+ + + + + + + + + + + + + +

CIM AXI4-Lite GPIO Peripheral and DDR Memory Controller

+ + + + + + + + + + + + + +

* * * * * * * * * * * * * * * *

Learning Outcomes:

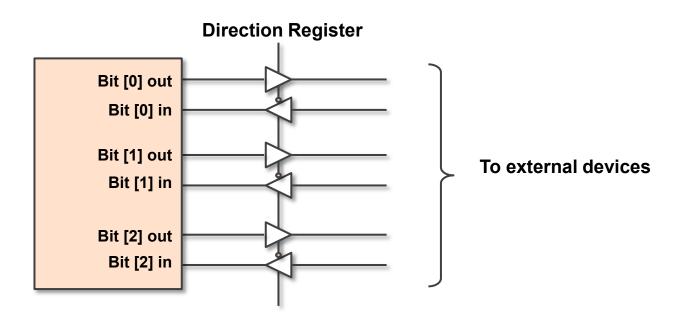
At the end of this module, you will be able to:

- Outline AXI4-Lite features and usage of low-power interface.
- Describe functionality and properties of General-Purpose Input and Output (GPIO).
- Explain the structure and operation of memory access and addressing.
- Identify the properties of various types of memory used in a typical SoC including volatile and non-volatile memory.
- Describe the structure and read/write operations for SRAM and DRAM.
- Describe the role and function of a Memory Controller.

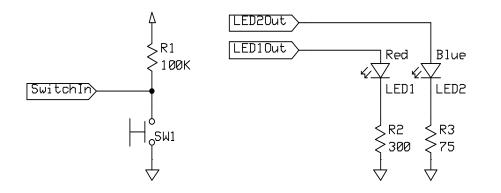
AMBA AXI4-Lite

- AXI4-Lite:
 - Suitable for simpler control interfaces, register-style
 - Light version of full AXI4
- Key features:
 - All transactions are of burst length one
 - All data accesses are based on full-width data bus (AXI4-Lite supports a data bus of 32-bit width or 64-bit width)
 - All accesses are non-modifiable, Non-bufferable
 - No support of exclusive accesses

AXI4-Lite Signals


| Global | Read Address | Read Data | Write Address | Write Data | Write Response |
|---------|--------------|-----------|---------------|------------|----------------|
| ACLK | ARVALID | RVALID | AWVALID | WVALID | BVALID |
| ARESETn | ARREADY | RREADY | AWREADY | WREADY | BREADY |
| | ARADDR | RDATA | AWADDR | WDATA | BRESP |
| | ARPORT | RRESP | AWPORT | WSTRB | |

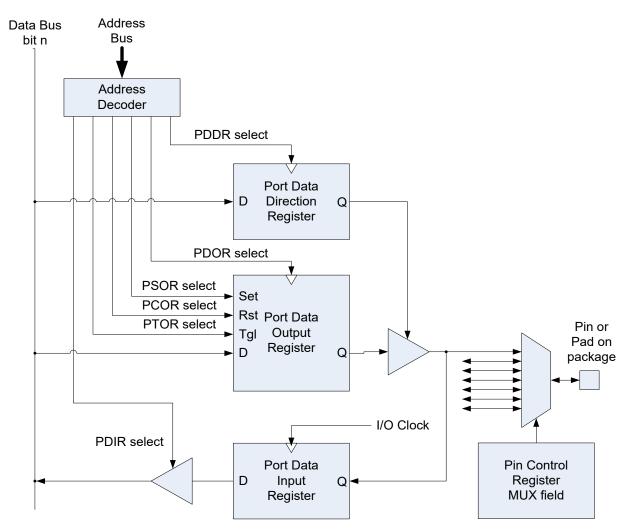
AXI low-power interface


- AXI low-power interface provides control during entry into and exit from a low-power state.
- It is an optional extension to the AXI protocol that targets
 - Any peripheral without powerdown sequence that can indicate when its clocks can be turned off
 - Any peripheral that requires a powerdown sequence and that can have its clocks turned off only after it enters a low-power state
- Low-power clock control
 - Low-power clock control interface signals:
 - One signal from the peripheral indicating when its clocks can be enabled or disabled
 - Two handshake signals for the system clock controller to request exit from or entry into a low-power state
 - A number of different peripherals can be combined into the same low-power clock domain, to treat that clock domain like a single peripheral.

GPIO Overview

- General-purpose input/output (GPIO)
 - Used for general purpose, no special usage defined
 - Widely used for most of the applications
 - The direction of input/output is controlled by the direction register.
 - A mask register is often used to mask out certain bits.

