
© 2021 Arm Limited

Multithreading

Module 9

2 © 2021 Arm Limited

Module Syllabus

• Multitasking

• Fine-grained multithreading
• Thread selection

• Case study

• Coarse-grained multithreading
• Case study

• Simultaneous multithreading (SMT)
• SMT policies

• Case study

3 © 2021 Arm Limited

Motivation

• Multicore processors are the most generic way of extracting coarse-grained parallelism.
• Allow exploitation of thread-level parallelism (within a program) and process-level parallelism (across

applications).

• They are also the most simple extension of a uniprocessor.
• Simply replicate the core several times on the chip.

• Add the logic for implementing cache coherence, etc.

• However, they come at significant costs.
• Over 2x area and power cost for a simple replication of the core and private caches

• Other architectural choices allow us to extract this parallelism with fewer overheads.
• Such as sharing the core between threads at some granularity

• This module considers the trade-offs involved in achieving this.

4 © 2021 Arm Limited

Multitasking

• Each of our cores can currently be shared by multiple threads.
• Mediated and controlled by the operating system

• This enables multitasking by having each thread (task) run for a fixed period of time.
• Short periods give the appearance that all threads actually run concurrently.

• The process of changing between running threads is called a context switch.
• The OS saves (switches out) the state (context) of the running thread.

• And replaces it with the state of another thread, which can then run on the core.

Thread A Thread B

Context switch

Thread C

5 © 2021 Arm Limited

Multitasking

• During a context switch, the OS has to save the thread’s state, which for the core is
• Contents of the (architectural) register file

• Program counter (PC)

• Memory-management information, such as the page table base register

• Saving all this state can be very slow.
• Usually, 100 s of cycles

• Can we improve this situation to achieve
• Fewer cycles required for context switching

• Better throughput from the core

• Without the full-blown costs of going to multicore?

6 © 2021 Arm Limited

Multithreading

• Reducing the context-switch overhead is easy if we’re prepared to pay a small price for
it.

• By adding extra storage to the core, we can hold the context for more than one thread.
• The price here is area devoted to the context storage.

• This means that a context switch between two threads with stored contexts is much

faster.
• Only a few cycles instead of several hundreds

• Because the storage is all very close to the core

• We now have a core capable of multithreading.

• This core works at arbitrary granularity.
• i.e., with many cycles between each switch

• Or even selecting a new thread every cycle

Core

A B

C D

7 © 2021 Arm Limited

Fine-grained Multithreading

8 © 2021 Arm Limited

Fine-grained Multithreading

• Now that we have the ability to switch to a new thread, when should we do it?

• With fine-grained multithreading, we switch to a new thread every cycle.

• This means that in each stage of the pipeline is an instruction from a different thread.

• We can use a simple round-robin policy for choosing the next thread to fetch from.
• If the thread is stalled, send a NOP instead.

Thread A Thread B Thread C Thread D Thread E

Fetch Decode Execute Memory Writeback

9 © 2021 Arm Limited

Trade-offs of Fine-grained Multithreading

Provided no two instructions from the same thread are in the pipeline together

Benefits

• No thread-switch overhead

• No need for pipeline interlocking
• No two instructions will have a data

dependency through registers (they might

through memory).

• No need for branch prediction logic
• All branches executed before the next

instruction are fetched from the same

thread.

• Hides short pipeline bubbles

• Improved core throughput

Downsides

• Need to support a large number of

threads
• So as to hide most short-latency pipeline

bubbles and avoid nops

• This comes at an area cost.

• Single-threaded performance suffers.
• Since threads only get an instruction

fetched every N cycles

• But this can bring strong performance

guarantees.

10 © 2021 Arm Limited

Dynamic Thread Selection

• The most simple approach to fine-grained multithreading always fetches from a thread.
• Even when that thread is stalled – a nop is fetched instead.

• However, the presence of nops reduces the performance of the core.
• This is wasteful of the time-slot when other threads have actual work to do.

• We can change the basic round-robin thread-switching policy to improve the situation.
• Order threads as in round robin.

• Skip a thread if it is stalled and would have sent a nop into the pipeline.

