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Motivation 

• Multicore processors are the most generic way of extracting coarse-grained parallelism. 
• Allow exploitation of thread-level parallelism (within a program) and process-level parallelism (across 

applications). 

• They are also the most simple extension of a uniprocessor. 
• Simply replicate the core several times on the chip. 

• Add the logic for implementing cache coherence, etc. 

• However, they come at significant costs. 
• Over 2x area and power cost for a simple replication of the core and private caches 

• Other architectural choices allow us to extract this parallelism with fewer overheads. 
• Such as sharing the core between threads at some granularity 

• This module considers the trade-offs involved in achieving this. 
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Multitasking 

• Each of our cores can currently be shared by multiple threads. 
• Mediated and controlled by the operating system 

• This enables multitasking by having each thread (task) run for a fixed period of time. 
• Short periods give the appearance that all threads actually run concurrently. 

• The process of changing between running threads is called a context switch. 
• The OS saves (switches out) the state (context) of the running thread. 

• And replaces it with the state of another thread, which can then run on the core. 

Thread A Thread B 

Context switch 

Thread C 
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Multitasking 

• During a context switch, the OS has to save the thread’s state, which for the core is 
• Contents of the (architectural) register file 

• Program counter (PC) 

• Memory-management information, such as the page table base register 

• Saving all this state can be very slow. 
• Usually, 100 s of cycles 

• Can we improve this situation to achieve 
• Fewer cycles required for context switching 

• Better throughput from the core 

• Without the full-blown costs of going to multicore? 
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Multithreading 

• Reducing the context-switch overhead is easy if we’re prepared to pay a small price for 
it. 

• By adding extra storage to the core, we can hold the context for more than one thread. 
• The price here is area devoted to the context storage. 

• This means that a context switch between two threads with stored contexts is much 

faster. 
• Only a few cycles instead of several hundreds 

• Because the storage is all very close to the core 

• We now have a core capable of multithreading. 

• This core works at arbitrary granularity. 
• i.e., with many cycles between each switch 

• Or even selecting a new thread every cycle 

Core 

A B 

C D 
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Fine-grained Multithreading 
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Fine-grained Multithreading 

• Now that we have the ability to switch to a new thread, when should we do it?  

• With fine-grained multithreading, we switch to a new thread every cycle. 

• This means that in each stage of the pipeline is an instruction from a different thread. 

• We can use a simple round-robin policy for choosing the next thread to fetch from. 
• If the thread is stalled, send a NOP instead. 

Thread A Thread B Thread C Thread D Thread E 

Fetch Decode Execute Memory Writeback 
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Trade-offs of Fine-grained Multithreading 

Provided no two instructions from the same thread are in the pipeline together 

Benefits 

• No thread-switch overhead 

• No need for pipeline interlocking 
• No two instructions will have a data 

dependency through registers (they might 

through memory). 

• No need for branch prediction logic 
• All branches executed before the next 

instruction are fetched from the same 

thread. 

• Hides short pipeline bubbles 

• Improved core throughput 

Downsides 

• Need to support a large number of 

threads 
• So as to hide most short-latency pipeline 

bubbles and avoid nops 

• This comes at an area cost. 

• Single-threaded performance suffers. 
• Since threads only get an instruction 

fetched every N cycles 

• But this can bring strong performance 

guarantees. 
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Dynamic Thread Selection 

• The most simple approach to fine-grained multithreading always fetches from a thread. 
• Even when that thread is stalled – a nop is fetched instead. 

• However, the presence of nops reduces the performance of the core. 
• This is wasteful of the time-slot when other threads have actual work to do. 

• We can change the basic round-robin thread-switching policy to improve the situation. 
• Order threads as in round robin. 

• Skip a thread if it is stalled and would have sent a nop into the pipeline. 

• This kind of dynamic thread selection improves throughput even more. 
• But needs additional logic to implement it 

• And either needs the dependence-check logic adding back in 

• Or extra logic to detect when there are fewer ready threads than pipeline stages 
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Dynamic Thread Selection 

Thread A Thread B Thread C 

Thread D Thread E Thread F Thread G 

Static round-robin selection 

Dynamic round-robin thread selection 

Stall 

Time 
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Case Study: Sun’s Niagara (UltraSPARC T1) 

• Each core of eight 

supports four 

concurrent 

threads. 

