+ + + + + + + + + + + + + +

Arm and Arm Processors

* * * * * * * * * * * * * * *

+ + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + +

Learning Outcomes

At the end of this module, you will be able to:

- Identify the characteristics of Arm processor classes and their corresponding instruction set architecture.
- Describe the properties of the Armv7-A architecture, including the AAPCS, operating modes, registers, memory model, and Virtualization Extensions.
- Outline the properties of the Arm Cortex-A9 Processor.
- Identify what Arm Neon technology is and its usage.

Arm Products

- Processors
 - Cortex-A, R, M, SecurCore
- System IP
 - CoreLink, CoreSight, AMBA Design Tools
- Multimedia
 - Mali graphics, video, display
- Physical IP
 - Artisan Logic IP, Interface IP, Memory IP, DesignStart
- Tools
 - Software tools (Development Studio, Keil MDK), debug adapters, models, boards
- Support
 - Training, documentation, Arm Connected Community

Arm Processors and Applications

Arm Processor Families

- Cortex-A series (advanced application)
 - High-performance processors for open OSs
 - Applications include smartphones, digital TV, server solutions, and home gateways.
- Cortex-R series (real-time)
 - Exceptional performance for real-time applications
 - Applications include automotive braking systems and powertrains.
- Cortex-M series (microcontroller)
 - Cost-sensitive solutions for deterministic microcontroller applications
 - Applications include microcontrollers, mixed signal devices, smart sensors, automotive body electronics, and airbags.

Arm Processor Families

- SecurCore series
 - High-security applications such as smartcards and egovernment
- Neoverse
 - High performance efficiency for cloud, infrastructure, and AI/ML-accelerated applications
- Classic processors
 - Include Arm7, Arm9, and Arm11 families

Arm Cortex-A Series Family

- Cortex-A series: Cortex-A5, A7, A8, A9, A12, A15, A17, A53, A57
- High-performance application processors
 - Run rich OSs, multicore technology, 32-bit and 64-bit supports
- Applications
 - Mobile computing Netbook, tablet, eReader
 - Mobile handset Smartphones, feature phones, wearables
 - Digital home Set-top box, digital TV, Blu-Ray player, gaming consoles
 - Automotive Infotainment, navigation
 - Enterprise industrial printers, routers, wireless base-stations, VOIP phones and equipment
 - Wireless infrastructure

Arm Cortex-R Series Family

- Cortex-R series: Cortex-R4, R5, R7
- Real-time processor
 - High-performance: Fast processing combined with a high clock frequency
 - Real-time: Processing meets hard real-time constraints on all occasions.
 - Safe: Dependable, reliable systems with high error resistance
 - Cost-effective: Features for optimal performance, power, and area
- Applications
 - Automotive Airbag, braking, stability, dashboard, engine management
 - Storage Hard disk drive controllers, solid state drive controllers
 - Mobile handsets 3G, 4G, LTE, WiMax smartphones and baseband modems
 - Embedded, enterprise, home, cameras

Arm Cortex-M Series Family

- Cortex-M series: Cortex-M0, M0+, M1, M3, M4, M7
- Low-power processor for embedded microcontrollers
 - Energy-efficiency
 - Smaller code
 - Ease of use
- Applications
 - Internet of Things, connectivity, smart metering, human interface devices, automotive and industrial control systems, domestic household appliances, consumer products, and medical instrumentation

