Caches

Module 7

Module Syllabus

* Why do we need caches?

e Cache designs
Direct-mapped cache
Set-associative cache
Fully associative cache

e Cache policies
* Multi-level caches

* Cache performance
Reducing cache misses

e (Case study

2 © 2021 Arm Limited

arm

Motivation — Why Do We Need Caches?

* For CPUs to reach maximum performance, they need fast access to memory.
« Both to read instructions and to read and write data

* However, historically, processor clock speeds have increased far faster than in dynamic
RAM (DRAM).

- In addition to the differences in the speed of the underlying process technologies
CPU

Performance Memory wall

DRAM

3 © 2021 Arm Limited TI me a r m

Motivation — Why Do We Need Caches?

Fortunately, most programs don’t need access to all memory all of the time.
- Accesses tend to exhibit locality of reference.
- Temporal locality — if an address is accessed, it is likely to be accessed again soon.
- Spatial locality — if an address is accessed, its neighbors are likely to be accessed soon.
- Therefore, only a small number of addresses are likely to be accessed in the near future.

Small memories are quick to access and can be placed near to the CPU.
- If we can identify these locations likely to be accessed soon, then we can keep them in these
memories.

A cache stores copies of some memory locations for fast access when required.

4 © 2021 Arm Limited a r m

Cache Entries

The cache operates as follows:
- Whenever the CPU needs to read from a location residing in the main memory, it first checks the
cache for any matching entries.
- If the location exists in the cache, it is simply returned directly to the CPU; this is known as a cache hit.
- If the location doesn’t exist in the cache, also known as a cache miss, the cache allocates a new entry
for the location, copies the contents from the main memory, and then fulfills the request from the
contents in the cache.

* |f the CPU needs to write some data, then it also checks the cache first and writes on a
hit.
- What happens on a miss is governed by the cache’s polices, described in later slides.
* The proportion of accesses that result in hits, as opposed to misses, is known as the hit
rate and is a useful measure of the effectiveness of the cache.

* The cache stores data in blocks to take advantage of spatial locality.
- For example, a block may be 32B or 64B long whereas each data item is typically only 8B in size.

5 © 2021 Arm Limited a r m

Accessing the Cache

* To identify whether data are in a
cache, we need an identifier to

map to a cache block.

- The data’s address is easily used for Address
this. A

* We split the address into

separate parts.

- Tag — the unique identifier for the C N
data, compared to tags stored within v Y S~
the cache Tag Index Offset

- Index — used to select the cache
blocks to do the tag comparison with

- Offset — position of the data within
the cache block

6 © 2021 Arm Limited a r m

Cache Designs

arm

Direct-mapped Cache

A simple design because each memory location only maps to one cache block

However, this often leads to contention.
- When several locations with the same cache index are repeatedly accessed

Pros:
- Simple design, therefore inexpensive
« Quick to search

Cons:
« Low hit rate when there is contention

© 2021 Arm Limited

arm

Direct-mapped Cache

9

Index used to select a
single cache block
Tags compared

- If valid and tags match,
then hit

On hit, offset chooses
starting byte from data
array.

© 2021 Arm Limited

Tag

Index Offset

Tag Valid

Data

\ 4

\ 4

=§g match

and valid?

Hit / miss

Select

byte(s)

A

arm

Direct-mapped Cache

10

The downside is
that each address
in memory has
only one location
in the cache that
it maps to.

Multiple memory
locations could
contend for the
same cache line.

© 2021 Arm Limited

0x00000000
0x00000010
0x00000020
0x00000030
0x00000040
0x00000050
0x00000060
0x00000070

0x00000080
0x00000090

Main Memory

Cache

arm

Set-associative Cache

* Each memory location maps to N cache blocks.
- Each group of N cache blocks is called a set — hence, N-way
set associative.
- A group of cache blocks in the same array but with different |
indices is called a way. |

* Improved hit rate compared to a direct-mapped

cache
.) Blocks
- Less contention when there are several memory locations ina <
with the same cache index

* Pros:
- Combines the speed of a direct-mapped cache with

improved flexibility in placement B:gc:s
 Cons: set
- Finding blocks within a set requires more complex
hardware.

11 © 2021 Arm Limited a r m

Set-associative Cache

Instead of just one tag and

data array, there are

Tag

Index Offset

multiple.

* The address is split as

12

before, but multiple arrays
in parallel are looked up

and have their tags
checked.

