
© 2021 Arm

AMBA AXI4 Bus
Architecture

2 © 2021 Arm

Learning Outcomes

At the end of this module, you will be able to:

• Describe the purpose and operation of a bus and communication protocol in an SoC.

• Identify the characteristics of various Arm AMBA System Buses including AMBA 3 and

AMBA 4, AXI4-Lite, and AXI4-stream.

• Outline the functionality and characteristics of the Arm AMBA AXI4-Lite and AXI4-

stream.

• Describe the transaction channels read and write operations for the AMBA AXI protocol.

• Explain the channel timing mechanism for AXI, including the clock, reset, and VALID and

READY handshake mechanism.

3 © 2021 Arm

What Is a Bus?

• Traditionally, a bus is a communication system that allows data to be transferred

between different components in a computer.

• The infrastructures is defined in both hardware and software:
• Hardware infrastructure includes the physical implementation, such as cables or wires. For example,

the PCI uses the PCI cable to connect components inside a desktop.

• Software infrastructure includes the bus protocol, e.g., PCI bus protocol.

PCI socket on a mother board PCI bus cable

4 © 2021 Arm

Bus Types

• External bus
• Used to connect external devices, such as a printer, to a computer

• Internal bus
• Used to connect internal components inside a computer, such as a CPU to memory

• Also known as system bus

• Less overhead, e.g., no need for electrical characteristics handling and configuration detection

• Thus, typically runs faster than the external bus

• In an SoC design, the internal bus is integrated onto a single chip; thus, it can also be referred to as an

on-chip system bus.

5 © 2021 Arm

Bus Terminology

Manager

S
u

b
o

rd
in

a
te

M
u

lt
ip

le
x

o
r

Multiplexor

Select

Address

Decoder

Subordinate 1

Subordinate 2

Subordinate 3

6 © 2021 Arm

Bus Operation in General

• A bus typically consists of three types of signal lines:
• Data bus is used to exchange data information

• Address bus is used to select one of the peripherals (or one register of a peripheral)

• Control signals are used to synchronize and identify transactions, such as ready, write/read, transfer

mode signals

Manager

(Microprocessor)

Subordinate 2 Subordinate 3 Subordinate 4 Subordinate 5 Subordinate 1 Subordinate 6

System on Chip

32-bit Address Bus

32-bit Data Bus

Control Signals

7 © 2021 Arm

A Typical Bus Operation Example

• A typical operation to access a peripheral

mainly consists of the following:
• The Manager (e.g., a processor) selects one

peripheral (or one register) by giving the address to

the address bus. At the same time, it sets control

signals, such as read or write, transfer size, and so

forth.

Address bus

Select a peripheral

Processor Peripheral

Control bus

Read operation, transfer size at the

same time

8 © 2021 Arm

A Typical Bus Operation Example

• A typical operation to access a peripheral

mainly consists of the following:
• The Manager (e.g., a processor) selects one

peripheral (or one register) by giving the address to

the address bus. At the same time, it sets control

signals, such as read or write, transfer size, and so

forth.

• The Manager waits for the Subordinate (e.g.,

peripheral) to respond.

Address bus

Select a peripheral

Processor Peripheral

Control bus

Read operation, transfer size at the

same time

9 © 2021 Arm

A Typical Bus Operation Example

• A typical operation to access a peripheral

mainly consists of the following:
• The Manager (e.g., a processor) selects one

peripheral (or one register) by giving the address to

the address bus. At the same time, it sets control

signals, such as read or write, transfer size, and so

forth.

• The Manager waits for the Subordinate (e.g.,

peripheral) to respond.

• Once the Subordinate is ready, it sends back the

requested data to the processor. At the same time,

it sets the ready signal on the control bus.

Address bus

Select a peripheral

Processor

Control bus

Read operation, transfer size at the

same time

Data bus

Send data back to processor

Control bus

Set ready signal at the same time

Peripheral

10 © 2021 Arm

A Typical Bus Operation Example

• A typical operation to access a peripheral

mainly consists of the following:
• The Manager (e.g., a processor) selects one

peripheral (or one register) by giving the address to

the address bus. At the same time, it sets control

signals, such as read or write, transfer size, and so

forth.

