
© 2021 Arm Limited

Vector, SIMD, & GPUs

Module 10

2 © 2021 Arm Limited

Module Syllabus

• Vector processors

• Single instruction, multiple data (SIMD) architectures

• SIMD case study

• Graphics processing units (GPUs)

• GPU case study

3 © 2021 Arm Limited

Motivation

• Multicore processors and multithreading take advantage of thread-level parallelism.
• Allows us to exploit thread-level parallelism (within a program) and process-level parallelism (across

applications)

• They are relatively simple extensions to a conventional core (at least conceptually).
• For multicore, duplicate the core several times on the chip and add extra logic (e.g., for coherence).

• For multithreading, add storage for multiple thread contexts and associated pipeline changes.

• However, other architectural choices allow us to extract different forms of parallelism.
• Such as data-level parallelism

• This module studies these architectures compared to a generic multicore.

4 © 2021 Arm Limited

Vector Processors

5 © 2021 Arm Limited

Vector Processors

• Vector processors explicitly exploit data-level parallelism.
• When instructions are applied to multiple independent data items

• Vector processors gather data from memory into large (vector) registers.
• Then, conceptually perform operations on these items together

• Essentially performing many register-register operations with the same opcode

• Results are scattered back out to memory.

• For vectorizable data, vector processors:
• Provide energy-efficient computation (amortizing the costs of fetch and decode).

• Hide memory latencies through pipelining operations.

6 © 2021 Arm Limited

Example Executing Code on a Vector Processor

Contiguous data in memory Dispersed data in memory

for (int i=0; i<64; ++i) {

 A[i] = B[i] + C[i]

}

for (int i=0; i<64; ++i) {

 A[i] = B[D[i]] + C[i]

}

+

B C

A

+

D

B C

A

7 © 2021 Arm Limited

An Example Vector Processor

• Vector functional

units fed by
• Vector registers

provide

independent data

to operate on.

• Scalar registers

provide additional

data or memory

addresses.

• Vector FUs are

fully pipelined.
• To start processing

a new element on

each clock cycle

PC

In
str

m
e

m
o

ry

D
a

ta
 m

e
m

o
ry

D
e

co
d

e

Scalar

register

file

Vector

register

file

Vector

load &

store

Fetch Decode Execute Memory Writeback

8 © 2021 Arm Limited

Instruction Execution

• The core operates on vectors of data
• However, this doesn’t mean that the whole

vector must be processed at once.

• This is a simple vector functional unit.
• It can only process one element at a time.

• Operation on a new data element starts

on each clock cycle.
• The FU is pipelined to support multi-cycle

operations.

• The ALU needs as many cycles as there

are vector elements to process all data.
• Plus the time to perform one operation

B[3] B[2] B[1]

C[3] C[2] C[1]

A[0]

Time T0 T1 T2 T3

9 © 2021 Arm Limited

Instruction Execution

• Duplicating the functional units increases

performance.
• Since we now start execution on multiple data

elements on each clock cycle

• To help this, we can partition the vector

register file into lanes.
• With one functional unit of each type per lane

• Data elements are interleaved across lanes to

produce data in the correct order.

Time T0 T1 T2 T3

B[12] B[8] B[4]

C[12] C[8] C[4]

A[0]

B[13] B[9] B[5]

C[13] C[9] C[5]

A[1]

B[14] B[10] B[6]

C[14] C[10] C[6]

A[2]

B[15] B[11] B[7]

C[15] C[11] C[7]

A[3]

10 © 2021 Arm Limited

Predication

• Sometimes you don’t want to do
computation across the whole vector.
• Only certain elements of the computation

should be performed.

• Predication is one method for achieving

this.

• Include one or more predicate registers.
• Usually, these contain one bit per vector

element.

• Bits from the predicate register say

whether the operation on the

corresponding elements goes ahead.
• If not, some other value is placed in the

destination.

• E.g., forward the value from the first source

B[3] B[2] B[1]

C[3] C[2] C[1]

A[0]

Time T0 T1 T2 T3

0 1 0 1

B[3] A[2] B[1] A[0]

Result

11 © 2021 Arm Limited

Single Instruction, Multiple Data (SIMD)

12 © 2021 Arm Limited

SIMD

• SIMD execution brings a (constrained) form of vector processing to general-purpose

CPUs.
• The key idea remains to exploit data-level parallelism.

