
© 2021 Arm Limited

Exploiting Instruction-
level Parallelism

Module 5

2 © 2021 Arm Limited

Module Syllabus

• Superpipelined vs superscalar processor

• Instruction-level parallelism (ILP)
• Simple in-order superscalar processor

• Generic superscalar processor and its functional units
• Instruction fetch, register renaming, register data flow, data forwarding network

• Loads and stores, exceptions and speculation, reorder buffer, unified register file approach, handling

mispredicted branches

• Limits to superscalar processor

3 © 2021 Arm Limited

Recap: Non-pipelined and Pipelined Processors

Non-pipelined processor Pipelined processor

IPC = 1, Clock Period = T

(Note: IPC may be less than one if we

assume we sometimes need to access a

slow main memory.)

S – number of pipeline stages

IPC ≤ 1
Clock Period = T/S+C

(C = pipelining overhead)

This is a scalar pipeline.

4 © 2021 Arm Limited

Superpipelined and Superscalar Processors

S Stages

Superscalar

Degree = P

M sub-stages per stage

A Superscalar
Processor

P instructions are
processed in each
pipeline stage.

IPC ≤ P

Clock Period = T/S+C

A Superpipelined Processor

The S pipeline stages (here S = 6) are further
divided into M sub-stages (here M=2).

This processor executes M instructions
during each of the original pipelined
processor’s clock periods. Its clock is M
times faster.

5 © 2021 Arm Limited

Superpipelined and Superscalar Processors

Superscalar execution

Superpipelined execution

Pipelined execution

Execute

Time in “base” clock cycles

6 © 2021 Arm Limited

Superpipelined and Superscalar Processors

• If we ignore implementation issues, a superpipelined machine of degree M and a

superscalar machine of degree P should have roughly the same performance.

• In either case, we must find (M or P) independent instructions from the program that

can execute in parallel in each clock cycle. We could use software or hardware

techniques to do this.

7 © 2021 Arm Limited

Superpipelined and Superscalar Processors

In practice, it has proved better to produce superscalar processors, often with deep

pipelines, rather than purely superpipelined processors:

• Practical limits to clock frequency

• Some operations or modules are difficult to pipeline.

• The need to balance logic in pipeline stages

8 © 2021 Arm Limited

Instruction-level Parallelism (ILP)

We could simply fetch two instructions per clock cycle and, if they are independent, issue

them together to different functional units.

What extra hardware will this processor require?

• extra logic in decode stage to decode two instructions and check for dependencies

• register file ports? (extra read and write ports)

• functional units?

• additional data forwarding paths?

9 © 2021 Arm Limited

Simple In-order Superscalar Processors

• We can create a simple (2-way) superscalar processor with a few changes to our scalar

pipeline.

• We will fetch and decode multiple instructions per cycle.

• Instructions are sent to functional units in program order (in-order issue).

• We will issue and execute instructions in parallel if we can.

• If we can’t issue two instructions together, we simply issue one and then try to issue the
waiting instruction on the next cycle.

10 © 2021 Arm Limited

Simple In-order Superscalar Processor

Fetch

Decode

(read
from
RF)

ALU1 Mem
WB

(write
to RF)

ALU2
Fetch 2
instructions
per cycle

2

4 Register
File (RF)

read ports
Additional data forwarding paths are
also required (not shown here),
from and to both ALUs.

2 register
file write

ports
Execute

11 © 2021 Arm Limited

Arm Cortex-A55

2-wide instruction fetch, in-order “dual” instruction issue, 8-stage integer pipeline
(Armv8.2-A architecture)

12 © 2021 Arm Limited

Issue Slots

A dual-issue, in-order pipeline

Here, issue “slot-0” and “slot-1” operate as a
sliding window or shift register.

In general, we can’t dual-issue if:

• There is a data dependence between the two

instructions.

• There is a structural dependence (i.e., they

both need the same function unit (FU) resource

that has not been duplicated).

• The FU resource required by one of the

instructions is busy.