• Threads removed 

from selection on 

long-latency 

events 

• This allows 

provision of only 

16KiB instruction 

and 8KiB data 

caches. 
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Coarse-grained Multithreading 
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Coarse-grained Multithreading 

• An alternative design point is course-grained multithreading. 
• Switching less often (and flushing when doing so) means the core requires less per-thread state. 

• An obvious point to switch is when the thread is stalled for some reason, e.g., a cache 

miss. 

Switching at fixed frequency 

Switching on long-latency event 

Thread A Thread B Thread C Stall Thread switch 
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Coarse-grained Multithreading 

• The switch to a new thread increases the throughput of the core. 
• Although switching takes time, we only do it for stalls that are longer than that overhead. 

• However, care has to be taken in how the switch is implemented. 

• In particular, instructions after the long-latency event must be squashed. 
• This adds to the switching time. 

• To avoid the additional design complexity of handling instructions from different 

threads in the pipeline at any given time, the pipeline has to be flushed before 

switching. 
• This incurs in an overhead.  

• Finer granularities may justify handling instructions from different threads within the pipeline at the 

same time. 



16 © 2021 Arm Limited 

Coarse-grained Multithreading 

Reasons for switching threads 

• L1 or L2 cache miss 
• Accessing main memory takes hundreds of 

cycles, and if the thread-switch penalty is 

small enough, even an L1 miss can be 

partially hidden. 

• Complex ALU operation 
• A floating-point divide may take tens of 

cycles and may not be pipelined. 

• Timeout 
• This ensures fairness for compute-bound 

threads. 

• Higher priority thread becomes ready. 

Methods to reduce thread-switch penalty 

• Implement a short pipeline. 
• This reduces the time until the pipeline 

becomes full again. 

• Add a thread-switch buffer 
• Essentially prefetch a few instructions from 

each thread into a buffer so that they can 

be fetched (for real) immediately after a 

switch. 

• Provide pipeline registers for each 

thread. 
• So now no instructions need to be squashed 

on a long-latency event, but added 

complexity. 
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Case Study: Intel Montecito (Itanium 2) 

• Support for two threads per core 
• Duplicates all architectural and some 

microarchitectural state 

• Each thread is given an “urgency” value. 
• Larger urgency means higher priority. 

• Urgency is dynamically updated based on 

system events. 

Thread switching possibly occurs on 

• L3 cache miss or data return 

• Timeout, software hint, or other system event 

Diagram shows two threads with events. 

• Colored when switched in, white when switched out 

• Urgency value inside boxes 

5 

5 

5 4 

5 

5 

7 7 

4 5 

6 6 5 

Thread switch L3 miss Data return 

Thread A 

Thread B 

After timeout, A executes even 
with a lower urgency value 
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Beyond Coarse-grained Multithreading 

• Coarse-grained multithreading allows us to hide some of the stall latency. 
• The core performs useful work again once thread switching has occurred. 

• And the techniques discussed previously help reduce the thread-switch penalty. 

• However, we don’t switch often, so smaller pipeline stalls still exist. 
• For example, ALU operations taking only a few cycles 

• Either pay the price of per-thread pipeline registers or suffer the switching penalty. 
• Per-thread pipeline registers may be overkill if switching occurs infrequently. 

• Or we can move in the other direction and allow instructions from multiple threads per 

pipeline stage simultaneously. 
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Simultaneous Multithreading (SMT) 
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Simultaneous Multithreading 

• Coarse- and fine-grained multithreading enable higher throughput from a core. 
• By switching to a new thread either every cycle or on certain events 

• These are called temporal multithreading. 
• Each pipeline stage holds instructions from only a single thread – the core is shared across time. 

• Instructions from different threads can occur in the pipeline at different stages. 

• However, in superscalar cores, this does not increase pipeline utilization. 
• During periods of low IPC in a particular thread, some functional units are idle. 

• Simultaneous multithreading is a way to tackle this. 
• Instructions from multiple threads can occupy a pipeline stage at the same time. 