• This kind of dynamic thread selection improves throughput even more.
• But needs additional logic to implement it

• And either needs the dependence-check logic adding back in

• Or extra logic to detect when there are fewer ready threads than pipeline stages

11 © 2021 Arm Limited

Dynamic Thread Selection

Thread A Thread B Thread C

Thread D Thread E Thread F Thread G

Static round-robin selection

Dynamic round-robin thread selection

Stall

Time

12 © 2021 Arm Limited

Case Study: Sun’s Niagara (UltraSPARC T1)

• Each core of eight

supports four

concurrent

threads.

• Threads removed

from selection on

long-latency

events

• This allows

provision of only

16KiB instruction

and 8KiB data

caches.

13 © 2021 Arm Limited

Coarse-grained Multithreading

14 © 2021 Arm Limited

Coarse-grained Multithreading

• An alternative design point is course-grained multithreading.
• Switching less often (and flushing when doing so) means the core requires less per-thread state.

• An obvious point to switch is when the thread is stalled for some reason, e.g., a cache

miss.

Switching at fixed frequency

Switching on long-latency event

Thread A Thread B Thread C Stall Thread switch

15 © 2021 Arm Limited

Coarse-grained Multithreading

• The switch to a new thread increases the throughput of the core.
• Although switching takes time, we only do it for stalls that are longer than that overhead.

• However, care has to be taken in how the switch is implemented.

• In particular, instructions after the long-latency event must be squashed.
• This adds to the switching time.

• To avoid the additional design complexity of handling instructions from different

threads in the pipeline at any given time, the pipeline has to be flushed before

switching.
• This incurs in an overhead.

• Finer granularities may justify handling instructions from different threads within the pipeline at the

same time.

16 © 2021 Arm Limited

Coarse-grained Multithreading

Reasons for switching threads

• L1 or L2 cache miss
• Accessing main memory takes hundreds of

cycles, and if the thread-switch penalty is

small enough, even an L1 miss can be

partially hidden.

• Complex ALU operation
• A floating-point divide may take tens of

cycles and may not be pipelined.

• Timeout
• This ensures fairness for compute-bound

threads.

• Higher priority thread becomes ready.

Methods to reduce thread-switch penalty

• Implement a short pipeline.
• This reduces the time until the pipeline

becomes full again.

• Add a thread-switch buffer
• Essentially prefetch a few instructions from

each thread into a buffer so that they can

be fetched (for real) immediately after a

switch.

• Provide pipeline registers for each

thread.
• So now no instructions need to be squashed

on a long-latency event, but added

complexity.

17 © 2021 Arm Limited

Case Study: Intel Montecito (Itanium 2)

• Support for two threads per core
• Duplicates all architectural and some

microarchitectural state

• Each thread is given an “urgency” value.
• Larger urgency means higher priority.

• Urgency is dynamically updated based on

system events.

Thread switching possibly occurs on

• L3 cache miss or data return

• Timeout, software hint, or other system event

Diagram shows two threads with events.

• Colored when switched in, white when switched out

• Urgency value inside boxes

5

5

5 4

5

5

7 7

4 5

6 6 5

Thread switch L3 miss Data return

Thread A

Thread B

After timeout, A executes even
with a lower urgency value

18 © 2021 Arm Limited

Beyond Coarse-grained Multithreading

• Coarse-grained multithreading allows us to hide some of the stall latency.
• The core performs useful work again once thread switching has occurred.

• And the techniques discussed previously help reduce the thread-switch penalty.

• However, we don’t switch often, so smaller pipeline stalls still exist.
• For example, ALU operations taking only a few cycles

• Either pay the price of per-thread pipeline registers or suffer the switching penalty.
• Per-thread pipeline registers may be overkill if switching occurs infrequently.

• Or we can move in the other direction and allow instructions from multiple threads per

pipeline stage simultaneously.

19 © 2021 Arm Limited

Simultaneous Multithreading (SMT)

20 © 2021 Arm Limited

Simultaneous Multithreading

• Coarse- and fine-grained multithreading enable higher throughput from a core.
• By switching to a new thread either every cycle or on certain events

• These are called temporal multithreading.
• Each pipeline stage holds instructions from only a single thread – the core is shared across time.

• Instructions from different threads can occur in the pipeline at different stages.

• However, in superscalar cores, this does not increase pipeline utilization.
• During periods of low IPC in a particular thread, some functional units are idle.

• Simultaneous multithreading is a way to tackle this.
• Instructions from multiple threads can occupy a pipeline stage at the same time.

• This increases the number of ready instructions available to execute.

