.
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22.2.6 Scheduling

One of the important jobs of the hypervisor is to schedule guests on available cores in the 
system. This task is accomplished in much the same way that an operating system schedules 
different tasks. In a virtualized system the hypervisor schedules a guest on a core to execute. A 
scheduled guest assumes sole ownership of the core, and schedules its tasks on the core, as it 
would do on a conventional system. Guests are not aware of the fact that a Hypervisor is 
functioning beneath and is being constantly scheduled in and out of the core.

22.2.7 Context switch

When the Hypervisor schedules another guest on a core, it must perform a context switch, that 
is, save the context of the currently running guest to memory, and then restore the context of the 
new guest from memory. The goal is to recreate the environment for the new guest on the current 
core before it resumes, creating the illusion of uninterrupted execution. By performing a context 
switch, the Hypervisor ensures that the execution environment follows the guest, and offers the 
illusion of a virtual core that the guest always occupies.

The following elements of a guest context must be saved and restored:

• The general purpose registers of the core including the banked registers of all modes,

• System register contents for such things as memory management and access control.

• The pending and active states of private interrupts on the core.

• In case of guests using core private timers, the timer registers must be saved and restored 
so that they generate interrupts at the expected intervals.

The physical memory assigned to a guest, that it sees as RAM, stays in place and does not have 
to be saved or restored. By using two stages of memory translation, the physical memory that 
the guest uses stays private and distinct from any others, even for identical guests.
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22.3 Relationship between virtualization and ARM Security Extensions
We discussed the concept of privilege levels, PL0, PL1 and PL2, in Chapter 3 ARM Processor 
Modes and Registers. Figure 22-2 illustrates how in the Normal world, you have PL0 (User 
mode), PL1 (for exception modes) and PL2 for the hypervisor, while in the Secure world, you 
have only PL0 and PL1, with secure monitor mode at PL1.

Figure 22-2 Privilege levels and security

In general, the hypervisor has no impact on the Secure world. It is unable to access secure parts 
of memory or otherwise interfere in the operations of the secure system.

Normal World Secure World

PL0 User User PL0

SVC

Abort

IRQ

FIQ

Undef

System

SVC

Abort

IRQ

FIQ

Undef

System

Monitor

PL1 PL1

HYPPL2
ARM DEN0013D Copyright © 2011 – 2013 ARM. All rights reserved. 22-9
ID012214 Non-Confidential



Virtualization 
22.4 Large Physical Address Extensions
Processors that implement the ARMv7-A Large Physical Address Extension (LPAE), expand 
the range of accessible physical addresses from 4GB (232 bytes) to 1024GB (240 bytes) a 
terabyte, by translating 32-bit virtual memory addresses into 40-bit physical memory addresses. 
To do this they use the Long-descriptor format. The existing short-descriptor format translation 
tables are still supported, as are the security extensions described in Chapter 21. 

The Virtualization Extensions provide an additional second stage of address translation when 
running virtual machines. The first stage of this translation produces an Intermediate Physical 
Address (IPA) and the second stage then produces the physical address. The second stage of this 
conversion process is controlled by the Hypervisor, TLB entries can also have an associated 
Virtual Machine ID (VMID), in addition to an ASID. Again, it is possible to disable the stage 2 
MMU and have a flat mapping from IPA to PA.

Figure 22-3 Stage 2 translation

Long-descriptor format memory management includes the following features:

• 64-bit page descriptors.

• Up to three levels of translation tables.

• Supports specifying up to 40-bit physical addresses.

• 1GB, 2MB and 4KB block or page sizes are supported.

• Optional second stage memory translation used in virtualization

• An additional access permission setting – Privileged eXecute Never (PXN). This marks a 
page as containing code that can be executed only in a non-privileged (user) mode. This 
setting is also added to the legacy descriptor format. There is also a privileged execute 
setting (PX) that means that code can be executed only in privileged mode.

There are certain similarities between the short-descriptor format and the long-descriptor 
format:

• Both have an input 32-bit virtual address from the processor.

• Both use TTBR0/TTBR1 to point to level 1 translation tables (with TTBCR selecting 
which part of the address space is covered by each).
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• Long descriptors also provides a way to indicate “Outer-shareable” or “Inner-shareable” 
as opposed to “Shareable”.

Figure 22-4 Format of long-descriptor table entries

22.4.1 Long descriptor translation tables

Long descriptor translation tables output a 40-bit intermediate physical address.

• The first level translation table is 4 entries – one entry for each 1 GB of virtual memory
— Indexed by [31;30] of the VA.

• First level page descriptors contain either:
— The upper 10 bits of physical address for that 1 GB of virtual memory
— A pointer to the second level translation table

• Second level translation table is 512 entries – one entry for each 2MB of virtual memory 
(in the 1GB address range of the first level table entry).
— Indexed by bits [29:21] of the VA.

• Second level page descriptors contain:
— The upper 19 bits of physical address for that 2MB of virtual memory
— A pointer to the third level translation table

• Third level translation table is 512 entries – one entry for each 4KB of virtual memory (in 
the 2MB address range of the second level table entry)
— Indexed by bits [20:12] of the VA.

• Third level page descriptors contain:
— Upper 28 bits of physical address for that 4KB of virtual memory.

This process is shown in Figure 22-5 on page 22-12.

The translation table walking steps are similar to those previously described for processors that 
do not implement LPAE. Individual translation table entries are now 64-bit in size. 
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Figure 22-5 Long -descriptor table walk

Recall that long-descriptor translation tables output a 40-bit physical address. Therefore, the 
physical base address given by this translation will be of the form [39:0], with bit [39] of the 
descriptor producing bit [39] of the physical address. It is not necessary to map all of the 
physical address space, but all of the 4GB virtual address space has to be taken care of. There 
must be a descriptor for each virtual address – although it might be a “fault” descriptor.
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Chapter 23 
big.LITTLE

Modern software stacks place conflicting requirements on mobile systems. On the one hand is a 
demand for very high performance for tasks such as games, while on the other is a continuing 
requirement to be frugal with energy reserves for low intensity applications like audio playback.

Traditionally, it has not been possible to have a single processor design that can be capable of both 
high peak performance as well as high energy efficiency. This meant that a lot of energy was wasted 
because the high performance core would be used for low intensity tasks leading to reduced battery 
life. Performance would itself be affected by the thermal limits at which the cores could run for 
sustained periods.

big.LITTLE technology from ARM solves this problem by coupling together an energy efficient 
“LITTLE” core with a high performance “big” core. big.LITTLE is an example of a heterogeneous 
processing system. Such systems typically include several different processor types with different 
microarchitectures, like general purpose processors and specialized ASICs.

big.LITTLE takes the heterogeneity one step further in that it includes general purpose processors 
that are different in their micro-architecture but compatible in their instruction set architecture. A 
term that is often used with such systems is Heterogeneous Multi-processing (HMP). What makes 
HMP different from AMP is that all the processors in an HMP system are fully coherent and run 
the same operating system image.

The basic premise is that software can run on big or LITTLE processors depending on performance 
requirements. When peak performance is required software can run on big processors. At most 
other times, software can run on LITTLE processors. Through this combination, big.LITTLE 
provides a solution that is capable of delivering the high peak performance demanded by the latest 
mobile devices, within the thermal bounds of the system, with maximum energy efficiency.
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23.1 Structure of a big.LITTLE system
Both types of core in a big.LITTLE system are fully cache coherent and share the same 
instruction set architecture (ISA). The same application binary will run unmodified on either. 
Differences in the internal microarchitecture of the processors enable them to provide the 
different power and performance characteristics that are fundamental to the big.LITTLE 
concept. These are typically managed by the operating system.

big.LITTLE software models require transparent and efficient transfer of data between big and 
LITTLE clusters. Hardware coherency enables this, transparently to the software, such as the 
ARM CoreLink CCI-400 described in The Cache Coherent Interface (CCI) on page 18-11. 
Without hardware coherency, the transfer of data between big and LITTLE cores would always 
occur through main memory - this would be slow and not power efficient. In addition, it would 
require complex cache management software, to enable data coherency between big and 
LITTLE clusters.

In addition, such a system also requires a shared interrupt controller, such as the GIC-400, 
enabling interrupts to be migrated between any cores in the clusters. All cores can signal each 
other using distributed interrupt controllers such as the CoreLink GIC-400. Task switching is 
handled entirely within the OS scheduler, and is invisible to the application software. A typical 
system is shown in Figure 23-1.

Figure 23-1 Typical big.LITTLE system

23.1.1 big.LITTLE configurations

A number of big.LITTLE configurations are possible, Figure 23-1 uses a Cortex-A7 processor 
as the LITTLE cluster and a Cortex-A15 processor as the big cluster, though other 
configurations are possible. 

The LITTLE cluster is capable of handling most low intensity tasks such as audio playback, 
web-page scrolling, operating system events, and other always on, always connected tasks. As 
such, it is likely that the LITTLE cluster is where the software stack will remain until intensive 
tasks such as gaming or video processing are run. 
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The big cluster can be utilized for heavy workloads such as high performance graphics. A 
coupling of these two cluster types provides opportunities to save energy as well as satisfy the 
increasing performance demands of applications stacks in mobile devices. 
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23.2 Software execution models in big.LITTLE
There are two primary execution models for big.LITTLE:

• Migration.

• Global Task Scheduling.

Migration models are a natural extension to power-performance management techniques such 
as DVFS, (see Dynamic Voltage and Frequency Scaling on page 20-7). 

The Migration model has two types:

• Cluster migration.

• CPU migration.

A migration action is similar to a DVFS operating point transition. Operating points on the 
DVFS curve of a core will be traversed in response to load variations. When the current core (or 
cluster) has attained the highest operating point, if the software stack requires more 
performance, a core (or cluster) migration action is effected (see Figure 23-2). Execution then 
continues on the other core (or cluster) with the operating points on this core (or cluster) being 
traversed. When performance is not required, execution can switch back.

Figure 23-2 Typical Cortex-A15 and Cortex-A7 DVFS curves

The following sections describe the execution models:

• Cluster migration on page 23-5.

• CPU migration on page 23-5.

• Global Task Scheduling on page 23-5.
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23.2.1 Cluster migration

Only one cluster, either big or LITTLE, is active at any one time, except very briefly during a 
cluster context switch to the other cluster. To achieve the best power and performance efficiency, 
the software stack runs mostly on the energy-efficient LITTLE cluster and only runs for short 
time periods on the big cluster. This model requires the same number of cores in both clusters.

This model does not cope well with unbalanced software workloads, that is, workloads that 
place significantly different loads on cores within a cluster. In such situations, cluster migration 
will result in a complete switch to the big cluster even though not all the cores need that level 
of performance. For this reason Cluster migration is less popular than other methods.

23.2.2 CPU migration

In this model, each big core is paired with a LITTLE core. Only one core in each pair is active 
at any one time, with the inactive core being powered down. The active core in the pair is chosen 
according to current load conditions. Using the example in Figure 23-3, the operating system 
sees four logical cores. Each logical core can physically be a big or LITTLE core. This choice 
is driven by Dynamic Voltage and Frequency Scaling (DVFS). This model requires the same 
number of cores in both the clusters.

Figure 23-3 CPU migration

The system actively monitors the load on each core. High load causes the execution context to 
be moved to the big core, and conversely, when the load is low, the execution is moved to the 
LITTLE core. Only one core in the pairing can be active at any time. When the load is moved 
from an outbound core to an inbound core, the former is switched off. This model allows a mix 
of big and LITTLE cores to be active at any one time, and support the use of asymmetric 
topologies, that is, an unequal number of big and LITTLE cores.

The In Kernel Switcher (IKS) solution from Linaro is an example of this model.

23.2.3 Global Task Scheduling

Through the development of big.LITTLE technology, ARM has evolved the software models 
starting with various migration models through to Global Task Scheduling (GTS) that forms the 
basis for all future development in big.LITTLE technology. The ARM implementation of GTS 
is called big.LITTLE Multi-processing (MP).
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In this model the operating system task scheduler is aware of the differences in compute 
capacity between big and LITTLE cores. Using statistical data, the scheduler tracks the 
performance requirement for each individual software thread, and uses that information to 
decide which type of core to use for each. Unused cores can be powered off. If all cores in a 
cluster are off, the cluster itself can be powered off. This model can work on a big.LITTLE 
system with any number of cores in any cluster. This is shown in Figure 23-4. This approach has 
a number of advantages over the migration models.

The system can have different numbers of big and LITTLE cores.

• Any number of cores can be active at any one time. When peak performance is required 
the system can deploy all cores.

• It is possible to isolate the big cluster for the exclusive use of intensive threads, while light 
threads run on the LITTLE cluster. This enables heavy compute tasks to complete faster, 
as there are no additional background threads.

• It is possible to target interrupts individually to big or LITTLE cores.

Figure 23-4 Global Task Scheduling
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23.3 big.LITTLE MP
For big.LITTLE MP the fundamental requirement is for the scheduler to decide when a software 
thread can run on a LITTLE core or a big core. The scheduler does this by comparing the tracked 
load of software threads against tunable load thresholds, an up migration threshold and a down 
migration threshold as shown in Figure 23-5.

Figure 23-5 Migration thresholds

When the tracked load average of a thread currently allocated to a LITTLE core exceeds the up 
migration threshold, the thread is considered eligible for migration to a big core. Conversely, 
when the load average of a thread that is currently allocated to a big core drops below the down 
migration threshold, it is considered eligible for migration to a LITTLE core. In big.LITTLE 
MP these basic rules govern task migration between big and LITTLE cores. Within the clusters, 
standard Linux scheduler load balancing applies. This tries to keep the load balanced across all 
the cores in one cluster.

The model is refined by adjusting the tracked load metric based on the current frequency of a 
core. A task that is running when the core is running at half speed, will accrue tracked load at 
half the rate that it would if the core was running at full speed. This enables big.LITTLE MP 
and DVFS management to work together in harmony.

big.LITTLE MP uses a number of mechanisms to determine when to migrate a task between big 
and LITTLE cores:

23.3.1 Fork migration

This operates when the fork system call is used to create a new software thread. At this point, 
clearly no historical load information is available. The system defaults to a big core for new 
threads on the assumption that a ‘light’ thread will quickly migrate down to a LITTLE core as 
a result of Wake migration.

Fork migration benefits demanding tasks without being expensive. Threads that are low 
intensity and persistent, such as Android system services, will only be moved to big cores at 
creation time, quickly moving to more suitable LITTLE cores thereafter. Threads that are 
clearly demanding throughout, will not be penalized by being made to launch on LITTLE cores 
first. Threads that are episodic but tend to require performance on the whole will benefit from 
being launched on the big cluster and will continue to run there as required.

23.3.2 Wake migration

When a task that was previously idle becomes ready to run, the scheduler must decide which 
cluster will execute the task. To choose between big and LITTLE, big.LITTLE MP uses the 
tracked load history of a task. Generally, the assumption is that the task will resume on the same 
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big.LITTLE 
cluster as before. The load metric is not updated for a task that is sleeping. Therefore, when 
scheduler checks the load metric of a task at wake up, before choosing a cluster to execute it on, 
the metric will have the value it had when the task last ran. This property means that tasks that 
a periodically busy will always tend to wake up on a big core. A task has to actually modify its 
behavior to change cluster.

Figure 23-6 Wake migration on a big core

Figure 23-7 Wake migration on a LITTLE core

If a task modifies its behavior, and the load metric has crossed either of the up or down migration 
thresholds, the task can be allocated to a different cluster. Figure 23-6 and Figure 23-7 illustrate 
this process. Rules are defined that ensure that big cores generally only run a single intensive 
thread and run it to completion, so upward migration only occurs to big cores which are idle. 
When migrating downwards, this rule does not apply and multiple software threads can be 
allocated to a little core. 

23.3.3 Forced migration

Forced migration deals with the problem of long running software threads that do not sleep, or 
do not sleep very often. The scheduler periodically checks the current thread running on each 
LITTLE core. If the tracked load exceeds the up migration threshold the task is transferred to a 
big core, as in Figure 23-8 on page 23-9. 
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Figure 23-8 Forced migration

23.3.4 Idle pull migration

Idle pull migration is designed to make best use of active big cores. When a big core has no task 
to run, a check is made on all LITTLE cores to see if a currently running task on a LITTLE core 
has a higher load metric that the up migration threshold. Such a task can then be immediately 
migrated to the idle big core. If no suitable task is found, then the big core can be powered down. 
This technique ensures that big cores, when they are running, always take the most intensive 
tasks in a system and run them to completion. 

23.3.5 Offload migration

Offload migration requires that normal scheduler load balancing be disabled. The downside of 
this is that long-running threads can concentrate on the big cores, leaving the LITTLE cores idle 
and under-utilized. Overall system performance, in this situation, can clearly be improved by 
utilizing all the cores. 

Offload migration works to periodically migrate threads downwards to LITTLE cores to make 
use of unused compute capacity. Threads that are migrated downwards in this way remain 
candidates for up migration if they exceed the threshold at the next scheduling opportunity.
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23.4 Using big.LITTLE
For a representative sample of common use cases, a big.LITTLE system running the ARM 
big.LITTLE MP solution shows significant power savings when compared to a system 
composed of only Cortex-A15 processors.

Figure 23-9 Typical big.LITTLE MP power savings compared to the Cortex-A15

shows how big.LITTLE MP benefits benchmarks. The comparison is between a big.LITTLE 
system composed of four LITTLE cores and four big cores and a system composed only of four 
big cores.

Figure 23-10 big.LITTLE benchmark improvements

The software thread affinity management techniques discussed earlier result in substantial 
performance gains for threaded benchmarks where the number of threads is greater than four. 
In this situation, on the system under test big.LITTLE MP enables the use of more cores to aid 
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the benchmark. Offload migration assists with spreading the number of compute intensive 
benchmark threads to the LITTLE cores when the big cores are busy or overloaded. Idle-pull 
migration results in the best utilisation of the big processors which effectively work as 
accelerators.

For benchmarks with fewer threads, using big.LITTLE MP either provides no degradation or a 
small improvement. Compared to the test system with only four big cores, dynamic software 
thread affinity management will promote better utilisation of the big cores which will not be 
encumbered with low intensity and frequent running threads (such as system services) or 
interrupts.

ARM big.LITTLE MP technology has been tested with Android on multiple silicon 
implementations. The code is self-contained and available as a drop-in into the software stack 
without significant modification or tuning. The only requirement is that the platform 
board-support package is well tuned in terms of DVFS and idle power management, allowing 
the scheduler extensions to focus on getting the job done.

The big.LITTLE MP scheduler extensions are available in two forms:

• As a part of monthly Linaro Stable Kernel (LSK) releases. These releases contain a 
complete Android software stack based on a very recent Linux Stable Kernel. The stack 
is available in source form and also as a pre-built binary set complete with boot firmware, 
boot loaders, ramdisk images and an Android root filesystem image.
See https://releases.linaro.org Select the latest release and android/vexpress-lsk for 
details on the LSK.

• As an isolated patch set against the LSK kernel.
See https://wiki.linaro.org/ARM/VersatileExpress

Select Attachments and then chose get for the latest lsk.tar.bz2 version of 
attachment:big-LITTLE-MP-scheduler-patchset.
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Chapter 24 
Debug

Debugging is a key part of software development and is often considered to be the most time 
consuming (and therefore expensive) part of the process. Bugs can be difficult to detect, reproduce 
and fix and it can be difficult to predict how long it will take to resolve a defect. The cost of 
resolving problems grows significantly when the product is delivered to a customer. In many cases, 
when a product has a small time window for sales, if the product is late, it can miss the market 
opportunity. Therefore, the debug facilities provided by a system are a vital consideration for any 
developer.

Many embedded systems using ARM processors have limited input/output facilities. This means 
that traditional desktop debug methods (such as use of printf()) might not be appropriate. In such 
systems in the past, developers might have used expensive hardware tools like logic analyzers or 
oscilloscopes to observe the behavior of programs. The processors described in this book have 
caches and are part of a complex system-on-chip containing memory and many other blocks. There 
might be no processor signals that are visible off-chip and therefore no ability to monitor behavior 
by connecting up a logic analyzer (or similar). For this reason, ARM systems typically include 
dedicated hardware to provide wide-ranging control and observation facilities for debug. 
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24.1 ARM debug hardware
Cortex-A series processors provide hardware features that enable debug tools to provide 
significant levels of control over core activity and to non-invasively collect large amounts of 
data about program execution. We can sub-divide the hardware features into two broad classes, 
invasive and non-invasive.

Invasive debug provides facilities that enable you to stop programs and step through them line 
by line (either at the C source level, or stepping through assembly language instructions). This 
can be by means of an external device that connects to the core using the chip JTAG pins, or 
(less commonly) by means of debug monitor code in system ROM. JTAG stands for Joint Test 
Action Group and refers to the IEEE-1149.1 specification, originally designed to standardize 
testing of electronic devices on boards, but now widely re-used for core debug connection. A 
JTAG connection typically has five pins – two inputs, plus a clock, a reset and an output.

