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Learning Outcomes 

At the end of this module, you will be able to: 

• Describe the configuration and features of the Arm Cortex-A9 processor. 

• Outline the purpose and properties of Register Renaming, Virtual Flag Registers, Out of 

Order Issue and Small Loop Mode in the Arm Cortex-A9 processor. 

• Identify the properties of Program Flow Prediction in the Arm Cortex-A9 processor. 

• Explain the function and operation of a Performance Monitoring Unit and Memory 

Management Unit. 

• Outline the memory and cache properties in the Arm Cortex-A9 processor. 
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Arm Cortex-A9 
• Armv7-A architecture 

• Thumb-2, ThumbEE 

• Synthesizable 

• High-performance core: 
• Variable-length multi-issue pipeline 

• Register renaming 

• Speculative data prefetching 

• Branch prediction and return stack 

• 64-bit AXI instruction and data interfaces 

• TrustZone extensions 

• L1 data and instruction caches 
• 16–64KB each 

• Four-way set-associative 

 

Optional features 

• PTM Program Flow Trace interface 

• IEM power-saving support 

• Full Jazelle DBX support 

• VFPv3-D16 floating-point unit (FPU) or Neon™ media processing engine 
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Cortex-A9 MPCore 

• Contains up to 4 Cortex-A9 processors 
• Identical to standard single-core processors 

described in this module 

• Private timer and watchdog unit per processor 

• Snoop control unit (SCU) 
• Maintains L1 data cache coherency between 

processors 

• Arbitrates accesses to the L2 memory system, 

through one or two external 64-bit AXI Managers 

interfaces 

• Optional Accelerator Coherency Port for 

maintaining coherency with DMA controller, 

graphics processor, or similar 

• Integrated interrupt controller 
• Same programmer’s model as Arm’s Generic 

Interrupt Controller (GIC): the PL390 PrimeCell 
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Cortex-A9 Pipeline 

• Five backend execution pipelines 

• Pipelines are clustered into three different issue groups. 
• Main or multiply accumulate (Mac) 

• Dual execution (also known as secondary) 

• Load/store, or compute engine (Neon or floating point) 

Core can issue up to three instructions per cycle. 
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Cortex-A9 MPE Configuration  

• Cortex-A9 can be configured as follows: 
• Without MPE (no VFP or Neon support) 

• VFP/FPU only (sixteen 64-bit double-precision registers) 

• VFPv3 and Neon (thirty-two 64-bit double-precision registers) 

• RVCT support 

• Arm DS-5 and DSTREAM support 
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Cortex-A9 Media Processing Engine  
• Cortex-A9 Neon Media Processing Engine (MPE) 

• Support for Advanced SIMD and VFPv3 

• Pipelined (shares backend execution stage with load/store instructions) 

• Large register file (can be implemented differently for VFP only) 

• Thirty-two 32-bit S (single) registers 

• Thirty-two 64-bit D (double) registers 

• Sixteen 128-bit Q (quad) registers 

• Neon and floating-point unit can be enabled/disabled in software for power savings. 

• VFPv3 
• No floating point support code required for most operations 

• Vector (floating point) operations no longer supported in hardware 

• Register bank optimized to sixteen double-precision registers for size and power considerations and compatibility with 

VFPv2/Arm11 software 

• Emphasis on fast single-precision support 

• Full compliance with IEEE 754 standard 
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Register Renaming 
• Cortex-A9 has two classes of core registers: Architectural and physical 

• Architectural registers (r0–r15, CPSR, etc.) that are visible to software 

• Physical registers: physically implemented in the CPU but not visible to software 

• There are also fifty-six general-purpose physical registers, and eight flag registers (for CPSR) 

Architectural registers are allocated from a pool of physical registers in the execute stages of the pipeline. 

• An architectural register can be mapped to multiple physical registers. 

• Removes interlocks due to register dependencies 

• Can still interlock due to a data dependency 
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Register Renaming Example 

• The architectural view shows the situation as on a core without renaming. 
• Once a register value has been written to memory, that register is available to the core. 

• In this example, r0 would not be accessible in the register bank until the STR had completed: even 

though there is no dependency. 

• Register renaming removes this register dependency. 
• As the two versions of r0 are fundamentally not connected, they are assigned to two different 

physical registers. 

• From the processor’s point of view, the dependency no longer exists. 
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Virtual Flags Registers 

• The virtual flags registers perform limited renaming of the CPSR. 
• They hold copies of the flag bits of CPSR: NCZV, GE, Q. 

• Can remove register dependencies on CPSR flags 
• Allows dual-issue in certain cases 

• The flags registers do not (cannot) hold copies of state/mode bits. 

• Example: removing a stall caused by a CMP following a conditionally executed 

instruction 
 

CMP r0, r1 

ADDEQ r0, r0, #4 

CMP r2, r3 

BLNE 0x4000 

Architectural Physical 

CMP p3, p32 

ADDEQ p3, p3, #4 

CMP p12, p7 

BLNE 0x4000 

flg_0 
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flg_7 

CPSR 
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Out of Order Issue/Completion 

• The core can decode up to two instructions per cycle, but can issue up to three 

instructions per cycle. 
• Due to buffering in issue stage 

• With two already renamed instructions additionally buffered in rename stage 

Register renaming allows instructions in different pipelines to complete out-of-order 

where no data dependencies exist. 
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Small Loop Mode 

• Allows a small loop to execute entirely out of 

the IQ 
• The prefetch unit stops fetching instructions from the 

cache. 

• Lowers power consumption 

• Small loop mode can be activated if 
• Loop fits inside two cache lines. 

• Code is all Arm, or all Thumb-2. 