© 2021 Arm Limited

Tag Valid

Data

A 4

=€ match

and valid?

Hit / miss

Select

Dbyte(s)

arm

Set-associative Cache

13

Now, each address in memory maps to multiple cache locations (ways), reducing

contention.

© 2021 Arm Limited

0x00000000
0x00000010
0x00000020
0x00000030
0x00000040
0x00000050
0x00000060
0x00000070

0x00000080
0x00000090

Main Memory

Cache

Way 0

Way 1

arm

Fully Associative Cache

* In a fully associative cache, a block can be placed in any available location in the cache.
* This makes the cache more flexible, increasing the hit rate.

* Butitis also more complex, as searching for a block involves comparing against all
blocks.

* Pros:
- Good flexibility: greater hit rate

* Cons:
- Searching for a match can be expensive, power-hungry, and slow.

14 © 2021 Arm Limited a r m

Cache Policies

arm

Replacement Policies

16

On a cache miss, a new memory location that isn’t already in the cache is accessed.

We generally want to cache this new block, to take advantage of its locality.

Therefore, we need to choose a block within the cache to replace, called the victim.

The replacement policy determines which block we choose.

© 2021 Arm Limited

Required block

Cache
miss

¥

Victim block

P
)

Perform
replacement

arm

Replacement Policies

By cache type

17

In a direct-mapped cache, there is only
one possible victim for each block.

Fully associative cache blocks only
need to be replaced when the cache is
full, and then they need to choose a
victim.

Set-associative cache blocks need to
use a policy to choose and replace a
victim when the set is full.

© 2021 Arm Limited

Associative policies

Round robin (first in, first out)
- Cycle round the ways in a set
- Simple, but doesn’t maximize locality

Least-recently used (LRU)

- Track order blocks have been accessed.
- Requires extra logic, usually pseudo-LRU

used

Random
- Simple to implement

arm

Cache Policies

e Other policies determine the operation of the cache.

* The allocation policy controls when new data are loaded into the cache.

- A no-write-allocate policy only allocates new data on a read miss.
- A write-allocate policy also allocates on a write miss.

No-write-allocate

Written block

18 © 2021 Arm Limited

-

Cache
miss

Write-allocate

Written block

)

Cache
miss

Cache Policies

* The cache write policy controls what happens when a write operation hits in the cache.
- A write-through cache updates external memory in parallel with itself.
- A write-back cache does not update external memory until it is required to and marks modified blocks

as dirty.
— For example, on eviction of the written-to cache block

Data Data Dirty , Stale data

m

Write-through
A2eqQ-a1ldM

Cache Main memory Cache Main memory

19 © 2021 Arm Limited a r m

Multi-level Caches

arm

Multi-level Caches

Modern systems provide support for multi-level caches.

e L1 caches smaller and

closer to CPU
- Usually integrated into the !
processor
- Usually separate data and
instruction caches

» L1I-Cache H_

S
S CPU

* L2 caches larger but <= m';/';i;‘ry
further from CPU '

- On the same die 1 t

- Usually unified instruction *| L1D-Cache M_
and data 00 tttttmmmmmmmmmmmmmmmmmmmmmmoooooooood

Bus interface
L2 Cache
Bus interconnect

[i e

21 © 2021 Arm Limited a r m

Cache Sharing

e Caches can also be
shared by several
processors in the

» L1 I-Cache __
system. 5 l |
. |2+ CPU :
L1 caches are typically = i
private. L t |

- Sharing often occurs at
L2 or L3 caches. b -
- Ifat L3, bothLland L2 = i-------------ooooooee .

caches are private. > L1 I-iache |_

»| L1 D-cache H

22 © 2021 Arm Limited a r m

memory

Bus interface
L2 Cache
Bus interconnect

MMU
A
@)
O
cC

Cache Performance Metrics

arm

Cache Performance Terminology

Reducing cache misses to improve performance

Cache hits and misses Cache miss rate and miss penalty

* If the data to be accessed are present * The miss rate is the fraction of cache
in the cache, it is called a hit; misses in relation to the total number
otherwise, it is a miss. of memory accesses.

* If a cache miss occurs, a block of data * The miss penalty is the amount of
containing the requested data are extra time taken to load the requested
copied into the cache. data.