The debugger gives the ability to control execution of the program, enabling you to run code to 
a certain point, halt the core, step through code and resume execution. We can set breakpoints 
on specific instructions (causing the debugger to take control when the core reaches that 
instruction). These work using one of two different methods. Software breakpoints work by 
replacing the instruction with the opcode of the BKPT instruction. Obviously, these can only be 
used on code that is stored in RAM, but have the advantage that they can be used in large 
numbers. The debug software must keep track of where it has placed software breakpoints and 
what opcodes were originally located at those addresses, so that it can put the correct code back 
when you want to execute the breakpointed instruction. Hardware breakpoints use comparators 
built into the core and stop execution when execution reaches the specified address. These can 
be used anywhere in memory, as they do not require changes to code, but the hardware provides 
limited numbers of hardware breakpoint units (typically four in the Cortex-A family). Debug 
tools can support more complex breakpoints (for example stopping on any instruction in a range 
of addresses, or only when a specific sequence of events occurs or hardware is in a specific 
state). Data watchpoints give debugger control when a particular data address or address range 
is read or written. These can also be called data breakpoints.

On hitting a breakpoint, or when single-stepping, you can inspect and change the contents of 
ARM registers and memory. A special case of changing memory is code download. Debug tools 
typically enable you to change your code, recompile and then download the new image to the 
system.

24.1.1 Single stepping

Single step refers to the ability of the debugger to move through a piece of code, one instruction 
at a time. The difference between Step-In and Step-Over can be explained with reference to a 
function call. If you Step-Over the function call, the entire function is executed as one step, 
enabling you to continue after a function that you do not want to step through. Step-in would 
mean that you single step through the function instead.

24.1.2 Debug events

A debug event is some part of the process being debugged that causes the system to notify the 
debugger. Debug events can be synchronous or asynchronous. Breakpoints, the BKPT instruction, 
and Watchpoints are all synchronous debug events. When any of these events occur, the core 
can respond in one of a number of ways:

• It can ignore the debug event.

• It can takes a debug exception.
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• It will enter one of two debug modes, depending on the setup of the Debug Status and 
Control Register (DSCR):
— Monitor debug mode.
— Halt Debug mode.

Both of these are examples of invasive debug.

Halt debug mode

In Halt Debug mode, a debug event causes the core to enter Debug state. The core is halted and 
isolated from the rest of the system. This means that the debugger displays memory as seen by 
the core, and the effects of memory management and cache operations will become visible. 

In Debug state, the core stops executing instructions from the location indicated by the program 
counter, and is instead controlled through the external debug interface, in particular using the 
Debug Instruction Transfer Register (DBGITR). This enables an external agent, such as a 
debugger, to interrogate core context and control all subsequent instruction execution. Both the 
core and system state can be modified. Because the core is stopped, no interrupts will be handled 
until execution is restarted by the debugger.

Monitor debug-mode

In Monitor debug-mode, a debug event causes a debug exception to occur, either related to the 
instruction execution that generates a Prefetch Abort exception, or a data access that generates 
a Data Abort exception. Both of these must be handled by the software debug monitor. Since 
the core is still operating, interrupts can still be serviced.

24.1.3 Semihosting debug

Semihosting is a mechanism that enables code running on an ARM target to use the facilities 
provided on a host computer running a debugger.

Examples of this might include keyboard input, screen output, and disk I/O. For example, you 
might use this mechanism to enable C library functions, such as printf() and scanf(), to use 
the screen and keyboard of the host. Development hardware often does not have a full range of 
input and output facilities, but semihosting enables the host computer to provide these facilities.

Semihosting is implemented by a set of defined software instructions that generate an exception. 
The application invokes the appropriate semihosting call and the debug agent then handles the 
exception. The debug agent provides the required communication with the host.

The semihosting interface is common across all debug agents provided by ARM. Tools from 
ARM use SVC 0x123456 (ARM state) or SVC 0xAB (Thumb) to represent semi-hosting debug 
functions.

Of course, outside of the development environment, a debugger running on a host is not 
normally connected to the system. It is therefore necessary for the developer to re-target any C 
library functions that use semi-hosting, for example, by using fputc(). This would involve 
replacing the library code that used an SVC call with code that could output a character.
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24.2 ARM trace hardware
Non-invasive debug, often called trace in ARM documentation, enables observation of the core 
behavior while it is executing. It is possible to record memory accesses performed (including 
address and data values) and generate a real-time trace of the program, seeing peripheral 
accesses, stack and heap accesses and changes to variables. For many real-time systems, it is not 
possible to use invasive debug methods. Consider, for example, an engine management system 
– while you can stop the core at a particular point, the engine will keep moving and you will not 
be able to do useful debug. Even in systems with less onerous real-time requirements, trace can 
be very useful. 

Trace is typically provided by an external hardware block connected to the core. This is known 
as an Embedded Trace Macrocell (ETM) or Program Trace Macrocell (PTM) and is an optional 
part of an ARM processor based system. System-on-chip designers can omit this block from 
their silicon to reduce costs. These blocks observe, but do not affect core behavior and are able 
to monitor instruction execution and data accesses. 

There are two main problems with capturing trace. The first is that with current very high core 
clock speeds, even a few seconds of operation can mean trillions of cycles of execution. Clearly, 
to make sense of this volume of information would be extremely difficult. The second, related 
problem is that current cores can potentially perform one or more 64-bit cache accesses per 
cycle, and to record both the data address and data values can require a large bandwidth. 

This presents a problem in that typically, only a few pins might be provided on the chip and these 
outputs can be switched at significantly lower rates than the core can be clocked. If the core 
generates 100 bits of information every cycle at a speed of 1GHz, but the chip can only output 
four bits of trace at a speed of 200MHz, then there is a problem. To solve this latter problem, the 
trace macrocell will try to compress information to reduce the bandwidth required. However, 
the main method to deal with these issues is to control the trace block so that only selected trace 
information is gathered. For example, you might trace only execution, without recording data 
values, or you might trace only data accesses to a particular peripheral or during execution of a 
particular function. 

In addition, it is common to store trace information in an on-chip memory buffer (the Embedded 
Trace Buffer (ETB)). This alleviates the problem of getting information off-chip at speed, but 
has an additional cost in terms of silicon area (and therefore price of the chip) and also provides 
a fixed limit on the amount of trace that can be captured.

The ETB stores the compressed trace information in a circular fashion, continuously capturing 
trace information until stopped. The size of the ETB varies between chip implementations, but 
a buffer of 8 or 16KB is typically enough to hold a few thousand lines of program trace. 

When a program fails, if the trace buffer is enabled, you can see a portion of program history. 
With this program history, it is easier to walk back through your program to see what happened 
before the point of failure. This is particularly useful for investigating intermittent and real-time 
failures that can be difficult to identify through traditional debug methods that require stopping 
and starting the core. The use of hardware tracing can significantly reduce the amount of time 
required to find these failures, as the trace shows exactly what was executed, what the timing 
was and what data accesses occurred.

24.2.1 CoreSight

The ARM CoreSight™ technology expands on the capabilities provided by the ETM. Again its 
presence and capabilities in a particular system are defined by the system designer. CoreSight 
provides a number of extremely powerful debug facilities. It enables debug of multi-core 
systems (both asymmetric and SMP) that can share debug access and trace pins, with full control 
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of which cores are being traced at which times. The embedded cross trigger mechanism enables 
tools to control multiple cores in a synchronized fashion, so that, for example when one core 
hits a breakpoint, all of the other cores will also be stopped. 

Commercial debug tools can use trace data to provide features such as real-time views of 
registers, memory and peripherals, enabling you to step forward and backward through the 
program execution. Profiling tools can use the data to show where the program is spending its 
time and what performance bottlenecks exist. Code coverage tools can use trace data to provide 
call graph exploration. Operating system aware debuggers can make use of trace, and in some 
cases additional code instrumentation. to provide high level system context information. A brief 
description of some of the available CoreSight components follows:

Debug Access Port (DAP) 
The DAP is an optional part of an ARM CoreSight system. Not every 
device will contain a DAP. It enables an external debugger to directly 
access the memory space of the system without having to put the core into 
debug state. To read or write memory without a DAP might require the 
debugger to stop the core and have it execute Load or Store instructions. 
The DAP gives an external debug tool access to all of the JTAG scan 
chains in a system and therefore to all debug and trace configuration 
registers of the available cores. 

Embedded Cross Trigger (ECT) 
The ECT block is a CoreSight component that can be included within in a 
CoreSight system. Its purpose is to link together the debug capabilities of 
multiple devices in the system. For example, you can have two cores that 
run independently of each other. When you set a breakpoint on a program 
running on one core, it would be useful to be able to specify that when that 
core stops at the breakpoint, the other one must also be stopped (regardless 
of the instruction it is currently executing). The Cross Trigger Matrix and 
Interface within the ECT enable debug status and control information to 
be propagated between cores and trace macrocells.

AHB Trace Macrocell 
The AMBA AHB Trace Macrocell enables the debugger to have visibility 
of what is happening on the system memory bus. This information is not 
directly obtainable from the core ETM, as the integer core is unable to 
determine whether data comes from a cache or external memory.

CoreSight Serial Wire 
CoreSight Serial Wire Debug gives a 2-pin connection using a Debug 
Access Port (DAP) that is equivalent in function to a 5-pin JTAG interface.

System Trace Macrocell (STM) 
This provides a way for multiple cores (and processes) to perform 
printf() style debugging. Software running on any master in the system 
is able to access STM channels without having to be aware of usage by 
others, using very simple fragments of code. This enables timestamped 
software instrumentation of both kernel and user space code. The 
timestamp information gives a delta with respect to previous events and 
can be extremely useful.

Trace Memory Controller (TMC) 
As already described, adding additional pins to a packaged IC can 
significantly increase its cost. In situations where you have multiple cores 
(or other blocks capable of generating trace information) on a single 
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device, it is likely that economics preclude the possibility of providing 
multiple trace ports. The CoreSight Trace Memory Controller can be used 
to combine multiple trace sources into a single bus. Controls are provided 
to enable prioritize and select between these multiple input sources. The 
trace information can be exported off-chip using a dedicated trace port, 
through the JTAG or serial wire interface or by re-using I/O ports of the 
SoC. Trace information can be stored in an ETB or in system memory.

You must consult documentation specific to the device you are using to determine what trace 
capabilities are present and the tools available to make use of them.
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24.3 Debug monitor
We have seen how the ARM architecture provides a wide range of features accessible to an 
external debugger. Many of these facilities can also be used by code running on the core – a so 
called debug monitor that is resident on the target system. Monitor systems can be inexpensive, 
as they might not require any additional hardware. However, they take up memory space in the 
system and can only be used if the target system itself is actually running. They are of little value 
on a system that does not at least boot correctly. The breakpoint and watchpoint hardware 
facilities of the core are available to a debug monitor. When Monitor mode debug is selected, 
breakpoint units can be programmed by code running on the ARM processor. If a BKPT 
instruction is executed, or a hardware breakpoint unit matches, the system behaves differently 
in Monitor mode. Instead of stopping the core under control of an external hardware debugger, 
the core instead takes an abort exception and this can recognize that the abort was generated by 
a debug event and call the Monitor code.
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24.4 Debugging Linux applications
Linux is a multi-tasking operating system in which each process has its own process address 
space, complete with private translation table mappings. This can make debug of some kinds of 
problems quite tricky. 

We can broadly define two different debug approaches used in Linux systems.

• Linux applications are typically debugged using a GDB debug server running on the 
target, communicating with a host computer, usually through Ethernet. The kernel 
continues to operate normally while the debug session takes place. This method of debug 
does not provide access to the built-in hardware debug facilities. The target system is 
permanently in a running state. The server receives a connection request from the host 
debugger and then receives commands and provides data back to the host.
The host debugger sends a load request to the GDB server, which responds by starting a 
new process to run the application being debugged. Before execution begins, it uses the 
system call ptrace() to control the application process. All signals from this process are 
forwarded to the GDB server. Any signals sent to the application will go instead to the 
GDB server that can deal with the signal or forward it to the application being debugged. 
To set a breakpoint, the GDB server inserts code that generates the SIGTRAP signal at 
the required location in the code. When this is executed, the GDB server is called and can 
then perform classic debugger tasks such as examining call stack information, variables 
or register contents.

• For kernel debug, a JTAG-based debugger is used. The system is halted when a breakpoint 
is executed. This is the easiest way to examine problems such as device driver loading or 
incorrect operation or the kernel boot failure. Another common method is through 
printk() function calls. The strace tool shows information about user system calls. Kgdb 
is a source-level debugger for the Linux kernel that works with GDB on a separate 
machine and enables inspection of stack traces and view of kernel state (such as PC value, 
timer contents, and memory). The device /dev/kmem enables run-time access to the kernel 
memory.
Of course, a Linux-aware JTAG debugger can be used to debug threads. It is usually 
possible only to halt all processes; one cannot halt an individual thread or process and 
leave others running. A breakpoint can be set either for all threads, or it can be set only on 
a specific thread.
As the memory map depends on which process is active, software breakpoints can usually 
only be set when a particular process is mapped in.

The ARM DS-5 Debugger is able to debug Linux applications using gdbserver and Linux kernel 
and Linux kernel modules using JTAG. The debug and trace features of DS-5 are described in 
the next section.

24.4.1 The call stack

Application code uses the call stack to pass parameters, store local data and store return 
addresses. The data each function pushes on the stack is organized into a stack frame. When a 
debugger stops a core, it might be able to analyze the data on the stack to provide you with a call 
stack, that is, a list of function calls leading up to the current situation. This can be extremely 
useful when debugging, as it enables you to determine why the application has reached a 
particular state.

In order to reconstruct the call stack, the debugger must be able to determine which entries on 
the stack contain return address information. This information might be contained in debugger 
information (DWARF debug tables) if the code was built with these included, or by following 
ARM DEN0013D Copyright © 2011 – 2013 ARM. All rights reserved. 24-8
ID012214 Non-Confidential



Debug 
a chain of frame pointers pushed on the stack by the application. To do this, the code must be 
built to use frame pointers. If neither of these types of information are present, the call stack can 
not be constructed.

In multi-threaded applications, each thread has its own stack. The call stack information will 
therefore only relate to the particular thread being examined.
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24.5 DS-5 debug and trace
DS-5 Debugger provides a powerful tool for debugging applications on both hardware targets 
and models using ARM architecture-based processors. You can have complete control over the 
flow of the execution so that you can quickly isolate and correct errors.

DS-5 Debugger provides a wide range of debug features such as:

• Loading images and symbols.

• Running images.

• Breakpoints and watchpoints.

• Source and instruction level stepping.

• Controlling variables and register values.

• Viewing the call stack.

• Support for handling exceptions and Linux signals.

• Debug of multi-threaded Linux and Android applications.

• Debug of Linux kernel and Android modules, boot code and kernel porting.

• Application rewind, that allows you to debug backwards as well as forwards through 
Linux and Android applications.

The debugger supports a comprehensive set of DS-5 Debugger commands that can be executed 
in the Eclipse IDE, script files, or a command-line console. In addition, there is a small subset 
of CMM-style commands sufficient for running target initialization scripts.

DS-5 Debugger supports bare-metal debug using JTAG, Linux application debug using 
gdbserver, Linux kernel debug using JTAG, and Linux kernel module debug using JTAG. Debug 
and trace support for bare-metal SMP systems, including cross-triggering and core-dependent 
views and breakpoints, PTM trace, and up to 4 GB trace with DSTREAM. This support is 
described in the following sections.

In addition, DS-5 Debugger supports ARM CoreSight ETM, PTM and STM, to provide 
non-intrusive program trace that enables you to review instructions (and the associated source 
code) as they have occurred. It also provides the ability to debug time-sensitive issues that 
would otherwise not be picked up with conventional intrusive stepping techniques. The DS-5 
Debugger currently uses DSTREAM to capture trace on the ETB.

24.5.1 Debugging Linux or Android applications using DS-5

DS-5 Debugger takes care of downloading and connecting to the debug server. Developers must 
specify the platform and the IP address. This reduces a complex task using several applications 
and a terminal to a couple of steps in the IDE.

To debug a Linux or Android application you can use a TCP or serial connection:

• To gdbserver running on a model that is pre-configured to boot Linux or Android.

• To gdbserver running on a hardware target.

This type of development requires gdbserver to be installed and running on the target.
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24.5.2 Debugging Linux kernel modules

Linux kernel modules provide a way to extend the functionality of the kernel, and are typically 
used for things such as device and filesystem drivers. Modules can either be built into the kernel 
or can be compiled as a loadable module and then dynamically inserted and removed from a 
running kernel during development without having to frequently recompile the kernel. 
However, some modules must be built into the kernel and are not suitable for loading 
dynamically. An example of a built-in module is one that is required during kernel boot and must 
be available prior to the root filesystem being mounted.

You can use DS-5 Debugger to set source-level breakpoints in a module provided that the debug 
information is loaded into the debugger. Attempts to set a breakpoint in a module before it is 
inserted into the kernel results in the breakpoint being pended.

When debugging a module, you must ensure that the module on your target is the same as that 
on your host. The code layout must be identical, but the module on your target does not have to 
contain debug information.

Built in module

To debug a module that has been built into the kernel using DS-5 Debugger, the procedure is the 
same as for debugging the kernel itself:

1. Compile the kernel together with the module.

2. Load the kernel image on to the target.

3. Load the related kernel image with debug information into the debugger.

4. Debug the module as you would for any other kernel code.

Loadable module

The procedure for debugging a loadable kernel module is more complex. From a Linux terminal 
shell you can use the insmod and rmmod commands to insert and remove a module. Debug 
information for both the kernel and the loadable module must be loaded into the debugger. 
When you insert and remove a module, DS-5 Debugger automatically resolves memory 
locations for debug information and existing breakpoints.

To do this, DS-5 Debugger intercepts calls within the kernel to insert and remove modules. This 
introduces a small delay for each action while the debugger stops the kernel to interrogate 
various data structures.

24.5.3 Debugging Linux kernels using DS-5

To debug a Linux kernel module you can use a debug hardware agent connected to the host 
workstation and the running target.

24.5.4 Debugging a multi-threaded applications using DS-5

DS-5 Debugger tracks the current thread using the debugger variable, $thread. You can use this 
variable in print commands or in expressions. Threads are displayed in the Debug Control view 
with a unique ID that is used by the debugger and a unique ID from the Operating System (OS). 
For example:

Thread 1 (OS ID 1036)

where Thread 1 is the ID used by the debugger and OS ID 1036 is the ID from the OS.
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A separate call stack is maintained for each thread and the selected stack frame is shown in bold 
text. All the views in the DS-5 Debug perspective are associated with the selected stack frame 
and are updated when you select another frame.

Figure 24-1 Threading call stacks in the DS-5 Debug Control view

24.5.5 Debugging shared libraries

Shared libraries enable parts of your application to be dynamically loaded at runtime. You must 
ensure that the shared libraries on your target are the same as those on your host. The code layout 
must be identical, but the shared libraries on your target do not have to contain debug 
information.

You can set standard execution breakpoints in a shared library but not until it is loaded by the 
application and the debug information is loaded into the debugger. Pending breakpoints 
however, enable you to set execution breakpoints in a shared library before it is loaded by the 
application.

When a new shared library is loaded DS-5 Debugger re-evaluates all pending breakpoints, those 
with addresses that it can resolve, are set as standard execution breakpoints. Unresolved 
addresses remain as pending breakpoints.

The debugger automatically changes any breakpoints in a shared library to a pending breakpoint 
when the library is unloaded by your application.
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Figure 24-2 Adding shared libraries for debug using DS-5

24.5.6 Trace support in DS-5

DS-5 enables you to perform trace on your application or system. You can capture in real-time 
a historical, non-intrusive trace of instructions. Tracing is a powerful tool that enables you to 
investigate problems while the system runs at full speed. These problems can be intermittent, 
and are difficult to identify through traditional debugging methods that require starting and 
stopping the core. Tracing is also useful when trying to identify potential bottlenecks or to 
improve performance-critical areas of your application.

Before the debugger can trace function executions in your application you must ensure that:

• You have a debug hardware agent, for example, an ARM DSTREAM unit with a 
connection to a trace stream.

• The debugger is connected to the debug hardware agent.

Trace view

When the trace has been captured the debugger extracts the information from the trace stream 
and decompresses it to provide a full disassembly, with symbols, of the executed code.

This view shows a graphical navigation chart that displays function executions with a 
navigational timeline. In addition, the disassembly trace shows function calls with associated 
addresses and if selected, instructions. Clicking on a specific time in the chart synchronizes the 
disassembly view.

In the left-hand column of the chart, percentages are shown for each function of the total trace. 
For example, if a total of 1000 instructions are executed and 300 of these instructions are 
associated with myFunction() then this function is displayed with 30%.
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In the navigational timeline, the color coding is a “heat” map showing the executed instructions 
and the amount of instructions each function executes in each timeline. The darker red color 
showing more instructions and the lighter yellow color showing less instructions. At a scale of 
1:1 however, the color scheme changes to display memory access instructions as a darker red 
color, branch instructions as a medium orange color, and all the other instructions as a lighter 
green color.

Figure 24-3 DS-5 Debugger Trace view

Trace-based profiling

Based on trace data received from a trace buffer such as the ETB, DS-5 Debugger can generate 
timeline charts with information to help developers to quickly understand how their software 
executes on the target and which functions are using the core the most. The timeline offers 
various zoom levels, and can display a heat-map based on the number of instructions per time 
unit or, at its highest resolution, provide per-instruction visualization color-coded by the typical 
latency of each group of instructions.
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Instruction Summary

A summary of the instructions available in ARM/Thumb assembly language is given in this 
Appendix.

For most instructions, additional explanation can be found in Chapter 5. The optional condition 
code field (denoted by cond) is described in Conditional execution on page 5-3. The format of the 
flexible operand2 used by data processing operations is described in Operand 2 and the barrel 
shifter on page 5-7, while the various addressing mode options for loads and stores is given in 
Addressing modes on page 5-13.