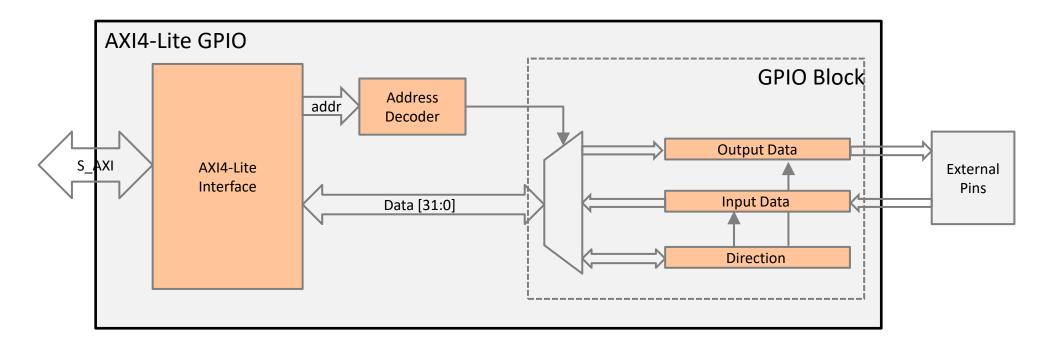
Basic Concepts



- Goal: light either LED1 or LED2 based on switch SW1 position
- GPIO
 - Input: program can determine if input signal is a 1 or a 0
 - Output: program can set output to 1 or 0
- Can use this to interface with external devices
 - Input: switch
 - Output: LEDs

Example GPIO Port Bit Circuitry in MCU

- Control
 - Direction
 - MUX
- Data
 - Output (different ways to access it)

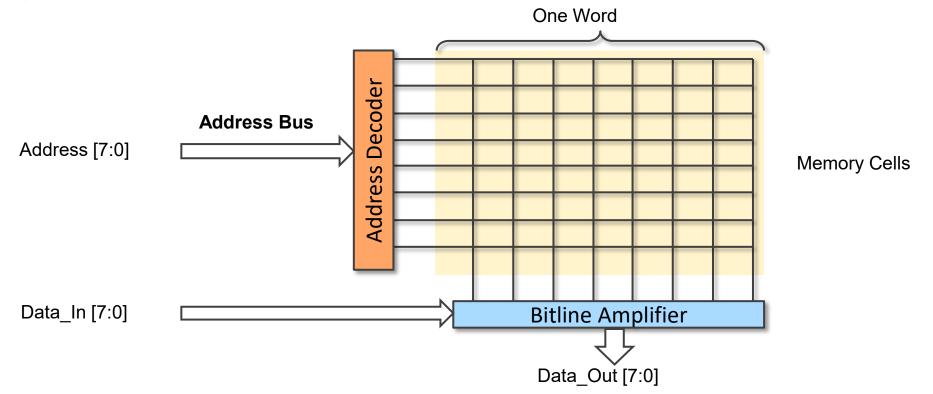

• Input

AXI4-Lite GPIO

- General-purpose input/output (GPIO) with AXI4-Lite interface
 - Used to transmit data between the AXI bus and the GPIO block
 - 32-bit data transmission with write strobes

Computer Memory

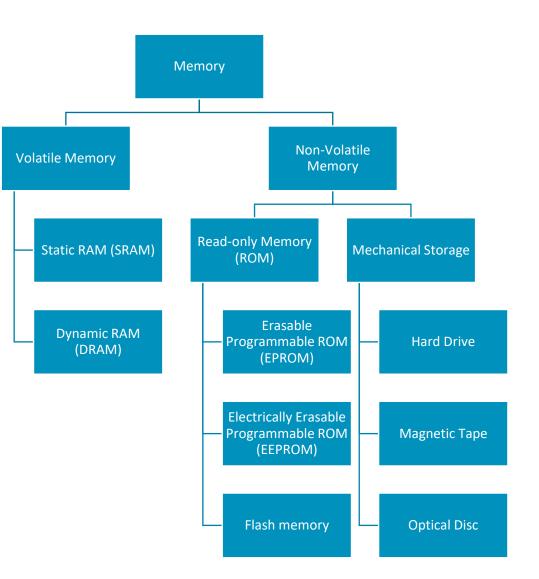
- Computer memory: a physical device that is used to store program code or data of a processor on either a temporary or permanent basis
- We can distinguish between two types of memory:
 - Volatile memory
 - Requires power to keep the stored data
 - Non-volatile memory
 - Can retain stored data after powerdown



