
© 2021 Arm

Arm Cortex-A9
processor

2 © 2021 Arm

Learning Outcomes

At the end of this module, you will be able to:

• Describe the configuration and features of the Arm Cortex-A9 processor.

• Outline the purpose and properties of Register Renaming, Virtual Flag Registers, Out of

Order Issue and Small Loop Mode in the Arm Cortex-A9 processor.

• Identify the properties of Program Flow Prediction in the Arm Cortex-A9 processor.

• Explain the function and operation of a Performance Monitoring Unit and Memory

Management Unit.

• Outline the memory and cache properties in the Arm Cortex-A9 processor.

3 © 2021 Arm

Arm Cortex-A9
• Armv7-A architecture

• Thumb-2, ThumbEE

• Synthesizable

• High-performance core:
• Variable-length multi-issue pipeline

• Register renaming

• Speculative data prefetching

• Branch prediction and return stack

• 64-bit AXI instruction and data interfaces

• TrustZone extensions

• L1 data and instruction caches
• 16–64KB each

• Four-way set-associative

Optional features

• PTM Program Flow Trace interface

• IEM power-saving support

• Full Jazelle DBX support

• VFPv3-D16 floating-point unit (FPU) or Neon™ media processing engine

4 © 2021 Arm

Cortex-A9 MPCore

• Contains up to 4 Cortex-A9 processors
• Identical to standard single-core processors

described in this module

• Private timer and watchdog unit per processor

• Snoop control unit (SCU)
• Maintains L1 data cache coherency between

processors

• Arbitrates accesses to the L2 memory system,

through one or two external 64-bit AXI Managers

interfaces

• Optional Accelerator Coherency Port for

maintaining coherency with DMA controller,

graphics processor, or similar

• Integrated interrupt controller
• Same programmer’s model as Arm’s Generic

Interrupt Controller (GIC): the PL390 PrimeCell

5 © 2021 Arm

Cortex-A9 Pipeline

• Five backend execution pipelines

• Pipelines are clustered into three different issue groups.
• Main or multiply accumulate (Mac)

• Dual execution (also known as secondary)

• Load/store, or compute engine (Neon or floating point)

Core can issue up to three instructions per cycle.

Fe1 Fe2 Fe3

ISS

Ex1

Ex1

AGU

WB

WB

WB

CE

LSU

De Re

BM

Main

(P0)

Dual

(P1)
Prefetch unit

M1
Mac (M)

Ex2

Ex2

M2

IQ

Load/store

(LS)

WB
Compute engine

(CE)

Decode and issue stages

6 © 2021 Arm

Cortex-A9 MPE Configuration

• Cortex-A9 can be configured as follows:
• Without MPE (no VFP or Neon support)

• VFP/FPU only (sixteen 64-bit double-precision registers)

• VFPv3 and Neon (thirty-two 64-bit double-precision registers)

• RVCT support

• Arm DS-5 and DSTREAM support

7 © 2021 Arm

Cortex-A9 Media Processing Engine
• Cortex-A9 Neon Media Processing Engine (MPE)

• Support for Advanced SIMD and VFPv3

• Pipelined (shares backend execution stage with load/store instructions)

• Large register file (can be implemented differently for VFP only)

• Thirty-two 32-bit S (single) registers

• Thirty-two 64-bit D (double) registers

• Sixteen 128-bit Q (quad) registers

• Neon and floating-point unit can be enabled/disabled in software for power savings.

• VFPv3
• No floating point support code required for most operations

• Vector (floating point) operations no longer supported in hardware

• Register bank optimized to sixteen double-precision registers for size and power considerations and compatibility with

VFPv2/Arm11 software

• Emphasis on fast single-precision support

• Full compliance with IEEE 754 standard

8 © 2021 Arm

Register Renaming
• Cortex-A9 has two classes of core registers: Architectural and physical

• Architectural registers (r0–r15, CPSR, etc.) that are visible to software

• Physical registers: physically implemented in the CPU but not visible to software

• There are also fifty-six general-purpose physical registers, and eight flag registers (for CPSR)

Architectural registers are allocated from a pool of physical registers in the execute stages of the pipeline.

• An architectural register can be mapped to multiple physical registers.