Sample Arm Processors

| Processor
Class | ARM Processor | Architecture | Performance
DMIPS/MHz | ARM instructions | Thumb-2 instructions | Jazelle-DBX JAVA
by tec ode execution | Jazelle-RCT Dynamic
compiler support | TrustZone security | E' DSP extensions | Media SIMD
extensions | NEON SIMD
extensions | Floating point | Caches | Memory Management
Unit (MMU) | Memory Protection
Unit (MPU) | Hardware Cache
coherency | Target OS | Trace support |
|--------------------|---------------------|--------------|--------------------------|-------------------------|----------------------|--|---|--------------------|-------------------|--------------------------|-------------------------|----------------|--------|---------------------------------|---------------------------------|-----------------------------|--------------|---------------|
| | ARM7TDMI/ARM7TDMI-S | ARMv4-T | 0.95 | ~ | × | × | × | × | × | × | × | × | × | × | × | × | Real Time | ~ |
| | ARM946E-S | ARMv5-E | 1.23 | ~ | × | × | × | × | ~ | × | × | Optional | ~ | × | ~ | × | Real Time | ~ |
| Arm7 | ARM926EJ-S | ARMv5-EJ | 1.06 | ~ | × | ~ | × | × | ~ | × | × | Optional | ~ | - | × | × | Platform | ~ |
| Arm9 | ARM1136J-S | ARMv6 | 1.18 | ~ | × | ~ | × | × | ~ | ~ | × | Optional | ~ | ~ | × | × | Platform | ~ |
| | ARM1156T2-S | ARMv6-T2 | 1.45 | ~ | ~ | × | × | × | ~ | ~ | × | Optional | ~ | × | ~ | × | Real Time | ~ |
| Arm11 | ARM1176JZ-S | ARMv6-Z | 1.26 | ~ | × | ~ | × | ~ | ~ | ~ | × | Optional | ~ | ~ | × | × | Platform | ~ |
| | ARM11 MPCore | ARMv6 | 1.25 | ~ | × | ~ | × | × | ~ | ~ | × | Optional | ~ | ~ | × | ~ | Platform/SMP | ~ |
| | Cortex-M0+ | ARMv6-M | 0.90 | × | ~ | × | × | × | × | × | × | × | × | × | × | × | Real Time | × |
| | Cortex-M0 | ARMv6-M | 0.90 | × | ~ | × | × | × | × | × | × | × | × | × | × | × | RealTime | × |
| | Cortex-M1 | ARMv6-M | 0.79 | × | × | × | × | × | × | × | × | × | × | × | × | × | Real Time | × |
| | Cortex-M3 | ARMv7-M | 1.25 | × | ~ | × | × | × | × | × | × | × | × | × | Optional | × | Real Time | Instruction |
| | Cortex-M4 | ARMv7-ME | 1.25 | ~ | ~ | × | × | × | ~ | ~ | × | Optional | ~ | × | Optional | × | Real Time | ~ |
| | Cortex-A5 MPCore | ARMv7+MP | 1.58 | ~ | ~ | ~ | ~ | ~ | ~ | ~ | Optional | Optional | ~ | ~ | × | ✓+ACP | Platform/SMP | ~ |
| | Cortex-R4 | ARMv7 | 1.66 | ~ | ~ | × | × | × | ~ | ~ | × | Optional | ~ | × | Optional | × | Real Time | ~ |
| | Cortex-R5 | ARMv7 | 1.66 | ~ | ~ | × | × | × | ~ | ~ | × | Optional | ~ | × | Optional | × | Real Time | ~ |
| | Cortex-R7 | ARMv7 | 2.53 | ~ | ~ | × | × | × | ~ | ~ | × | Optional | ~ | × | Optional | × | Real Time | ~ |
| | Cortex-A7 | ARMv7+MP | 1.90 | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | - | × | ✓+ACP | Platform/SMP | PTM |
| | Cortex-A8 | ARMv7 | 2.07 | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | × | × | Platform | ~ |
| | Cortex-A9 MPCore | ARMv7+MP | 2.50 | ~ | ~ | ~ | ~ | ~ | ~ | ~ | Optional | Optional | ~ | - | × | ✓+ACP | Platform/SMP | PTM |
| | Cortex-A15 MPCore | ARMv7+MP | 2.50 | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | × | ✓+ACP | Platform/SMP | PTM |
| | Cortex-A53 | ARMv8 | 2.3 | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | × | V+ACP | Platform/SMP | PTM |
| | Cortex-A57 | ARMv8 | >4.0 | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | × | ✓+ACP | Platform/SMP | PTM |

Arm Processors v Arm Architectures

- Arm architecture:
 - Describes the details of instruction set, programmer's model, Exception model, and memory map
 - Documented in the Architecture Reference Manual
- Arm processor:
 - Developed using one of the Arm architectures
 - More implementing details, such as timing information and implementation-related information
 - Documented in the processor's Technical Reference Manual

Arm Architectures

Which Architecture Is My Processor?

