
© 2021 Arm

Accelerate Image
Processing

Using FPGA Hardware

2 © 2021 Arm

Learning Outcomes

At the end of this module, you will be able to:

• Explain the purpose of hardware acceleration and give examples of its implementation.

• Give examples on how to modularize hardware to achieve hardware acceleration.

• Compare and contrast the advantages and disadvantages of hardware acceleration vs

using Neon technology.

3 © 2021 Arm

Parallel Image Processing

Input Output

Pixel 2

Step A

Pixel 1

Step A

Pixel 2

Step B

Pixel 1

Step B

… …

Pixel N

Step A

Pixel N

Step B

• SIMD processor

• DSP

• GPU

• Customized logic

Input Output
Pixel 1

Step B

Pixel 1

Step A

Pixel 2

Step B

Pixel 2

Step A
… …

4 © 2021 Arm

Hardware Acceleration

• Hardware acceleration is the use of hardware to perform some functions instead of

running on a general-purpose CPU.

• The hardware is designed for specific functions to increase performance and/or reduce

resource consumption.

• It is a tradeoff between flexibility and efficiency.

• Examples of hardware acceleration:
• GPUs

• Fixed-function implemented on FPGAs

• Fixed-function implemented on ASICs

5 © 2021 Arm

Example of Hardware Acceleration

• Graphics Processing Unit (GPU) is one of the well-known examples of hardware

acceleration.

• The name GPU was popularized by Nvidia in 1999.

Before that, some implementations of graphics display accelerator had been used in PCs

and game consoles.

• Nowadays, GPUs become usually one of the top 2 computing modules in computers and

mobile devices to perform 2D and 3D graphics. Considering the parallel computing

ability of GPUs, they are even used to do general-purpose computing.

6 © 2021 Arm

Zynq-7000 Platform

7 © 2021 Arm

• Zynq specifically integrates Arm Cortex CPUs and Xilinx FPGAs

• Need of description and connection between CPUs and FPGAs
• AXI protocol is one of the standard protocols for bus connections

• Increase the re-usability and lead to low development cost

• AXI4 protocol (Advanced eXtensible Interface 4)
• 4th generation of Arm AMBA (Advanced Microcontroller Bus Architecture) interface standard

• Provide high-bandwidth, low-latency, highly flexible design for various components and requirements

• For re-usability and scalability

FPGA on Zynq platforms

8 © 2021 Arm

Offload Image-Processing Algorithm from CPU to FPGA

HDMI HDMI decode
HDMI output

peripheral

9 © 2021 Arm

Modularize Hardware

• Video Stream Processing

• AXI4 Stream protocol would be suitable

• Using a standard protocol leads to design re-usability

• We split “Edge Detection HW” into two(or three) modules

• Intensity kernel (computes intensity of each pixel, or converts RGB pixels to grey-scale ones)

• Stencil Edge Kernel (computes edge values of specific pixels)

 Stencil Buffer Memory (buffers intensity of each pixel)

 Edge Kernel (actual kernel for edge values)

Edge

Detection

HW

Intensity

kernel

Stencil

Buffer

Memory

Edge

Kernel

s_axis_tdata[23:0]

(RGB pixels)

s_axis_tdata[7:0]

(Intensity pixels)

s_axis_tdata[23:0]

(edge pixels) Stencil_pixels[7:0]x8

Stencil Edge Kernel

AXI4-Stream AXI4-Stream

modularize

10 © 2021 Arm

1st Module: Intensity kernel

• Pipeline structure for intensity computation
• In our design, we get an intensity pixel per cycle after 5cycle latency

• Separate data path and control path

s_axis_tdata[23:0]

(RGB pixels) 𝑅𝑖,𝑗: s_axis_tdata[23:16] 𝐺𝑖,𝑗: s_axis_tdata[15:8] 𝐵𝑖,𝑗: s_axis_tdata[7:0]

s_axis_tdata[7:0]

(intensity pixels)

Finite State Machine & Controller

based on AXI4-Stream protocol

s_axis_tvalid

s_axis_tuser
s_axis_tlast
s_axis_tready

m_axis_tvalid

m_axis_tuser
m_axis_tlast
m_axis_tready

11 © 2021 Arm

1st Module: Intensity kernel - Pipeline

• In our design, we put pipeline register in the above dotted line
• 5 pipeline registers lead to 5 cycle latency

• # of pipeline registers could be reduced in accordance with clock frequency

s_axis_tdata[23:0]

(RGB pixels) 𝑅𝑖,𝑗: s_axis_tdata[23:16] 𝐺𝑖,𝑗: s_axis_tdata[15:8] 𝐵𝑖,𝑗: s_axis_tdata[7:0]

s_axis_tdata[7:0]

(intensity pixels)

12 © 2021 Arm

2nd Module: Stencil Edge Kernel

• Split “Stencil Edge Kernel” Module into two smaller modules to separate functions
(buffering & computation)

• Stencil Buffer Memory is useful for Stencil Kernel i.e. Stencil computation in stream

processing

Stencil

Buffer

Memory

Edge

Kernel

s_axis_tdata[7:0]

