
© 2021 Arm 

Arm and Arm 
Processors 



2 © 2021 Arm 

Learning Outcomes 

At the end of this module, you will be able to: 

• Identify the characteristics of Arm processor classes and their corresponding instruction 

set architecture. 

• Describe the properties of the Armv7-A architecture, including the AAPCS, operating 

modes, registers, memory model, and Virtualization Extensions.  

• Outline the properties of the Arm Cortex-A9 Processor. 

• Identify what Arm Neon technology is and its usage.  

 



3 © 2021 Arm 

Arm Products 

• Processors 
• Cortex-A, R, M, SecurCore 

• System IP 
• CoreLink, CoreSight, AMBA Design Tools 

• Multimedia 
• Mali graphics, video, display 

• Physical IP 
• Artisan Logic IP, Interface IP, Memory IP, DesignStart 

• Tools 
• Software tools (Development Studio, Keil MDK), debug adapters, models, boards 

• Support 
• Training, documentation, Arm Connected Community 

 



4 © 2021 Arm 

Arm Processors and Applications 

  

M 

R 

A 



5 © 2021 Arm 

Arm Processor Families 
 

• Cortex-A series (advanced application) 

• High-performance processors for open OSs 

• Applications include  smartphones, digital TV, server solutions, and home gateways. 

• Cortex-R series (real-time) 

• Exceptional performance for real-time applications 

• Applications include automotive braking systems and powertrains. 

• Cortex-M series (microcontroller) 

• Cost-sensitive solutions for deterministic microcontroller applications 

• Applications include microcontrollers, mixed signal devices, smart sensors, automotive body 

electronics, and airbags. 

 

 



6 © 2021 Arm 

Arm Processor Families 

 

• SecurCore series 

• High-security applications such as smartcards and e-

government 

• Neoverse 
• High performance efficiency for cloud, infrastructure, 

and AI/ML-accelerated applications 

• Classic processors 

• Include Arm7, Arm9, and Arm11 families 

 



7 © 2021 Arm 

Arm Cortex-A Series Family 

• Cortex-A series: Cortex-A5, A7, A8, A9, A12, A15, A17, A53, A57  

• High-performance application processors 
• Run rich OSs, multicore technology, 32-bit and 64-bit supports 

• Applications 
• Mobile computing Netbook, tablet, eReader 

• Mobile handset  Smartphones, feature phones, wearables 

• Digital home Set-top box, digital TV, Blu-Ray player, gaming consoles 

• Automotive Infotainment, navigation 

• Enterprise industrial printers, routers, wireless base-stations, VOIP phones and equipment 

• Wireless infrastructure 



8 © 2021 Arm 

Arm Cortex-R Series Family 

• Cortex-R series: Cortex-R4, R5, R7 

• Real-time processor 
• High-performance: Fast processing combined with a high clock frequency 

• Real-time: Processing meets hard real-time constraints on all occasions. 

• Safe: Dependable, reliable systems with high error resistance 

• Cost-effective: Features for optimal performance, power, and area 

• Applications 
• Automotive  Airbag, braking, stability, dashboard, engine management   

• Storage  Hard disk drive controllers, solid state drive controllers 

• Mobile handsets 3G, 4G, LTE, WiMax smartphones and baseband modems 

• Embedded, enterprise, home, cameras 



9 © 2021 Arm 

Arm Cortex-M Series Family 

• Cortex-M series: Cortex-M0, M0+, M1, M3, M4, M7 

• Low-power processor for embedded microcontrollers 
• Energy-efficiency 

• Smaller code 

• Ease of use 

• Applications 
• Internet of Things, connectivity, smart metering, human interface devices, automotive and industrial 

control systems, domestic household appliances, consumer products, and medical instrumentation 



10 © 2021 Arm 

Sample Arm Processors 

Arm7 

Arm9 

Arm11 

M 

R 

A 

Processor 

Class 



11 © 2021 Arm 

Arm Processors v Arm Architectures  

• Arm architecture: 
• Describes the details of instruction set, programmer’s model, Exception model, and memory map 

• Documented in the Architecture Reference Manual 

• Arm processor: 
• Developed using one of the Arm architectures 

• More implementing details, such as timing information and implementation-related information 