• And obtain performance benefits (with energy-efficiency benefits, too, if possible)

• SIMD also provides more efficient processing for certain codes.
• E.g., multimedia workloads, such as image recognition and object detection, where operations are on

pixel color values that are 8 or 16 bits in length

• Scalar execution would put each value in its own 32-bit register.

• SIMD packs them into a vector register (e.g., 256-bit vector of 16 * 16-bit data elements).
– Then operates on each element independently

• However, SIMD typically operates on all elements concurrently.
• Contrast with vector processing in the previous slides.

13 © 2021 Arm Limited

SIMD Execution

• In SIMD,

operations on all

data elements

occur at the same

time.

• The processor

provides as many

FUs as there are

data elements in

a vector.
A[7] A[6] A[5] A[1] A[0] A[4] A[3] A[2]

C[7] C[6] C[5] C[1] C[0] C[4] C[3] C[2]

B[7] B[6] B[5] B[1] B[0] B[4] B[3] B[2]

14 © 2021 Arm Limited

SIMD vs Vector Processing

Vector processing

• Operations produce data for elements

of the output vector over multiple

cycles.

• Maximum vector length can change

with each processor generation

without requiring ISA changes.

• Best performance when the majority

of the code is vectorizable – the scalar

architecture is relatively simple.

SIMD

• Operations produce data for elements

of the output vector in the same cycle.

• In most SIMD ISAs, the vector length is

hardcoded, so increasing it requires

new instructions.

• Vector operations are used to increase

performance and generally augment a

high-performance scalar architecture.

15 © 2021 Arm Limited

Case Study: AArch64 NEON

• NEON is a wide SIMD architecture developed for multimedia applications.

• Registers are considered as vectors of elements of the same data type (128 bits in size).
• Integer signed and unsigned 8-bit, 16-bit, 32-bit, 64-bit

• Floating point half, single and double precision

• Instructions usually perform the same operation in all lanes.

Vn

Vm

Vd

Lane

Elements
Operation

Destination Register

Source Registers

16 © 2021 Arm Limited

Case Study: AArch64 SIMD Instruction Types

Type Examples

Arithmetic ADD, SUB, MUL, MLS, SMIN, SMAX

Saturating math UQADD, UQRSHL, SQDMULL

Narrowing instructions SUBHN, ADDHN, RSUBHN

Widening instructions SSUBL, UMULL2, UABDL2

Integer compare CMGT, CMHS, CMTST

Logical operations ORR, AND, BIC, EOR

Floating point operations FADD, FABD, FDIV, FRINTZ

Data movement DUP, INS, MOV, SMOV, UMOV

Load/store instructions LDR, LDP, LD1, ST1, LD4R

More information at https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools

https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools
https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools
https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools
https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools
https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools
https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools
https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools

17 © 2021 Arm Limited

Case Study: AArch64 SIMD Register Bank

• Separate set of 32 registers, 128 bits wide, V0 - V31

• For access to a scalar
• Qn to access 128-bit data (in Vn[127:0])

• Dn to access 64-bit data (in Vn[63:0])

• Sn to access 32-bit data (in Vn[31:0])

• Hn to access 16-bit data (in Vn[15:0])

• Bn to access 8-bit data (in Vn[7:0])

S0

D0

Q0

V0
H0

B0

S1

D1

Q1

V1
H1

B1

18 © 2021 Arm Limited

Case Study: AArch64 SIMD Data Types and Sizes

• Data types
• Unsigned integer (U8, U16, U32, U64) and signed integer (S8, S16, S32, S64)

• Integer of unspecified sign (I8, I16, I32, I64)

• Floating point number (F16, F32, F64) and polynomial (P8, P16)

• Data sizes
• A single scalar value of a floating-point or integer type (Q, D, S, H, B)

• A 64-bit wide vector containing two or more elements (2S, 4H, 8B)

• A 128-bit wide vector containing two or more elements (2D, 4S, 8H, 16B)

• Data type is specified as the instruction prefix; size is specified in the operands’ type
sizes.
• For example, FADD V2.4S, V0.4S, V1.4S

– Perform a floating point add of four single-precision values in registers V0 and V1, putting the result in V2

• But not all combinations of data type size and operation are available (see the Arm Architecture

Reference Manual for valid combinations).

