
© 2021 Arm Limited

Memory

Module 6

2 © 2021 Arm Limited

Module Syllabus

• Types of memory

• Memory hierarchy

• Static RAM (SRAM)

• Dynamic RAM (DRAM)

• Memory management

• Translation lookaside buffers (TLBs)

• Direct memory access (DMA)

3 © 2021 Arm Limited

Motivation

• When a processor runs an application, it needs access to its instructions and data.

• These have to be placed in physical storage locations for the processor to easily access.
• Instructions and data for one program also need isolating from other programs.

• Understanding their designs gives insight into their trade-offs.

• Understanding how they are used gives insight into how hardware can help.

Pair of DRAM modules1 DRAM2

1. By Douglas Whitaker at English Wikipedia, CC BY-SA 2.5

2. By Petr Kratochvil, CC BY-0

3. By Clipartwiki.com

Computer parts3

https://creativecommons.org/licenses/by-sa/2.5/deed.en
https://creativecommons.org/licenses/by-sa/2.5/deed.en
https://creativecommons.org/licenses/by-sa/2.5/deed.en
https://creativecommons.org/share-your-work/public-domain/cc0/
https://creativecommons.org/share-your-work/public-domain/cc0/
https://creativecommons.org/share-your-work/public-domain/cc0/

4 © 2021 Arm Limited

Volatile vs Non-volatile Memory

• Volatile memory
• Requires power to retain the data information

• Usually, faster access speed and less costly

• Used for temporary data storage, such as CPU cache, internal memory

• Also known as Random Access Memory (RAM)

• Non-volatile memory
• No power is required to retain the data information

• Usually, slower access speed and more costly

• Used for secondary storage, or long-term persistent storage

5 © 2021 Arm Limited

Types of Memory

Volatile memory
• Static RAM (SRAM)

• Dynamic RAM (DRAM)

Non-volatile memory
• Read only memory (ROM)

– Erasable programmable ROM (EPROM)

– Electrically erasable programmable ROM

(EEPROM)

• Non-volatile random-access memory (NVRAM)
– Flash memory

• Mechanical storage
– Hard drive, magnetic tape

Memory

Volatile memory

Static RAM (SRAM)

Dynamic RAM
(DRAM)

Non-volatile
Memory

Read Only Memory
(ROM)

Erasable
Programmable ROM

(EPROM)

Electrically Erasable
Programmable ROM

(EEPROM)

Random-Access

Flash Memory

New Technologies,
e.g. PCM, ReRAM,

STT-MRAM

Mechanical Storage

Hard Drive

Magnetic Tape

Optical Disc

6 © 2021 Arm Limited

Memory Hierarchy

• Register: usually one CPU cycle to access

• Cache: CPU cache, translation lookaside

buffer (TLB)
• SRAM

• Main memory
• DRAM

• Secondary memory: hard disk, solid-state

drive

• Tertiary memory: tape libraries, cloud

Memory Types Functional/Organizational View

Register

Caches

(Multilevel)

Main Memory

Secondary Memory

Tertiary Memory

Larger Size

Lower Cost

Lower Speed

7 © 2021 Arm Limited

Volatile Memory

• Although the system contains many types of memory, we’ll focus on volatile memory.
• SRAM, for caches

• DRAM, for main memory

• These are the types of memory most commonly found in microprocessors.
• And since they are close to the CPU, their interactions most commonly need to be considered by

microarchitects.

8 © 2021 Arm Limited

Memory Technology Basics

SRAM vs DRAM

SRAM – Static Random Access Memory

• Static – holds data as long as power is

maintained

• Requires multiple transistors to retain

one bit and has low density compared

to DRAM, thus more expensive

• Faster than DRAM

• Used for caches (next module)

DRAM – Dynamic Random Access Memory

• Dynamic – must be refreshed

periodically to hold data

• Requires only one transistor (and one

capacitor) to retain one bit of data

• High density, thus cheaper than SRAM

• Used for main memory and

sometimes for larger caches

9 © 2021 Arm Limited

SRAM

10 © 2021 Arm Limited

SRAM cell
• An SRAM cell is typically made up of six transistors (MOSFETs).

• A single bit is stored on 4 transistors (M1-M4), which form two inverters that are cross-coupled.

• Access to the bit is controlled by two access transistors (M5 and M6), which are gated by the word line

(select).

• Data are read in and out through the bit lines.

bit bit'

select

VDD

M5

M2

M4

M6

M1

M3

11 © 2021 Arm Limited

Accessing SRAM

Read operation

• The address is decoded and the desired

cell is then selected, in which case the

select line is set to one.

• Depending on the value of the 4

transistors (M1-M4), one of the bit lines

(bit or bit’) will be charged to 1 and the
other will be drained to 0.

• The states of the two bit lines are then

read out as 1-bit data.
bit bit'

select

VDD

M5

M2

M4

M6

M1

M3

1

2 2

3 3

12 © 2021 Arm Limited

Accessing SRAM

Write operation

The two bit lines are pre-charged to the

desired value (e.g., bit = VDD, bit’ = VSS).
The address is decoded and the desired cell

is then selected, in which case the select

line is set to one.

