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Module Syllabus 

• Why do we need caches? 

• Cache designs 
• Direct-mapped cache 

• Set-associative cache 

• Fully associative cache 

• Cache policies 

• Multi-level caches 

• Cache performance 
• Reducing cache misses 

• Case study 
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Motivation – Why Do We Need Caches? 

• For CPUs to reach maximum performance, they need fast access to memory. 
• Both to read instructions and to read and write data 

• However, historically, processor clock speeds have increased far faster than in dynamic 

RAM (DRAM). 
• In addition to the differences in the speed of the underlying process technologies 
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Motivation – Why Do We Need Caches? 

• Fortunately, most programs don’t need access to all memory all of the time. 
• Accesses tend to exhibit locality of reference. 

• Temporal locality – if an address is accessed, it is likely to be accessed again soon. 

• Spatial locality – if an address is accessed, its neighbors are likely to be accessed soon. 

• Therefore, only a small number of addresses are likely to be accessed in the near future. 

• Small memories are quick to access and can be placed near to the CPU. 
• If we can identify these locations likely to be accessed soon, then we can keep them in these 

memories. 

• A cache stores copies of some memory locations for fast access when required. 
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Cache Entries 

• The cache operates as follows:  
• Whenever the CPU needs to read from a location residing in the main memory, it first checks the 

cache for any matching entries. 

• If the location exists in the cache, it is simply returned directly to the CPU; this is known as a cache hit. 

• If the location doesn’t exist in the cache, also known as a cache miss, the cache allocates a new entry 
for the location, copies the contents from the main memory, and then fulfills the request from the 

contents in the cache. 

• If the CPU needs to write some data, then it also checks the cache first and writes on a 

hit. 
• What happens on a miss is governed by the cache’s polices, described in later slides. 

• The proportion of accesses that result in hits, as opposed to misses, is known as the hit 

rate and is a useful measure of the effectiveness of the cache. 

• The cache stores data in blocks to take advantage of spatial locality. 
• For example, a block may be 32B or 64B long whereas each data item is typically only 8B in size. 



6 © 2021 Arm Limited 

Accessing the Cache 

• To identify whether data are in a 

cache, we need an identifier to 

map to a cache block. 
• The data’s address is easily used for 

this. 

• We split the address into 

separate parts. 
• Tag – the unique identifier for the 

data, compared to tags stored within 

the cache 

• Index – used to select the cache 

blocks to do the tag comparison with 

• Offset – position of the data within 

the cache block 

Address 

Tag Index Offset 
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Cache Designs 
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Direct-mapped Cache 

• A simple design because each memory location only maps to one cache block 

• However, this often leads to contention. 
• When several locations with the same cache index are repeatedly accessed 

 

• Pros: 
• Simple design, therefore inexpensive 

• Quick to search 

• Cons: 
• Low hit rate when there is contention 
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Direct-mapped Cache 

• Index used to select a 

single cache block 

• Tags compared 
• If valid and tags match, 

then hit 

• On hit, offset chooses 

starting byte from data 

array. 
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Direct-mapped Cache 

• The downside is 

that each address 

in memory has 

only one location 

in the cache that 

it maps to. 

• Multiple memory 

locations could  

contend for the 

same cache line. 

Main Memory Cache 

0x00000000 

0x00000010 

0x00000020 

0x00000030 

0x00000040 

0x00000050 

0x00000060 

0x00000070 

0x00000080 

0x00000090 



11 © 2021 Arm Limited 

Set-associative Cache 

• Each memory location maps to N cache blocks. 
• Each group of N cache blocks is called a set – hence, N-way 

set associative. 

• A group of cache blocks in the same array but with different 

indices is called a way. 

• Improved hit rate compared to a direct-mapped 

cache 
• Less contention when there are several memory locations 

with the same cache index 

• Pros: 
• Combines the speed of a direct-mapped cache with 

improved flexibility in placement 

• Cons: 
• Finding blocks within a set requires more complex 

hardware. 
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Set-associative Cache 

• Instead of just one tag and 

data array, there are 

multiple. 

