
© 2021 Arm

Armv7-A/R ISA
Overview (Part 1)

2 © 2021 Arm

Learning Outcomes

At the end of this module, you will be able to:

• Identify the instruction types and operations for data transfer including load and store.

• Determine the results of basic data processing instructions when executed, including

arithmetic, comparison, and logical instructions.

• Explain the operations of bit manipulation and move instruction types.

3 © 2021 Arm

Why Do You Need to Know Assembler?

• Most design efforts for many systems are focused on high-level programming.
• C/C++ is the most used language for development of embedded systems by engineers.

• Knowledge of the instruction set is not required.

 Source: UBM Tech Embedded Market Study 2017

 Survey responds to the question: “My current embedded project

 is programmed mostly in:”

4 © 2021 Arm

Why Do You Need to Know Assembler?

Embedded systems require initialization code and interrupt routines.

Driver writing requires knowledge of the lowest level of program abstraction.

All systems require debugging, sometimes at the instruction level.

Performance gains can be made by writing assembler routines.

Also, some features of the Arm architecture are not expressible in high-level languages.

5 © 2021 Arm

Arm Assembler File Syntax

 AREA armex, CODE, READONLY

 ENTRY

abc EQU 54

main

 MOV r0, #10

 MOV r1, #abc

 ADD r2, r0, r1 ; this is a comment

 ...

 DCD 0xAB00321A

 END

defines the start of a read-only area, called “armex,” containing code

labels starts in the first column

instructions

marks the software entry point

assigns the constant “54” to the symbol “abc”

inserts a 32-bit constant into the program

marks the end of the source file

6 © 2021 Arm

Single/Double Register Data Transfer

• Used to move data between one or two registers and memory
LDRD STRD Doubleword
 LDR STR Word

 LDRB STRB Byte
 LDRH STRH Halfword

 LDRSB Signed byte load

 LDRSH Signed halfword load

• Syntax
LDR{<type>}{<cond>} Rd, <address>
STR{<type>}{<cond>} Rd, <address>

• Example
• LDRB r0, [r1] ; load bottom byte of r0 from the

 ; byte of memory at address in r1

Any remaining space

zero filled or sign extended

Memory

Rd

31 0

7 © 2021 Arm

 Addressing Memory

• The address accessed by LDR/STR is specified by a base register with an optional offset:
• Base register only (no offset)

 LDR r0, [r1]

• Base register plus constant

 LDR r0, [r1, #8]

• Base register, plus register (optionally shifted by an immediate value)

 LDR r0, [r1, r2]
 LDR r0, [r1, r2, LSL #2]

• The offset can be either added or subtracted from the base register.

 LDR r0, [r1, #-8]
 LDR r0, [r1, -r2]
 LDR r0, [r1, -r2, LSL #2]

+/-

r1 #8

r0

memory

address

r2, LSL #2

or

8 © 2021 Arm

Pre- and Post-Indexed Addressing

Pre-indexed (add offset before memory access)

LDR r0, [r1, #12]!

Update base register (r1)

Post-indexed (add offset after memory access)
LDR r0, [r1], #12

Update base register (r1)

r1

r0

memory

address

+

r1

#12

r1 +

r1

#12

r1

+

r1 #12

r0

memory

address

9 © 2021 Arm

Multiple Register Data Transfer

• These instructions move data between multiple registers and memory.

• Syntax:
• <LDM|STM>{<addressing_mode>}{<cond>} Rb{!}, <register list>

Four addressing modes:

• Increment after/before

• Decrement after/before

Also

• PUSH/POP, equivalent to STMDB/LDMIA with SP! as base register

Example

• LDM r10, {r0,r1,r4} ; load registers, using r10 base
• PUSH {r4-r6,pc} ; store registers, using SP base

Base
Register

(Rb)

(IA)

r1 Increasing
Address

r4

r0

r1

r4

r0

r1

r4

r0 r1

r4

r0

r10

IB DA DB

10 © 2021 Arm

Data Processing Instructions
• These instructions operate on the contents of registers (they do not affect memory).