• The Manager waits for the Subordinate (e.g.,

peripheral) to respond.

• Once the Subordinate is ready, it sends back the

requested data to the processor. At the same time,

it sets the ready signal on the control bus.

• Finally, the Manager reads the transmitted data and

starts another communication cycle.

Address bus

Select a peripheral

Processor Peripheral

Control bus

Read operation, transfer size at the

same time

Data bus

Send data back to processor

Control bus

Set ready signal at the same time

Processor reads the data and starts

the next operation

Address bus

Select a peripheral

11 © 2021 Arm

Communication Architecture Standards

• Why do we need communication standards?
• Modular design approach

• Allows design reuse

• Facilitates IPs integration into an SoC design

Picture source: http://www.ecs.soton.ac.uk/ (SoC Advance design Technique)

http://www.ecs.soton.ac.uk/

12 © 2021 Arm

Arm AMBA System Bus

• AMBA: Advanced Microcontroller Bus Architecture
• AMBA protocol is an open standard (except AMBA 5), on-chip interconnect specification.

• Used as the on-chip bus in Arm-based SoC designs

• Provides the interface standard that enables IP reuse

• Facilitates right-first-time development of multi-processor designs with large numbers of controllers

and peripherals

• Widely used in modern portable mobile devices, such as tablets and smartphones

13 © 2021 Arm

Arm AMBA Bus Families

AMBA Family Bus Protocol Processor

AMBA 5 CHI Cortex-A57, A53

AMBA 4
ACE, ACE-Lite Cortex-A7, A15

AXI4, AXI4-Lite, AXI4-Stream

AMBA 3

AXI Cortex-A9, A8, R4, R5

AHB (AHB-Lite) Cortex-M0, M3, M4

APB Cortex-M0, M3, M4

ATB

AMBA 2 AHB, APB Arm7, Arm9

AMBA 1 ASB, APB

14 © 2021 Arm

AMBA 3 Specifications
• AXI: Advanced eXtensible Interface

• The most widely used AMBA interface

• Connectivity with up to hundreds of Managers and Subordinates in complex SoCs

• AMBA 3 defines a set of four interface protocols:
• AMBA 3 AXI Interface

• AMBA 3 AHB Interface

• AMBA 3 APB Interface

• AMBA 3 ATB Interface

• Between these, they cover the on-chip data traffic requirements from data intensive

processing components requiring:
• High data throughput

• Low-bandwidth communication requiring low gate count and power

• On-chip test and debug access

15 © 2021 Arm

AMBA 3 AXI Interface

• The AMBA 3 AXI interface specification has the characteristics to support highly

effective data traffic throughput.

• The five unidirectional channels with flexible relative timing between them and

multiple outstanding transactions with out-of-order data capability enable:
• Pipelined interconnect for high-speed operations

• Efficient bridging between frequencies for power management

• Simultaneous read and write transactions

• Efficient support of high initial latency peripherals

16 © 2021 Arm

AMBA 4 Specifications

• The AMBA 4 specifications add another five interface protocols to the AMBA 3

specifications:
• ACE

• ACE-Lite

• AXI4

• AXI4-Lite

• AXI4-Stream

• The AXI and ACE protocol specifications Issue E, released February 2013, adds new

optional properties for AXI ordering, ACE cache behavior, and Armv8 DVM messaging.

17 © 2021 Arm

AMBA 4 Specifications

• AXI4
• Update for AXI3 to enhance the performance and utilization of the interconnect when used by

multiple Managers

• Support for burst lengths up to 256 beats

• Quality of service signaling

• Support for multiple region interfaces

• AXI4-Lite
• Subset of the AXI4 protocol intended for communication with simpler, smaller control register-style

interfaces in components

• All transactions are a burst length of one

• All data accesses are the same size as the width of the data bus

• Exclusive accesses are not supported

• Does not support AXI IDs

18 © 2021 Arm

AMBA 4 Specifications

• AXI4-stream
• Designed for unidirectional data transfers from Manager to Subordinate with greatly reduced signal

routing

• Supports single and multiple data streams using the same set of shared wires

• Support for multiple data widths within the same interconnect

• Ideal for implementation in FPGA

19 © 2021 Arm

AXI Components and Topology

• Manager component
• A component that initiates transactions

• Subordinate component
• A component that receives transactions and responds to them