SLOT-0 MOVW

SLOT-1 SUB

 ADD

 LDR

 CMP

 ADD

Instructions are issued to
functional units in program

order and in pairs, if possible

13 © 2021 Arm Limited

Exposing and Exploiting More ILP

To expose more ILP, we need to consider:

• Branch prediction and speculative execution

• Removing name (or false) data dependencies

• Dynamic instruction scheduling

14 © 2021 Arm Limited

A Generic Superscalar Processor

Fetch
n

Decode Rename
n n

Issue
Read

Registers

FUs +

LS unit

Reg Write

Commit

i D

F

N

Data

Cache

Instruction

Cache

(Execute)

LS unit = Load/Store unit

DFN = Data Forwarding Network

(Writeback)

15 © 2021 Arm Limited

A Generic Superscalar Processor

Fetch
n

Decode Rename
n n

Issue
Read

Registers

FUs +

LS unit
Reg Write

i D

F

N

Data

Cache

Instruction

Cache

(Execute)

LS unit = Load/Store unit

DFN = Data Forwarding Network

(Writeback)

16 © 2021 Arm Limited

Superscalar Processors: Instruction Fetch

Our superscalar pipeline cannot process instructions faster than they are supplied, so

maintaining a good instruction fetch rate is very important.

Potential limitations:

• Branch prediction accuracy (may also need to predict multiple branches at a time)

• Instruction cache performance (see later module on caches)

• Instruction fetch and alignment issues
• The instructions we need to fetch might be in different cache lines.

17 © 2021 Arm Limited

Superscalar Processors: Instruction Fetch

Our instruction fetch (front-end) can be decoupled from the part of the processor that

actually executes instructions. The aim here is to run ahead, fill the instruction buffer, and

help keep our execution units fed.

In-order “Front-end”
In-order

In-order

commit

Out-of-order
execute core

Note: each block may represent multiple pipeline stages

18 © 2021 Arm Limited

Superscalar Processors: Register Renaming

• High-performance superscalar

processors are able to maintain a

window into the dynamic instruction

stream.

• They are able to issue instructions from

anywhere in this window when their

operands are ready.

LDR X5, [X2, X4]

LDR X6, [X3, X4]

ADD X5, X5, X6

MUL X7, X5, #37

STR X7, [X2, X4]

ADD X4, X4, #4

LDR X5, [X2, X4]

MUL X8, X5, #5

time

19 © 2021 Arm Limited

Superscalar Processors: Register Renaming

• In practice, name (or false) dependencies may

limit our ability to perform this out-of-order

instruction issue.

• These are present as the compiler must reuse

a limited number architectural (or logical)

register names.

• The arrows highlight the false dependencies

present in this code snippet.

LDR X5, [X2, X4]

LDR X6, [X3, X4]

ADD X5, X5, X6

MUL X7, X5, #37

STR X7, [X2, X4]

ADD X4, X4, #4

LDR X5, [X2, X4]

MUL X8, X5, #5

time

20 © 2021 Arm Limited

Superscalar Processors: Register Renaming

• Register renaming may be performed in hardware at run-time.

• It provides each instruction with a unique physical destination register.

• Given enough physical registers, renaming can remove all name dependencies.

• The processor has many more physical registers than architectural ones, e.g.:
• The A64 ISA provides 31 (64-bit) general-purpose registers that the compiler may use.

• A high-performance superscalar Arm processor may provide 128 or more physical registers.

• The architectural register names are “renamed” to physical ones early in the pipeline.

21 © 2021 Arm Limited

A Generic Superscalar Processor

Fetch
n

Decode Rename
n n

Issue
Read

Registers

FUs +

LS unit

Reg Write

Commit

i D

F

N

Data

Cache

Instruction

Cache

(Execute)

LS unit = Load/Store unit

DFN = Data Forwarding Network

(Writeback)

22 © 2021 Arm Limited

Superscalar Processors: Register Renaming

Before register
renaming

After register
renaming

Register Map Table

Free Register List

AND X2, X2, X1

ADD X3, X2, X5

MUL X2, X4, X1

AND P__, P34, P__

ADD P__, P__, P__

MUL P__, P__, P__

X1

X5

X4

X3

X2

.

.

.

P23

P34

P9

P7

P5 P17

P22

P2

P9

New Free

Physical Registers

23 © 2021 Arm Limited

Superscalar Processors: Register Renaming

Before register
renaming

After register
renaming

Register Map Table

Free Register List

AND X2, X2, X1

ADD X3, X2, X5

MUL X2, X4, X1

AND P__, P34, P23

ADD P__, P__, P__

MUL P__, P__, P__

X1

X5

X4

X3

X2

.

