
© 2021 Arm Limited

Caches

Module 7

2 © 2021 Arm Limited

Module Syllabus

• Why do we need caches?

• Cache designs
• Direct-mapped cache

• Set-associative cache

• Fully associative cache

• Cache policies

• Multi-level caches

• Cache performance
• Reducing cache misses

• Case study

3 © 2021 Arm Limited

Motivation – Why Do We Need Caches?

• For CPUs to reach maximum performance, they need fast access to memory.
• Both to read instructions and to read and write data

• However, historically, processor clock speeds have increased far faster than in dynamic

RAM (DRAM).
• In addition to the differences in the speed of the underlying process technologies

Performance

Time

Memory wall

CPU

DRAM

4 © 2021 Arm Limited

Motivation – Why Do We Need Caches?

• Fortunately, most programs don’t need access to all memory all of the time.
• Accesses tend to exhibit locality of reference.

• Temporal locality – if an address is accessed, it is likely to be accessed again soon.

• Spatial locality – if an address is accessed, its neighbors are likely to be accessed soon.

• Therefore, only a small number of addresses are likely to be accessed in the near future.

• Small memories are quick to access and can be placed near to the CPU.
• If we can identify these locations likely to be accessed soon, then we can keep them in these

memories.

• A cache stores copies of some memory locations for fast access when required.

5 © 2021 Arm Limited

Cache Entries

• The cache operates as follows:
• Whenever the CPU needs to read from a location residing in the main memory, it first checks the

cache for any matching entries.

• If the location exists in the cache, it is simply returned directly to the CPU; this is known as a cache hit.

• If the location doesn’t exist in the cache, also known as a cache miss, the cache allocates a new entry
for the location, copies the contents from the main memory, and then fulfills the request from the

contents in the cache.

• If the CPU needs to write some data, then it also checks the cache first and writes on a

hit.
• What happens on a miss is governed by the cache’s polices, described in later slides.

• The proportion of accesses that result in hits, as opposed to misses, is known as the hit

rate and is a useful measure of the effectiveness of the cache.

• The cache stores data in blocks to take advantage of spatial locality.
• For example, a block may be 32B or 64B long whereas each data item is typically only 8B in size.

6 © 2021 Arm Limited

Accessing the Cache

• To identify whether data are in a

cache, we need an identifier to

map to a cache block.
• The data’s address is easily used for

this.

• We split the address into

separate parts.
• Tag – the unique identifier for the

data, compared to tags stored within

the cache

• Index – used to select the cache

blocks to do the tag comparison with

• Offset – position of the data within

the cache block

Address

Tag Index Offset

7 © 2021 Arm Limited

Cache Designs

8 © 2021 Arm Limited

Direct-mapped Cache

• A simple design because each memory location only maps to one cache block

• However, this often leads to contention.
• When several locations with the same cache index are repeatedly accessed

• Pros:
• Simple design, therefore inexpensive

• Quick to search

• Cons:
• Low hit rate when there is contention

9 © 2021 Arm Limited

Direct-mapped Cache

• Index used to select a

single cache block

• Tags compared
• If valid and tags match,

then hit

• On hit, offset chooses

starting byte from data

array.

Tag Index Offset

.

.

.

Tag Valid

Tag match

and valid?

Data

.

.

.

Select
byte(s)

Hit / miss

10 © 2021 Arm Limited

Direct-mapped Cache

• The downside is

that each address

in memory has

only one location

in the cache that

it maps to.

• Multiple memory

locations could

contend for the

same cache line.

Main Memory Cache

0x00000000

0x00000010

0x00000020

0x00000030

0x00000040

0x00000050

0x00000060

0x00000070

0x00000080

0x00000090

11 © 2021 Arm Limited

Set-associative Cache

• Each memory location maps to N cache blocks.
• Each group of N cache blocks is called a set – hence, N-way

set associative.

• A group of cache blocks in the same array but with different

indices is called a way.

• Improved hit rate compared to a direct-mapped

cache
• Less contention when there are several memory locations

with the same cache index

• Pros:
• Combines the speed of a direct-mapped cache with

improved flexibility in placement

• Cons:
• Finding blocks within a set requires more complex

hardware.

 .
.
.

Blocks
in a
way

Blocks
in a
set

12 © 2021 Arm Limited

Set-associative Cache

• Instead of just one tag and

data array, there are

multiple.

• The address is split as

before, but multiple arrays

in parallel are looked up

and have their tags

checked.