• Subordinate components include memory Subordinate components and peripheral Subordinate

components

• Interconnect component
• A component with more than one AMBA interface that connects one or more Manager components

to one or more Subordinate components

• An interconnect component can be used to group together either:
– a set of Managers so that they appear as a single Manager interface

– a set of Subordinates so that they appear as a single Subordinate interface

20 © 2021 Arm

AXI Components and Topology

• Most systems use one of three topologies:
• shared address and data buses

• shared address buses and multiple data buses

• multilayer, with multiple address and data buses

Manager 1

Subordinate 4 Subordinate 3 Subordinate 2 Subordinate 1

Manager 2 Manager 3

21 © 2021 Arm

Transaction Channels

• When an AXI Manager initiates an AXI operation targeting an AXI Subordinate,
• the complete set of required operations on the AXI bus form the AXI transaction

• any required payload data is transferred as an AXI burst

• a burst can comprise multiple data transfers, or AXI beats

• The AXI protocol is burst-based and defines the following independent transaction

channels:
• read address (AR)

• read data (R)

• write address (AW)

• write data (W)

• write response (B)

22 © 2021 Arm

Channel Architecture of Reads

Manager Subordinate

23 © 2021 Arm

Channel Architecture of Writes

Manager Subordinate

24 © 2021 Arm

Basic Signals

• A VALID signal is asserted when valid information is driven by the information

transmitter.

• A READY signal is asserted when the information receiver is ready to receive.

• A LAST signal is to indicate the transfer of the final data item in a transaction (data

channels).

Signals Read Address Read Data Write Address Write Data Write Response

HANDSHAKE ARVALID

ARREADY

RVALID

RREADY

AWVALID

AWREADY

WVALID

WREADY

BVALID

BREADY

INFORMATION ARADDR RDATA

RLAST

AWADDR WDATA

WLAST

BRESP

GLOBAL ACLK, ARESETn

25 © 2021 Arm

Clock and Reset

• Clock
• Each AXI component uses a single clock signal, ACLK.

• All input signals are sampled on the rising edge of ACLK.

• All output signal changes must occur after the rising edge of ACLK.

• Reset
• A single active-LOW reset signal, ARESETn

• Can be asserted asynchronously, but de-assertion must be synchronous with a rising edge of ACLK

ACLK

26 © 2021 Arm

Channel Timing Example: VALID with READY Handshake

• After T1, both the source and destination indicate a data transfer.

• The transfer occurs at the rising clock edge (after both VALID and READY signals are

asserted).

• The transfer occurs at T2.

27 © 2021 Arm

Channel Timing Example: VALID before READY Handshake

• After T1, the source presents the address, data, or control information and asserts the

VALID signal.

• The destination asserts the READY signal after T2.

• The source has to keep its information stable until the transfer occurs at T3.

28 © 2021 Arm

Channel Timing Example: READY before VALID Handshake

• After T1, the destination asserts the READY signal (before the address, data, or control

information is valid) to indicate that it can accept the information.

• After T2, the source presents the information and asserts VALID.

• The transfer occurs at T3 (when this assertion is recognized).

29 © 2021 Arm

Relationships Between the Channels

• The AXI protocol requires the following relationships to be maintained:
• A write response must always follow the last write transfer in the write transaction of which it is a

part.

• Read data must always follow the address to which the data relates.

• Channel handshakes must conform to the dependencies defined for the handshake signals.

• Dependencies are shown in the next slide.

30 © 2021 Arm

Relationships Between the Channels

• Dependency rules between the handshake signals that must be observed:
• The VALID signal of the AXI interface sending information must not depend on the READY signal of the

AXI interface receiving that information.

• An AXI interface that is receiving information can wait until it detects a VALID signal before it asserts

its corresponding READY signal.

Read transaction Write transaction