• Syntax:

• <Operation>{S}{<cond>} {Rd,} Rn, Operand2

• Examples:

ADD r0, r1, r2 ; r0 = r1 + r2

TEQ r0, r1 ; if r0 = r1, Z flag will be set

MOV r0, r1 ; copy r1 to r0

arithmetic logical move

manipulation

(has destination

register)

ADD

ADC

SUB

SBC

RSB

RSC

AND EOR MOV

comparison

(set flags only)

CMN

(ADDS)

CMP

(SUBS)

TST

(ANDS)

TEQ

(EORS)

ORR

ORN

BIC

T2 T2

MVN

11 © 2021 Arm

Shift/Rotate Operations

• These are also available as part of the flexible second operand.

register CF 0

LSL - Logical Shift Left

Multiplication by a power of 2

register CF

ASR - Arithmetic Shift Right

Division by a power of 2,
preserving the sign bit

register CF ...0

LSR - Logical Shift Right

Division by a power of 2

register CF

ROR - Rotate Right

Bit rotate with wrap around
from LSB to MSB

register

RRX - Rotate Right Extended

Single bit rotate with wrap around
from CF to MSB

CF

12 © 2021 Arm

The Flexible Second Operand
• For many instructions, the second operand is flexible.

• Register, with optional shift
• Shift value can be either

– 5-bit unsigned integer

– Specified in bottom byte of another register (Arm only)

• Can be used for multiplication by constant, e.g.,

– ADD r0,r5,r5, LSL #1 ; r0 = r5 * 3

• The flexible second operand can also be an immediate value.
• 8-bit number, with a range of 0-255

– Arm: Rotated right by an even number of places

– Thumb: Shifted left by any amount

• Thumb also allows constants of this form.

– 0x00XY00XY, 0xXY00XY00, and
0xXYXYXYXY

Result

Operand 1

Barrel
Shifter

Operand 2

ALU

13 © 2021 Arm

Instructions for Loading Constants

• Absolute constants

• LDR Rn, =<constant>
LDR Rn, =label

• Pseudo instruction

• Assembler will use optimal sequence to generate constants into specified registers (one of MOV, MVN,
or an LDR from a literal pool).

• Can load to the PC, causing a branch

• Use for absolute addressing and references outside the current section (resulting in position-

dependent code)

• Constant determined at assembly or link time

• The assembler provides some instructions for loading values into registers.

14 © 2021 Arm

Instructions for Loading Constants

• The assembler provides some instructions for loading values into registers.

 • PC- or register-relative constants

• ADR Rn, label

• Add or subtract an immediate value to or from the PC to generate the address of the label

into the specified register, using one instruction.

• ADRL pseudo instruction uses two instructions, giving a better range.

• Can be used to generate addresses for position-independent code (but only if in same

code section)

• Constant determined at run time

15 © 2021 Arm

LDR= Examples

• The following examples show how the LDR= pseudo-instruction makes code more

readable, portable, and flexible.

 LDR r0, =0x2543

 LDR r0, =0xFFFF43FF

 LDR r0, =0xFFFFF5

 MOV r0, #0x2543

 MVN r0, #0xBC00

 LDR r0, [pc, #xx]

 ...

 DCD 0xFFFFF5

Disassembly Code

16 © 2021 Arm

Multiply/Divide

 Examples:

 MLA r0, r1, r2, r3 ; r0 = r3 + (r1 * r2)

 [U|S]MULL r4, r5, r2, r3 ; r5:r4 = r2 * r3

 Division:

 SDIV r0, r1, r2 ; signed: r0 = r1 / r2

 UDIV r0, r1, r2 ; unsigned: r0 = r1 / r2

 32-bit multiplication 64-bit multiplication

×

Rn Rm

RdHi RdLo

+

×

Rn Rm

Rd

Ra

+/-

optional
accumulation

optional
accumulation

MUL
MLA
MLS

UMULL
SMULL
UMLAL
SMLAL

Optional in 7-A

17 © 2021 Arm

Bit Manipulation Instructions

0 31

0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 1 0 0 1 1 1 0 0 1 1 1 0 1 0 0

0 31

0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 1 1 1 0 1 0 0

0 31

0 1 0 1 0 1 1

0 31

1 1 0

BFI r0, r0, #9, #6 ; Bit Field Insert

UBFX r1, r0, #18, #7 ; Bit Field Extract

BFC r1, #3, #4 ; Bit Field Clear 0

RBIT r2, r1 ; Reverse Bit Order

1 1 0 1 0 0

1 0 1 0 0 1 1 1 0 1 0 0

0

Zero extend

r0

r0

r1

r2

0 31

0 1 1 0 0 0 r1

18 © 2021 Arm

Byte Reversal

• Byte reversal instructions

V6 and later

REV r0, r0

Pre-V6

EOR r1, r0, r0, ROR #16
BIC r1, r1, #0xFF0000
MOV r0, r0, ROR #8
EOR r0, r0, r1, LSR #8

 REV{cond} Rd, Rm Reverses the bytes in a word

 REV16{cond} Rd, Rm Reverses the bytes in each halfword

 REVSH{cond} Rd, Rm Reverses the bottom two bytes, and sign extends the result to

 32 bits

3 2 0 1 0 1 3 2

REV r0, r0

