arm Armv7-A/R ISA
Overview (Part 1) _

Learning Outcomes

At the end of this module, you will be able to:

* |dentify the instruction types and operations for data transfer including load and store.

* Determine the results of basic data processing instructions when executed, including
arithmetic, comparison, and logical instructions.

* Explain the operations of bit manipulation and move instruction types.

2 © 2021 Arm a r’m

Why Do You Need to Know Assembler?

* Most design efforts for many systems are focused on high-level programming.
« C/C++ is the most used language for development of embedded systems by engineers.
+ Knowledge of the instruction set is not required.

¢ —— se%

C++

Assembly language

Python

Java

LabVIEW

C#

MATLAB

JavaScript

3 © 2021 Arm

I 2

0 oax

3%

A

2%

B 2%

2%

P a%

1%

N 2%

2%

§ 2%
1%

1%

19%

66%

m 2017 (N = 880)
2015 (N = 1,217)

Source: UBM Tech Embedded Market Study 2017

Survey responds to the question: “My current embedded project

is programmed mostly in:”

arm

Why Do You Need to Know Assembler?

Embedded systems require initialization code and interrupt routines.

Driver writing requires knowledge of the lowest level of program abstraction.
All systems require debugging, sometimes at the instruction level.
Performance gains can be made by writing assembler routines.

Also, some features of the Arm architecture are not expressible in high-level languages.

4 © 2021 Arm a r’m

Arm Assembler File Syntax

defines the start of a read-only area, called “armex,” containing code

< marks the software entry point

< assigns the constant “54” to the symbol “abc”

< labels starts in the first column

~— instructions

< inserts a 32-bit constant into the program

< marks the end of the source file

5 © 2021 Arm 0 rm

Single/Double Register Data Transfer

Used to move data between one or two registers and memory

Syntax

Doubleword
Word

Byte

Halfword

Signed byte load
Signed halfword load

{<type>} {<cond>} Rd, <address>
{<type>} {<cond>} Rd, <address>

Example

© 2021 Arm

Rd

31

Memory

Any remaining space
zero filled or sign extended

arm

Addressing Memory

* The address accessed by LDR/STR is specified by a base register with an optional offset:

- Base register only (no offset)

- Base register plus constant

- Base register, plus register (optionally shifted by an immediate value)

- The offset can be either added or subtracted from the base register.

7 © 2021 Arm

r2, LSL #2
or
rl #8
address
; memory é

r0

arm

Pre- and Post-Indexed Addressing

Pre-indexed (add offset before memory access)

rl

#12

; memory

Update base register (r1l)

rl

address

<

r0

#12

8 © 2021 Arm

\ 4

o

rl

Post-indexed (add offset after memory access)

rl

address

; memory

<

Update base register (rl

r0

rl

#12

\ 4

o

rl

arm

Multiple Register Data Transfer

* These instructions move data between multiple registers and memory.

* Syntax:

« <LDM|STM>{<addressing mode>} {<cond>} Rb{!}, <register list>
Four addressing modes: — —+(IA) IB DA DB

- Increment after/before rd

D t after/before rd -

ecremen Ba:se rl r0 Increasing
Also Register ®—> r0 r4 Address
(Rb) ri r4

- PUSH/POP, equivalent to sTMpE/LDMIA with SP! as base register r0 rl
Example r0

- LDM rl0, {r0O,rl,r4d} ; load registers, using rl0 base

- PUSH {rd-r6,pc} ; store registers, using SP base

9 © 2021 Arm a r’m

Data Processing Instructions

These instructions operate on the contents of registers (they do not affect memory).

10

arithmetic

logical

move

manipulation

(has destination
register)

En ,

comparison
(set flags only)

Syntax:

<Operation>{S}{<cond>} {Rd,} Rn, Operand2

Examples:

© 2021 Arm

arm

Shift/Rotate Operations

]

Y

register

CF

.
>

CF

Division by a power of 2,
preserving the sign bit

.

register

.
>

CF

Single bit rotate with wrap around

from CF to MSB

A

register [<— 0

Multiplication by a power of 2

0 T

register >

Division by a power of 2

— | register

CF

.
>

CF

Bit rotate with wrap around
from LSB to MSB

* These are also available as part of the flexible second operand.

11 © 2021 Arm

arm

The Flexible Second Operand

For many instructions, the second operand is flexible.

* Register, with optional shift
- Shift value can be either
- 5-bit unsigned integer
- Specified in bottom byte of another register (Arm only) l
« Can be used for multiplication by constant, e.g.,

Operand 1 Operand 2

Barrel
* The flexible second operand can also be an immediate value. Shifter
. 8-bit number, with a range of 0-255
- Arm: Rotated right by an even number of places l
— Thumb: Shifted left by any amount '

« Thumb also allows constants of this form.
- 0x00XY00XY, O0xXY00XY00, and

OxXYXYXYXY ALU
Result
12 © 2021 Arm

arm

Instructions for Loading Constants

* The assembler provides some instructions for loading values into registers.

e Absolute constants
e LDR Rn, =<constant>
LDR Rn, =label

- Pseudo instruction
- Assembler will use optimal sequence to generate constants into specified registers (one of MOV, MVN,

or an LDR from a literal pool).

- Can load to the PC, causing a branch
- Use for absolute addressing and references outside the current section (resulting in position-

dependent code)
- Constant determined at assembly or link time

13 © 2021 Arm a r' m

Instructions for Loading Constants

* The assembler provides some instructions for loading values into registers.

* PC- or register-relative constants
. ADR Rn, label
- Add or subtract an immediate value to or from the PC to generate the address of the label

into the specified register, using one instruction.
- ADRL pseudo instruction uses two instructions, giving a better range.

-« Can be used to generate addresses for position-independent code (but only if in same

code section)
« Constant determined at run time

14 © 2021 Arm a r’ m

LDR= Examples

* The following examples show how the LDR= pseudo-instruction makes code more

readable, portable, and flexible. ,
Code Disassembly

LDR r0, =0x2543 MOV r0, #0x2543
IDR r0, =0xFFFFA43FF MVN r0O, #0xBCOO
LDR r0, =0xFFFFF5 LDR r0, [pc, #xx]

DCD OxFFFFF5

15 © 2021 Arm a r’ m

= 32-bit multiplication

Multiply/Divide

16

Ra

optional

accumulation

= Examples:

Division:

© 2021 Arm

)\ 4
+
I\

Rd

o

Optional in 7-A

= 64-bit multiplication

Rn

optional
accumulation

arm

Bit Manipulation Instructions

31 0
r0 |oj|o|o o[fr1{ojo|1|1]1]|0O]O o|l1]0]o0
#9, #6 /
31
rO |[o|o]|oO
#18, #7
31
rl |ofo]|o o{ololo|o|o0|0]|O
Zeroextend
#3, #4
31 (]
rl |[ofo]oO ojoj{o|{o|o|O0|O]|O 11
31 0
r2 [1|1]0 ojoj{o|o|o|0|O0|O|O o|lo|o]o

17 © 2021 Arm

Byte Reversal

Byte reversal instructions

=)

Reverses the bytes in a word

Reverses the bytes in each halfword

Reverses the bottom two bytes, and sign extends the result to

32 bits

Pre-Vé6

>

18

© 2021 Arm

V6 and later

arm