.

.

P23

P34

P9

P7

P5 P17

P22

P2

P9

New Free

Physical Registers

24 © 2021 Arm Limited

Superscalar Processors: Register Renaming

Before register
renaming

After register
renaming

Register Map Table

Free Register List

AND X2, X2, X1

ADD X3, X2, X5

MUL X2, X4, X1

AND P17, P34, P23

ADD P__, P__, P__

MUL P__, P__, P__

X1

X5

X4

X3

X2

.

.

.

P23

P17

P9

P7

P5
P17

P22

P2

P9

New Free

Physical Registers

25 © 2021 Arm Limited

Superscalar Processors: Register Renaming

Before register
renaming

After register
renaming

Register Map Table

Free Register List

AND X2, X2, X1

ADD X3, X2, X5

MUL X2, X4, X1

AND P17, P34, P23

ADD P22, P17, P5

MUL P2, P7, P23

X1

X5

X4

X3

X2

.

.

.

P23

P2

P22

P7

P5 P9

New Free

Physical Registers

26 © 2021 Arm Limited

Superscalar Processors: Register Renaming

• Each instruction now has a unique

physical destination register.

• All name dependencies have been

removed.

• The processor is now free to issue

an instruction as soon as its

operands are ready and an

appropriate FU is free.

LDR P23, [P16, P1]

LDR P70, [P17, P1]

ADD P33, P23, P70

MUL P2, P33, #37

STR P2, [P2, P1]

ADD P3, P1, #4

LDR P10, [P16, P3]

MUL P6, P10, #5

time

27 © 2021 Arm Limited

A Generic Superscalar Processor

Fetch
n

Decode Rename
n n

Issue
Read

Registers

FUs +

LS unit

Reg Write

Commit

i D

F

N

Data

Cache

Instruction

Cache

(Execute)

LS unit = Load/Store unit

DFN = Data Forwarding Network

(Writeback)

28 © 2021 Arm Limited

Superscalar Processors: Register Data Flow

• The status of each instruction’s
operands are read and

updated when they enter our

issue window.

• We can see that the first two

loads are ready to issue and

the second ADD.

LDR P23, [P16, P1]

LDR P70, [P17, P1]

ADD P33, P23, P70

MUL P2, P33, #37

STR P2, [P2, P1]

ADD P3, P1, #4

LDR P10, [P16, P3]

MUL P6, P10, #5

time

Operands are ready if shown in

green and are not available if

shown in red; destination

registers are shown in black

29 © 2021 Arm Limited

Superscalar Processors: Register Data Flow

• The first load instruction (“LDR
P23…”) is issued together with a
more recent ADD instruction.

LDR P23, [P16, P1]

LDR P70, [P17, P1]

ADD P33, P23, P70

MUL P2, P33, #37

STR P2, [P2, P1]

ADD P3, P1, #4

LDR P10, [P16, P3]

MUL P6, P10, #5

time

30 © 2021 Arm Limited

Superscalar Processors: Register Data Flow

• After the ADD instruction is

issued, we update the status of

register P3 in any waiting

instruction.

• We will also broadcast the

register identifier P23 in a

similar way.

• As the load’s latency will be
greater than a single cycle, we

delay this operation for a few

clock cycles.

LDR P23, [P16, P1]

LDR P70, [P17, P1]

ADD P33, P23, P70

MUL P2, P33, #37

STR P2, [P2, P1]

ADD P3, P1, #4

LDR P10, [P16, P3]

MUL P6, P10, #5

time

31 © 2021 Arm Limited

Superscalar Processors: Register Data Flow

• The second load is now issued.

LDR P23, [P16, P1]

LDR P70, [P17, P1]

ADD P33, P23, P70

MUL P2, P33, #37

STR P2, [P2, P1]

ADD P3, P1, #4

LDR P10, [P16, P3]

MUL P6, P10, #5

time

32 © 2021 Arm Limited

Superscalar Processors: Register Data Flow

• And now the third load instruction is issued.