This Appendix is intended for quick reference. If more detail about the precise operation of an 
instruction is required, refer to the ARM Architecture Reference Manual, or to the official ARM 
documentation (for example the ARM Compiler Toolchain Assembler Reference) that can be found 
at  http://infocenter.arm.com/help/index.jsp.
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A.1 Instruction Summary
Instructions are listed in alphabetic order, with a description of the syntax, operands and 
behavior of the instruction. Not all usage restrictions are documented here, nor do we show the 
associated binary encoding or any detail of changes associated with older architecture versions.

A.1.1 ADC

ADC (Add with Carry) adds together the values in Rn and Operand2, with the carry flag.

Syntax

ADC{S}{cond} {Rd}, Rn, <Operand2>

where:

S (if specified) means that the condition code flags will be updated depending on the result of 
the instruction.

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See Operand 2 and the barrel shifter on page 5-7.

A.1.2 ADD

ADD adds together the values in Rn and Operand2 (or Rn and imm12).

Syntax

ADD{S}{cond} {Rd,} Rn, <Operand2>

ADD{cond} {Rd,} Rn, #imm12  (Only available in Thumb)

where:

S (if specified) means that the condition code flags will be updated depending on the result of 
the instruction.

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See Operand 2 and the barrel shifter on page 5-7.

imm12 is in the range 0-4095.

A.1.3 ADR

ADR (Address) is an instruction that loads a program or register-relative address (short range). It 
generates an instruction that adds or subtracts a value to the PC (in the PC-relative case). 
Alternatively, it can be some other register for a label defined as an offset from a base register 
defined with the MAP directive (see the ARM tools documentation for more detail).
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Syntax

ADR{cond} Rd, label

where:

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

label is a PC or register-relative expression. 

A.1.4 ADRL

ADRL (Address) is a pseudo-instruction that loads a program or register-relative address (long 
range). It always generates two instructions. 

Syntax

ADRL{cond} Rd, label

where:

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

label is a PC-relative expression. The offset between label and the current location has some 
restrictions. 

The ADRL pseudo-instruction can generate a wider range of addresses than ADR.

A.1.5 AND

AND does a bitwise AND on the values in Rn and Operand2.

Syntax

AND{S}{cond} {Rd,} Rn, <Operand2>

where:

S (if specified) means that the condition code flags will be updated depending on the result of 
the instruction.

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See Operand 2 and the barrel shifter.

A.1.6 ASR

ASR (Arithmetic Shift Right) shifts the value in Rm right, by the number of bit positions specified 
and copies the sign bit into vacated bit positions on the left. Permitted shift values are in the 
range 1-32. It can be considered as giving the signed value of a register divided by a power of 
two.
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Instruction Summary 
Syntax

ASR{S}{cond} {Rd,} Rm, Rs
ASR{S}{cond} {Rd,} Rm, imm

where:

S (if specified) means that the condition code flags will be updated depending on the result of 
the instruction.

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rm is the register holding the operand to be shifted.

Rs is the register that holds a shift value to apply to the value in Rm. Only the least significant 
byte of the register is used.

imm is a shift amount, in the range 1-32.

A.1.7 B

B (Branch) transfers program execution to the address specified by label.

Syntax

B{cond}{.W} label

where:

cond is an optional condition code. See Conditional execution on page 5-3.

label is a PC-relative expression.

.W is an optional instruction width specifier to force the use of a 32-bit instruction in Thumb.

A.1.8 BFC

BFC (Bit Field Clear) clears bits in a register. A number of bits specified by width are cleared in 
Rd, starting at lsb. Other bits in Rd are unchanged.

Syntax

BFC{cond} Rd, #lsb, #width

where:

cond is an optional condition code. See Conditional execution on page 5-3

Rd is the destination register.

lsb specifies the least significant bit to be cleared.

width is the number of bits to be cleared.

A.1.9 BFI

BFI (Bit Field Insert) copies bits into a register. A number of bits in Rd specified by width, 
starting at lsb, are replaced by bits from Rn, starting at bit[0]. Other bits in Rd are unchanged.
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Instruction Summary 
Syntax

BFI{cond} Rd, Rn, #lsb, #width

where:

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rn is the register that contains the bits to be copied.

lsb specifies the least significant bit in Rd to be written to.

width is the number of bits to be copied.

A.1.10 BIC

BIC (bit clear) does an AND operation on the bits in Rn, with the complements of the 
corresponding bits in the value of Operand2.

Syntax

BIC{S}{cond} {Rd}, Rn, <Operand2>

where:

S (if specified) means that the condition code flags will be updated depending on the result of 
the instruction.

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See Operand 2 and the barrel shifter on page 5-7.

A.1.11 BKPT

BKPT (Breakpoint) causes the core to enter Debug state.

Syntax

BKPT #imm

where:

imm is an integer in the range 0 – 65535 (ARM) or 0 – 255 (Thumb). This integer is not used by 
the core itself, but can be used by Debug tools.

A.1.12 BL

BL (Branch with Link) transfers program execution to the address specified by label and stores 
the address of the next instruction in the LR (R14) register.

Syntax

BL{cond} label

where:
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Instruction Summary 
cond is an optional condition code. See Conditional execution on page 5-3.

label is a PC-relative expression.

A.1.13 BLX

BLX (Branch with Link and eXchange) transfers program execution to the address specified by 
label and stores the address of the next instruction in the LR (R14) register. BLX can change the 
core state from ARM to Thumb, or from Thumb to ARM. BLX label always changes the core 
state from Thumb to ARM, or ARM to Thumb. BLX Rm will set the state based on bit[0] of Rm:

• Rm bit[0]=0 ARM state.

• Rm bit[0]=1 Thumb state.

Syntax

BLX{cond} label
BLX{cond} Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3.

label is a PC-relative expression.

Rm is a register that holds the address to branch to.

A.1.14 BX

BX (Branch and eXchange) transfers program execution to the address specified in a register. BX 
can change the core state from ARM to Thumb, or from Thumb to ARM. BX Rm will set the state 
based on bit[0] of Rm:

• Rm bit[0] = 0 ARM state.

• Rm bit[0] = 1 Thumb state. 

Syntax

BX{cond} Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3.

Rm is a register that holds the address to branch to.

A.1.15 BXJ

BXJ (Branch and eXchange Jazelle) enter Jazelle State or perform a BX branch and exchange to 
the address contained in Rm.

Syntax

BXJ{cond} Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3.
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Instruction Summary 
Rm is a register that holds the address to branch to if entry to Jazelle fails.

A.1.16 CBNZ

CBNZ (Compare and Branch if Nonzero) causes a branch if the value in Rn is not zero. It does not 
change the PSR flags. There is no ARM or 32-bit Thumb versions of this instruction.

Syntax

CBNZ Rn, label

where:

label is a pc-relative expression. 

Rn is a register that holds the operand.

A.1.17 CBZ

CBZ (Compare and Branch if Zero) causes a branch if the value in Rn is zero. It does not change 
the PSR flags. There is no ARM or 32-bit Thumb versions of this instruction.

Syntax

CBZ Rn, label

where:

label is a PC-relative expression. 

Rn is a register that holds the operand.

A.1.18 CDP

CDP (Coprocessor Data Processing operation) performs a coprocessor operation. The purpose of 
this instruction is defined by the coprocessor implementer.

Syntax

CDP{cond} coproc, #opcode1, CRd, CRn, CRm{, #opcode2}

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

coproc is the name of the coprocessor the instruction is for. This is usually of the form pn, where 
n is an integer in the range 0 to 15.

opcode1 is a 4-bit coprocessor-specific opcode.

opcode2 is an optional 3-bit coprocessor-specific opcode.

CRd, CRn, CRm are coprocessor registers.

A.1.19 CDP2

CDP2 (Coprocessor Data Processing operation) performs a coprocessor operation. The purpose 
of this instruction is defined by the coprocessor implementer.
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Instruction Summary 
Syntax

CDP2{cond} coproc, #opcode1, CRd, CRn, CRm{, #opcode2}

where:

cond is an optional condition code See Conditional execution on page 5-3. 

coproc is the name of the coprocessor the instruction is for. This is usually of the form pn, where 
n is an integer in the range 0 to 15.

opcode1 is a 4-bit coprocessor-specific opcode.

opcode2 is an optional 3-bit coprocessor-specific opcode.

CRd, CRn, CRm are coprocessor registers.

A.1.20 CHKA

CHKA (Check array) is a ThumbEE instruction. If the value in the first register is less than or equal 
to, the second, the IndexCheck handler is called. This instruction is only available in 16-bit 
ThumbEE and only when Thumb-2EE support is present.

Syntax

CHKA Rn, Rm 

where:

Rn holds the size of the array.

Rm contains the array index.

A.1.21 CLREX

CLREX (Clear Exclusive) moves a local exclusive access monitor to its open-access state.

Syntax

CLREX{cond}

where:

cond is an optional condition code. See Conditional execution on page 5-3.

A.1.22 CLZ

CLZ (Count Leading Zeros) counts the number of leading zeros in the value in Rm and returns the 
result in Rd. The result returned is 32 if no bits are set in Rm, or 0 if bit [31] is set.

Syntax

CLZ{cond} Rd, Rm 

where:

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rm is the register holding the operand.
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Instruction Summary 
A.1.23 CMN

CMN (Compare Negative) performs a comparison by adding the value of Operand2 to the value in 
Rn. The condition flags are changed, based on the result, but the result itself is discarded.

Syntax

CMN{cond} Rn, <Operand2>

where:

cond is an optional condition code. See Conditional execution on page 5-3.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See Operand 2 and the barrel shifter on page 5-7.

A.1.24 CMP

CMP (Compare) performs a comparison by subtracting the value of Operand2 from the value in Rn. 
The condition flags are changed, based on the result, but the result itself is discarded.

Syntax

CMP{cond} Rn, <Operand2>

where:

cond is an optional condition code. See Conditional execution on page 5-3.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See Operand 2 and the barrel shifter on page 5-7.

A.1.25 CPS

CPS (Change Processor State) can be used to change the processor mode or to enable or disable 
individual exception types.

Syntax

CPS #mode
CPSIE iflags{, #mode}
CPSID iflags{, #mode}

where:

mode is the number of a mode for the processor to enter.

IE Interrupt or Abort Enable.

ID Interrupt or Abort Disable.

iflags specifies one or more of:
• a = asynchronous abort.
• i = IRQ.
• f = FIQ.
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Instruction Summary 
A.1.26 DBG

DBG (Debug) is a hint operation, treated as a NOP by the processor, but can provide information to 
debug systems.

Syntax

DBG{cond} {option}

where:

cond is an optional condition code. See Conditional execution on page 5-3.

option is in the range 0-15.

A.1.27 DMB

DMB (Data Memory Barrier) requires that all explicit memory accesses in program order before 
the DMB instruction are observed before any explicit memory accesses in program order after the 
DMB instruction. See Chapter 10 for a detailed description.

Syntax

DMB{cond} {option}

where:

cond is an optional condition code. See Conditional execution on page 5-3.

option is covered in depth in Chapter 10.

A.1.28 DSB

DSB (Data Synchronization Barrier) requires that no further instruction executes until all explicit 
memory accesses, cache maintenance operations, branch prediction and TLB maintenance 
operations before this instruction complete. See Chapter 10 for a detailed description.

Syntax

DSB{cond} {option}

where:

cond is an optional condition code. See Conditional execution on page 5-3.

option is covered in depth in Chapter 10.

A.1.29 ENTERX

ENTERX causes a change from Thumb state to ThumbEE state, or has no effect in ThumbEE state. 
It is not available in the ARM instruction set.

Syntax

ENTERX

A.1.30 EOR

EOR performs an Exclusive OR operation on the values in Rn and Operand2.
ARM DEN0013D Copyright © 2011 – 2013 ARM. All rights reserved. A-10
ID012214 Non-Confidential



Instruction Summary 
Syntax

EOR{S}{cond} {Rd,} Rn, <Operand2>

where:

S (if specified) means that the condition code flags will be updated depending on the result of 
the instruction.

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See Operand 2 and the barrel shifter on page 5-7.

A.1.31 ERET

ERET (Exception Return) loads the PC from the ELR-hyp and loads the CPSR from SPSR-hyp 
when executed in Hyp mode.

When executed in a Secure or Non-Secure PLI mode, ERET behaves as:

• MOVS PC, LR in the ARM instruction set.

• SUBS PC, LR, #0 in the Thumb instruction set.

Syntax

ERET{cond} {q}

where:

cond is the optional condition code. See Conditional execution on page 5-3.

q specifies optional assembler qualifiers on the instruction. The following qualifiers are defined:

• .N(narrow), specifies that the assembler must select a 16-bit encoding for the instruction.

• .W(wide), specifies that the assembler must select a 32-bit encoding for the intruction.

If neither .W nor .N are specified, the assembler can select either 16-bit or 32-bit encodings. if 
both are available, it must select a 16-bit encoding.

A.1.32 HB

HB (Handler Branch) branches to a specified handler (available in ThumbEE only).

Syntax

HB{L} #HandlerID
HB{L}P #imm, #HandlerID

where:

L indicates that the instruction saves a return address in the LR.

P means that the instruction passes the value of imm to the handler in R8.

imm is an immediate value in the range 0-31 (if L is present), otherwise in the range 0-7.
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Instruction Summary 
HandlerID is the index number of the handler to be called, in the range 0-31 (if P is specified), 
otherwise in the range 0-255.

A.1.33 ISB

ISB (Instruction Synchronization Barrier) flushes the processor pipeline and ensures that context 
altering operations (such as ASID or other CP15 changes, branch prediction or TLB 
maintenance activity) before the ISB, are visible to the instructions fetched after the ISB.

See Chapter 10 for a detailed description of barriers.

Syntax

ISB{cond} {option}

where:

cond is an optional condition code. See Conditional execution on page 5-3.

option can be SY (full system), which is the default and so can be omitted.

A.1.34 IT

IT (If-then) makes up to four following instructions conditional (known as the IT block). The 
conditions can all be the same, or some can be the logical inverse of others. IT is a 
pseudo-instruction in ARM state.

Syntax

IT{x{y{z}}} {cond}

where:

cond is a condition code. See Conditional execution on page 5-3 that specifies the condition for 
the first instruction in the IT block. 

x, y and z specify the condition switch for the second, third and fourth instructions in the IT 
block, for example, ITTET.

The condition switch can be either:

• T (Then) applies the condition cond to the instruction.

• E (Else) applies the inverse condition of cond to the instruction.

A.1.35 LDA

LDA (Load-Acquire Word) loads a word from memory and writes it to a register. This instruction 
was introduced to provide backward compatibility for the ARMv8 architecture AArch32 state. 

Note
 LDA imposes ordering restrictions on memory accesses to the same shareability domain.

For further information, see Section E2.7.3 in the ARMv8 Architecture Reference Manual 
(ARM DDI 0487)
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Instruction Summary 
Syntax

LDA{cond}{q} <Rt>, [<Rn>]

where:

cond is an optional condition code. See Conditional execution on page 5-3.

q specifies optional assembler qualifiers on the instruction. The following qualifiers are defined:

• .N(narrow), specifies that the assembler must select a 16-bit encoding for the instruction.

• .W(wide), specifies that the assembler must select a 32-bit encoding for the intruction.

If neither .W nor .N are specified, the assembler can select either 16-bit or 32-bit encodings. if 
both are available, it must select a 16-bit encoding.

Rt is the destination register.

Rn is the base register.

A.1.36 LDAB

LDAB (Load-Acquire Byte) loads a byte from memory, zero-extends it to form a 32-bit word and 
writes it to a register. This instruction was introduced to provide backward compatibility for the 
ARMv8 architecture AArch32 state.

Note
 LDAB imposes ordering restrictions on memory accesses to the same shareability domain.

For further information, see Section E2.7.3 in the ARMv8 Architecture Reference Manual 
(ARM DDI 0487)

Syntax

LDAB{cond}{q} <Rt>, [<Rn>]

where:

cond is an optional condition code. See Conditional execution on page 5-3.

q specifies optional assembler qualifiers on the instruction. The following qualifiers are defined:

• .N(narrow), specifies that the assembler must select a 16-bit encoding for the instruction.

• .W(wide), specifies that the assembler must select a 32-bit encoding for the intruction.

If neither .W nor .N are specified, the assembler can select either 16-bit or 32-bit encodings. if 
both are available, it must select a 16-bit encoding.

Rd is the destination register.

Rm is the base register.

A.1.37 LDAEX

LDAEX (Load-Acquire Exclusive Word) loads a word from memory and writes it to a register. 
This instruction was introduced to provide backward compatibility for the ARMv8 architecture 
AArch32 state.
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Instruction Summary 
Note
 LDAEX imposes ordering restrictions on memory accesses to the same shareability domain.

For further information, see Section E2.7.3 in the ARMv8 Architecture Reference Manual 
(ARM DDI 0487)

Syntax

LDAEX{cond}{q} <Rt>, [<Rn>]

where:

cond is an optional condition code. See Conditional execution on page 5-3.

q specifies optional assembler qualifiers on the instruction. The following qualifiers are defined:

• .N(narrow), specifies that the assembler must select a 16-bit encoding for the instruction.

• .W(wide), specifies that the assembler must select a 32-bit encoding for the intruction.

If neither .W nor .N are specified, the assembler can select either 16-bit or 32-bit encodings. if 
both are available, it must select a 16-bit encoding.

Rt is the destination register.

Rn is the base register.

A.1.38 LDAEXB

LDAEXB (Load-Acquire Exclusive Byte) loads a byte from memory, zero-extends it to form a 
32-bit word and writes it to a register. This instruction was introduced to provide backward 
compatibility for the ARMv8 architecture AArch32 state.

Note
 LDAEXB imposes ordering restrictions on memory accesses to the same shareability domain.

For further information, see Section E2.7.3 in the ARMv8 Architecture Reference Manual 
(ARM DDI 0487)

Syntax

LDAEXB{cond}{q} <Rt>, [<Rn>]

where:

cond is an optional condition code. See Conditional execution on page 5-3.

q specifies optional assembler qualifiers on the instruction. The following qualifiers are defined:

• .N(narrow), specifies that the assembler must select a 16-bit encoding for the instruction.

• .W(wide), specifies that the assembler must select a 32-bit encoding for the intruction.

If neither .W nor .N are specified, the assembler can select either 16-bit or 32-bit encodings. if 
both are available, it must select a 16-bit encoding.

Rt is the destination register.

Rm is the base register.
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Instruction Summary 
A.1.39 LDAEXD

LDAEXD (Load-Acquire Exclusive Double) loads a doubleword from memory and writes it to two 
registers. This instruction was introduced to provide backward compatibility for the ARMv8 
architecture AArch32 state.

Note
 LDAEXD imposes ordering restrictions on memory accesses to the same shareability domain.

For further information, see Section E2.7.3 in the ARMv8 Architecture Reference Manual 
(ARM DDI 0487)

Syntax

LDAEXD{cond}{q} <Rt>, <Rt2>, [<Rn>]

where:

cond is an optional condition code. See Conditional execution on page 5-3.

q specifies optional assembler qualifiers on the instruction. The following qualifiers are defined:

• .N(narrow), specifies that the assembler must select a 16-bit encoding for the instruction.

• .W(wide), specifies that the assembler must select a 32-bit encoding for the intruction.

If neither .W nor .N are specified, the assembler can select either 16-bit or 32-bit encodings. if 
both are available, it must select a 16-bit encoding.

Rt is the first destination register. It must be an even numbered register and not R14..

Rt2 is the second destination register. Rt2 must be R(t + 1).

Rn is the base register.

A.1.40 LDAEXH

LDAEXH (Load-Acquire Exclusive Halfword) loads a halfword from memory, zero-extends it to 
form a 32-bit word and writes ito a register. This instruction was introduced to provide backward 
compatibility for the ARMv8 architecture AArch32 state.

Note
 LDAEXH imposes ordering restrictions on memory accesses to the same shareability domain.

For further information, see Section E2.7.3 in the ARMv8 Architecture Reference Manual 
(ARM DDI 0487)

Syntax

LDAEXH{cond} <Rt,> [<Rn>]

where:

cond is an optional condition code. See Conditional execution on page 5-3.

q specifies optional assembler qualifiers on the instruction. The following qualifiers are defined:

• .N(narrow), specifies that the assembler must select a 16-bit encoding for the instruction.
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Instruction Summary 
• .W(wide), specifies that the assembler must select a 32-bit encoding for the intruction.

If neither .W nor .N are specified, the assembler can select either 16-bit or 32-bit encodings. if 
both are available, it must select a 16-bit encoding.

Rt is the destination register.

Rn is the base register.

A.1.41 LDAH

LDAH (Load-Acquire Halfword) loads a halfword from memory, zero-extends it to form a 32-bit 
word and writes it to a register. This instruction was introduced to provide backward 
compatibility for the ARMv8 architecture AArch32 state.

Note
 LDAH imposes ordering restrictions on memory accesses to the same shareability domain.

For further information, see Section E2.7.3 in the ARMv8 Architecture Reference Manual 
(ARM DDI 0487)

Syntax

LDAH{cond}{q} <Rt>, [<Rn>]

where:

cond is an optional condition code. See Conditional execution on page 5-3.

q specifies optional assembler qualifiers on the instruction. The following qualifiers are defined:

• .N(narrow), specifies that the assembler must select a 16-bit encoding for the instruction.