• Documented in the processor’s Technical Reference Manual 

Armv4/V4t Architecture Armv5/v4E Architecture Armv6 Architecture Armv7 

Architecture 

Arm v6-M 

e.g., Cortex-M0, M1 

e.g., Arm7TDMI e.g., Arm9926EJ-S e.g., Arm1136 

Armv8 Architecture 

Armv7-A 

e.g., Cortex-A9 

Armv7-R 

e.g., Cortex-R4 

Armv7-M 

e.g., Cortex-M3 

Armv8-A 

e.g., Cortex-A75 

Cortex-A57 

Armv8-R 

e.g., Cortex-R52 

Armv8-M 

e.g., Cortex-M33 



12 © 2021 Arm 

Arm Architectures  



13 © 2021 Arm 

Which Architecture Is My Processor? 
 Processor core   Architecture 

 

Arm7TDMI family   v4T 

Arm9TDMI family   v4T 

Arm9E family    v5TE, v5TEJ 

Arm10E family    v5TE, v5TEJ 

Arm11 family    v6 

• Arm1136J(F)-S   v6    

• Arm1156T2(F)-S   v6T2 

• Arm1176JZ(F)-S   v6Z 

• Arm11 MPCore   v6k 

Cortex family 

• Arm Cortex-A57   v8-A (64-bit, highest performance) 

• Arm Cortex-A53   v8-A (64-bit) 

• Arm Cortex-A15   v7-A (with security and virtualization extensions) 

• Arm Cortex-A9   v7-A (with security extensions) 

• Arm Cortex-A8   v7-A (with security extensions) 

• Arm Cortex-A7   v7-A (with security and virtualization extensions) 

• Arm Cortex-A5   v7-A (with security extensions) 

• Arm Cortex-R5   v7-R 

• Arm Cortex-R4   v7-R 

• Arm Cortex-M4   v7-M 

• Arm Cortex-M3   v7-M 

• Arm Cortex-M1   v6-M (16-bit Thumb, except for system instructions) 

• Arm Cortex-M0   v6-M (16-bit Thumb, except for system instructions) 



14 © 2021 Arm 

Arm and Thumb Instruction Sets 

• Early Arm processors 
• 32-bit instruction set, called the Arm instruction set 

• Powerful and good performance 

• Larger program memory compared to 8-bit and 16-bit processors 

• Larger power consumption 

• Thumb-1 instruction set 
• 16-bit instruction set, first used in the Arm7TDMI processor in 1995 

• Provides a subset of the Arm instructions, giving better code density compared to 32-bit RISC architecture 

• Code size is reduced by ~30%, but performance is also reduced by ~20%. 

• Can be used together with Arm instructions using a multiplexer 

Incoming 

Instructions 
Thumb Remap 

to Arm 

Arm 

Instruction 

Decoder 

Instructions 

Executing 

T bit, 0: select Arm, 

1: select Thumb 

0 

1 



15 © 2021 Arm 

Arm and Thumb Instruction Sets 

• Thumb-2 instruction set 
• Consists of both 32-bit Thumb and original 16-bit Thumb-1 instruction sets 

• Compared to the 32-bit Arm instruction set, code size is reduced by ~26%, while maintaining similar 

performance 

• Thumb Execution Environment  (ThumbEE) instruction set 
• Based on Thumb 

• With some changes and additions to make it a better target for dynamically generated code, i.e., code 

compiled on the device either shortly before or during execution 

• Armv7-A architecture 
• Based on Thumb-2 and ThumbEE 

 



16 © 2021 Arm 

The Arm Register Set 

• Sixteen general-purpose registers 

• Some of the registers have special 

significance. 
• R15: Program Counter (pc) 

• R14: Link register (lr) 

• R13: Stack pointer (sp) 

• There are also two status registers. 
• Current Program Status Register (CPSR) 

• Saved Program Status Register (SPSR) 

– Only present in exception modes 

– Only accessible by some instructions 

r0 

r1 

r2 

r3 

r4 

r5 

r6 

r7 

r8 

r9 

r10 

r11 

r12 

r15 (pc) 

cpsr 

r13 (sp) 

r14 (lr) 

General-purpose 

registers 

spsr 

R13: stack pointer 

R14: link registers 

R15: Program Counter 

Program Status Registers 



17 © 2021 Arm 

Assembler Syntax 
• Data processing instructions 
• <operation><condition>  Rd, Rm, <op2> 