| Processor core | Architecture |
|------------------------------------|--|
| Arm7TDMI family | v4T |
| Arm9TDMI family | v4T |
| Arm9E family | v5TE, v5TEJ |
| Arm10E family | v5TE, v5TEJ |
| Arm11 family | v6 |
| • Arm1136J(F)-S | v6 |
| • Arm1156T2(F)-S | v6T2 |
| Arm1176JZ(F)-S | v6Z |
| Arm11 MPCore | v6k |
| Cortex family | |
| Arm Cortex-A57 | v8-A (64-bit, highest performance) |
| Arm Cortex-A53 | v8-A (64-bit) |
| Arm Cortex-A15 | v7-A (with security and virtualization extensions) |
| Arm Cortex-A9 | v7-A (with security extensions) |
| Arm Cortex-A8 | v7-A (with security extensions) |
| Arm Cortex-A7 | v7-A (with security and virtualization extensions) |
| Arm Cortex-A5 | v7-A (with security extensions) |
| Arm Cortex-R5 | v7-R |
| Arm Cortex-R4 | v7-R |
| Arm Cortex-M4 | v7-M |
| Arm Cortex-M3 | v7-M |
| Arm Cortex-M1 | v6-M (16-bit Thumb, except for system instruction |
| Arm Cortex-M0 | v6-M (16-bit Thumb, except for system instruction |
| 3 © 2021 Arm | |

13 © 2021 Arm

Arm and Thumb Instruction Sets

- Early Arm processors
 - 32-bit instruction set, called the Arm instruction set
 - Powerful and good performance
 - Larger program memory compared to 8-bit and 16-bit processors
 - Larger power consumption
- Thumb-1 instruction set
 - 16-bit instruction set, first used in the Arm7TDMI processor in 1995
 - Provides a subset of the Arm instructions, giving better code density compared to 32-bit RISC architecture
 - Code size is reduced by ~30%, but performance is also reduced by ~20%.
 - Can be used together with Arm instructions using a multiplexer

Arm and Thumb Instruction Sets

- Thumb-2 instruction set
 - Consists of both 32-bit Thumb and original 16-bit Thumb-1 instruction sets
 - Compared to the 32-bit Arm instruction set, code size is reduced by ~26%, while maintaining similar performance
- Thumb Execution Environment (ThumbEE) instruction set
 - Based on Thumb
 - With some changes and additions to make it a better target for dynamically generated code, i.e., code compiled on the device either shortly before or during execution
- Armv7-A architecture
 - Based on Thumb-2 and ThumbEE

The Arm Register Set

- Sixteen general-purpose registers
- Some of the registers have special significance.
 - R15: Program Counter (pc)
 - R14: Link register (lr)
 - R13: Stack pointer (sp)
- There are also two status registers.
 - Current Program Status Register (CPSR)
 - Saved Program Status Register (SPSR)
 - Only present in exception modes
 - Only accessible by some instructions

Assembler Syntax

- Data processing instructions
- <operation><condition> Rd, Rm, <op2>
- ADDEQ r4, r5, r6
- SUB r5, r7, #4
- MOV r4, #7
- Memory access instructions
- <operation><size> Rd, [<address>]
- LDR r0, [r6, #4]
 STRB r4, [r7], #8
- <operation><addressing mode> <Rn>!, <registers list>
- LDMIA r0, {r1, r2, r7}
- STMFD sp!, {r4-r11, lr}
- Program flow instructions
- BL foo
- B bar

AAPCS

Arguments into function Result(s) from function otherwise corruptible (Additional parameters passed on stack)

| r0 | (a1) |
|------------|------|
| r1 | (a2) |
| r 2 | (a3) |
| r3 | (a4) |

| r4 | (v1) |
|-------------|---------|
| r5 | (v2) |
| r6 | (v3) |
| r7 | (v4) |
| r8 | (v5) |
| r9 | (v6/SB) |
| r 10 | (v7) |
| r 11 | (v8) |

Register variables Must be preserved

| Stack Pointer | |
|-----------------|--|
| Link Register | |
| Program Counter | |

| r13 | (sp) |
|-----|------|
| r14 | (lr) |
| r15 | (pc) |

- The compiler has a set of rules known as a Procedure Call Standard that determines how to pass parameters to a function (see AAPCS).
- CPSR flags may be corrupted by function call.
- Assembler code that links with compiled code must follow the AAPCS at external interfaces.
- The AAPCS is part of the ABI for the Arm architecture.
- r9 is used as the static base if the RWPI option selected.

- sp should always be 8-byte (2 words) aligned.

- r14 can be used as a temporary register once value stacked.