The 4 transistors (M1-M4) are then forced

to flip their states (either charged or

discharged) since the bit lines normally

have much higher capacitance than the 4

transistors.
bit bit'

select

VDD

M5

M2

M4

M6

M1

M3

2

3 3

1 1

13 © 2021 Arm Limited

Accessing SRAM

• The SRAM cells are organized into rows, with a whole row accessed at once.
• For example, a memory architecture with an 8-bit address and 32-bit data is shown below.

• The address decoder uses the address to select a single row, and all its data are read

out.

A
d

d
re

ss
 d

e
co

d
e

r

Bit line amplifier

Address [7:0]

Data in [31:0]

Data out [31:0]

Memory cells

One word

Address bus
.

.

.
.

.

. . . .

14 © 2021 Arm Limited

DRAM

15 © 2021 Arm Limited

DRAM

• A DRAM cell is typically made up of three or even one transistor.
• A single bit is stored in one capacitor.

• Access to the bit is controlled by a single access transistor, which is gated by the word line (select).

• As in SRAM, data are read in and out through the bit line.

bit

select

16 © 2021 Arm Limited

DRAM

• The status of the capacitor (charged or uncharged) indicates the bit state (1 or 0).

• Access is similar to SRAM but.
• The capacitor is drained on a read and charged (if storing 1) on a write.

• The cell needs to be refreshed (or recharged) periodically since the capacitor leaks its charge.
– For example, every 7.8 ms

• DRAM is higher density than SRAM.
• Therefore less expensive

• DRAM can be categorized according to its synchronization and data rate.
• Most DRAM is now synchronous (SDRAM), so it has a clock, rather than asynchronous.

• Double data rate (DDR) DRAM transfers data on both the rising and falling clock edges.

17 © 2021 Arm Limited

DRAM Organization

• DRAM cells are organized into arrays.
• A whole row is accessed at once.

• But only one bit is read out of the row.

• Multiple arrays are grouped into banks.
• All arrays in a bank are accessed

simultaneously.

• A bank with N arrays provides N bits per

access.

17

Column decoder

R
o

w
 d

e
co

d
e

r

Sense amps

Address [7:3]

Data in [3:0]

Data out [3:0]

Address bus
.

.

.
.

.

.

Address [2:0]

One array

Bank

18 © 2021 Arm Limited

DRAM Organization

• DRAM banks are grouped into devices.

• Each device bank operates independently.
• This allows multiple accesses to occur

concurrently.

• Devices may be grouped into ranks.
• All devices in a rank are accessed together.

• This provides bandwidth.

Device

Bank Bank

Bank Bank

Rank

D
e

v
ic

e

Rank

Rank Rank

19 © 2021 Arm Limited

Techniques for Improving DRAM Performance

• To buffer recently

accessed data without

having to make another

access

• Read and refresh

several words and in

parallel.

• The row buffer is

essentially the sense

amps at the bottom of

each array.

Row buffer

• Transfer data on the

rising and falling clock

edges to double the

bandwidth.

• Increase the number

of parallel banks to

improve bandwidth

with simultaneous

accesses.

Double data rate DRAM banking

20 © 2021 Arm Limited

Memory Management

21 © 2021 Arm Limited

Motivation – Why Manage Memory?

• Applications’ instructions and data are stored in main memory.
• And cached when required (see the next module)

• While this is fine for a single application, it poses a security risk with multiple programs.
• An untrusted program could read sensitive data.

• Or corrupt the state of another application, including taking control of it

• We provide an operating system to prevent this happening.

• What hardware support can we provide to improve the performance of the OS?

22 © 2021 Arm Limited

Paging

• The OS forbids direct access to memory.

• Instead, it introduces a layer of indirection.
• Applications see memory as a range of virtual addresses.

• The OS maps these to physical addresses.

• Paging is one method to achieve this.
• Physical memory is split into fixed-sized frames.

• Virtual memory is split into same-sized pages.

• Each page is mapped to one frame.
– Using the high-order bits from the address

– This information is kept in the page table.

Page 0

Page 1

Page 2

Page 3

3

5

1

7

Frame 1

Frame 0

Frame 2

Frame 3

Frame 4

Frame 5

Frame 6

Frame 7

Virtual

address space

Physical

address space

Page table

23 © 2021 Arm Limited

Page Address Translation

• The CPU works on

virtual addresses.
• To access physical

memory, the virtual

address has to be

converted to a

physical address by

indexing into the

page table.

• However, this

makes the page

table extremely

large.

CPU Memory

Virtual address
Frame number Offset Page number Offset

Physical address
.

.

.

Page table

24 © 2021 Arm Limited

Multi-level Page Tables

• To prevent the need for a large

page table, we can create a tree of

page tables.
• Paging the page table

• First-level entries point to second-level

tables.

• Second-level entries point to third-level

tables, etc.

• Final-level entries point to memory

frames.

• To access a frame, we must walk

through the page tables using the

virtual address.
• This is extremely costly.