• The address is split as 

before, but multiple arrays 

in parallel are looked up 

and have their tags 

checked. 

 

 
 

 
 

 

 

 
 

 
 

 
 

 

Tag Index Offset 

. 

. 

. 

Tag Valid 

Tag match 

and valid? 

 

 

Data 

. 

. 

. 

Select 
byte(s) 

Hit / miss 



13 © 2021 Arm Limited 

Set-associative Cache 

• Now, each address in memory maps to multiple cache locations (ways), reducing 

contention. 
Main Memory Cache 
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Fully Associative Cache 

• In a fully associative cache, a block can be placed in any available location in the cache. 

• This makes the cache more flexible, increasing the hit rate. 

• But it is also more complex, as searching for a block involves comparing against all 

blocks. 

 

• Pros: 
• Good flexibility: greater hit rate 

• Cons: 
• Searching for a match can be expensive, power-hungry, and slow. 



15 © 2021 Arm Limited 

Cache Policies 
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Replacement Policies 

• On a cache miss, a new memory location that isn’t already in the cache is accessed. 
• We generally want to cache this new block, to take advantage of its locality. 

• Therefore, we need to choose a block within the cache to replace, called the victim. 

• The replacement policy determines which block we choose. 
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Replacement Policies 

By cache type 

• In a direct-mapped cache, there is only 

one possible victim for each block. 

• Fully associative cache blocks only 

need to be replaced when the cache is 

full, and then they need to choose a 

victim. 

• Set-associative cache blocks need to 

use a policy to choose and replace a 

victim when the set is full. 

Associative policies 

• Round robin (first in, first out) 
• Cycle round the ways in a set 

• Simple, but doesn’t maximize locality 

• Least-recently used (LRU) 
• Track order blocks have been accessed. 

• Requires extra logic, usually pseudo-LRU 

used 

• Random 
• Simple to implement 
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Cache Policies 

• Other policies determine the operation of the cache. 

• The allocation policy controls when new data are loaded into the cache. 
• A no-write-allocate policy only allocates new data on a read miss. 

• A write-allocate policy also allocates on a write miss. 
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Cache Policies 

• The cache write policy controls what happens when a write operation hits in the cache. 
• A write-through cache updates external memory in parallel with itself. 

• A write-back cache does not update external memory until it is required to and marks modified blocks 

as dirty. 

– For example, on eviction of the written-to cache block 
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Multi-level Caches 
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Multi-level Caches 

• L1 caches smaller and 

closer to CPU 
• Usually integrated into the 

processor 

• Usually separate data and 

instruction caches 

• L2 caches larger but 

further from CPU 
• On the same die 

• Usually unified instruction 

and data 

Modern systems provide support for multi-level caches. 
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Cache Sharing 

• Caches can also be 

shared by several 

processors in the 

system. 
• L1 caches are typically 

private. 

• Sharing often occurs at 

L2 or L3 caches. 

• If at L3, both L1 and L2 

caches are private. 
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Cache Performance Metrics 
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Cache Performance Terminology 

Reducing cache misses to improve performance 

Cache hits and misses 

• If the data to be accessed are present 

in the cache, it is called a hit; 

otherwise, it is a miss. 

• If a cache miss occurs, a block of data 

containing the requested data are 

copied into the cache. 

Cache miss rate and miss penalty 

• The miss rate is the fraction of cache 

misses in relation to the total number 

of memory accesses. 

• The miss penalty is the amount of 

extra time taken to load the requested 

data. 
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Breaking Down Cache Misses 

The three categories of cache miss 

• The memory location 

being accessed has 

never existed in the 

cache; the first access 

to any new block 

generates a compulsory 

miss. 

Compulsory miss 

• There is not enough 

space in the cache to 

hold all the data 

required; therefore, 

some of it must be 

evicted and reloaded, 

and this generates 

capacity misses. 

