arm Accelerate Image
Processing
- Using SIMD Engine

Learning Outcomes

At the end of this module, you will be able to:

Explain the purpose of SIMD and give examples of SIMD implementation.
Explain what Arm Neon technology does and how to use it.

Outline the usage of Neon technology in C language.

Give an example on using Neon in C language.

Compare and contrast the benefits and limitations of using Neon for accelerating image

processing.

© 2021 Arm

arm

Parallel Image Processing

3

Pixel 2
Step A

Pixel 2 —...—p| Output »

Step B

Step B —»| Output)

Ny Pixel 1 Pixel 1
I Input Step A > Step B >
Pixel 1 Pixel 1
Step A Step B
Pixel 2 Pixel 2
| Input)—P| Step A
‘ Pixel N H Pixel N ‘
Step A Step B

© 2021 Arm

SIMD Processor
DSP

GPU
Customized Logic

arm

SIMD - Single Instruction, Multiple Data

* Processors with SIMD, comparing to SISD (single-instruction-single-data, ordinary CPUs)
can perform the same operation on multiple data simultaneously.

* SO

O ¥
O/
O 9, %

B Instructions
[] Data
W Results

4 © 2021 Arm a r’m

SIMD - Single Instruction, Multiple Data

5

Processors with SIMD, comparing to SISD (single-instruction-single-data, ordinary CPUs)
can perform the same operation on multiple data simultaneously.

For example, grayscale computing for every pixel is the same: reading values of three
color channels, multiplying by same coefficients, and adding together.

In ordinary CPUs, pixels have to be computed one-by-one.

SIMD processors allow to compute several pixels (multiple data) using the algorithm
above (single instruction) simultaneously with less time consumption.

© 2021 Arm a r’m

SIMD Implementations

Arm Neon technology
« Introduced from Arm Cortex-A8/A9

Intel MMX/SSE and later versions

- Widely used in modern x86 based processors
SPE (Signal Processing Engine) for PowerPC
AMD 3DNow!

Beyond those, modern GPUs are often SIMD implementations.

© 2021 Arm

arm

Introduction to Neon technology

* Arm Neon technology is an Advanced SIMD (single instruction multiple data)
architecture extension for the Arm Cortex-A series and Cortex-R52 processors.

Armv7-A/R Armv8-A/R Armv8-A
AArch32 AArch64
Floating-point 32-bit 16-bit*/32-bit 16-bit*/32-bit/64-bit
Integer 8-bit/16-bit/32-bit 8-bit/16-bit/32-bit/ 8-bit/16-bit/32-bit/
64-bit 64-bit

*Only in Armv8.2-A

7 © 2021 Arm a rm

Introduction to Neon technology

Neon is a wide SIMD data processing architecture
- Extension of the Arm instruction set

- Thirty-two registers, 64-bits wide (dual view as sixteen registers, 128-bits wide)

Neon instructions perform “packed SIMD” processing

- Registers are considered vectors of elements of the same data type
- Data types can be signed/unsigned 8-bit, 16-bit, 32-bit, 64-bit, single-precision float

- Instructions perform the same operation in all lanes

© 2021 Arm

Elements

[y | J Operation

Source
Registers

Destlnatlon

:ﬁ__ﬂ Register

arm

Introduction to Neon

* General purpose SIMD processing useful for many applications

* Supports widest range of multimedia codecs used for internet applications

- Many soft codec standards; e.g., MPEG-4, H.264, On2 VP6/7/8, Real, AVS
- ldeal solution for normal sized “internet streaming” decoding of various formats

* Fewer cycles needed
- Neon gives a 60-150% performance boost on complex video codecs
- Simple DSP algorithms demonstrate a larger performance boost (4x-8x)
- Balance of computation and memory access is required
- Processor can sleep sooner > overall dynamic power saving

9 © 2021 Arm a r’m

How to Use Neon

Neon optimized open-source libraries
- OpenMAX DL (development layer): APIs contain a comprehensive set of audio, video, and imaging
functions that can be used for a wide range of accelerated codec functionality, such as MPEG-4,
H.264, MP3, AAC, and JPEG.
- Broad open-source support for Neon