LDR P23, [P16, P1]

LDR P70, [P17, P1]

ADD P33, P23, P70

MUL P2, P33, #37

STR P2, [P2, P1]

ADD P3, P1, #4

LDR P10, [P16, P3]

MUL P6, P10, #5

time

33 © 2021 Arm Limited

Superscalar Processors: Register Data Flow

• We now expect the result of the first load soon, so we update those instructions waiting

for result P23.

• Then, on the next clock cycle, P70.
LDR P23, [P16, P1]

LDR P70, [P17, P1]

ADD P33, P23, P70

MUL P2, P33, #37

STR P2, [P2, P1]

ADD P3, P1, #4

LDR P10, [P16, P3]

MUL P6, P10, #5

time

34 © 2021 Arm Limited

Superscalar Processors: Register Data Flow

• The first ADD instruction can now be issued.

• We continue in this way until all the instructions are executed.

LDR P23, [P16, P1]

LDR P70, [P17, P1]

ADD P33, P23, P70

MUL P2, P33, #37

STR P2, [P2, P1]

ADD P3, P1, #4

LDR P10, [P16, P3]

MUL P6, P10, #5

time

35 © 2021 Arm Limited

Superscalar Processors: Register Data Flow

• The issue window is implemented as a large memory-like structure.

• When an instruction is issued, its destination register is broadcast to all waiting

instructions (perhaps after a short delay for longer latency operations).

• Wakeup phase: the waiting instructions compare the broadcast destination registers

with their own operands. When the register identifiers match, the operand is marked as

ready.

• Selection and issue phase: select as many ready instructions as possible and issue them

to waiting FUs.

36 © 2021 Arm Limited

Superscalar Processors: Instruction Issue

Design choices:

• Centralized or distributed instruction window

• Compacted or non-compacted

• Position of register file? Before or after instruction window

37 © 2021 Arm Limited

Example: A Distributed Instruction Window (Arm Cortex-A75)

Instruction fetch can provide at most 4 instructions per cycle,
3-way superscalar, 11-13 stage integer pipeline

64KB Instruction cache, 7 independent issue queues.
 (Armv8.2-A architecture)

FP/ASIMD (F0)

FP/ASIMD (F1)

FP/ASIMD data

38 © 2021 Arm Limited

A Generic Superscalar Processor

Fetch
n

Decode Rename
n n

Issue
Read

Registers

FUs +

LS unit

Reg Write

Commit

i D

F

N

Data

Cache

Instruction

Cache

(Execute)

LS unit = Load/Store unit

DFN = Data Forwarding Network

(Writeback)

39 © 2021 Arm Limited

Superscalar Processors: Data Forwarding (Bypass) Network

• Data forwarding in a scalar pipeline is relatively simple, consisting of a few extra buses

and multiplexers.

• In a superscalar processor, we have many parallel functional units and may need to

forward any recently generated results to the input of any functional unit. For

example:

Issue Queue

Register File

Bypass network

Functional

Unit

Functional

Unit

40 © 2021 Arm Limited

Superscalar Processors: Loads and Stores

Memory-carried data dependencies

• Scheduling loads and stores is complicated by the fact that a load and store may access

the same memory location.

• If we blindly execute these instructions out-of-order, we may violate memory-carried

data dependencies.

41 © 2021 Arm Limited

Superscalar Processors: Loads and Stores

Stores and speculative execution

• Store operations cannot be undone. The implication of this is that:
• To provide precise exceptions, we must ensure stores are not performed until we know that no

earlier instruction will raise an exception.

• We should not execute stores that are “speculative,” i.e., an earlier branch has been predicted, but
we are yet to confirm if the prediction was correct.

42 © 2021 Arm Limited

Superscalar Processors: Loads and Stores

We will only permit stores to execute in program order.

They will wait in the “store queue” until they are the oldest unexecuted instruction.
So we have:

1. Issue load/stores out-of-order to Address Generation Unit (AGU).

2. Buffer stores and only execute them in program order.

3. For loads, check all addresses of older stores. If any match or addresses are unknown,

stall load; otherwise, it may access the data cache (load-bypassing).

