
© 2021 Arm Limited 

Multicore Processors 

Module 8 
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Module Syllabus 

• Multicore 

• Communication 
• Message passing 

• Shared memory 

• Cache-coherence protocol 
• MESI protocol states 

• MESI protocol transitions 

• Visualizing the protocol 

• MESI state transition diagram 

• Memory consistency 
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Motivation 

• Moore’s law meant that the number of transistors available to an architect kept 
increasing. 
• Historically, these were used to improve the performance of a single core processor. 

• Usually through increased speculation support, but this gives sublinear performance improvement 

• However, the breakdown of Dennard scaling meant these schemes were no longer 

viable. 
• If they consumed large amounts of power without giving commensurate performance improvements. 

• Multicore architectures are an efficient way of using these transistors instead. 
• Performance comes from parallelism, specifically thread-level or process-level parallelism. 

• Note that we had multi-processor systems long before Dennard scaling failed; this just pushed them to 

mainstream. 

• What are the challenges in providing multiple cores and how do they communicate? 
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Multicore 

Overview 

• In a multicore processor, multiple CPU 

cores are provided within the chip. 

• Cores are connected together through 

some form of interconnect. 

• Cores share some components on 

chip. 
• For example, memory interface, or a cache 

level 
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Multicore 

• Cores in a multicore processor are connected together and can collaborate. 

• There are a number of challenges to consider when creating a system like this. 
• How do cores communicate with each other? 

• How is data synchronized? 

• How do we ensure that cores don’t get stale data when it’s been modified by other cores? 

• How do cores see the ordering of events coming from different cores? 

• We’ll explore each of these by considering the concepts of 
• Shared memory and message passing 

• Cache coherence 

• Memory consistency 
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Communication 
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Communication 

Message Passing 

• In this paradigm, applications running 

on each core wrap up the data they 

want to communicate into messages 

sent to other cores. 

• Explicit communication via send and 

receive operations 

• Synchronization is implicit via blocks of 

messages. 

Shared Memory 

• In this paradigm, there is a shared 

memory address space accessible to 

all cores, where they can read and 

write data. 

• Implicit communication via memory 

accesses 

• Synchronization is performed using 

atomic memory operations. 
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Message Passing 

• Cores do not rely on a shared 

memory space. 

• Each processing element (PE) has 

its core, data, I/O. 
• Explicit I/O to communicate with other 

cores 

• Synchronization via sending and 

receiving messages 

• Advantages 
• Less hardware, easier to design 

• Focuses attention on costly non-local 

operations 
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Memory 
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Shared Memory 

• Cores share a memory that they see as a single address space. 

• Cores may have caches holding data. 
• Communication involves reading and writing to locations in memory. 

• Synchronization via atomic operations to modify memory 
– Specific instructions provided in the ISA 

– The hardware guarantees correct operation 

• Advantages 
• Matches the programmer’s view of the system 

• Hardware handles communication implicitly 
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Shared Memory with Caches 

• Caching shared-memory data has to be 

handled carefully. 
• The cache stores a copy of some of the 

data in memory. 

• In particular, writes to the data must 

be dealt with correctly. 
• A core may write to data in its own cache. 

• This makes copies in other caches become 

stale. 

• The version in memory won’t get updated 
immediately either, if it’s a write-back 

cache. 

• In these situations, there is a danger of one 

core subsequently reading a stale (old) 

value. 
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Cache Coherence 
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Cache-coherence Protocol 

• The cache-coherence protocol ensures that cores always read the 

most up-to-date values. 
• This means a core can always find the most recent value for some data, no 

matter where it is. 

• It describes the actions to take on seeing certain events from other cores. 

• Cache coherence is required when caches share some memory. 

• The protocols rely on caches seeing events from other cores. 
• In particular, reads and writes to the shared memory 

• Often this is realized through snooping operations on the interconnect. 

• The protocol runs on each block in the cache independently. 
• This is the granularity commercial implementations track the state 

information. 

• It runs in the private caches that have a shared ancestor. 

• The orange caches in the diagram 
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MESI Cache-coherence Protocol 

• The MESI protocol is a write-invalidate cache-coherence protocol. 
• When writing to a shared location, the related cache block is invalidated in the caches of all other 

cores. 