• Removes interlocks due to register dependencies

• Can still interlock due to a data dependency

LDR p1, [p2]

STR p0, [p3] p1
p0

p2

…
p3

p55

Physical
r0

r0

r1
r0

r2

…
r3

STR r0, [r2]
LDR r0, [r1]

r14

Architectural

9 © 2021 Arm

Register Renaming Example

• The architectural view shows the situation as on a core without renaming.
• Once a register value has been written to memory, that register is available to the core.

• In this example, r0 would not be accessible in the register bank until the STR had completed: even

though there is no dependency.

• Register renaming removes this register dependency.
• As the two versions of r0 are fundamentally not connected, they are assigned to two different

physical registers.

• From the processor’s point of view, the dependency no longer exists.

LDR p1, [p2]

STR r0, [r2]
LDR r0, [r1]

STR p0, [p3] p1
p0

p2

…
p3

p55

Physical
r0

r0

r1
r0

r2

…
r3

r14

Architectural

10 © 2021 Arm

Virtual Flags Registers

• The virtual flags registers perform limited renaming of the CPSR.
• They hold copies of the flag bits of CPSR: NCZV, GE, Q.

• Can remove register dependencies on CPSR flags
• Allows dual-issue in certain cases

• The flags registers do not (cannot) hold copies of state/mode bits.

• Example: removing a stall caused by a CMP following a conditionally executed

instruction

CMP r0, r1

ADDEQ r0, r0, #4

CMP r2, r3

BLNE 0x4000

Architectural Physical

CMP p3, p32

ADDEQ p3, p3, #4

CMP p12, p7

BLNE 0x4000

flg_0
…
flg_7

CPSR

11 © 2021 Arm

Out of Order Issue/Completion

• The core can decode up to two instructions per cycle, but can issue up to three

instructions per cycle.
• Due to buffering in issue stage

• With two already renamed instructions additionally buffered in rename stage

Register renaming allows instructions in different pipelines to complete out-of-order

where no data dependencies exist.

Fe1 Fe2 Fe3

ISS

Ex1

Ex1

AGU

WB

WB

WB

CE

LSU

De Re

BM

(P0)

(P1)

Prefetch Unit

M1 (M)

Ex2

Ex2

M2
IQ

(LS)

WB (CE)

12 © 2021 Arm

Small Loop Mode

• Allows a small loop to execute entirely out of

the IQ
• The prefetch unit stops fetching instructions from the

cache.

• Lowers power consumption

• Small loop mode can be activated if
• Loop fits inside two cache lines.

• Code is all Arm, or all Thumb-2.

• Loop ends with a conditional backwards branch.

13 © 2021 Arm

Program Flow Prediction

• Dynamic branch prediction
• Branches assigned one of four states: strongly/weakly, taken/not

taken

• Global history buffer maintains state of the last 4096 branches*.

Branch target address cache (BTAC): 512-entry* cache of

taken branch addresses

• BTAC must be flushed on reset or context switch.

• More than two likely-taken instructions in 16-byte blocks will harm

performance (because of BTAC structure).

* Numbers quoted in asterisk may vary depending on the

implementation of the Cortex-A9 processor.

14 © 2021 Arm

Program Flow Prediction

Eight-entry return stack

• Predicts returns from subroutines based on fetching certain return

instructions

Branch prediction is enabled by cp15 System Control Register Z bit

• Disabled at reset: must be explicitly enabled by programmer

Performance monitors can check efficiency of branch prediction.

15 © 2021 Arm

Performance Monitoring Unit (PMU)

• The Performance Monitoring Unit provides a non-intrusive method of collecting execution information

from the core.
• Enabling the PMU does not affect the performance or program behavior.

The PMU provides

• A dedicated cycle counter: counts execution cycles (optional 1/64 divider)

• Programmable event counters

• Counters can record items like cache/TLB misses, branch prediction performance, pipeline stalls, and memory accesses.

• The Cortex-A9 PMU provides six configurable event counters.

The PMU can be configured to generate interrupts if a counter overflows.

• Interrupt signals are an output from the core, into an external interrupt controller.

16 © 2021 Arm

Cortex-A9 Supports Armv7-A Architecture

• Mixed-endian support for data side accesses
• Little-endian (LE) or big-endian (BE-8/byte-invariant)

• Data access endianness is controlled by the E bit in the CPSR.