• .W(wide), specifies that the assembler must select a 32-bit encoding for the intruction.

If neither .W nor .N are specified, the assembler can select either 16-bit or 32-bit encodings. if 
both are available, it must select a 16-bit encoding.

Rd is the destination register.

Rm is the base register.

A.1.42 LDC

LDC (Load Coprocessor Registers) reads a coprocessor register from memory (or multiple 
registers, if L is specified).

Syntax

LDC{L}{cond} coproc, CRd, [Rn]
LDC{L}{cond} coproc, CRd, [Rn, #{-}offset]{!}
LDC{L}{cond} coproc, CRd, [Rn], #{-}offset
LDC{L}{cond} coproc, CRd, label

where:

L specifies that more than one register can be transferred (called a long transfer). The length of 
the transfer is determined by the coprocessor, but cannot be more than 16 words.

cond is an optional condition code. See Conditional execution on page 5-3.
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Instruction Summary 
coproc is the name of the coprocessor the instruction is for. This is usually of the form pn, where 
n is an integer in the range 0 to 15.

CRd is the coprocessor register to be stored.

Rn is the register holding the base address for the memory operation.

Offset is a multiple of 4, in the range 0-1020, to be added or subtracted from Rn. If ! is present, 
the address including the offset is written back into Rn.

label is a word-aligned PC-relative address label.

A.1.43 LDC2

LDC2 (Load Coprocessor Registers) reads a coprocessor register from memory (or multiple 
registers, if L is specified).

Syntax

LDC2{L}{cond} coproc, CRd, [Rn]
LDC2{L}{cond} coproc, CRd, [Rn, #{-}offset]{!}
LDC2{L}{cond} coproc, CRd, [Rn], #{-}offset
LDC2{L}{cond} coproc, CRd, label

where:

L specifies that more than one register can be transferred (called a long transfer). The length of 
the transfer is determined by the coprocessor, but cannot be more than 16 words.

cond is an optional condition code. See Conditional execution on page 5-3.

coproc is the name of the coprocessor the instruction is for. This is usually of the form pn, where 
n is an integer in the range 0 to 15.

CRd is the coprocessor register to be stored.

Rn is the register holding the base address for the memory operation.

Offset is a multiple of 4, in the range 0 – 1020, to be added or subtracted from Rn. If ! is present, 
the address including the offset is written back into Rn.

label is a word-aligned PC-relative address label.

A.1.44 LDM

LDM (Load Multiple registers) loads one or more registers from consecutive addresses in memory 
at an address specified in a base register.

Syntax

LDM{addr_mode}{cond} Rn{!},reglist{^}

where:

addr_mode is one of:

• IA – Increment address After each transfer. This is the default, and can be omitted.

• IB – Increment address Before each transfer (ARM only).

• DA – Decrement address After each transfer (ARM only).
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Instruction Summary 
• DB – Decrement address Before each transfer.

It is also possible to use the corresponding stack oriented addressing modes (FD, ED, EA, FA). For 
example LDMFD is a synonym of LDMDB.

cond is an optional condition code. See Conditional execution on page 5-3.

Rn is the base register, giving the initial address for the transfer.

! if present, specifies that the final address is written back into Rn. 

Reglist is a list of one or more registers to be stored, enclosed in braces. It can contain register 
ranges. It must be comma separated if it contains more than one register or register range.

^ if specified (in a mode other than User or System) means one of two possible special actions 
will be taken:

• Data is transferred into the User mode registers instead of the current mode registers (in 
the case where Reglist does not contain the PC).

• If Reglist does contain the PC, the normal multiple register transfer happens and the 
SPSR is copied into the CPSR. This is used for returning from exception handlers. 

A.1.45 LDR

LDR (Load Register) loads a value from memory to an ARM register, optionally updating the 
register used to give the address. 

A variety of addressing options are provided. For full details of the available addressing modes, 
see Addressing modes on page 5-13.

Syntax

LDR{type}{T}{cond} Rt, [Rn {, #offset}] 
LDR{type}{cond} Rt, [Rn, #offset]! 
LDR{type}{T}{cond} Rt, [Rn], #offset 
LDR{type}{cond} Rt, [Rn, +/-Rm {, shift}] 
LDR{type}{cond} Rt, [Rn, +/-Rm {, shift}]! 
LDR{type}{T}{cond} Rt, [Rn], +/-Rm {, shift} 

where:

type can be any one of:
• B – unsigned Byte. (Zero extend to 32 bits on loads.)
• SB – signed Byte. (Sign extend to 32 bits.)
• H – unsigned Halfword. (Zero extend to 32 bits on loads.)
• SH – signed Halfword. (Sign extend to 32 bits.)

or omitted, for a Word load.

T specifies that memory is accessed as if the processor was in User mode (not available in all 
addressing modes).

cond is an optional condition code. See Conditional execution on page 5-3.

Rn is the register holding the base address for the memory operation.

! if present, specifies that the final address is written back into Rn.

offset is a numeric value.
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Instruction Summary 
Rm is a register holding an offset value to be applied.

shift is either a register or immediate based shift to apply to the offset value.

A.1.46 LDR (pseudo-instruction)

LDR (Load Register) pseudo-instruction loads a register with a 32-bit immediate value or an 
address. It generates either a MOV or MVN instruction (if possible), or a PC-relative LDR instruction 
that reads the constant from the literal pool.

Syntax

LDR{cond}{.W} Rt, =expr
LDR{cond}{.W} Rt, label_expr

where:

cond is an optional condition code. See Conditional execution on page 5-3.

.W specifies that a 32-bit Thumb instruction must be used. 

Rt is the register to load. 

expr is a numeric value.

label_expr is a label, optionally plus or minus a numeric value.

A.1.47 LDRD

LDRD (Load Register Dual) calculates an address from a base register value and a register offset, 
loads two words from memory, and writes them to two registers.

Syntax

LDRD{cond} Rt, Rt2, [{Rn},+/-{Rm}]{!}
LDRD{cond} Rt, Rt2, [{Rn}],+/-{Rm}

where:

cond is an optional condition code. See See Conditional execution on page 5-3.

Rt is the first destination register. This register must be even-numbered and not R14.

Rt is the second destination register. This register must be <R(t+1)>. 

Rn is the base register. The SP or the PC can be used.

+/- is + or omitted if the value of <Rm> is to be added to the base register value (add == TRUE), 
or – if it is to be subtracted (add == FALSE).

Rm contains the offset that is applied to the value of <Rn> to form the address.

A.1.48 LDREX

LDREX (Load register exclusive). Performs a load from a location and marks it for exclusive 
access. Byte, halfword, word and doubleword variants are provided.

Syntax

LDREX{cond} Rt, [Rn {, #offset}]
LDREXB{cond} Rt, [Rn]
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Instruction Summary 
LDREXH{cond} Rt, [Rn]
LDREXD{cond} Rt, Rt2, [Rn]

where:

cond is an optional condition code. See Conditional execution on page 5-3.

Rt is the register to load. 

Rt2 is the second register for doubleword loads.

Rn is the register holding the address. 

offset is an optional value, permitted in Thumb only. 

A.1.49 LEAVEX

LEAVEX causes a change from ThumbEE state to Thumb state, or has no effect in Thumb state. It 
is not available in the ARM instruction set.

Syntax

LEAVEX

A.1.50 LSL

LSL (Logical Shift Left) shifts the value in Rm left by the specified number of bits, inserting zeros 
into the vacated bit positions.

Syntax

LSL{S}{cond} Rd, Rm, Rs
LSL{S}{cond} Rd, Rm, imm

where:

S (if specified) means that the condition code flags will be updated depending on the result of 
the instruction.

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rm is the register holding the operand to be shifted.

Rs is the register that holds a shift value to apply to the value in Rm. Only the least significant 
byte of the register is used.

imm is a shift amount, in the range 0-31.

A.1.51 LSR

LSR (Logical Shift Right) shifts the value in Rm right by the specified number of bits, inserting 
zeros into the vacated bit positions.

Syntax

LSR{S}{cond} Rd, Rm, Rs
LSR{S}{cond} Rd, Rm, imm

where:
ARM DEN0013D Copyright © 2011 – 2013 ARM. All rights reserved. A-20
ID012214 Non-Confidential



Instruction Summary 
S (if specified) means that the condition code flags will be updated depending on the result of 
the instruction.

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rm is the register holding the operand to be shifted.

Rs is the register that holds a shift value to apply to the value in Rm. Only the least significant 
byte of the register is used.

imm is a shift amount, in the range 1-32.

A.1.52 MCR

MCR (Move to Coprocessor from Register) writes a coprocessor register, from an ARM register. 
The purpose of this instruction is defined by the coprocessor implementer.

Syntax

MCR{cond} coproc, #opcode1, Rt, CRn, CRm{, #opcode2}

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rt is the ARM register to be transferred.

coproc is the name of the coprocessor the instruction is for. This is usually of the form pn, where 
n is an integer in the range 0 to 15.

opcode1 is a 4-bit coprocessor-specific opcode.

opcode2 is an optional 3-bit coprocessor-specific opcode.

CRn, CRm are coprocessor registers.

A.1.53 MCR2

MCR2 (Move to Coprocessor from Register) writes a coprocessor register, from an ARM register. 
The purpose of this instruction is defined by the coprocessor implementer.

Syntax

MCR2{cond} coproc, #opcode1, Rt, CRn, CRm{, #opcode2}

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rt is the ARM register to be transferred.

coproc is the name of the coprocessor the instruction is for. This is usually of the form pn, where 
n is an integer in the range 0 to 15.

opcode1 is a 4-bit coprocessor-specific opcode.

opcode2 is an optional 3-bit coprocessor-specific opcode.

CRn, CRm are coprocessor registers.
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Instruction Summary 
A.1.54 MCRR

MCRR (Move to Coprocessor from Registers) transfers a pair of ARM register to a coprocessor. 
The purpose of this instruction is defined by the coprocessor implementer.

Syntax

MCRR{cond} coproc, #opcode3, Rt, Rt2, CRm

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rt and Rt2 are the ARM registers to be transferred.

coproc is the name of the coprocessor the instruction is for. This is usually of the form pn, where 
n is an integer in the range 0 to 15.

CRm is a coprocessor register.

Opcode3 is an optional 4-bit coprocessor-specific opcode.

A.1.55 MCRR2

MCRR2 (Move to Coprocessor from Registers) transfers a pair of ARM register to a coprocessor. 
The purpose of this instruction is defined by the coprocessor implementer.

Syntax

MCRR2{cond} coproc, #opcode3, Rt, Rt2, CRm

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rt and Rt2 are the ARM registers to be transferred.

coproc is the name of the coprocessor the instruction is for. This is usually of the form pn, where 
n is an integer in the range 0 to 15.

CRm is a coprocessor register.

Opcode3 is an optional 4-bit coprocessor-specific opcode.

A.1.56 MLA

MLA (Multiply Accumulate) multiplies Rn and Rm, adds the value from Ra, and stores the least 
significant 32 bits of the result in Rd.

Syntax

MLA{S}{cond} Rd, Rn, Rm, Ra

where:

S (if specified) means that the condition code flags will be updated depending on the result of 
the instruction. 

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.
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Instruction Summary 
Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

Ra is the register holding the accumulate value.

A.1.57 MLS

MLS (Multiply and Subtract) multiplies Rn and Rm, subtracts the result from Ra, and stores the least 
significant 32 bits of the final result in Rd.

Syntax

MLS{S}{cond} Rd, Rn, Rm, Ra

where:

S (if specified) means that the condition code flags will be updated depending on the result of 
the instruction. 

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

Ra is the register holding the accumulate value.

A.1.58 MOV

MOV (Move) copies the value of Operand2 into Rd.

Syntax

MOV{S}{cond} Rn, <Operand2>
MOV{cond} Rd, #imm16

where:

S (if specified) means that the condition code flags will be updated depending on the result of 
the instruction. 

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Operand2 is a flexible second operand. See Section 6.2.1.

imm16 is an immediate value in the range 0-65535.

A.1.59 MOVT

MOVT (Move Top) writes imm16 to Rd[31:16]. It does not affect Rd[15:0].

Syntax

MOVT{cond} Rd, #imm16

where:
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Instruction Summary 
cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Operand2 is a flexible second operand. See Section 6.2.1.

imm16 is an immediate value in the range 0-65535.

A.1.60 MOV32

MOV32 is a pseudo-instruction that loads a register with a 32-bit immediate value or address. It 
generates two instructions, a MOV, MOVT pair.

Syntax

MOV32 Rd, expr

where:

Rd is the destination register. 

expr is a 32-bit constant, or address label.

A.1.61 MRC 

MRC (Move to Register from Coprocessor) reads a coprocessor register to an ARM register. The 
purpose of this instruction is defined by the coprocessor implementer.

Syntax

MRC{cond} coproc, #opcode1, Rt, CRn, CRm{, #opcode2}

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rt is the ARM register to be transferred.

coproc is the name of the coprocessor the instruction is for. This is usually of the form pn, where 
n is an integer in the range 0 to 15.

opcode1 is a 4-bit coprocessor-specific opcode.

opcode2 is an optional 3-bit coprocessor-specific opcode.

CRn, CRm are coprocessor registers.

A.1.62 MRC2 

MRC2 (Move to Register from Coprocessor) reads a coprocessor register to an ARM register. The 
purpose of this instruction is defined by the coprocessor implementer.

Syntax

MRC2{cond} coproc, #opcode1, Rt, CRn, CRm{, #opcode2}

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rt is the ARM register to be transferred.
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Instruction Summary 
coproc is the name of the coprocessor the instruction is for. This is usually of the form pn, where 
n is an integer in the range 0 to 15.

opcode1 is a 4-bit coprocessor-specific opcode.

opcode2 is an optional 3-bit coprocessor-specific opcode.

CRn, CRm are coprocessor registers.

A.1.63 MRRC 

MRRC (Move to Registers from Coprocessor) transfers a value from a Coprocessor to a pair of 
ARM registers. The purpose of this instruction is defined by the Coprocessor implementer.

Syntax

MRRC{cond} coproc, #opcode3, Rt, Rt2, CRm

where:

cond is an optional condition code. See Conditional execution on page 5-3. MRRC instructions 
might not specify a condition code in ARM state.

Rt and Rt2 are the ARM registers to be transferred.

coproc is the name of the coprocessor the instruction is for. This is usually of the form pn, where 
n is an integer in the range 0 to 15.

CRm is a coprocessor register.

Opcode3 is an optional 4-bit coprocessor-specific opcode.

A.1.64 MRRC2 

MRRC2 (Move to Registers from Coprocessor) transfers a value from a Coprocessor to a pair of 
ARM registers. The purpose of this instruction is defined by the Coprocessor implementer.

Syntax

MRRC2{cond} coproc, #opcode3, Rt, Rt2, CRm

where:

cond is an optional condition code. See Conditional execution on page 5-3. MRRC2 instructions 
might not specify a condition code in ARM state.

Rt and Rt2 are the ARM registers to be transferred.

coproc is the name of the coprocessor the instruction is for. This is usually of the form pn, where 
n is an integer in the range 0 to 15.

CRm is a coprocessor register.

Opcode3 is an optional 4-bit coprocessor-specific opcode.

A.1.65 MRS 

MRS (Move Status register or Coprocessor Register to General purpose register) can be used to 
read the CPSR/APSR, CP14 or CP15 Coprocessor registers.
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Instruction Summary 
Syntax

MRS{cond} Rd, psr
MRS{cond} Rn, coproc_register
MRS{cond} APSR_nzcv, DBGDSCRint
MRS{cond} APSR_nzcv, FPSCR

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

psr is one of: APSR, CPSR or SPSR.

coproc_register is the name of a CP14 or CP15 readable register. 

DBGDSCRint is the name of a CP14 register that can be copied to the APSR.

A.1.66 MSR

MSR (Move Status Register or Coprocessor Register from General Purpose Register) can be used 
to write all or part of the CPSR/APSR or CP14 or CP15 registers.

Use of the MSR instruction to set the endianness bit in the CPSR in User Mode is deprecated. 
ARM strongly recommends that software executing in User Mode uses the SETEND instruction.

Syntax

MSR{cond} APSR_flags, Rm
MSR{cond} coproc_register
MSR{cond} APSR_flags, #constant
MSR{cond} psr_fields, #constant
MSR{cond} psr_fields, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rm and Rn are the source registers.

flags can be one or more of nzcvq (ALU flags) or g (SIMD flags).

coproc_register is the name of a CP14 or CP15 readable register.

constant is an 8-bit pattern rotated by an even number of bits within a 32-bit word. (Not 
available in Thumb.)

psr is one of: APSR, CPSR or SPSR.

fields is one or more of:
• c control field mask byte, PSR[7:0] 
• x extension field mask byte, PSR[15:8] 
• s status field mask byte, PSR[23:16] 
• f flags field mask byte, PSR[31:24].

A.1.67 MUL 

MUL (Multiply) Multiplies Rn and Rm, and stores the least significant 32 bits of the result in Rd.
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Instruction Summary 
Syntax

MUL{S}{cond} {Rd,} Rn, Rm

where:

S (if specified) means that the condition code flags will be updated depending on the result of 
the instruction.

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

A.1.68 MVN

MVN (Move Not) performs a bitwise NOT operation on the operand2 value, and places the result 
into Rd.

Syntax

MVN{S}{cond} Rn, <Operand2>

where:

S (if specified) means that the condition code flags will be updated depending on the result of 
the instruction.

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Operand2 is a flexible second operand. See Operand 2 and the barrel shifter on page 5-7.

A.1.69 NOP

NOP (No Operation) does nothing.

Syntax

NOP{cond}

where:

NOP does not have to consume clock cycles. It can be removed by the processor pipeline. It is 
used for padding, to ensure following instructions align to a boundary. 

A.1.70 ORN 

ORN (OR NOT) performs an OR operation on the bits in Rn with the complement of the 
corresponding bits in the value of Operand2.

Syntax

ORN{S}{cond} {Rd,} Rn, <Operand2>

where:
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Instruction Summary 
S (if specified) means that the condition code flags will be updated depending on the result of 
the instruction.

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See Operand 2 and the barrel shifter on page 5-7.

A.1.71 ORR 

Performs an OR operation on the bits in Rn with the corresponding bits in the value of Operand2.

Syntax

ORR{S}{cond} {Rd,} Rn, <Operand2>

where:

S (if specified) means that the condition code flags will be updated depending on the result of 
the instruction.

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See Operand 2 and the barrel shifter on page 5-7.

A.1.72 PKHBT

PKHBT (Pack Halfword Bottom Top) combines bits[15:0] of Rn with bits[31:16] of the shifted 
value from Rm.

Syntax

PKHBT{cond} {Rd,} Rn, Rm{, LSL #leftshift}

where:

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rn is the register holding the first operand.

Rm is the register holding the second operand.

leftshift is a number in the range 0-31.

A.1.73 PKHTB

PKHTB (Pack Halfword Top Bottom) combines bits[31:16] of Rn with bits[15:0] of the shifted 
value from Rm.

Syntax

PKHTB{cond} {Rd,} Rn, Rm {, ASR #rightshift}
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Instruction Summary 
where:

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rn is the register holding the first operand.

Rm is the register holding the second operand.

rightshift is a number in the range 1-32.

A.1.74 PLD

PLD (Preload Data) is a hint instruction that can cause data to be preloaded into the cache.

Syntax

PLD{cond} [Rn {, #offset}]
PLD{cond} [Rn, +/-Rm {, shift}]
PLD{cond} label

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rn is a base address. 

offset is an immediate value that defaults to 0 if not specified.

Rm contains an offset value and must not be PC (or SP, in Thumb state).

shift is an optional shift.

label is a PC-relative expression.

A.1.75 PLDW

PLDW (Preload data with intent to write) is a hint instruction that can cause data to be preloaded 
into the cache. It is available only in processors that implement multi-processing extensions.

Syntax

PLDW{cond} [Rn {, #offset}]
PLDW{cond} [Rn, +/-Rm {, shift}]

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rn is a base address. 

offset is an immediate value that defaults to 0 if not specified.

Rm contains an offset value and must not be PC (or SP, in Thumb state).

shift is an optional shift.

A.1.76 PLI

PLI (Preload instructions) is a hint instruction that can cause instructions to be preloaded into the 
cache.
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Instruction Summary 
Syntax

PLI{cond} [Rn {, #offset}]
PLI{cond} [Rn, +/-Rm {, shift}]
PLI{cond} label

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rn is a base address. 

offset is an immediate value that defaults to 0 if not specified.

Rm contains an offset value and must not be PC (or SP, in Thumb state).

shift is an optional shift.

label is a PC-relative expression.

A.1.77 POP

POP is used to pop registers off a full descending stack. POP is a synonym for LDMIA sp!, reglist.

Syntax

POP{cond} reglist

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

reglist is a list of one or more registers, enclosed in braces.

A.1.78 PUSH

PUSH is used to push registers on to a full descending stack. PUSH is a synonym for STMDB sp!, 
reglist.

Syntax

PUSH{cond} reglist

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

reglist is a list of one or more registers, enclosed in braces.

A.1.79 QADD

QADD (Saturating signed Add) does a signed addition and saturates the result to the signed range 
–231 ≤ x ≤ 231-1. If saturation occurs, the Q flag is set. 