• Too many memory 

locations map to the 

same set, so some 

blocks have to be 

evicted and reloaded; 

this generates conflict 

misses. 

• Conflict misses only 

occur in direct-

mapped and set-

associative caches. 

Capacity miss Conflict miss 
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Cache Performance 

• Cache hit and miss rates give an indication of cache performance. 
• But they fail to capture the impact of the cache on the overall system. 

• We therefore prefer to incorporate timing into the cache performance. 
• For example, including the time taken to access the cache 

• And the time taken to service a miss 

• This can give us a value for the average memory access time (AMAT). 

• First, we need to define the metrics that we will use. 
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Cache Performance 

Metrics useful for measuring performance 

• Memory cycle time 
• Minimum delay between 

two memory accesses 

• Memory access time 
• Elapsed time between 

the start and finish of 

one memory access 

Memory 

• The data throughput 
• Bit rate * number of 

bits 

• Cache hit time 
• Elapsed time between 

starting access to the 

cache and retrieving 

the data 

• Cache miss penalty 
• Time required to 

retrieve data from 

memory on a cache 

miss 

Bandwidth Cache 
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Cache Performance 

• From the CPU’s point of view, we want to reduce the average memory access time 
(AMAT). 
• This is the average time it takes to load data. 

• Including a cache in the system should lead to reducing AMAT; otherwise, it is doing more harm than 

good! 

• AMAT = Cache hit time + Cache miss rate * Cache miss penalty 

• For example: 
• An L1 cache with 1 ns hit latency and 5% miss rate 

• Combined with an L2 cache with a 10 ns hit latency and 1% miss rate 

• And 100 ns main memory latency 

• AMAT = 1 + 0.05 * (10 + 0.01 * 100) = 6.5 ns 
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Techniques for Reducing Cache Misses 

• Pros:  
• Better spatial locality 

• Reduces number of tags 

• Cons: 
• Increases miss penalty 

• Increases capacity 

misses 

• Increases conflict misses 

 

Larger cache blocks 

• Pros: 
• Reduces capacity 

misses 

• Cons: 
• Increases hit time 

• More expensive 

• Consumes more power 

 

• Pros: 
• Reduces conflict misses 

• Cons: 
• Increases hit time 

• Consumes more power 
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Speculative Prefetch 

• Many CPUs support speculative data prefetching to L1 caches. 
• Monitors for sequential access and automatically requests subsequent blocks 

– E.g., access to 0x8000, 0x8100, 0x8200 will result in prefetch of 0x8300 

• More advanced prefetching schemes are also possible. 

• Some L2 caches also have speculative prefetch. 
• Separate from L1 cache prefetch 

• Will fetch instructions or data (since the L2 cache is unified) 

• ISAs often include instructions for software to perform data prefetching, too. 

• In addition, some CPUs will detect memset-like operations (e.g., zeroing out memory) 

and change the cache policy from write-allocate to read allocate. 
• Avoids polluting cache (with lines of zeroes, for example) 
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Case Study 
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Case Study: Cortex-A9 
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Case Study: Cortex-A9 

• 16-64KiB, 4-way set-

associative caches 

• Block size of 32B 

• Caches closely coupled 

with parts of the core 
• Store buffer for data 

• Branch predictor for 

instructions 
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Conclusions 

• CPU performance historically outpaced main memory, leading to a memory wall. 

• Caches provide a solution, but storing copies of recently used data near the CPU 

• Caches have many different parameters. 
• Direct-mapped or set-associative or fully associative 

• Different policies for choosing a victim on a miss when replacing data 

• Write through to the next level of memory or write-back only when required 

• Allocate a cache block on a write miss or only on a read miss 

• Multi-level caches provide a hierarchy of small-yet-fast caches, with large-yet-slow 

ones. 

• Caches can be shared by cores or other caches within this hierarchy. 