•  ADDEQ  r4, r5, r6 

•  SUB  r5, r7, #4 

•  MOV    r4, #7 

• Memory access instructions 
• <operation><size> Rd, [<address>] 

•  LDR   r0, [r6, #4] 

•  STRB   r4, [r7], #8 
•   

•  <operation><addressing mode> <Rn>!, <registers list> 

•  LDMIA  r0, {r1, r2, r7} 

•  STMFD  sp!, {r4-r11, lr} 

• Program flow instructions 
• <branch> <label> 

•  BL   foo 

•  B   bar 



18 © 2021 Arm 

AAPCS 

• The compiler has a set of rules known as a 

Procedure Call Standard that determines 

how to pass parameters to a function (see 

AAPCS). 

• CPSR flags may be corrupted by function call. 

• Assembler code that links with compiled 

code must follow the AAPCS at external 

interfaces. 

• The AAPCS is part of the ABI for the Arm 

architecture. 

• r9 is used as the static base if the RWPI 

option selected. 

- r14 can be used as a temporary register once value stacked. 
- sp should always be 8-byte (2 words) aligned. 

Register variables 

Must be preserved 

Arguments into function 

Result(s) from function 

otherwise corruptible 
(Additional parameters  

passed on stack) 

Scratch register 

(corruptible) 

Stack Pointer 

Link Register 

Program Counter 

r0    (a1) 

r1    (a2) 

r2    (a3) 

r3    (a4) 

r4    (v1) 

r5    (v2) 

r6    (v3) 

r7    (v4) 

r8    (v5) 

r9 (v6/SB) 

r10   (v7) 

r11   (v8) 

r12 

r15 (pc) 

r13 (sp) 

r14 (lr) 



19 © 2021 Arm 

Processor Modes 

• The Arm processor has seven basic operating modes: 
• Each mode has access to its own stack space and a different subset of registers. 

• Some operations can only be carried out in a privileged mode. 

Mode Description Privilege level 

Supervisor 
Entered on reset and when a supervisor call instruction (SVC) 

is executed 
PL1 

Privileged 

modes 

FIQ Entered when a high-priority (fast) interrupt is raised PL1 

IRQ Entered when a normal-priority interrupt is raised PL1 

Abort Used to handle memory access violations PL1 

Undef Used to handle undefined instructions PL1 

System Privileged mode using the same registers as user mode PL1 

User Mode under which most applications/OS tasks run PL0 
Unprivileged 

mode 

E
xc

e
p

ti
o

n
 m

o
d

e
s 



20 © 2021 Arm 

Banking of Registers 

r0 

r1 

r2 

r3 

r4 

r5 

r6 

r7 

r8 

r9 

r10 

r11 

r12 

r15 (pc) 

cpsr 

r13 (sp) 

r14 (lr) 

User mode 

spsr 

r13 (sp) 

r14 (lr) 

IRQ FIQ 

r8 

r9 

r10 

r11 

r12 

r13 (sp) 

r14 (lr) 

spsr spsr 

r13 (sp) 

r14 (lr) 

Undef 

spsr 

r13 (sp) 

r14 (lr) 

Abort 

spsr 

r13 (sp) 

r14 (lr) 

SVC 

Current mode Banked out registers 

General-purpose registers are 32 bits long. 

 

A subset of these registers is accessible in each mode. 

Note: System mode uses the user mode register set. 



21 © 2021 Arm 

Exceptions 

• When an exception occurs:  
• It causes entry into a processor mode that executes software at PL1 or PL2. 

• It causes the execution of a software handler for the exception. 

• Exception includes: 
• Resets 

• Interrupts 

• Memory system aborts 

• Undefined instructions 

• SVCs, secure monitor calls (SMCs), and hypervisor calls (HVCs) 

• Processor execution is forced to the exception vector (an address) corresponding to that type of 

exception. 

• Vector table: 
• A set of eight consecutive vectors 

• World aligned memory addresses starting at an exception base address 

 



22 © 2021 Arm 

Vector Table 

• A vector table has one entry per exception type. 

• Table entries contain instructions, not addresses. 
• 1 × Arm instruction 

• 2 × 16-bit Thumb instructions 

• 1 × 32-bit Thumb instruction 

• Arm/Thumb controlled by SCTLR.TE bit 

• The vector table address is configurable. 
• 0x0 or 0xFFFF0000 

• SCTLR.V bit / VINITHI signal 

• The security extensions add support for other addresses. 