Syntax

QADD{cond} {Rd,} Rm, Rn

where:

cond is an optional condition code. See Conditional execution on page 5-3. 
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Instruction Summary 
Rd is the destination register.

Rm and Rn are the register holding the operands.

A.1.80 QADD8

QADD8 (Saturating signed bytewise Add) does a signed bytewise addition (4 adds) and saturates 
the results to the signed range -27 ≤ x ≤ 27-1. The Q flag is not affected by this instruction. 

Syntax

QADD8{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.81 QADD16

QADD16 (Saturating signed bytewise Add) does a signed halfword-wise addition (2 adds) and 
saturates the results to the signed range -27 ≤ x ≤ 27-1. The Q flag is not affected by this 
instruction.

Syntax

QADD16{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.82 QASX

QASX (Saturating signed Add Subtract eXchange) exchanges halfwords of Rm, then adds the top 
halfwords and subtracts the bottom halfwords and saturates the results to the signed range -215 
≤ x ≤ 215-1. The Q flag is not affected by this instruction.

Syntax

QASX{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rm and Rn are the registers holding the operands.
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Instruction Summary 
A.1.83 QDADD

QADD (Saturating signed Add) does a signed doubling addition and saturates the result to the 
signed range –231 ≤ x ≤ 231–1. If saturation occurs, the Q flag is set.

Syntax

QDADD{cond} {Rd,} Rm, Rn

where:

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rm and Rn are the registers holding the operands.

The value in Rn is multiplied by 2, saturated and then added to the value in Rm. A second saturate 
operation is then performed.

A.1.84 QDSUB

QDSUB (Saturating signed Doubling Subtraction) does a signed doubling subtraction and saturates 
the result to the signed range –231 ≤ x ≤ 231–1. If saturation occurs, the Q flag is set.

Syntax

QDSUB{cond} {Rd,} Rm, Rn

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rm and Rn are the registers holding the operands.

The value in Rn is multiplied by 2, saturated and then subtracted from the value in Rm. A second 
saturate operation is then performed.

A.1.85 QSAX

QSAX (Saturating signed Subtract Add Exchange) exchanges the halfwords of Rm, then subtracts 
the top halfwords and adds the bottom halfwords and saturates the results to the signed range 
-215 ≤ x ≤ 215-1. The Q flag is not affected by this instruction.

Syntax

QSAX{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rm and Rn are the registers holding the operands.
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Instruction Summary 
A.1.86 QSUB

QSUB (Saturating signed Subtraction) does a signed subtraction and saturates the result to the 
signed range -231 ≤ x ≤ 231-1. If saturation occurs, the Q flag is set.

Syntax

QDSUB{cond} {Rd,} Rm, Rn

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rm and Rn are the registers holding the operands.

The value in Rn is subtracted from the value in Rm. A saturate operation is then performed.

A.1.87 QSUB8

QSUB8 (Saturating signed bytewise Subtract) does bytewise subtraction (4 subtracts), with 
saturation of the results to the signed range -27 ≤ x ≤ 27-1. The Q flag is not affected by this 
instruction.

Syntax

QSUB8{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.88 QSUB16

QSUB16 (Saturating signed halfword Subtract) does halfword-wise subtraction (2 subtracts), with 
saturation of the results to the signed range -215 ≤ x ≤ 215-1. The Q flag is not affected by this 
instruction.

Syntax

QSUB16{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.89 RBIT

RBIT (Reverse bits) reverses the bit order in a 32-bit word.
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Instruction Summary 
Syntax

RBIT{cond} Rd, Rn

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rn is the register holding the operand.

A.1.90 REV

REV (Reverse) converts 32-bit big-endian data into little-endian data, or 32-bit little-endian data 
into big-endian data. 

Syntax

REV{cond} {Rd}, Rn

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rn is the register holding the operand.

A.1.91 REV16

REV16 (Reverse byte order halfwords) converts 16-bit big-endian data into little-endian data, or 
16-bit little-endian data into big-endian data.

Syntax

REV16{cond} {Rd}, Rn

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rn is the register holding the operand.

A.1.92 REVSH

REVSH (Reverse byte order halfword, with sign extension) does a reverse byte order of the bottom 
halfword, and sign extends the result to 32 bits. 

Syntax

REVSH{cond} Rd, Rn

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.
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Instruction Summary 
Rn is the register holding the operand.

A.1.93 RFE

RFE (Return from Exception) is used to return from an exception where the return state was saved 
with SRS. If ! is specified, the final address is written back into Rn. 

Syntax

RFE{addr_mode}{cond} Rn{!}

where:

addr_mode is one of: 

• IA – Increment address After each transfer. This is the default, and can be omitted.

• IB – Increment address Before each transfer (ARM only).

• DA – Decrement address After each transfer (ARM only).

• DB – Decrement address Before each transfer.

cond is an optional condition codes. See Conditional execution on page 5-3, and is permitted 
only in Thumb, using a preceding IT instruction.

Rn specifies the base register.

A.1.94 ROR

ROR (Rotate right Register) rotates a value in a register by a specified number of bits. The bits 
that are rotated off the right end are inserted into the vacated bit positions on the left. 

Syntax

ROR{S}{cond} {Rd,} Rm, Rs
ROR{S}{cond} {Rd,} Rm, imm

where:

S (if specified) means that the condition code flags will be updated depending on the result of 
the instruction.

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rn is the register holding the operand.

Rm is the register holding the operand to be shifted.

Rs is the register that holds a shift value to apply to the value in Rm. Only the least significant 
byte of the register is used.

imm is a shift amount, in the range 1 – 31.

A.1.95 RRX

RRX (Rotate Right with extend) performs a shift right one bit on a register value. The old carry 
flag is shifted into bit[31]. If the S suffix is present, the old bit[0] is placed in the carry flag.
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Instruction Summary 
Syntax

RRX{S}{cond} {Rd,} Rm

where:

S (if specified) means that the condition code flags will be updated depending on the result of 
the instruction.

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rm is the register holding the operand to be shifted.

A.1.96 RSB

RSB (Reverse Subtract) subtracts the value in Rn from the value of Operand2. This is useful 
because Operand2 has more options than Operand1 (which is always a register).

Syntax

RSB{S}{cond} {Rd,} Rn, <Operand2>

where:

S (if specified) means that the condition code flags will be updated depending on the result of 
the instruction.

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See Operand 2 and the barrel shifter on page 5-7.

A.1.97 RSC

RSC (Reverse Subtract with Carry) subtracts Rn from Operand2. If the carry flag is clear, the result 
is reduced by one.

Syntax

RSC{S}{cond} {Rd,} Rn, <Operand2>

where:

S (if specified) means that the condition code flags will be updated depending on the result of 
the instruction.

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See Operand 2 and the barrel shifter on page 5-7.

A.1.98 SADD8

SADD8 (Signed bytewise Add) does a signed bytewise addition (4 adds).
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Instruction Summary 
Syntax

SADD8{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.99 SADD16

SADD16 (Signed bytewise Add) does a signed halfword-wise addition (2 adds).

Syntax

SADD16{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.100 SASX

SASX (Signed Add Subtract Exchange) exchanges halfwords of Rm, then adds the top halfwords 
and subtracts the bottom halfwords.

Syntax

SASX{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.101 SBC

SBC (Subtract with Carry) subtracts the value of Operand2 from the value in Rn. If the carry flag 
is clear, the result is reduced by one.

Syntax

SBC{S}{cond} {Rd,} Rn, <Operand2>

where:

S (if specified) means that the condition code flags will be updated depending on the result of 
the instruction.

cond is an optional condition code. See Conditional execution on page 5-3. 
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Instruction Summary 
Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See Operand 2 and the barrel shifter on page 5-7.

A.1.102 SBFX

SBFX (Signed Bit Field Extract) writes adjacent bits from one register into the least significant 
bits of a second register and sign extends to 32 bits.

Syntax

SBFX{cond} Rd, Rn, #lsb, #width

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rn is the register that contains the bits to be extracted.

lsb specifies the least significant bit of the bitfield.

width is the width of the bitfield.

A.1.103 SDIV

SDIV (Signed Divide). divides a 32-bit signed integer register value by a 32-bit signed integer 
register value, and writes the result to the destination register. This instruction is not present in 
all variants of the ARMv7-A architecture.

Syntax

SDIV{cond}{q} {Rd,} Rn, Rm

where:

cond is the optional condition code. See Conditional execution on page 5-3.

q specifies optional assembler qualifiers on the instruction. The following qualifiers are defined:

• .N (narrow), specifies that the assembler must select a 16-bit encoding for the instruction.

• .W (wide), specifies that the assembler must select a 32-bit encoding for the intruction.

If neither .W nor .N are specified, the assembler can select either 16-bit or 32-bit encodings. If 
both are available, it must select a 16-bit encoding.

Rd the destination register.

Rn is the register that contains the dividend.

Rm is the register that contains the divisor.

A.1.104 SEL

SEL (Select) selects bytes from Rn or Rm, depending on the APSR GE flags.

If GE[0] is set, Rd[7:0] comes from Rn[7:0], else from Rm[7:0]. 
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Instruction Summary 
If GE[1] is set, Rd[15:8] comes from Rn[15:8], else from Rm[15:8]. 

If GE[2] is set, Rd[23:16] comes from Rn[23:16], else from Rm[23:16]. 

If GE[3] is set, Rd[31:24] comes from Rn[31:24], else from Rm[31:24].

Syntax

SEL{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rn is the register that contains the bits to be extracted.

Rm is the register holding the second operand.

A.1.105 SETEND

SETEND (Set endianness) selects little-endian or big-endian memory access. See Endianness on 
page 14-2 for more details.

Syntax

SETEND LE
SETEND BE

A.1.106 SEV

SEV (Send Event) causes an event to be signaled to all cores in an MPCore. See Assembly 
language power instructions on page 20-8 for more detail.

Syntax

SEV{cond}

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

A.1.107 SHADD8

SHADD8 (Signed halving bytewise Add) does a signed bytewise addition (4 adds) and halves the 
results.

Syntax

SHADD8{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rm and Rn are the registers holding the operands.
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Instruction Summary 
A.1.108 SHADD16

SHADD16 (Signed halving bytewise Add) does a signed halfword-wise addition (2 adds) and 
halves the results.

Syntax

SHADD16{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.109 SHASX

SHASX (Signed Halving Add Subtract Exchange) exchanges halfwords of Rm, then adds the top 
halfwords and subtracts the bottom halfwords and halves the results.

Syntax

SHASX{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.110 SHSAX

SHSAX (Signed Halving Subtract Add Exchange) exchanges halfwords of Rm, then subtracts the 
top halfwords and adds the bottom halfwords and halves the results.

Syntax

SHSAX{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.111 SHSUB8

SHSUB8 (Signed halving bytewise subtraction) does a signed bytewise subtraction (4 subtracts) 
and halves the results.

Syntax

SHSUB8{cond} {Rd,} Rn, Rm
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Instruction Summary 
where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rm and Rn are the registers holding the operands

A.1.112 SHSUB16

SHSUB16 (Signed Halving halfword-wise Subtract) does a signed halfword-wise subtraction (2 
subtracts) and halves the result.

Syntax

SHSUB16{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rm and Rn are the register holding the operands.

A.1.113 SMC

SMC (Secure Monitor Call) is used by the ARM Security Extensions. This instruction was 
formerly called SMI. See Chapter 21 Security for more details.

Syntax

SMC{cond} #imm4

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

imm4 is an immediate value in the range 0-15, which is ignored by the processor, but can be used 
by the SMC exception handler.

A.1.114 SMLAxy

The SMLAxy (Signed Multiply Accumulate; 32 <= 32 + 16 × 16) instruction multiplies the 16-bit 
signed integers from the selected halves of Rn and Rm, adds the 32-bit result to the value from Ra, 
and writes the result in Rd.

Syntax

SMLA<x><y>{cond} Rd, Rn, Rm, Ra

where:

<x> and <y> can be either B or T. B means use the bottom half (bits [15:0]) of a register, T means 
use the top half (bits [31:16]) of a register. <x> specifies which half of Rn to use, <y> does the 
same for Rm.

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.
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Instruction Summary 
Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

Ra is the register that holds the accumulate value.

A.1.115 SMLAD

SMLAD (Dual Signed Multiply Accumulate; 32 <= 32 + 16 × 16 + 16 × 16) multiplies the bottom 
halfword of Rn with the bottom halfword of Rm, and the top halfword of Rn with the top halfword 
of Rm. It then adds both products to the value in Ra and writes the sum to Rd.

Syntax

SMLAD{X}{cond} Rd, Rn, Rm, Ra

where:

{X} if present, means that the most and least significant halfwords of the second operand are 
swapped, before the multiplication. 

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

Ra is the register that holds the accumulate value.

A.1.116 SMLAL

SMLAL (Signed Multiply Accumulate 64 <= 64 + 32 × 32) multiplies Rn and Rm (treated as signed 
integers) and adds the 64-bit result to the 64-bit signed integer contained in RdHi and RdLo.

Syntax

SMLAL{S}{cond} RdLo, RdHi, Rn, Rm

where:

S (if specified) means that the condition code flags will be updated depending on the result of 
the instruction. 

cond is an optional condition code. See Conditional execution on page 5-3. 

RdLo and RdHi are the destination registers.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

A.1.117 SMLALxy

SMLALxy (Signed Multiply Accumulate; 64 <= 64 + 16 × 16) multiplies the signed integer from 
the selected half of Rm by the signed integer from the selected half of Rn, and adds the 32-bit 
result to the 64-bit value in RdHi and RdLo.
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Instruction Summary 
Syntax

SMLAL<x><y>{cond} RdLo, RdHi, Rn, Rm

where:

<x> and <y> can be either B or T. B means use the bottom half (bits [15:0]) of a register, T means 
use the top half (bits [31:16]) of a register. <x> specifies which half of Rn to use, <y> does the 
same for Rm.

cond is an optional condition code. See Conditional execution on page 5-3. 

RdLo and RdHi are the destination registers.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

A.1.118 SMLALD

SMLALD (Dual Signed Multiply Accumulate Long; 64 <= 64 + 16 × 16 + 16 × 16) multiplies the 
bottom halfword of Rn with the bottom halfword of Rm, and the top halfword of Rn with the top 
halfword of Rm and adds both products to the value in RdLo, RdHi and stores the result in RdLo 
and RdHi.

Syntax

SMLALD{X}{cond} RdLo, RdHi Rn, Rm

where:

{X} if present, means that the most and least significant halfwords of the second operand are 
swapped, before the multiplication.

cond is an optional condition code. See Conditional execution on page 5-3. 

RdLo and RdHi are the destination registers.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

A.1.119 SMLAWy

SMLAW (Signed Multiply with Accumulate Wide; 32 <= 32 × 16 + 32) multiplies the signed 
integer from the selected half of Rm by the signed integer from Rn, adds the 32-bit result to the 
32-bit value in Ra, and writes the result in Rd.

Syntax

SMLAW<y>{cond} Rd, Rn, Rm, Ra

where:

<y> can be either B or T. B means use the bottom half (bits [15:0]) of Rm, T means use the top 
half (bits [31:16]) of Rm.

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rn is the register holding the first multiplicand.
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Instruction Summary 
Rm is the register holding the second multiplicand.

Ra is the register that holds the accumulate value.

A.1.120 SMLSLD

SMLSLD (Dual Signed Multiply Subtract Accumulate Long; 64 <= 64 + 16 × 16 - 16 × 16) 
multiplies Rn[15:0] with Rm[15:0] and Rn[31:16] with Rm[31:16]. It then subtracts the second 
product from the first, adds the difference to the value in RdLo, RdHi, and writes the result to RdLo, 
RdHi.

Syntax

SMLSLD{X}{cond} RdLo, RdHi Rn, Rm

where:

{X} if present, means that the most and least significant halfwords of the second operand are 
swapped, before the multiplication. 

cond is an optional condition code. See Conditional execution on page 5-3. 

RdLo and RdHi are the destination registers and hold the value to be accumulated.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

A.1.121 SMMLA

SMMLA (Signed top word Multiply with Accumulate; 32 <= top word (32 × 32 + 32)) multiplies 
Rn and Rm, adds Ra to the most significant 32 bits of the product, and writes the result in Rd.

Syntax

SMMLA{R}{cond} Rd, Rn, Rm, Ra

where:

R, if present means that 0x80000000 is added before extracting the most significant 32 bits. This 
rounds the result. 

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

Ra is the register holding the accumulate value.

A.1.122 SMMLS

SMMLS (Signed top word Multiply with Subtract; 32 <= top word (32 × 32 - 32)) multiplies Rn and 
Rm, subtracts the product from the value in Ra shifted left by 32 bits, and stores the most 
significant 32 bits of the result in Rd.
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Instruction Summary 
Syntax

SMMLS{R}{cond} Rd, Rn, Rm, Ra

where:

R, if present means that 0x80000000 is added before extracting the most significant 32 bits. This 
rounds the result. 

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

Ra is the register holding the accumulate value.

A.1.123 SMMUL

SMMUL (Signed top word Multiply; 32 <= top word (32 × 32 )) multiplies Rn and Rm, and writes 
the most significant 32 bits of the 64-bit result to Rd.

Syntax

SMMUL{R}{cond} Rd, Rn, Rm

where:

R, if present means that 0x80000000 is added before extracting the most significant 32 bits. This 
rounds the result. 

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

A.1.124 SMUAD

SMUAD (Dual Signed Multiply and Add products) multiplies Rn [15:0] with Rm [15:0] and Rn 
[31:16] with Rm [31:16]. It then adds the products and stores the sum to Rd.

Syntax

SMUAD{X}{cond} Rd, Rn, Rm

where:

X, if present means that the most and least significant halfwords of the second operand are 
exchanged before the multiplications occur. 

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.
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Instruction Summary 
A.1.125 SMUSD 

SMUSD (Dual Signed Multiply and Subtract products) multiplies Rn [15:0] with Rm [15:0] and Rn 
[31:16] with Rm [31:16]. It then subtracts the products and stores the sum to Rd.

Syntax

SMUSD{X}{cond} Rd, Rn, Rm

where:

X, if present means that the most and least significant halfwords of the second operand are 
exchanged before the multiplications occur. 

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

A.1.126 SMULxy 

The SMULxy (Signed Multiply (32 <= 16 × 16) instruction multiplies the 16-bit signed integers 
from the selected halves of Rn and Rm, and places the 32-bit result in Rd.

Syntax

SMUL<x><y>{cond} {Rd}, Rn, Rm

where:

<x> and <y> can be either B or T. B means use the bottom half (bits [15:0]) of a register, T means 
use the top half (bits [31:16]) of a register. <x> specifies which half of Rn to use, <y> does the 
same for Rm. 

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

A.1.127 SMULL

The SMULL (signed multiply long; 64 <= 32 × 32) instruction multiplies Rn and Rm (treated as 
containing as two’s complement signed integers) and places the least significant 32 bits of the 
result in RdLo, and the most significant 32 bits of the result in RdHi.

Syntax

SMULL{S}{cond} RdLo, RdHi, Rn, Rm

where:

S (if specified) means that the condition code flags will be updated depending on the result of 
the instruction. 

cond is an optional condition code. See Conditional execution on page 5-3. 
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Instruction Summary 
RdLo and RdHi are the destination registers.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

A.1.128 SMULWy

SMULWy (Signed Multiply Wide; 32 <= 32 × 16) multiplies the signed integer from the chosen half 
of Rm with the signed integer from Rn, and places the upper 32-bits of the 48-bit result in Rd.

Syntax

SMULW<y>{cond} {Rd}, Rn, Rm

where:

<y> is either B or T. B means use the bottom half (bits [15:0]) of Rm, T means use the top half 
(bits [31:16]) of Rm. 

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

A.1.129 SRS

SRS (Store Return State) stores the LR and the SPSR of the current mode, at the address 
contained in the SP of the mode specified by modenum. The optional ! means that the SP value 
is updated. This is compatible with the normal use of the STM instruction for stack accesses.

Syntax

SRS{addr_mode}{cond} sp{!}, #modenum

where:

addr_mode is one of: 
• IA – Increment address After each transfer. This is the default, and can be omitted.
• IB – Increment address Before each transfer (ARM only).
• DA – Decrement address After each transfer (ARM only).
• DB – Decrement address Before each transfer.

It is also possible to use the corresponding stack oriented addressing modes (FD, ED, EA, FA). 

cond is an optional condition code. See Conditional execution on page 5-3.

modenum gives the number of the mode whose SP is used. 

A.1.130 SSAT

SSAT (Signed Saturate) performs a shift and saturates the result to the signed range -2sat-1 ≤ x ≤ 
2sat-1-1. If saturation occurs, the Q flag is set.
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Instruction Summary 
Syntax

SSAT{cond} Rd, #sat, Rm{, shift}

where:

<y> is either B or T. B means use the bottom half (bits [15:0]) of Rm, T means use the top half 
(bits [31:16]) of Rm. 

cond is an optional condition code. See Conditional execution on page 5-3 

Rd is the destination register.

sat specifies the bit position to saturate to, in the range 1 to 32.

Rm is the register holding the second multiplicand.

shift is optional shift amount and can be either ASR #n where n is in the range (1 – 32 ARM state, 
1 – 31 Thumb state) or LSL #n where n is in the range (0-31).

A.1.131 SSAT16

SSAT16 (Signed Saturate, parallel halfwords) saturates each signed halfword to the signed range 
-2sat-1 ≤ x ≤ 2sat-1 -1. If saturation occurs, the Q flag is set.