• This protocol can manage cache coherence for a specified memory area. 

• In general, uses an allocate-on-write cache policy 
• New data are loaded into the cache on both read and write misses. 

• In general, uses a write-back cache 
• So caches can store data that are more recent than the value in memory. 

• The MESI protocol defines states for each cache block and transitions between them. 
• Four states, corresponding to M, E, S, and I 
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Modified State (M) 

• The local cache holds 

the only copy of the 

block, which is also the 

most recent version of 

the data; memory holds 

old (stale) data. 

• Note that memory may 

actually be a shared 

cache between the 

core’s caches and main 
memory. 
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Exclusive State (E) 

• The local cache 

holds the only 

copy of the block, 

which is identical 

to memory’s 
version. 
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Shared State (S) 

• The local cache 

holds a copy of 

the block, which 

is identical to 

memory’s 
version; other 

caches may also 

hold the block in 

shared state. 
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Invalid State (I) 

• The local cache 

does not hold a 

copy of the block. 
• This state may not 

be marked in the 

cache for each 

block; it could be 

inferred by a 

cache miss on that 

block. 
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Invalid to Modified 

• Occurs when the 

local core 

attempts to write 

some data to an 

address not 

already in the 

cache 

1. Read-exclusive 

request 

2. Data response 
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Invalid to Exclusive 

• Occurs when the 

core attempts to 

read data from an 

address that is 

not already in the 

cache and no 

other cache has it 

1. Read request 

2. Data response 

 

 

 

 

 

 

Memory 

After 

 E 
 

 

 

 

 

 

Memory 

Before 

1 

2 

Local core cache Remote core cache Local core cache Remote core cache 



20 © 2021 Arm Limited 

Invalid to Shared 

• Occurs when the 

local core 

attempts to read 

data from an 

address that is 

not already in the 

cache, but other 

caches have a 

copy 

• Data is supplied 

by another cache. 

1. Read request 

2. Data response 
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Shared to Modified 

• Occurs when the local 

core attempts to write 

some data to an 

address that is already 

in the cache, and other 

caches may have a 

copy 

• Needs to invalidate 

other copies 

1. Read-exclusive 

request 

2. Invalidate 
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Shared to Invalid 

• Occurs when 

another core 

attempts to write 

some data to an 

address that is 

already in the cache 

• The local cache 

snoops the exclusive 

read request. 

1. Read-exclusive 

request 

2. Invalidate 
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Exclusive to Modified 

• Occurs when the 

local core 

attempts to write 

some data to an 

address that is 

already in the 

cache, and that’s 
the only copy 

• No need to 

invalidate other 

caches because 

we know they 

don’t have a copy 
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Exclusive to Shared 

• Occurs when another 

core attempts to 

read data from an 

address that this 

cache has, and it’s 
the only copy 

• Data are supplied by 

the cache after 

snooping the read 

request. 

1. Read request 

2. Data response 
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Exclusive to Invalid 
• Occurs when 

another core 

attempts to write 

some data to an 

address that this 

cache has the only 

copy of 

• The local cache 

snoops the exclusive 

read request. 

1. Read-exclusive 

request 

2. Data response 

3. Invalidate 
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Modified to Shared 

• Occurs when 

another core 

attempts to read 

data from an 

address that this 

cache has written 

to 

• Must flush the 

data back to 

memory and the 

requesting cache 

1. Read request 

2. Data response 
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Modified to Invalid 
• Occurs when 

another core 

attempts to write 

some data to an 

address that this 

cache has altered 

• Must flush the 

data back to 

memory and the 

requesting cache 

1. Read-exclusive 

request 

2. Data response 

3. Invalidate 
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Visualizing the Protocol 

• We can visualize the protocol in two 

ways. 

• First, a table showing the valid 

combinations of states that two caches 

can have for the same block 
• For example, two caches can have it in 

shared. 

• But if any cache has it in exclusive or 

modified, then all other caches are invalid. 

• Second, we can draw a state transition 

diagram to show all events and actions. 