• Can we provide hardware to help?

.

.

.

Virtual address

Page number

Offset Index 0 Index 1

Physical memory Level 2 page table Level 1 page table

Base

25 © 2021 Arm Limited

Memory-management Unit (MMU)

Handles translation of virtual addresses to physical addresses

• The MMU

provides

hardware to read

translation tables

in memory.

• The translation

lookaside buffers

(TLBs) cache

recent

translations.

CPU

MMU

Caches

Memory

Virtual address space Physical address space

TLBs Translation

tables

26 © 2021 Arm Limited

Overview of Memory Access Using an MMU

CPU

Page-table walk

Physical address

No

Yes

Update TLB

Check if TLB contains the

virtual address

Physical address

Cache Memory

Virtual address space Physical address space

MMU

27 © 2021 Arm Limited

TLB

• The TLB is a cache of page translations.
• Provides access to recent virtual to physical address

mappings quickly

• Each block is one or two page-table entries.

• TLBs are usually fully associative.

• On a hit, forward the physical address to the L1

cache.

• On a miss, the MMU will walk the page tables to

find the translation.

Translation lookaside buffer

CPU Page number Offset

.

.

.

Page

number

Frame

number

TLB

Hit

Miss

Physical memory

Walk page tables

28 © 2021 Arm Limited

DMA

29 © 2021 Arm Limited

DMA

Direct memory access

• When an application wants to access IO, it does so through the OS.
• Using a system call to read from or write to the device

• This requires the CPU to be involved in transferring data between the device and

memory.
• On a read, data are then available to the program in memory.

• This data transfer is costly and wasteful.
• CPU can’t do any useful work whilst waiting.
• Data travel further and take longer to transmit.

Memory

CPU
IO

device

IO

device

Bus

Path taken
by data

30 © 2021 Arm Limited

DMA

• Instead of involving the CPU, provide dedicated

hardware to control the transfer.
• A controller for direct memory access, or DMA.

• CPU now just required to configure this DMA controller

correctly.

• Typically supports multiple configurable options:
• Number of data items to copy

• Source and destination addresses
– Fixed or changeable (e.g., increment and decrement)

• Size of data item

• Timing of transfer start

• A DMA controller can also work with interrupts,

e.g., interrupt CPU at the end of a transfer.

• The main idea is to exempt the CPU from busy-

waiting and frequent interruptions.

31 © 2021 Arm Limited

DMA Architecture

CPU Memory

DMA
Controller

I/O
Device

Address bus

Data bus

Control bus

Bus grant

Bus request

32 © 2021 Arm Limited

DMA Transfer Modes

• Burst
• An entire block of data is transferred in one contiguous sequence.

• The CPU remains inactive for relatively long periods of time (until the whole transfer is completed).

• Cycle stealing
• DMA transfers one byte of data and then releases the bus returning control to the CPU.

• Continually issues requests, transferring one byte per request, until it has transferred the entire block

of data

• It takes longer to transfer data/the CPU is blocked for less time.

• Transparent
• DMA transfers data when the CPU is performing operations that do not use the system buses.

33 © 2021 Arm Limited

Case Study: Cortex-A9 MMU

• The MMU in the Cortex-A9
• Works with the L1 and L2 caches for virtual-to-physical address translation

• Controls access to and from external memory

• Is based on the Virtual Memory System Architecture from the Armv7-A architecture

• Checks access permissions and memory attributes

• Checks the virtual address (VA) and address space identifier (ASID)

34 © 2021 Arm Limited

Case Study: Cortex-A9 MMU

• Main TLB along with separate micro-TLBs for instructions and data for quick access

• Page-table walks can be configured to go through the L1 data cache.
• Allows page tables to be cached

Cortex-A9

Core

Instruction Cache
Data

Cache

cp15

I µTLB D µTLB

Main TLB

MMU Control logic

AXI Manager 0 AXI Manager 1

35 © 2021 Arm Limited

Case Study: Cortex-A9 MMU

• Memory access sequence

1. MMU performs a lookup for the requested VA and current ASID in the relevant micro-

TLB.

2. If there is a miss in the micro-TLB, look in the main TLB.

3. If there is a miss in the main TLB, the MMU performs a hardware page-table walk.

• If the MMU finds a matching TLB entry, the MMU

1. Does permission checks; if these fail, the MMU signals a memory abort

2. Determines if the access is secure/non-secure, shared/non-shareable, and memory

attributes

3. Performs translation for the memory access

36 © 2021 Arm Limited

Conclusions

• SRAM is expensive but fast and typically used for on-chip caches.

• DRAM is slower but denser and cheaper, typically used for main memory.

• DRAM cells grouped into arrays, banks, devices, and ranks.
• Mixture of synchronized operation and concurrency at different levels gives bandwidth and parallel

access.

• Translating from the application’s view of memory to physical addresses is costly.
• The memory-management unit, in particular the TLB, helps.

• As do hardware page-table walkers

• DMA controllers free up the CPU from dealing with transfers between IO and memory.