Syntax

SSAT16{cond} Rd, #sat, Rn

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

sat specifies the bit position to saturate to, in the range 1 to 32.

Rn is the register holding the operand.

A.1.132 SSAX

SSAX (Signed Subtract Add Exchange) exchanges halfwords of Rm, then subtracts the top 
halfwords and adds the bottom halfwords.

Syntax

SSAX{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register.

Rm and Rn are the register holding the operands.

A.1.133 SSUB8

SSUB8 (Signed halving bytewise Subtraction) does a signed bytewise subtraction (4 subtracts).
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Instruction Summary 
Syntax

SSUB8{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination registers.

Rm and Rn are the register holding the operands.

A.1.134 SSUB16

SSUB16 (Signed halfword-wise Subtract) does a signed halfword-wise subtraction (2 subtracts).

Syntax

SSUB16{cond} {Rd}, Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination registers.

Rm and Rn are the register holding the operands.

A.1.135 STC

STC (Store Coprocessor Registers) writes a coprocessor register to memory (or multiple 
registers, if L is specified).

Syntax

STC{L}{cond} coproc, CRd, [Rn]
STC{L}{cond} coproc, CRd, [Rn, #{-}offset]{!}
STC{L}{cond} coproc, CRd, [Rn], #{-}offset
STC{L}{cond} coproc, CRd, label

where:

L specifies that more than one register can be transferred (called a long transfer). The length of 
the transfer is determined by the coprocessor, but cannot be more than 16 words.

cond is an optional condition code. See Conditional execution on page 5-3. 

coproc is the name of the coprocessor the instruction is for. This is usually of the form pn, where 
n is an integer in the range 0 to 15.

CRd is the coprocessor register to be stored.

Rn is the register holding the base address for the memory operation.

offset is a multiple of four, in the range 0-1020, to be added or subtracted from Rn. If ! is present, 
the address including the offset is written back into Rn.

label is a word-aligned PC-relative address label.
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A.1.136 STC2

STC2 (Store Coprocessor registers) writes a coprocessor register to memory (or multiple 
registers, if L is specified).

Syntax

STC2{L}{cond} coproc, CRd, [Rn]
STC2{L}{cond} coproc, CRd, [Rn, #{-}offset]{!}
STC2{L}{cond} coproc, CRd, [Rn], #{-}offset
STC2{L}{cond} coproc, CRd, label

where:

L specifies that more than one register can be transferred (called a long transfer). The length of 
the transfer is determined by the coprocessor, but cannot be more than 16 words.

cond is an optional condition code. See Conditional execution on page 5-3. 

coproc is the name of the coprocessor the instruction is for. This is usually of the form pn, where 
n is an integer in the range 0 to 15.

CRd is the coprocessor register to be stored.

Rn is the register holding the base address for the memory operation.

offset is a multiple of four, in the range 0 – 1020, to be added or subtracted from Rn. If ! is 
present, the address including the offset is written back into Rn.

label is a word-aligned PC-relative address label.

A.1.137 STL

STL (Store-Release Word) stores a word from a register to memory. This instruction was 
introduced to provide backward compatibility for the ARMv8 architecture AArch32 state.

Note
 STL imposes ordering restrictions on memory accesses to the same shareability domain.

For further information, see Section E2.7.3 in the ARMv8 Architecture Reference Manual 
(ARM DDI 0487)

Syntax

STL{cond}{q} <Rt>, [<Rn>]

where:

cond is an optional condition code. See Conditional execution on page 5-3.

q specifies optional assembler qualifiers on the instruction. The following qualifiers are defined:

• .N(narrow), specifies that the assembler must select a 16-bit encoding for the instruction.

• .W(wide), specifies that the assembler must select a 32-bit encoding for the intruction.

If neither .W nor .N are specified, the assembler can select either 16-bit or 32-bit encodings. if 
both are available, it must select a 16-bit encoding.

Rd is the source register.
ARM DEN0013D Copyright © 2011 – 2013 ARM. All rights reserved. A-50
ID012214 Non-Confidential



Instruction Summary 
Rm is the base register.

A.1.138 STLB

STLB (Store-Release Byte) stores a byte from a register to memory. This instruction was 
introduced to provide backward compatibility for the ARMv8 architecture AArch32 state.

Note
 STLB imposes ordering restrictions on memory accesses to the same shareability domain.

For further information, see Section E2.7.3 in the ARMv8 Architecture Reference Manual 
(ARM DDI 0487)

Syntax

STLB{cond}{q} <Rt>, [<Rn>]

where:

cond is an optional condition code. See Conditional execution on page 5-3.

q specifies optional assembler qualifiers on the instruction. The following qualifiers are defined:

• .N(narrow), specifies that the assembler must select a 16-bit encoding for the instruction.

• .W(wide), specifies that the assembler must select a 32-bit encoding for the intruction.

If neither .W nor .N are specified, the assembler can select either 16-bit or 32-bit encodings. if 
both are available, it must select a 16-bit encoding.

Rt is the source register.

Rn is the base register.

A.1.139 STLEX

STLEX (Store-Release Exclusive Word) stores a word from a register to memory if the executing 
core has exclusive access to the memory addressed. This instruction was introduced to provide 
backward compatibility for the ARMv8 architecture AArch32 state.

Note
 STLEX imposes ordering restrictions on memory accesses to the same shareability domain.

For further information, see Section E2.7.3 in the ARMv8 Architecture Reference Manual 
(ARM DDI 0487)

Syntax

STLEX{cond}{q} <Rd>, <Rt>, [<Rn>]

where:

cond is an optional condition code. See Conditional execution on page 5-3.

q specifies optional assembler qualifiers on the instruction. The following qualifiers are defined:

• .N(narrow), specifies that the assembler must select a 16-bit encoding for the instruction.

• .W(wide), specifies that the assembler must select a 32-bit encoding for the intruction.
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If neither .W nor .N are specified, the assembler can select either 16-bit or 32-bit encodings. if 
both are available, it must select a 16-bit encoding.

Rd is the destination register for the returned status value. The value returned is:.

0 If the operation updates memory.

1 If the operation fails to update memory.

Rt is the source register.

Rn is the base register.

A.1.140 STLEXB

STLEXB (Store-Release Exclusive Byte) stores a byte from a register to memory if the executing 
core has exclusive access to the memory addressed. This instruction was introduced to provide 
backward compatibility for the ARMv8 architecture AArch32 state.

Note
 STLEXB imposes ordering restrictions on memory accesses to the same shareability domain.

For further information, see Section E2.7.3 in the ARMv8 Architecture Reference Manual 
(ARM DDI 0487)

Syntax

STLEXB{cond}{q} <Rd>, <Rt>, [<Rn>]

where:

cond is an optional condition code. See Conditional execution on page 5-3.

q specifies optional assembler qualifiers on the instruction. The following qualifiers are defined:

• .N(narrow), specifies that the assembler must select a 16-bit encoding for the instruction.

• .W(wide), specifies that the assembler must select a 32-bit encoding for the intruction.

If neither .W nor .N are specified, the assembler can select either 16-bit or 32-bit encodings. if 
both are available, it must select a 16-bit encoding.

Rd is the destination register for the returned status value. The value returned is:.

0 If the operation updates memory.

1 If the operation fails to update memory.

Rt is the source register.

Rn is the base register.

A.1.141 STLEXD

STLEXD (Store-Release Exclusive Double) stores a doubleword from two registers to memory. 
This instruction was introduced to provide backward compatibility for the ARMv8 architecture 
AArch32 state.

Note
 STLEXD imposes ordering restrictions on memory accesses to the same shareability domain.
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Instruction Summary 
For further information, see Section E2.7.3 in the ARMv8 Architecture Reference Manual 
(ARM DDI 0487)

Syntax

STLEXD{cond}{q} <Rd>, <Rt>, <Rt2>, [<Rn>]

where:

cond is an optional condition code. See Conditional execution on page 5-3.

q specifies optional assembler qualifiers on the instruction. The following qualifiers are defined:

• .N(narrow), specifies that the assembler must select a 16-bit encoding for the instruction.

• .W(wide), specifies that the assembler must select a 32-bit encoding for the intruction.

If neither .W nor .N are specified, the assembler can select either 16-bit or 32-bit encodings. if 
both are available, it must select a 16-bit encoding.

Rd is the destination register for the returned status value. The value returned is:.

0 If the operation updates memory.

1 If the operation fails to update memory.

Rt is the first source register. Rt must be an even numbered register and not R14.

Rt2 is the second destination register. Rt2 must be R(t + 1).

Rn is the base register.

A.1.142 STLEXH

STLEXH (Store-Release Exclusive ) stores a halfword from a register to memory if the executing 
core has exclusive access to the memory addressed. This instruction was introduced to provide 
backward compatibility for the ARMv8 architecture AArch32 state.

Note
 STLEXH imposes ordering restrictions on memory accesses to the same shareability domain.

For further information, see Section E2.7.3 in the ARMv8 Architecture Reference Manual 
(ARM DDI 0487)

Syntax

STLEXH{cond}{q} <Rd>, <Rt>, [<Rn>]

where:

cond is an optional condition code. See Conditional execution on page 5-3.

q specifies optional assembler qualifiers on the instruction. The following qualifiers are defined:

• .N(narrow), specifies that the assembler must select a 16-bit encoding for the instruction.

• .W(wide), specifies that the assembler must select a 32-bit encoding for the intruction.

If neither .W nor .N are specified, the assembler can select either 16-bit or 32-bit encodings. if 
both are available, it must select a 16-bit encoding.
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Rd is the destination register for the returned status value. The value returned is:.

0 If the operation updates memory.

1 If the operation fails to update memory.

Rt is the source register.

Rm is the base register.

A.1.143 STLH

STLH (Store-Release Halfword) stores a word from a register to memory. This instruction was 
introduced to provide backward compatibility for the ARMv8 architecture AArch32 state.

Note
 STLH imposes ordering restrictions on memory accesses to the same shareability domain.

For further information, see Section E2.7.3 in the ARMv8 Architecture Reference Manual 
(ARM DDI 0487)

Syntax

STLH{cond}{q} <Rt>, [<Rn>]

where:

cond is an optional condition code. See Conditional execution on page 5-3.

q specifies optional assembler qualifiers on the instruction. The following qualifiers are defined:

• .N(narrow), specifies that the assembler must select a 16-bit encoding for the instruction.

• .W(wide), specifies that the assembler must select a 32-bit encoding for the intruction.

If neither .W nor .N are specified, the assembler can select either 16-bit or 32-bit encodings. if 
both are available, it must select a 16-bit encoding.

Rt is the source register.

Rn is the base register.

A.1.144 STM

STM (Store Multiple registers) writes one or more registers to consecutive addresses in memory 
to an address specified in a base register.

Syntax

STM{addr_mode}{cond} Rn{!},reglist{^}

where:

addr_mode is one of: 

• IA – Increment address After each transfer. This is the default, and can be omitted.

• IB – Increment address Before each transfer (ARM only).

• DA – Decrement address After each transfer (ARM only).
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• DB – Decrement address Before each transfer.

It is also possible to use the corresponding stack oriented addressing modes (FD, ED, EA, FA). For 
example STMFD is a synonym of STMDB.

cond is an optional condition code. See Conditional execution on page 5-3. 

Rn is the base register, giving the initial address for the transfer.

! if present, specifies that the final address is written back into Rn. 

^ if specified (in ARM state and a mode other than User or System) means that data is transferred 
into or out of the User mode registers instead of the current mode registers.

reglist is a list of one or more registers to be stored, enclosed in braces. It can contain register 
ranges. It must be comma separated if it contains more than one register or register range.

A.1.145 STR

STR (Store Register) stores a value to memory from an ARM register, optionally updating the 
register used to give the address. 

A variety of addressing options are provided. For full details of the available addressing modes, 
see Addressing modes on page 5-13.

Syntax

STR{type}{T}{cond} Rt, [Rn {, #offset}] 
STR{type}{cond} Rt, [Rn, #offset]! 
STR{type}{T}{cond} Rt, [Rn], #offset 
STR{type}{cond} Rt, [Rn, +/-Rm {, shift}] 
STR{type}{cond} Rt, [Rn, +/-Rm {, shift}]! 
STR{type}{T}{cond} Rt, [Rn], +/-Rm {, shift} 

where:

type can be any one of: 
• B – unsigned Byte (Zero extend to 32 bits on loads.)
• H – unsigned Halfword (Zero extend to 32 bits on loads.)

or omitted, for a Word load. 

T specifies that memory is accessed as if the processor was in User mode (not available in all 
addressing modes). 

cond is an optional condition code. See Conditional execution on page 5-3.

Rn is the register holding the base address for the memory operation.

! if present, specifies that the final address is written back into Rn. 

offset is a numeric value.

Rm is a register holding an offset value to be applied.

shift is either a register or immediate based shift to apply to the offset value.
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A.1.146 STRD

STRD (Store Register Dual) calculates an address from a base register value and a register offset, 
and stores two words from two registers to memory. It can use offset, post-indexed, or 
pre-indexed addressing.

Syntax

STRD{cond} Rt, Rt2, [Rn {,#+/-<imm>}]
STRD{cond} Rt, Rt2, [<Rn>, #+/-<imm>
STRD{cond} Rt, Rt2, [<Rn>, #+/-<imm>]!
STRD{cond} Rt, Rt2, [{Rn},+/-{Rm}]{!}
STRD{cond} Rt, Rt2, [{Rn}],+/-{Rm}

where:

cond is an optional condition code. See Conditional execution on page 5-3.

Rt is the first source register. For an ARM instruction Rt must be even-numbered and not R14.

Rt is the second source register. For an ARM instruction Rt2 must be <R(t+1)>. 

Rn is the base register. The SP can be used. In the ARM instruction set for offset addressing only, 
the PC can be used. However, use of the PC is deprecated.

+/- is + or omitted if the value of <Rm> is to be added to the base register value (add = TRUE), 
or – if it is to be subtracted (add = FALSE). #0 and #-0 generate different instructions.

imm is the immediate offset used to form the address. imm can be omitted, meaning an offset of 0.

Rm contains the offset that is applied to the value of <Rn> to form the address.

A.1.147 STREX

STREX (Store register exclusive). Performs a store to a location marked for exclusive access, 
returning a status value if the store succeeded. Byte, halfword, word and doubleword variants 
are provided.

Syntax

STREX{cond} Rd, Rt, [Rn {, #offset}]
STREXB{cond} Rd, Rt, [Rn]
STREXH{cond} Rd, Rt, [Rn]
STREXD{cond} Rd, Rt, Rt2, [Rn]

where:

cond is an optional condition code. See Conditional execution on page 5-3. 

Rd is the destination register for the return status. 

Rt is the register to store.

Rt2 is the second register for doubleword stores.

Rn is the register holding the address.

offset is an optional value, permitted in Thumb only. 
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A.1.148 SUB

SUB (Subtract) subtracts the value Operand2 from Rn (or subtracts imm12 from Rn).

Syntax

SUB{S}{cond} {Rd,} Rn, <Operand2>

SUB{cond}{Rd,}, Rn, #imm12 (Only available in Thumb)

where:

S (if specified) means that the condition code flags will be updated depending on the result of 
the instruction.

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See Operand 2 and the barrel shifter on page 5-7.

imm12 is in the range 0-4095. 

A.1.149 SVC

SVC (SuperVisor Call) causes an SVC exception (was called SWI in older documentation).

Syntax

SVC{cond} #imm

where:

cond is an optional condition code. See Conditional execution on page 5-3.

imm is an integer in the range 0 - 0xFFFFFF (ARM) or 0 - 0xFF (Thumb). This integer is not used 
by the processor itself, but can be used by exception handler code. 

A.1.150 SWP

SWP (Swap registers and memory) performs the following two actions. Data from memory is 
loaded into Rt. Rt2 is saved to memory, at the address given by Rn. Use of this instruction is 
deprecated and its use is disabled by default.

Syntax

SWP{B}{cond} Rt, Rt2, [Rn]

where:

cond is an optional condition code. See Conditional execution on page 5-3.

B is an optional suffix. If specified, a byte is swapped. If not present, a word is specified.

Rt is the destination register. 

Rt2 is the source register and can be the same as Rt.

Rn is the register holding the address and cannot be the same as Rt or Rt2. 
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A.1.151 SXT

SXT (Signed Extend) extracts the specified byte and extends to 32-bit.

Syntax

SXT<extend>{cond} {Rd,} Rm {,rotation}

where:

extend must be one of:

• B16 – extends two 8-bit values to two 16-bit values.

• B – extends an 8-bit value to a 32-bit value.

• H – extends a 16-bit value to a 32-bit value.

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register. 

Rm is the register that contains the value to be extended.

rotation can be one of ROR #8, ROR #16 or ROR #24 (or can be omitted).

A.1.152 SXTA

SXTA (Signed Extend and Add) extracts the specified byte, adds the value from Rn and extends 
to 32-bit.

Syntax

SXTA<extend>{cond} {Rd,} Rn, Rm {,rotation}

where:

extend must be one of:

• B16 – extends two 8-bit values to two 16-bit values.

• B – extends an 8-bit value to a 32-bit value.

• H – extends a 16-bit value to a 32-bit value.

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register. 

Rn is the register holding the value to be added.

Rm is the register that contains the value to be extended.

rotation can be one of ROR #8, ROR #16 or ROR #24 (or can be omitted).

A.1.153 SYS

SYS (System coprocessor instruction) is used to execute special coprocessor instructions such as 
cache, branch predictor, and TLB operations. The instructions operate by writing to special 
write-only coprocessor registers.
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Syntax

SYS{cond} instruction {,Rn}

where:

cond is an optional condition code. See Conditional execution on page 5-3.

instruction is a write-only system coprocessor register name.

Rn is the register holding the operand.

A.1.154 TBB

TBB (Table Branch Byte) causes a PC-relative forward branch using a table of single byte offsets. 
Rn provides a pointer to the table, and Rm supplies an index into the table. The branch length is 
twice the value of the byte returned from the table. The target of the branch table must be in the 
same execution state. There is no ARM or 16-bit Thumb version of this instruction.

Syntax

TBB [Rn, Rm]

where:

Rn is the base register that holds the address of the table of branch lengths.

Rm is a register that holds the index into the table.

A.1.155 TBH

TBH (Table Branch Halfword) causes a PC-relative forward branch using a table of halfword 
offsets. Rn provides a pointer to the table, and Rm supplies an index into the table. The branch 
length is twice the value of the halfword returned from the table. The target of the branch table 
must be in the same execution state.

There is no ARM or 16-bit Thumb version of this instruction.

Syntax

TBH [Rn, Rm, LSL #1]

where:

Rn is the base register that holds the address of the table of branch lengths.

Rm is a register that holds the index into the table.

A.1.156 TEQ

TEQ (Test Equivalence) does a bitwise AND operation on the value in Rn and the value of 
Operand2. This is the same as an ANDS instruction, except that the result is discarded.

Syntax

TEQ{cond} Rn, <Operand2>

where:

cond is an optional condition code. See Conditional execution on page 5-3.
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Rn is the register holding the first operand.

Operand2 is a flexible second operand. See Operand 2 and the barrel shifter on page 5-7.

A.1.157 TST

TST (Test) does an Exclusive OR operation on the value in Rn and the value of Operand2. This is 
the same as an EORS instruction, except that the result is discarded.

Syntax

TST{cond} Rn, <Operand2>

where:

cond is an optional condition code. See Conditional execution on page 5-3.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See Operand 2 and the barrel shifter on page 5-7.

A.1.158 UADD8

UADD8 (Unsigned bytewise Add) does an unsigned bytewise addition (4 adds).

Syntax

UADD8{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.159 UADD16

UADD16 (Unsigned halfword-wise Add) does an unsigned halfword-wise addition (2 adds).

Syntax

UADD16{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.160 UASX

UASX (Unsigned Add Subtract Exchange) exchanges halfwords of Rm, then adds the top halfwords 
and subtracts the bottom halfwords.
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Syntax

UASX{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.161 UBFX

UBFX (Unsigned Bit Field Extract) writes adjacent bits from one register into the least significant 
bits of a second register and zero extends to 32 bits.

Syntax

UBFX{cond} Rd, Rn, #lsb, #width

where:

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rn is the register that contains the bits to be extracted.

lsb specifies the least significant bit of the bitfield.

width is the width of the bitfield.

A.1.162 UDIV

UDIV (Unsigned Divide). divides a 32-bit unsigned integer register value by a 32-bit unsigned 
integer register value, and writes the result to the destination register. This instruction is not 
present in all variants of the ARMv7-A architecture.

Syntax

UDIV{cond}{q} {Rd,} Rn, Rm

where:

cond is the optional condition code. See Conditional execution on page 5-3.

q specifies optional assembler qualifiers on the instruction. The following qualifiers are defined:

• .N (narrow), specifies that the assembler must select a 16-bit encoding for the instruction.

• .W (wide), specifies that the assembler must select a 32-bit encoding for the instruction.

If neither .W nor .N are specified, the assembler can select either 16-bit or 32-bit encodings. If 
both are available, it must select a 16-bit encoding.

Rd the destination register.

Rn is the register that contains the dividend.

Rm is the register that contains the divisor.
ARM DEN0013D Copyright © 2011 – 2013 ARM. All rights reserved. A-61
ID012214 Non-Confidential



Instruction Summary 
A.1.163 UHADD8

UHADD8 (Unigned Halving bytewise Add) does an unsigned bytewise addition (4 adds) and halves 
the results.

