
© 2021 Arm Limited

Multicore Processors

Module 8

2 © 2021 Arm Limited

Module Syllabus

• Multicore

• Communication
• Message passing

• Shared memory

• Cache-coherence protocol
• MESI protocol states

• MESI protocol transitions

• Visualizing the protocol

• MESI state transition diagram

• Memory consistency

3 © 2021 Arm Limited

Motivation

• Moore’s law meant that the number of transistors available to an architect kept
increasing.
• Historically, these were used to improve the performance of a single core processor.

• Usually through increased speculation support, but this gives sublinear performance improvement

• However, the breakdown of Dennard scaling meant these schemes were no longer

viable.
• If they consumed large amounts of power without giving commensurate performance improvements.

• Multicore architectures are an efficient way of using these transistors instead.
• Performance comes from parallelism, specifically thread-level or process-level parallelism.

• Note that we had multi-processor systems long before Dennard scaling failed; this just pushed them to

mainstream.

• What are the challenges in providing multiple cores and how do they communicate?

4 © 2021 Arm Limited

Multicore

Overview

• In a multicore processor, multiple CPU

cores are provided within the chip.

• Cores are connected together through

some form of interconnect.

• Cores share some components on

chip.
• For example, memory interface, or a cache

level

An example of multicore system

CPU

core

CPU

core

Interconnect

RAM Peripheral Timer I/O

CPU

core

CPU

core

5 © 2021 Arm Limited

Multicore

• Cores in a multicore processor are connected together and can collaborate.

• There are a number of challenges to consider when creating a system like this.
• How do cores communicate with each other?

• How is data synchronized?

• How do we ensure that cores don’t get stale data when it’s been modified by other cores?

• How do cores see the ordering of events coming from different cores?

• We’ll explore each of these by considering the concepts of
• Shared memory and message passing

• Cache coherence

• Memory consistency

6 © 2021 Arm Limited

Communication

7 © 2021 Arm Limited

Communication

Message Passing

• In this paradigm, applications running

on each core wrap up the data they

want to communicate into messages

sent to other cores.

• Explicit communication via send and

receive operations

• Synchronization is implicit via blocks of

messages.

Shared Memory

• In this paradigm, there is a shared

memory address space accessible to

all cores, where they can read and

write data.

• Implicit communication via memory

accesses

• Synchronization is performed using

atomic memory operations.

8 © 2021 Arm Limited

Message Passing

• Cores do not rely on a shared

memory space.

• Each processing element (PE) has

its core, data, I/O.
• Explicit I/O to communicate with other

cores

• Synchronization via sending and

receiving messages

• Advantages
• Less hardware, easier to design

• Focuses attention on costly non-local

operations

Core Core Core

Cache

Memory

Cache

Memory

Cache

Memory

Interconnection network

. . .

9 © 2021 Arm Limited

Shared Memory

• Cores share a memory that they see as a single address space.

• Cores may have caches holding data.
• Communication involves reading and writing to locations in memory.

• Synchronization via atomic operations to modify memory
– Specific instructions provided in the ISA

– The hardware guarantees correct operation

• Advantages
• Matches the programmer’s view of the system

• Hardware handles communication implicitly

Core Core Core

Cache

Memory

Cache Cache

Interconnection network

. . .

10 © 2021 Arm Limited

Shared Memory with Caches

• Caching shared-memory data has to be

handled carefully.
• The cache stores a copy of some of the

data in memory.

• In particular, writes to the data must

be dealt with correctly.
• A core may write to data in its own cache.

• This makes copies in other caches become

stale.

• The version in memory won’t get updated
immediately either, if it’s a write-back

cache.

• In these situations, there is a danger of one

core subsequently reading a stale (old)

value.

Core Core

Cache

Shared cache

Cache

Interconnection

network

Memory

Cache coherence
applies to this level
of the cache
hierarchy.