Memory Access

- A memory is accessed by presenting it with an address, then writing or reading the data at that address.
- For example, a memory architecture with 8-bit width and 8-bit data is shown below:

Memory Accessing

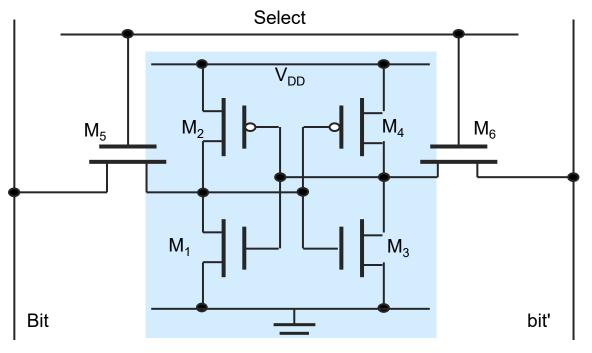

- Present an address:
 - Provide an address to the memory address bus
 - A particular word is then selected by the address decoder and connected to the bitline amplifier.
 - For larger memory, the address may be divided into row and column sections.
- Read operation:
 - The selected data is connected to the bitline amplifier.
 - The amplifier restores the signal to the proper voltage level, then outputs it to the Data_Out port.
- Write operation:
 - Present the data to the Data_In port
 - The amplifier sets the bitlines to the desired values and drives that value from the bitline to the memory cell.

Volatile v Non-volatile Memory

- Volatile memory
 - Requires power to retain the data information
 - Usually faster access speed and less costly
 - Used for temporary data storage such as CPU cache, internal memory
 - Also known as random access memory (RAM)
- Non-volatile memory
 - No power is required to retain the data information
 - Usually slower access speed and more costly
 - Used for secondary storage or long-term persistent storage

Types of Memory

- Volatile memory
 - Static RAM (SRAM)
 - Dynamic RAM (DRAM)
- Non-volatile memory
 - Read-only memory (ROM)
 - Erasable programmable ROM (EPROM)
 - Electrically erasable programmable ROM (EEPROM)
 - Non-volatile random access memory (NVRAM)
 - Flash memory
 - Mechanical storage
 - Hard drive, magnetic tape



Static RAM

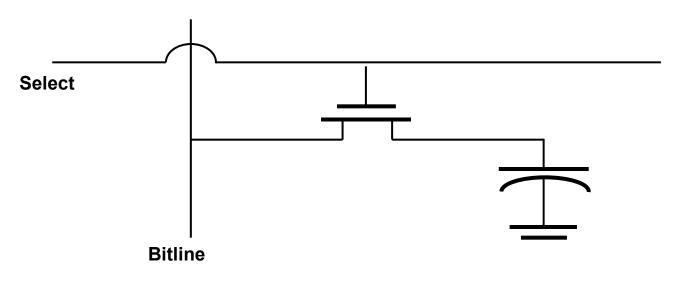
- Static RAM (SRAM)
 - Volatile memory
 - Data is retained as long as power is supplied
 - Usually uses six transistors to store one-bit data
 - Fast data access
 - Larger power
 - Less density, larger block size
 - More expensive

Static RAM Cell

- An SRAM cell is typically made up of six MOSFET transistors.
 - A single bit is stored on four transistors (M1-M4), which form two inverters that are cross-coupled.
 - The access of the bit is controlled by two access transistors (M5 and M6) that are gated by the wordline (select).

Accessing Static RAM

- Read operation
 - The address is decoded and the desired cell is then selected, in which case the select line is set to one.
 - Depending on the value of the four transistors (M1-M4), one of the bitlines will be charged to 1 and the other will be drained to 0.
 - The states of the two bitlines (bit and bit') are then read out as 1-bit data.
- Write operation
 - The two bitlines (bit and bit') are pre-charged to the desired value (e.g., bit = VDD, bit' = VSS).
 - The address is decoded and the desired cell is then selected, in which case, the select line is set to one.
 - The four transistors (M1-M4) are then forced to flip their states (either charged or discharged), since the bitlines normally have much higher capacitance than the four transistors.