19 © 2021 Arm Limited

Case Study: Scalable Vector Extension (SVE)

• SVE for Armv8-A Arch64
• Next-generation SIMD instruction set for AArch64

• Motivated by a need for better vectorization of “real-world” applications
• Enabling different CPUs to implement different vector lengths while sharing a common ISA

– As a result, a program written for one CPU should work on another with no changes.

• Add support for data-set lengths that are not a multiple of the vector width

• Also aims to reduce the initial porting effort to use a new ISA, scalable for future designs

• A vector-length-agnostic architecture
• Implementations can range from 128 bits up to 2048 bits.

• Introduces new vectorization techniques

20 © 2021 Arm Limited

Case Study: SVE Vectors and Predicates

• 32 new scalable vector registers (Z0-Z31), length determined by the implementation
• Bottom 128 bits overlay the floating-point & NEON vector register bank (V0-V31); top bits zeroed on

a write

• 16 new scalable predicate registers (P0-P15); this example is for 256-bit vector

registers.
• Have 1/8th of a vector register’s length: 1 bit of predicate register is mapped to 1 byte of vector

register

128 bits

... 128 bits

Up to 2048 bits

Vx

Zx

Px

Zx 8-bit element

32 bits

8-bit 8-bit 8-bit 8-bit … 8-bit 8-bit 8-bit 8-bit

1 1 1 1 … 1 1 1 1

Unpacked 16-bit element

32 bits

16-bit - … 16-bit -

1 0 … 1 0 Px

Zx

21 © 2021 Arm Limited

GPUs

22 © 2021 Arm Limited

GPU Evolution

• GPUs originally developed as specialized hardware for graphics computation
• Now used as programmable accelerators for highly data-parallel workloads

• GPU hardware evolution closely tied to evolution in usage patterns
• Desire for improved visual effects driven by games

• More realism, more effects, more screen resolution, more frames per second

• Originally a fixed-function pipeline, programmability was added gradually to many

stages.
• Now the bulk of the GPU is a programmable data-parallel architecture.

• Some fixed-function hardware remains for graphics.

• New hardware being added to cope with modern workloads, e.g., machine learning

23 © 2021 Arm Limited

GPU Design Principles

• CPU design is about making a single thread run as fast as possible.
• Pipeline stalls and memory accesses are expensive in terms of latency.

• So increased logic was added to reduce the probability/cost of stalls.

• Use of large cache memories to avoid memory misses

• GPU design is about maximizing computation throughput.
• Individual thread latency not considered important

• GPUs avoid much of the complex CPU pipeline logic for extracting ILP.

• Instead, each thread executes on a relatively simple core with performance obtained through

parallelism.
– Single instruction, multiple threads

• Computation hides memory and pipeline latencies.

• Wide and fast bandwidth-optimized memory systems

24 © 2021 Arm Limited

SIMT vs SIMD

SIMT

• Single instruction, multiple threads

• Takes advantage of data-level

parallelism

• Can be considered a constrained form

of multithreading

• Many threads each with their own

state
• Operating on scalar registers

• With their own local memory

SIMD

• Single instruction, multiple data

• Takes advantage of data-level

parallelism

• Can be considered a constrained form

of vector processing

• One thread operating on vector

registers

25 © 2021 Arm Limited

One Processing Element

• A single thread runs on a simple

processing element.

• Short pipeline

• The execution context consists of the

thread’s state.
• E.g., registers and local memory

• But fetch and decode are costly.

Fetch/decode

ALU

Execution context

26 © 2021 Arm Limited

Multiple Processing Elements

• SIMT execution of threads

• Cost of fetch and decode spread across

all threads in a work group (OpenCL

terminology)

• Each thread has its own context.
• And some shared context

• Multiple functional units for parallelism
• One per thread for cheap units (e.g., simple

ALU)

• Fewer expensive units than threads (e.g., sqrt)

• However, stalls are costly.