Syntax

UHADD8{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.164 UHADD16

UHADD16 (Unsigned Halving halfword-wise Add) does an unsigned halfword-wise addition (2 
adds) and halves the results.

Syntax

UHADD16{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.165 UHASX

UHASX (Unsigned Halving Add Subtract Exchange) exchanges halfwords of Rm, then adds the top 
halfwords and subtracts the bottom halfwords and halves the results.

Syntax

UHASX{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.166 UHSAX

UHSAX (Unsigned Halving Subtract Add Exchange) exchanges halfwords of Rm, then subtracts the 
top halfwords and adds the bottom halfwords and halves the results.

Syntax

UHSAX{cond} {Rd}, Rn, Rm
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where:

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.167 UHSUB8

UHSUB8 (Unsigned Halving bytewise Subtraction) does an unsigned bytewise subtraction (4 
subtracts) and halves the results.

Syntax

UHSUB8{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-32.

Rd is the destination register.

Rm and Rn are the register holding the operands.

A.1.168 UHSUB16

UHSUB16 (Unsigned Halving halfword-wise Subtract) does an unsigned halfword-wise 
subtraction (2 subtracts) and halves the result.

Syntax

UHSUB16{cond} {Rd}, Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.169 UMAAL

UMAAL (Unsigned Multiply Accumulate Long; 64 <= 32 + 32 + 32 x 32) multiplies Rn and Rm 
(treated as unsigned integers) adds the two 32-bit values in RdHi and RdLo, and stores the 64-bit 
result to RdLo, RdHi.

Syntax

UMAAL{cond} RdLo, RdHi, Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3.

RdLo and RdHi are the destination accumulator registers.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.
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A.1.170 UMLAL

UMLAL (Unsigned Multiply Accumulate 64 <= 64 + 32 x 32) multiplies Rn and Rm (treated as 
unsigned integers) and adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and 
RdLo.

Syntax

UMLAL{S}{cond} RdLo, RdHi, Rn, Rm

where:

S (if specified) means that the condition code flags will be updated depending on the result of 
the instruction.

cond is an optional condition code. See Conditional execution on page 5-3.

RdLo and RdHi are the destination accumulator registers.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

A.1.171 UMULL

UMULL (Unsigned Multiply; 64 <= 32 x 32) multiplies Rn and Rm (treated as unsigned integers) and 
stores the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the 
result in RdHi.

Syntax

UMULL{S}{cond} RdLo, RdHi, Rn, Rm

where:

S (if specified) means that the condition code flags will be updated depending on the result of 
the instruction.

cond is an optional condition code. See Conditional execution on page 5-3.

RdLo and RdHi are the destination registers.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

A.1.172 UQADD8

UQADD8 (Saturating Unsigned bytewise Add) does an unsigned bytewise addition (4 adds) and 
saturates the results to the unsigned range 0 ≤ x ≤ 28-1. The Q flag is not affected by this 
instruction.

Syntax

UQADD8{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.
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Rm and Rn are the registers holding the operands.

A.1.173 UQADD16

UQADD16 (Saturating Unsigned halfword-wise Add) does an unsigned halfword-wise addition (2 
adds) and saturates the results to the unsigned range 0 ≤ x ≤ 216-1. The Q flag is not affected by 
this instruction.

Syntax

UQADD16{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rm and Rn are the register holding the operands.

A.1.174 UQASX

UQASX (Saturating Unsigned Add Subtract Exchange) exchanges halfwords of Rm, then adds the 
top halfwords and subtracts the bottom halfwords and saturates the results to the unsigned range 
0 ≤ x ≤ 216-1. The Q flag is not affected by this instruction.

Syntax

UQASX{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.175 UQSAX

UQSAX (Saturating Unsigned Subtract Add Exchange) exchanges the halfwords of Rm, then 
subtracts the top halfwords and adds the bottom halfwords and saturates the results to the signed 
range 0 ≤ x ≤ 216-1. The Q flag is not affected by this instruction.

Syntax

QSAX{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rm and Rn are the registers holding the operands.
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A.1.176 UQSUB8

UQSUB8 (Saturating Unsigned bytewise Subtract) does bytewise subtraction (4 subtracts), with 
saturation of the results to the unsigned range 0 ≤ x ≤ 28-1. The Q flag is not affected by this 
instruction.

Syntax

UQSUB8{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.177 UQSUB16

UQSUB16 (Saturating Unsigned halfword Subtract) does halfword-wise subtraction (two 
subtracts), with saturation of the results to the unsigned range 0 ≤ x ≤ 216-1. The Q flag is not 
affected by this instruction.

Syntax

UQSUB16{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.178 USAD8

USAD8 (Unsigned Sum of Absolute Differences) finds the 4 differences between the unsigned 
values in corresponding bytes of Rn and Rm and adds the absolute values of the 4 differences, and 
stores the result in Rd.

Syntax

USAD8{cond} Rd, Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rn is the register holding the first operand. 

Rm is the register holding the second operand. 
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A.1.179 USADA8

USADA8 (Unsigned Sum of Absolute Differences Accumulate) finds the 4 differences between the 
unsigned values in corresponding bytes of Rn and Rm and adds the absolute values of the 4 
differences to the value in Ra, and stores the result in Rd.

See Sum of absolute differences on page 5-10 for more information.

Syntax

USADA8{cond} Rd, Rn, Rm, Ra

where:

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rn is the register holding the first operand. 

Rm is the register holding the second operand.

Ra is the register that holds the accumulate value.

A.1.180 USAT

USAT (Unsigned Saturate) performs a shift and saturates the result to the signed range 0 ≤ x ≤ 
2sat-1. If saturation occurs, the Q flag is set.

Syntax

USAT{cond} Rd, #sat, Rm{, shift}

where:

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

sat specifies the bit position to saturate to, in the range 0 to 31.

Rm is the register holding the operand.

shift is optional shift amount and can be either ASR #n where n is in the range (1 – 32 ARM 
state, 1-31 Thumb state) or LSL #n where n is in the range (0 – 31).

A.1.181 USAT16

USAT16 (Unigned Saturate, parallel halfwords) saturates each unsigned halfword to the signed 
range 0 ≤ x ≤ 2sat -1. If saturation occurs, the Q flag is set.

Syntax

USAT16{cond} Rd, #sat, Rn

where:

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

sat specifies the bit position to saturate to, in the range 0 to 31.
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Rn is the register holding the operand. 

A.1.182 USAX

USAX (Unsigned Subtract Add Exchange) exchanges halfwords of Rm, then subtracts the top 
halfwords and adds the bottom halfwords.

Syntax

USAX{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.183 USUB8

USUB8 (Unsigned bytewise Subtraction) does an unsigned bytewise subtraction (4 subtracts).

Syntax

USUB8{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rm and Rn are the registers holding the operands. 

A.1.184 USUB16

USUB16 (Unsigned halfword-wise Subtract) does an unsigned halfword-wise subtraction (2 
subtracts).

Syntax

USUB16{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rm and Rn are the registers holding the operands. 

A.1.185 UXT

UXT (Unsigned Extend) extracts the specified byte and zero extends to a 32-bit value.

Syntax

UXT<extend>{cond} {Rd,} Rm {,rotation}
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where:

extend must be one of:

• B16 – extends two 8-bit values to two 16-bit values.

• B – extends an 8-bit value to a 32-bit value.

• H – extends a 16-bit value to a 32-bit value.

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rm is the register that contains the value to be extended.

rotation can be one of ROR #8, ROR #16 or ROR #24 (or can be omitted).

A.1.186 UXTA

UXTA (Unsigned Extend and Add) extracts the specified byte, adds the value from Rn and zero 
extends to a 32-bit value.

Syntax

UXTA<extend>{cond} {Rd,} Rn, Rm {,rotation}

where:

extend must be one of:

• B16 – extends two 8-bit values to two 16-bit values.

• B – extends an 8-bit value to a 32-bit value.

• H – extends a 16-bit value to a 32-bit value.

cond is an optional condition code. See Conditional execution on page 5-3.

Rd is the destination register.

Rn is the register holding the value to be added.

Rm is the register that contains the value to be extended. 

rotation can be one of ROR #8, ROR #16 or ROR #24 (or can be omitted).

A.1.187 WFE

WFE (Wait for Event). If the Event Register is not set, WFE suspends execution until one of the 
following events occurs:

• an IRQ interrupt (even when CPSR I-bit is set)

• an FIQ interrupt (even when CPSR F-bit is set)

• an asynchronous abort (not when masked by the CPSR A-bit)

• Debug Entry request, even when debug is disabled.

• an Event signaled by another processor using the SEV instruction.

If the Event Register is set, WFE clears it and returns immediately.
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Syntax

WFE{cond}

where:

cond is an optional condition code. See Conditional execution on page 5-3.

A.1.188 WFI

WFI (Wait For Interrupt) suspends execution until one of the following events occurs:

• An IRQ interrupt (even when CPSR I-bit is set).

• An FIQ interrupt (even when CPSR F-bit is set).

• An asynchronous abort (not when masked by the CPSR A-bit).

• Debug Entry request, even when debug is disabled.

If the Event Register is set, WFI clears it and returns immediately.

Syntax

WFI{cond}

where:

cond is an optional condition code. See Conditional execution on page 5-3.

A.1.189 YIELD

YIELD indicates to the hardware that the current thread is performing a task that can be swapped 
out (for example, a spinlock). Hardware could use this hint to suspend and resume threads in a 
multithreading system.

Syntax

YIELD{cond}

where:

cond is an optional condition code. See Conditional execution on page 5-3.
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Appendix B 
Tools, Operating Systems and Boards

ARM processors can be found in a very wide range of devices, running a correspondingly wide 
range of software. Many readers will have ready access to appropriate hardware, tools and 
operating systems, but it might be useful to some readers to present an overview of some of these 
readily available compilation tools, ARM processor based hardware and Linux operating system 
distributions. 
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B.1 Linux distributions
Linux is a UNIX-like operating system kernel, originally developed by Linus Torvalds, who 
continues to maintain the official kernel. It is open source, distributed under the GNU Public 
License, widely-used and available on a large number of different processor architectures. 

The Linux kernel is bundled with libraries and applications to make up a complete operating 
system in what is called a “Linux distribution”. A number of free Linux distributions exist for 
ARM processors, including Debian, Ubuntu, Fedora and Gentoo. 

B.1.1 Linux for ARM systems

Support for the ARM architecture has been included in the standard Linux kernel for many 
years. Development of this port is ongoing, with significant input from ARM to provide kernel 
support for new processors and architecture versions. 

You might wonder why a book about the Cortex-A series processors contains information about 
Linux. There are several reasons for this. Linux source code is available to all readers and 
represents a useful learning resource. In addition there are many useful resources with existing 
code and explanations. Many readers will be familiar with Linux, as it can be run on most 
processor architectures. By explaining how Linux features like virtual memory, multi-tasking, 
shared libraries and so forth are implemented, readers will be able to apply their understanding 
to other operating systems commonly used on ARM processors. The scalability of Linux is 
another factor – it can run on the most powerful ARM processors. and its derivative, uClinux, 
is also commonly used on much smaller processors, including the Cortex-M3 or ARM7TDMI 
processors. It can run on both the ARM and Thumb Instruction Set Architectures, using 
little-endian or big-endian data accesses and with or without a memory management unit.

One of the benefits of a modern operating system is that you do not have to know much detail 
about the underlying hardware in order to develop application software for it.

B.1.2 Linux terminology

Here, we define some terms which we will use when describing how the Linux kernel interacts 
with the underlying ARM architecture:

Process The kernel view of an executing unprivileged application is called a process. The 
same application (for example, bin/bash) can be running in several simultaneous 
instances in the system – and each of these instances will be a separate process. 
The process has resources associated with it, such as a memory map and file 
descriptors. A process can consist of one or more threads.

Thread A thread is a context of software execution within a process. It is the entity which 
is scheduled by the kernel, and actually executes the instructions that make up the 
application. A process can consist of multiple threads, each executing with their 
own program counter, stack pointer and register set – all existing within the same 
memory map and operating on the file descriptors held by the process as a whole. 
In a multi-processor system, threads inside the same process can execute 
concurrently on separate processors. Different threads within the same process 
can be configured to have different scheduling priorities.
There are also threads executing inside the kernel, to manage various tasks 
asynchronously, such as file cache management, or watchdog tickling, which is 
not as exciting as it sounds. 

Scheduler This is a vital part of the kernel which has a list of all the current threads. It knows 
which threads are ready to be run and which are currently not able to run. It 
dynamically calculates priority levels for each thread and schedules the highest 
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priority thread to be run next. It is called after an interrupt has been handled. The 
scheduler is also explicitly called by the kernel using the schedule() function, for 
example, when an application executing a system call has to sleep. The system 
will have a timer based interrupt which results in the scheduler being called at 
regular intervals. This enables the OS to implement time-division multiplexing, 
where many threads share the processor, each running for a certain amount of 
time, giving the illusion that many applications are running simultaneously.

System calls Linux applications in ARMv7-A run in User (unprivileged) mode or at PL0 level 
for systems that implement the Security Extensions. Many parts of the system are 
not directly accessible in User mode. For example, the kernel might prevent User 
mode programs from accessing peripherals, kernel memory space and the 
memory space of other User mode programs. Access to some features of the 
system control coprocessor (CP15) is not permitted in User mode. The kernel 
provides an interface (using the SVC instruction) which permits an application to 
call kernel services, this is what forms a system call. Execution is transferred to 
the kernel through the SVC exception handler, which returns to the user application 
when the system call is complete.

Libraries Linux applications are, with very few exceptions, not loaded as complete 
pre-built binaries. Instead, the application relies on external support code linked 
from files called shared libraries. This has the advantage of saving memory space, 
in that the library only has to be loaded into RAM once and is more likely to be 
in the cache as it can be used by other applications. Also, updates to the library 
do not require every application to be rebuilt. However, this dynamic loading 
means that the library code must not rely on being in a particular location in 
memory.

Files These are essentially blocks of data which are referred to using a pathname 
attached to them. Device nodes have pathnames like files, but instead of being 
linked to blocks of data, they are linked to device drivers which handle real I/O 
devices like an LCD display, disk drive or mouse. When an application opens, 
reads from or writes to a device, control is passed to specific routines in the kernel 
that handle that device.

B.1.3 Embedded Linux

Linux-based systems cover the range from servers, using the desktop, through mobile devices, 
right down to high-performance micro-controllers in the form of uClinux for processors lacking 
an MMU. However, while the kernel source code base is the same, different priorities and 
constraints mean that there can be some fundamental differences between the Linux running on 
your desktop and the one running in your set-top box, as well as between the development 
methodologies used.

In a desktop system, a form of bootloader executes from ROM, either BIOS or UEFI. This has 
support for mass-storage devices and can then load a second-stage loader, for example GRUB, 
from a CD, a hard drive or even a USB memory stick. From this point on, everything is loaded 
from a general-purpose mass storage device.

In an embedded device, the initial bootloader is likely to load a kernel directly from on-board 
flash into RAM and execute it. In severely memory constrained systems, it might have a kernel 
built to execute in place (XiP), where all of the read-only portions of the kernel remain in ROM, 
and only the writable portions use RAM. Unless the system has a hard drive (or for fault 
tolerance reasons), the root filesystem on the device is likely to be located in flash. This can be 
a read-only filesystem, with portions that have to be writable overlaid by tmpfs mounts, or it can 
be a read-write filesystem. In both cases, the storage space available is likely to be significantly 
less than in a typical desktop computer. For this reason, they might use software components 
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such as uClibc and BusyBox to reduce the overall storage space required for the base system. A 
general desktop Linux distribution is usually supplied preinstalled with a lot of software that you 
might find useful at some point. In a system with limited storage space, this is not really optimal. 
Instead, you want to be able to select exactly the components you require to achieve what you 
want with your system. Various specific embedded Linux distributions exist to make this easier.

In addition, embedded systems often have lower performance than general purpose computers. 
In this situation, speed of development can be significantly increased by compiling software for 
the target device on a faster desktop computer and then moving it across to the target device. 
This process is called cross-compiling.

B.1.4 Board Support Package

Getting Linux to run on a particular platform requires a Board Support Package (BSP). We can 
divide the platform-specific code into a number of areas:

• Architecture-specific code. This is found in the arch/arm/ directory of the Linux kernel 
source code and forms part of the kernel porting effort carried out by the ARM Linux 
maintainers. 

• Processor-specific code. This is found in the arch/arm/mm/ and arch/arm/include/asm/ 
directories of the Linux kernel source code. This takes care of MMU and cache functions 
(for example, translation table setup, Translation Lookaside Buffer and cache invalidation 
and memory barriers). On SMP processors, spinlock code will be enabled.

• Generic device drivers are found under drivers/.

• Platform-specific code will be placed in the arch/arm/mach-*/ directory of the Linux 
kernel source code. This is code which is most likely to be altered by people porting to a 
new board containing a processor with existing Linux support. The code will define the 
physical memory map, interrupt numbers, location of devices and any initialization code 
specific to that board.

B.1.5 Linaro

Linaro is a non-profit organization which works on a range of open source software running on 
ARM processors, including kernel related tools and software and middleware. It is a 
collaborative effort between a number of technology companies to provide engineering help and 
resources to the open source community.

Linaro does not produce a Linux distribution, nor is it tied to any particular distribution or board. 
Instead, Linaro works on generic ARM technology to provide a common software platform for 
use by board support package developers. Its focus is on tools to helping developers write and 
debug code, on low-level software which interacts with the underlying hardware and on key 
pieces of middleware. Linaro's members have a reduced time to market and can deliver unique 
open source based products using ARM technology.

Linaro engineers work on the kernel and tools, graphics and multimedia and power 
management. Linaro provides patches to upstream projects and makes monthly source tree 
tarballs available, with an occasional integrated build every six months to consolidate the work. 

In this way, code can easily be transferred to the mainline Linux kernel and other open source 
projects. Evaluation builds of Android and Ubuntu, plus generic Linux, toolchain and other 
downloads for ARMv7 processors are available from http://www.linaro.org/downloads/.

See http://www.linaro.org/ for more information about Linaro.
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B.2 Useful tools
Thissection takes a brief look at some available tools which can be useful to developers of ARM 
architecture based Linux systems. These are all extensively documented elsewhere. Here, we 
merely point out that these tools can be useful, and provide short descriptions of their purpose 
and function.

B.2.1 QEMU

QEMU is a fast, open source machine emulator. It was originally developed by Fabrice Bellard 
and is available for a number of architectures, including ARM. It can run operating systems and 
applications made for one machine (for example, an ARM processor) on a different machine, 
such as a PC or Mac. It uses dynamic translation of instructions and can achieve useful levels 
of performance, enabling it to boot complex operating systems like Linux. 

B.2.2 BusyBox

BusyBox is a piece of open source software which provides many standard Unix tools, in a very 
small executable, which is ideal for many embedded systems and could be considered to be a 
de facto standard. It includes most of the Unix tools which can be found in the GNU Core 
Utilities, and many other useful tools including init, dhclient, wget and tftp. Less commonly 
used command switches are removed. 

BusyBox calls itself the “Swiss Army Knife of Embedded Linux” – a reference to the large 
number of tools packed into a small package. BusyBox is a single binary executable which 
combines many applications. This reduces the overheads introduced by the executable file 
format and enables code to be shared between multiple applications without having to be part 
of a library.

B.2.3 Scratchbox

The general principle of cross-compiling is to use one system (the host) to compile software 
which runs on some other system (the target). 

The target is a different architecture to the host and so the host cannot natively run the resulting 
image. For example, you might have a powerful desktop x86 machine and want to develop code 
for a small battery-powered ARM processor based device which has no keyboard. Using the 
desktop machine will make code development simpler and compilation faster. There are some 
difficulties with this process. Some build environments will try to run programs on the target 
machine during compilation, and of course this is not possible. In addition, tools which during 
the build process try to discover information about the machine (for software portability 
reasons), do not work correctly when cross-compiling.

Scratchbox is a cross-compilation toolkit which solves these problems and gives the necessary 
tools to cross-compile a complete Linux distribution. It can use either QEMU or a target board 
to execute the cross-compiled binaries it produces.

B.2.4 U-Boot

Das U-Boot (Universal Bootloader) is a universal bootloader that can easily be ported to new 
hardware processors or boards. It provides serial console output which makes it easy to debug 
and is designed to be small and reliable. In an x86 system, we have BIOS code which initializes 
the processor and system and then loads an intermediate loader such as GRUB or syslinux, 
which then in turn loads and starts the kernel. U-Boot essentially covers both functions.
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B.2.5 UEFI and Tianocore

The Unified Extensible Firmware Interface (UEFI) is the specification of a programmable 
software interface that sits on top a computer’s hardware and firmware. Rather than all of the 
boot code being stored in the motherboard’s BIOS, UEFI sits in non-volatile memory. A 
computer boots into UEFI, a set of actions are carried out, before loading an operating system, 
such as Windows or Linux. While BIOS is limited to 16-bit processes and 1MB of memory 
addressing, UEFI can function in 32-bit and 64-bit modes, enabling much more RAM to be 
addressed by more complex processes. It also can be architecture independent and provide 
drivers for components that are also independent of what kind of processor you have. The UEFI 
forum is a non-profit collaborative trade organization formed to promote and manage the UEFI 
standard.

UEFI is processor architecture independent and the Tianocore EFI Development Kit 2 (EDK2) 
is available under a BSD license. It contains UEFI support for ARM platforms, including ARM 
Versatile Express boards.