Tag Index Offset

.

.

.

Tag Valid

Tag match

and valid?

Data

.

.

.

Select
byte(s)

Hit / miss

13 © 2021 Arm Limited

Set-associative Cache

• Now, each address in memory maps to multiple cache locations (ways), reducing

contention.
Main Memory Cache

0x00000000

0x00000010

0x00000020

0x00000030

0x00000040

0x00000050

0x00000060

0x00000070

0x00000080

0x00000090

Way 0 Way 1

14 © 2021 Arm Limited

Fully Associative Cache

• In a fully associative cache, a block can be placed in any available location in the cache.

• This makes the cache more flexible, increasing the hit rate.

• But it is also more complex, as searching for a block involves comparing against all

blocks.

• Pros:
• Good flexibility: greater hit rate

• Cons:
• Searching for a match can be expensive, power-hungry, and slow.

15 © 2021 Arm Limited

Cache Policies

16 © 2021 Arm Limited

Replacement Policies

• On a cache miss, a new memory location that isn’t already in the cache is accessed.
• We generally want to cache this new block, to take advantage of its locality.

• Therefore, we need to choose a block within the cache to replace, called the victim.

• The replacement policy determines which block we choose.

 .
.
.

 .
.
. Required block

Victim block

Cache
miss

Perform
replacement

17 © 2021 Arm Limited

Replacement Policies

By cache type

• In a direct-mapped cache, there is only

one possible victim for each block.

• Fully associative cache blocks only

need to be replaced when the cache is

full, and then they need to choose a

victim.

• Set-associative cache blocks need to

use a policy to choose and replace a

victim when the set is full.

Associative policies

• Round robin (first in, first out)
• Cycle round the ways in a set

• Simple, but doesn’t maximize locality

• Least-recently used (LRU)
• Track order blocks have been accessed.

• Requires extra logic, usually pseudo-LRU

used

• Random
• Simple to implement

18 © 2021 Arm Limited

Cache Policies

• Other policies determine the operation of the cache.

• The allocation policy controls when new data are loaded into the cache.
• A no-write-allocate policy only allocates new data on a read miss.

• A write-allocate policy also allocates on a write miss.

 .
.
. Written block Cache

miss

 .
.
. Written block Cache

miss

No-write-allocate Write-allocate

19 © 2021 Arm Limited

Cache Policies

• The cache write policy controls what happens when a write operation hits in the cache.
• A write-through cache updates external memory in parallel with itself.

• A write-back cache does not update external memory until it is required to and marks modified blocks

as dirty.

– For example, on eviction of the written-to cache block

 .
.
.

Data Dirty

Cache

Main memory

Main memory

W
ri

te
-t

h
ro

u
g

h

W
rite

-b
a

ck

Stale data

 .
.
.

Cache

Data

20 © 2021 Arm Limited

Multi-level Caches

21 © 2021 Arm Limited

Multi-level Caches

• L1 caches smaller and

closer to CPU
• Usually integrated into the

processor

• Usually separate data and

instruction caches

• L2 caches larger but

further from CPU
• On the same die

• Usually unified instruction

and data

Modern systems provide support for multi-level caches.

CPU

L1 I-Cache

L1 D-Cache

M
M

U

B
u

s
in

te
rf

a
ce

L2
 C

a
ch

e

B
u

s
in

te
rc

o
n

n
e

ct

Main

memory

22 © 2021 Arm Limited

Cache Sharing

• Caches can also be

shared by several

processors in the

system.
• L1 caches are typically

private.

• Sharing often occurs at

L2 or L3 caches.

• If at L3, both L1 and L2

caches are private.

CPU

L1 I-Cache

L1 D-Cache

M
M

U

B
u

s
in

te
rf

a
ce

L2
 C

a
ch

e

B
u

s
in

te
rc

o
n

n
e

ct

Main

memory

CPU

L1 I-Cache

L1 D-Cache

M
M

U

23 © 2021 Arm Limited

Cache Performance Metrics

24 © 2021 Arm Limited

Cache Performance Terminology

Reducing cache misses to improve performance

Cache hits and misses

• If the data to be accessed are present

in the cache, it is called a hit;

otherwise, it is a miss.

• If a cache miss occurs, a block of data

containing the requested data are

copied into the cache.

Cache miss rate and miss penalty

• The miss rate is the fraction of cache

misses in relation to the total number

of memory accesses.

• The miss penalty is the amount of

extra time taken to load the requested

data.