• Loop ends with a conditional backwards branch. 
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Program Flow Prediction 

• Dynamic branch prediction 
• Branches assigned one of four states: strongly/weakly, taken/not 

taken 

• Global history buffer maintains state of the last 4096 branches*. 

Branch target address cache (BTAC): 512-entry* cache of 

taken branch addresses  

• BTAC must be flushed on reset or context switch. 

• More than two likely-taken instructions in 16-byte blocks will harm 

performance (because of BTAC structure). 

 

* Numbers quoted in asterisk may vary depending on the 

implementation of the Cortex-A9 processor. 
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Program Flow Prediction 

Eight-entry return stack 

• Predicts returns from subroutines based on fetching certain return 

instructions 

Branch prediction is enabled by cp15 System Control Register Z bit 

• Disabled at reset: must be explicitly enabled by programmer 

Performance monitors can check efficiency of branch prediction. 
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Performance Monitoring Unit (PMU) 

• The Performance Monitoring Unit provides a non-intrusive method of collecting execution information 

from the core. 
• Enabling the PMU does not affect the performance or program behavior. 

The PMU provides 

• A dedicated cycle counter: counts execution cycles (optional 1/64 divider) 

• Programmable event counters 

• Counters can record items like cache/TLB misses, branch prediction performance, pipeline stalls, and memory accesses. 

• The Cortex-A9 PMU provides six configurable event counters. 

The PMU can be configured to generate interrupts if a counter overflows. 

• Interrupt signals are an output from the core, into an external interrupt controller. 
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Cortex-A9 Supports Armv7-A Architecture 

• Mixed-endian support for data side accesses  
• Little-endian (LE) or big-endian (BE-8/byte-invariant) 

• Data access endianness is controlled by the E bit in the CPSR. 

• Endianness on exception entry is controlled by the EE bit in the CP15 c1 control register. 

Unaligned access support in hardware (for normal memory) 

• Accesses to unaligned addresses are handled in hardware. 

• Controlled by the A bit in the CP15 c1 control register. 

• NEON unaligned access based on memory type (normal, device, or strongly ordered) 

Cache and MMU support 

• Includes Translation Lookaside Buffers (TLBs) 
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Level 1 Memory System 

Caches 

• 16-64KB, 4-way set-associative 

Data side 

• Dedicated PLD unit for handling data preload requests 

• Speculative data prefetching 

• Merging store buffer 

Optional support for parity checking 

Cortex-A9 
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Instruction side 

• Branch prediction and instruction queue 

MMU 

• Separate I- and D- MicroTLBs 

• Unified main TLB 

• Support for translation table walks through L1 D-cache 
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Load/Store Features 

• Load/store instructions can be issued speculatively. 
• Before condition of instruction, or preceding branch, has been resolved, or before data to be written 

has become available 

• Any side effects, such as modified registers, are flushed if condition fails. 

PLD support implemented in separate unit 

• Can handle up to four outstanding PLD operations (explicit loads/stores have higher priority) 

Speculative data prefetching 

• Monitors sequential accesses made by program and starts fetching next expected line before it has 

been requested 

• Enabled in cp15 auxiliary control register (DP bit) 

• Prefetched lines can be dropped before allocation, and PLD has higher priority. 

Store buffer is a merging store buffer with four 64-bit slots. 

• Data forwarding: data can be moved directly from LDR to STR in the LSU. 



19 © 2021 Arm 

Caches 

• Four-way set-associative 
• 16, 32, or 64 KB each for data and instructions independently (synthesis option) 

• Eight words per line 

• Data cache is physically indexed and physically tagged. 

• Instruction cache is virtually indexed and physically tagged. 

No lockdown support and no TCM 

• Instead, use L2 cache lockdown or fast on-chip memory. 

Support for parity checking (synthesis option) 

Round robin or random replacement policy 

• Victim counter is read at the time of miss, not time of allocation, and then incremented at the time of allocation. 

• An invalid line in the set will be replaced in preference to using the victim counter. 

Caches need to be invalidated before they are enabled (after reset). 

• Different from previous Arm cores 
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Data Cache 

• Non-blocking 
• Load/store can continue to hit in cache while it is performing allocations from external memory due 

to prior read/write misses. 

• Supports four outstanding read misses and four outstanding write misses. 

Contains the local load/store exclusive monitor 

• Used for LDREX/STREX synchronization 

• Monitors one address only, with eight-word (one cache line) granularity 

• Avoid interleaving LDREX/STREX sequences. 

• Always execute a CLREX instruction as part of any context switch. 

• Note: Non-exclusive store to tagged location does not clear monitor state. 
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Data Cache 

Support for exclusive cache operation (disabled by default) 

• A cache line is valid only in L1 or L2 cache, never in both at the same time. 

• Line fill into L1 causes line to be marked invalid in L2. 

• Eviction from L1 causes allocation in L2 (even if not dirty). 

• Line fill into L1 from dirty L2 line forces eviction to external memory. 

• Increases cache utilization, reducing power consumption. 
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Memory Management Unit 

• Translation table walks can be configured to go through L1 data cache. 
• Allows page tables to be cached 

• Configured in TTBRx IRGN bits, so can be individually configured per process (TTBR0) and also for 

system region (TTBR1) 

 

 

 

 

 

Main TLB should be invalidated before MMU is enabled after reset. 

• MicroTLBs automatically invalidated by any TLB operation, or change of ASID 
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Armv7 Architecture Effects 

• Old CP15 c7 wait for interrupt operation has been removed. 
• Executes as a NOP 

• Use WFI instruction instead. 

L1 caches no longer guaranteed to be invalidated on reset 

• Must be manually invalidated 

L1 cache lockdown is optional. 

• Not implemented in Cortex-A9 


