
© 2021 Arm

Armv7-A/R ISA
Overview (Part 2)

2 © 2021 Arm

Learning Outcomes

At the end of this module, you will be able to:

• Outline behaviors of conditional and branch instructions.

• Identify operations of coprocessor instructions.

• Compute the results of DSP instructions when executed, including saturated math and

count lead zero.

3 © 2021 Arm

Flow Control

• Arm state
• Append a two-letter suffix to the mnemonic (conditional instruction), or

• use a conditional branch instruction.
– Almost all Arm instructions can be executed conditionally on the value of the condition flags in the Application

Program Status Register (APSR).

– Using conditional branch instructions can be more efficient when a series of instructions depends on the

same condition.

• Thumb state
• Use an IT (If-Then) instruction, or

• use a conditional branch instruction.
– IT is a 16-bit instruction that enables almost all Thumb instructions to be conditionally executed, based on the

value of the condition flags and the condition code suffix specified.

– Armv6T2 or later processors: instructions can also be conditionally executed by using CBZ and CBNZ.

4 © 2021 Arm

Branch Instructions

• Branch instructions have the following format:

• B{<cond>} label

• Might not cause a pipeline flush (branch prediction)

• Branch range depends on instruction set and width.

A BL instruction additionally generates a return address in r14 (lr).

• Returning is performed by restoring the program counter (pc) from lr.

:
BL func2

:

:

BX lr

func1 func2
void func1 (void)
{
 :
 func2();
 :
}

5 © 2021 Arm

Interworking
• Interworking can be carried out using the branch exchange instruction.

BX Rn

BLX Rn

• Bit 0 of Rn determines the exchange behavior.
• Unset : change to (or remain in) Arm state.

• Set: change to (or remain in) Thumb state.

Branch and link with exchange

• Used to branch to a subroutine, which is known to be in the opposite instruction set

• When branching to imported labels, use BL; the linker will substitute BLX if necessary.

• BLX offset ; Arm/Thumb instruction which always
 ; changes state (and sets LR)

All instructions that modify the PC can cause a state change.

• Depending on bit 0 of the result

• For data processing instructions, state changes only if S variant is snot used.

6 © 2021 Arm

Compare and Branch if Zero
• Replaces a CMP followed by a branch

• BUT does not affect condition code flags

• Syntax

 CB{N}Z <Rn>, <label>

 CBZ: If Rn is equal to zero, branch to label

 CBNZ: If Rn is not equal to zero, branch to label

• Can only branch forward between 4 and 130 bytes

 .
 CMP r0, #0
 BEQ exit
 .
exit

 .
 CBZ r0, exit
 .
 .
exit

7 © 2021 Arm

Conditional Instructions

• Arm and Thumb instructions can execute conditionally on the condition flags set by a previous

instruction.

• The conditional instruction can occur either:
• Immediately after the instruction that updated the flags

• After any number of intervening instructions that have not updated the flags

• The instructions that you can make conditional depends on whether the processor is in Arm state or

Thumb state.

• To make an instruction conditional, you must add a condition code suffix to the instruction mnemonic.
• The condition code suffix enables the processor to test a condition based on the flags.

• If the condition test of a conditional instruction fails, the instruction:

– Does not execute

– Does not write any value to its destination register

– Does not affect any of the flags

– Does not generate any exception

8 © 2021 Arm

Reference: Condition Codes and Flags

• The possible condition codes are listed below.
• Note AL is the default and does not need to be specified.

Not equal
Unsigned higher or same
Unsigned lower
Minus

Equal

Overflow
No overflow
Unsigned higher
Unsigned lower or same

Positive or Zero

Less than
Greater than
Less than or equal
Always

Greater or equal

EQ
NE
CS/HS
CC/LO

PL
VS

HI
LS
GE
LT
GT
LE
AL

MI

VC

Suffix Description

Z=0
C=1
C=0

Z=1
Flags tested

N=1
N=0
V=1
V=0
C=1 & Z=0
C=0 or Z=1
N=V
N!=V
Z=0 & N=V
Z=1 or N=!V

Status Flag Meaning

N Negative

Z Zero

C Carry

V Overflow

By default, data processing instructions do
not affect the condition flags but this can be
achieved by placing an “S” between the
instruction and any condition code.

9 © 2021 Arm

If-Then

• Thumb only, makes the next one to four instructions conditional

• Syntax

• IT{T|E}{T|E}{T|E} <cond>

• Any condition code may be used.

• Doesn’t affect condition flags

• 16-bit instructions in the IT block do not affect condition flags (except CMP,

CMN, & TST).

• 32-bit instructions do affect condition flags (normal rules apply).

• No need to write this instruction: the assembler will insert it for you where

necessary.

• Current if-then status stored in CPSR
• Conditional block may be safely interrupted and returned to.

• Not recommended to branch into or out of if-then block

; if (r0 == 0)
; r0 = *r1 + 2;
; else
; r0 = *r2 + 4;

; if
 CMP r0, #0
 ITTEE EQ
; then
 LDREQ r0, [r1]
 ADDEQ r0, #2
; else
 LDRNE r0, [r2]
 ADDNE r0, #4

10 © 2021 Arm

Example: Conditional Execution

if (r0 == 0)
{
 r1 = r1 + 1;
}
else
{
 r2 = r2 + 1;
}

pseudocode

 CMP r0, #0
 IT NE
 BNE else
 ADD r1, r1, #1
 B end
else
 ADD r2, r2, #1
end
 ...

assembler instructions

inefficient branching

 CMP r0, #0
 ITE EQ
 ADDEQ r1, r1, #1
 ADDNE r2, r2, #1
 ...

no branching

11 © 2021 Arm

Supervisor Call (SVC)

• Syntax

• SVC{<cond>} <SVC number>

• Causes an SVC exception

• The SVC handler can examine the SVC number to decide what operation has been requested.
– But the core ignores the SVC number.

