+ + + + + + + + + + + + +

System Debugging

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + +

+ + + + + + + + + + + + +

+ + + + + + + + + + + + +

Learning Outcomes

At the end of this module, you will be able to:

- Describe the purpose of a debugging system, including the Arm CoreSight debugging system.
- Outline the components and their function in an Arm CoreSight debugging and trace system.
- Identify the main steps to build an Arm debugging system.
- Arm Cortex-A9 debug interface and Debug registers and CMSIS-DAP.

- Arm CoreSight
 - Arm debug and trace technology.
 - Most complete on-chip debug and real-time trace solution for the entire System on Chip (SoC).
 - Making Arm processor-based SoCs the easiest to debug and optimize.

- Arm CoreSight architecture
 - Arm processors real-time trace macrocells (ETM & PTM) architecture.
 - Arm CoreSight SoC component architecture .
 - Arm Debug Interface (ADI) architecture.

- Arm Debug Interface (ADI) Architecture
 - ADI defines a standard debug interface for debug components in an embedded System on Chip (SoC)
 - Includes Debug Access Ports (DAP), which contain Access Ports (AP) and Debug Ports (DP).

- Trace Macrocell Architecture
 - Embedded Trace Macrocell (ETM) is a real-time trace module providing instruction and data tracing of a processor. ETM is an integral part of an Arm CoreSight debug and real-time trace solution.
 - Program Trace Macrocell (PTM) for Program Flow Trace of Cortex-A9
 - Instrumentation Trace Macrocell (ITM) for high level software view.
 - AHB Trace Macrocell (HTM) for performance and functional debug.

CoreSight[™] On Chip Debug & Trace IP

arm

Example1: Single Processor Debug

Figure source: CoreSight Technical Introduction. A quick start for designers. White Paper, Arm

Example 2: Single Processor Trace

Figure source: CoreSight Technical Introduction. A quick start for designers. White Paper, Arm

Example 3: Multi Source Trace

Figure source: CoreSight Technical Introduction. A quick start for designers. White Paper, Arm

- CoreSight SoC Components Architecture
 - CoreSight[™] SoC components in conjunction with the CoreSight Trace macrocells provide all the infrastructure required to debug, monitor, and optimize the performance of a complete System on Chip (SoC) design.
 - CoreSight SoC-400 provides fully configurable versions of all of the CoreSight components together with AMBA Designer support for the entire range of CoreSight debug & trace logic

CoreSight SoC-400

CoreSight SoC-400

- SoC Bring-up
 - Fast bring-up SoC design, reduce time to market.
- Software Debugging
 - Help improve the reliability of your product.
- Post-mortem Debugging
 - Find bugs earlier in the product lifecycle.
- System Optimization
 - For both hardware and software help create best Arm solutions.

Steps to build an Arm debugging subsystem

- 1. Start with an Arm CPU.
- 2. Use SoC-400 product and configurable components to build the infrastructure for debug trace subsystem.
- 3. Use Processor Integration Layer (PILs) to ease integration of Arm processors in SoC-400 debugging subsystem.
- 4. Use Trace Memory Controller (TMC) and System Trace Macrocell (STM) to build debug trace solution.

Supported tools

- Supported by over 25 industry-leading software and hardware debug tools companies, across all markets and regions
 - Debug of symmetric multi-processing and asymmetric multicore systems.
 - Powerful interactive debugging with real-time visibility.
 - Performance optimization.
 - Line and path code coverage of assembler and C/C++.
 - High-level system views with OS and RTOS context.
 - Real-time data monitoring, common to MCU and automotive applications.

Debug using Arm Development Studio

Debugging Cotex-A9 processor using CoreSight

- CoreSight[™] for Arm Cortex-A series processors
 - Provides embedded software and application developers with all the on-chip debug.
 - Real-time trace resources .
 - Optimization and debug of Cortex-A application processor platforms.