43 © 2021 Arm Limited

Superscalar Processors: Loads and Stores

(AGU – Address Generation Unit)

44 © 2021 Arm Limited

Superscalar Processors: Loads and Stores

High-performance superscalar processors go further than this:

• Store-to-load forwarding
• Allows data to be forwarded directly from a pending store to a load instruction

• Speculative loads
• Allow loads to access the data cache speculatively even when there are older stores that have not

calculated their addresses

45 © 2021 Arm Limited

Superscalar Processors: Exceptions and Speculation

• Mispredicted branches and exceptions force us to roll back state.

• To support precise exceptions, we also need to track the architectural state of the

processor.
• i.e., the state corresponding to the in-order execution of instructions

46 © 2021 Arm Limited

Superscalar Processors: Exceptions and Speculation

• V, U, T, S, R, Q, P, O, N, M, L, K, J, I, ….

• V, U, T, S, R, Q, P, O, N, M, L, K, J, I, ….

Unpipelined

Out-of-order

The instruction
generating an

exception

Instructions may execute
early out-of-order
(green – executed;

red – yet to execute)

All executed Not executed

47 © 2021 Arm Limited

Superscalar Processors: The Reorder Buffer

A simple technique for providing precise exceptions is to only update our register file in

program order. We will buffer any results generated out-of-order in a reorder buffer.

Architectural

Register

File

Reorder Buffer

O P Q R S T
X5=? X5=4 X9=? X3=? X5=3 X1=?

*
Exception?

Instructions
from

“front-end”

(in-order)

Instruction T executes and writes its

result to its entry in the reorder buffer

48 © 2021 Arm Limited

Superscalar Processors: The Reorder Buffer

Committing instructions

When an instruction reaches the end of the reorder buffer, we know all earlier instructions

have completed. At this point, we can:

• Update our (architectural) register file.

• Check if branches have been mispredicted.
• If so, flush the reorder buffer and re-execute the branch.

• Check if the instruction needs to raise an exception.
• If it does, flush the reorder buffer and raise the exception.

• Signal that store operations can write to the data cache.

49 © 2021 Arm Limited

Superscalar Processors: The Reorder Buffer

We now have two potential sources when trying to obtain the latest value of a register: the

reorder buffer and our architectural register file.

To ensure instructions receive the correct data, we rename registers to reorder buffer

entries (or entries in the register file).

This is done at the rename stage either by:

(1) maintaining an explicit mapping table determining the latest source of a particular

logical register

(2) searching the reorder buffer for the latest version of a logical register

Each instruction’s destination register is renamed to the assigned reorder buffer slot.

50 © 2021 Arm Limited

Superscalar Processors: Unified Register File A pproach

• The reorder buffer complicates our design by introducing a new source of operands.

• An alternative approach is to maintain a large physical register file that holds all results.

• Here, we rename registers, as described earlier, and maintain a register mapping table

(that holds the mapping of architectural register names to physical ones).

51 © 2021 Arm Limited

Superscalar Processors: Unified Register File Approach

• Large Unified Physical

Register File

Register
Rename

Stage

Front-end
register map

table

Architectural
register map

table

Commit
Stage

In-order queue
(simplified reorder buffer)

Copy architectural register map to
front-end map on an exception

52 © 2021 Arm Limited

Superscalar Processors: Handling Mispredicted Branches

• Some processors attempt to handle mispredicted branches before they commit.

• This can be achieved by saving the register map table each time we encounter a branch.

• As soon as we detect a mispredicted branch, we can quickly restore the mapping that

existed before the branch was predicted.

• This restoration of state is itself speculative, an older branch or exception may cause us

to roll back execution again.

53 © 2021 Arm Limited

Example: Putting It All Together (Cortex-A77, 2019)

• The Cortex-A77 can fetch and decode 4 instructions/cycle.

• It can issue (dispatch) up to 10 uops/cycle to the integer, FP, and load/store units.

• The branch mispredict penalty is 10 cycles in the best case.

• The out-of-order windows size and reorder buffer hold 160 instructions.

• The target clock frequency is between 2.6 and 3 GHz.

54 © 2021 Arm Limited

55 © 2021 Arm Limited

Limits to Superscalar Processors

Ultimately, the performance of a superscalar processor is limited by:

• Increasing hardware cost of extracting more ILP

• Memory bandwidth

• Limits to branch prediction and caches

• Interconnect scaling

• Power consumption