• This increases the number of ready instructions available to execute. 
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Simultaneous Multithreading 

• SMT allows instructions from different threads to be in-flight concurrently. 
• All the way through the pipeline 

• Instructions from multiple threads are: 
• Fetched, decoded, renamed, dispatched, issued, executed, and committed each cycle 

• Microarchitectural resources throughout the pipeline are shared between threads. 
• This means that there should be fewer unused resources because more independent instructions 

exist. 

• As with other forms of multithreading, the designer has to duplicate architectural state. 
• PC, register file, page table base register, etc. 

• And implement fetch logic to fetch instructions from one or more threads in each cycle 
• As well as the additional logic to distinguish between threads within the pipeline 
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SMT Example 

Instruction issue in a 4-way superscalar core 

Thread D Thread C 

Thread B Thread A 

Time 

SMT execution 
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SMT Policies 

Fetch policies 

• Flexibility in how instructions enter 

the pipeline 

• Fetch from one thread only in each 

cycle 
• Round-robin selection 

• Prioritize one thread over others, for 

example, the one with the fewest in-flight 

instructions 

• Fetch from multiple threads 
• Needs additional logic to fetch from 

multiple cache lines in the same cycle 

Issue policies 

• Flexibility in how instructions are 

issued to the functional units when 

ready 

• Issue from all threads in each cycle 
• Skip threads that have no ready instructions 

• Prioritize instructions according to 
• Their age (oldest first) 

• Whether they are speculative (e.g., 

following an unresolved predicted branch) 
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SMT Downsides 

• There are two main drawbacks with SMT, and fine-grained multithreading. 

• First, single-threaded performance may suffer. 
• If two or more threads execute, they will contend for resources. 

• Given the extra logic required within the core, the clock rate may not be as high as it could be 

otherwise. 

• Second, the complexity of the core increases. 
• Extra hardware required throughout the pipeline, as well as within the TLB 

• This requires more design, test, and verification time. 

• The load/store queue, in particular, requires careful attention so as to respect the memory 

consistency model. 
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SMT vs Multicore 

SMT 

• Higher utilization of core structures 

through sharing 

• Single-threaded performance can 

suffer. 

• For a modest area and power increase, 

this provides support for multiple 

threads. 

• Memory-bound applications are a 

good fit because idle cycles can be 

filled. 

• CPU-bound applications are a poor fit 

because they are likely to slow down. 

 

Multicore 

• Cores are fully duplicated, so threads 

have dedicated resources to use. 

• Single-threaded performance 

maintained 

• Power and area at least doubled 

through core duplication 

• Memory-bound applications don’t 
make best use of the core’s resources. 

• CPU-bound applications maintain their 

high IPC. 
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SMT Case Study 

• Intel’s Netburst 
microarchitecture 

supports 2 threads. 

• Performance 

boosted by 25% 

• Die area increased 

only 5% 

• Three types of 

sharing for 

microarchitectural 

structures 

 

Trace 
cache 

Fetch 
queue 

Rename Schedule 
Register 

read 
Execute 

Data 
cache 

Register 
write 

Retire 
queue 
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Case Study:  Cortex-A65 

Scheduled for 2020 

• Arm’s first SMT Cortex-A core 

• Cortex-A65 implements a 64-bit ISA only 

• Built on DynamIQ technology 
• DSU contains all the interfaces to connect to 

the system on chip (SoC). 

• Dual-threaded, out-of-order execution 
• Each thread is a PE. 

• Separate L1 instruction and data cache 
• L2 cache is optional. 

• L3 cache in DSU 

 

 

External memory interface  

DSU

Interrupt interface

Power management and 

clock control

DFT

CoreSight infrastructure

DynamIQ™Cluster
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Thread 0 Thread 1
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Thread 0 Thread 1
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Thread 0 Thread 1
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Thread 0 Thread 1
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Summary 

• We can increase the throughput of a core by implementing multithreading. 

• Coarse-grained multithreading is most similar to multitasking. 
• Thread switching occurs on long-latency events. 

• Because thread contexts are kept near the core, thread switching is much faster than an OS context 

switch. 

• Fine-grained multithreading increases throughput further. 
• Can eliminate many short pipeline bubbles 

• And can also provide strong performance guarantees in certain microarchitectures 

• SMT provides full sharing within each stage of the pipeline. 
• This enables higher utilization of core structures. 

• All forms of multithreading exploit thread-level parallelism to improve performance. 