Debugging Cotex-A9 processor using CoreSight

| Component | Overview |
|--|---|
| Debug Access Port | Provide debugger access to the cores and buses in a SoC, across multiple
power and clock islands, enabling exceptionally high download speeds
direct to memory. |
| Embedded Cross Trigger | Synchronize debug and trace across multiple cores. |
| Program Trace Macrocells
(Cortex-A9) | Noninvasively generate cycle-accurate, instruction trace of Arm processors running at full speed. |
| Embedded Trace Macrocells
(Cortex-A5,Cortex-A8) | Noninvasively generate cycle-accurate, instruction and data trace of Arm processors running at full speed. |
| Trace Funnel | Combine multiple trace sources together. |

Debugging Cotex-A9 processor using CoreSight

| Component | Overview |
|---------------------------|---|
| Embedded Trace Buffer | Store trace data on-chip at high rates at 32-bit data width, eliminating the need for dedicated trace port pins or an external trace collection unit. |
| Trace Port Interface Unit | Transmit trace data off-chip via 2-34 pins at frequencies
asynchronous to the core. Instrumentation Trace
Macrocell for high level, low bandwidth, software
generated trace. |
| Serial Wire Debug | High performance 2-pin debug port that replaces the 5/6-pin JTAG interface with multi-drop support. |
| Serial Wire Viewer | Single pin output for Instrumentation Trace. |
| Integration Kit | Contain RTL testbench, test vectors and full
documentation for easy validation of a designer's
own CoreSight subsystem |

Arm Cortex-A9 debug interface

- Debug interface
 - The Cortex-A9 processor implements the ARMv7 debug architecture.
- Debugging modes:
 - Halt mode debugging in Secure user mode.
 - Monitor mode debugging in Secure user mode.
- Breakpoints and watchpoints
 - Six breakpoints.
 - Four watchpoints.
- Asynchronous aborts

Arm Cortex-A9 Debug Interface

- The debug interface consists of:
 - A Baseline CP14 interface
 - An Extended CP14 interface
 - An external debug interface connected to the external debugger through a Debug Access Port (DAP).

Debug Register Descriptions

- Debug State Cache Control Register (DBGDSCCR)
 - Controls cache behavior while the processor is in Debug state.
 - Cortex-A9 processor does not implement any of the features of the DBGDSCCR, and it reads as zero.
- Breakpoint Value Registers (BVRs)
 - Registers 64-68, at offsets 0x100-0x114.
 - Each BVR is associated with a Breakpoint Control Register (BCR)
- Breakpoint Control Registers (BCRs)
 - Read and write registers that contain the necessary control bits for setting:
 - breakpoints
 - linked breakpoints

Debug Register Descriptions

- Watchpoint Value Registers (WVRs)
 - Registers 96-99, at offsets 0x180-0x18C.
 - Each WVR is associated with a Watchpoint Control Register (WCR).
- Watchpoint Control Registers (WCRs)
 - Contain the necessary control bits for setting:
 - watchpoints
 - linked watchpoints

- Debug management registers
 - Define the standardized set of registers that is implemented by all CoreSight components.

Debug Register Descriptions

- Processor ID Registers
 - Read-only registers that return the same values as the corresponding CP15 ID Code Register and Feature ID Register
- CoreSight Identification Registers (Debug Management Registers)
 - Read-only registers that consist of the Peripheral Identification Registers and the Component Identification Registers.
- External debug interface
 - The system can access memory-mapped debug registers through the Cortex-A9 APB Completer port.
 - This APB Completer interface supports 32-bits wide data, stalls, completer-generated aborts, and eleven address bits [12:2] mapping 2x4KB of memory.
- More information on <u>Cortex-A9 Technical Reference Manual</u>

CMSIS-DAP Debugger Probe

- CMSIS-DAP Debugger Probe
 - Provides a standardized way to access the CoreSight Debug Access
 Port (DAP) of an Arm Cortex microcontroller via USB.
 - USB connection uses HID (Human Interface Device) driver class.
 - Based on NXP LPC11U35 MCU.
 - Low-cost and open-source.

CMSIS-DAP Debugger Probe

Bibliography

- Cortex-A9 Technical Reference Manual, Arm, 2012.
- Arm[®] Architecture Reference Manual. Armv7-A and Armv7-R edition, Arm, 2012.
- Arm CoreSight Architecture Specification, Arm, 2013.
- Arm CoreSight SoC-400 Technical Reference Manual, Arm, 2015.
- Arm Debug Interface Architecture Specification. ADIv5.0 to ADIv5.2. ARM, 2013.
- CoreSight technical introduction. A Quick Start for Designers. White Paper, ARM-EPM-039795, Arm, 2013.