11 © 2021 Arm Limited

Cache Coherence

12 © 2021 Arm Limited

Cache-coherence Protocol

• The cache-coherence protocol ensures that cores always read the

most up-to-date values.
• This means a core can always find the most recent value for some data, no

matter where it is.

• It describes the actions to take on seeing certain events from other cores.

• Cache coherence is required when caches share some memory.

• The protocols rely on caches seeing events from other cores.
• In particular, reads and writes to the shared memory

• Often this is realized through snooping operations on the interconnect.

• The protocol runs on each block in the cache independently.
• This is the granularity commercial implementations track the state

information.

• It runs in the private caches that have a shared ancestor.

• The orange caches in the diagram

Core Core

Cache

Cache or memory

Cache

Interconnection

network

13 © 2021 Arm Limited

MESI Cache-coherence Protocol

• The MESI protocol is a write-invalidate cache-coherence protocol.
• When writing to a shared location, the related cache block is invalidated in the caches of all other

cores.

• This protocol can manage cache coherence for a specified memory area.

• In general, uses an allocate-on-write cache policy
• New data are loaded into the cache on both read and write misses.

• In general, uses a write-back cache
• So caches can store data that are more recent than the value in memory.

• The MESI protocol defines states for each cache block and transitions between them.
• Four states, corresponding to M, E, S, and I

14 © 2021 Arm Limited

Modified State (M)

• The local cache holds

the only copy of the

block, which is also the

most recent version of

the data; memory holds

old (stale) data.

• Note that memory may

actually be a shared

cache between the

core’s caches and main
memory.

Local core cache

M

Remote core cache

Memory

Not coherent

Current
value

Not
current
value

15 © 2021 Arm Limited

Exclusive State (E)

• The local cache

holds the only

copy of the block,

which is identical

to memory’s
version.

 E

Memory

Coherent

Current
value

Current
value

Local core cache Remote core cache

16 © 2021 Arm Limited

Shared State (S)

• The local cache

holds a copy of

the block, which

is identical to

memory’s
version; other

caches may also

hold the block in

shared state.

 S

Memory

Current
value

Coherent

Current
value

 S

Coherent

Coherent
Current
value

Local core cache Remote core cache

17 © 2021 Arm Limited

Invalid State (I)

• The local cache

does not hold a

copy of the block.
• This state may not

be marked in the

cache for each

block; it could be

inferred by a

cache miss on that

block.

Memory

Local core cache Remote core cache

18 © 2021 Arm Limited

Invalid to Modified

• Occurs when the

local core

attempts to write

some data to an

address not

already in the

cache

1. Read-exclusive

request

2. Data response

Local core cache

Remote core cache

Memory

After

M

Local core cache

Remote core cache

Memory

Before

1

2

19 © 2021 Arm Limited

Invalid to Exclusive

• Occurs when the

core attempts to

read data from an

address that is

not already in the

cache and no

other cache has it

1. Read request

2. Data response

Memory

After

 E

Memory

Before

1

2

Local core cache Remote core cache Local core cache Remote core cache

20 © 2021 Arm Limited

Invalid to Shared

• Occurs when the

local core

attempts to read

data from an

address that is

not already in the

cache, but other

caches have a

copy

• Data is supplied

by another cache.

1. Read request

2. Data response

Memory

After

 S S

Memory

Before

1

2

 E

Local core cache Remote core cache Local core cache Remote core cache

21 © 2021 Arm Limited

Shared to Modified

• Occurs when the local

core attempts to write

some data to an

address that is already

in the cache, and other

caches may have a

copy

• Needs to invalidate

other copies

1. Read-exclusive

request

2. Invalidate

Memory

After

M

Memory

Before

2 S S

1

X

Local core cache Remote core cache Local core cache Remote core cache

22 © 2021 Arm Limited

Shared to Invalid

• Occurs when

another core

attempts to write

some data to an

address that is

already in the cache

• The local cache

snoops the exclusive

read request.