• Vector base address registers 

 

Vector Table 

At reset, the vector table can be at 0x0 or 

0xFFFF0000. 

FIQ 

IRQ 

(Reserved) 

Data Abort 

Prefetch Abort 

SVC 

UNDEFINED instruction 

Reset 

0x1C 

0x18 

0x14 

0x10 

0x0C 

0x08 

0x04 

0x00 



23 © 2021 Arm 

Memory Model 

• A system includes different memories and peripherals. 
• The processor needs to be told how it should access different devices. 

• For each address region: 
• Access permissions 

• Read/write permissions for user/privileged modes 

• Memory types 

• Caching/buffering and access ordering rules for memory accesses 

Memory Map 

OS 

Application Space 

Vectors 

Peripherals 

User Access 

Uncached 

Cached, read-

only 



24 © 2021 Arm 

Memory Types 

• In Armv6/Armv7, address locations must be described in terms of a type. 

• The type tells the processor how it can access that location: 
• Memory access ordering rules 

• Caching and buffering behavior 

• Speculation 

• There are three mutually exclusive memory type attributes: 
• Normal:  Data and instructions 

• Device:  Devices/peripherals 

• Strongly ordered:  Device/peripherals, or data used by legacy code 

• Normal and device memory allow additional attributes for specifying the cache policy 

and whether the region is shared. 
• For example, normal memory can be cached or non-cached. 

 



25 © 2021 Arm 

Example: Cached Arm Macrocell 

• For memory management, an Arm core can include either an MMU or MPU. 

• Memory Management Unit (MMU) 
• Implements Virtual Memory System Architecture (VMSA) 

• Memory Protection Unit (MPU) 
• Implements physical memory system architecture (PMSA) 

Arm core 

Instruction cache 

Data cache  

M
M

U
/M

P
U

 

B
u

s 
In

te
rf

a
ce

 U
n

it
 

WB 

C
P

1
5

 

L2
 C

a
ch

e
 

AMBA 

Interconnect 



26 © 2021 Arm 

Data Alignment 

• Armv6/v7 data alignment: 
• Data accesses can be unaligned. 

• Only a subset of load/store instructions support unaligned accesses. 

• Unaligned accesses are only allowed to addresses marked as normal. 

• The load/store unit will access memory with aligned memory accesses and make the data available to 

the CPU. 

• Instructions are aligned as follows: 
• Arm instructions are word aligned. 

• Thumb and ThumbEE instructions are halfword-aligned. 

• Java bytecodes are byte-aligned. 

• Arm processors are little-endian. 
• But can be configured to access big-endian memory systems 

 



27 © 2021 Arm 

Endianness 

• Endianness determines how contents of registers relate to the contents of memory. 
• Arm registers are word (4 bytes) width. 

• Arm addresses memory as a sequence of bytes. 

• Arm processors are little-endian. 
• But can be configured to access big-endian memory systems. 

 

 

 

 

• Arm supports three models of endianness. 
• LE little-endian 

• BE-32  word-invariant big-endian (dropped in architecture v7) 

• BE-8  byte-invariant big-endian (introduced in architecture v6) 

 

Little-endian memory system 
• Least significant byte is at lowest address. 

Big-endian memory system 
• Most significant byte is at lowest address. 

 



28 © 2021 Arm 

PMU 
• Armv6 & Armv7-A/R processors include a Performance Monitoring Unit (PMU). 

• The PMU provides a non-intrusive method of collecting execution information from the core. 
• Enabling the PMU does not change the timing of the core. 

• PMU accessed through 
• CP15 (mandatory) 

• A memory-mapped interface (optional) 

• An external debug interface (optional) 

• The PMU provides: 
• Cycle counter: counts execution cycles (optional 1/64 divider) 

• Programmable event counters 

• The number of counters and available events vary between cores. 

• The PMU can be configured to generate interrupts if a counter overflows. 

• Interrupt signals are an output from the core. 

• Need to be connected to the system’s interrupt controller. 
 



29 © 2021 Arm 

Coprocessors 

• On earlier Arm processors, additional coprocessors could be added to expand the Arm 

instruction set. 

