arm Accelerate Image
Processing
Using FPGA Hardware

Learning Outcomes

At the end of this module, you will be able to:
* Explain the purpose of hardware acceleration and give examples of its implementation.
* Give examples on how to modularize hardware to achieve hardware acceleration.

 Compare and contrast the advantages and disadvantages of hardware acceleration vs
using Neon technology.

2 © 2021 Arm a r’m

Parallel Image Processing

3

Pixel 2
Step A

Pixel 2 —...—p| Output »

Step B

Step B —»| Output)

Ny Pixel 1 Pixel 1
I Input Step A > Step B >
Pixel 1 Pixel 1
Step A Step B
Pixel 2 Pixel 2
| Input)—P| Step A
‘ Pixel N H Pixel N ‘
Step A Step B

© 2021 Arm

SIMD processor
DSP
GPU

Customized logic

arm

Hardware Acceleration

* Hardware acceleration is the use of hardware to perform some functions instead of
running on a general-purpose CPU.

* The hardware is designed for specific functions to increase performance and/or reduce
resource consumption.
* Itis atradeoff between flexibility and efficiency.

* Examples of hardware acceleration:

GPUs
Fixed-function implemented on FPGAs
Fixed-function implemented on ASICs

4 © 2021 Arm a r’m

Example of Hardware Acceleration

* Graphics Processing Unit (GPU) is one of the well-known examples of hardware

acceleration.

 The name GPU was popularized by Nvidia in 1999.

5

Before that, some implementations of graphics display accelerator had been used in PCs
and game consoles.

Nowadays, GPUs become usually one of the top 2 computing modules in computers and
mobile devices to perform 2D and 3D graphics. Considering the parallel computing
ability of GPUs, they are even used to do general-purpose computing.

© 2021 Arm a r’m

Zynqg-7000 Platform

A

PROCESSOR I/0 MUX

PROCESSING SYSTEM

FLASH CONTROLLER

!

MULTIPORT DRAM CONTROLLER

v

MULTISTANDARD I/Os (3.3V AND HIGH-SPEED 1.8V)

< NOR, NAND, SRAM, QUAD SPI DDR3, DDR3L, DDR2
> §|>=<| AMBA® INTERCONNECT | [AMBA® INTERCONNECT
- T
— ARM® CORESIGHT® MULTICORE DEBUG AND TRACE
> CAN NEON® DSP/FPU ENGINE [| NEON® DSP/FPU ENGINE
| —] 2x CORTEX"—A9 MPCORE CORTEX"—A9 MPCORE
UART . . 32kB/32kB I/D CACHES 32kB/32kB I/D CACHES
- GPIO 512kB L2 CACHE
SNOOP 256kB
GENERAL INTERRUPT WATCHDOG
2x SDIO CONTROL ON-CHIP
- DA CONTROLLER TIMER UNEE MEMORY
= oes CONFIGURATION | TIMERS DMA
“—1 WiTH DMA ‘ e # ’ e
2% GigE
e —T
WITH DMA AMBA® INTERCONNECT | SECURITY [AMBA® INTERCONNECT
AES, SHA, RSA
EMIO Y
ACP HIGH-PERFORMANCE
GENERAL PURPOSE Tl
XADC
2x ADC, MUX, PROGRAMMABLE LOGIC] PTg'g EE”%S
THERMAL SENSOR (SYSTEM GATES, DSP, RAM)

v

MULTIGIGABIT TRANCEIVERS

6 © 2021 Arm

v

v

arm

FPGA on Zynq platforms

* Zynq specifically integrates Arm Cortex CPUs and Xilinx FPGAs

* Need of description and connection between CPUs and FPGAs
- AXI protocol is one of the standard protocols for bus connections
- Increase the re-usability and lead to low development cost

* AXIl4 protocol (Advanced eXtensible Interface 4) e
- 4th generation of Arm AMBA (Advanced Microcontroller Bus Architecture) iEEH—_—" il ats
- Provide high-bandwidth, low-latency, highly flexible design for various com SR |
- For re-usability and scalability