1. Read-exclusive

request

2. Invalidate

Memory

After

M

Memory

Before

2 S S

1

X

Local core cache Remote core cache Local core cache Remote core cache

23 © 2021 Arm Limited

Exclusive to Modified

• Occurs when the

local core

attempts to write

some data to an

address that is

already in the

cache, and that’s
the only copy

• No need to

invalidate other

caches because

we know they

don’t have a copy

Memory

After

M

Memory

Before

 E

Local core cache Remote core cache Local core cache Remote core cache

24 © 2021 Arm Limited

Exclusive to Shared

• Occurs when another

core attempts to

read data from an

address that this

cache has, and it’s
the only copy

• Data are supplied by

the cache after

snooping the read

request.

1. Read request

2. Data response

Memory

After

 S S

Memory

Before

1

2

 E

Local core cache Remote core cache Local core cache Remote core cache

25 © 2021 Arm Limited

Exclusive to Invalid
• Occurs when

another core

attempts to write

some data to an

address that this

cache has the only

copy of

• The local cache

snoops the exclusive

read request.

1. Read-exclusive

request

2. Data response

3. Invalidate

Memory

After

M

Memory

Before

1

2

 E 3 X

Local core cache Remote core cache Local core cache Remote core cache

26 © 2021 Arm Limited

Modified to Shared

• Occurs when

another core

attempts to read

data from an

address that this

cache has written

to

• Must flush the

data back to

memory and the

requesting cache

1. Read request

2. Data response

Memory

After

 S S

Memory

Before

1

2

M

Local core cache Remote core cache Local core cache Remote core cache

27 © 2021 Arm Limited

Modified to Invalid
• Occurs when

another core

attempts to write

some data to an

address that this

cache has altered

• Must flush the

data back to

memory and the

requesting cache

1. Read-exclusive

request

2. Data response

3. Invalidate

Memory

After

M

Memory

Before

1

2

M 3 X

Local core cache Remote core cache Local core cache Remote core cache

28 © 2021 Arm Limited

Visualizing the Protocol

• We can visualize the protocol in two

ways.

• First, a table showing the valid

combinations of states that two caches

can have for the same block
• For example, two caches can have it in

shared.

• But if any cache has it in exclusive or

modified, then all other caches are invalid.

• Second, we can draw a state transition

diagram to show all events and actions.

M E S I

M ⨯ ⨯ ⨯ ✓

E ⨯ ⨯ ⨯ ✓

S ⨯ ⨯ ✓ ✓

I ✓ ✓ ✓ ✓

29 © 2021 Arm Limited

MESI State-transition Diagram

M E S I
Remote
core
read/write

Local/remote
core read

Local core
read

Local core
read/write

Local core
read, remote
core has a
copy

Local core
read, no other
copies

Local core
write

Local core
write

Local core
write

Remote core
read

Remote core
write

Remote core
write

Remote core
write

Remote core
read

30 © 2021 Arm Limited

Memory Consistency

31 © 2021 Arm Limited

Memory Consistency

• The purpose of cache coherence is to ensure data propagation and coherence.
• So when data are written by one core, all other cores can later read the correct value.

• When a core attempts to write, others know that their copies are stale.

• When a core attempts to read, others know they must provide their data, if modified.

• The cache-coherence protocol is run independently on each block of data.
• There is no direct interaction between different blocks, as far as the protocol is concerned.

• So what about the order in which data accesses by one core are seen by others?
• If a core performs certain reads and writes to different data, in what order do other cores see them?

• It is the purpose of the memory-consistency model to define this.
• And the job of the memory hierarchy (and core) to implement it

32 © 2021 Arm Limited

Memory Consistency

• Modern processors may reorder memory operations.

• Out-of-order processing can allow loads to access the cache ahead of older stores.
• Either because the addresses they access don’t match

• Or because the load has been speculatively executed and will be replayed later if a dependence is

found

• This avoids stalling loads unnecessarily, even though their effects can be seen externally.
• By other cores in the system

• Recall module 5 where this was introduced.

