
© 2021 Arm

Accelerate Image
Processing

Using FPGA Hardware

2 © 2021 Arm

Learning Outcomes

At the end of this module, you will be able to:

• Explain the purpose of hardware acceleration and give examples of its implementation.

• Give examples on how to modularize hardware to achieve hardware acceleration.

• Compare and contrast the advantages and disadvantages of hardware acceleration vs

using Neon technology.

3 © 2021 Arm

Parallel Image Processing

Input Output

Pixel 2

Step A

Pixel 1

Step A

Pixel 2

Step B

Pixel 1

Step B

… …

Pixel N

Step A

Pixel N

Step B

• SIMD processor

• DSP

• GPU

• Customized logic

Input Output
Pixel 1

Step B

Pixel 1

Step A

Pixel 2

Step B

Pixel 2

Step A
… …

4 © 2021 Arm

Hardware Acceleration

• Hardware acceleration is the use of hardware to perform some functions instead of

running on a general-purpose CPU.

• The hardware is designed for specific functions to increase performance and/or reduce

resource consumption.

• It is a tradeoff between flexibility and efficiency.

• Examples of hardware acceleration:
• GPUs

• Fixed-function implemented on FPGAs

• Fixed-function implemented on ASICs

5 © 2021 Arm

Example of Hardware Acceleration

• Graphics Processing Unit (GPU) is one of the well-known examples of hardware

acceleration.

• The name GPU was popularized by Nvidia in 1999.

Before that, some implementations of graphics display accelerator had been used in PCs

and game consoles.

• Nowadays, GPUs become usually one of the top 2 computing modules in computers and

mobile devices to perform 2D and 3D graphics. Considering the parallel computing

ability of GPUs, they are even used to do general-purpose computing.

6 © 2021 Arm

Zynq-7000 Platform

7 © 2021 Arm

• Zynq specifically integrates Arm Cortex CPUs and Xilinx FPGAs

• Need of description and connection between CPUs and FPGAs
• AXI protocol is one of the standard protocols for bus connections

• Increase the re-usability and lead to low development cost

• AXI4 protocol (Advanced eXtensible Interface 4)
• 4th generation of Arm AMBA (Advanced Microcontroller Bus Architecture) interface standard

• Provide high-bandwidth, low-latency, highly flexible design for various components and requirements

• For re-usability and scalability

FPGA on Zynq platforms

8 © 2021 Arm

Offload Image-Processing Algorithm from CPU to FPGA

HDMI HDMI decode
HDMI output

peripheral

9 © 2021 Arm

Modularize Hardware

• Video Stream Processing

• AXI4 Stream protocol would be suitable

• Using a standard protocol leads to design re-usability

• We split “Edge Detection HW” into two(or three) modules

• Intensity kernel (computes intensity of each pixel, or converts RGB pixels to grey-scale ones)

• Stencil Edge Kernel (computes edge values of specific pixels)

 Stencil Buffer Memory (buffers intensity of each pixel)

 Edge Kernel (actual kernel for edge values)

Edge

Detection

HW

Intensity

kernel

Stencil

Buffer

Memory

Edge

Kernel

s_axis_tdata[23:0]

(RGB pixels)

s_axis_tdata[7:0]

(Intensity pixels)

s_axis_tdata[23:0]

(edge pixels) Stencil_pixels[7:0]x8

Stencil Edge Kernel

AXI4-Stream AXI4-Stream

modularize

10 © 2021 Arm

1st Module: Intensity kernel

• Pipeline structure for intensity computation
• In our design, we get an intensity pixel per cycle after 5cycle latency

• Separate data path and control path

s_axis_tdata[23:0]

(RGB pixels) 𝑅𝑖,𝑗: s_axis_tdata[23:16] 𝐺𝑖,𝑗: s_axis_tdata[15:8] 𝐵𝑖,𝑗: s_axis_tdata[7:0]

s_axis_tdata[7:0]

(intensity pixels)

Finite State Machine & Controller

based on AXI4-Stream protocol

s_axis_tvalid

s_axis_tuser
s_axis_tlast
s_axis_tready

m_axis_tvalid

m_axis_tuser
m_axis_tlast
m_axis_tready

11 © 2021 Arm

1st Module: Intensity kernel - Pipeline

• In our design, we put pipeline register in the above dotted line
• 5 pipeline registers lead to 5 cycle latency

• # of pipeline registers could be reduced in accordance with clock frequency

s_axis_tdata[23:0]

(RGB pixels) 𝑅𝑖,𝑗: s_axis_tdata[23:16] 𝐺𝑖,𝑗: s_axis_tdata[15:8] 𝐵𝑖,𝑗: s_axis_tdata[7:0]

s_axis_tdata[7:0]

(intensity pixels)

12 © 2021 Arm

2nd Module: Stencil Edge Kernel

• Split “Stencil Edge Kernel” Module into two smaller modules to separate functions
(buffering & computation)

• Stencil Buffer Memory is useful for Stencil Kernel i.e. Stencil computation in stream

processing

Stencil

Buffer

Memory

Edge

Kernel

s_axis_tdata[7:0]