21 © 2021 Arm Limited

Simultaneous Multithreading

• SMT allows instructions from different threads to be in-flight concurrently.
• All the way through the pipeline

• Instructions from multiple threads are:
• Fetched, decoded, renamed, dispatched, issued, executed, and committed each cycle

• Microarchitectural resources throughout the pipeline are shared between threads.
• This means that there should be fewer unused resources because more independent instructions

exist.

• As with other forms of multithreading, the designer has to duplicate architectural state.
• PC, register file, page table base register, etc.

• And implement fetch logic to fetch instructions from one or more threads in each cycle
• As well as the additional logic to distinguish between threads within the pipeline

22 © 2021 Arm Limited

SMT Example

Instruction issue in a 4-way superscalar core

Thread D Thread C

Thread B Thread A

Time

SMT execution

23 © 2021 Arm Limited

SMT Policies

Fetch policies

• Flexibility in how instructions enter

the pipeline

• Fetch from one thread only in each

cycle
• Round-robin selection

• Prioritize one thread over others, for

example, the one with the fewest in-flight

instructions

• Fetch from multiple threads
• Needs additional logic to fetch from

multiple cache lines in the same cycle

Issue policies

• Flexibility in how instructions are

issued to the functional units when

ready

• Issue from all threads in each cycle
• Skip threads that have no ready instructions

• Prioritize instructions according to
• Their age (oldest first)

• Whether they are speculative (e.g.,

following an unresolved predicted branch)

24 © 2021 Arm Limited

SMT Downsides

• There are two main drawbacks with SMT, and fine-grained multithreading.

• First, single-threaded performance may suffer.
• If two or more threads execute, they will contend for resources.

• Given the extra logic required within the core, the clock rate may not be as high as it could be

otherwise.

• Second, the complexity of the core increases.
• Extra hardware required throughout the pipeline, as well as within the TLB

• This requires more design, test, and verification time.

• The load/store queue, in particular, requires careful attention so as to respect the memory

consistency model.

25 © 2021 Arm Limited

SMT vs Multicore

SMT

• Higher utilization of core structures

through sharing

• Single-threaded performance can

suffer.

• For a modest area and power increase,

this provides support for multiple

threads.

• Memory-bound applications are a

good fit because idle cycles can be

filled.

• CPU-bound applications are a poor fit

because they are likely to slow down.

Multicore

• Cores are fully duplicated, so threads

have dedicated resources to use.

• Single-threaded performance

maintained

• Power and area at least doubled

through core duplication

• Memory-bound applications don’t
make best use of the core’s resources.

• CPU-bound applications maintain their

high IPC.

26 © 2021 Arm Limited

SMT Case Study

• Intel’s Netburst
microarchitecture

supports 2 threads.

• Performance

boosted by 25%

• Die area increased

only 5%

• Three types of

sharing for

microarchitectural

structures

Trace
cache

Fetch
queue

Rename Schedule
Register

read
Execute

Data
cache

Register
write

Retire
queue

27 © 2021 Arm Limited

Case Study: Cortex-A65

Scheduled for 2020

• Arm’s first SMT Cortex-A core

• Cortex-A65 implements a 64-bit ISA only

• Built on DynamIQ technology
• DSU contains all the interfaces to connect to

the system on chip (SoC).

• Dual-threaded, out-of-order execution
• Each thread is a PE.

• Separate L1 instruction and data cache
• L2 cache is optional.

• L3 cache in DSU

External memory interface

DSU

Interrupt interface

Power management and

clock control

DFT

CoreSight infrastructure

DynamIQ™Cluster

Core 0

Thread 0 Thread 1

Core 1

Thread 0 Thread 1

Core 2

Thread 0 Thread 1

Core 3

Thread 0 Thread 1

28 © 2021 Arm Limited

Summary

• We can increase the throughput of a core by implementing multithreading.

• Coarse-grained multithreading is most similar to multitasking.
• Thread switching occurs on long-latency events.

• Because thread contexts are kept near the core, thread switching is much faster than an OS context

switch.

• Fine-grained multithreading increases throughput further.
• Can eliminate many short pipeline bubbles

• And can also provide strong performance guarantees in certain microarchitectures

• SMT provides full sharing within each stage of the pipeline.
• This enables higher utilization of core structures.

• All forms of multithreading exploit thread-level parallelism to improve performance.