33 © 2021 Arm Limited

Memory Consistency vs Cache Coherence

Cache coherence Memory consistency

Core 1 Core 2

Store B

Load A

Store C

Store A

Load C

Load D

Accesses issued Accesses issued

Store C

Load A

Load B

Load C

Store D

Load A

Data propagation

Core 1 Core 2

Store B

Load A

Store C

Store A

Load C

Load D

Accesses issued Core 1’s accesses seen

Load A

Load D

Store B

Store C

Load C

Store A

R
e

o
rd

e
re

d

34 © 2021 Arm Limited

Memory Consistency

• The memory consistency model defines valid outcomes of sequences of accesses of the

different cores.

• Sequential consistency (SC) is the strongest and most intuitive model.
• The operations of each core occur in program order, and these are interleaved (at some granularity)

across all cores.

• This means that no loads or stores can bypass other loads or stores.

• SC is overly strong because it prevents many useful optimizations without being needed by most

programs.

• Total store order (TSO) is widely implemented (e.g., x86 architectures).
• The same as sequential consistency but allows a younger load to observe a state of memory in which

the effects of an older store have not yet become observable

• Forms of relaxed consistency have been adopted (e.g., Arm and PowerPC architectures).
• In more relaxed consistency models, other constraints in SC are removed, such as a younger load

observing a state of memory before an older load does.

35 © 2021 Arm Limited

Case Study: Cortex-A9 MPCore

Contains up to four Cortex-A9 processors

 Snoop Control Unit

• Maintains L1 data

cache coherency

across processors

• Arbitrates

accesses to the L2

memory system,

through one or

two external 64-

bit AXI manager

interfaces

36 © 2021 Arm Limited

Case Study: Heterogeneous Multicore

• big.LITTLE is a heterogeneous processing

architecture with two types of cores.
• “big” cores for high compute performance

• “LITTLE” cores for power efficiency

• L1 and L2 memory system in cores

• A DynamIQ system contains big and LITTLE

cores and a shared unit containing.
• L3 memory system

• Control logic

• External interfaces

37 © 2021 Arm Limited

Case Study: Cortex-A55

• The Cortex-A55 is a LITTLE core.

• Optionally contains an L2 cache

• Uses the MESI protocol for coherence
• M: Modified/UniqueDirty (UD) – the line is in only

this cache and is dirty.

• E: Exclusive/UniqueClean (UC) – the line is in only this

cache and is clean.

• S: Shared/SharedClean (SC) – the line is possibly in

other caches and is clean.

• I: Invalid/Invalid (I) – the line is not in this cache.

• The data-cache unit (DCU) stores the MESI state

of each cache line.

DynamIQ™ Cluster

Click and type. Right-click to select fill color.

Core 7*

Click and type. Right-click to select fill color.

Core 6*

Click and type. Right-click to select fill color.

Core 5*

Click and type. Right-click to select fill color.

Core 4*

Click and type. Right-click to select fill color.

Core 3*

Click and type. Right-click to select fill color.

Core 2*

Click and type. Right-click to select fill color.

Core 1*

Core 0

L2 cache*

ETM GIC CPU interface

DSU SCU and L3

DPU

IFU

L1 memory system

DSU Asynchronous Bridges

* Optional

ELA*

PMU

NEON*

DCU

L1

Instruction

Cache

STB

BIU MMU

L1

Data

Cache

38 © 2021 Arm Limited

Conclusions

• Multicore processors provide performance from increasing numbers of transistors.
• Performance comes through thread-level parallelism.

• Shared-memory systems are the most common paradigm.
• Cores share a memory and common address space.

• Data written by one core are read by others when accessing the same location.

• Dealing with shared memory in the presence of caches poses a challenge.
• This is where the cache-coherence protocol comes into play.

• We looked at the MESI protocol, but there are other more simple and more complex protocols

around.

• Memory consistency defines the order that reads/writes to different addresses are seen

by the different cores in the system.