M E S I 

M ⨯ ⨯ ⨯ ✓ 

E ⨯ ⨯ ⨯ ✓ 

S ⨯ ⨯ ✓ ✓ 

I ✓ ✓ ✓ ✓ 
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MESI State-transition Diagram 

M E S I 
Remote 
core 
read/write 

Local/remote 
core read 

Local core 
read 

Local core 
read/write 

Local core 
read, remote 
core has a 
copy 

Local core 
read, no other 
copies 

Local core 
write 

Local core 
write 

Local core 
write 

Remote core 
read 

Remote core 
write 

Remote core 
write 

Remote core 
write 

Remote core 
read 



30 © 2021 Arm Limited 

Memory Consistency 
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Memory Consistency 

• The purpose of cache coherence is to ensure data propagation and coherence. 
• So when data are written by one core, all other cores can later read the correct value. 

• When a core attempts to write, others know that their copies are stale. 

• When a core attempts to read, others know they must provide their data, if modified. 

• The cache-coherence protocol is run independently on each block of data. 
• There is no direct interaction between different blocks, as far as the protocol is concerned. 

• So what about the order in which data accesses by one core are seen by others? 
• If a core performs certain reads and writes to different data, in what order do other cores see them? 

• It is the purpose of the memory-consistency model to define this. 
• And the job of the memory hierarchy (and core) to implement it 
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Memory Consistency 

• Modern processors may reorder memory operations. 

• Out-of-order processing can allow loads to access the cache ahead of older stores. 
• Either because the addresses they access don’t match 

• Or because the load has been speculatively executed and will be replayed later if a dependence is 

found 

• This avoids stalling loads unnecessarily, even though their effects can be seen externally. 
• By other cores in the system 

• Recall module 5 where this was introduced. 
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Memory Consistency vs Cache Coherence 

Cache coherence Memory consistency 
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Memory Consistency 

• The memory consistency model defines valid outcomes of sequences of accesses of the 

different cores. 

• Sequential consistency (SC) is the strongest and most intuitive model. 
• The operations of each core occur in program order, and these are interleaved (at some granularity) 

across all cores. 

• This means that no loads or stores can bypass other loads or stores. 

• SC is overly strong because it prevents many useful optimizations without being needed by most 

programs. 

• Total store order (TSO) is widely implemented (e.g., x86 architectures). 
• The same as sequential consistency but allows a younger load to observe a state of memory in which 

the effects of an older store have not yet become observable 

• Forms of relaxed consistency have been adopted (e.g., Arm and PowerPC architectures). 
• In more relaxed consistency models, other constraints in SC are removed, such as a younger load 

observing a state of memory before an older load does. 
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Case Study: Cortex-A9 MPCore 

Contains up to four Cortex-A9 processors 

 Snoop Control Unit 

• Maintains L1 data 

cache coherency 

across processors 

• Arbitrates 

accesses to the L2 

memory system, 

through one or 

two external 64-

bit AXI manager 

interfaces 
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Case Study: Heterogeneous Multicore 

• big.LITTLE is a heterogeneous processing 

architecture with two types of cores. 
• “big” cores for high compute performance 

• “LITTLE” cores for power efficiency 

• L1 and L2 memory system in cores 

• A DynamIQ system contains big and LITTLE 

cores and a shared unit containing. 
• L3 memory system 

• Control logic 

• External interfaces 
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Case Study: Cortex-A55 

• The Cortex-A55 is a LITTLE core. 

• Optionally contains an L2 cache 

• Uses the MESI protocol for coherence 
• M: Modified/UniqueDirty (UD) – the line is in only 

this cache and is dirty. 

• E: Exclusive/UniqueClean (UC) – the line is in only this 

cache and is clean. 

• S: Shared/SharedClean (SC) – the line is possibly in 

other caches and is clean. 

• I: Invalid/Invalid (I) – the line is not in this cache. 

• The data-cache unit (DCU) stores the MESI state 

of each cache line. 
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Conclusions 

• Multicore processors provide performance from increasing numbers of transistors. 
• Performance comes through thread-level parallelism. 

• Shared-memory systems are the most common paradigm. 
• Cores share a memory and common address space. 

• Data written by one core are read by others when accessing the same location. 

• Dealing with shared memory in the presence of caches poses a challenge. 
• This is where the cache-coherence protocol comes into play. 

• We looked at the MESI protocol, but there are other more simple and more complex protocols 

around. 

• Memory consistency defines the order that reads/writes to different addresses are seen 

by the different cores in the system. 