(Intensity pixels)

s_axis_tdata[23:0]

(edge pixels) Stencil_pixels[7:0]x8

Stencil Edge Kernel

13 © 2021 Arm

Stencil Computing
Computation involving 8 neighboring pixels is called “Stencil Computation”

⋯⋯⋯

⋯⋯⋯

⋯⋯⋯

⋮ ⋮ ⋮ ⋱

1 2 3 4 5 1277 1278 1279

1

2

3

4

5

717

719

718

⋯⋯⋯

⋮ ⋮

⋯⋯⋯ 720

1280

0

0

14 © 2021 Arm

2-1st Module: Stencil Buffer Memory

⋯⋯⋯

1 2 3 4 5 1277 1278 1279

1

2

3

⋯⋯⋯ 1280

• In video streaming, one pixel comes in every 1 cycle

• For example, in order to compute edge pixel (2, 2), you need to buffer the above light-blue pixels
• In case of 1280x720 resolution, we need 2𝑥 + 3 = 2,563 buffers (∵ 𝑥 = 1,280)

• Get valid data for edge kernel module after 1 cycle latency
• Our policy is that we slack computing peripheral pixels because they are not so important after all

s_axis_tdata[7:0]

(Intensity pixels)

𝑥 + 1 buffers 𝑨𝒊,𝒋 𝑨𝒊+𝟏,𝒋 𝑨𝒊−𝟏,𝒋+𝟏 𝑨𝒊+𝟏,𝒋+𝟏

𝑥 + 1 buffers

𝑨𝒊−𝟏,𝒋−𝟏 𝑨𝒊+𝟏,𝒋−𝟏 𝑨𝒊−𝟏,𝒋

do_02 do_01 do_00 do_10 do_12 do_22 do_21 do_20

do_00 do_01 do_02

do_10 do_12

do_20 do_21 do_22

15 © 2021 Arm

2-2nd Module: Edge Kernel

• Pipeline structure for intensity computation
• In our design, we get an edge pixel per cycle after 8cycle latency

• Separate data path and control path

>>4

+ + − ×

+ +
+ + − ×

+ +

+ s_axis_tdata[7:0]

(edge pixels)

do_02

do_12

do_22

do_00

do_10

do_20

do_20
do_21

do_22

do_00

do_01

do_02

Finite State Machine & Controller

based on AXI4-Stream protocol

s_axis_tvalid

s_axis_tuser
s_axis_tlast
s_axis_tready

m_axis_tvalid

m_axis_tuser
m_axis_tlast
m_axis_tready

Edge Kernel

do_00 do_01 do_02

do_10 do_12

do_20 do_21 do_22

𝐺𝑥

𝐺𝑦

Look at eq(2)&(3) in slide No.8

16 © 2021 Arm

2-2nd Module: Edge Kernel - Pipeline

• In our design, we put pipeline registers in above dotted line
• 8 pipeline registers lead to 8 cycle latency

• # of pipeline registers could be reduced in accordance with clock frequency

• Some operations deal with bit width adjustment, data saturation and you name it

>>4

+ + − ×

+ +
+ + − ×

+ +

+ s_axis_tdata[7:0]

(edge pixels)

do_02

do_12

do_22

do_00

do_10

do_20

do_20
do_21

do_22

do_00

do_01

do_02

Edge Kernel 𝐺𝑥

𝐺𝑦

17 © 2021 Arm

Performance Measurement

• Global timer embedded in Zynq can be used to measure the computing time

consumption.

18 © 2021 Arm

Performance Measurement

• Custom accelerator for edge detection has a 14-cycle latency.

• Given the main clock of AXI-based system in FPGA 125MHz (or 8ns/cycle),

the processing time 𝑇𝑝𝑟𝑜𝑐 applying edge detection to a single 1280x720 frame

• 𝑇𝑝𝑟𝑜𝑐 = 8ns ∙ {14cycles + 1280 ∙ 720 cycles} ≈ 7.37ms/frame

• In theory, the framerate can be achieved:

• 1frame 7.4ms ≈ 135FPS

19 © 2021 Arm

Custom Hardware Resource Utilization

• Total utilization of LUTs, Registers, and BRAMs is approx. 20-30%
• VDMA is responsible for almost or more than the half of it

• Custom accelerator ‘edge_detect_hw’ takes up less than 25% of the overall system with
respect to LUTs and registers.

Module LUTs (17,600) Registers (35,200) BRAMs (60) DSPs (80)

Whole 5,090 (29.0%) 7,085 (20.2%) 16.5 (27.5%) 0

VDMA 2,595 3,441 14 0

Edge Detect HW 1,079 1,771 0 0

20 © 2021 Arm

Neon vs. FPGA Offload

• Neon advantages

– Easy programming & debug

– Fully coherent with CPU, no cache maintenance operations

– Part of Arm arch - no hardware or software integration required

– Ecosystem support off-the-shelf, no porting required

• FPGA advantages

– Runs parallel with CPU, few CPU cycles required

– More ‘real time’ - no OS/cache variability

– Fixed function or limited codec support

– Potentially higher performance (e.g. 1080p Full HD video)