Vectorizing compilers
- Exploits Neon SIMD automatically with existing C source code

Neon intrinsics
« C function call interface to Neon operations
- Supports all data types and operations supported by Neon

Assembler code
- For those who want to optimize at the lowest level

10 © 2021 Arm a r’ m

Neon Vector Data Types

* Neon Support in C defines data types for vectors according to the following pattern:
<type><size>x<number of lanes> t

e int8x8 t intl6x4 t int32x2 t int6e4x1l t uint8x8 t uintléx4 t uint32x2 t uint64xl_t
floatléex4 t float32x2 t poly8x8 t polyléex4 t
int8x16_t intléex8 t int32x4 t int64x2_t uint8x16 t uintléex8 t uint32x4 t uint64x2 t
floatl6x8 t float32x4 t poly8x1l6 t polylex8 t

* For example, intl6x4 t is a vector containing four lanes each containing a 16-bit
integer.

* There are array types defined for array lengths between 2 and 4:
struct intl6x4x2 t

{
. intléex4 t val[2];

y ¥
11 © 2021 Arm a r’m

Neon Intrinsic

* The Neon intrinsics Arm provided to generate Neon code for ArmV7 or later processors.
 The Neon intrinsics are defined in the header file arm_neon.h.

* The intrinsics use a naming scheme that is similar to the Neon assembler syntax:
. v<opname>

* An additional g flag is provided to specify that the intrinsic operates on 128-bit vectors.

* For Example:
uintlex8 t vmul! u8 (uint8x8 t a, uint8x8 t b)

12 © 2021 Arm a r m

Neon Intrinsic Example

uintl6x8 t vmull u8 (uint8x8 t a, uint8x8 t b)

* It will be compiled to

a->Vvn.88, b » Vm.8B
UMULL Vvd.8H,Vn.8B,Vm.8B
Vd.8H - result

* which performs multiplication of two 64-bit vectors containing unsigned 8-bit integers,
resulting in a 128-bit vector of unsigned 16-bit integers.

a I I | oo | | 8x8-bit
X X X
b I I | oo | | 8x8-bit
v ! ‘l’ I N\ 4
result | | | eee | 18x16-bit

13 © 2021 Arm a r m

More Intrinsics

14

There are more than 1000 intrinsics available.

intl6x4 t
intl16x8_t
int32x4 t
int32x4 t
intl6x4 t
intl16x8_t
int8x8_t

int8x8_t

intlex4 t
intl6x8_ t
intlex4 t
intl6x8_ t
intléex4_t
int32x2_t
int32x4_t

© 2021 Arm

vadd s16
vaddqg_sl6
vaddl sl6
vaddw_s16
vgadd s16

vgaddqg_s16
vaddhn_s16
vraddhn_s16

vhadd s16

vhaddqg_s16
vrhadd s16
vrhaddq _s16

vpadd_s16

vpaddl s16

(intl6x4_t
(intl6x8_ t
(intlex4_t
(int32x4_t
(intléex4_t
(int16x8_t
(int16x8_t
(int16x8_t
(intlé6x4 _t
(intl6x8_t
(intl6x4 _t
(intl16x8_t
(intl6x4_t
(int16x4 t

vpaddlg s16 (intl16x8_t

intlex4 t
intl6x8 t
intlex4 t
intlex4 t
intl6ex4 t
intl16x8_t
intl16x8_t
intl16x8_t
intlex4 t
intlex8 t
intlex4 t
intlex8 t
intlex4 t

b);
b);
b);
b);
b);
b);
b);
b);
b);
b);
b);
b);
b);

//
//
//
//
//

//
//
//
//

//
//

64-bit registers
128-bit registers
long form
wide form

saturating form
narrow form
+ rounding
halving add

+ rounding

pairwise

long pairwise

arm

Comparing between Ordinary Processor and Neon

Ordinary Processor

Loop for 8 times:

for (i = 0; i < 8; i++)

{
}

result[i] = a[i] * b[i];