Processor Modes

- The Arm processor has seven basic operating modes:
 - Each mode has access to its own stack space and a different subset of registers.
 - Some operations can only be carried out in a privileged mode.

| Mode | Description | Privilege level | |
|--|---|-----------------|----------------------|
| SupervisorEntered on reset and when a supervisor call instructionis executed | | PL1 | |
| FIQ | Entered when a high-priority (fast) interrupt is raised | PL1 | |
| IRQ | Entered when a normal-priority interrupt is raised | PL1 | Privileged |
| Abort | Used to handle memory access violations | PL1 | modes |
|
Undef | Used to handle undefined instructions | PL1 | |
| System | Privileged mode using the same registers as user mode | PL1 | |
| User | Mode under which most applications/OS tasks run | PL0 | Unprivileged
mode |

Current mode

Banked out registers

Exceptions

- When an exception occurs:
 - It causes entry into a processor mode that executes software at PL1 or PL2.
 - It causes the execution of a software handler for the exception.
- Exception includes:
 - Resets
 - Interrupts
 - Memory system aborts
 - Undefined instructions
 - SVCs, secure monitor calls (SMCs), and hypervisor calls (HVCs)
- Processor execution is forced to the exception vector (an address) corresponding to that type of exception.
- Vector table:
 - A set of eight consecutive vectors
 - World aligned memory addresses starting at an exception base address

Vector Table

- A vector table has one entry per exception type.
- Table entries contain instructions, not addresses.
 - 1 × Arm instruction
 2 × 16-bit Thumb instructions
 - 1 × 32-bit Thumb instruction
 - Arm/Thumb controlled by SCTLR.TE bit
- The vector table address is configurable.
 - Ox0 or 0xFFFF0000
 - SCTLR.V bit / VINITHI signal
 - The security extensions add support for other addresses.^{0x00}
 - Vector base address registers

| FIQ | |
|-----------------------|--|
| IRQ | |
| (Reserved) | |
| Data Abort | |
| Prefetch Abort | |
| SVC | |
| UNDEFINED instruction | |
| Reset | |

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

Vector Table

At reset, the vector table can be at **0x0** or **0xFFFF0000**.

Memory Model

- A system includes different memories and peripherals.
 - The processor needs to be told how it should access different devices.
- For each address region:
 - Access permissions
 - Read/write permissions for user/privileged modes
 - Memory types
 - Caching/buffering and access ordering rules for memory accesses

Memory Types

- In Armv6/Armv7, address locations must be described in terms of a type.
- The type tells the processor how it can access that location:
 - Memory access ordering rules
 - Caching and buffering behavior
 - Speculation
- There are three mutually exclusive memory type attributes:
 - Normal: Data and instructions
 - Device: Devices/peripherals
 - Strongly ordered: Device/peripherals, or data used by legacy code
- Normal and device memory allow additional attributes for specifying the cache policy and whether the region is shared.
 - For example, normal memory can be cached or non-cached.

Example: Cached Arm Macrocell

- For memory management, an Arm core can include either an MMU or MPU.
- Memory Management Unit (MMU)
 - Implements Virtual Memory System Architecture (VMSA)
- Memory Protection Unit (MPU)
 - Implements physical memory system architecture (PMSA)

Data Alignment

- Armv6/v7 data alignment:
 - Data accesses can be unaligned.
 - Only a subset of load/store instructions support unaligned accesses.
 - Unaligned accesses are only allowed to addresses marked as normal.
 - The load/store unit will access memory with aligned memory accesses and make the data available to the CPU.
- Instructions are aligned as follows:
 - Arm instructions are word aligned.
 - Thumb and ThumbEE instructions are halfword-aligned.
 - Java bytecodes are byte-aligned.
- Arm processors are little-endian.
 - But can be configured to access big-endian memory systems

Endianness

- Endianness determines how contents of registers relate to the contents of memory.
 - Arm registers are word (4 bytes) width.
 - Arm addresses memory as a sequence of bytes.
- Arm processors are little-endian.
 - But can be configured to access big-endian memory systems.

Little-endian memory system

• Least significant byte is at lowest address.

Big-endian memory system

- Most significant byte is at lowest address.
- Arm supports three models of endianness.
 - LElittle-endian
 - BE-32 word-invariant big-endian (dropped in architecture v7)
 - BE-8 byte-invariant big-endian (introduced in architecture v6)

PMU

- Armv6 & Armv7-A/R processors include a Performance Monitoring Unit (PMU).
- The PMU provides a non-intrusive method of collecting execution information from the core.
 - Enabling the PMU does not change the timing of the core.
- PMU accessed through
 - CP15 (mandatory)
 - A memory-mapped interface (optional)
 - An external debug interface (optional)
- The PMU provides:
 - Cycle counter: counts execution cycles (optional 1/64 divider)
 - Programmable event counters
 - The number of counters and available events vary between cores.
 - The PMU can be configured to generate interrupts if a counter overflows.
 - Interrupt signals are an output from the core.
 - Need to be connected to the system's interrupt controller.

