
© 2021 Arm

Accelerate Image
Processing

Using SIMD Engine

2 © 2021 Arm

Learning Outcomes

At the end of this module, you will be able to:

• Explain the purpose of SIMD and give examples of SIMD implementation.

• Explain what Arm Neon technology does and how to use it.

• Outline the usage of Neon technology in C language.

• Give an example on using Neon in C language.

• Compare and contrast the benefits and limitations of using Neon for accelerating image

processing.

3 © 2021 Arm

Parallel Image Processing

Input Output

Pixel 2

Step A

Pixel 1

Step A

Pixel 2

Step B

Pixel 1

Step B

… …

Pixel N

Step A

Pixel N

Step B

• SIMD Processor

• DSP

• GPU

• Customized Logic

Input Output
Pixel 1

Step B

Pixel 1

Step A

Pixel 2

Step B

Pixel 2

Step A
… …

4 © 2021 Arm

SIMD - Single Instruction, Multiple Data

• Processors with SIMD, comparing to SISD (single-instruction-single-data, ordinary CPUs)

can perform the same operation on multiple data simultaneously.

5 © 2021 Arm

SIMD - Single Instruction, Multiple Data

• Processors with SIMD, comparing to SISD (single-instruction-single-data, ordinary CPUs)

can perform the same operation on multiple data simultaneously.

• For example, grayscale computing for every pixel is the same: reading values of three

color channels, multiplying by same coefficients, and adding together.

• In ordinary CPUs, pixels have to be computed one-by-one.

• SIMD processors allow to compute several pixels (multiple data) using the algorithm

above (single instruction) simultaneously with less time consumption.

6 © 2021 Arm

SIMD Implementations

• Arm Neon technology
• Introduced from Arm Cortex-A8/A9

• Intel MMX/SSE and later versions
• Widely used in modern x86 based processors

• SPE (Signal Processing Engine) for PowerPC

• AMD 3DNow!

• Beyond those, modern GPUs are often SIMD implementations.

7 © 2021 Arm

Introduction to Neon technology

• Arm Neon technology is an Advanced SIMD (single instruction multiple data)

architecture extension for the Arm Cortex-A series and Cortex-R52 processors.

Armv7-A/R Armv8-A/R Armv8-A

AArch32 AArch64

Floating-point 32-bit 16-bit*/32-bit 16-bit*/32-bit/64-bit

Integer 8-bit/16-bit/32-bit 8-bit/16-bit/32-bit/

64-bit

8-bit/16-bit/32-bit/

64-bit

*Only in Armv8.2-A

8 © 2021 Arm

Introduction to Neon technology

• Neon is a wide SIMD data processing architecture
• Extension of the Arm instruction set

• Thirty-two registers, 64-bits wide (dual view as sixteen registers, 128-bits wide)

• Neon instructions perform “packed SIMD” processing

• Registers are considered vectors of elements of the same data type

• Data types can be signed/unsigned 8-bit, 16-bit, 32-bit, 64-bit, single-precision float

• Instructions perform the same operation in all lanes

9 © 2021 Arm

Introduction to Neon

• General purpose SIMD processing useful for many applications

• Supports widest range of multimedia codecs used for internet applications
• Many soft codec standards; e.g., MPEG-4, H.264, On2 VP6/7/8, Real, AVS

• Ideal solution for normal sized “internet streaming” decoding of various formats

• Fewer cycles needed
• Neon gives a 60-150% performance boost on complex video codecs

• Simple DSP algorithms demonstrate a larger performance boost (4x-8x)

• Balance of computation and memory access is required

• Processor can sleep sooner overall dynamic power saving

10 © 2021 Arm

How to Use Neon

• Neon optimized open-source libraries
• OpenMAX DL (development layer): APIs contain a comprehensive set of audio, video, and imaging

functions that can be used for a wide range of accelerated codec functionality, such as MPEG-4,

H.264, MP3, AAC, and JPEG.

• Broad open-source support for Neon

• Vectorizing compilers
• Exploits Neon SIMD automatically with existing C source code

• Neon intrinsics
• C function call interface to Neon operations

• Supports all data types and operations supported by Neon

• Assembler code
• For those who want to optimize at the lowest level

11 © 2021 Arm

Neon Vector Data Types

• Neon Support in C defines data types for vectors according to the following pattern:
 <type><size>x<number of lanes>_t

• int8x8_t int16x4_t int32x2_t int64x1_t uint8x8_t uint16x4_t uint32x2_t uint64x1_t

float16x4_t float32x2_t poly8x8_t poly16x4_t

int8x16_t int16x8_t int32x4_t int64x2_t uint8x16_t uint16x8_t uint32x4_t uint64x2_t

float16x8_t float32x4_t poly8x16_t poly16x8_t

• For example, int16x4_t is a vector containing four lanes each containing a 16-bit

integer.

• There are array types defined for array lengths between 2 and 4:
 struct int16x4x2_t

• {

• int16x4_t val[2];

• };

12 © 2021 Arm

Neon Intrinsic

• The Neon intrinsics Arm provided to generate Neon code for ArmV7 or later processors.