See http://www.uefi.org and http://sourceforge.net/apps/mediawiki/tianocore for more 
information. 
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B.3 Software toolchains for ARM processors
There are a wide variety of compilation and debug tools available for ARM processors. In this 
section, we will focus on two toolchains (a collection of programming tools), the GNU toolchain 
which includes the GNU Compiler (gcc), and the ARM Compiler toolchain which includes the 
armcc compiler.

Figure B-1 shows how the various components of a software toolchain interact to produce an 
executable image.

Figure B-1 Using a software toolchain to produce an image

B.3.1 GNU toolchain

The GNU toolchain is used both to develop the Linux kernel and to develop applications (and 
indeed other operating systems). Like Linux, the GNU tools are available on a large number of 
processor architectures and are actively developed to make use of the latest features 
incorporated in ARM processors.

The toolchain includes the following components:

• GNU make.

• GNU Compiler Collection (GCC).

• GNU binutils linker, assembler and other object/library manipulation tools.

• GNU Debugger (GDB).

• GNU build system (autotools).

• GNU C library (glibc or eglibc).
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glibc is available on all GNU Linux host systems and provides portability, wide compliance with 
standards, and is performance optimized. However, it is quite large for some embedded systems 
(approaching 2MB in size) so other libraries may be preferred in smaller systems. For example, 
uClibc provides most features and is around 400KB in size, and produces significantly smaller 
application binaries. Android does not use glibc, but instead has its own BSD-derived system C 
library called Bionic.

Prebuilt versions of GNU toolchains

If you are using a complete Linux distribution on your target platform, and you are not 
cross-compiling, you can install the toolchain packages using the standard package manager. 
For example, on a Debian-based distribution such as Ubuntu you can use the command:

sudo apt-get install gcc g++ gcc-doc

Additional required packages such as binutils will also be pulled in by this command, or you 
can add them explicitly on the command line. In fact, if g++ is specified this way, gcc is 
automatically pulled in. This toolchain will then be accessible in the way you would expect in 
any Linux system, by calling gcc, g++, as, or similar.

If you are cross-compiling, you must install a suitable cross-compilation toolchain. The 
cross-compilation toolchain consists of the GNU Compiler Collection (GCC) but also the GNU 
C library (glibc) which is necessary for building applications (but not the kernel).

Ubuntu distributions from Maverick (10.10) onwards include specific packages for this. These 
can be run using the command:

sudo apt-get install gcc-arm-linux-gnueabi

The resulting toolchain will be able to build Linux kernels, applications and libraries for the 
same Ubuntu version that is used on the build platform. It will however, have a prefix added to 
all of the individual tool commands in order to avoid problems distinguishing it from the native 
tools for the workstation. For example, the cross-compiling gcc will be accessible as 
arm-linux-gnueabi-gcc.

If your workstation uses an older Ubuntu distribution or an alternative Linux distribution, 
another toolchain must be used. 

Linaro provide up-to-date source packages for ARM toolchains from 
http://www.linaro.org/downloads/. These can be used for generating both cross and native 
toolchains.

B.3.2 ARM Compiler toolchain

The ARM Compiler toolchain can be used to build programs from C, C++, or ARM assembly 
language source. It generates optimized code for the 32-bit ARM and mixed length (16-bit and 
32-bit) Thumb instruction sets, and supports full ISO standard C and C++. It also supports the 
NEON SIMD instruction set with the vectorizing (multiple operations simultaneously) NEON 
compiler.

The ARM Compiler toolchain comprises the following components:

armcc The ARM and Thumb compiler. This compiles your C and C++ code. It supports 
inline and embedded assembly code, and also includes the NEON vectorizing 
compiler, invoked using the command:
armcc --vectorize

armasm The ARM and Thumb assembler. This assembles ARM and Thumb assembly 
language sources.
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armlink The linker. This combines the contents of one or more object files with selected 
parts of one or more object libraries to produce an executable program.

armar The librarian. This enables sets of ELF format object files to be collected together 
and maintained in libraries. You can pass such a library to the linker in place of 
several ELF files. You can also use the library for distribution to a third party for 
further application development.

fromelf The image conversion utility. This can also generate textual information about the 
input image, such as disassembly and its code and data size.

C libraries The ARM C libraries provide:
• an implementation of the library features as defined in the C and C++ 

standards
• extensions specific to the ARM Compiler
• GNU extensions
• common nonstandard extensions to many C libraries
• POSIX extended functionality
• functions standardized by POSIX (See Threading libraries on page 19-6).

C++ libraries 
The ARM C++ libraries provide:
• helper functions when compiling C++
• additional C++ functions not supported by the Rogue Wave library.

Rogue Wave C++ libraries 
The Rogue Wave library provides an implementation of the standard C++ library.
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B.4 ARM DS-5
ARM DS-5 is a professional software development solution for Linux, Android and bare-metal 
embedded systems running on on ARM processor-based hardware platforms. DS-5 covers all 
the stages in development, from boot code and kernel porting to application debug. See  
http://ds.arm.com/

ARM DS-5 features an application and kernel space graphical debugger with trace, system-wide 
performance analyzer, real-time system simulator, and compiler. These features are included in 
an Eclipse-based Integrated Development Environment (IDE). 

Figure B-2 DS-5 Debugger

A full list of the hardware platforms that are supported by DS-5 is available 
from http://ds.arm.com/supported-devices/

ARM DS-5 includes the following components:

• Eclipse-based IDE combines software development with the compilation technology of 
the DS-5 tools. Tools include a powerful C/C++ editor, project manager and integrated 
productivity utilities such as the Remote System Explorer (RSE), SSH and Telnet 
terminals.

• DS-5 Compilation Tools. Both GCC and the ARM Compiler are provided. See ARM 
Compiler toolchain on page B-8 for more information about the ARM Compiler.

• Fixed Virtual Platforms (FVPs) of complete ARM Cortex-A8 and Cortex-A9 MPCore 
processor-based devices. Typical simulation speeds are above 250 MHz.
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• DS-5 Debugger, shown in Figure B-2 on page B-10, together with a supported debug 
target, enables debugging of bare-metal applications, Linux or Android kernels, Linux or 
Android applications and Linux or Android kernel modules. It gives complete control 
over the flow of program execution to quickly isolate and correct errors. It provides 
comprehensive and intuitive views, including synchronized source and disassembly, call 
stack, memory, registers, expressions, variables, threads, breakpoints, and trace and a 
number of Example projects, including bare-metal startup code examples for the range of 
ARM processors, and Linux applications example projects that can run models or (using 
JTAG-based debug hardware) on real hardware.

• DS-5 Streamline, a system-wide software profiling and performance analysis tool for 
ARM processor based Linux and Android platforms. DS-5 Streamline supports SMP 
configurations, native Android applications and libraries. 
Streamline only requires a standard TCP/IP network connection to the target in order to 
acquire and analyze system-wide performance data from Linux and Android systems, 
therefore making it an affordable solution to make software optimization possible from 
the early stages of the development cycle.
See DS-5 Streamline on page 16-4 for more information.
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B.5 Example platforms
In this section we’ll mention a few widely available, off-the-shelf ARM processor based 
platforms which are suitable for use by students or hobbyists for Linux development. This list 
is likely to become outdated quickly, as newer and better boards are frequently announced. Of 
course, for mobile application development, your nearest smartphone is a good development 
platform.

B.5.1 BeagleBone Black

BeagleBone Black is a community-supported development platform for developers and 
hobbyists that uses a IGHz Cortex-A8 processor with 512MB DDR3 RAM and 4 USB ports and 
can be used to run Linux and Android 

B.5.2 Gumstix

This derives its name from the fact that the board is the same size as a stick of chewing gum. 
The Gumstix Overo uses the OMAP3503 device from TI, containing a Cortex-A8 processor 
clocked at 600MHz and runs Linux 2.6 with the BusyBox utilities and OpenEmbedded build 
environment.

B.5.3 PandaBoard

PandaBoard is a single-board computer based on the Texas Instruments OMAP4430 device, 
including a dual-core 1GHz ARM Cortex-A9 processor, a 3D Accelerator video processor and 
1GB of DDR2 RAM. Its features include Ethernet and Bluetooth plus DVI and HDMI 
interfaces. 

B.5.4 Arndale Octa Board

The Arndale Octa board uses a 1.8GHz quad- core Cortex-A15 and 1.2GHz quad-core 
Cortex-A7 processors in a big.LITTLE configuration which enables energy efficient computing 
for less intensive tasks. It supports 1080p video encoding and decoding, 3D graphics display and 
high resolution image signal processing using an ARM Mali™ T628 GPU.

B.5.5 Altera Cyclone V SoC

The Altera Cyclone integrates an ARM-based hard processor system (HPS) with a 925MHz 
dual-core Cortex-A9 processor, peripherals and memory interfaces and 1 GB DDR3 SDRAM 
with the FPGA fabric using a high-bandwidth interconnect, also with 1 GB DDR3 SDRAM. It 
can be used for high-volume applications including protocol bridging, motor control drives, 
broadcast video converter and capture cards, and handheld devices.

B.5.6 Xilinx Zynq-7000 All Programmable SoC

The Xilinx Zynq-7000 contains a 1GHz, dual-core, hardened implementation of the ARM 
Cortex-A9 processor with 1GB of DDR3 component memory. The clusters communicate with 
on-chip memory, SDRAM and Flash memory controllers, and peripheral blocks through an 
ARM AMBA AXI-based interconnect. The board is ideal for motor control applications , video 
surveillance and machine vision, vending machines, as well as manufacturing, assembly and 
automation. 
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B.5.7 Freescale Vybrid

Vybrid F Series controller solutions range from a single Cortex-A5 core to a dual-core 
Cortex-A5 processor with a Cortex-M4 Memeory Control Unit and are designed for industrial 
applications that require critical safety and security, connectivity, rich HMI and real-time 
control.
ARM DEN0013D Copyright © 2011 – 2013 ARM. All rights reserved. B-13
ID012214 Non-Confidential



Appendix C 
Building Linux for ARM Systems

A working Linux system has two primary components, namely the kernel and the root filesystem. 
The kernel is the core of the operating system and acts as a resource manager. It is loaded into RAM 
by the bootloader and then executed during the boot process, as described in Chapter 13. The root 
filesystem contains system libraries, applications, tools and utilities, for example, command line 
interfaces or shells, graphical interfaces (such as the X window system), text editors (such as vi, 
emacs, gedit) and advanced applications like web browsers or office suites.

The root filesystem is often located in persistent storage, such as a hard disk or a flash device. 
However, the root filesystem can also reside in primary memory (RAM). Althoughwe do not cover 
RAM-based filesystems in great detail, we will cover the steps for building the kernel and then the 
root filesystem, before analyzing how these fit together to get the system running. 
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C.1 Building the Linux kernel
This section explains the steps required to build the kernel for an ARM processor based 
platform, either natively on the target platform or cross-compiled on, for example, an x86 PC. 
The platform we build the kernel for is called the target platform. The platform on which we 
build is called the build platform. We assume that the reader has some experience in using 
Linux, C compilers and has a machine (either x86 or ARM processor based) running a Linux 
distribution like Ubuntu – for other distributions some of the steps of the build procedure might 
differ slightly. We also assume that the build machine has a working internet connection. If this 
machine is ARM processor based, it is not necessary for the build platform to be exactly the 
same as the target platform.

The Linux kernel can be viewed as consisting two parts. One part is architecture independent 
and consists of components like process schedulers, system call interfaces 
architecture-independent device drivers and high-level network subsystems. The other part is 
closely related to the hardware platform for which the kernel is being built. This consists of 
board initialization code and drivers corresponding to a specific hardware platform. While 
building a kernel one has be sure of having the correct set of initialization code and drivers for 
the platform at hand.

The Linux kernel sources can be found at  http://www.kernel.org/. 

There are two ways to get the kernel source code. The first is to download a compressed tar file. 
The exact name of this file will naturally depend on the version of the kernel selected, for 
example 2.6.34. When downloaded, this file must be uncompressed using a command similar 
to the following.

tar xjvf  linux-2.6.34.tar.bz2

The other option for obtaining the kernel source is to obtain the source tree using GIT (git) 
commands. Linux is developed using the GIT version control system, which can be installed 
using a command similar to the one below for Ubuntu.

sudo apt-get install git-core

Obviously, a working internet connection is required for the above steps and those which follow.

The Linux source tree can be cloned with a command similar to the following:

git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git

This command will copy the official Linux kernel repository to the current directory, which can 
take some time. You can then check out a specific tag, which is a local operation and fairly 
quick. 

git checkout -b  v2.6.34

Follow the instructions in Prebuilt versions of GNU toolchains on page B-8 in order to obtain 
and install a suitable toolchain. Also ensure that the toolchain is accessible on your path.

When the source tree is in place, the kernel has to be configured to match the hardware platform 
and desired kernel features. The standard method is to use a command such as:

make ARCH=arm realview_defconfig

which generates a default configuration file for the RealView platform file and stores it as  
.config.

There are several methods available for configuring the kernel. The most commonly used 
provides a text based interface based on the ncurses library. It can be invoked using the 
command:
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make ARCH=arm menuconfig

This gives a configuration screen for selecting or omitting features of the kernel, as shown in 
Figure C-1.

Figure C-1 Kernel Configuration screen using make menuconfig

If this command fails, and the configuration menu does not appear, this could be because the 
ncurses header files are not installed on your build host. You can install them by executing:

sudo apt-get install libncurses5-dev

The other alternative is to use a graphical Xconfig tool; this uses the Qt GUI library and can be 
invoked using the command:

make ARCH=arm xconfig

Figure C-2 on page C-4 shows the Kernel Configuration screen from this tool.
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Figure C-2 Kernel Configuration screen using make xconfig

When the kernel is configured correctly then it can be built using a simple make command as 
below – exact details can differ slightly depending on the bootloader used:

make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi-

The CROSS_COMPILE value must be set to the toolchain cross-compilation prefix (Prebuilt versions 
of GNU toolchains on page B-8) or must be completely left out for native compilation.

The output of the compilation would be in the form of a compressed kernel zImage. This can 
usually be found in the path <source root>/arch/arm/boot as a file named zImage.

When compiling natively on an ARM processor based system, the CROSS_COMPILE... parameter 
can be left out. If a different cross compilation toolchain than the codesourcery Linux EABI 
toolchain is used, arm-none-linux-eabi- might have to be modified to reflect the name of the 
toolchain executables. The above also assumes that the cross compilation toolchain executable 
directory is listed in your PATH environment variable.

This operation requires the mkimage utility to be installed. The Ubuntu package name for this tool 
is uboot-mkimage.

If the hardware platform uses the U-Boot bootloader, the kernel image must be converted into 
a form accepted by U-boot. For example, in Ubuntu the uboot-mkimage package can be installed 
followed by the command below, instead of the simple make, to create an “ubootified” image. 
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make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi- uImage

The built kernel image would be found as the file named uImage, again in the path <source 
root>/arch/arm/boot.

Now that the kernel is built, the filesystem must be created in order to have a working ARM 
Linux system. The next section deals with creating the filesystem.
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C.2 Creating the Linux filesystem
Creating a filesystem for an ARM processor based platform is relatively straightforward, using 
a Ubuntu distribution. The procedure described here does not actually compile the filesystem, 
rather it downloads pre-built packages to create the filesystem. A full compilation of the 
filesystem would take many hours of compilation time and can be technically challenging.

For carrying out the process of putting together the filesystem the rootstock package must be 
installed, which can be done using the command below:

sudo apt-get install rootstock

When the package is installed, navigate to the directory to be used for creating and saving the 
filesystem. The filesystem can be created in the form of a compressed tarball using the 
command below. 

sudo rootstock --fqdn ubuntu --login ubuntu --password ubuntu --imagesize 3G --seed 
ubuntu-desktop

In this case, the system would be based on the ubuntu-desktop seed which includes a desktop 
windowing system. Other seeds could be used instead, for example xubuntu-desktop (for a 
smaller, more lightweight desktop system) or build-essential (for a text based interface).

Note
 This step might take a significant amount of time, depending on the speed of the internet 
connection.

The following steps describe the process of preparing a disk drive and transferring the 
filesystem to it. This disk would then be used as the root filesystem on the ARM processor based 
platform. The term disk drive is used here in a loose sense and refers to a variety of secondary 
storage devices, for example, hard disks, compact-flash drives, or USB drives. After plugging 
in the disk drive to the computer which was used to create the filesystem, the following 
command can be used to check the connected drives

sudo fdisk  –l

Note
 The disk drive being used for storing the root filesystem of the ARM processor based platform 
will be formatted by the following steps. The process of formatting the disk will destroy any 
data that might exist on the disk. You must ensure that the disk does not contain any useful data 
prior to formatting, as this data will be permanently erased. It is also easy to lose the data 
elsewhere on the system if the wrong device is specified here.

The disk drive to be used must be identified correctly in the list given by the command above 
(for example, /dev/sdb). Assuming that /dev/sdb is the correct device or disk drive, the 
following command is required to partition the drive correctly.

sudo fdisk /dev/sdb

On entering the above command, the fdisk prompt will be displayed. Now a sequence of fdisk 
command must be entered which are in the form of single characters. 

Type m to display the help for the possible set of fdisk commands. Use d to delete any existing 
partitions on the disk. You can then create a new partition using n. The character w is used to 
write the changes to the disk and exit. You can check that the partition has been written correctly 
by starting fdisk again using the above command, followed by a p for printing the partition 
table. 
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When the partition table has been written correctly, the disk partition that has been created can 
be formatted. Usually the first partition created on the disk identified by (for example) /dev/sdb 
is denoted as /dev/sdb1. The command for formatting this partition as an ext-3 filesystem is as 
below.

sudo mkfs.ext3 /dev/sdb1

Now, the previously created tarball for the Linux filesystem must be decompressed into this disk 
partition. To do this, the disk partition must be mounted which either can be done manually with 
the mount command, or automatically by unplugging and re-plugging in the drive. In the 
automatic mounting case, the disk is usually mounted at the location /media/<disk_directory>. 
Navigate to the directory at which the disk is mounted and uncompress the file-stem tarball into 
it using the command below:

sudo tar zxvf  <path_to_tarred_file_system/file.tgz>

Now that both the kernel and filesystem have been created, the two must be brought together to 
have a working Linux system.

Note
 It is also possible to store the root filesystem in primary memory, using a RAMDISK. However, 
this alternative will not be described here and is left to advanced users.
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C.3 Putting it together
The steps for creating the kernel and the filesystem are generic and common to many different 
boards or platforms. However, the steps for having the kernel programmed onto the platform 
can vary between boards. For most boards, the kernel must be transferred to some form of 
secondary memory that either exists on the board or is connected to it. For example, on ARM 
Versatile boards, the kernel must be copied on to a flash device on the board. There can be two 
different kinds of procedures for doing this depending on the board. 

Use the documentation for your development board to find the appropriate method for getting 
your kernel installed, and follow the instructions. You must also ensure that the root filesystem 
which was created earlier is connected correctly or copied onto the target board.

In order to obtain a list of possible U-Boot commands type help at the U-Boot prompt.

The U-Boot bootloader is popular on many ARM processor based platforms. It is free and 
open-source. Other than U-Boot, there are also other bootloaders which might be proprietary for 
certain ARM processor based platforms. In order to interact with the bootloader, it might be 
necessary to connect a serial interface between the board or platform and a personal computer 
running a serial terminal. Again, refer to the board’s user manual for more details.

The bootloader can pass a set of parameters to the kernel during the boot process. Among these 
is the kernel command line, known in U-Boot as bootargs (short for boot arguments).These 
parameters are used by the kernel for some initialization configurations. An example command 
for setting up the bootargs on ARM Versatile boards is shown below. This must be entered at 
the U-Boot prompt.

setenv bootargs root=/dev/sda1 mem=512M@0x20000000 ip=dhcp console=ttyAMA0 clcd=xvga 
rootwait

The bootargs in this case specifies the following:

• The root filesystem is in /dev/sda1.

• The memory region to be used by the operating system in the form of a size (512MB) and 
a starting address location. This isn’t required if the bootloader passes the correct 
ATAG_MEM atag.

• The IP address (for example, 192.168.0.7) or the mechanism for obtaining it (in this case 
DHCP).

• The display interface details. 

• The delay required before trying to mount the root filesystem which can be required for 
devices to be recognized (for example, USB disks).

The command above can be followed by a saveenv command in U-Boot, to save the changes 
into flash and make them permanent. In order to obtain a list of possible U-Boot commands type 
help at the U-Boot prompt. Type help <command> at the U-Boot prompt, to get more details 
regarding a particular command.

The bootloader also requires a boot command to start the boot process automatically. In the 
simplest case the bootcmd can be set as follows, where 0x41000000 is the location where the 
kernel is stored for example in flash memory.

setenv bootcmd bootm 0x41000000

If the kernel image exists at a different location, or on the network, a cp or tftp command can 
precede the bootm command. U-Boot commands on the same line must be separated by a “;”, 
for example:
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setenv bootcmd cp 0x65000000 0x41000000 0x8000000; bootm 0x41000000

Again, a saveenv command would be required, to ensure that changes are saved to secondary 
storage. Now that the bootcmd is in place, the system must be restarted so that the bootcmd is 
used automatically and the system starts running. The sequence of boot commands can also be 
entered manually at the U-Boot prompt, to try different options without saving them 
permanently. 
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