Coprocessors

- On earlier Arm processors, additional coprocessors could be added to expand the Arm instruction set.
- Newer processors do not allow user-defined coprocessors:
 - Usually better for system designers to use memory-mapped peripherals
 - Easier to implement, since coprocessors have to be tied in to the core pipeline
- Arm uses coprocessors for internal functions so as not to enforce a particular memory map:
 - System control coprocessor: cp15
 - Used for processor configuration: System ID, caches, MMU, TCMs, etc.
 - Debug coprocessor: cp14
 - Can be used to access debug control registers
 - VFP and Neon: cp10 and cp11

Architecture Extensions

- Architecture extensions to meet the changing needs of applications in new markets
- Security
 - The TrustZone
 - Additional operating mode, Monitor (Mon) mode, with associated banked registers and an additional secure operating state
- 40-bit physical addressing (LPAE)
 - Extension to the VMSAv7 virtual memory architecture
 - Enables the generation of 40-bit physical addresses from 32-bit virtual addresses
- Virtualization
 - Extra mode: Hypervisor mode, with associated banked registers
 - New Hyp exception to trap software accesses to hardware and configuration registers
- Advanced SIMD and floating-point: Both floating point (VFP) support and Advanced SIMD (Neon)
 - Can be implemented together, in which case they share a common register bank and some common instructions

TrustZone

- Processor provides two worlds: secure and normal.
 - Each world has its own vector table and page tables.
- "Monitor" mode acts as a gatekeeper for moving between worlds.
- Two physical address spaces, controlled by NS attribute
 - Secure (S) and Non-secure (NS)
 - S:0x8000 treated as different physical location from NS:0x8000
- Debug for Secure world code and data can be restricted.

Virtual Memory System Architecture (VMSA)

- Provides virtual address to physical address translation system
 - Up to 40 bits fine grain translation
- Arm Memory Management Unit (MMU) implements VMSA
 - Translation tables
 - Descriptor

Large Physical Address Extensions

- Long-descriptor format for page tables added
 - 32-bit virtual address mapped onto 40-bit physical address space
 - New translation table format using 64-bit translation table descriptors
 - 1TB of memory space accessible
- 32-bit short-descriptor format still supported
 - Configurable in the translation table base control register EAE bit (bit 31)
 - Can use 16MB memory supersections to map onto 40-bit address space

Virtualization

- Support for running multiple guest OSs in the normal world
- Hypervisor mode to control switching between guest OSs
- Two-stage address translation: OS and hypervisor levels
- Hypervisor mode can trap exceptions and choose which guest to direct them to.

Arm Cortex-A Series Processors

- Armv8 architecture: 64-bit
 - Cortex-A57
 - Cortex-A53
- Armv7 architecture: 32-bit
 - Cortex-A15
 - Cortex-A9
 - Cortex-A8
 - Cortex-A7
 - Cortex-A5

Arm Cortex-A Series Overview

- High-performance
 - Used in applications that have high-compute requirements
 - Run rich OSs and deliver interactive media and graphics on the latest must-have devices.
- Multicore technology
 - Single to quad-core implementation for performance orientated applications
 - Supports symmetric and asymmetric OS implementations
 - Arm big.LITTLE compatible
- Advanced extensions
 - Thumb-2 for optimal code size and performance
 - TrustZone Security Extensions for trusted computing
 - Jazelle technology for accelerating execution environments such as Java, .Net, MSIL, Python, and Perl
- Ideal for mobile Internet
 - Native support for technologies like Adobe Flash
 - High-performance Neon engine for broad support of media codecs