• By using the SVC mechanism, an OS can implement a set of privileged operations, which applications

running in user mode can request.

12 © 2021 Arm

Coprocessor Instructions

• The instructions for each coprocessor occupy a fixed part of the Arm instruction set.
• If the appropriate coprocessor is not present in the system, an Undefined Instruction exception

occurs.

• There are three types of coprocessor instruction:
• Data processing

CDP: Initiate a coprocessor data processing operation.

• Register transfer

MRC: Move to Arm register from coprocessor register.

MCR : Move to coprocessor register from Arm register.

• Memory transfers

LDC: Load coprocessor register from memory.

STC: Store from coprocessor register to memory.

• Multiple register and other variants of these instructions are also available.

13 © 2021 Arm

PSR Access

• MRS and MSR allow contents of CPSR to be transferred to/from a general-purpose

register or take an immediate value.
• MSR allows the whole status register, or just parts of it, to be updated.

MRS r0,CPSR ; read CPSR into r0

BIC r0,r0,#0x80 ; clear bit 7 to enable IRQ

MSR CPSR_c,r0 ; write modified value to ‘c’ byte only

• CPS can be used to directly modify some bits in the CPSR.

• SETEND instruction selects the endianness of data accesses (BE8 or LE).
• For use in systems with mixed-endian data (e.g., peripherals)

SETEND BE
LDR r0, [r7], #4 ; big-endian
SETEND LE
LDR r1, [r7], #4 ; little-endian

14 © 2021 Arm

Miscellaneous Instructions
• Breakpoint instruction - BKPT <bkpt number>

• Immediate value is ignored by the processor.

• Execution of this instruction will either cause a Prefetch Abort or cause the processor to enter Debug state (depends on the

core design and configuration).

• Used by debug agents

• Wait for interrupt: WFI
• Puts the core into Standby mode

• Woken by an interrupt or debug event

• Previously implemented as a CP15 operation

• No operation: NOP
• Can be used as padding to align following instructions

• May or may not take time to execute

• Wait for event (WFE) and send event (SEV)
• Covered elsewhere in the course

15 © 2021 Arm

DSP Instructions Overview

• These DSP instructions are single instruction multiple data (SIMD).
• They operate on 8- or 16-bit quantities packed into words.

• They allow more efficient access to packed structure types.

• Instruction groups
• Data packing/unpacking

• Data processing

• Saturated maths

• Addition/subtraction

• Multiplication

• Sum of absolute differences

16 © 2021 Arm

Saturated Maths and CLZ

• Support for saturated mathematics
• Targeted at DSP and control applications

• Overflow sets Q flag (sticky) not V, and sets result to +/- max value.

QSUB{cond} Rd, Rm, Rn ; Rd = saturate(Rm - Rn)

 QADD{cond} Rd, Rm, Rn ; Rd = saturate(Rm + Rn)

 QDSUB{cond} Rd, Rm, Rn ; Rd = saturate(Rm - saturate(Rn2))
 QDADD{cond} Rd, Rm, Rn ; Rd = saturate(Rm + saturate(Rn2))

Count leading zeros

CLZ{cond} Rd, Rm

• Returns number of unset bits before the most significant set bit

0x0

0x7FFFFFFF

0x80000000

-ve

+ve

0 31

0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 1 1 0 0 1 1 1 0 1 0 0

CLZ returns 10 in this case

17 © 2021 Arm

Saturation
• Saturate a value to a specified bit position

(effectively saturating to any power of 2).
• USAT: Unsigned saturate 32-bit

• Syntax: USAT Rd, #sat, Rm {shift}
• Operation: Rd = Saturate(Shift(Rm), #sat)

• Variants

• SSAT
• signed saturation

• USAT16
• saturates two 16-bit unsigned halfwords (no rotation allowed)

• SSAT16
• signed saturation of two 16-bit halfwords (no rotation

allowed)

• #sat is specified as an immediate value in the range 0 to 31.

• {shift} is optional and is limited to LSL or ASR.
• Q flag is set if saturation occurs.

0 0 0 1 1

max

1 1 1 0 0

min

0 0 1 1 1

saturation position

max

(unsigned saturation)

(signed saturation)

18 © 2021 Arm

SIMD
• Armv6 added a number of instructions that perform SIMD operations using Arm

registers.
• Includes instructions for addition, subtraction, multiplication, and sum of absolute differences

• Instructions can work on four 8-bit quantities or two 16-bit quantities.

• Signed/unsigned and saturating versions of many instructions available

• CPSR GE bits used instead of normal ALU flags

• There are instructions for packing (PKHBT and PKHTB) and unpacking (UXTH & UXTB) registers.

+

Rs

+

Rm

UADD16 Rd, Rm, Rs

Rd

GE[3:2] GE[1:0]

19 © 2021 Arm

Appendix: Encoding Choice

• When assembling for a Thumb-2 processor, there is often a choice of 16-bit and 32-bit

instruction encodings.
• The assembler will normally generate 16-bit instructions.

• Thumb-2 instruction width specifiers
• Allow you to determine which instruction width the assembler will use

• Can be placed immediately after instruction mnemonics

• .W: Forces a 32-bit instruction encoding

• .N: Forces a 16-bit instruction encoding

• Assembler will raise an error if the selected encoding is not possible.

• Disassembly rules
• One-to-one mapping is defined to ensure correct reassembly.

• .W or .N suffix used for cases when a bit pattern that doesn’t follow the above rules is disassembled.