25 © 2021 Arm Limited

Breaking Down Cache Misses

The three categories of cache miss

• The memory location

being accessed has

never existed in the

cache; the first access

to any new block

generates a compulsory

miss.

Compulsory miss

• There is not enough

space in the cache to

hold all the data

required; therefore,

some of it must be

evicted and reloaded,

and this generates

capacity misses.

• Too many memory

locations map to the

same set, so some

blocks have to be

evicted and reloaded;

this generates conflict

misses.

• Conflict misses only

occur in direct-

mapped and set-

associative caches.

Capacity miss Conflict miss

26 © 2021 Arm Limited

Cache Performance

• Cache hit and miss rates give an indication of cache performance.
• But they fail to capture the impact of the cache on the overall system.

• We therefore prefer to incorporate timing into the cache performance.
• For example, including the time taken to access the cache

• And the time taken to service a miss

• This can give us a value for the average memory access time (AMAT).

• First, we need to define the metrics that we will use.

27 © 2021 Arm Limited

Cache Performance

Metrics useful for measuring performance

• Memory cycle time
• Minimum delay between

two memory accesses

• Memory access time
• Elapsed time between

the start and finish of

one memory access

Memory

• The data throughput
• Bit rate * number of

bits

• Cache hit time
• Elapsed time between

starting access to the

cache and retrieving

the data

• Cache miss penalty
• Time required to

retrieve data from

memory on a cache

miss

Bandwidth Cache

28 © 2021 Arm Limited

Cache Performance

• From the CPU’s point of view, we want to reduce the average memory access time
(AMAT).
• This is the average time it takes to load data.

• Including a cache in the system should lead to reducing AMAT; otherwise, it is doing more harm than

good!

• AMAT = Cache hit time + Cache miss rate * Cache miss penalty

• For example:
• An L1 cache with 1 ns hit latency and 5% miss rate

• Combined with an L2 cache with a 10 ns hit latency and 1% miss rate

• And 100 ns main memory latency

• AMAT = 1 + 0.05 * (10 + 0.01 * 100) = 6.5 ns

29 © 2021 Arm Limited

Techniques for Reducing Cache Misses

• Pros:
• Better spatial locality

• Reduces number of tags

• Cons:
• Increases miss penalty

• Increases capacity

misses

• Increases conflict misses

Larger cache blocks

• Pros:
• Reduces capacity

misses

• Cons:
• Increases hit time

• More expensive

• Consumes more power

• Pros:
• Reduces conflict misses

• Cons:
• Increases hit time

• Consumes more power

Bigger caches Higher associativity

30 © 2021 Arm Limited

Speculative Prefetch

• Many CPUs support speculative data prefetching to L1 caches.
• Monitors for sequential access and automatically requests subsequent blocks

– E.g., access to 0x8000, 0x8100, 0x8200 will result in prefetch of 0x8300

• More advanced prefetching schemes are also possible.

• Some L2 caches also have speculative prefetch.
• Separate from L1 cache prefetch

• Will fetch instructions or data (since the L2 cache is unified)

• ISAs often include instructions for software to perform data prefetching, too.

• In addition, some CPUs will detect memset-like operations (e.g., zeroing out memory)

and change the cache policy from write-allocate to read allocate.
• Avoids polluting cache (with lines of zeroes, for example)

31 © 2021 Arm Limited

Case Study

32 © 2021 Arm Limited

Case Study: Cortex-A9

33 © 2021 Arm Limited

Case Study: Cortex-A9

• 16-64KiB, 4-way set-

associative caches

• Block size of 32B

• Caches closely coupled

with parts of the core
• Store buffer for data

• Branch predictor for

instructions
Cortex-A9

Core

MMU
Instruction side

I Cache

Data side

Store

Buffer
D Cache

Data

Prefetch

Branch

Predict

Instruction

Queue

PLD

Unit

AXI Manager 0 AXI Manager 1

34 © 2021 Arm Limited

Conclusions

• CPU performance historically outpaced main memory, leading to a memory wall.

• Caches provide a solution, but storing copies of recently used data near the CPU

• Caches have many different parameters.
• Direct-mapped or set-associative or fully associative

• Different policies for choosing a victim on a miss when replacing data

• Write through to the next level of memory or write-back only when required

• Allocate a cache block on a write miss or only on a read miss

• Multi-level caches provide a hierarchy of small-yet-fast caches, with large-yet-slow

ones.

• Caches can be shared by cores or other caches within this hierarchy.