(Intensity pixels)

s_axis_tdata[23:0]

(edge pixels) Stencil_pixels[7:0]x8

Stencil Edge Kernel

13 © 2021 Arm

Stencil Computing
Computation involving 8 neighboring pixels is called “Stencil Computation”

⋯⋯⋯

⋯⋯⋯

⋯⋯⋯

⋮ ⋮ ⋮ ⋱

1 2 3 4 5 1277 1278 1279

1

2

3

4

5

717

719

718

⋯⋯⋯

⋮ ⋮

⋯⋯⋯ 720

1280

0

0

14 © 2021 Arm

2-1st Module: Stencil Buffer Memory

⋯⋯⋯

1 2 3 4 5 1277 1278 1279

1

2

3

⋯⋯⋯ 1280

• In video streaming, one pixel comes in every 1 cycle

• For example, in order to compute edge pixel (2, 2), you need to buffer the above light-blue pixels
• In case of 1280x720 resolution, we need 2𝑥 + 3 = 2,563 buffers (∵ 𝑥 = 1,280)

• Get valid data for edge kernel module after 1 cycle latency
• Our policy is that we slack computing peripheral pixels because they are not so important after all

s_axis_tdata[7:0]

(Intensity pixels)

𝑥 + 1 buffers 𝑨𝒊,𝒋 𝑨𝒊+𝟏,𝒋 𝑨𝒊−𝟏,𝒋+𝟏 𝑨𝒊+𝟏,𝒋+𝟏

𝑥 + 1 buffers

𝑨𝒊−𝟏,𝒋−𝟏 𝑨𝒊+𝟏,𝒋−𝟏 𝑨𝒊−𝟏,𝒋

do_02 do_01 do_00 do_10 do_12 do_22 do_21 do_20

do_00 do_01 do_02

do_10 do_12

do_20 do_21 do_22

15 © 2021 Arm

2-2nd Module: Edge Kernel

• Pipeline structure for intensity computation
• In our design, we get an edge pixel per cycle after 8cycle latency

• Separate data path and control path

>>4

+ + − ×

+ +
+ + − ×

+ +

+ s_axis_tdata[7:0]

(edge pixels)

do_02

do_12

do_22

do_00

do_10

do_20

do_20
do_21

do_22

do_00

do_01

do_02

Finite State Machine & Controller

based on AXI4-Stream protocol

s_axis_tvalid

s_axis_tuser
s_axis_tlast
s_axis_tready

m_axis_tvalid

m_axis_tuser
m_axis_tlast
m_axis_tready

Edge Kernel

do_00 do_01 do_02

do_10 do_12

do_20 do_21 do_22

𝐺𝑥

𝐺𝑦

Look at eq(2)&(3) in slide No.8

16 © 2021 Arm

2-2nd Module: Edge Kernel - Pipeline

• In our design, we put pipeline registers in above dotted line
• 8 pipeline registers lead to 8 cycle latency

• # of pipeline registers could be reduced in accordance with clock frequency

• Some operations deal with bit width adjustment, data saturation and you name it

>>4

+ + − ×

+ +
+ + − ×

+ +

+ s_axis_tdata[7:0]

(edge pixels)

do_02

do_12

do_22

do_00

do_10

do_20

do_20
do_21

do_22

do_00

do_01

do_02

Edge Kernel 𝐺𝑥

𝐺𝑦

17 © 2021 Arm

Performance Measurement

• Global timer embedded in Zynq can be used to measure the computing time

consumption.

18 © 2021 Arm

Performance Measurement

• Custom accelerator for edge detection has a 14-cycle latency.

• Given the main clock of AXI-based system in FPGA 125MHz (or 8ns/cycle),

the processing time 𝑇𝑝𝑟𝑜𝑐 applying edge detection to a single 1280x720 frame

• 𝑇𝑝𝑟𝑜𝑐 = 8ns ∙ {14cycles + 1280 ∙ 720 cycles} ≈ 7.37ms/frame

• In theory, the framerate can be achieved:

• 1frame 7.4ms ≈ 135FPS

19 © 2021 Arm

Custom Hardware Resource Utilization

• Total utilization of LUTs, Registers, and BRAMs is approx. 20-30%
• VDMA is responsible for almost or more than the half of it

• Custom accelerator ‘edge_detect_hw’ takes up less than 25% of the overall system with
respect to LUTs and registers.

Module LUTs (17,600) Registers (35,200) BRAMs (60) DSPs (80)

Whole 5,090 (29.0%) 7,085 (20.2%) 16.5 (27.5%) 0

VDMA 2,595 3,441 14 0

Edge Detect HW 1,079 1,771 0 0

20 © 2021 Arm

Neon vs. FPGA Offload

• Neon advantages

– Easy programming & debug

– Fully coherent with CPU, no cache maintenance operations

– Part of Arm arch - no hardware or software integration required

– Ecosystem support off-the-shelf, no porting required

• FPGA advantages

– Runs parallel with CPU, few CPU cycles required

– More ‘real time’ - no OS/cache variability

– Fixed function or limited codec support

– Potentially higher performance (e.g. 1080p Full HD video)