• Newer processors do not allow user-defined coprocessors: 
• Usually better for system designers to use memory-mapped peripherals 

• Easier to implement, since coprocessors have to be tied in to the core pipeline 

• Arm uses coprocessors for internal functions so as not to enforce a particular memory 

map: 
• System control coprocessor: cp15 

• Used for processor configuration: System ID, caches, MMU, TCMs, etc. 

• Debug coprocessor: cp14 

• Can be used to access debug control registers  

• VFP and Neon: cp10 and cp11 

 



30 © 2021 Arm 

Architecture Extensions 

• Architecture extensions to meet the changing needs of applications in new markets 

• Security 
• The TrustZone 

• Additional operating mode, Monitor (Mon) mode, with associated banked registers and an additional secure operating state 

• 40-bit physical addressing (LPAE) 
• Extension to the VMSAv7 virtual memory architecture 

• Enables the generation of 40-bit physical addresses from 32-bit virtual addresses  

• Virtualization 
• Extra mode: Hypervisor mode, with associated banked registers  

• New Hyp exception to trap software accesses to hardware and configuration registers  

• Advanced SIMD and floating-point: Both floating point (VFP) support and Advanced SIMD (Neon)  
• Can be implemented together, in which case they share a common register bank and some common instructions  

 



31 © 2021 Arm 

TrustZone 

• Processor provides two worlds: secure and normal. 
• Each world has its own vector table and page tables. 

• “Monitor” mode acts as a gatekeeper for moving between worlds. 
• Two physical address spaces, controlled by NS attribute 

• Secure (S) and Non-secure (NS) 

• S:0x8000 treated as different physical location from NS:0x8000 

• Debug for Secure world code and data can be restricted. 
 

OS 

Application(s) 

Trusted OS 

Trusted Service(s) 

Secure Monitor 



32 © 2021 Arm 

Virtual Memory System Architecture (VMSA) 

• Provides virtual address to physical address translation system 
• Up to 40 bits fine grain translation 

 

• Arm Memory Management Unit (MMU) implements VMSA 
• Translation tables 

• Descriptor 



33 © 2021 Arm 

Large Physical Address Extensions 

• Long-descriptor format for page tables added 
• 32-bit virtual address mapped onto 40-bit physical address space 

• New translation table format using 64-bit translation table descriptors 

• 1TB of memory space accessible 

• 32-bit short-descriptor format still supported 
• Configurable in the translation table base control register EAE bit (bit 31) 

• Can use 16MB memory supersections to map onto 40-bit address space 



34 © 2021 Arm 

Virtualization 

• Support for running multiple guest OSs in the normal world 

• Hypervisor mode to control switching between guest OSs 

• Two-stage address translation: OS and hypervisor levels 

• Hypervisor mode can trap exceptions and choose which guest to direct them to. 

Guest OS 

Hypervisor 

Trusted  OS 

Trusted Service(s) 

Secure Monitor 

Application(s) 

Guest OS 

Application(s) 

Secure world Normal world 



35 © 2021 Arm 

Arm Cortex-A Series Processors 

• Armv8 architecture: 64-bit 
• Cortex-A57 

• Cortex-A53 

• Armv7 architecture: 32-bit 
• Cortex-A15 

• Cortex-A9 

• Cortex-A8 

• Cortex-A7 

• Cortex-A5 

Cortex-A57 

Cortex-A53 

Cortex-A15 

Cortex-A9 

Cortex-A8 

Cortex-A7 

Cortex-A5 

Armv8 

64-bit 

Armv7-A 

32-bit 



36 © 2021 Arm 

Arm Cortex-A Series Overview 
• High-performance 

• Used in applications that have high-compute requirements 

• Run rich OSs and deliver interactive media and graphics on the latest must-have devices. 

• Multicore technology 
• Single to quad-core implementation for performance orientated applications 

• Supports symmetric and asymmetric OS implementations 

• Arm big.LITTLE compatible  

• Advanced extensions 
• Thumb-2 for optimal code size and performance 

• TrustZone Security Extensions for trusted computing 

• Jazelle technology for accelerating execution environments such as Java, .Net, MSIL, Python, and Perl 

• Ideal for mobile Internet 
• Native support for technologies like Adobe Flash 

• High-performance Neon engine for broad support of media codecs 

 



37 © 2021 Arm 

Arm Cortex-A Series Processors 
Processor  Performance  Typical Frequency  Architecture  Year  Comments  