• The Neon intrinsics are defined in the header file arm_neon.h.

• The intrinsics use a naming scheme that is similar to the Neon assembler syntax:

• v<opname><flags>_<type>

• An additional q flag is provided to specify that the intrinsic operates on 128-bit vectors.

• For Example:

• uint16x8_t vmull_u8 (uint8x8_t a, uint8x8_t b)

13 © 2021 Arm

Neon Intrinsic Example

uint16x8_t vmull_u8 (uint8x8_t a, uint8x8_t b)

• It will be compiled to

 a → Vn.8B, b → Vm.8B
 UMULL Vd.8H,Vn.8B,Vm.8B

 Vd.8H → result

• which performs multiplication of two 64-bit vectors containing unsigned 8-bit integers,

resulting in a 128-bit vector of unsigned 16-bit integers.

╳ ╳ ╳

• • •

• • •

• • •

result

b

a

8×16-bit

8×8-bit

8×8-bit

14 © 2021 Arm

More Intrinsics

• There are more than 1000 intrinsics available.

• int16x4_t vadd_s16 (int16x4_t a, int16x4_t b); // 64-bit registers

• int16x8_t vaddq_s16 (int16x8_t a, int16x8_t b); // 128-bit registers

• int32x4_t vaddl_s16 (int16x4_t a, int16x4_t b); // long form

• int32x4_t vaddw_s16 (int32x4_t a, int16x4_t b); // wide form

• int16x4_t vqadd_s16 (int16x4_t a, int16x4_t b); // saturating form

• int16x8_t vqaddq_s16 (int16x8_t a, int16x8_t b);

• int8x8_t vaddhn_s16 (int16x8_t a, int16x8_t b); // narrow form

• int8x8_t vraddhn_s16 (int16x8_t a, int16x8_t b); // + rounding

• int16x4_t vhadd_s16 (int16x4_t a, int16x4_t b); // halving add

• int16x8_t vhaddq_s16 (int16x8_t a, int16x8_t b);

• int16x4_t vrhadd_s16 (int16x4_t a, int16x4_t b); // + rounding

• int16x8_t vrhaddq_s16 (int16x8_t a, int16x8_t b);

• int16x4_t vpadd_s16 (int16x4_t a, int16x4_t b); // pairwise

• int32x2_t vpaddl_s16 (int16x4_t a); // long pairwise

• int32x4_t vpaddlq_s16 (int16x8_t a);

15 © 2021 Arm

Comparing between Ordinary Processor and Neon

Ordinary Processor

Loop for 8 times:

for (i = 0; i < 8; i++)

{

 result[i] = a[i] * b[i];

}

Neon Engine

Compute in one single instruction:

result = vmull_u8 (a, b);

or:

a → Vn.8B, b → Vm.8B
UMULL Vd.8H,Vn.8B,Vm.8B

Vd.8H → result

16 © 2021 Arm

Example: Using Neon Engine for 8-Pixel Grayscale

• 𝐴 = 77𝑅 + 150𝐺 + 29𝐵 256

Step 1: Load data and constants

uint8x8x3_t rgb = vld3_u8 (pixel);
uint8x8_t rfac = vdup_n_u8 (77);
uint8x8_t gfac = vdup_n_u8 (150);
uint8x8_t bfac = vdup_n_u8 (29);

Step 2: Compute grayscale

uint16x8_t temp;
temp = vmull_u8 (rgb.val[0], rfac);
temp = vmlal_u8 (temp, rgb.val[1], gfac);
temp = vmlal_u8 (temp, rgb.val[2], bfac);

Step 3: Normalize results

result = vshrn_n_u16 (temp, 8);

77 77 77 • • • rfac

150 150 150 • • • gfac

29 29 29 • • • bfac

77R0+150G0+29B0 temp 77R1+150G1+29B1 • • • 77R7+150G7+29B7

77R0+150G0 temp 77R1+150G1 • • • 77R7+150G7

77R0 temp 77R1 • • • 77R7

77R0+150G0+29B0
256

 result • • •
77R0+150G0+29B0

256

77R0+150G0+29B0
256

R0 R1 R7 • • • val[0]
G0 G1 G7 • • • val[1]
B0 B1 B7 • • • val[2]

rgb

17 © 2021 Arm

Neon Ecosystem

• Arm Compute Library
• The Compute Library contains a comprehensive collection of software functions, from basic

mathematical operator to machine learning support like Convolutional Neural Networks, implemented

for the Arm Cortex-A family of CPU processors (and the Arm Mali family of GPUs).

• It is a convenient repository of low-level optimized functions that developers can source individually

or use as part of complex pipelines in order to accelerate their algorithms and applications.

• Partner’s Modules
• A wide range of codecs and DSP modules are available from several partners.

• Video codecs, audio codecs, computer vision, machine learning, etc..

18 © 2021 Arm

Neon Engine on Zynq-7000 Platform

19 © 2021 Arm

Limitations and Tips

• Loading Neon registers costs delay.
• Make Neon codes together.

• Consider prefetch.

• Optimize your codes using libraries or assembler.
• You may get higher efficiency by writing assembler Neon codes by yourself, or using highly optimized

libraries.