Dynamic RAM

• Dynamic RAM (DRAM)

- One bit of data can be stored in one transistor and capacitor pair; the status of the capacitor (charged or uncharged) indicates the bit state (1 or 0).
- Needs to be refreshed (or recharged) periodically, since the capacitor leaks its charge, e.g., every 10 ms.
- Higher density, smaller block size
- Less expensive
- DRAM can be categorized according to its data rate and synchronization mode, for example:
 - Single data rate (SDR) and double data rate (DDR)
 - Synchronous DRAM (SDRAM) and non-synchronous DRAM

Dynamic RAM

- In DRAM, each memory cell requires fewer transistors, e.g., a three-transistor cell or even one-transistor cell.
- For example, the one-transistor cell is composed by one transistor and one capacitor.
 - One-transistor: a gate transistor used to select a single cell
 - One-capacitor: stores the value of a single bit

Accessing Dynamic RAM

- Read operation
 - The address decoder decodes the address and sets the select line to one
 - The bitline is then changed according to the state of the capacitor
- Write operation
 - The single bitline is pre-charged to a desired value (e.g., VDD or VSS)
 - The address decoder decodes the address and sets the select line to one
 - The capacitor is then either charged or discharged by the bitline

Non-volatile Memory

- Read-only memory (ROM)
 - In early times, ROM was manufactured with the desired data, which could not be changed.
 - Later types allowed data to be reprogramed, but with a degree of effort.
 - Erasable programmable ROM (EPROM)
 - Electrically erasable programmable ROM (EEPROM)
- Non-volatile random access memory (NVRAM)
 - Radom access, data can be both read and written
 - Best-know form is flash memory
- Mechanical storage
 - Non-electrically addressed memories, e.g., hard drives, magnetic tapes, optical drives
 - Less expensive, but slower

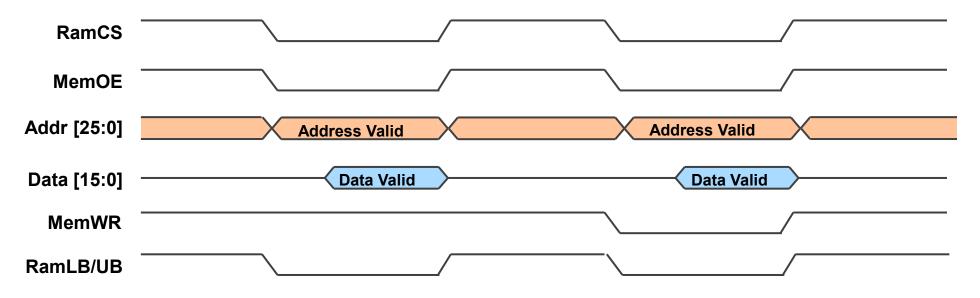
Memory Controller

- A piece of hardware that is mainly used for controlling the data flow going to/from the memory block.
- Memory controllers facilitate access to heterogeneous physical devices, e.g., SRAM, DRAM, FLASH, hard disk.

| | | Application/OS | | |
|---|------------------------------|------------------|--|--|
| • | Standard accessing interface | | | |
| | | Memory Controlle | ers | |
| • | Heterogeneous devices | | | |
| • | Various data accesses | | A STREET, STRE | |
| • | Electrical supports | | | |
| • | Physical maintenance | | | |

The Roles of a Memory Controller

- The role of a memory controller includes:
 - Interfacing with a particular type of memory block
 - Facilitating memory access by providing a universal interface to the system, e.g., to a standard bus interface
 - Supporting a variety of memory access modes, such as burst mode, memory paging, etc
 - May provide electrical support for the memory, e.g., refreshing a DRAM


Signal Description

| Name | I/O | Description |
|-------------|-----|---|
| Data [15:0] | I/O | 16-bit data input/output bus |
| Addr [25:0] | T | 26-bit address bus |
| RamCS | T | Chip select; activates the device when LOW |
| MemOE | T | Output enable: enables the output buffers when LOW |
| MemWR | T | Write enable: writes to the memory when LOW |
| RamLB | T | Lower byte enable |
| RamUB | T | Upper byte enable |
| RamClk | I | Additional clock input used to synchronize with the system; can be set to LOW as it is not needed in this teaching material |
| RamAdv | I | Address valid: indicates that a valid address is given on to the address bus; can be set to LOW as it is not needed in this teaching material |
| RamCre | I | Control register enable; can be set to LOW as it is not needed in this teaching material |
| RamWait | 0 | Provides data-valid feedback in the burst mode; not needed in this teaching material |

Example: Timing

- The off-chip memory supports a variety of transfer modes (basic read and write timing graph below).
- Copes with different data width, namely, merging two 16-bit data from the memory to form 32-bit data to be transferred through the AXI bus.