Arm Cortex-A Series Processors

| Processor | Performance | Typical Frequency | Architecture | Year | Comments |
|------------|----------------------|-------------------|--------------|------|--|
| Cortex-A5 | 1.57 DMIPS/MHz /core | 400-800 MHz | Armv7-A | 2009 | Cost-effective processor core |
| Cortex-A7 | 1.9 DMIPS/MHz /core | 800 MHz-1.2 GHz | Armv7-A | 2011 | High-energy and area-efficient core |
| Cortex-A8 | 2.0 DMIPS/MHz/core | 600 MHz-1 GHz | Armv7-A | 2005 | First one supporting Armv7-A architecture |
| Cortex-A9 | 2.5 DMIPS/MHz /core | 800 MHz-2 GHz | Armv7-A | 2007 | Widely deployed Armv7-A-based processor |
| Cortex-A12 | 3.0 DMIPS/MHz /core | | Armv7-A | 2013 | |
| Cortex-A15 | >3.5 DMIPS/MHz /core | Up to 2.5GHz | Armv7-A | 2010 | High-performance core |
| Cortex-A17 | | Up to 2.5GHz | Armv7-A | 2014 | The most efficient Armv7-A-based processor |
| Cortex-A53 | 2.3 DMIPS/MHz | | Armv8-A | 2013 | Most efficient 32/64-bit processor |
| Cortex-A57 | >4.1 DMIPS/MHz | | Armv8-A | 2013 | Proven high-performance 32/64-bit core for mobile and enterprise computing |
| Cortex-A72 | | Up to 2.5GHz | Armv8-A | 2015 | Arm's highest-performance processor |

arm

Arm Cortex-A9 Processor

Arm Cortex-A9 features

- Armv7 architecture: Thumb-2, ThumbEE
- 0.8GHz to 2GHz
- 2.5 DMIPS/MHz/core
- Single core or 4x MPCore solution
- Up to 20k DMIPS (2GHz, quad-core)
- Power-efficient and high-performance processor
- Dynamic length pipeline (8–11 stages)
- Up to 64KB L1 I/D cache
- Up to 8MB of L2 cache
- Optional Neon media and/or floating point processing engine

arm CORTEX®-A9

| CoreSight™ mu | lticore debug and trace | | | | | |
|-------------------------|--|--|--|--|--|--|
| | Core 1 | | | | | |
| Armv7 | NEON [™] 2
data engine 2 3 | | | | | |
| 32Ь СРО | Floating
point unit | | | | | |
| 16-64k I-cache | 16-64k D-cache | | | | | |
| | | | | | | |
| | | | | | | |
| АСР | scu | | | | | |
| Dual 64-bit AMBA® 3 AXI | | | | | | |

Cortex-A9 Diagram

Cortex-A9 MPCore

- Contains up to four Cortex-A9 processors
- SCU
 - Maintains L1 data cache coherency between processors
 - Arbitrates accesses to the L2 memory system, through one or two external 64bit AXI Manager interfaces
 - Optional ACP for maintaining coherency with DMA controller, graphics processor, or similar
- Integrated interrupt controller
 - Same programmer's model as Arm Generic Interrupt Controller (GIC): the PL390 PrimeCell

Cortex-A9 Pipeline Ex1 Ex2 WB Fe2 Fe3 IQ Fe1 De Re → M1 M2 ΒM Prefetch Unit Ex1 Ex2 WB ISS Decode and issue stages **⊢** AGU LSU WB

Main

(PO)

Dual

(P1)

(LS)

WB

Mac (M)

Load/store

Compute

Engine (CE)

- Five backend execution pipelines
- Pipelines are clustered into three different issue groups.
 - Main, or multiply accumulate (Mac)
 - Dual execution (also known as secondary)
 - Load/store, or compute engine (Neon or floating point)

Core can issue up to 3 instructions per cycle.

What Is Neon?

- Neon is a wide SIMD data processing architecture. ۲
 - Extension of the Arm instruction set
 - Thirty-two registers, 64 bits wide (dual view as sixteen registers, 128 bits wide)
- Neon instructions perform packed SIMD processing.
 - Registers are considered vectors of elements of the same data type.
 - Data types can be signed/unsigned 8-bit, 16-bit, 32-bit, 64-bit, single precision, and float.
 - Instructions perform the same operation in all lanes.

Neon Registers

- Neon provides a 256-byte register file.
 - Distinct from the core registers
 - Extension to the VFPv2 register file (VFPv3)
- Two explicitly aliased views
 - 32 \times 64-bit registers (D0–D31)
 - 16 × 128-bit registers (Q0–Q15)
- Enables register trade-off
 - Vector length
 - Available registers

| D0 |
 | Q0 | |
|-----|------|-----|--|
| D1 | | Ž. | |
| D2 | | Q1 | |
| D3 | | ×- | |
| : | | : | |
| D30 | | Q15 | |
| D31 | | Ž13 | |

Neon: Enhancing User Experiences

Watch any video in any format

Video stabilization

Game processing

Process megapixel photos quickly

www.

Antialiased rendering & compositing

Advanced User Interfaces

Voice recognition

Powerful multichannel hi-fi audio processing