7 © 2021 Arm a rm

Offload Image-Processing Algorithm from CPU to FPGA

HDMI >—»

HDMI decode

8 © 2021 Arm

Cortex-A9

Edge .
—» Detection _b\[,)llfl'ler_’ HDM.I output >__HDMI >
HW \ peripheral
cpio | *_LEDs »
Interconnect ¥ Peripheral
I P <—< Switches
<+— Interconnect
Programmable
I Logic
DDR Processing
Controller System

arm

Modularize Hardware

AXl4-Stream Edge:' AXl4-Stream
- Detection >
HW
@ modularize
s_axis_tdata[23:0] s_axis_tdata[7:0] " s_axis_tdata[23:0]
(RGB pixels) Intensity | (Intensity pixels) Stencil | stencil_pixels[7:0]x8 Edge || (edge pixels)
—_— P Buffer E> >
kernel Kernel
Memory

Stencil Edge Kernel
* Video Stream Processing
« AXIl4 Stream protocol would be suitable
« Using a standard protocol leads to design re-usability

* We split “Edge Detection HW” into two(or three) modules

- Intensity kernel (computes intensity of each pixel, or converts RGB pixels to grey-scale ones)

- Stencil Edge Kernel (computes edge values of specific pixels)
= Stencil Buffer Memory (buffers intensity of each pixel)
= Edge Kernel (actual kernel for edge values)

9 © 2021 Arm 0 rm

15t Module: Intensity kernel

s_axis_tdata[23:0]
(RGB pixels)

Rl’]: S_aXiS_tdata[23:16] : ... :

G j: s_axis_tdata[15:8]

,@_,"@_L s_axis_tdata[7:0]

. (intensity pixels)
@)t

B; j:s_axis_tdata[7:0]

s_axis_tvalid |, m_axis_tvali
S—M Finite State Machine & Controller m_ax!s_tuger
s_axis_tlast based on AXI4-Stream protocol m_axis_tlagt
s, axis_tready m_axis_tready

* Pipeline structure for intensity computation
- In our design, we get an intensity pixel per cycle after 5cycle latency

* Separate data path and control path
10 © 2021 Arm 0 rm

15t Module: Intensity kernel - Pipeline

s_axis_tdata[23:0]
(RGB pixels)

R; ;: s_axis_tdata[23:16]

G j: s_axis_tdata[15:8] s_axis_tdata[7:0]

(intensity pixels)

B; j:s_axis_tdata[7:0]

* In our design, we put pipeline register in the above dotted line
- 5 pipeline registers lead to 5 cycle latency
- # of pipeline registers could be reduced in accordance with clock frequency

11 © 2021 Arm a rm

2" Module: Stencil Edge Kernel

s_axis_tdata[7:0]

(Intensity pixels)

>

Stencil
Buffer
Memory

Stencil_pixels[7:0]x8

Edge
Kernel

s_axis_tdata[23:0]
(edge pixels)

Stencil Edge Kernel

* Split “Stencil Edge Kernel” Module into two smaller modules to separate functions

(buffering & computation)

» Stencil Buffer Memory is useful for Stencil Kernel i.e. Stencil computation in stream

12

processing

© 2021 Arm

arm

Stencil Computing

Computation involving 8 neighboring pixels is called “Stencil Computation”

13

© 2021 Arm

717

718

719

720

0 1 2 3 4 5

1277 1278 1279 1280

arm

2-15t Module: Stencil Buffer Memory

x + 1 buffers x + 1 buffers
A A
. [| [|
s_axis_tdata[7:0]
. . P A Ai-1j1 Aivij| A, . |Ai-1j Air1jt A1}
(Intensity pixels) I L 1) A,J 1 #1ji1 11
do_22 do_21 do_20 do_12 do_10 do_02 do_01 do_00
1 2 3 4 5 eeeeeeenn 1277 1278 1279 1280
1| | | L
| do_00| do_01/do_02 i ! | i

3

S

ido_20|do_21|do_22 ; i i i

* Invideo streaming, one pixel comes in every 1 cycle

* For example, in order to compute edge pixel (2, 2), you need to buffer the above light-blue pixels
- In case of 1280x720 resolution, we need 2x + 3 = 2,563 buffers (~ x = 1,280)