Cortex-A5 1.57 DMIPS/MHz /core 400-800 MHz  Armv7-A 2009 Cost-effective processor core  

 

Cortex-A7 1.9 DMIPS/MHz /core 800 MHz-1.2 GHz  Armv7-A 2011 High-energy and area-efficient core  

 

Cortex-A8 2.0 DMIPS/MHz/core 600 MHz-1 GHz  Armv7-A 2005 First one supporting Armv7-A architecture 

Cortex-A9  2.5 DMIPS/MHz /core 800 MHz-2 GHz Armv7-A 2007 Widely deployed Armv7-A-based processor 

Cortex-A12 3.0 DMIPS/MHz /core Armv7-A 2013 

Cortex-A15  >3.5 DMIPS/MHz /core Up to 2.5GHz Armv7-A 2010 High-performance core  

 

Cortex-A17  Up to 2.5GHz 

 

Armv7-A 2014 The most efficient Armv7-A-based processor 

Cortex-A53 2.3 DMIPS/MHz Armv8-A 2013 Most efficient 32/64-bit processor  

Cortex-A57 >4.1 DMIPS/MHz Armv8-A 2013 Proven high-performance 32/64-bit core for mobile 

and enterprise computing 

Cortex-A72 Up to 2.5GHz 

 

Armv8-A 2015 Arm’s highest-performance processor 



38 © 2021 Arm 

Arm Cortex-A9 Processor 

• Arm Cortex-A9 features 
• Armv7 architecture: Thumb-2, ThumbEE 

• 0.8GHz  to 2GHz 

• 2.5 DMIPS/MHz/core 

• Single core or 4x MPCore solution 

• Up to 20k DMIPS (2GHz, quad-core)  

• Power-efficient and high-performance processor 

• Dynamic length pipeline (8–11 stages) 

• Up to 64KB L1 I/D cache 

• Up to 8MB of L2 cache 

• Optional Neon media and/or floating point 

processing engine 



39 © 2021 Arm 

Cortex-A9 Diagram 



40 © 2021 Arm 

Cortex-A9 MPCore 

• Contains up to four Cortex-A9 

processors 

• SCU 
• Maintains L1 data cache coherency 

between processors 

• Arbitrates accesses to the L2 memory 

system, through one or two external 64-

bit AXI Manager interfaces 

• Optional ACP for maintaining coherency 

with DMA controller, graphics processor, 

or similar 

• Integrated interrupt controller 
• Same programmer’s model as Arm Generic 

Interrupt Controller (GIC): the PL390 

PrimeCell 



41 © 2021 Arm 

Cortex-A9 Pipeline 

• Five backend execution pipelines 

• Pipelines are clustered into three different issue groups. 
• Main, or multiply accumulate (Mac) 

• Dual execution (also known as secondary) 

• Load/store, or compute engine (Neon or floating point) 

Core can issue up to 3 instructions per cycle. 

Fe1 Fe2 Fe3 

ISS 

Ex1 

Ex1 

AGU 

WB 

WB 

WB 

CE 

LSU 

De Re 

BM 

Main          

(P0) 

Dual              

(P1) 

Prefetch Unit 

M1 Mac  (M) 

Ex2 

Ex2 

M2 

IQ 

Load/store   

(LS) 

WB 
Compute 

Engine (CE) 

Decode and issue stages 



42 © 2021 Arm 

What Is Neon? 

• Neon is a wide SIMD data processing architecture. 
• Extension of the Arm instruction set 

• Thirty-two registers, 64 bits wide (dual view as sixteen registers, 128 bits wide) 

• Neon instructions perform packed SIMD processing. 
• Registers are considered vectors of elements of the same data type. 

• Data types can be signed/unsigned 8-bit, 16-bit, 32-bit, 64-bit, single precision, and float. 

• Instructions perform the same operation in all lanes. 

 



43 © 2021 Arm 

Neon Registers 

• Neon provides a 256-byte register file. 
• Distinct from the core registers 

• Extension to the VFPv2 register file (VFPv3) 

• Two explicitly aliased views 
• 32 × 64-bit registers (D0–D31) 

• 16 × 128-bit registers (Q0–Q15) 

• Enables register trade-off 
• Vector length 

• Available registers 

 



44 © 2021 Arm 

Neon: Enhancing User Experiences 