15 © 2021 Arm

Neon Engine

Compute in one single instruction:
result = vmull u8 (a, b);
or:

a->Vvn.88, b > Vm.8B
UMULL Vd.8H,Vn.8B,Vm.8B
Vd.8H -» result

arm

Example: Using Neon Engine for 8-Pixel Grayscale

- A= (77R + 150G + 29B) /256

Step 1: Load data and constants , vallo] o — —

.) rgb val[1] GO Gl G7
uint8x8x3_t rgb = v1d3 u8 (pixel); val[2] BO B1 B7
uint8x8 t rfac = vdup n u8 (77); —> 3
uint8x8 t gfac = vdup _n_u8 (1590); Piac : 177 : 177 :
uint8x8 t bfac = vdup_n_u8 (29); grac — — —

| bfac |29 [29 |
Step 2: Compute grayscale
uintléx8 t temp;
temp = vmull u8 (rgb.val[@], rfac); —> temp | 77RO I 77R1 | == | 77R7 |
temp = vmlal u8 (temp, rgb.val[1l], gfac); — temp [_77Re+i5eGe | 77Ri+i50G1__ | --- [77R7+15eG7 |
temp = vmlal u8 (temp, rgb.val[2], bfac); — temp [77Re+150G0+29B@ | 77R1+150G1+29B1 | *** [77R7+150G7+29B7 |
Step 3: Normalize results
77R0+150G0+29BO | 77R0+150GO+29B0O 77R0+150G0+29B0O
result = vshrn_n_ulé (temp, 8); —> result e e oe

16 © 2021 Arm a r m

Neon Ecosystem

 Arm Compute Library

- The Compute Library contains a comprehensive collection of software functions, from basic

mathematical operator to machine learning support like Convolutional Neural Networks, implemented
for the Arm Cortex-A family of CPU processors (and the Arm Mali family of GPUs).

- It is a convenient repository of low-level optimized functions that developers can source individually
or use as part of complex pipelines in order to accelerate their algorithms and applications.

e Partner’s Modules

- A wide range of codecs and DSP modules are available from several partners.
- Video codecs, audio codecs, computer vision, machine learning, etc..

17 © 2021 Arm

arm

Neon Engine on Zyng-7000 Platform

18

A

PROCESSING SYSTEM *
L FLASH CONTROLLER MULTIPORT DRAM CONTROLLER
NOR, NAND, SRAM, QUAD SPI DDR3, DDR3L, DDR2

— §|>=<| —] AMBA® INTERCONNECT | [AMBA® INTERCONNECT
e ’
2 — ARM® CORESIGHT® MULTICORE DEBUG AND TRACE
o - CAN > NEON® DSP/FPU ENGINE NEON® DSP/FPU ENGINE
- 2X CORTEX"—A9 MPCORE CORTEX"—A9 MPCORE

— % — UART «—> . . 32kB/32kB 1/D CACHES 32kB/32kB I/D CACHES
Wl GPIO < 512kB L2 CACHE
o GENERAL INTERRUPT WATCHDOG SNoop 256kB
72 2% SDIO CONTROL ON-CHIP
= oes CONFIGURATION | TIMERS DMA
1 witHoma [T ‘ e e e e
2% GigE
“*“—1 witHoma [™ AMBA® INTERCONNECT | SECURITY [AMBA® INTERCONNECT
AES, SHA, RSA
EMIO Y
ACP HIGH-PERFORMANCE
GENERAL PURPOSE Tl
XADC
2x ADC, MUX, PROGRAMMABLE LOGIC] PTg'g EE”%S
THERMAL SENSOR (SYSTEM GATES, DSP, RAM)
MULTISTANDARD I/Os (3.3V AND HIGH-SPEED 1.8V) MULTIGIGABIT TRANCEIVERS

© 2021 Arm

v

v

arm

Limitations and Tips

* Loading Neon registers costs delay.
- Make Neon codes together.
- Consider prefetch.

* Optimize your codes using libraries or assembler.
- You may get higher efficiency by writing assembler Neon codes by yourself, or using highly optimized
libraries.

19 © 2021 Arm a r’ m