24 © 2021 Arm Limited a r m

Breaking Down Cache Misses

The three categories of cache miss

Compulsory miss

25

The memory location
being accessed has
never existed in the
cache; the first access
to any new block
generates a compulsory
miss.

© 2021 Arm Limited

Capacity miss

* There is not enough
space in the cache to
hold all the data
required; therefore,
some of it must be
evicted and reloaded,
and this generates
capacity misses.

Conflict miss

Too many memory
locations map to the
same set, so some
blocks have to be
evicted and reloaded;
this generates conflict
misses.

Conflict misses only
occur in direct-

mapped and set-
associative cacheéI rm

Cache Performance

* Cache hit and miss rates give an indication of cache performance.
But they fail to capture the impact of the cache on the overall system.

* We therefore prefer to incorporate timing into the cache performance.
For example, including the time taken to access the cache
And the time taken to service a miss

* This can give us a value for the average memory access time (AMAT).
* First, we need to define the metrics that we will use.

26 © 2021 Arm Limited a r m

Cache Performance

Metrics useful for measuring performance

Memory Bandwidth Cache
* Memory cycle time e The data throughput « Cache hit time
- Minimum delay between . Bit rate * number of - Elapsed time between
two memory accesses bits starting access to the
° Memory access time cache and retrieving
- Elapsed time between the data
the start and finish of * Cache miss penalty
one memory access - Time required to

retrieve data from
memory on a cache
miss

27 © 2021 Arm Limited a r m

Cache Performance

* From the CPU’s point of view, we want to reduce the average memory access time
(AMAT).

- This is the average time it takes to load data.
- Including a cache in the system should lead to reducing AMAT, otherwise, it is doing more harm than

good!

* AMAT = Cache hit time + Cache miss rate * Cache miss penalty

* For example:
« An L1 cache with 1 ns hit latency and 5% miss rate
- Combined with an L2 cache with a 10 ns hit latency and 1% miss rate
- And 100 ns main memory latency

* AMAT=1+0.05*(10+0.01 * 100) =6.5ns

28 © 2021 Arm Limited a r m

Techniques for Reducing Cache Misses

Larger cache blocks Bigger caches Higher associativity

* Pros: * Pros: * Pros:
- Better spatial locality - Reduces capacity - Reduces conflict misses
- Reduces number of tags i

g misses e Cons:

* Cons: * Cons: Increases hit time
» Increases miss penalty - Increases hit time - Consumes more power
- Increases capacity - More expensive

misses

Consumes more power
« Increases conflict misses

29 © 2021 Arm Limited a r m

Speculative Prefetch

Many CPUs support speculative data prefetching to L1 caches.

- Monitors for sequential access and automatically requests subsequent blocks
— E.g., access to 0x8000, 0x8100, 0x8200 will result in prefetch of 0x8300

- More advanced prefetching schemes are also possible.

* Some L2 caches also have speculative prefetch.
- Separate from L1 cache prefetch
- Will fetch instructions or data (since the L2 cache is unified)

* |SAs often include instructions for software to perform data prefetching, too.

* In addition, some CPUs will detect memset-like operations (e.g., zeroing out memory)

and change the cache policy from write-allocate to read allocate.
- Avoids polluting cache (with lines of zeroes, for example)

30 © 2021 Arm Limited a r m

Case Study

arm

Case Study: Cortex-A9

Coresight /
JTAG
Debug

Coresight
Trace

32 © 2021 Arm Limited q r m

Case Study: Cortex-A9

33

16-64KiB, 4-way set-
associative caches

Block size of 32B

Caches closely coupled

with parts of the core
- Store buffer for data
- Branch predictor for
instructions

© 2021 Arm Limited

AXI Manager 0

A

PLD Data
Unit Prefetch

Store

AXIl Manager 1

MMU

Cortex-A9

Core

Instruction
Queue

Branch

arm

Conclusions

* CPU performance historically outpaced main memory, leading to a memory wall.
e Caches provide a solution, but storing copies of recently used data near the CPU

e (Caches have many different parameters.
Direct-mapped or set-associative or fully associative
Different policies for choosing a victim on a miss when replacing data
Write through to the next level of memory or write-back only when required
Allocate a cache block on a write miss or only on a read miss

* Multi-level caches provide a hierarchy of small-yet-fast caches, with large-yet-slow
ones.

e Caches can be shared by cores or other caches within this hierarchy.

34 © 2021 Arm Limited a r m