Fetch/decode

ALU ALU ALU ALU

ALU ALU ALU ALU

Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared context

27 © 2021 Arm Limited

Minimizing Stalls

• Include support for multiple work groups
• Each is independent of all others.

• And this is guaranteed by the compiler.

• Which means there is no fixed ordering of

groups.

• A scheduler chooses work groups to run.
• Maintains a list of ready work groups

• Makes a choice each cycle

• Some GPUs can schedule more than one work

group per cycle.

• Hides latency when a work group stalls

• This system is sometimes called a shader

core.

Fetch/decode

ALU ALU ALU ALU ALU ALU ALU ALU

Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared context

Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Scheduler

28 © 2021 Arm Limited

Scaling Out

• Multiple instances of each shader core

provided together
• Each independent of the others

• Each processes a subset of the work groups

• Massively increases parallelism

• Memory hierarchy provided, too
• Shared L2 cache reduces memory bandwidth

requirements.

• Smaller caches local to each multithreaded

core

Shared L2 Cache

29 © 2021 Arm Limited

Case Study: Mali T880 GPU

• Up to 16 shader cores (SC)

• Each core supports multiple threads and

operations.

• Performance

• 30.6G FLOPS at 900 MHz

• API support

• OpenGL ES 1.1, 1.2, 2.0, 3.0, 3.1

OpenCL 1.1, 1.2

DirectX 11 FL11_2

RenderScript

• Usage in SoCs

• Exynos 8890, Helio X20 (MT6797), Kirin 950

• Used for both graphics processing and high-

performance computing

30 © 2021 Arm Limited

Case Study: Arm Mali Bifrost GPU Architecture

• Mali Bifrost GPU consists of 3 main blocks or groups.
• The job manager interacts with the driver and controls the GPU HW.

• The shader core runs compute and fragment shaders.

• The core group contains the memory system and the tiler.

Bifrost GPU

Shader

core Shader

core
Shader

core MMU Tiler

AXI switched network

Job control network

L2C L2C

Job

manager

Driver

Up to 32

shader cores

Distributes

tasks

between the

cores

Configurable

cache shared

between cores

Provide

uniform

communication

system

Produce

hierarchical tile

lists

Transmit job

control

messages

31 © 2021 Arm Limited

Case Study: Arm Mali-G76 GPU

• Third generation of the Bifrost architecture

• Maximum 20 shader cores (SC)
• Wider execution engines with double the number of

lanes

• Performance
• Complex graphics and machine-learning workloads

• API support
• OpenGL ES 1.1, 2.0, 3.1, 3.2

OpenCL 1.1, 1.2, 2.0 Full profile

Vulkan 1.1

• Shared L2 cache with 2 or 4 slices

32 © 2021 Arm Limited

Case Study: Arm Mali-G77 GPU

• First generation of the Valhall architecture
• Warp-based execution model

• New instruction set with operational-equivalence to Bifrost

• Dynamic instruction scheduling in hardware

• Configurable 7 to 16 shader cores

• Single execution engine per shader core

• Configurable 2 to 4 slices of L2 cache
• 512 KB to 4 MB in total

• Texture mapper – 4 texture element (texel) per cycle

• Supports Vulkan and OpenCL

…16

8

7

…6

2

MALI™-G77

Inter-core task management

Shader core

Control/Scheduler

Register File

Datapath

Messaging

Register File

Datapath

C

o

n

t

r

o

l

Shader core 1

Advanced Tiling Unit

Memory management unit

L2 cache L2 cache L2 cache L2 cache

AMBA©4 ACE AMBA©4 ACE AMBA©4 ACE AMBA©4 ACE

33 © 2021 Arm Limited

Summary

• General-purpose CPUs optimize scalar single-threaded performance
• But there are many domains where data-level parallelism is common.

• Other architectures can exploit this efficiently.

• Vector processing is highly efficient for regular workloads computing on arrays of

values.
• The basis of early supercomputers

• SIMD processing brings a form of this to the general-purpose CPU.
• Useful for multimedia codes and data-parallel operations

• GPUs exploit a different form, SIMT, with massive parallelism.
• Simple cores but multithreading and multiprocessing hide latency