• Endianness on exception entry is controlled by the EE bit in the CP15 c1 control register.

Unaligned access support in hardware (for normal memory)

• Accesses to unaligned addresses are handled in hardware.

• Controlled by the A bit in the CP15 c1 control register.

• NEON unaligned access based on memory type (normal, device, or strongly ordered)

Cache and MMU support

• Includes Translation Lookaside Buffers (TLBs)

17 © 2021 Arm

Level 1 Memory System

Caches

• 16-64KB, 4-way set-associative

Data side

• Dedicated PLD unit for handling data preload requests

• Speculative data prefetching

• Merging store buffer

Optional support for parity checking

Cortex-A9

Core

MMU
Instruction side

I Cache

Data side

Store

 Buffer
D Cache

Data

Prefetch

Branch

Predict

Instruction

Queue

PLD

Unit

AXI Manager 0 AXI Manager 1

Instruction side

• Branch prediction and instruction queue

MMU

• Separate I- and D- MicroTLBs

• Unified main TLB

• Support for translation table walks through L1 D-cache

18 © 2021 Arm

Load/Store Features

• Load/store instructions can be issued speculatively.
• Before condition of instruction, or preceding branch, has been resolved, or before data to be written

has become available

• Any side effects, such as modified registers, are flushed if condition fails.

PLD support implemented in separate unit

• Can handle up to four outstanding PLD operations (explicit loads/stores have higher priority)

Speculative data prefetching

• Monitors sequential accesses made by program and starts fetching next expected line before it has

been requested

• Enabled in cp15 auxiliary control register (DP bit)

• Prefetched lines can be dropped before allocation, and PLD has higher priority.

Store buffer is a merging store buffer with four 64-bit slots.

• Data forwarding: data can be moved directly from LDR to STR in the LSU.

19 © 2021 Arm

Caches

• Four-way set-associative
• 16, 32, or 64 KB each for data and instructions independently (synthesis option)

• Eight words per line

• Data cache is physically indexed and physically tagged.

• Instruction cache is virtually indexed and physically tagged.

No lockdown support and no TCM

• Instead, use L2 cache lockdown or fast on-chip memory.

Support for parity checking (synthesis option)

Round robin or random replacement policy

• Victim counter is read at the time of miss, not time of allocation, and then incremented at the time of allocation.

• An invalid line in the set will be replaced in preference to using the victim counter.

Caches need to be invalidated before they are enabled (after reset).

• Different from previous Arm cores

20 © 2021 Arm

Data Cache

• Non-blocking
• Load/store can continue to hit in cache while it is performing allocations from external memory due

to prior read/write misses.

• Supports four outstanding read misses and four outstanding write misses.

Contains the local load/store exclusive monitor

• Used for LDREX/STREX synchronization

• Monitors one address only, with eight-word (one cache line) granularity

• Avoid interleaving LDREX/STREX sequences.

• Always execute a CLREX instruction as part of any context switch.

• Note: Non-exclusive store to tagged location does not clear monitor state.

21 © 2021 Arm

Data Cache

Support for exclusive cache operation (disabled by default)

• A cache line is valid only in L1 or L2 cache, never in both at the same time.

• Line fill into L1 causes line to be marked invalid in L2.

• Eviction from L1 causes allocation in L2 (even if not dirty).

• Line fill into L1 from dirty L2 line forces eviction to external memory.

• Increases cache utilization, reducing power consumption.

22 © 2021 Arm

Memory Management Unit

• Translation table walks can be configured to go through L1 data cache.
• Allows page tables to be cached

• Configured in TTBRx IRGN bits, so can be individually configured per process (TTBR0) and also for

system region (TTBR1)

Main TLB should be invalidated before MMU is enabled after reset.

• MicroTLBs automatically invalidated by any TLB operation, or change of ASID

Cortex-A9

Core

Instruction Cache
Data

Cache

cp15

I µTLB D µTLB

Main TLB

MMU Control logic

AXI Manager 0 AXI Manager 1

23 © 2021 Arm

Armv7 Architecture Effects

• Old CP15 c7 wait for interrupt operation has been removed.
• Executes as a NOP

• Use WFI instruction instead.

L1 caches no longer guaranteed to be invalidated on reset

• Must be manually invalidated

L1 cache lockdown is optional.

• Not implemented in Cortex-A9

