arm Accelerate Image
Processing
Using FPGA Hardware



Learning Outcomes

At the end of this module, you will be able to:
* Explain the purpose of hardware acceleration and give examples of its implementation.
* Give examples on how to modularize hardware to achieve hardware acceleration.

 Compare and contrast the advantages and disadvantages of hardware acceleration vs
using Neon technology.
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Parallel Image Processing
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Hardware Acceleration

* Hardware acceleration is the use of hardware to perform some functions instead of
running on a general-purpose CPU.

* The hardware is designed for specific functions to increase performance and/or reduce
resource consumption.
* Itis atradeoff between flexibility and efficiency.

* Examples of hardware acceleration:

GPUs
Fixed-function implemented on FPGAs
Fixed-function implemented on ASICs
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Example of Hardware Acceleration

* Graphics Processing Unit (GPU) is one of the well-known examples of hardware

acceleration.

 The name GPU was popularized by Nvidia in 1999.
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Before that, some implementations of graphics display accelerator had been used in PCs
and game consoles.

Nowadays, GPUs become usually one of the top 2 computing modules in computers and
mobile devices to perform 2D and 3D graphics. Considering the parallel computing
ability of GPUs, they are even used to do general-purpose computing.
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Zynqg-7000 Platform
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FPGA on Zynq platforms

* Zynq specifically integrates Arm Cortex CPUs and Xilinx FPGAs

* Need of description and connection between CPUs and FPGAs
- AXI protocol is one of the standard protocols for bus connections
- Increase the re-usability and lead to low development cost

* AXIl4 protocol (Advanced eXtensible Interface 4) e
- 4th generation of Arm AMBA (Advanced Microcontroller Bus Architecture) iEEH—_—" il ats
- Provide high-bandwidth, low-latency, highly flexible design for various com SR |
- For re-usability and scalability
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Offload Image-Processing Algorithm from CPU to FPGA
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Modularize Hardware

AXl4-Stream Edge:' AXl4-Stream
-  Detection >
HW
@ modularize
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Stencil Edge Kernel
* Video Stream Processing
« AXIl4 Stream protocol would be suitable
« Using a standard protocol leads to design re-usability

*  We split “Edge Detection HW” into two(or three) modules

- Intensity kernel (computes intensity of each pixel, or converts RGB pixels to grey-scale ones)

- Stencil Edge Kernel (computes edge values of specific pixels)
= Stencil Buffer Memory (buffers intensity of each pixel)
= Edge Kernel (actual kernel for edge values)
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15t Module: Intensity kernel

s_axis_tdata[23:0]
(RGB pixels)
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G j: s_axis_tdata[15:8]

,@_,"@_L s_axis_tdata[7:0]

. (intensity pixels)
@)t

B; j:s_axis_tdata[7:0]

s_axis_tvalid |, m_axis_tvali
S—M Finite State Machine & Controller m_ax!s_tuger
s_axis_tlast based on AXI4-Stream protocol m_axis_tlagt
s, axis_tready m_axis_tready

* Pipeline structure for intensity computation
- In our design, we get an intensity pixel per cycle after 5cycle latency

* Separate data path and control path
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15t Module: Intensity kernel - Pipeline

s_axis_tdata[23:0]
(RGB pixels)

R; ;: s_axis_tdata[23:16]

G j: s_axis_tdata[15:8] s_axis_tdata[7:0]

(intensity pixels)

B; j:s_axis_tdata[7:0]

* In our design, we put pipeline register in the above dotted line
- 5 pipeline registers lead to 5 cycle latency
- # of pipeline registers could be reduced in accordance with clock frequency
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2" Module: Stencil Edge Kernel
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Edge
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Stencil Edge Kernel

* Split “Stencil Edge Kernel” Module into two smaller modules to separate functions

(buffering & computation)

» Stencil Buffer Memory is useful for Stencil Kernel i.e. Stencil computation in stream
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Stencil Computing

Computation involving 8 neighboring pixels is called “Stencil Computation”
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2-15t Module: Stencil Buffer Memory
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* Invideo streaming, one pixel comes in every 1 cycle

*  For example, in order to compute edge pixel (2, 2), you need to buffer the above light-blue pixels
- In case of 1280x720 resolution, we need 2x + 3 = 2,563 buffers (~ x = 1,280)

* Get valid data for edge kernel module after 1 cycle latency
« Our policy is that we slack computing peripheral pixels because they are not so important after all
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2-2"d Module: Edge Kernel
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Edge Kernel
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Look at eq(2)&(3) in slide No.8
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* Pipeline structure for intensity computation
- In our design, we get an edge pixel per cycle after 8cycle latency

* Separate data path and control path
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2-2"4 Module: Edge Kernel - Pipeline

Edqe Kernel

d0_02 — >
do 12 —

o %@{@

do_00 : :
do 10 . 1 s_axis_tdata[7:0]
do_20 —* N o ﬂ_, (edge pixels)

do_20 —» +®

do 21 —* | |
do 22 Q_LL :
do_00 @j’@{c !

do 01 —
do_ 02 —

* In our design, we put pipeline registers in above dotted line
- 8 pipeline registers lead to 8 cycle latency
- # of pipeline registers could be reduced in accordance with clock frequency

* Some operations deal with bit width adjustment, data saturation and you name it
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Performance Measurement

* Global timer embedded in Zynq can be used to measure the computing time
consumption.

#include <stdio.h>
¥include "xparameters.h"
#include "xtime 1.h"

[int main() {
XTime tStart, tEnd;

/*¥** Retain the start time **%/
XTime GetTime (&tStart);
j * e —————

/*¥** Retain the end time ***/
XTime GetTime (&tEnd) ;

/*** Calculate clock cycles and processing time ***/
printf ("Output took %1lu clock cycles.\n", Z2¥(tEnd - tStart)):

printf ("Output took %.2f us.\n",
1.0 * (tEnd - tStart) / (COUNTS PER SECOND/1000000)):

return O;
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Performance Measurement

e Custom accelerator for edge detection has a 14-cycle latency.

* Given the main clock of AXI-based system in FPGA 125MHz (or 8ns/cycle),
the processing time T, applying edge detection to a single 1280x720 frame

* Tyroc = 8ns - {l4cycles + (1280 - 720)cycles} = 7.37ms/frame

* In theory, the framerate can be achieved:
o 1lframe/, s~ 135FPS
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Custom Hardware Resource Utilization

m LUTs (17,600) Registers (35,200) BRAMs (60) DSPs (80)

m 5,090 (29.0%) 7,085 (20.2%) 16.5 (27.5%)
VDMA 2,595 3,441 14 0
Edge Detect HW 1,079 1,771 0 0

* Total utilization of LUTs, Registers, and BRAMs is approx. 20-30%

- VDMA is responsible for almost or more than the half of it

Custom accelerator ‘edge_detect_hw’ takes up less than 25% of the overall system with
respect to LUTs and registers.
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Neon vs. FPGA Offload

 Neon advantages
— Easy programming & debug
— Fully coherent with CPU, no cache maintenance operations
— Part of Arm arch - no hardware or software integration required
— Ecosystem support off-the-shelf, no porting required

* FPGA advantages
— Runs parallel with CPU, few CPU cycles required
— More ‘real time’ - no OS/cache variability
— Fixed function or limited codec support
— Potentially higher performance (e.g. 1080p Full HD video)
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