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Learning Outcomes 

At the end of this module, you will be able to: 

• Explain the purpose of hardware acceleration and give examples of its implementation. 

• Give examples on how to modularize hardware to achieve hardware acceleration. 

• Compare and contrast the advantages and disadvantages of hardware acceleration vs 

using Neon technology. 
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Parallel Image Processing 
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Hardware Acceleration 

• Hardware acceleration is the use of hardware to perform some functions instead of 

running on a general-purpose CPU. 

• The hardware is designed for specific functions to increase performance and/or reduce 

resource consumption. 

• It is a tradeoff between flexibility and efficiency. 

• Examples of hardware acceleration: 
• GPUs 

• Fixed-function implemented on FPGAs 

• Fixed-function implemented on ASICs 
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Example of Hardware Acceleration 

• Graphics Processing Unit (GPU) is one of the well-known examples of hardware 

acceleration. 

• The name GPU was popularized by Nvidia in 1999. 

Before that, some implementations of graphics display accelerator had been used in PCs 

and game consoles. 

• Nowadays, GPUs become usually one of the top 2 computing modules in computers and 

mobile devices to perform 2D and 3D graphics. Considering the parallel computing 

ability of GPUs, they are even used to do general-purpose computing. 
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Zynq-7000 Platform 
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• Zynq specifically integrates Arm Cortex CPUs and Xilinx FPGAs 

• Need of description and connection between CPUs and FPGAs 
• AXI protocol is one of the standard protocols for bus connections 

• Increase the re-usability and lead to low development cost 

• AXI4 protocol (Advanced eXtensible Interface 4) 
• 4th generation of Arm AMBA (Advanced Microcontroller Bus Architecture) interface standard 

• Provide high-bandwidth, low-latency, highly flexible design for various components and requirements 

• For re-usability and scalability 

FPGA on Zynq platforms 
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Offload Image-Processing Algorithm from CPU to FPGA 
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Modularize Hardware 

• Video Stream Processing 

• AXI4 Stream protocol would be suitable 

• Using a standard protocol leads to design re-usability 

• We split “Edge Detection HW” into two(or three) modules 

• Intensity kernel (computes intensity of each pixel, or converts RGB pixels to grey-scale ones) 

• Stencil Edge Kernel (computes edge values of specific pixels) 

 Stencil Buffer Memory (buffers intensity of each pixel) 

 Edge Kernel (actual kernel for edge values) 

Edge 

Detection 

HW 

Intensity 

kernel 

Stencil 

Buffer 

Memory 

Edge 

Kernel 

s_axis_tdata[23:0] 

(RGB pixels) 

s_axis_tdata[7:0] 

(Intensity pixels) 

s_axis_tdata[23:0] 

(edge pixels) Stencil_pixels[7:0]x8 

Stencil Edge Kernel 

AXI4-Stream AXI4-Stream 

modularize 



10 © 2021 Arm 

1st Module: Intensity kernel 

• Pipeline structure for intensity computation 
• In our design, we get an intensity pixel per cycle after 5cycle latency 

• Separate data path and control path 
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1st Module: Intensity kernel - Pipeline 

• In our design, we put pipeline register in the above dotted line 
• 5 pipeline registers lead to 5 cycle latency 

• # of pipeline registers could be reduced in accordance with clock frequency 
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2nd Module: Stencil Edge Kernel 

• Split “Stencil Edge Kernel” Module into two smaller modules to separate functions 
(buffering & computation) 

 

• Stencil Buffer Memory is useful for Stencil Kernel i.e. Stencil computation in stream 

processing 
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Stencil Computing 
Computation involving 8 neighboring pixels is called “Stencil Computation” 

⋯⋯⋯ 

⋯⋯⋯ 

⋯⋯⋯ 

⋮ ⋮ ⋮ ⋱ 

1 2 3 4 5 1277 1278 1279 

1 

2 

3 

4 

5 

717 

719 

718 

⋯⋯⋯ 

⋮ ⋮ 

⋯⋯⋯ 720 

1280 

0 

0 



14 © 2021 Arm 

2-1st Module: Stencil Buffer Memory 
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• In video streaming, one pixel comes in every 1 cycle 

• For example, in order to compute edge pixel (2, 2), you need to buffer the above light-blue pixels 
• In case of 1280x720 resolution, we need 2𝑥 + 3 = 2,563 buffers (∵ 𝑥 = 1,280) 

• Get valid data for edge kernel module after 1 cycle latency 
• Our policy is that we slack computing peripheral pixels because they are not so important after all 
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2-2nd Module: Edge Kernel 

• Pipeline structure for intensity computation 
• In our design, we get an edge pixel per cycle after 8cycle latency 

• Separate data path and control path 
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2-2nd Module: Edge Kernel - Pipeline 

• In our design, we put pipeline registers in above dotted line 
• 8 pipeline registers lead to 8 cycle latency 

• # of pipeline registers could be reduced in accordance with clock frequency 

• Some operations deal with bit width adjustment, data saturation and you name it 
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Performance Measurement 

• Global timer embedded in Zynq can be used to measure the computing time 

consumption. 
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Performance Measurement 

• Custom accelerator for edge detection has a 14-cycle latency. 

• Given the main clock of AXI-based system in FPGA 125MHz (or 8ns/cycle), 

the processing time 𝑇𝑝𝑟𝑜𝑐  applying edge detection to a single 1280x720 frame 

• 𝑇𝑝𝑟𝑜𝑐 = 8ns ∙ {14cycles + 1280 ∙ 720 cycles} ≈ 7.37ms/frame 

 

• In theory, the framerate can be achieved: 

• 1frame 7.4ms ≈ 135FPS 
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Custom Hardware Resource Utilization 

• Total utilization of LUTs, Registers, and BRAMs is approx. 20-30% 
• VDMA is responsible for almost or more than the half of it 

• Custom accelerator ‘edge_detect_hw’ takes up less than 25% of the overall system with 
respect to LUTs and registers. 

Module LUTs (17,600) Registers (35,200) BRAMs (60) DSPs (80) 

Whole 5,090 (29.0%) 7,085 (20.2%) 16.5 (27.5%) 0 

VDMA 2,595 3,441 14 0 

Edge Detect HW 1,079 1,771 0 0 
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Neon vs. FPGA Offload 

• Neon advantages 

– Easy programming & debug 

– Fully coherent with CPU, no cache maintenance operations 

– Part of Arm arch - no hardware or software integration required 

– Ecosystem support off-the-shelf, no porting required  

 

• FPGA advantages 

– Runs parallel with CPU, few CPU cycles required 

– More ‘real time’ - no OS/cache variability 

– Fixed function or limited codec support 

– Potentially higher performance (e.g. 1080p Full HD video)  