* Get valid data for edge kernel module after 1 cycle latency
« Our policy is that we slack computing peripheral pixels because they are not so important after all

14 © 2021 Arm 0 r m

2-2"d Module: Edge Kernel

15

Edge Kernel

do_00|{do_01|do_02

Look at eq(2)&(3) in slide No.8

s_axis_tdata[7:0]

do 20 —> > E edge pixels
do_10 do_12 do 20 ——» +®—> >>4 |— (edge p)
do_21 _:_’®—|_’ G
do_20|d ; ~% y
_ o0_21(do_22 do_22 —; >
do_00 — >®j'@_[:©
do 01 &+
do 02 — 2\ i
s_axis_tvalid | m_axis_tvglid
>aXIS tuser Finite State Machine & Controller M_axis tuger
s_axis_tlast based on AXI4-Stream protocol m_axis_tlagt
s, axis_tready m_axis_tready

* Pipeline structure for intensity computation
- In our design, we get an edge pixel per cycle after 8cycle latency

* Separate data path and control path

© 2021 Arm

arm

2-2"4 Module: Edge Kernel - Pipeline

Edqe Kernel

d0_02 — >
do 12 —

o %@{@

do_00 : :
do 10 . 1 s_axis_tdata[7:0]
do_20 —* N o ﬂ_, (edge pixels)

do_20 —» +®

do 21 —* | |
do 22 Q_LL :
do_00 @j’@{c !

do 01 —
do_ 02 —

* In our design, we put pipeline registers in above dotted line
- 8 pipeline registers lead to 8 cycle latency
- # of pipeline registers could be reduced in accordance with clock frequency

* Some operations deal with bit width adjustment, data saturation and you name it

16 © 2021 Arm a r m

Performance Measurement

* Global timer embedded in Zynq can be used to measure the computing time
consumption.

#include <stdio.h>
¥include "xparameters.h"
#include "xtime 1.h"

[int main() {
XTime tStart, tEnd;

/*¥** Retain the start time **%/
XTime GetTime (&tStart);
j * e —————

/*¥** Retain the end time ***/
XTime GetTime (&tEnd) ;

/*** Calculate clock cycles and processing time ***/
printf ("Output took %1lu clock cycles.\n", Z2¥(tEnd - tStart)):

printf ("Output took %.2f us.\n",
1.0 * (tEnd - tStart) / (COUNTS PER SECOND/1000000)):

return O;

17 © 2021 Arm a r’ m

Performance Measurement

e Custom accelerator for edge detection has a 14-cycle latency.

* Given the main clock of AXI-based system in FPGA 125MHz (or 8ns/cycle),
the processing time T, applying edge detection to a single 1280x720 frame

* Tyroc = 8ns - {l4cycles + (1280 - 720)cycles} = 7.37ms/frame

* In theory, the framerate can be achieved:
o 1lframe/, s~ 135FPS

18 © 2021 Arm a r’ m

Custom Hardware Resource Utilization

m LUTs (17,600) Registers (35,200) BRAMs (60) DSPs (80)

m 5,090 (29.0%) 7,085 (20.2%) 16.5 (27.5%)
VDMA 2,595 3,441 14 0
Edge Detect HW 1,079 1,771 0 0

* Total utilization of LUTs, Registers, and BRAMs is approx. 20-30%

- VDMA is responsible for almost or more than the half of it

Custom accelerator ‘edge_detect_hw’ takes up less than 25% of the overall system with
respect to LUTs and registers.

19 © 2021 Arm

arm

Neon vs. FPGA Offload

 Neon advantages
— Easy programming & debug
— Fully coherent with CPU, no cache maintenance operations
— Part of Arm arch - no hardware or software integration required
— Ecosystem support off-the-shelf, no porting required

* FPGA advantages
— Runs parallel with CPU, few CPU cycles required
— More ‘real time’ - no OS/cache variability
— Fixed function or limited codec support
— Potentially higher performance (e.g. 1080p Full HD video)

20 © 2021 Arm 0 r m

